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Stochastic programming models are large-scale optimization problems that are used to facilitate decision-
making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future
costs of current decisions, often referred to as the recourse function. In practice, this calculation is com-
putationally difficult as it requires the evaluation of a multidimensional integral whose integrand is an
optimization problem. In turn, the recourse function has to be estimated using techniques such as scenario
trees or Monte Carlo methods, both of which require numerous functional evaluations to produce accurate
results for large-scale problems with multiple periods and high-dimensional uncertainty. In this work, we
introduce an importance sampling framework for stochastic programming that can produce accurate esti-
mates of the recourse function using a small number of samples. Our framework combines Markov Chain
Monte Carlo methods with Kernel Density Estimation algorithms to build a non-parametric importance
sampling distribution, which can then be used to produce a lower-variance estimate of the recourse function.
We demonstrate the increased accuracy and efficiency of our approach using variants of well-known mul-
tistage stochastic programming problems. Our numerical results show that our framework produces more
accurate estimates of the optimal value of stochastic programming models, especially for problems with
moderate variance, multimodal or rare-event distributions.
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1. Introduction

Stochastic programming models are large-scale optimization problems that are used to facilitate
decision-making under uncertainty. Optimization algorithms for such problems require the evalu-
ation of the expected future costs of current decisions, often referred to as the recourse function.
In practice, this calculation is computationally difficult as it requires the evaluation of a multi-
dimensional integral whose integrand is an optimization problem. Many algorithms approximate
the value of the recourse function using quadrature rules (Pennanen and Koivu (2005)) or Monte
Carlo (MC) methods (Birge and Louveaux (2011), Shapiro et al. (2009)). MC methods are partic-
ularly appealing for this purpose because they are easy to implement and remain computationally
tractable when the recourse function depends on multiple random variables. Nevertheless, the sam-
pling error in MC estimates can significantly impact the results of a stochastic programming model.
Although one can reduce the sampling error in MC estimates by using more samples in the MC
procedure, this approach is not computationally tractable in stochastic programming because each
sample requires the solution to a separate optimization problem. As a result, MC methods need
to be paired with a variance reduction technique in order to produce MC estimates with lower
sampling error for a moderate number of samples.

In this paper, we focus on a variance reduction technique known as importance sampling. Impor-
tance sampling aims to reduce the sampling error of MC estimates by generating samples from an
importance sampling distribution. Ideally, this importance sampling distribution is constructed in a
manner that favors samples from regions that contribute most to the value of the recourse function.
Although many distributions can be used for this purpose, there exists an importance sampling
distribution that is optimal in the sense that it can produce MC estimates with zero variance
(Asmussen and Glynn (2007)). This so-called zero-variance distribution is unknown and cannot be
directly used in practice. However, it can be indirectly used to guide the design of effective impor-
tance sampling distributions. Importance sampling was first applied to stochastic programming in
a series of papers by Dantzig and Glynn (1990) and Infanger (1992). The importance sampling
distribution from these papers showed promising results as it was based on the zero-variance dis-
tribution. The distribution was developed under the assumption that the uncertainty is modeled
using discrete random variables. To the knowledge of the authors, it has not been extended to the
continuous case. More importantly the importance sampling distribution developed in their work
would work well if the cost surface is approximately additively separable in the random dimensions.
This is a difficult assumption to verify in practice and in our experience the approach in Dantzig
and Glynn (1990) and Infanger (1992) can often perform much worse than the naive Monte Carlo
method (see example in Section 4.6).

Our framework, which we refer to as the Markov Chain Monte Carlo Importance Sampling
(MCMC-IS) framework, exploits the fact that the zero-variance distribution is known up to a
normalizing constant. This fact is well known and exploited by many other importance sampling
algorithms. The first step is to use a Markov Chain Monte Carlo (MCMC) algorithm to gener-
ate samples from the zero-variance distribution, and then a Kernel Density Estimation (KDE)
algorithm to construct an approximate zero-variance distribution from these samples. With this
approximate zero-variance distribution at hand, we can then use importance sampling to generate
a second set of more relevant samples, and form a lower-variance estimate of the recourse func-
tion. MCMC-IS is flexible, in that it accommodates a wide array of MCMC and KDE algorithms;
non-parametric, in that it does not require users to specify a family of distributions; robust, in
that it consistently gives reasonable results for probability distributions that are difficult to work
with using existing methods; and well-suited for stochastic programming, in that it produces lower-
variance estimates of the recourse function that ultimately allow us to solve these models more
accurately.
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Importance sampling is just one of many variance reduction techniques that can be used in
stochastic programming. The use of Quasi-Monte Carlo (QMC) methods were studied in Koivu
(2005) and in Drew and Homem-de Mello (2006). The non i.i.d. case of MC sampling has been
studied in Homem-de Mello (2006). Control variates were proposed in Shapiro and Homem-de Mello
(1998) and in Higle (1998). A sequential sampling algorithm was proposed in Bayraksan and Morton
(2011). A computational assessment of conditional sampling, antithetic sampling, control variates
and importance sampling appeared in Higle (1998). QMC and Latin Hypercube Sampling (LHS)
were compared in Homem-de Mello et al. (2011). The effect of sampling on the solution quality of
stochastic programming problems was discussed in Linderoth et al. (2006). In this paper, we use a
series of numerical experiments to demonstrate that our proposed framework performs well when
compared to Crude Monte Carlo (CMC) methods, Quasi-Monte Carlo (QMC) methods and the
importance sampling technique developed in Dantzig and Glynn (1990) and Infanger (1992) (DGI).
In addition, we show that our framework significantly outperforms the existing sampling methods
when the uncertainty is modeled using a higher variance, rare-event or multi-modal distribution.

MC methods need to be paired with optimization algorithms to solve stochastic programming
problems. In this paper, we illustrate the computational performance of MCMC-IS using a popular
decomposition algorithm known as the Stochastic Dual Dynamic Programming (SDDP) algorithm
(Pereira and Pinto (1991)). We note, however, that MCMC-IS can be paired with many other
stochastic optimization algorithms, such as the sample average approximation method (Shapiro
et al. (2009)), stochastic decomposition (Higle and Sen (1991)), progressive hedging (Rockafel-
lar and Wets (1991)), augmented Lagrangian methods (Parpas and Rustem (2007)), variants of
Benders’ decomposition (Birge and Louveaux (2011)), or even approximate dynamic program-
ming (Powell (2007)). More generally, we also expect MCMC-IS to yield similar benefits in
sampling-based approaches for developing stopping rules (Bayraksan and Pierre-Louis (2012), Mor-
ton (1998)), chance-constrained programming (Barrera et al. (2014), Watson et al. (2010)), and
risk-averse stochastic programming (Kozmık and Morton (2013), Shapiro (2009)).

While both MCMC and KDE algorithms have received considerable attention in the literature,
they have not - to our knowledge - been used in this way within the realm of stochastic optimization.
There has been some recent work on non-parametric importance sampling methods in the field of
statistics (Neddermeyer (2009), Zhang (1996)). However, these techniques have not been adopted
for practical applications due to the computational overhead involved in building a non-parametric
importance distribution. In this paper, we demonstrate that the computational overhead of using
an MCMC and KDE procedure is negligible in the context of stochastic programming, and that
the MCMC-IS procedure is a highly efficient way to obtain accurate results given a fixed number
of functional evaluations or runtime.

Our paper is structured as follows: in Section 2, we provide a brief overview of stochastic pro-
gramming, and illustrate the mechanism through which decomposition algorithms can produce
inaccurate results for a stochastic program when they are paired with a MC method. In Section
3, we introduce the MCMC-IS framework, and present readers with a set of theoretical insights
and practical guidelines. In Section 4, we use a series of numerical experiments based on a simple
newsvendor problem to illustrate the sampling-based properties of MCMC-IS, and to demonstrate
the benefits of pairing MCMC-IS with a decomposition algorithm to solve stochastic programming
models. In Section 5, we demonstrate that these benefits generalize across a collection of bench-
mark stochastic programming models. We summarize our contributions and discuss directions for
future research in Section 6.

2. Motivation

We consider a multistage linear stochastic programming model defined as,
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z∗ = min
x1

cT
1 x1 +Q1(x1)

s.t. A1x1 = b1,

x1 ≥ 0,

(2.1)

where c1 ∈Rn1 , A1 ∈Rn1×m1 and b1 ∈Rm1 . In general, the functionQ is called the recourse function,

and is used to represent the expected future costs of current decisions,

Qt(xt) =E[Qt(xt, ξt+1)], t= 1, . . . , T − 1. (2.2)

Given a fixed decision in the previous stage and a realization of the random parameters, the future

costs of the model can be estimated by solving the linear program,

Qt−1(x̂t−1, ξt) = min
xt

cT
t (ξt)xt +Qt(xt)

s.t. At(ξt)xt = bt(ξt)−Wt(ξt)x̂t−1, t= 2, . . . , T

xt ≥ 0,

(2.3)

where QT (x̂T−1, ξT ) ≡ 0 without loss of generality. We will assume that ct ∈ Rnt , At ∈ Rnt×mt ,

Wt ∈ Rnt−1×mt , bt ∈ Rmt×1. The components of these parameters are deterministic for t = 1, but

may be random for t= 2, . . . , T . We refer to the set of all random components of the parameters at

stage t using a Dt-dimensional random vector ξt, and denote its joint probability density function,

cumulative distribution function and support as ft, Ft and Ξt respectively. We note that we will

frequently drop the time index t from the definition of the recourse function when it is not relevant

to the discussion at hand (e.g. when we are referring to two-stage problems). In such cases, we

assume that Q = Q1, W = W2, ξ = ξ2 and x̂ = x̂1. We refer the interested reader to Birge and

Louveaux (2011) for an overview of multistage stochastic programming.

Many algorithms have been developed to solve multistage stochastic programming problems.

A key step in these algorithms is the discretization of the random parameters. In this context,

discretization means selecting a finite number of scenarios from a continuous distribution. If the

problem is modeled with a discrete distribution, then discretization means selecting a smaller

number of samples from the finite but often large number of realizations of the discrete distribution.

Of course Monte Carlo sampling, including importance sampling, can be used to perform the

discretization.

