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Abstract

We consider an analytical signal control problem on a signalized network whose traffic flow dynamic is described
by the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955; Richards, 1956). This problem
explicitly addresses traffic-derived emissions as constraints or objectives. We seek to tackle this problem using a
mixed integer mathematical programming approach. Such class of problems, which we call LWR-Emission (LWR-
E), has been analyzed before to certain extent. Since mixed integer programs are practically efficient to solve in
many cases (Bertsimas et al., 2011b), the mere fact of having integer variables is not the most significant challenge
to solving LWR-E problems; rather, it is the presence of the potentially nonlinear and nonconvex emission-related
constraints/objectives that render the program computationally expensive.

To address this computational challenge, we proposed a novel reformulation of the LWR-E problem as a mixed
integer linear program (MILP). This approach relies on the existence of a statistically valid macroscopic relationship
between the aggregate emission rate and the vehicle occupancy on the same link. This relationship is approximated
with certain functional forms and the associated uncertainties are handled explicitly using robust optimization (RO)
techniques. The RO allows emissions-related constraints and/or objectives to be reformulated as linear forms under
mild conditions. To further reduce the computational cost, we employ a link-based LWR model to describe traffic
dynamics with the benefit of fewer (integer) variables and less potential traffic holding. The proposed MILP explicitly
captures vehicle spillback, avoids traffic holding, and simultaneously minimizes travel delay and addresses emission-
related concerns.

Keywords: signal control, emission consideration, robust optimization, mixed integer linear program

1. Introduction

Traffic signals tend to be the primary focus of urban traffic control and management strategies since they generally
serve as the most frequent and restrictive bottlenecks on urban streets. Over time, the implementation of traffic signal
control has evolved greatly: from simple fixed-time plans based on historical data and updated infrequently through-
out the day to adaptive control systems that update continuously in response to real-time traffic information. The
performance of a particular strategy depends on several factors: the optimization procedure employed to select signal
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timings, underlying model used to predict the evolution of traffic dynamics and the objective function considered in
the optimization procedure.

Here, we distinguish between two types of optimization procedures: (1) heuristic approaches, such as those de-
veloped with feedback control, genetic algorithms and fuzzy logic (Koukol et al., 2015; Zhang et al., 2013) and (2)
exact approaches, such as those arising from mathematical control theory and mathematical programming. Although
useful for very large and complex optimization problems, heuristic approaches suffer from a failure to provide optimal
solutions. Instead, these are more appropriate when exact approaches are computationally intractable. However, exact
mixed integer programs (MIPs) have been used extensively in the signal control literature and are of particular interest
due to their tractability for smaller networks. For example, Improta and Cantarella (1984) formulated and solved the
traffic signal control problem for a single road junction as a mixed binary integer program. Lo (1999) and Lo (1999b)
formulated the network-level signal control problem as a mixed integer linear program using the cell transmission
model (CTM) (Daganzo, 1994, 1995). In these papers, time-varying traffic demand patterns were incorporated by
adopting dynamic signal timing plans. Such methods were later extended in Lin and Wang (2004) to capture more
realistic features of signalized junctions such as the total number of vehicle stops and signal preemption in the pres-
ence of emergency vehicles. Building upon this solid foundation that exists in the literature, this MIP approach will
be adopted here.

In most works, the model of traffic dynamics is taken as fixed, which is reasonable for models that accurately
describe the critical phenomena observed. In this paper, we consider the Lighthill-Whitham-Richards model (Lighthill
and Whitham, 1955; Richards, 1956), also known as kinematic wave theory, to describe traffic dynamics on individual
links and through signalized junctions. This well-known model is employed as it is one of the most used and trusted
traffic flow models currently being used in network optimization procedures today (Aziz and Ukkusuri, 2012; Chitour
and Piccoli, 2005; Han et al., 2014b; Lin and Wang, 2004; Liu et al., 2015; Lo, 1999c,b; Zhang et al., 2013). In
particular, we employ a link-based kinematic wave model (LKWM) proposed in Han et al. (2012) to capture queue
dynamics, shock waves and vehicle spillback, while integrating it with signalized junction models. In contrast to the
cell-based math programming approaches reviewed above, the link-based approach requires fewer spatial variables
and eliminates the problem of traffic holding that arises between two adjacent cells (Ziliaskopoulos, 2000) without
using additional binary variables (Lo, 1999). In this way, the resulting mathematical program is more computationally
efficient than the more traditional cell-based approach.

As for objective functions, the majority of adaptive traffic signal control schemes update signal timings to min-
imize total vehicular delays. Representatives of such signal-control systems are OPAC (Gartner, 1983), RHODES
(Mirchandani and Head, 2000), SCAT (Sims and Dobinson, 1980) and SCOOT (Hunt et al., 1982). Other control
strategies seek to minimize delays to a subset of vehicles; e.g., the goal of transit signal priority strategies is to reduce
delays for transit vehicles, often to the detriment of those remaining, see Skabardonis (2000). More recently, a transit
signal priority strategy was proposed to minimize total person delay, which essentially considers a weighted average
of vehicular delay using the passenger occupancies of each vehicle as the weights (Christofa et al., 2013).

Relatively less attention has been given to vehicular emissions in the optimization of traffic signal timings. The
earliest study that includes emissions in signal timing optimization appears to be Robertson et al. (1980), but this work
relies on macroscopic simulations that do not accurately account for vehicle dynamics at intersections. The efforts that
followed either relied on combining detailed emissions models with outputs from microscopic simulations or models
(Stevanovic et al., 2009; Li and Shimamoto, 2011; Lin et al., 2010; Lv et al., 2013) or macroscopic emissions models
estimated from data (Aziz and Ukkusuri, 2012; Zhang et al., 2013). The former approach is more accurate, but relies
on computationally intensive simulation-based optimization methods. The latter is useful but as pointed out by a
survey paper (Szeto et al., 2012) and the literature therein, the environmental considerations typically result in highly
nonlinear and nonconvex constraints and objective functions in the mathematical programming formulation, which
also imposes tremendous computational burdens. As a result, heuristic methods, such as one found in Ferrari (1995);
Zhang et al. (2013), have been used to solve these types of problems. Classical methods such as the inner penalty
technique (Yang and Bell, 1997) and augmented Lagrangian multiplier technique (Yang et al., 2010) have also been
used, but well-defined exact approaches that account for these non-linear and (potentially) stochastic relationships
currently do not exist.

This paper presents a novel approach to circumvent the aforementioned computational challenges by combining
traditional objective functions (i.e., minimizing vehicular delays or maximizing vehicle throughput) with emissions
considerations. The latter are incorporated using constraints in the optimization procedure (e.g., maximizing through-
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put subject to some emissions standard that must be met) and these are reformulated as linear functions through the
use of numerical experimentation and robust optimization. This method is made possible by leveraging observed
relationships between aggregated emissions rates and vehicles occupancies on a link that arise when certain detailed
emission models are employed (e.g., see Shabihkhani and Gonzales (2013)). Such empirical observations are sup-
ported by extensive numerical simulations, as we shall demonstrate below. Detailed description of the simulation and
synthetic data is presented in Section 3.

Unfortunately, despite the strong correlation between the aggregated emission rate and certain macroscopic traffic
quantities (e.g. link occupancy), there are non-negligible errors associated with such approximation. Of course,
errors and perturbations to a deterministic model can render an optimal solution in the ideal case suboptimal in
implementation. A natural approach to capture uncertainty is by assuming that unknown parameters follow certain
probability distributions and by employing the notions and methodologies in stochastic programming. However,
such an approach has two main limitations: (1) exact knowledge of error distributions is often difficult to acquire,
and (2) stochastic programming is recognized as highly intractable to solve even with linear objective function and
linear constraint functions. In view of these challenges, we propose to handle uncertainty in the perspective of robust
optimization.

A robust optimization is a distribution-free uncertainty set approach that seeks to minimize the worst-case cost
and/or to remain feasible in the worst scenario. Compared to stochastic programming, robust optimization makes no
assumption on the underlying distribution of uncertain parameters. Moreover, it has been shown to work as a powerful
approximation to stochastic programming and even probabilistic models with significantly reduced computational cost
(Ben-Tal and Nemirovski, 1998, 1999, 2000; Bertsimas et al., 2011a,c; Bandi and Bertismas, 2012; Rikun, 2011).
Although solutions to robust optimization problems can be relatively conservative, the conservatism is adjustable with
the flexibility of choosing uncertainty sets (Bertsimas and Sim, 2004). A comprehensive review of robust optimization
is provided by Bertsimas et al. (2011a).

Due to the nonlinear and nonconvex nature of emission-related constraints and/or objectives, signal optimization
problems with emission considerations are very difficult to solve when formulated as mathematical programs. This
paper proposes a practical and effective way to reformulate this problem by invoking a robust optimization approach
based on the macroscopic emission models. Through numerical simulations we uncover well-defined macroscopic
relationships between the link aggregate emission rate and the link occupancy, which are then utilized to reformu-
late emission-rated constraints/objectives into mathematically tractable forms. We show that a fair general class of
emission-related constraints and objectives can be re-formulated as linear constraints with the utilization of dual vari-
ables. Effectively, the signal optimization problem with emission considerations are formulated as mixed integer
linear programs (MILPs). These MILPs not only capture realistic traffic dynamics that exist on signalized networks
such as shock waves and car spillback, but also address nonlinear and nonconvex emissions constraints/objectives in
a mathematically tractable way. Moreover, they can be solved by commercial solvers fairly efficiently in a nearly
mathematically tractable way (Bertsimas et al., 2011b). The proposed solution method is tested using a synthetic
experiment to demonstrate its performance.

The methodological framework proposed in this paper is potentially transferrable to traffic control problems for-
mulated as mathematical programs, in which vehicle emission, fuel consumption, or safety are within the purview of
the traffic operator. For example, vehicle fuel consumption can be modeled in a similar way as emissions based on
various operational modes of a moving car such as cruise, acceleration, deceleration, and idle (Barth et al., 1996). On
the other hand, traffic risk index has been derived based on statistical analysis of historical information on accidents
and macroscopic traffic data including traffic flow, occupancy and speed (Haj Salem et al., 2006). These problems
may be similarly formulated as MILPs if the underlying macroscopic relationship can be approximated by piecewise
affine functions.