We refer to the discretization approach described above as the “discretize-then-solve” approach

and the resulting discretization as a scenario tree. An alternative to the discretize-then-solve

approach is to generate different samples of the random parameters on the fly and use an MC

method to estimate the recourse function. Such an approach is advantageous in that it can accom-

modate discrete or continuous random variables, remain computationally tractable for models with

a large number of random variables, and produce estimates of the recourse function whose error

does not depend on the number of random variables used in the model. Nevertheless, the error

of these estimates can significantly alter the results of a stochastic programming model. In what

follows, we explain how MC methods can be embedded in decomposition algorithms, and demon-

strate how the sampling error of MC estimates can produce inaccurate estimates of the optimal

value and solution of a multistage stochastic program.
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2.1. The Perils of Sampling in Decomposition Algorithms

Benders’-type decomposition algorithms are designed to solve multistage stochastic programming
problems by constructing a piecewise linear approximation of the epigraph of the recourse function
(Birge and Louveaux (2011)). The approximation is composed of supporting hyperplanes to the
recourse function at fixed values of x̂t. The supporting hyperplanes are also known as cuts. Given
a fixed value x̂t, a cut takes the form of a linear inequality constraint,

Qt(xt)≥Qt(x̂t) + ∂Qt(x̂t)(xt− x̂t), (2.4)

where ∂Qt represents the subgradient of the recourse function. We note that the parameters Qt and
∂Qt are the expected values of the optimal objective value and dual variables of the linear program
in (2.3). The preceding inequality assumes that these parameters can be calculated exactly. This
is usually only possible when the random variables in our model have a small, limited number of
outcomes. In practice, the expectations are therefore estimated using an MC procedure in which
we first generate a set of N samples of the random variables, ξ1

t , . . . , ξ
N
t , and then compute:

Q̂MC
t (x̂t) =

1

N

N∑
i=1

Qt(x̂t, ξ
i
t) ∂̂Q

MC

t (x̂t) =
1

N

N∑
i=1

∂Qt(x̂t, ξ
i
t). (2.5)

Although MC methods can significantly reduce the computational burden in generating cuts
relative to the discretize-then-solve approach, the cuts generated with MC methods are subject
to sampling error. Even if the sampling error associated with each cut is negligible, the errors
can compound across the iterations of the decomposition algorithm. As a result, decomposition
algorithms that use a small number of samples may produce an invalid approximation of the
recourse function which then leads to inaccurate results for the original problem. We illustrate
this well-known phenomenon in Figure 1, where we plot the sampled cuts that are produced when
a CMC method is paired with a decomposition algorithm in order to solve a simple two-stage
newsvendor problem, whose parameters are specified in Section 4.1.

Both cuts in this example were constructed using N = 50 samples. For clarity, we plot a subset of
the sample values Q(x̂, ξi), i= 1, . . . ,N along the vertical line of x̂, as well as their sample average.
In Figure 1(a), we are able to generate a valid sampled cut, which is valid because it underestimates
the true recourse function Q(x) at all values of x. However, it is possible to generate a sampled cut
that in some regions overestimates, and in other regions underestimates the true recourse function
Q(x). We illustrate this situation in Figure 1(b), where the sampled cut excludes the true optimal
solution at x∗ ≈ 69 with z∗ ≈−20. Assuming that the algorithm only generates valid cuts until the
algorithm converges, the resulting estimates of x∗ and z∗ will be x̃≈ 38 and z̃ ≈−15, corresponding
to errors of 80% and 25% respectively.

It is true that we can avoid generating invalid sampled cuts if we model the uncertainty in the
problem using a scenario tree. While this approach allows us to calculate the exact values of the
parameters in (2.4), it suffers from a different complication. Scenario trees are discrete in nature,
and therefore require models where the uncertainty is modeled through discrete random variables,
or a suitable discretization procedure that can represent continuous random variables using finite
outcomes and probabilities. In the latter case, the scenarios are fixed and the parameters in (2.4) are
easy to calculate. However, there are no guarantees that the solution obtained with the discretized
scenario tree will be optimal for the original continuous problem unless a large number of scenarios
is used. It is an active area of research how to best address this issue and a number of ways have
been proposed. One approach is to use a very large scenario tree or a continuous distribution and
then use scenario reduction methods to find a representation with a finite and manageable scenario
tree that is close to the original in some sense (see e.g. Dupačová et al. (2003)). Even though
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(a)

(b)

Figure 1 In 1(a) the sampled cut is valid; assuming that only valid cuts are generated in subsequent iterations,
a decomposition algorithm will produce accurate estimates of x∗ and z∗. In 1(b) the sampled cut is
invalid; even if all the other cuts produced by the algorithm are valid, the true optimal solution at x∗

will remain infeasible, and a decomposition algorithm will produce high-error estimates for the optimal
value and solution.
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scenario trees can yield accurate answers for stochastic programming problems with a small number
of random variables and time periods, they still present computational challenges for large-scale
problems with many random variables and many time periods. In turn, we focus on the sampled
cut approach described previously.

3. The Markov Chain Monte Carlo Approach to Importance Sampling

It is well-known that we can reduce the sampling error in the cut parameters if we increase the
number of samples that we use to construct their MC estimates. Even so, the O(N−0.5) convergence
rate of MC methods effectively implies that we have to solve four times as many linear programs
in order to halve the sampling error of the cut parameters. Given the time that is required to solve
a typical linear program within a large-scale stochastic programming model, such an approach is
simply not tractable. The sampling error of the cut parameters depends on σ2/N , where σ2 denotes
the variance of the estimate. As a result, an alternative way to reduce the sampling error in the
cut parameters without increasing the number of samples is to reduce the underlying variance of
the quantity that we are trying to estimate.

Importance sampling is a variance reduction technique that can produce an estimate of Q which
has lower variance and lower sampling error, than Q̂MC in (2.5). The variance reduction is achieved
by using a different probability distribution that can generate samples in regions that contribute
the most to Q. Although importance sampling estimates may have substantially lower-variance
than their MC counterparts, choosing a suitable importance sampling distribution is a challenging
process that is difficult to generalize and has motivated many papers in the statistics and simulation
literature. We refer the interested reader to Asmussen and Glynn (2007) for a review of importance
sampling.

3.1. Importance Sampling and the Curse of Circularity

Importance sampling is a variance reduction technique that constructs lower-variance estimates
using an importance sampling distribution g, as opposed to the original sampling distribution f .
When samples are generated from the importance sampling distribution g, the recourse function
can be calculated as,

Q(x̂) =Ef [Q(x̂, ξ)] =Eg[Q(x̂, ξ)Λ(ξ)]. (3.1)

where Ef and Eg denote expectation with the distributions f and g respectively. The function
Λ : Ξ→R is called the likelihood function and it is given by,

Λ(ξ) =
f(ξ)

g(ξ)
. (3.2)

The likelihood function is used to correct the bias introduced by the fact that we generated the
samples from g instead of f . In theory, the only requirement for the importance sampling distri-
bution g is that the likelihood function Λ has to be well-defined over the support of f . In other
words, g(ξ)> 0 at all values of ξ where f(ξ)> 0.

Once we select a suitable important sampling distribution g, we can use it to generate a set of
N i.i.d. samples ξ1 . . . ξN and construct an importance sampling estimate of the recourse function
as,

Q̂IS(x̂) =
1

N

N∑
i=1

Q(x̂, ξi)Λ(ξi). (3.3)

The benefit of generating samples from g depends on the amount of variance reduction that
can be achieved. Importance sampling is most effective in the context of stochastic programming
when g can generate samples from the regions that contribute the most to the value of the recourse
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function at a fixed point x̂. It is easy to show that the variance of an importance sampling estimate
is minimized when we sample from,

g∗(ξ) =
|Q(x̂, ξ)|

Ef |Q(x̂, ξ)|f(ξ). (3.4)

The importance sampling distribution g∗ is optimal in the sense that no other distribution can
produce an importance sampling estimate with lower-variance (Asmussen and Glynn (2007)). In
fact, if Q(x, ξ) is always positive then g∗ produces estimates with zero variance, and is therefore
usually referred to as the zero-variance distribution. The problem with using (3.4) in practice is that
it requires us to know the value of Ef |Q(x, ξ)|, which is the quantity that we sought to compute in
the first place. We are thus faced with a “curse of circularity” in that we can use (3.4) to construct
zero-variance estimates if and only if we already have a zero-variance estimate of Ef |Q(x̂, ξ)|.

The importance sampling framework that we introduce in this paper revolves around two key
observations. The first observation is that we can generate samples from (3.4) using an MCMC
algorithm since we know the distribution up to a normalizing constant Ef |Q(x, ξ)|. This observation
is well-known and many MCMC methods have been developed to take advantage of this. We note
that we cannot use these samples to form a zero-variance importance sampling estimate because
we need to evaluate the likelihood of each sample as shown in (3.2). In this case, the likelihood of
a given sample is given by,

Λ∗(ξ) =
Ef |Q(x, ξ)|
|Q(x, ξ)| , (3.5)

and it is also impossible to compute in practice as it depends on Ef |Q(x, ξ)|. This leads us to the
second observation: while we cannot use the samples from (3.4) to directly form an importance
sampling estimate, we can use them to reconstruct an approximation of the zero-variance distribu-
tion using a KDE algorithm. Using this approximate distribution in hand, we then can generate a
second set of samples, evaluate the likelihood of each sample, and form a lower-variance importance
sampling estimate.

3.2. Description of the MCMC-IS Framework

Our proposed framework consists of three steps: (1) generate samples from the zero-variance distri-
bution using an MCMC algorithm, (2) construct an approximate zero-variance distribution using
a KDE algorithm, and (3) sample from the approximate zero-variance distribution to form a lower-
variance importance sampling estimate.

MCMC algorithms are an established set of MC methods that can generate samples from a
density known up to a normalizing constant. In contrast to other MC methods, MCMC algorithms
produce a sequence of serially correlated samples. This sequence forms a Markov Chain whose
stationary distribution is the target density, given by (3.4) in our case. Although many different
MCMC algorithms can be used within the MCMC-IS framework, we restrict our focus to the
Metropolis-Hastings algorithm because it is easy to implement, does not require the specification of
many parameters, and does not depend on a restrictive set of assumptions. We refer the interested
reader to Gelman et al. (2010) for more on the Metropolis-Hastings algorithm, and other MCMC
algorithms that can be used in MCMC-IS.

The Metropolis-Hastings algorithm uses a simple accept-reject procedure in order to generate a
Markov Chain that has (3.4) as its stationary distribution. In the k-th step, the algorithm generates
a proposed state ζk using a proposal distribution whose density q(· | ξk) typically depends on the
current state ξk. Together, the proposed state, the current state and the target density are used
to evaluate an acceptance probability, a(ξk, ζk). The proposed state is accepted with probability
a(ξk, ζk), in which case the Markov Chain transitions to the proposed state ξk+1 := ζk. Otherwise,
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the proposed state is rejected with probability 1−a(ξk, ζk), in which case the Markov Chain remains
at its current state ξk+1 := ξk.

In this paper, we use a special instance of the Metropolis-Hastings algorithm in which new states
are proposed using a random walk process. This implies that the proposed state ζk at each step k
of the Metropolis-Hastings algorithm is sampled from q(· | ξk) as,

ζk = ξk + vk, (3.6)

where vk is a D-dimensional Gaussian random variable with mean 0 and covariance matrix Σ.
In practice, the Metropolis-Hastings algorithm requires that Σ is specified beforehand. However,
we can avoid specifying this parameter if we use the Adaptive Metropolis algorithm described
in Haario et al. (2001). When states are proposed through a random walk process, the proposal
distribution is symmetric and the acceptance probability can be expressed as,

a(ξk, ζk) = min

{
1,
|Q(x̂, ζk)|f(ζk)

|Q(x̂, ξk)|f(ξk)

}
. (3.7)

Once a set of M samples has been generated from the zero-variance distribution specified in
(3.4) using an MCMC algorithm, we can construct an approximate zero-variance distribution
from these samples using a Kernel Density Estimation (KDE) algorithm. KDE algorithms are
established techniques that are used to reconstruct continuous probability distributions from a finite
set of samples. We refer the interested reader to Devroye and Györfi (1985), Silverman (1986) and
Scott (1992) for a detailed overview of these techniques. It is worth noting that a KDE algorithm
can construct the approximate zero-variance distribution, even as the MCMC algorithm produces
correlated samples (Hall et al. (1995))

The probability density function generated by the KDE methodology is given by,

ĝM(ξ) =
1

M

M∑
i=1

KH(ξ, ξi), (3.8)

where the function KH is referred to as a kernel function, and H ∈RD×D is its associated bandwidth
matrix. In order to ensure that ĝ is a proper probability density function, we impose the following
conditions on the kernel function,

KH(·, ·)≥ 0,∫
Ξ

KH(ξ, ·)dξ = 1.
(3.9)

In addition, we assume that the kernel matrix is positive semidefinite, meaning that the matrix
with (i, j)th entry given by KH(ξi, ξj), 1≤ i, j ≤M is positive semidefinite. These assumptions are
required by most KDE algorithms, and are satisfied by the majority of kernels used in practice. A
popular kernel, and the one that we use in this paper, is the Gaussian product kernel,

KH(ξ, ξi) =
D∏
k=1

1√
2πhk

exp

(
(ξk− ξi,k)2

2h2
k

)
. (3.10)

The associated bandwidth matrix H for the Gaussian product kernel is a D×D diagonal matrix
that contains the bandwidth parameters of each dimension h1, . . . , hD along its diagonal. In our
implementation, we use a one-dimensional likelihood-based search to estimate the value of the
bandwidth parameter hk separately for each dimension k.
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Using the approximate zero-variance distribution ĝM , we can finally construct an importance
sampling estimate of the recourse function by generating N additional samples from ĝM . Although
these samples will not originate from the true zero-variance distribution g∗, they can still be used
to produce a lower-variance importance sampling estimate provided that the KDE algorithm has
constructed a ĝM that is similar to g∗. Generating samples from ĝM is also beneficial in that the
samples are independent and the kernel functions are easy to sample from. In practice, we construct
ĝM using modest values of M and then construct Q̂IS(x̂) using large values of N .

The computational burden of the MCMC step is a result of the accept-reject algorithm which
typically requires more LP evaluations (proposed samples) than are used (accepted samples). The
additional advantage of estimating and sampling the approximate importance sampling distribution
is the relative efficiency of generating a larger number of samples.

We provide a full formal description of the MCMC-IS framework in Algorithm 1, with additional
implementation details in Section 3.4.

3.3. Ingredients of the Convergence Analysis for MCMC-IS

MCMC-IS has two sources of error. The first source of error is due to the MCMC algorithm used to
generate samples from the zero-variance distribution, and the second is due to the KDE algorithm
used in the construction of the approximate zero-variance distribution. If the sampling algorithm
is embedded within an optimization algorithm then there is also a third source of error, but in this
section we focus on the sampling aspect. The main convergence condition for an MCMC algorithm
requires the underlying Markov chain to be irreducible and aperiodic. The irreducibility property
means that the chain can eventually reach any subset of the space from any state. The aperiodic
condition means that the chain cannot return to a subset of the space in a predictable manner.
Formal definitions of these properties can be found in Roberts and Rosenthal (2004). The first
step in the convergence analysis is to show that these two conditions are satisfied. In the case of
the SDDP algorithm, the MCMC algorithm will be used whenever a new sampled cut needs to be
generated and therefore these two conditions will hold even if the problem does not have complete
recourse.

In order to control the error due to the KDE algorithm, we need to ensure that the number of
samples generated by the MCMC algorithm M is large enough, and that the bandwidth parameter
hk is small enough. (where hk denotes the kth diagonal entry in the H matrix). In particular, if
(MhD)−1→∞, h→ 0 as M →∞, and the density function is approximated as,

ĝM(ξ) =
1

M

M∑
i=1

KH(ξ, ξi),

then it has been shown that ĝM will probabilistically converge to g∗ under the total variation
norm (see Devroye and Györfi (1985)). Applying this result to the MCMC-IS framework is not
straightforward. The complexity stems from the fact that the previous convergence proofs for
the KDE algorithm assume that samples are generated from g∗, whereas in our framework these
samples are generated from a Markov chain whose stationary distribution is g∗.

3.4. Practical Guidelines for MCMC-IS

The first important choice for MCMC-IS is the choice of a proper MCMC algorithm and a suitable
proposal distribution. In our experiments, we have used our own implementation of the Metropolis-
Hastings MCMC algorithm and the Adaptive Metropolis MCMC algorithm described in Haario
et al. (2001). Both algorithms propose new samples using a random walk process that starts off
at a user-defined point ξ0, which we set as ξ0 = Ef [ξ]. In turn, the main benefit of the Adaptive
Metropolis algorithm is that it does not require users to specify the step-size for the random walk
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Algorithm 1 Markov Chain Monte Carlo Importance Sampling (MCMC–IS)

Require: x̂: previous stage decision
Require: M : number of samples generated using the MCMC algorithm
Require: N : number of samples generated using the approximate zero-variance distribution
Require: ξ0: starting state of the MCMC algorithm

Step 1: Generate Samples from the Zero-Variance Distribution using MCMC

1.1 Set k= 0
1.2 Given the current state ξk, generate ζk ∼ q(· | ξk).
1.3 Generate a uniform random variable u∼U ∈ (0,1).
1.4 Transition to the next state according to,

ξk+1 =

{
ζk if u≤ a(ξk, ζk)

ξk otherwise
,

where,

a(ξk, ζk) = min

{
1,
|Q(x̂, ζk)|f(ζk)q(ξk|ζk)
|Q(x̂, ξk)|f(ξk)q(ζk|ξk)

}
1.5 Let k← k+ 1. If k=M then proceed to Step 2. Otherwise return to Step 1.1.

Step 2: Construct the Zero-Variance Distribution using KDE

2.1 For each state of the Markov chain generated from MCMC, reconstruct the approximate
zero-variance distribution as,

ĝM(ξ) =
1

M

M∑
i=1

KH(ξ, ξi).

Step 3: Sample from the Approximate Zero-Variance Distribution to Form an

Importance Sampling Estimate

3.1 For Generate N new samples from ĝM and form the importance sampling estimate,

Q̂IS(x̂) =
1

N

N∑
i=1

Q(x̂, ξi)
f(ξi)

ĝM(ξi)

process. More specifically, the Adaptive Metropolis algorithm uses a random walk process in which
the steps are normally distributed with zero mean and the identity matrix as the covariance matrix
- all the while keeping track of accepted samples. After a fixed number of iterations (in our case, 30
per dimension of the random vector ξ), the Adaptive Metropolis algorithm begins to use a sample
covariance matrix that is estimated from previously accepted samples.

Another important choice in implementing MCMC-IS is the number of samples to generate
using an MCMC algorithm (M). This is an important choice since generating samples with a
MCMC algorithm is computationally expensive due to the fact that it often takes more than M
functional evaluations to obtain M samples (as some samples are rejected in the MCMC process).
In our experience, we have found that a small number of samples produces a significant amount of
variance reduction. Accordingly, we have used M = 3000 within all of our numerical experiments
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in Sections 4 and 5. It may be surprising that a small and constant number is sufficient even for
large-scale problems. In Section 4.3 we provide a possible explanation for this result based on our
numerical experiments. In particular, it seems that a small number of samples is sufficient to bias
the sampling towards the right direction, and that the computational advantage of sampling from
the “exact” density is relatively small compared to the computational cost of computing it.

The final choice in implementing MCMC-IS related to the KDE algorithm that is used to con-
struct the approximation zero-variance distribution. In our experiments, we have used the MAT-
LAB KDE Toolbox, which is available online at http://www.ics.uci.edu/~ihler/code/kde.

html. The MATLAB KDE Toolbox is a fast and flexible KDE implementation which allows users
to reconstruct kernel density estimates using different types of kernels (e.g. Gaussian, Laplacian
and Epatchenikov kernels) as well as different types of bandwidth estimation procedures (e.g. leave-
one-out cross-validation, optimizing MISE and AMISE criteria). In our case, we have reconstructed
the approximated density using a simple Gaussian product kernel a leave-out-out cross-validation
bandwidth estimator. Our experience to date has shown that MCMC-IS is robust with regards to
the choice of kernel function using a decent number of samples to reconstruct the approximation
zero-variance distribution. Insights into the choice of the bandwidth estimator are provided in
Section 4.3.

4. Numerical Experiments with the Newsvendor Problem

In this section, we demonstrate several properties of MCMC-IS using a series of numerical experi-
ments based on a simple two-stage newsvendor problem. In Sections 4.3 - 4.5, we illustrate different
sampling-related properties of MCMC-IS to provide insights into how MCMC-IS works and how
it should be used in practice. In Section 4.6, we compare the performance of MCMC-IS estimates
to estimates that are produced using a Crude Monte Carlo method (CMC), a Quasi Monte Carlo
(QMC) method, and the Dantzig-Glynn-Infanger (DGI) importance sampling technique proposed
in Dantzig and Glynn (1990) and Infanger (1992). The remaining numerical experiments in Section
4.8 focus on the performance of MCMC-IS when it is embedded in a decomposition algorithm and
used to solve stochastic programming models with different types of uncertainty. Further experi-
mental results on MCMC-IS can be found in Ustun (2012).

4.1. Description of the Newsvendor Problem

We consider a two-stage newsvendor problem with uncertain demand and uncertain sales prices,
where the first-stage decision-making problem is a linear program defined as,

z∗ = min
x

x+Q(x)

s.t. x≥ 0,
(4.1)

and the recourse function is a linear program defined as,

Q(x̂, ξ) = min
y1,y2

− p(ξ)y1− ry2

y1 ≤ d(ξ),

y1 + y2 ≤ x̂,
y1, y2 ≥ 0,

(4.2)

where x̂ denotes the quantity of newspapers purchased in the first stage, ξ = (ξ1, ξ2) represents the
uncertainty in demand d(ξ) and sales price p(ξ) of newspapers in the second-stage, and scalar r
represents the price of recycling unsold newspapers. We usually model the uncertainty in demand
as d(ξ) = 100× exp(ξ1) and the uncertainty in sales price as p(ξ) = 1.5× exp(ξ2), where ξ1 and ξ2

are independent normal random variables with mean µ and and standard deviation σ. This implies
that the uncertainty in d(ξ) and q(ξ) are modeled using a lognormal distribution. We set µ= 0 and
change the underlying variance of the model by altering the value of σ from σ= 1 to σ= 2.

http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
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4.2. Details on Experimental Setup and Reported Results

Our choice of a simple model for this section is due to the fact that the distributions can be easily
visualized, and we can determine the value of the true recourse function at various points using
numerical integration procedures. In contrast to other test problems in the stochastic programming
literature, this setup allows us to calculate the true values of the optimal solution x∗ and the optimal
value z∗ of the underlying model. In turn, we are able to report the following set of statistics:

• Mean-squared error of the estimate of optimal solution x̃, defined as MSE(x̃)≡E‖x∗− x̃‖22;

• Mean-squared error of the estimate of the optimal value z̃, defined as MSE(z̃)≡E‖z∗− z̃‖22;

• Mean-squared error of the approximate zero-variance distribution, defined as MSE(ĝ)≡
∫

(g(ξ)−
ĝ(ξ))2dξ;

• Mean-squared error of the estimated recourse function Q̂ at a fixed point x̂, defined as
MSE(Q̂(x̂))≡E‖Q(x)−Q̂(x̂)‖22;

• Sample variance of the estimated recourse function Q̂ at a fixed point x̂, defined as S(Q̂(x̂))2 ≡
E
[
Q(x)−E[Q̂(x̂)]

]2
;

In our experiments we estimated the quantities above using a sample average approximation.
Such statistics are crucial in measuring the effectiveness of importance sampling procedures as
importance sampling estimates will typically have low sample variance, but may be prone to high
bias and high mean-squared error. In our experiments, we compute sample average values for these
statistics using a total of 30 simulations. We note that have normalized all of these values for the
sake of clarity.