The rest of this paper is organized as follows. Section 2 presents a mixed integer linear programming formulation
of network signal optimization problems, without any emission considerations. In Section 3, we present details of
the numerical simulations that uncover the macroscopic relationships between the aggregated emission rate and the
link occupancy. In Section 4 we utilize the findings made in Section 3 to systematically and explicitly derive the
robust counterpart of the LWR-E problem based on fairly general assumptions made on the macroscopic relationship.
Section 5 discusses two generalizations of the LWR-E problem. Section 6 presents a numerical study of the proposed
formulation. Finally, Section 7 provides some concluding remarks.
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2. MILP approach for signal optimization

This section presents the mixed integer linear program (MILP) formulation of the dynamic traffic signal con-
trol problem without any consideration for emission, while Sections 4 and 5 will address emission-related con-
straints/objectives in detail. As we mentioned in the introduction, a link-based LWR model will be considered, the
derivation of which employs the variational method (Daganzo, 2005). For the conciseness of our presentation, we
only recap the key results below and refer the reader to Han et al. (2012) for a detailed derivation and analysis.

The LWR model is based on the following kinematic wave equation:

∂tρ(t, x) + ∂x f
(
ρ(t, x)) = 0 (2.1)

where ρ(t, x) denotes the vehicle density in a spatial-temporal domain; f (·) is the fundamental diagram that describes
the macroscopic relationship between vehicle density and flow on the link. Throughout this paper, f (·) is assumed to
be triangular of the following form 1:

f (ρ) =

vρ ρ ∈ [0, ρc]
−w(ρ − ρ jam) ρ ∈ (ρc, ρ jam]

(2.2)

where ρ denotes vehicle density; v and w are respectively the speeds of the forward- and backward-propagating
kinematic waves; ρc is the critical density at which the flow is maximized; and ρ jam denotes the jam density. Moreover,
we let C be the flow capacity and L be the length of the link. We allow all these quantities and variables to depend on
a specific link Ii, and will use subscript ‘i’ to indicate such a dependence.

We consider a given link expressed as a spatial interval [a, b], and ignore for now the subscript ‘i’ for notation
convenience. We define a binary variable r̄(t), which indicates the traffic state at the entrance of the link x = a: r̄(t) = 0
if traffic is free flow and r̄(t) = 1 if traffic is congested. A similar notation r̂(t) is used for the exit of the link. We also
define the link inflow q̄(t) and the link exit flow q̂(t). The key results of the link-based kinematic wave model, derived
from the variational theory, are as follows.

r̄(t) =

1, if
∫ t

0 q̄(τ) dτ =
∫ t− L

w

0 q̂(τ) dτ + ρ jamL

0, if
∫ t

0 q̄(τ) dτ <
∫ t− L

w

0 q̂(τ) dτ + ρ jamL
(2.3)

r̂(t) =

0, if
∫ t− L

v

0 q̄(τ) dτ =
∫ t

0 q̂(τ) dτ

1, if
∫ t− L

v

0 q̄(τ) dτ >
∫ t

0 q̂(τ) dτ
(2.4)

In addition, we introduce the notions of demand and supply of a link (Lebacque and Khoshyaran, 1999) which, under
the assumption of a triangular fundamental diagram, reduce to the following:

D(t) =

C if r̂(t) = 1
q̄
(
t − L

v

)
if r̂(t) = 0

S (t) =

C if r̄(t) = 0
q̂
(
t − L

w

)
if r̄(t) = 1

(2.5)

2.1. Discrete-time formulation of the link dynamic

Let us introduce some key discrete-time notations employed in this paper, where the subscript ‘i’ indicates asso-
ciation with link Ii, and the superscript ‘k’ indicates the k-th time step.

q̄k
i The flow at which vehicles enter link Ii

q̂k
i The flow at which vehicles exit link Ii

1The triangular FD is the key to a much simplified variational representation of the solution and to the link-based LWR model considered in
this paper.
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r̄k
i The binary variable indicating the traffic state at the entrance of Ii

r̂k
i The binary variable indicating the traffic state at the exit of Ii

S k
i The supply of link Ii

Dk
i The demand of link Ii

uk
i The binary signal control variable for link Ii

For a fixed time step size δt, we define ∆
f
i
.
=

[
Li

viδt

]
, ∆b

i
.
=

[
Li

wiδt

]
, where [x] rounds the real number x to the nearest

integer. 2 We are now ready to state the discrete versions of (2.3) and (2.4) as follows.


δt

l−∆b
i∑

k=1

q̂k
i − δt

l∑
k=1

q̄k
i + ρ

jam
i Li ≤ M (1 − r̄l

i) + ε

δt
l−∆b

i∑
k=1

q̂k
i − δt

l∑
k=1

q̄k
i + ρ

jam
i Li > −M r̄l

i + ε

∀i, ∀l (2.6)


δt

l−∆
f
i∑

k=1

q̄k
i − δt

l∑
k=1

q̂k
i ≤ M r̂l

i + ε

δt
l−∆

f
i∑

k=1

q̄k
i − δt

l∑
k=1

q̂k
i > M (r̂l

i − 1) + ε

∀i, ∀l (2.7)

where ρ jam
i and Li denote respectively the jam density and length of link Ii. M > 0 is a large constant, and ε > 0

is a small constant serving as a cut-off threshold; see the end of Section 2 for more discussion on these constants.
Moreover, the demand Dk

i and the supply S k
i , whose continuous-time expressions are given by (2.5), are determined

via the following linear inequalities, where Ci denotes the flow capacity of link Ii:Ci +M(r̂k
i − 1) ≤ Dk

i ≤ Ci

q̄k−∆
f
i

i −Mr̂k
i ≤ Dk

i ≤ q̄k−∆
f
i

i +Mr̂k
i

∀i, ∀k (2.8)

Ci −Mr̄k
i ≤ S k

i ≤ Ci

q̂k−∆b
i

i +M(r̄k
i − 1) ≤ S k

i ≤ q̂k−∆b
i

i −M(r̄k
i − 1)

∀i, ∀k (2.9)

2.2. Dynamics at signalized junctions
In general, signalized junction models vary according to detailed intersection geometry and phasing schemes. For

simplicity yet without loss of generality, we consider in this paper the simple junction shown in Figure 1 while refer-
ring the reader to Han and Gayah (2015) for an elaborated treatment of detailed junction layout, vehicle movements
and multiple signal phases.

This junction has two incoming links (I1, I2) and two outgoing links (I3, I4). The vehicle turning percentages,
α1,3, α1,4, α2,3, α2,4 as shown in Figure 1, are assumed to be known a priori, and can be usually estimated through
historical turn-by-turn vehicle counts. The discrete-time junction dynamic may be written as

q̂k
i = min

Dk
i , uk

i ·min
{ S k

3

αi,3
,

S k
4

αi,4

} i = 1, 2, ∀k

q̄k
j = α1, jq̂k

1 + α2, jq̂k
2 j = 3, 4, ∀k

2Rounding these quantities to integers lead to certain numerical errors due to time discretization. The impact of such an approximation (rounding
effect) on the solution quality has been investigated in Han et al. (2014a).
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I1 

I2 

I3 

I4 

!1,3

!1,4

!2,3
!2,4

Figure 1: Two signalized junctions

Remark 2.1. In the above expression, if certain vehicle turning percentage, say αi,3, is zero, then the term S k
3

αi,3
is

infinity and will be dropped from the “min” operator. This corresponds to the situation where vehicles discharged
from Ii do not enter the downstream link I3, and thus I3 is effectively removed from the junction as far as vehicles from
Ii are concerned. Thus, for what follows we always assume positive vehicle turning percentages. Moreover, although
we assume here that these percentages are constants, it is a trivial extension to allow them to depend on time (‘k’).

For i = 1, 2, let us define ζk
i = min

{
Dk

i ,
S k

3
αi,3

,
S k

4
αi,4

}
; then we have q̂k

i = uk
i · ζ

k
i , which may be expressed as linear

constraints: 0 ≤ q̂k
i ≤ M uk

i

ζk
i +M (uk

i − 1) ≤ q̂k
i ≤ ζk

i

i = 1, 2, ∀k (2.10)

Moreover, ζk
i , which is the minimum of three endogenous variables, may be expressed via linear constraints using two

additional binary variables, ξk
i and ηk

i ∈ {0, 1}:
Dk

i −Mηk
i ≤ ζk

i ≤ Dk
i

S k
3

αi,3
−Mξk

i −M(1 − ηk
i ) ≤ ζk

i ≤
S k

3
αi,3

S k
4

αi,4
−M(1 − ξk

i ) −M(1 − ηk
i ) ≤ ζk

i ≤
S k

4
αi,4

i = 1, 2 ∀k (2.11)

It is easy to check that ζk
i = Dk

i when ηk
i = 0; ζk

i =
S k

3
αi,3

when ηk
i = 1 and ξk

i = 0; ζk
i =

S k
4

αi,4
when ηk

i = 1 and ξk
i = 1.

Finally, to prevent conflicting traffic streams to be discharged at the same time, we stipulate that

uk
1 + uk

2 = 1 ∀k (2.12)

Regarding the objective function one has a lot of flexibility in selecting its form as long as linearity is maintained. The
following linear form is selected in this paper.

max
M∑

k=1

1
k + 1

∑
Ii∈I

q̂k
i (2.13)

where M is the total number of time intervals, and I is a prescribed set of links. For example, I may be selected to
be the set of outgoing links of the network of interest; or I may be specified as the set of links that one wishes to
prioritize in a congested network. Choosing such an objective function ensures that the throughputs on these links are
maximized at any instance of time. Again, we emphasize that any type of linear objective function can be selected,
depending on the specific application, without affecting the MILP formulation. In summary, the proposed MILP
consists of the objective function (2.13) and constraints (2.6) through (2.12).
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Remark 2.2. No explicit constraints besides (2.12) are made on the signal control binary variables, which allows the
signals to operate using splits and cycle lengths that change dynamically during the course of the control period. In
this way, the signal splits and cycle lengths will likely vary with time as traffic flow patterns change. Note that this
is the most flexible strategy, but might not be the most realistic in some networks. The methodology can be easily
extended to more restrictive but realistic scenarios (e.g., fixed-cycle-and-split, fixed-cycle-dynamic-split, dynamic-
cycle-fixed-split, etc.) through the introduction of additional constraints on signal timing parameters. This will not
affect the main formulation for minimizing delays subject to emissions constraints.

In the MILP formulation, the constantM can be chosen to be

M ≥ max
{

max{1, T } · C̄ ,
C̄
ᾱ

}
where T is the length of the time horizon, C̄ is the maximum link flow capacity in the network, ᾱ is the smallest vehicle
turning percentage in the network (notice that all turning percentages are assumed positive). The cut-off threshold ε
in (2.6) and (2.7) should be no greater than δt ·mini Ci.