Our numerical experiments were specifically designed to provide a fair computational comparison
between different sampling methods by ensuring that each sampling method was allotted the same
number of functional evaluations. The careful reader should notice that an MCMC-IS uses a total
of M +Mr total functional evaluations to construct an importance sampling distribution, where
Mr denotes the number of samples that are rejected due to the accept-reject procedure of the
MCMC algorithm. Thus, if we ran an instance of MCMC-IS using M samples to construct the
importance sampling distribution and N samples to compute our estimate, then we formed a
comparable estimate for CMC, QMC and DGI using a total of M +Mr +N samples. We note
that this point may be neglected as we have consistently used N to denote the number of samples
in Figures and Tables for the sake of clarity. In this case, N only refers to the number of samples
used to construct MCMC-IS estimates, and we stress that all other methods were given the same
number of functional evaluations as MCMC-IS.

All of the results from our numerical experiments were produced using MATLAB 2012a. In
particular, we used a Mersenne-Twister algorithm to generate random numbers that were used
for CMC sampling as well as importance sampling procedures. For QMC sampling, we used a
Sobol sequence that was randomized using the Matousek-Affine-Owen scrambling algorithm. We
note that we have implemented our own version of the DGI importance sampling method, as it
is described in Infanger (1992). As stated in Section 3.4, we used our own implementations of the
Metropolis-Hastings MCMC algorithm and the Adaptive Metropolis algorithm as the MCMC algo-
rithm in MCMC-IS. In both cases, we produced an approximate zero-variance distribution using
the Gaussian product kernel function and a leave-one-out cross-validation bandwidth estimator
from the MATLAB KDE Toolbox.

Lastly, all of our stochastic programming problems were solved using a MATLAB implementation
of the SDDP algorithm, which used a MEX file to call the IBM ILOG CPLEX 12.4 Callable Library
and solve a series of linear programs with sampled parameters in C. We have this set of MEX files
to make it easier for practitioners to implement MCMC-IS using MATLAB and CPLEX 12.4 at
the first authors’ website - http://www.doc.ic.ac.uk/~pp500/. The collection includes: a MEX

http://www.doc.ic.ac.uk/~pp500/
http://www.doc.ic.ac.uk/~pp500/
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file that can generate a sampled cut; a MEX file that can generate samples from the zero-variance
distribution using a Metroplis-Hastings algorithm; and a MEX file that can generate samples from
the the zero-variance distribution using an Adaptive Metropolis algorithm. These files can be paired
with the MATLAB KDE toolbox and embedded in a decomposition algorithm in order to solve
stochastic programming models using MCMC-IS.

4.3. The Effect of the Number of MCMC Samples and the KDE Bandwidth Parameter

Our numerical experiments with the newsvendor problem suggest that a modest number of MCMC
samples (M) can produce an approximate zero-variance distribution (ĝM) that yields substantial
variance reduction in our estimates of the recourse function.

As shown in Figure 2(a), increasing M does reduce the error in our ĝM . However, the computa-
tional cost of such an increase is not justified in terms of the marginal improvement in the accuracy
of our recourse function estimates. This is a positive result as the MCMC algorithm represents a
computationally expensive part of our framework. A possible explanation for this empirical obser-
vation is that if our ĝM qualitatively agrees with g∗, then the sample statistics of the approximate
distribution will qualitatively agree with the sample statistics of the zero-variance density.

In order to illustrate this point, we plot the contours of the true zero-variance distribution g∗

in Figure 2(b) and the contours of ĝM for different values of M in Figures 2(c)-2(e). These figures
suggest that the approximate distributions produced by MCMC-IS qualitatively agree with the
true zero-variance distribution even at low values of M . In Figure 2(f), we show the contours of
our approximate zero-variance distribution after we reduce the bandwidth parameters of the kernel
function by 20%. This decreases the MSE of ĝM by approximately 12% but increases its variance by
approximately 15%, thereby demonstrating the bias-variance tradeoff of KDE algorithms. These
results were constructed with the first stage decision fixed at x̂= 50.

4.4. Adaptive Sampling of the Important Regions

The major difference between our framework and a standard MC method is that we generate
samples using an importance sampling distribution ĝM as opposed to the original distribution f .
As a result, the samples that are generated using ĝM are typically located in regions that contribute
the most to the value of the recourse function (i.e., in regions where |Q(x̂, ξ)|f(ξ) is large) while the
samples that are generated using f are typically located in regions where the original distribution
attains high values. We demonstrate this difference in Figure 3 where we plot a set of samples
generated from f using the CMC method (left), and another set of samples generated from ĝM
using MCMC-IS. The first set of contours in Figure 3 pertains to the original distribution f while
the second set of contours pertains to the true zero-variance distribution g∗. Note that f and g∗

are not only centered around different points but also have different shapes. These results were
constructed with the first stage decision fixed at x̂= 50.

4.5. Dependence of the Sampling Distribution on the Previous Stage Decision

In many cases, the importance sampling distributions used within a stochastic programming appli-
cation should depend on the previous stage decision. We illustrate such a dependence in Figure
4, where we plot the absolute difference between an approximate zero-variance distribution con-
structed around the point x̂r = 50 and two other approximate zero-variance distributions con-
structed around the point x̂1 = 10 (left) and x̂2 = 100 (right). As shown, the approximate zero-
variance distribution produced by MCMC-IS can vary substantially as we change the previous
stage decision.
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Figure 2 (a) The majority of the gains in variance reduction and accuracy can be achieved for a small values of
M . Note that the axis for MSE(ĝM ) is the right, and the scale for MSE(Q̂)is on the left. (b) Contours
of g∗. (c)-(e) Contours of ĝM for different values of M ; the bandwidth parameter for these distributions
is estimated using a one-dimensional likelihood-based search. (f) ĝ10000 with a bandwidth that is 20%
smaller for each dimension. The resulting mean square error is lower but the variance is higher for the
density in (f)
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Figure 4 The absolute difference between an approximate zero-variance distribution constructed at x̂r = 50 and
two other approximate zero-variance distributions constructed at x̂1 = 10 (left) and x̂2 = 100 (right).

4.6. Comparison with Other Sampling Algorithms

In this section, we compare MCMC-IS estimates to those produced by the CMC, QMC and DGI
methods. In Figure 5(b), we plot the sample standard deviation of the different methods. Although
both importance sampling methods perform well in this respect, it is worth noting that MCMC-
IS performs better for smaller sample sizes. When we plot the error in Figure 5(a), we find that
MCMC-IS and the QMC sampling method perform best.

Our results suggest that the relative advantage of MCMC-IS over other variance reduction
methods becomes more significant as there is more uncertainty in our model. Increasing the variance
of the underlying model typically means that more samples are required for the algorithms to
produce estimates with a comparable variance and error. This is to be expected since the error of
an MC estimate depends on the variance of the random parameters as well as the sample size. To
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Figure 5 Top: Comparison of the accuracy and variance of estimates produced by different methods for a
moderate-variance problem with σ= 1. Bottom: Comparison of the accuracy and variance of estimates
produced by different methods for a higher-variance problem with σ= 2. Note that we omit the results
for the IDG method when σ = 2 for clarity. The normalized values of SQ̂ and MSE(Q̂) for DGI are
around 20% and 40% respectively

emphasize this point, we repeat the same calculations as above but increase the standard deviation
of (ξ1, ξ2) from σ = 1 to σ = 2 as described in Section 4.1. In this regime, MCMC-IS outperforms
all other methods (Figure 5(c) and 5(d)).

We note that the error in the DGI estimates of the recourse function converges very slowly in
this example because the DGI method uses an approximate zero-variance distribution which is
specifically built for a recourse function that is additively separable in the random variables. For
this problem, however, the recourse function is not additively separable. This leads to estimates of
the recourse function that have high variance, and high MSE.

4.7. Multimodal Distributions and Rare-Event Simulation

Many decision-making models involve probability distributions that are multimodal (Bucklew
(2004)) or that involve rare-events (Ravindran (2008)). Unfortunately, such complex probability
distributions are difficult to include in stochastic programming models as existing variance reduc-
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Figure 6 Top: Contours of a multimodal model. Samples generated using CMC are shown on the left and the
samples from MCMC-IS are shown on the right. Bottom: Error and variance of estimates produced by
different methods.

tion methods will need an extremely large number of samples in order to generate accurate and
reliable results.

Even as importance sampling is frequently used when dealing with such models, existing impor-
tance sampling techniques are ill-suited for this purpose due to two reasons. First, as was illustrated
in the previous section, an ideal importance sampling distribution depends on the incumbent solu-
tion and has to be created each time we wish to generate a new sampled cut. This implies that
efficiency is an important consideration. Second, stochastic programming models not only require
us to generate samples from these complex distributions, but to use them to compute an accurate
estimate of the recourse function. In other words, an appropriate importance sampling technique
also must be able to accurately evaluate the likelihood of each sample that it generates as in (3.2) or
risk generating biased results. Such issues often preclude the application of stochastic programming
when the distribution of the uncertain variables has a complex structure.

To demonstrate these issues and show that our proposed algorithm can sample efficiently in such
cases, we use an example where the important regions of the recourse function are described by
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a surface with two distinct modes, whose contours are shown in 6(a). In this example, we have
replaced the original integrand in the recourse function Q(x̂, ξ1, ξ2)f(ξ1, ξ2) with a new integrand

Q(x̂,w(ξ1),w(ξ2))f(ξ1, ξ2), in which w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
)+exp( ξ

2

2
− (ξ+1)2

8
), x̂= 50 and f denotes

the standard bivariate normal density. This example illustrates rare-event sampling, in the sense
that the majority of the samples from the important regions are outside of the 2σ interval of the
original distribution, f .

As in Section 4.5, we then generate a set of samples using the CMC method and MCMC-IS.
In this example, the samples that are generated using the CMC method are centered around the
origin, where the original distribution f attains its highest values (Figure 6(a), left). In contrast, the
samples that are generated using MCMC-IS are centered around the two modes and in proportion
to the depth of each mode. These areas constitute the regions that contribute the most to the
value of the recourse function and correspond to the areas where the approximate zero-variance
distribution ĝM takes on its largest values. As a result the MCMC-IS framework obtains an estimate
of the recourse function that is both more accurate (Figure 6(b)) and has less variance (Figure
6(c)) than the other methods. In this example, we have omitted the results for the DGI method
because the importance sampling weights turn out to be zero for all the samples, meaning that the
estimates it produces do not converge. This is a well-known problem with the DGI method that
has previously been discussed in Section 1.4 of Higle (1998).

4.8. Accuracy and Variance of MCMC-IS Estimates from a Decomposition Algorithm

In this section, we compare the estimates of the optimal value z̃ of the newsvendor problem when it
is solved with a decomposition algorithm which has been paired with MCMC-IS, CMC and QMC.

We consider an extension of the newsvendor problem from Section 4.1, where the newsvendor
buys and sells s different types of newspapers. We purposely do not include any constraints to
couple the different types of newspapers so that we can extrapolate the true values of x∗ and z∗

for the extended problem using the true values from Section 4.1. In this case, we can assess the
accuracy of our estimates for a D= 2× s dimensional problem by noting that the optimal solution
x∗ has to be the same for each of the s different types of newspapers, and the optimal value z∗ has
to scale additively with the number of different newspapers s.

In contrast to the experiments in Sections 4.3 to 4.7, the accuracy of z̃ depends on the number of
sampled cuts that are added to the first-stage problem through a decomposition algorithm, as well
as the sampling method that is used to generate these estimates. Note that in our implementation
of SDDP, we consider the number of iterations as equivalent to the number of cuts added to the
first stage problem. In practice, the number of iterations needed for the algorithm to converge
is determined by a stopping test that is designed to assess whether the decomposition algorithm
has converged. In this experiment, however, we compare estimates that are produced after a fixed
number of iterations. Fixing the number of iterations ensures that each sampling method produces
estimates using the same number of samples, and isolates the performance of the sampling method
from the performance of the stopping test. During our numerical experiments we fixed the number
of iterations to 8×s. We found that this simple rule was sufficient to show the numerical properties
of the different sampling algorithms.

Figure 7 shows the convergence of the estimates that we obtain when we solve a two-stage
newsvendor problem with D= 2×3 = 6 random variables after 8×3 = 24 cuts have been added to
the first-stage problem. In Figures 7(a) - 7(d), we show the results when we model the uncertainty
in the demand and sales price of each newspaper using the lognormal distributions from Section
4.1, and we build the approximate zero-variance distribution for each sampled cut using M = 3000
samples that are generated from a standard Metropolis Hastings MCMC algorithm. In Figures
7(e) - 7(f), we show results when we model the uncertainty in the demand and sales price of
each newspaper using the multimodal rare-event distribution from Section 4.7, and we build the
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approximate zero-variance distribution for each sampled cut using M = 3000 samples that are
generated from the Adaptive Metropolis algorithm described in Haario et al. (2001).

Our results confirm that the relative advantage of using MCMC-IS estimates depends on the
inherent variance of the underlying stochastic programming model. In models where the uncertainty
is modeled using a lower-variance distribution, MCMC-IS produces estimates that are just as
accurate as the estimates produced by a QMC method, but that are still more accurate than
the estimates produced by a CMC method. In models where the uncertainty is modeled using
a higher-variance or rare-event distribution, MCMC-IS produces estimates that are much more
accurate than those produced by QMC and CMC methods. Our numerical results also suggest
that MCMC-IS produces estimates with sample standard deviations that are far lower than the
estimates produced by CMC and QMC methods.

5. Numerical Experiments on a Collection of Test Problems

In this section, we demonstrate the performance of MCMC-IS when it is paired with a decompo-
sition algorithm in order to to solve a collection of benchmark stochastic programming models.
Initial numerical results appeared in Ustun (2012), below we report results on a larger set of test
problems.

5.1. Overview of the Test Problems

In order to verify that our findings from Section 4.8 generalize to stochastic programming models,
we have based the numerical experiments in this section on a collection of 9 benchmark stochastic
programming models from Ariyawansa and Felt (2004). We have specifically chosen these models
due to the fact that they represented a diverse collection of stochastic optimization problems. On
one hand, the models differ in the size of the instances, as well as the number of stages and the
number of random variables in each stage. In addition, the models also pertain to decision-making
problems across a wide range of application areas such as energy, finance, and telecommunications.

Problem # Stages # Random Variables
(T ) (

∑
tDt)

Airlift Operation Scheduling (ASO) 2 2
Forest Planning (FP) 7 7
Electrical Investment (EI) 2 10
Selecting Currency Options (SCO) 4 4
Financial Planning Model (FPM) 2 16
Design of Batch Chemical Plants (DBCP) 2 4
Energy and Environmental Planning (EEP) 2 16
Telecommunications Network Planning (TNP) 2 15
Bond Investment Problem (BIP) 5 12

Table 1 Overview of the Test Problems from Ariyawansa and Felt (2004)

It is worth noting that many of the problems in Ariyawansa and Felt (2004) had to be modified
in order to be solved with a sampling-based approach. This was due to the fact that many prob-
lems were originally formulated using discrete distributions and scenario trees (sometimes with 3
scenarios). In adapting these problems, we sought to change them as little as possible, and have
therefore replaced each discrete distribution with a closely matching continuous distribution whose
variance could be tuned. It is also worth noting that some problems were also formulated using
integer variables. There have been efforts to extend the SDDP framework to allow for integer vari-
ables however such an extension is beyond the scope of the present paper. As such we have simply
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Figure 7 Error and variance of estimates for a newsvendor problem where the uncertainty in demand and sales
price is modeled using a lower-variance lognormal distribution with σ= 1 (7(a) - 7(b)), a higher-variance
lognormal distribution with σ= 2 (7(c) - 7(d)), and multimodal rare-event distribution (7(e) - 7(f))
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focused on solving the integer relaxations for these problems. Lastly, we note that we have omit-
ted the “Cargo Network Scheduling” problem as it required the use of a non-linear programming
solver. The full details of our modifications are listed in Appendix A.

5.2. Details on the Numerical Experiments

As in Section 4.8, we solved each of the models using the SDDP algorithm and compared the
estimated optimal value z̃ when sampled cuts were generated using MCMC-IS, CMC and QMC.

We used M = 3000 samples to construct an approximate zero-variance importance sampling
distribution in all of our experiments, and varied the number of samples to construct the sampled
cut from N = 2000 to N = 256000. As before, we have ensured that all sampling methods were
allotted an equal number of functional evaluations. In other words, the sampled cuts for CMC and
QMC were constructed using M +Mr +N total samples, where Mr denotes the number of rejected
samples from the MCMC algorithm in MCMC-IS. Table 6 in Appendix B gives the average number
of rejected samples from MCMC.

In the following experiments, we paired the SDDP algorithm with the stopping rule proposed in
Shapiro (2011). This stopping rule terminates the SDDP algorithm as soon as the upper confidence
bound θ̄ + zα/2σ̂θ

√
N and the lower bound θk is less than a prescribed tolerance level ε > 0. In

our experiments, we have set α = 5% and ε = 10%. This means that we obtain a solution which
achieves an value that is within 10% of the optimal value with 95% confidence.

In order to report error statistics as in the previous section, we have true optimal value for each
model by solving each problem using the SDDP algorithm paired with the QMC method and an
extremely large number of samples (N = 107). Such a large simulation is impractical in practice,
but it was required to validate the correctness of the different methods. Of course we have no
way of knowing that solutions obtained with N = 107 samples is the correct one, but all three
algorithms converged to values that were within 1% of each other. As before, we have computed
sample average values for all of our reported statistics using a total of 30 simulations, and have
normalized all reported statistics for the sake of clarity.

5.3. Accuracy and Variance of the Estimates

In Figure 8, we provide a summary of the error and sample standard deviation of the optimal
value from the nine models when they are solved using MCMC-IS, QMC, and CMC methods.
More specifically, these plots show the median error and sample standard deviation for different
sample sizes when the models contain lower-variance distributions (Figure 8(a)), higher-variance
distributions (Figure 8(b)) and rare-event multimodal distributions (Figure 8(c)). We have plotted
the average error across all 9 test problems. Given that the average values across different problems
may be deceiving, we have also included a full table of these results for each problem and each
value of N in Appendix B. Nevertheless, these results are consistent across different test problems,
some of which are multistage, and have a markedly different structure.

When the models contain lower-variance distributions (Figure 8(a)), we see that all methods
have low error (less then 5% in all cases) but that MCMC-IS estimates have lower variance. For
models with higher-variance distributions (Figure 8(b)), MCMC-IS significantly outperforms the
other methods, as MCMC-IS estimates of the optimal value have less error and less variance. This
is also the case when models contain rare event distributions. In this case, MCMC-IS is the only
method that can produce estimates near the true values using fewer than N = 256000 samples;
the other two sampling methods exhibit an extremely slow convergence to the optimal value and
require a far greater number of samples in order to converge.

In Figure 8(d) we plot the error times CPU time for each method (in % error×CPU time(min)).
This metric provides insights into the relative “efficiency” of the different methods as it balances the
conflicting requirements of obtaining highly accurate results using the least amount of CPU time.
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Figure 8 Median results with the Collection of Test Problems. (a) MSE(z̃) for models with lower-variance distri-
butions (b) MSE(z̃) for models with higher-variance distributions (c) MSE(z̃) for models with rare-event
distribution. The error bars indicate the standard error associated with the solution obtained. (d) Error
(%) × CPU Time (mins); for this plot we averaged the low variance, moderate variance and rare event
results.

From the results in Figure 8(d) it can be seen that when the sample size is small (e.g. N = 2000), our
method performs similarly to the other methods. This is because the advantage of error reduction
comes at a high computational cost relative to the amount of time required to generate a small
sample using CMC or QMC. When the sample size is larger (e.g N = 8000 and onwards), we see
that the cost of MCMC-IS relative to other methods (while taking into consideration the error
reduction) is much less.
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5.4. When to use MCMC-IS in stochastic programming

The proposed algorithm has an additional overhead when compared to CMC and QMC. The
benefits of variance reduction are obvious from Figures 8(a)- 8(c). In Figure 8(d) we showed that the
algorithm is also efficient in the sense defined in the previous section. Depending on the application,
the efficiency measure we used may or may not be appropriate. We therefore conclude the discussion
on our numerical results by weighing up the CPU overhead and standard error statistics from our
experiments. Based on these statistics, we offer some insights on when the proposed algorithm is
expected to outperform conventional sampling methods.

In Table 2 below, columns two to four present the computational overhead of MCMC-IS when
compared to either CMC or QMC (who chose the best from the two). We report the median compu-
tational overhead across the different problems in percentage terms and in parenthesis we tabulate
the median overhead in seconds. At first glance it may seem that SDDP combined with MCMC-IS
does not become competitive until the number of samples becomes large (around N = 64× 103).
However, CPU time alone is not sufficient to judge the performance of sampling algorithms. Accu-
racy is also an important consideration. To illustrate the trade offs, consider the results for σ = 1
for which our algorithm appears to be the least competitive. In this low variance regime we still
manage to have half the standard error of CMC/QMC even for very large N . It is well known
that to halve the standard error of Monte Carlo estimates one needs to increase the number of
samples by four. As a result our algorithm becomes competitive not around N = 64 × 103 but
around N = 16× 103 to achieve a comparable level of accuracy. Whether or not this value is too
large to justify MCMC-IS will depend on the application. Many engineering applications, especially
in energy systems, require a large number of samples in order to obtain a sufficiently accurate
approximation of the recourse function. For example, in Lubin et al. (2011) the authors found that
they need 104− 105 scenarios to represent a realistic energy system with uncertainties distributed
across time and space. Similarly, models in finance can also require a large number of scenarios
(Gondzio and Grothey (2006)). When the problem has higher variance, the number of samples for
which our algorithms becomes competitive is even lower. Finally, when the model has rare events,
one would expect that a large number of samples should be used in order to accurately capture
the uncertainties. Given the large error of other methods (see Figure 8(c)), the proposed algorithm
clearly outperforms the other methods in the sense that it has about 70% less variance and in terms
of CPU time becomes competitive after a moderate number of samples. In summary, we believe
that the proposed method should be used when the model has a moderate/high variance or rare
events, and when more than 16× 103 samples are required to estimate the recourse function.