3. Macroscopic relationship between the emission rate and traffic quantities

As mentioned earlier in Section 1, the key ingredient of the proposed MILP formulation for the LWR-E problem
is the existence of a macroscopic relationship between the link’s aggregate emission rate (AER) and its vehicle oc-
cupancy. In this section we will investigate such a relationship through analytical computations. This requires the
modeling of vehicle movements within a link subject to signal controls, and a vehicle emission model that calculates
the AER in a way consistent with the vehicle flow dynamics. More specifically, we employ the LWR model with a tri-
angular fundamental diagram to predict and describe the evolution of vehicle density (see Section 2); on the emission
side a modal emission model is considered and detailed below in Section 3.2.

3.1. Simulation setup

The hypothesized macroscopic relationship is investigated through a battery of simulations that employ the afore-
mentioned LWR model and emission model. The simulations are conducted as follows. We consider an arbitrary
link with given length and triangular fundamental diagram. In order to account for various levels of congestion, we
randomly generate the demand and supply profiles at the upstream and downstream ends of the link, respectively.
The values of the demand and supply are uniformly distributed between zero and the link flow capacity. Moreover,
in order to incorporate the effect of the signal timing, we randomly generate sequences of green and red phases to
control the link’s discharge flow. Such variability in the signal controls is crucial in the simulation since the resulting
macroscopic relationship (if any) will be used across all possible scenarios involving different signal control parame-
ters. With given signal control and upstream demand and downstream supply profiles, we solve the LWR PDE (2.1)
by applying the variational method (Han et al., 2012). Alternatively, one may solve the same PDE using the Godunov
scheme (Godunov, 1959) or the cell transmission model (Daganzo, 1994). Once vehicle densities are available in
space and time, we then apply a specific emission model to compute the total emission rate and the link occupancy
N(t):

N(t) =

∫ b

a
ρ(t, x)dx or N(t) =

∫ t

0
q̄(τ)dτ −

∫ t

0
q̂(τ)dτ (3.14)

where the link of interest is expressed as the spatial interval [a, b]; ρ(t, x) is the solution of the LWR PDE (2.1), and
q̄(·) and q̂(·) are the link inflow and exit flow, respectively.

In the next subsection, we will present in detail the modal emission model and the resulting macroscopic relation-
ships obtained from the simulation. The following link parameters are employed in our simulation.

v = 40/3 meter/s, w = 40/9 meter/s, ρ jam = 0.4 vehicle/meter, C = 4/3 vehicle/second

where v and w are the forward and backward wave speeds respectively, ρ jam denotes the jam density, and C is the
flow capacity. The link length is set to be L = 400 m. Note should be taken on the following fact: the macroscopic
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relationship, as well as the uncertainty set calibrated for the robust optimization presented later, depend on link-specific
parameters such as the fundamental diagram and link length. However, the most relevant fact that we rely upon here
is that the relationship or the uncertainty region holds for a range of endogenous factors; this includes: vehicle arrival
and discharge rate for the link (both of which are accounted for within our simulation) and most importantly the signal
timing at the intersection. The latter fact is especially useful as it allows us to use these relationships to derive optimal
signal timing plans that both minimize delay and account for emissions within the network or on individual links.

It should be noted that although this paper considers only one specific emission model concerning hydrocarbon
due to space limitation, the proposed analytical framework can potentially accommodate a wider range of emission
models that are similarly based on vehicle speed, acceleration and deceleration.

3.2. The modal emission model
We consider a modal emission model, which is based on the operational modes of a moving vehicle, including

idle, steady-state cruise, acceleration and deceleration. This model relies on vehicle dynamics estimated from the
LWR model. More specifically, let ρ(t, x) be the solution of the LWR equation (2.1) on the link of interest; the vehicle
speed v(t, x) is computed as

v(t, x) = f (ρ(t, x))/ρ(t, x) (3.15)

The acceleration/deceleration, a(t, x), viewed as the derivative of the speed along the trajectories of moving vehicle,
is computed as the material derivative in the Eulerian coordinates:

a(t, x) =
D
Dt

v(t, x) = ∂tv(t, x) + v(t, x) · ∂xv(t, x)

Since the quantities ρ(t, x) and v(t, x) are in general non-differentiable, they are approximated in discrete time using
finite differences. Let {ti} and {x j} be discrete temporal and spatial grid points, then we have

a(ti, x j) =
v(ti+1, x j) − v(ti−1, x j)

2δt
+ v(ti, x j) ·

v(ti, x j+1) − v(ti, x j−1)
2δx

(3.16)

where δt and δx are the time and spatial steps, respectively.
Following the power-demand emission model proposed by Post et al. (1984), the overall instantaneous total power

demand Z (in kilowatt) for a vehicle with mass m in (kilogram) is given by

Z = (0.04 v + 0.5 × 10−3v2 + 10.8 × 10−6v3) +
m

1000
v

3.6

( a
3.6

+ 9.81 sin θ
)

(3.17)

where the above quantity is in kilowatts and θ denotes the road grade. The reader is also referred to Barth et al. (1996)
for an alternative description of the power demand function based on velocity and acceleration. Post et al. (1984) also
propose the following model of hydrocarbon emission rate for vehicles based on field experiments:

r(t) =

52.8 + 4.2Z Z > 0
52.8 Z ≤ 0

(3.18)

where the emission rate r(t) is in grams/hour, and Z is in kilowatt. Following the previous discussion, we now compute
the aggregate emission rate (AER) in discrete time as

AER(ti) = δx
∑

j

ρ(ti, x j)r(ti, x j)

where r(ti, x j) is the emission rate of a vehicle corresponding to the j-th cell at time ti, calculated using (3.15)-(3.18).
The resulting scatter plot of the link occupancy (LO) vs. the aggregate emission rate (AER) is shown in Figure 2,
which is based on 42,000 simulation runs. From this figure we can observe a well-defined macroscopic relationship
between these two quantities, although the points are relatively scattered, indicating potential errors associated with
such an approximation. Overall, Figure 2 shows a positive correlation between the AER and the LO. This can be
intuitively explained using the following two observations. (1) The total emission rate on the link level is in general
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expected to show a growing trend with an increased number of vehicles on this link. Although vehicle dynamics do
matter in this case and will play a role to some extent, they are not significant enough to overturn this trend, at least
not for the emission model considered by this paper. (2) When the link is controlled by a signal light, a higher link
occupancy indicates more severe congestion and a longer queue. As a result more vehicle stop-and-go movements are
expected to occur and contribute to the total emission amount.
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Figure 2: Scatter plot of link occupancy vs. AER.

The observed relationship between LO and AER may be approximated in a number of ways, e.g. using linear,
piecewise linear, or piecewise smooth curve fittings. In Figure 2 we show the fitting result using linear approximation,
with R2 = 0.9794. We note, however, that this does not mean that the linear fit is the best choice; and other functional
forms may be more appropriate. Nevertheless, there is a trade-off between the sophistication/goodness of the curve
fitting and the simplicity and computational tractability of the resulting optimization formulation, as we subsequently
show in Section 4. Such a trade-off needs to be taken into account when one formulates the uncertainty set based on
curve fitting.

Some of the significant deviations from the linear fit, as shown in the figure, are caused by the highly nonlinear
vehicle dynamics (i.e. acceleration and deceleration) captured by the LWR model under the control of signal light.
More specifically, close to a signalized intersection the shock waves and vehicle stop-and-go movements influenced
by the signal timings generate vehicle acceleration/deceleration profiles that significantly contribute to the emission
of pollutants. Moreover, the emission amount are related to the actual spatial configuration of vehicle densities and
speeds on the link, which cannot be adequately captured by the link occupancy alone.

In order to show that similar macroscopic relationships exist for some other choices of link parameters, say length,
we show in Figure 3 two additional simulation results for L = 200 m and L = 800 m (the result shown in Figure 2 is
based on L = 400 m). Although similar macroscopic relationships exist in these two additional cases, the uncertainty
sets need to be calibrated separately.

The macroscopic relationships depicted in Figure 2 and Figure 3 are quite interesting from a robust optimization
perspective. The reasons is that although the points are spread out in certain region, they are sparse in some places
while dense in some other regions. An uncertainty region that simply covers all these points may be too conservative;
and a more effective approach requires a more refined and sophisticated calibration of the uncertainty set. Detailed
calibration of the uncertainty set associated with Figure 2 will be presented in Section 6.2.
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Figure 3: Scatter plots of link occupancy vs. AER. Left: L = 200 m; right: L = 800 m.

4. Signal control with emission constraints

This section provides a general mathematical framework for incorporating emission-related side constraints, while
relying on fairly general assumptions on the macroscopic relationship between the aggregate emission rate and the link
occupancy. We also present explicit reformulations of the emission side constraints for three special cases, namely,
when the relationship is (1) affine; (2) convex piecewise affine; and (3) concave piecewise affine. Notably, all the three
reformulations lead to linear constraints, which, when combined with the signal control formulation presented earlier,
do not alter the nature of the mixed integer linear program.

We propose a set of emission-related constraints constructed in a data-driven manner, which employs robust
optimization techniques to handle prediction errors arising from the macroscopic relationship. In addition, we show
that when this relationship is either affine or convex/concave piecewise affine, the resulting emission-related side
constraints are still linear.

For an arbitrary link in the network, we let N(t) be the occupancy of this link at time t. Here, for notation
convenience the subscript ‘i’ indicating the link ID is dropped in this section. The time-varying aggregate emission
rate (AER) on this link is denoted AER(t). In the following derivation of the emission constraints we assume a general
polynomial form relating N(t) to AER(t). As a result, the proposed framework can handle a wide range of macroscopic
relationships.

We assume the macroscopic relationship is approximated by a polynomial with degreeL, where the approximation
is based on regression analysis or other types of curve-fitting techniques:

AER
(
N(t); a

) .
=

L∑
l=0

al(N(t))l = aT N(t) ∀t ∈ [0, T ] (4.19)

Here a .
= (a0, a1, . . . , aL)T ∈ RL is a vector of coefficients in the polynomial, and N(t) .

=
(
(N(t))0, . . . , (N(t))L

)T
is

a vector-valued function of time. With these notations, we consider the first type of side constraint, which stipulates
that the total emission amount on the subject link is constrained by a prescribed level E.∫ T

0
AER

(
N(t); a

)
dt ≤ E (4.20)

Notice that, for now, we are simply replacing the macroscopic relationship with a polynomial function without any
consideration of errors associated with this approximation. Later in the next subsection, we will take into account
approximation errors and handle them using robust optimization techniques.

Side constraints of the form (4.20) can be easily generalized to address other types of environmental considerations
including the following.

• The total emission on a subset of the network is bounded by some given value.
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• The total emission on a subset of the network is minimized.

• The differences among the total emissions on a subset of links are bounded and/or minimized.

The first case is a trivial extension of the constraint (4.20), and will not be elaborated in this paper. The second
case can be easily handled by invoking the “epigraph reformulation”. The third case ensures that no link (or nearby
environment) suffers much more than other parts of the network in terms of pollutant emission. This issue is identified
by Benedek and Rilett (1998) as environmental equity. Detailed treatment of the last two environmental considerations
will be presented in Section 5.

4.1. Emissions side constraints: a general formulation based on robust optimization
Inequality (4.20) involves a polynomial approximation of the relationship between the link occupancy and the ag-

gregate emission rate. In order to ensure that the emission constraint is still satisfied in the presence of approximation
errors, we consider the following constraint instead:∫ T

0
AER

(
N(t); a(t)

)
dt ≤ E ∀a(·) ∈ ηa (4.21)

where the coefficients in the polynomial are allowed to vary over time; that is, a(t) = (al(t) : 0 ≤ l ≤ L), and

AER
(
N(t); a(t)

)
=

L∑
l=0

al(t)(N(t))l (4.22)

Moreover, ηa is specified as a budget-like uncertainty set, which is similar to what is proposed by Atamtürk and Zhang
(2007):

ηa =

a(·) : Ll ≤ al(t) ≤ Ul, ∀t ∈ [0, T ], ∀0 ≤ l ≤ L;
L∑

l=1

∫ T

0
al(t) dt ≤

T
∑L

l=1 Ul

σ

 (4.23)

where Ll and Ul, 0 ≤ l ≤ L, are respectively the lower and upper bounds of the corresponding coefficient; σ, which is
used to adjust the conservatism of the robust optimization, satisfies

σ ∈

1, ∑L
l=0 Ul∑L
l=0 Ll

 (4.24)

In (4.24), the upper bound on σ ensures that the uncertainty set expressed in (4.23) is nonempty. This can be easily
seen by manipulating the last inequality of (4.23):

L∑
l=1

T · Ll ≤

L∑
l=1

∫ T

0
al(t) dt ≤

T
∑L

l=1 Ul

σ

Thus σmust not exceed
∑L

l=1 Ul/
∑L

l=1 Ll. The constraints described by (4.21)-(4.24) correspond to the notion of robust
optimization in the sense that the emission amount on the link of interest is bounded from above with any possible
realization of the uncertain parameter a(t).

Remark 4.1. By writing (4.23) we have implicitly assumed that coefficients associated with the zeroth-order term
are not correlated with the other coefficients (the summation starts from l = 1 instead of l = 0). This implicit as-
sumption will result in a more risk-averse formulation. However, this assumption is easy to relax, and the consequent
generalization of our formulation is a trivial extension.

The uncertainty set in (4.23) consists of two types of constraints: (1) a box constraint prescribing the upper and
lower bounds of the uncertain parameters; and (2) a constraint that stipulates the sums of uncertain coefficients to be
bounded from above (the last constraint in (4.23)). With just the first type of constraints, the RO will generate the
most conservative solution by predicting that all the uncertain parameters are realized at the extreme case against the
decision maker. However, such a worst case occurs only with a very low probability in a realistic system, and this
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conservative solution is most likely to compromise the performance of the resulting system. Use of the second type
of constraint can reduce the conservatism by excluding some of the extreme and rare cases.

The second type of constraint is made flexible by adjusting the value of σ. Specifically, a higher value of σ im-
plies a smaller uncertainty set, which results in solutions that are more risk-prone (less conservative). In the most
conservative case, i.e. σ = 1, the last constraint in (4.23) is out of effect. Bandi and Bertismas (2012) and Bert-
simas et al. (2014) provide data-driven approaches based on probability theory and statistical tests to determine the
parameterization of the uncertainty sets in accordance with the observed data. Those approaches provide theoretical
guarantee for the satisfaction of constraints in a probabilistic sense. We would like to further remark that the second
type of constraint may also capture potential correlations among al(t), 1 ≤ l ≤ L. However, due to space limitation
this aspect of research will not be elaborated in this paper.

4.2. Time-discretization and explicit reformulation

Here, we adopt the same notation convention as in Section 2.1 by using superscript ‘k’ to indicate association with
the k-th discrete time step, 1 ≤ k ≤ M. The constraint (4.21) can be time-discretized into the following form, where
δt denotes the time step size.

M∑
k=1

L∑
l=0

ak
l (Nk)lδt ≤ E ∀â ∈ η̂a (4.25)

where ak
l corresponds to al(tk) at the k-th time step, and â .

= (ak
l : 0 ≤ l ≤ L, 1 ≤ k ≤ M). The discrete-time version

of the uncertainty set is

η̂a =

â : Ll ≤ ak
l ≤ Ul, ∀1 ≤ k ≤ M, ∀0 ≤ l ≤ L;

M∑
k=1

L∑
l=1

ak
l δt ≤

T
∑L

l=1 Ul

σ

 (4.26)

The constraint (4.25) is in fact a semi-infinite constraint with an infinite index set η̂a, which means that the inequality
needs to be satisfied for infinitely many â. This makes it not directly computable. The following theorem provides a
computable reformulation of (4.25) using dual variables.

Theorem 4.2. (Robust reformulation with polynomial relationship) Let constants Ll < Ul, 0 ≤ l ≤ L and σ be
given. If η̂a has nonempty interior, the semi-infinite constraint (4.25) is equivalent to the following set of constraints:

L∑
l=1

M∑
k=1

βk
l Ul −

L∑
l=1

M∑
k=1

γk
l Ll +

M
∑L

l=1 Ul

σ
θ + MU0 δt ≤ E (4.27)

s.t. βk
l − γ

k
l + θ = (Nk)lδt ∀ 1 ≤ l ≤ L, 1 ≤ k ≤ M (4.28)

βk
l , γ

k
l , θ ≥ 0 ∀ 1 ≤ l ≤ L, 1 ≤ k ≤ M (4.29)

where βk
l , γ

k
l and θ are dual variables, 1 ≤ l ≤ L, 1 ≤ k ≤ M.

Proof. The constraint (4.25) can be trivially rewritten as:

max
â∈η̂a

M∑
k=1

L∑
l=1

ak
l (Nk)lδt + max

â∈η̂a

M∑
k=1

ak
0(Nk)0δt ≤ E, (4.30)

which is equivalent to

max
â∈η̂a

M∑
k=1

L∑
l=1

ak
l (Nk)lδt ≤ E −

M∑
k=1

U0δt (4.31)
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The left hand side of (4.31) involves solving a parametric problem of the form:

max
M∑

k=1

L∑
l=1

ak
l (Nk)lδt (4.32)

s.t. ak
l ≤ Ul ∀0 ≤ l ≤ L, 1 ≤ k ≤ M (4.33)

ak
l ≥ Ll ∀0 ≤ l ≤ L, 1 ≤ k ≤ M (4.34)
M∑

k=1

L∑
l=1

ak
l δt ≤

T
∑L

l=1 Ul

σ
(4.35)

where we treat each Nk as a constant parameter, 1 ≤ k ≤ M. The program (4.32)-(4.35) corresponds to the following
dual problem:

min
L∑

l=1

M∑
k=1

βk
l Ul −

L∑
l=1

M∑
k=1

γk
l Ll +

T
∑L

l=1 Ul

σδt
θ (4.36)

s.t. βk
l − γ

k
l + θ = (Nk)lδt ∀ 1 ≤ l ≤ L, 1 ≤ k ≤ M (4.37)

βk
l , γ

k
l , θ ≥ 0 ∀ 1 ≤ l ≤ L, 1 ≤ k ≤ M (4.38)

where βk
l , γk

l and θ are dual variables corresponding to constraints (4.33), (4.34) and (4.35), respectively. Under the
assumption that η̂a has nonempty interior, by noticing the compactness of η̂a, the primal program (4.32)-(4.35) and
the dual program (4.36)-(4.38) have finite solutions and zero duality gap. Moreover, by duality, the objective value of
any feasible solution of the dual problem (4.36)-(4.38) provides an upper bound of the primal problem (4.32)-(4.35).
Therefore, if there exist βk

l , γk
l and θ such that (4.37) and (4.38) are satisfied, then if Nk satisfies (4.27), (4.31) is also

satisfied. On the other hand, if there exists Nk that satisfies (4.31), then the objective value of the optimal solution to
the parametric problem (4.32)-(4.35) is bounded above and thus there exists βk

l , γk
l and θ such that (4.37) and (4.38)

are satisfied. This shows the desired equivalence result.

Remark 4.3. Theorem 4.2 is based on the discussions in Ben-Tal and Nemirovski (1999) and Bertsimas et al. (2011a).
With this reformulation, the original semi-infinite constraint is now computable with standard nonlinear programming
techniques. We will call the reformulation with constraints (4.27)-(4.29) the robust counterpart of the original robust
problem (4.25).

The nonlinearity of constraints (4.27)-(4.29) is caused by the powers of Nk appearing in the right hand side of
(4.28), which obviously stem from the polynomial approximation (4.22) with degree greater than one. It is not
difficult to see that linearity will be retained if L = 1, i.e. when the macroscopic relationship is approximated with an
affine function. This observation leads to the simplified reformulation discussed below.

4.3. A special case when the macroscopic relationship is affine
In a special case where the relationship between the link occupancy (LO) and the aggregate emission rate (AER) is

approximately affine, the robust reformulation discussed previously is considerably simplified. Indeed, we can reduce
(4.21) to ∫ T

0

[
a1(t)N(t) + a0(t)

]
dt ≤ E ∀

(
a0(·), a1(·)

)
∈ ηa (4.39)

where the set ηa reduces to

ηa =

{(
a0(·), a1(·)

)
: Ll ≤ al(t) ≤ Ul, ∀t, l = 0, 1;

∫ T

0
a1(t)dt ≤

TU1

σ
=

MδtU1

σ

}
(4.40)

With time-discretization, we have the following formulation:

δt
M∑

k=1

(
ak

1Nk + ak
0

)
≤ E ∀(a0, a1) ∈ η̂a (4.41)
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where a0
.
= (ak

0 : 1 ≤ k ≤ M), a1
.
= (ak

1 : 1 ≤ k ≤ M). The uncertainty set is given as

η̂a =

(a0, a1) : L0 ≤ ak
0 ≤ U0, L1 ≤ ak

1 ≤ U1, ∀1 ≤ k ≤ M;
M∑

k=1

ak
1 ≤

MU1

σ

 (4.42)

With this uncertainty set, we have the following result concerning the robust reformulation, which is a special case of
Theorem 4.2.