Table 2: Computational overhead and variance reduction trade offs for MCMC-IS.

# Samples Median Overhead (%)(secs) Median Var. Reduction (%)
(N × 103) σ= 1 σ= 2 Rare σ= 1 σ= 2 Rare

2 111%(40) 134%(80) 61%(103) 45% 56% 74%
4 92%(40) 143%(96) 80%(154) 50% 57% 73%
8 79%(43) 118%(90) 61%(144) 48% 54% 75%
16 74%(46) 71%(78) 47%(133) 48% 58% 74%
32 58%(51) 25%(37) 16%(61) 47% 56% 73%
64 11%(16) -20%(-61) -8%(-45) 50% 56% 72%
128 -9%(-20) -29%(-141) -15%(-126) 53% 62% 73%
256 -20%(-60) -30%(-208) -23%(-285) 50% 62% 74%
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6. Conclusions

Multistage stochastic programming models are considered to be computationally challenging
mainly because the evaluation of the recourse function involves the solution of a multidimen-
sional integral. Numerical methods such as Sample Average Approximation (SAA) and Stochastic
Dual Dynamic Programming (SDDP) rely on sampling algorithms to approximately estimate the
recourse function. The sampling algorithm used in conjunction with the optimization algorithm
has a major bearing on the efficiency of the overall algorithm and on the accuracy of the solution.
As a result the development of efficient sampling methods is an active area of research in stochastic
programming.

The main contribution of this paper is the development of an importance sampling framework
that is based on Markov Chain Monte Carlo (MCMC) to generate biased samples, and a kernel
density estimation method to compute the likelihood function. Importance sampling has been
proposed before in the literature of stochastic programming. The proposed method makes fewer
restrictive assumptions than the importance sampling algorithm proposed in Dantzig and Glynn
(1990) and Infanger (1992), and in particular can perform well even when the objective function
is not additively separable. Our numerical experiments show that the method outperforms Crude
Monte Carlo and Quasi Monte Carlo algorithms when the problem has moderate or high variance,
and when the probability density function is difficult to sample from.

The results from numerical experiments suggest that MCMC-IS yields accurate estimates for
models with lower-variance distributions and that it has a distinct advantage over sampling meth-
ods such as CMC and QMC when models are equipped with higher-variance distributions or rare-
event distributions. We have also implemented the importance sampling technique from Infanger
(1992) and in most cases it did not converge or was worse than CMC. We believe that the method
proposed in Infanger (1992) is suitable for problems with a particular structure and may need
further tuning for different test problems. Finally, it is clear from our results that if the stochastic
program has rare events then the proposed method is the only one (from the ones we tested) that
can produce reliable results. This last conclusion was not a surprise to us given that the MCMC
method is known to perform well in such cases.

The importance sampling framework proposed in this paper could be extended in many ways. We
have shown how importance sampling can be used in the context of a decomposition algorithm and
expected value optimization. However, it is possible to use our approach with different algorithms
(e.g. SAA) and with different types of stochastic programming models (e.g. risk averse stochastic
programming). In addition, we have shown that the proposed method performs well when compared
to existing methods.
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Appendix A: Description of the Test Problems from Section 5

In this section, we explain the modifications we made to the set of test problems from Ariyawansa
and Felt (2004).

Airlift Operation Scheduling (ASO): The aim of this model is to determine the optimal
scheduling of several types of aircraft over different routes. Each aircraft type can only fly a certain
number of hours within a month. Decision makers are allowed to switch aircraft from one route to
another, under the condition that the switching hours from aircraft type i and from route j cannot
exceed the original schedule. The objective is to minimize the cost of flights while ensuring that
aircrafts can carry enough number of goods required for every route j. The demand of goods in
route j is uncertain. Hence decision makers have to constantly take recourse actions in order to
meet the actual requirement.

This is a stochastic programming model with T = 2 periods. The demand for route 1 is assumed
to follow a lognormal distribution: d1 = 1000× exp(0.1× ξ1), where ξ1 ∼N(0, σ2

i ). The demand for
route 2 is also log-normal: d2 = 1700× exp(0.1× ξ2), where ξ2 ∼ N(0, σ2

i ). The coefficients 1000
and 1700 are chosen such that the demand given by these equations are as close as possible to the
original problem. In particular, the mean demand for route i should be around 1000 and for route
j should be around 1700. The value 0.1 is selected so that the uncertainty in demand does not vary
too much.

In our experiments, we vary the amount of uncertainty in our model by setting σi = i. For
experiments in which we pair this model with a rare-event distribution, we have spread the
outcomes of the random variables across two important regions by using the transformation:

w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
). As a result, the recourse function Q(x, ξ1, ξ2)f(ξ1, ξ2) is

replaced with Q(x,w(ξ1),w(ξ2))f(ξ1, ξ2). All other information such as the flying hours per trip,
carrying capacity, cost per flight, penalty costs, flying hours after switching flights, and the cost
per flight switched are kept the same as the original test problem.

Forest Planning (FP): The aim of this model is to decide how to harvest a forest in order to
maximize the final value of timber that is obtained after T stages. To model this problem, the
forest area is divided into K = 8 segments according to the ages of trees. In any period, trees that
are not harvested or destroyed by fire will be transferred to the next age class. In addition, forest
planners have to decide how much area in each age class will be harvested while minimizing the
risk that a random proportion of the remaining forest could be destroyed by fire. It is assumed
that the burned areas will quickly get replaced and started at age class 1. As each period of time
can last for 20 years, the future value of timber will be discounted at a given rate, δ.

This is a stochastic programming model with T = 7 periods. Instead of discretizing the fire rate
as in the original problem, the fire rate is now described by 0.07×exp(0.1×ξj), where ξj ∼N(0, σ2

i )
and j = 1, ...,K. The value of 0.07 is chosen so that the fire rate is as close as possible to the values
given in the original test problem. In our experiments, we vary the amount of uncertainty in our
model by setting σi = i. For experiments in which we pair this model with a rare-event distribution,
we have spread the outcomes of the random variables across two important regions by using the

transformation: w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).

All other information such as the number of age classes K, the initial forest area of each age
class s1, the discount rate δ, the value of standing timber v, the yields of harvest y and two
constants α,β that limit the change in purchasing timber from one period to the next are all kept
the same as the original formulation.

Electrical Investment (EI): In this model, decision makers have to decide how much to invest
in n= 4 different power system technologies in order to produce electricity. Each technology has
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a random investment cost, operating cost, and an availability factor corresponding to the time
during which each technology operates. The objective is to minimize the total cost while satisfying
the electricity demand. The demand of electricity is uncertain and is modeled as different modes in
the load duration curve. There is a penalty charge if there is a shortage of electricity production.
In addition, there is a limitation on how much the producers can invest to expand the electricity
supply at every period of time.

This is a stochastic programming model with T = 2 periods. To make the model more realistic,
we have increased the number of intervals (modes) used to create the load duration curve into a
large number of intervals from 3 modes to 10 modes. We have set the demand for each mode as:

d1 = 5× exp(0.1× ξ1)

d2 = 20× exp(0.1× ξ2)

d3 = 20× exp(0.1× ξ3)

d4 = 15× exp(0.1× ξ4)

d5 = 10× exp(0.1× ξ5)

d6 = 8× exp(0.1× ξ6)

d7 = 8× exp(0.1× ξ7)

d8 = 4× exp(0.1× ξ8)

d9 = 5× exp(0.1× ξ9)

d10 = 5× exp(0.1× ξ10)

where ξ1, . . . , ξ10 ∼N(0, σ2
i ). In our experiments, we vary the amount of uncertainty in our model

by setting σi = i. For experiments in which we pair this model with a rare-event distribution,
we have spread the outcomes of the random variables across two important regions by using the

transformation: w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).

We note that we have chosen the coefficients for the load blocks described above so as to create
a smooth and realistic load duration curve. We assume that the operating costs of mode 2 are
90% of the operating costs in mode 1. Given that the operating costs of mode 3 should be smaller
than the operating costs of mode 2, we have set these to 85%. Following this pattern, operating
costs of each subsequent mode decrease by 5%. Lastly, given that the the demand has increased
from the original value of 12 to 100, we have also increased the total investment budget from 120
to 1200.

Selecting Currency Options (SCO): Many multinational corporations have a substantial
amount of revenue across a wide number of different currencies. If the foreign exchange rate
decreases, the actual revenue received will be less than predicted. To hedge this risk, decision mak-
ers can purchase currency options, which guarantees a certain exchange rate (also known as strike
price) at some point in the future.

The aim of this model is to help corporates minimize the cost of purchasing currency options
while ensuring that their payoff is greater than a level specified by the company. This level is
normally known as the target exchange rate. The random variables in this model are the exchange
rate and option prices at time t. The number of time periods is four. The interest rate is set to 0.10
and the volatility of the exchange rate is set to 0.11 throughout all of time periods. The number of
options is 10 with strike prices as follows: E1 = 0.44;E2 = 0.50;E3 = 0.57;E4 = 0.63;E5 = 0.70;E6 =
0.76;E7 = 0.83;E8 = 0.89;E9 = 0.96;E10 = 1.02. In order to simplify the problem, foreign interest
rate is set to the UK interest rate of 0.5%. The exchange rate is given by S = 0.5 ∗ exp(0.2 ∗ ξ),
where ξ ∼N(0, σ2

i ). The coefficient 0.5 and 0.2 are chosen such that the generated exchange rate
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are as close as possible to the original source. Finally, the target exchange rate is set to 0.463,
which is the average of target exchange rates across all scenarios shown in Table 5 in Ariyawansa
and Felt (2004). In our experiments, we vary the amount of uncertainty in our model by setting
σi = i. For experiments in which we pair this model with a rare-event distribution, we have spread
the outcomes of the random variables across two important regions by using the transformation:

w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).

Financial Planning Model (FPM): The aim of this model is to maximize the expected value of
savings and general accounts while avoiding the shortfall in these accounts. Due to the structures
and regulations of different types of insurance policies, there are several constraints in the problem.
Also, different types of investment (i.e. direct or indirect) may result in different calculations. The
random variables are: income return, price return, interest rate, deposit inflow, principle payments,
interest payments and total reserve liability. The number of time periods is two and the number
of funds we used is five. Since the data are not given precisely either in the original source or in
Ariyawansa and Felt (2004), the data are created such that they are as close as possible to some
of the examples found in the original paper. The data are generated as follows:

RI(nt+1) = 0.15× exp(0.1× ξ1)

RP(nt+1) = 0.20× exp(0.1× ξ2)

gt+1 = 0.05× exp(0.1× ξ3)

Ft+1 = 200× exp(0.1× ξ4)

Pt+1 = 400× exp(0.1× ξ5)

It+1 = 75× exp(0.1× ξ6)

Lt = 700× exp(0.1× ξ7)

where ξ1, . . . , ξ7 ∼N(0, σ2
i ). We kept the same notation as in Ariyawansa and Felt (2004) and the

explanation of what each variable means can be found there. The only piece of information that
cannot be found is the income gap IGt+1. In this case, we propose to describe the income gap as
the percentage given by the equation 1 + 0.3× exp(0.1 ∗ ξ8), where ξ8 ∼N(0, σ2

i ). This number will
be multiplied with the value of funds to find the investment income. n our experiments, we vary
the amount of uncertainty in our model by setting σi = i. For experiments in which we pair this
model with a rare-event distribution, we have spread the outcomes of the random variables across

two important regions by using the transformation: w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).