Corollary 4.4. (Robust reformulation with affine relationship) If η̂a has nonempty interior, then the semi-infinite
constraint (4.41) is equivalent to the following set of constraints.

M∑
k=1

U1β
k −

M∑
k=1

L1γ
k +

MU1

σ
θ + MU0 δt ≤ E (4.43)

s.t. βk − γk + θ = δtNk ∀1 ≤ k ≤ M (4.44)

βk, γk, θ ≥ 0 ∀1 ≤ k ≤ M (4.45)

where βk, γk, θ are dual variables.

Once the semi-infinite constraint (4.41) is reformulated as a finite set of linear constraints according to Corollary
4.4, the LWR-E problem with an affine macroscopic relationship can be formulated and solved as a mixed integer
linear program. Such an MILP will be numerically tested in Section 6.

4.4. Piecewise affine macroscopic relationship

This section formulates the emission constraints for a class of more general macroscopic relationships, namely,
piecewise affine functions. Since any continuous function can be approximated by a piecewise affine function, the
formulation provided below will accommodate a wider range of macroscopic relationships not yet presented in this
paper. In order to retain linearity in the constraints, we consider two types of piecewise affine relationships: convex
piecewise affine and concave piecewise affine. Given the same objective to be minimized, convexity and concavity in
the macroscopic relationship render completely different structures of the robust optimization and the MILP reformu-
lation. More specifically, the convex piecewise affine constraint essentially means that all affine pieces can be bounded
from above by a prescribed level in the worst case scenario. In contrast, the concave piecewise affine constraint means
that at least one affine piece can be bounded from above in the worst case scenario. Such a difference looms large,
especially, when we consider a computable reformulation in the form of a set of mixed integer linear constraints. In
the following, we will discuss the convex case in Section 4.4.1 and the concave case in Section 4.4.2.

4.4.1. Convex piecewise affine relationship
It will be seen in this section that the previously presented reformulation can be extended to treat the convex

piecewise affine case. We denote by M the set of affine pieces that constitute the piecewise affine function. For each
affine piece m ∈ M, we let b0,m(t) and b1,m(t) be the zeroth- and first-order coefficients, respectively. We further
employ the notation b(t) .=

(
bτ,m(t) : τ ∈ {0, 1}, m ∈M

)
for t ∈ [0, T ].

With these notations, the convex piecewise affine approximation of the AER is expressed as:

AER
(
N(t); b(t)

) .
= max

m∈M

{
b1,m(t) · N(t) + b0,m(t)

}
t ∈ [0, T ] (4.46)

Again, we consider the following emission constraint:∫ T

0
AER

(
N(t); b(t)

)
dt ≤ E ∀b(·) ∈ ηb (4.47)
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where the budget-like uncertainty set is

ηb =

b(·) : Lτ,m ≤ bτ,m(t) ≤ Uτ,m, ∀τ ∈ {0, 1}, ∀t ∈ [0, T ], ∀m ∈M;

∑
m∈M

∫ T

0
b1,m(t) dt ≤

T
∑

m∈M U1,m

σ

 (4.48)

The constraint (4.47) can be immediately discretized as:

δt
M∑

k=1

max
m∈M

{
bk

1,m · N
k + bk

0,m

}
≤ E ∀b̂ ∈ η̂b (4.49)

where b̂ .
= (bk

τ,m : τ ∈ {0, 1}, 1 ≤ k ≤ M, m ∈ M) is the discrete-time version of b(·), and the time-discretized
uncertainty set is:

η̂b =

b̂ : Lτ,m ≤ bk
τ,m ≤ Uτ,m, ∀τ ∈ {0, 1}, ∀1 ≤ k ≤ M, ∀m ∈M;

∑
m∈M

δt
M∑

k=1

bk
1,m ≤

T
∑

m∈M U1,m

σ

 (4.50)

Evidently, (4.49) is equivalent to

max
b̂∈η̂b

δt
M∑

k=1

max
m∈M

{
bk

1,m · N
k + bk

0,m

}
≤ E (4.51)

Even though the piecewise affine function is convex, the robust counterpart (4.51) involves a convex maximization (or
equivalently, concave minimization) problem, which is nonconvex and intractable in general. The following theorem
shows that the robust constraint (4.51) can be equivalently rewritten as a set of linear constraints with the aid of dual
variables.

Theorem 4.5. (Robust reformulation with convex piecewise affine relationship) Let constants Lτ,m < Uτ,m and σ
be given, τ ∈ {0, 1}, m ∈M. Define a set of matrices

V .
=

(υm,k : m ∈M, 1 ≤ k ≤ M
)
∈ {0, 1}|M|×M :

∑
m∈M

υm,k = 1, ∀ 1 ≤ k ≤ M


If η̂b has nonempty interior, then the semi-infinite constraint (4.49) is equivalent to the following finite set of linear
constraints:

∑
m∈M

M∑
k=1

(
−L1,mγ

s,k
1,m + βs,k

1,mU1,m + U0,mβ
s,k
0,m − L0γ

s,k
0,m

)
+

M
∑

m∈M U1,m

σ
θs ≤ E

−γs,k
1,m + βs,k

1,m + θs = Nkυs
m,kδt ∀1 ≤ k ≤ M, m ∈M

−γs,k
0,m + βs,k

0,m = υs
m,kδt ∀1 ≤ k ≤ M, m ∈M

γs,k
1,m ≥ 0, βs,k

1,m ≥ 0, γs,k
0,m ≥ 0, βs,k

0,m ≥ 0 ∀1 ≤ k ≤ M, m ∈M

θs ≥ 0



∀υs
m,k ∈ V

where βs,k
0,m, γ

s,k
0,m, βs,k

1,m, γ
s,k
1,m and θs are dual variables.
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Proof. The proof is moved to Appendix A for the conciseness of our presentation.

Similar to Corollary 4.4 which handles the affine relationship, Theorem 4.5 provides a computable formulation
that preserves linearity in the constraints even though the relationship between AER and LO is in a more general
functional form. Notice that, however, the set of constraints shown in Theorem 4.5 have to be satisfied for each and
every matrix υs

m,k in V. In other words, there are |V| copies of such set of constraints, and each copy is parameterized by
s. The cardinality |V| of the finite set V is |M|M . This means that the number of linear constraints grows exponentially.
Nonetheless, these exponentially many constraints are all linear and do not involve any integer variables. We also
make note of the fact that the presence of exponentially many constraints is not rare in combinatorial optimization
problems; examples include the traveling salesman problem and the minimum spanning tree problem. In addition,
algorithms such as the cutting plane method may be employed to systematically enumerate these constraints, which
may lead to reduction in the computational cost. (For an example of this type of algorithms, see Nemhauser and
Sigismondi, 1992).

4.4.2. Concave piecewise affine relationship
We show in this section that, when the relationship is piecewise affine and concave, one can maintain the linearity

in the constraints by modifying the uncertainty sets and introducing additional integer variables. With the same
notations introduced in Section 4.4.1, we define the concave and piecewise affine relationship as

AER
(
N(t); b(t)

) .
= min

m∈M

{
b1,m(t) · N(t) + b0,m(t)

}
t ∈ [0, T ] (4.52)

Notice that the “max” operator from the convex case has now been changed to “min”. The emission constraint reads:∫ T

0
AER

(
N(t); b(t)

)
dt ≤ E ∀b(·) ∈ ηb (4.53)

Here we have modified the uncertainty set ηb to be a product of sets: ηb = ηb,1 × ηb,2 × · · · × ηb,m × · · · × ηb,|M| with

ηb,m =

{
bm(·) : Lτ,m ≤ bτ,m(t) ≤ Uτ,m, ∀τ ∈ {0, 1}, ∀t ∈ [0, T ];

∫ T

0
b1,m(t) dt ≤

TU1,m

σm

}
(4.54)

where bm(·) .= (bτ,m(·) : τ ∈ {0, 1}). Unlike the uncertainty set defined in (4.48), in this case the uncertain parameters
associated with different affine pieces are uncorrelated. In other words, the constraints related to the uncertain param-
eters of different affine pieces in the uncertainty set are decoupled. A time-discretization of constraint (4.53) is given
as following:

M∑
k=1

min
m∈M

(bk
1,m · N

k + bk
0,m)δt ≤ E ∀b̂ .

= (b̂1, . . . , b̂|M|) ∈ η̂b
.
= η̂b,1 × · · · × η̂b,|M| (4.55)

where b̂m
.
= (bk

τ,m : τ ∈ {0, 1}, 1 ≤ k ≤ M), ∀m ∈M. The uncertainty set η̂b,m is defined as

η̂b,m =

b̂m : Lτ,m ≤ bk
τ,m ≤ Uτ,m, ∀τ ∈ {0, 1}, ∀1 ≤ k ≤ M,

M∑
k=1

bk
1,mδt ≤

TU1,m

σm

 m ∈M (4.56)

The following theorem presents a reformulation of the robust constraint as a set of mixed integer linear constraints.

Theorem 4.6. (Robust reformulation with concave piecewise affine relationship) Let constants Lτ,m < Uτ,m and
σm be given for all τ ∈ {0, 1} and m ∈M. If η̂b has nonempty interior, the semi-infinite constraint (4.55) is equivalent
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to the following set of linear constraints:

∑
m∈M

− M∑
k=1

L1,mγ
k
1,m +

M∑
k=1

βk
1,mU1,m + θm

MU1,m

σm
+

M∑
k=1

U0,mβ
k
0,m −

M∑
k=1

L0γ
k
0,m

 ≤ E

Nkδt − (1 − υm,k)M ≤ −γk
1,m + βk

1,m + θm ≤ (1 − υm,k)M + Nkδt ∀1 ≤ k ≤ M, m ∈M
− υm,kM ≤ −γ

k
1,m + βk

1,m + θm ≤ υm,kM ∀1 ≤ k ≤ M, m ∈M
− γk

0,m + βk
0,m = υm,kδt ∀1 ≤ k ≤ M, m ∈M

γk
1,m ≥ 0, βk

1,m ≥ 0, γk
0,m ≥ 0, βk

0,m ≥ 0 ∀1 ≤ k ≤ M, m ∈M
υm,k ∈ {0, 1} ∀1 ≤ k ≤ M, m ∈M
θm ≥ 0 m ∈M∑
m∈M

υm,k = 1 ∀1 ≤ k ≤ M

(4.57)

where βk
1,m, γ

k
1,m, βk

0,m, γ
k
0,m and θm are dual variables andM > 0 is sufficiently large.