Design of Batch Chemical Plants (DBCP): The aim of this model is to decide what kinds
of chemical plants should be built in order to maximize the profit from selling chemical products
- all the while minimizing the investment costs for these plants. Decision makers have to what
kinds of chemical plants to build, as well as how many of them, and how they should be built.
Decision makers also have to decide which tasks to perform on a particular plant while satisfying
the constraint of capacity, processing time of each task and the limited amount of resource.

This is a stochastic programming model with T = 2 periods. The random variables in this problem
are: the demand and the price per unit mass of resource. The random variables are changed from
discrete to continuous distribution as follows:
• the demand for resource 4 is: Q4 = 150× exp(0.5× ξ1).
• the price of resource 4 is: v4 = 55× exp(0.1× ξ2).
• the demand for resource 7 is: Q7 = 200× exp(0.5× ξ3).
• the price of resource 7 is: v7 = 80× exp(0.1× ξ4)
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where ξ1, . . . , ξ4 ∼N(0, σ2
i ). In our experiments, we vary the amount of uncertainty in our model

by setting σi = i. For experiments in which we pair this model with a rare-event distribution,
we have spread the outcomes of the random variables across two important regions by using the

transformation: w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
). The coefficients are selected so that the

quantities described by these equations are as close as possible to the data found in the original
paper. All other information is the same as the original formulation.

Energy and Environmental Planning (EEP): The objective of this model is to minimize
investment costs as well as operating costs of different types of energy technologies while making
sure that the electricity production satisfies the demand of each utility. The model shows a great
degree of realism by taking into account various aspects of the problem including the production
constraints, capacity expansions constraints, equilibrium constraints, and environmental con-
straints. The energy supply and demand are classified by many different technologies. Depending
on different types of technologies, there are different ways of calculating their productions and
energy balances. The problem also considers the peak demand level and ensures that the capacity
of the production can cover the peak demands. Hence there are peak demand constraints for
different types of technologies. In addition, different technologies can perform at different levels
depending on the season (i.e. winter or summer) and the time of day. The problem also takes into
account the environmental aspects, in which the CO2 level produced by all of these technologies
has to be less than a certain level, which is uncertain in the future. Hence the random variable in
this problem is the CO2 limit.

Telecommunication Network Planning (TNP): There are many nodes in a telecommunica-
tion network. Between any two nodes, there are several possible routes to connect them together. At
any time, there are various point-to-point pairs that need to be served by the network. This demand
is random. The purpose of this model is to decide which links to connect within a communication
network while minimizing the unserved requests and satisfying a budget constraint.

This is a stochastic programming model with with T = 2 time periods. Assuming that there
is a huge increase in the demand for telecommunication in the future, the budget for network
expansion should be set at a reasonably high level of the value of 5. This is equivalent to about
22% increase in the initial capacity of the network. The demand for every point-to-point pair i is
given as: dj = 3×exp(0.2×ξj), where ξj ∼N(0, σ2

i ), where j = 1, ...,15. In our experiments, we vary
the amount of uncertainty in our model by setting σi = i. For experiments in which we pair this
model with a rare-event distribution, we have spread the outcomes of the random variables across

two important regions by using the transformation: w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).

Bond Investment Problem (BIP): The objective of this model is to maximize the expected
return on bond lending and the balance of transactions while minimizing the cost of bond borrow-
ing. In this model, the random variables are the rates of return on bond lending, bond borrowing
and total balance of transactions, as well as the growth rate of the transactions.

This is a stochastic programming model with T = 5 periods. In each period, there is a limited
number of bonds that can be traded. The rate of return on lending is described by 0.07×exp(0.1×
ξ1). The rate of borrowing is given as 0.1 × exp(0.1 × ξ2), and the rate of return on balance
transaction is given as 0.15×exp(0.1× ξ3) where ξ1, . . . , ξ3 ∼N(0, σ2

i ). This corresponds to the rate
of return on lending of around 7%, rate of borrowing of around 10% and rate of return on the
balance of transactions of around 15% with a reasonable fluctuation in their quantities. We assume
that the total balance of bond transactions increased by a stochastic quantity ξt = p× ξt−1, where
p = 0.1 × exp(0.1 × ξ3), ξ3 ∼ N(0, σ2

i ). This is equivalent to the increase of around 10% increase
(with a certain amount of uncertainty) in the balance of transactions in every time period.
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In our experiments, we vary the amount of uncertainty in our model by setting σi = i. For
experiments in which we pair this model with a rare-event distribution, we have spread the outcomes

of the random variables across two important regions by using the transformation: w(ξ) = exp( ξ
2

2
−

(ξ+3)2

8
) + exp( ξ

2

2
− (ξ+1)2

8
).
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Appendix B: Detailed Numerical Results from Section 5

Table 3: Comparison of performance of MC, QMC and the proposed algorithm (MCMC) when the random variables are drawn from
the distribution with standard deviation of 1

Problem # Samples (N) MSE(z̃) (%) SD(z̃) (%) # of Iterations Runtime (s)
MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 1.25 1.22 0.87 3.95 3.86 2.02 18 21 4 2 2 8
4000 0.76 0.71 0.69 3.91 3.88 1.97 20 22 6 2 4 9
8000 0.54 0.53 0.48 3.89 3.89 1.32 24 23 6 2 5 12
16000 0.42 0.45 0.41 3.91 3.90 2.05 25 26 5 7 7 13
32000 0.39 0.37 0.36 3.91 3.90 2.12 26 25 6 10 12 17
64000 0.34 0.35 0.31 3.93 3.91 1.97 28 27 8 19 22 22
128000 0.38 0.32 0.28 3.92 3.91 2.17 29 30 14 73 78 52
256000 0.32 0.29 0.27 3.91 3.92 1.97 33 32 16 138 137 86

FP 2000 0.98 0.89 0.76 5.12 5.04 2.36 92 92 62 67 87 1106
4000 0.61 0.58 0.55 5.11 5.03 2.31 93 92 64 79 150 1141
8000 0.49 0.45 0.47 5.07 5.02 2.27 94 93 63 93 176 1134
16000 0.35 0.34 0.35 5.06 5.01 1.68 112 101 65 272 249 1540
32000 0.32 0.32 0.28 5.06 5.01 2.26 118 112 69 420 536 1779
64000 0.33 0.28 0.27 5.08 5.02 1.33 125 118 72 836 876 1938
128000 0.30 0.29 0.27 5.07 5.01 2.32 131 125 76 2998 2963 2468
256000 0.31 0.27 0.26 5.03 5.01 2.06 134 130 78 4987 5029 3751

EI 2000 1.56 1.54 0.88 3.99 3.97 2.07 19 21 5 2 3 7
4000 0.78 0.73 0.67 4.01 3.98 2.03 25 22 5 4 4 11
8000 0.52 0.51 0.32 4.01 3.97 2.04 22 24 5 5 6 14
16000 0.47 0.43 0.46 3.99 3.99 2.12 25 26 6 9 10 8
32000 0.36 0.33 0.32 3.97 3.96 2.01 24 26 7 16 18 16
64000 0.45 0.32 0.33 3.99 3.96 1.95 29 25 11 33 31 29
128000 0.38 0.31 0.28 3.96 3.95 2.03 28 29 14 65 71 55
256000 0.34 0.28 0.28 3.98 3.93 2.02 33 30 18 153 147 75

SCO 2000 2.51 2.14 1.27 3.94 3.93 2.83 66 63 53 373 359 1008
4000 1.24 1.08 0.78 3.95 3.92 1.76 67 63 58 446 363 1160
8000 0.91 0.83 0.85 3.93 3.90 2.86 70 65 56 481 457 963
16000 0.48 0.49 0.54 3.91 3.91 2.42 72 67 61 526 502 1159
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232000 0.42 0.44 0.41 3.92 3.90 2.06 79 73 63 705 694 1228

64000 0.42 0.38 0.30 3.93 3.89 2.12 83 79 62 1070 1099 1394
128000 0.39 0.34 0.32 3.93 3.89 1.85 89 85 68 1499 1483 1614
256000 0.38 0.31 0.29 3.90 3.87 1.93 94 91 71 1860 1899 1798

FPM 2000 3.42 2.95 1.46 5.09 4.98 2.54 30 34 31 62 73 122
4000 1.65 1.15 0.98 5.12 4.98 2.51 32 35 33 67 81 125
8000 0.98 0.81 0.64 5.06 5.02 1.65 37 36 32 78 79 133
16000 0.76 0.89 0.73 5.06 4.97 1.97 41 49 36 92 114 147
32000 0.73 0.61 0.61 4.98 4.93 2.56 45 49 48 110 130 188
64000 0.62 0.53 0.63 5.08 4.92 2.39 58 62 49 158 170 209
128000 0.52 0.45 0.37 4.98 4.93 1.85 65 73 51 227 254 239
256000 0.47 0.41 0.48 4.97 4.95 2.46 72 74 47 305 321 258

DBCP 2000 1.67 1.55 0.72 3.82 3.78 1.92 26 28 16 36 39 77
4000 0.94 1.03 0.61 3.79 3.76 1.95 28 29 20 45 43 77
8000 0.65 0.62 0.47 3.81 3.76 2.08 32 33 22 54 57 97
16000 0.45 0.53 0.46 3.81 3.79 2.02 34 37 23 62 68 108
32000 0.49 0.43 0.36 3.82 3.73 1.96 39 40 25 88 94 122
64000 0.38 0.36 0.26 3.83 3.75 1.87 49 44 28 156 144 149
128000 0.43 0.32 0.32 3.81 3.72 1.67 56 55 32 229 236 187
256000 0.41 0.31 0.28 3.82 3.69 1.62 57 59 34 281 301 215

EEP 2000 1.45 1.32 0.82 2.63 2.61 1.56 34 32 26 20 12 74
4000 0.72 0.71 0.64 2.63 2.61 1.59 39 38 28 28 25 83
8000 0.59 0.55 0.52 2.64 2.59 1.62 37 38 29 31 35 88
16000 0.65 0.52 0.43 2.61 2.60 1.38 44 42 33 40 43 105
32000 0.46 0.48 0.38 2.58 2.58 1.71 55 57 35 82 97 138
64000 0.51 0.41 0.28 2.59 2.56 1.78 64 66 38 144 132 160
128000 0.41 0.38 0.35 2.59 2.57 1.56 65 67 42 234 196 209
256000 0.40 0.38 0.30 2.58 2.55 1.43 68 69 41 313 297 242