Proof. The proof is postponed until Appendix B.

The concave piecewise affine relationship usually results in nonconvex constraints, which can bring substantial
computational challenges. In fact, these nonconvex constraints cannot be well handled by existing commercial solvers
including CPLEX and Gurobi. Nonetheless, with Theorem 4.6, we can again retain linearity by introducing additional
integer variables. We further note that due to the last constraint in (4.57), these integer variables are highly correlated
so that the search space of the problem grows only on an order of M. Therefore, our reformulation significantly
reduces the computational ramifications of handling a set of nonconvex constraints.

5. Generalization of the robust optimization approach

As mentioned right before Section 4.1, the proposed robust optimization formulation can be easily extended to
capture two additional types of environmental considerations: (1) to minimize the total emission on a subset of the
network; and (2) to minimize the differences in the total emissions on some relevant links, or, to “equalize” the
emissions among the links (environmental equity). These two generalizations will be discussed in this section.

5.1. Minimizing emissions

The proposed model is easily generalizable to the case where the traffic-driven emissions are subject to minimiza-
tion rather than side constraints. In this case, we conveniently invoke the “epigraph reformulation”. For example, if
the objective is to minimize the total emission amount on some subset of links IS ⊂ I where I denotes the set of links
in the network; that is,

min
∑
Ii∈IS

∫ T

0
AERi

(
Ni(t); ai(t)

)
dt

We may simply minimize a dummy variable z with one additional constraint∑
Ii∈IS

∫ T

0
AERi

(
Ni(t); ai(t)

)
dt ≤ z

This additional constraint reduces to the form of (4.20), and our previously presented results apply here.
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5.2. Environmental equity

The equity constraint is relevant when the network planner needs to enforce emissions to be distributed relatively
evenly across all or part of the network. To address this issue, we consider the constraint of the following form:∫ T

0
AERi

(
Ni(t); ai(t)

)
dt −

∫ T

0
AER j

(
N j(t); a j(t)

)
dt ≤ Ei j ∀Ii, I j ∈ I

where Ei j is some prescribed threshold. We assume for now no uncertainty in the parameters ai(·) and a j(·). By
assuming an affine relationship between the emission rate and link occupancy without loss of generality, this constraint
can be rewritten as∫ T

0

{
ai,1(t)Ni(t) + ai,0(t)

}
dt −

∫ T

0

{
a j,1(t)N j(t) + a j,0(t)

}
dt ≤ Ei j ∀Ii, I j ∈ I

Now we allow ai(·) and a j(·) to be uncertain and the uncertainty for each is described by budget uncertainty sets ηai

and ηa j
similar to (4.23). Then we have the following robust constraint:∫ T

0

{
ai,1(t)Ni(t) + ai,0(t)

}
dt −

∫ T

0

{
a j,1(t)N j(t) + a j,0(t)

}
dt ≤ Ei j

∀ai(·)
.
= (ai,1(·), ai,0(·)) ∈ ηai

, a j(·)
.
= (a j,1(·), a j,0(·)) ∈ ηa j

∀Ii, I j ∈ I

(5.58)

This is equivalent to the following: ∀Ii, I j ∈ I,

sup
ai(·)∈ηai

{∫ T

0

{
ai,1(t)Ni(t) + ai,0(t)

}
dt

}
+ sup

a j(·)∈ηa j

{
−

∫ T

0

{
a j,1(t)N j(t) + a j,0(t)

}
dt

}
≤ Ei j

We proceed as before to time-discretize the problem. An explicit reformulation of the discretized constraint can be
easily derived by invoking the dual formulations for each of the two maximization problems involved in the constraint.
These dual formulations differ little from those discussed in Section 4.3 and thus are omitted here. As a result, linear
constraints can be derived to replace the robust constraint (5.58), and the MILP formulation for the environmental
equity problem follows.

Finally, one may also try to minimize the difference Ei j between any two links Ii and I j, by adopting the same
procedure discussed in Section 5.1 through the “epigraph reformulation”.

6. Numerical study

6.1. Network setup

In this section, we consider a hypothetical network consisting of four intersections, three of which are signalized;
see Figure 4. The ten links in this network are assumed to have the same triangular fundamental diagram with the
following parameters.

v = 40/3 (meter/s), ρ jam = 0.4 veh/meter, ρc = 0.1 (veh/meter), C = 4/3 (veh/s)

In addition, all links have the same length of L = 400 m.
For simplicity, we assume that routing is such that vehicles at all intersections have a fixed probability of selecting

either of the two downstream approaches; and the turning ratios are specified as follows.

α1,5 = 0.50, α3,5 = 0.40, α2,6 = 0.30, α5,6 = 0.50, α10,3 = 0.53

Note that this assumption is not essential to our formulation or computation, but was made to simplify the presentation
of results. In reality these turning percentages may be estimated based on turn-by-turn vehicle counts at intersections.
The time horizon of our numerical example is a 15-min time period, with a time step of 10 s.
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Figure 4: The test network (left) and the demand profile corresponding to Scenario I (right).

Scenario I (light) Scenario II (medium) Scenario III (heavy)
Link 1 53.1 % 60.6 % 64.4 %
Link 2 43.7 % 51.2 % 54.9 %

Link 10 51.6 % 68.4 % 83.38 %

Table 1: Demand levels in the three scenarios with different traffic loads. The values in the table represent ratios between the average link inflows
and the link flow capacity.

In order to test the effectiveness of the proposed signal timing in reducing both congestion and emission under
different levels of congestion, we consider three scenarios with three different levels of demand at the upstream ends
of all boundary links. The demand profile in the first scenario, which is shown in Figure 4, corresponds to the lightest
traffic load. Table 1 shows, for each of the three scenarios, the ratios between the average link inflows and the link
flow capacity.

Throughout this numerical study, the MILPs were solved with ILOG Cplex 12.1.0, which ran with Intel Xeon
X5675 Six-Core 3.06 GHz processor provided by the Penn State Research Computing and Cyberinfrastructure.

6.2. Calibration of the uncertainty set
In this section, the macroscopic relationship between a link’s aggregate emission rate (AER) and its link occupancy

(LO) will be analyzed to inform the uncertainty set used in the robust optimization. Since the link parameters in this
numerical example are identical to those employed in Section 3.1, we may focus on the macroscopic relationship
depicted in Figure 2 without conducting further numerical experiments.

The macroscopic relationship shown in Figure 2 is approximately affine with the following regression coefficients

AER ≈ a1 × LO + a0 = 52.31 × LO + 318.63 (6.59)

where AER (in gram/hour) denotes the aggregated emission rate of hydrocarbon on a link level; LO (in number of
vehicles) denotes the link occupancy.

In order to construct the uncertainty set of the form (4.42) for the robust optimization, we select the following
lower and upper bounds for the affine coefficients:

L1 ≤ a1 ≤ U1, L0 ≤ a0 ≤ U0 (6.60)

where
L0 = 0, U0 = 400, L1 = 53.3, U1 = 66 (6.61)

19



ARTICLE LINK: http://www.sciencedirect.com/science/article/pii/S0968090X15001345
PLEASE CITE THIS ARTICLE AS

Han, K., Liu, H., Gayah, V.V., Friesz, T.L., Yao, T., 2015. A robust optimization approach for dynamic traffic signal
control with emission considerations. Transportation Research Part C, DOI:10.1016/j.trc.2015.04.001.

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

Link occupancy (vehicles)

A
g

g
re

g
at

e 
em

is
si

o
n

 r
at

e 
(h

y
d

ro
ca

rb
o

n
) 

(g
ra

m
/h

o
u

r)

Figure 5: Scatter plot of the macroscopic relationship obtained from simulation. The solid line represents the upper envelop of the uncertainty
region; the dashed line represent the lower envelop of the uncertainty region.

The corresponding lower envelop (by letting a1 = L1, a0 = L0) and upper envelop (by letting a1 = U1, a0 = U0) of the
uncertain region are now shown in Figure 5. Notice that one has a lot of freedom in choosing these upper and lower
bounds; however, they do affect the performance of the resulting robust optimization. As we commented in Section
4.1, the upper envelop sets a worse-case value for the emission rates, and it is likely to overestimate the emission rates
for some/most scenarios. From Figure 5 we see that while the upper envelop provides a tight bound on the emission
rates when the traffic is relatively light (i.e., 0 ≤ LO ≤ 40 vehicles), it tends to mostly overestimate the emission rates
when the traffic volume grows (i.e., LO ≥ 40 vehicles). To avoid the robust constraints being too conservative, we
invoke the parameter σ introduced in (4.42) to adjust the conservativeness by allowing some realized coefficients ak

1
to be strictly less than the upper bound U1, that is,

M∑
k=1

ak
1 ≤ M

U1

σ
for some σ ∈

[
1,

U1

L1

]
(6.62)

where ak
1 can be interpreted as the first-order coefficient in an actual (realized) instance of the relationship between

LO and AER at the k-th time step. A general rule of thumb is that the more the upper bound seems to overestimate,
the larger σ should be, although ideally such a choice should be specifically quantified and even optimized based on
available data. Interested readers are referred to Bandi and Bertismas (2012) and Bertsimas et al. (2014) for some
discussions on data-driven calibration of the uncertainty set. In our particular example, we choose σ = 1.2. Other
choices of σ can be also considered but will not be elaborated in this paper.

Notice that the region formed by the lower and upper envelops does not contain all the points shown in the figure.
However, the majority (96.06%) of these points fall within this region, and we treat the rest as outliers. The reason for
ignoring these outliers is that they only make up 3.94% of the total dataset, and are sparsely distributed outside (and
consistently above) the uncertainty region. Including these points in the uncertainty set would make our estimation
too conservative by considering the (very small) chance that these emission rates occur.

The uncertainty set for the robust optimization, according to (4.42), is therefore constructed as follows.

η̂a =

(ak
0, ak

1) : 0 ≤ ak
0 ≤ 400, 53.3 ≤ ak

1 ≤ 66, ∀1 ≤ k ≤ M,
N∑

k=1

ak
1 ≤ 55M

 (6.63)
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for all the links in the network, where M is the number of time intervals in this problem. Notice that the same
uncertainty set (6.63) is used for all the links in the network because they have identical parameters; otherwise, the
uncertainty sets need to be calibrated separately.

6.3. The base case

For comparison purposes, we first consider a base case where the traffic signal timing is optimized, but without any
emission considerations. This is achieved by simply solving the mixed integer linear program introduced in Section 2.
In the base case we are mainly concerned with maximizing network throughput and minimizing delays; thus in view
of (2.13) we adopt the following objective function:

max
M∑

k=1

1
1 + k

(
q̂k

7 + q̂k
8 + q̂k

9

)
(6.64)

where q̂k
7, q̂k

8 and q̂k
9 are the exit flows at the k-th time step of the outgoing links 7, 8, and 9, respectively. An

objective function of the form (6.64) tends to maximize the network throughput at any instance of time, and is similarly
considered by Han et al. (2013, 2014a,b).

The base case results corresponding to the three demand levels are summarized in Table 2. The table also includes
the hydrocarbon emission amount on each link, which is calculated from the MILP solution and the detailed modal
emission model elaborated in Section 3.2. The purpose of this table is twofold: (1) to enable a comparison between
the base case and the emission-constrained case presented later; and (2) to suggest appropriate upper bounds on the
emission amount for the emission-constrained case. In the presentation of our results, we only consider links 1 through
6, since the rest of the links are not directly controlled by the signals under consideration.

Scenario I

Objective value 5.331

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6
390.5 309.1 208.6 158.7 343.4 210.2

Total emission (gram) 1620.5

Scenario II

Objective value 6.615

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6
558.0 400.4 263.5 214.3 514.8 252.9

Total emission (gram) 2203.9

Scenario III

Objective value 7.142

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6
1359.2 430.6 560.1 269.1 553.0 252.7

Total emission (gram) 3424.7

Table 2: Objective values and hydrocarbon (HC) emissions in the base case. The three traffic scenarios with increasing demand levels are consid-
ered. The objective value is expressed by (6.64).

6.4. Simultaneous control of traffic and hydrocarbon emission

In this subsection, we solve the signal optimization problem with emission side constraints (LWR-E). This is
achieved by solving the MILP for the base case with additional emission-related robust counterpart expressed by
(4.43)-(4.45), where the detailed calibration of the uncertainty set is presented in Section 6.2. In view of the base case
summarized in Table 2, we chose the following upper bounds (in gram) on the emission amount for each link, where
bounds strictly below the corresponding emissions in the base case are underlined.

• Scenario I: E1 = 390, E2 = 310, E3 = 210, E4 = 160, E5 = 310, E6 = 240;

• Scenario II: E1 = 600, E2 = 380, E3 = 300, E4 = 210, E5 = 490, E6 = 250;
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• Scenario III: E1 = 1100, E2 = 440, E3 = 750, E4 = 300, E5 = 600, E6 = 300.

Notice that we did not set all the bounds to be strictly below the actual emissions in the base case, because of the
apparent trade-off of vehicle throughput and emission among links connected to the same intersection. Thus, under
the same network load, a signal control strategy is unlikely to simultaneously reduce the emissions on all the links. In
fact, setting all the bounds to be strictly below the actual emissions in the base case is likely to yield infeasibility in
most of our calculations.

Scenario I

Objective value 5.330 (0.02% less than the base case)

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6

(upper bound) 390.2 313.3 204.8 161.3 289.8 229.0
(390) (310) (210) (160) (310) (240)

Total emission (gram) 1588.4 grams (1.98% less than the base case)

Scenario II

Objective value 6.612 (0.05% less than the base case)

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6

(upper bound) 598.5 369.2 303.8 214.6 443.8 247.1
(600) (380) (300) (210) (490) (250)

Total emission (gram) 2157.0 grams (2.12% less than the base case)

Scenario III

Objective value 7.058 (1.18% less than the base case)

HC emissions (gram) link 1 link 2 link 3 link 4 link 5 link 6

(upper bound) 1160.5 434.6 756.4 272.1 622.2 294.5
(1100) (440) (750) (300) (600) (300)

Total emission (gram) 3540.3 grams (3.38% more than the base case)

Table 3: Objective value and hydrocarbon (HC) emissions in the LWR-E case. The numbers in the parentheses are the prescribed emission upper
bounds.

The results of the proposed MILP formulation for the emission-constrained signal optimization are summarized in
Table 3. We see that for all the three scenarios our proposed signal optimization scheme effectively keeps the emissions
below the prescribed level; and this is done at a relatively small cost to the overall throughput of the network; that is,
compared with the base case, the objective values in the LWR-E case decrease by only 0.02%, 0.05% and 1.18% in
Scenarios I, II and III, respectively (recall that while lower total emissions are desired, the objective function is such
that a lower value represents a worse performance). In addition, for Scenarios I and II, bounding the emission amount
on certain links successfully reduces the total emission on the entire network, by 1.98% and 2.12% respectively.

In Scenario III, where the traffic load is the heaviest, we observe that, despite a significant local emission reduction
(on link 1 where emission has been reduced from 1359 g to 1160 g), the overall network emission increases by
3.38%. Moreover, the total network throughput suffers more than the previous two scenarios. This further highlights
the potential trade-off not only between traffic delay and emission, but also between the local and global emission
amount. And such a trade-off is likely to be significant when the network is heavily congested (demand Scenario III).
Nevertheless, in certain cases a trade-off between local and global emissions, such as that shown in Scenario III of
Table 3, is desirable as some links may be closer to densely populated areas than others, and shifting the emissions
on those links to other parts of the network results in a lower impact on population exposure and public health.
Therefore, this numerical example highlights the need for a well-planned, multi-criteria signal optimization strategy
based on well-defined key performance indicators, and additional tools for the modeling of pollutant dispersion and
public exposure. These are, however, beyond the scope of this paper.

A visualization of the emission profiles for all the three test scenarios is provided in Figure 6.
We also see from Table 3 that a few emission constraints are slightly violated; this is expected for the following

two reasons: (1) the calibration process for the uncertainty set presented in Section 6.2 ignores part of the data points
that lie outside of the uncertainty region; (2) we chose the parameter σ to be larger than 1 (see (6.62)), which means
that the approach taken to handle the uncertainty in the AER is relatively less conservative and could lead to, with a
small probability, violation of the constraints. We present a quantification of the violations in Table 4 for all the links
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Figure 6: Comparisons of link-specific HC emissions in the base cases and the emission-constrained (LWR-E) cases.

in all the three scenarios, which shows that the violation of the constraints is within an acceptable range.

link 1 link 2 link 3 link 4 link 5 link 6
Scenario I 0.05% 1.06% - 0.81% - -
Scenario II - - 1.27% 2.19% - -
Scenario III 5.45% - 0.85% - 3.70% -

Table 4: Violations of the emission constraints. “-” means that the actual emission is below the bound.

We investigate a specific intersection B to illustrate the effects of the proposed signal control strategy. The base
case is compared with the LWR-E case under Scenario II. As can be seen from Table 2 and Table 3, the total emission
amount on the two incoming links, 2 and 5, are respectively 400 g and 515 g (base), and 369 g and 444 g (LWR-E).
Moreover, the emission upper bounds imposed by the LWR-E problem are 380 g and 490 g. As we see from Figure 5
that the aggregate emission rate on a link is highly correlated to the level of congestion (i.e. the link occupancy) on that
link. Thus, in order to simultaneously reduce the total emissions on links 2 and 5 to a point below their respectively
upper bounds, the signal controls in the LWR-E case reduced the inflow of link 5 from the upstream node A to alleviate
its congestion, and the signal at node B acted accordingly to reduce the congestion on link 2 by allocating more green
time to that link. As a result, the congestion and emission amount on links 2 and 5 were reduced simultaneously.
However, this improvement in the LWR-E case was offset by the fact that the congestion was accumulated on links 1
and 3 as a result of reduced inflow of link 5, causing the emission on these links to increase: respectively from 558 g
to 598 g (link 1) and 264 g to 304 g (link 3).

To visualize the effects of the LWR-E signal controls, we show the Moskowitz functions of link 5 in the base and
LWR-E cases in Figure 7 (similar trends on link 2 will not be show here due to space limitation). It can be seen that
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the Moskowitz surface is separated by a “shock wave”, which is shown as a kink, into two domains: the uncongested
region (on the side of the link entrance) and the congested region (on the side of the link exit). The separating shock
wave travels back and forth as a result of the changing downstream boundary conditions caused by the signal control,
indicating the growth and dissipation of queues. From Figure 7 we see that the LWR-E case yields less queuing on
link 5 than the base case. The comparison between the base case and the LWR-E case at junction B suggests that the
LWR-E case yields less queuing near this intersection, which reduces vehicle acceleration and deceleration, both of
which contribute significantly to the emissions near the stop line.

To further illustrate the effect on emission of vehicle queuing near the intersection, we show in Figure 8 the
contour lines of the Moskowitz function of link 5, which represent vehicle trajectories in the space-time diagram. We
can clearly observe that the LWR-E case on average yields fewer vehicle stops than the base case. To further quantify
this, we perform the following simple and intuitive calculation: the number of stops (represented as the horizontal
line segments in the trajectories) in the base case is approximately 76, while the number of stops in the LWR-E case
is roughly 52. Given that there are 50 contour lines in each figure, we estimate that the average number of stops per
vehicle is 1.52 in the base case, and 1.04 in the LWR-E case. Similarly, the average number of vehicle stops on link 2
is 0.34 in the base case and 0.1 in the LWR-E case, although the corresponding contour lines are not show here. This
explains the reduction of emission on these links as vehicle stops and acceleration/deceleration have been reduced by
the signal controls in the LWR-E case.

7. Conclusion

We propose a signal optimization formulation to simultaneously minimize expected vehicle delays while account-
ing for constraints/objectives related to vehicular emissions throughout a network. The latter is incorporated by devel-
oping macroscopic relationships that describe the range of expected emissions on a link as a function of the occupancy
of that link. Such reduced models allow emissions to be easily calculated in a network traffic model framework, as
opposed to traditional techniques that require the trajectory of individual drivers in the network. Furthermore, we
specifically account for the errors that exist as a result of the reduced and approximate emissions models through the
use of robust optimization. This formulation entails the following theoretical advantages: (1) it is computationally
tractable as a result of linearity maintained through our (piecewise) linear approximation to emission constraints; (2) it
is robust to model inaccuracy through the use of robust optimization; and (3) it appropriately captures queue spillbacks
to upstream links through a set of mixed integer linear constraints.

In contrast, without the RO, the only existing alternative to our knowledge is incorporating emission-related con-
straints as highly nonlinear and nonconvex side constraints. The signal control model then becomes a mixed integer
nonlinear program (MINLP), for which there are limited theories for analysis and scarce solution methods for com-
putation. Existing solvers for MINLP are generally slow and a global optimal solution cannot be guaranteed. In
contrast, our proposed approach results in a mixed integer linear program (MILP) for the same problem, which admits
effective and well-developed solution schemes that guarantee global optimality. Moreover, state-of-the-art algorithms
implemented within commercial solvers highly exploit the linear structures of MILPs and thus enjoy much improved
and even close-to-tractable computational efficiency (Bertsimas et al., 2011b).

A numerical study on a hypothetical network demonstrates the effectiveness of the proposed procedure in bound-
ing/reducing emissions, while maintaining a satisfactory performance of the signalized network in terms of through-
puts. However, as pointed out by Scenario III in the study, the local bounding/minimization of emissions may lead to
network-wide degradation in terms of both air quality and throughput. Thus, a well-balanced signal timing plan with
environmental concerns requires multiple criteria and proper weighting of different objectives.

The following data would be needed to effectively apply this methodological framework in practice: knowledge
of network geometries (e.g., link lengths and fundamental diagrams), measures of traffic flows at the boundaries
of the network at regular intervals (perhaps through fixed-location induction loop detectors commonly available in
urban networks), anticipated or historical turning fractions at all intersections (e.g. using turn-by-turn vehicle counts),
and operation constraints related to signal phases, green/red times, and signal offsets. An immediate follow-up of
this research will focus on an extension of the framework to account for more realistic signal control scenarios (e.g.,
fixed-cycle-dynamic-split, dynamic-cycle-fixed-split, etc.) through the introduction of additional constraints on signal
timing parameters. The proposed linearization of the emission constraints is also applicable for on-line signal controls
based on real-time information by following the general framework proposed by Liu et al. (2015).
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Figure 7: The Moskowitz functions of link 5 in the base case (top) and the LWR-E case (bottom).

Appendix A. Proof of Theorem 4.5

Proof. Notice that (4.49) can be immediately rewritten as

max
b̂∈η̂b

δt
M∑

k=1

max
m∈M

(
bk

1,m · N
k + bk

0,m

)
≤ E,
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Figure 8: Contour lines of the Moskowitz functions of link 5, in the base case (left), and the LWR-E case (right).

which is equivalent to

max
b̂∈η̂b,(υm,k)∈V

δt
M∑

k=1

∑
m∈M

υm,k

(
bk

1,m · N
k + bk

0,m

)
≤ E (A.1)

Here, V =
{
(υm,k : m ∈M, 1 ≤ k ≤ M) ∈ {0, 1}|M|×M ,

∑
m∈M υm,k = 1, ∀1 ≤ k ≤ M

}
. Consider the maximization

problem for any given
(
υm,k

)
∈ V and feasible vector {Nk : 1 ≤ k ≤ M}:

max
b̂∈η̂b

M∑
k=1

∑
m∈M

υm,k

(
bk

1,m · N
k + bk

0,m

)
δt

It is easy to check that the dual problem is formulated as follows:

min
∑
m∈M

M∑
k=1

(
−L1,mγ

k
1,m + βk

1,mU1,m + U0,mβ
k
0,m − L0γ

k
0,m

)
+ θ

M
∑

m∈M U1,m

σ

s.t. − γk
1,m + βk

1,m + θ = Nkυm,kδt ∀1 ≤ k ≤ M, m ∈M
− γk

0,m + βk
0,m = υm,kδt ∀1 ≤ k ≤ M, m ∈M

γk
1,m ≥ 0, βk

1,m ≥ 0, γk
0,m ≥ 0, βk

0,m ≥ 0 ∀1 ≤ k ≤ M, m ∈M
θ ≥ 0

Therefore, the satisfaction of (A.1) can be restated as follows:

∑
m∈M

M∑
k=1

(
−L1,mγ

k
1,m + βk

1,mU1,m + U0,mβ
k
0,m − L0γ

k
0,m

)
+ θ

M
∑

m∈M U1,m

σ
≤ E

− γk
1,m + βk

1,m + θ = Nkυm,kδt ∀1 ≤ k ≤ M, m ∈M
− γk

0,m + βk
0,m = υm,kδt ∀1 ≤ k ≤ M, m ∈M

γk
1,m ≥ 0, βk

1,m ≥ 0, γk
0,m ≥ 0, βk

0,m ≥ 0 ∀1 ≤ k ≤ M, m ∈M
θ ≥ 0

This should hold for all possible choices of
(
υm,k

)
∈ V, which immediately leads to the desired result.
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Appendix B. Proof of Theorem 4.6

Proof. Constraint (4.55) is equivalent to stipulating that

max
b̂∈η̂b

 M∑
k=1

min
m∈M

(
bk

1,m · N
k + bk

0,m

)
δt

 = max
b̂∈η̂b

min
υ∈V

 M∑
k=1

∑
m∈M

υm,k(bk
1,m · N

k + bk
0,m)δt

︸                                      ︷︷                                      ︸
F (b̂, υ)

≤ E (B.1)

where V .
= {υ = (υm,k : m ∈ M, 1 ≤ k ≤ M) ∈ [0, 1]|M|×M :

∑
m∈M υm,k = 1, ∀1 ≤ k ≤ M}. Since F (b̂, υ) is convex

in υ and concave in b̂, we can switch the “max” and “min” operator to obtain a dual problem without duality gap, i.e.,

max
b̂∈η̂b

min
υ∈V
F (b̂, υ) = min

υ∈V
max
b̂∈η̂b

F (b̂, υ) (B.2)

for any feasible vector (Nk : 1 ≤ k ≤ M). Combining (B.1) and (B.2), we have an alternative formulation of constraint
(4.55) given as

E ≥ max
b̂∈η̂b

min
υ∈V
F (b̂, υ)

= min
υ∈V

max
b̂∈η̂b

 M∑
k=1

∑
m∈M

υm,k(bk
1,m · N

k + bk
0,m)δt


= min

υ∈V

∑
m∈M

max
b̂∈η̂b

M∑
k=1

υm,k(bk
1,m · N

k + bk
0,m)δt


 (B.3)

Consider the inner problem of (B.3) for given υ ∈ V and m ∈M:

max
b̂∈η̂b

M∑
k=1

υm,k(bk
1,m · N

k + bk
0,m)δt.

We readily see that its dual formulation is given as (note that υ and m are fixed here):

G∗(υ, m) .
= min

M∑
k=1

(
−L1,mγ

k
1,m + βk

1,mU1,m + U0,mβ
k
0,m − L0γ

k
0,m

)
+ θm

MU1,m

σm

s.t. − γk
1,m + βk

1,m + θm = Nkυm,kδt ∀1 ≤ k ≤ M

− γk
0,m + βk

0,m = υm,kδt ∀1 ≤ k ≤ M

γk
1,m ≥ 0, βk

1,m ≥ 0, γk
0,m ≥ 0, βk

0,m ≥ 0 ∀1 ≤ k ≤ M

θm ≥ 0

By strong duality,

G∗(υ, m) = max
b̂∈η̂b

M∑
k=1

υm,k(bk
1,m · N

k + bk
0,m)δt (B.4)

Therefore, by further invoking (B.3), constraint (4.55) is equivalent to

E ≥ max
b̂∈η̂b

min
υ∈V
F (b̂, υ) = min

υ∈V

∑
m∈M

G∗(υ, m)

 (B.5)

In view of the equality in (B.1), we know that there exists (υ∗m,k) ∈ {0, 1}|M|×M ∩ V such that

max
b̂∈η̂b

min
υ∈V
F (b̂, υ) = max

b̂∈η̂b

F (b̂, (υ∗m,k)) (B.6)
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Combining (B.4), (B.5), and (B.6), we may continue to get

min
υ∈V

∑
m∈M

G∗(υ, m)

 = max
b̂∈η̂b

min
υ∈V
F (b̂, υ) = max

b̂∈η̂b

F (b̂, (υ∗m,k))

= max
b̂∈η̂b

∑
m∈M

M∑
k=1

υ∗m,k(bk
1,m · N

k + bk
0,m)δt

 =
∑
m∈M

max
b̂∈η̂b

 M∑
k=1

υ∗m,k(bk
1,m · N

k + bk
0,m)δt


=

∑
m∈M

G∗((υ∗m,k), m)

Recall that (υ∗m,k) ∈ {0, 1}|M|×M ∩ V . Then the above equality indicates that

min
υ∈V

∑
m∈M

G∗(υ, m)

 = min
υ∈V∩{0, 1}|M|×M

∑
m∈M

G∗(υ, m)


Invoking (B.5) again, we equivalently write constraint (4.55) as

min
υ∈V∩{0, 1}|M|×M

∑
m∈M

G∗(υ, m)

 ≤ E (B.7)

which is the same as requiring that there exists some υ ∈ V ∩ {0, 1}|M|×M such that
∑

m∈M G∗(υ, m) ≤ E. In addition,
notice that V ∩{0, 1}|M|×M = {(υm,k) ∈ {0, 1}|M|×M :

∑
m∈M υm,k = 1, ∀1 ≤ k ≤ M}. Combining this with the definition

of G∗(υ, m), we see that constraint (4.55) is equivalent to the following system.

∑
m∈M

− M∑
k=1

L1,mγ
k
1,m +

M∑
k=1

βk
1,mU1,m + θm

MU1,m

σm
+

M∑
k=1

U0,mβ
k
0,m −

M∑
k=1

L0γ
k
0,m

 ≤ E

− γk
1,m + βk

1,m + θm = Nkυm,kδt ∀1 ≤ k ≤ M, m ∈M
− γk

0,m + βk
0,m = υm,kδt ∀1 ≤ k ≤ M, m ∈M

γk
1,m ≥ 0, βk

1,m ≥ 0, γk
0,m ≥ 0, βk

0,m ≥ 0 ∀1 ≤ k ≤ M, m ∈M∑
m∈M

υm,k = 1 ∀1 ≤ k ≤ M

υm,k ∈ {0, 1} ∀1 ≤ k ≤ M, m ∈M
θm ≥ 0 m ∈M

(B.8)

Observe that the second line of (B.8) involves a nonlinear term, which can be replaced with linear constraints with
mixed integers using the “Big-M” method. The resulting mixed integer linear constraints are presented in the second
and the third lines of (4.57).
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