TNP 2000 2.54 2.33 0.96 3.97 3.93 2.18 19 21 18 9 19 42
4000 1.34 1.21 0.89 4.02 3.92 1.92 22 22 18 11 20 47
8000 0.96 0.84 0.69 3.96 3.92 1.94 25 24 20 14 28 50
16000 0.57 0.47 0.47 3.96 3.91 2.19 29 28 22 22 37 60
32000 0.54 0.45 0.45 3.94 3.82 1.95 31 32 25 29 48 80
64000 0.41 0.37 0.36 3.88 3.83 1.19 32 30 25 43 66 84
128000 0.38 0.36 0.35 3.86 3.83 1.58 38 29 26 94 87 112
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256000 0.40 0.35 0.34 3.85 3.83 1.88 40 39 32 151 165 133
BIP 2000 2.87 2.79 1.37 5.16 4.57 2.98 78 79 64 234 165 694

4000 1.39 1.33 0.97 5.19 4.51 2.87 81 80 67 294 273 747
8000 0.88 0.82 1.14 5.20 5.09 2.32 83 81 68 356 378 856
16000 1.03 0.92 0.87 5.16 5.06 1.17 88 85 71 415 443 929
32000 0.78 0.81 0.63 5.18 5.08 2.55 92 87 75 695 745 1169
64000 0.74 0.74 0.46 5.16 5.06 2.43 96 91 78 1150 922 1461
128000 0.64 0.62 0.51 5.08 4.98 2.78 101 96 82 1841 1413 1628
256000 0.61 0.60 0.51 5.09 4.98 2.35 106 103 87 2439 2296 1749
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4Table 4: Comparison of performance of MC, QMC and the proposed algorithm (MCMC) when the random variables are drawn from

the distribution with standard deviation of 2

Problem # Samples (N) MSE(z̃) (%) SD(z̃) (%) # of Iterations Runtime (s)
per period MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 2.03 1.92 0.96 3.77 3.62 1.47 21 24 7 2 3 16
4000 1.17 1.05 0.87 3.68 3.66 1.32 22 26 6 3 5 15
8000 0.84 0.73 0.68 3.78 3.75 2.03 23 25 7 7 8 20
16000 0.62 0.57 0.63 3.77 3.76 1.72 27 28 8 10 12 27
32000 0.67 0.52 0.52 3.88 3.75 1.08 26 29 8 16 20 24
64000 0.57 0.52 0.48 3.76 3.77 2.03 30 30 12 39 39 36
128000 0.52 0.43 0.32 3.76 3.78 1.72 30 30 14 72 77 87
256000 0.48 0.40 0.31 3.77 3.77 1.52 34 30 17 168 149 139

FP 2000 1.19 1.08 0.79 5.94 5.92 2.45 96 93 67 118 131 1214
4000 0.68 0.62 0.53 5.93 5.91 1.52 98 94 66 131 135 1175
8000 0.53 0.52 0.38 5.92 5.89 2.38 101 96 69 142 150 1332
16000 0.51 0.49 0.43 5.92 5.90 2.14 118 107 69 316 293 1526
32000 0.48 0.46 0.36 5.91 5.90 1.98 122 114 73 473 477 1929
64000 0.47 0.44 0.40 5.91 5.91 2.23 128 121 75 914 994 2043
128000 0.40 0.42 0.37 5.93 5.88 2.04 137 126 77 3139 2940 3319
256000 0.42 0.41 0.35 5.91 5.89 1.67 142 136 78 5444 5387 4567

EI 2000 2.12 2.09 0.96 4.12 4.10 1.96 22 23 7 3 3 15
4000 1.05 0.98 0.85 4.12 4.09 1.45 27 25 7 5 5 17
8000 0.89 0.73 0.57 4.11 4.07 1.78 27 25 8 7 6 23
16000 0.78 0.66 0.54 4.10 4.09 1.56 27 27 9 11 12 29
32000 0.85 0.61 0.57 4.09 4.05 1.86 30 29 8 20 21 24
64000 0.72 0.71 0.52 4.09 4.07 1.93 33 31 13 44 43 43
128000 0.67 0.62 0.52 4.09 4.08 1.45 35 34 17 88 90 105
256000 0.62 0.61 0.49 4.08 4.09 1.86 38 37 20 171 167 173

SCO 2000 4.14 4.07 2.69 4.27 4.22 1.84 69 67 56 402 403 1196
4000 2.34 2.28 1.65 4.27 4.21 1.95 70 67 59 450 455 1221
8000 1.61 1.36 1.04 4.25 4.20 1.56 73 68 59 494 484 1428
16000 1.36 1.04 0.95 4.26 4.22 1.74 75 69 63 569 538 1598
32000 0.74 0.63 0.41 4.27 4.23 1.45 83 74 64 767 726 1664
64000 0.58 0.72 0.53 4.28 4.22 1.75 89 82 65 1164 1094 1772
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128000 0.56 0.52 0.41 4.27 4.23 1.67 92 84 70 1771 1631 1976
256000 0.54 0.48 0.32 4.26 4.21 1.78 98 93 73 2754 2624 2125

FPM 2000 4.23 4.17 1.84 5.87 5.82 2.01 32 36 33 82 96 202
4000 2.43 2.34 1.42 5.85 5.81 1.96 34 35 34 91 98 217
8000 1.48 1.43 0.82 5.83 5.74 2.23 39 38 36 108 106 235
16000 0.98 0.93 0.84 5.85 5.73 2.08 42 42 39 122 135 272
32000 0.72 0.64 0.60 5.84 5.76 2.15 46 47 45 148 165 365
64000 0.74 0.62 0.54 5.83 5.73 2.05 62 63 51 328 331 479
128000 0.67 0.62 0.53 5.80 5.74 2.07 69 71 55 489 489 565
256000 0.54 0.52 0.45 5.78 5.73 2.10 81 82 58 691 718 689

DBCP 2000 2.57 2.34 0.98 4.63 4.65 1.97 28 27 23 61 60 141
4000 1.34 1.23 0.79 4.62 4.63 1.93 31 28 26 72 68 164
8000 0.87 0.83 0.72 4.63 4.62 2.07 33 33 25 76 84 167
16000 0.86 0.65 0.56 4.61 4.63 1.87 36 35 27 109 145 187
32000 0.62 0.62 0.53 4.61 4.66 2.03 40 38 28 172 189 177
64000 0.73 0.57 0.41 4.63 4.68 2.18 49 47 35 311 361 250
128000 0.62 0.53 0.42 4.65 4.68 1.65 57 54 39 443 427 312
256000 0.57 0.51 0.41 4.64 4.64 1.61 61 60 45 573 574 455

EEP 2000 1.94 1.72 1.04 3.04 3.03 1.48 37 36 28 34 35 109
4000 1.12 1.05 0.85 3.06 3.03 1.46 42 40 29 50 49 113
8000 0.73 0.64 0.72 3.05 2.98 1.52 43 41 31 53 55 130
16000 0.64 0.47 0.57 3.06 3.02 1.43 47 44 36 63 74 158
32000 0.64 0.42 0.45 3.06 2.99 1.48 55 52 37 111 127 185
64000 0.52 0.47 0.41 3.05 2.98 1.64 63 61 42 276 298 221
128000 0.51 0.45 0.37 3.07 2.97 1.51 69 69 48 566 609 348
256000 0.40 0.38 0.35 3.07 2.98 1.42 72 73 53 817 840 483

TNP 2000 3.80 3.56 1.32 4.53 4.47 1.97 22 21 20 22 28 66
4000 2.03 1.73 0.93 4.56 4.46 2.05 25 23 21 25 34 75
8000 1.04 0.86 0.75 4.54 4.45 1.83 27 24 20 33 48 76
16000 0.65 0.64 0.62 4.55 4.43 1.95 30 29 22 44 65 88
32000 0.73 0.53 0.47 4.56 4.45 2.35 34 33 23 57 85 109
64000 0.61 0.62 0.42 4.57 4.45 1.75 37 35 27 85 98 141
128000 0.52 0.49 0.43 4.57 4.46 1.71 42 38 30 183 182 164
256000 0.52 0.52 0.45 4.56 4.45 1.63 46 44 35 298 286 252

BIP 2000 4.32 4.18 1.84 5.68 5.57 2.05 83 81 68 344 383 749
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64000 2.18 2.03 1.21 5.66 5.58 2.13 85 82 68 361 395 781

8000 1.39 1.25 0.92 5.67 5.63 2.36 85 83 70 406 424 887
16000 1.21 1.03 0.84 5.65 5.61 2.27 92 89 73 452 463 976
32000 0.72 0.75 0.62 5.67 5.62 2.04 95 94 76 783 825 1226
64000 0.67 0.58 0.61 5.66 5.58 1.97 102 98 81 1279 1247 1539
128000 0.65 0.52 0.40 5.67 5.63 2.01 108 104 86 2060 2141 1731
256000 0.62 0.48 0.36 5.67 5.59 1.94 116 112 93 2921 2827 1968

Table 5: Comparison of performance of MC, QMC and the proposed algorithm (MCMC) when the random variables are drawn from
the rare-event distribution

Problem # Samples (N) MSE(z̃) (%) SD(z̃) (%) # of Iterations Runtime (s)
per period MC QMC MCMC MC QMC MCMC MC QMC MCMC MC QMC MCMC

AOS 2000 5.62 5.34 1.32 8.78 8.48 2.03 23 23 9 8 10 43
4000 5.36 4.87 0.96 8.48 8.59 2.03 23 24 9 9 18 47
8000 4.54 4.21 0.82 8.35 8.47 1.90 25 24 9 10 19 54
16000 3.95 3.66 0.76 8.28 8.37 1.47 25 26 14 26 29 109
32000 3.59 3.43 0.63 8.24 8.26 1.76 27 26 15 42 55 133
64000 3.70 3.24 0.58 8.25 8.27 1.90 31 28 17 89 84 153
128000 3.45 3.16 0.43 8.22 8.18 1.83 33 32 19 332 335 233
256000 2.98 2.84 0.42 8.19 8.17 1.54 35 33 22 588 590 357

FP 2000 7.85 7.23 1.82 9.66 9.32 2.79 98 96 64 289 364 3335
4000 7.74 7.15 1.38 9.59 9.21 2.25 99 97 65 343 642 3438
8000 7.62 6.93 1.23 9.53 9.02 2.31 103 99 66 424 746 3504
16000 7.32 6.84 0.94 9.43 8.94 2.03 112 106 66 1090 1047 4676
32000 6.92 6.65 0.89 9.34 9.03 2.94 120 114 69 1755 2165 5323
64000 6.42 5.87 0.68 9.28 8.96 2.57 129 122 73 3460 3627 5847
128000 6.28 5.72 0.66 9.22 9.10 1.96 134 128 76 12262 12136 7443
256000 5.83 5.35 0.43 9.12 9.12 2.09 137 132 80 20399 20438 11564

EI 2000 6.43 6.32 2.03 8.82 8.76 2.12 24 24 13 9 10 55
4000 6.26 6.17 1.22 8.71 8.82 2.07 28 27 15 19 17 68
8000 6.20 6.02 0.94 8.83 8.63 1.97 27 28 14 19 21 73
16000 5.92 5.53 0.93 8.96 8.69 2.15 28 28 17 31 30 101
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32000 5.63 5.38 0.84 8.95 8.52 2.02 31 31 18 43 52 110
64000 5.22 4.65 0.62 8.91 8.76 2.08 33 32 21 89 87 151
128000 4.49 4.28 0.64 8.89 8.42 2.10 36 33 26 190 199 218
256000 4.34 4.08 0.52 8.87 8.75 2.14 39 36 28 415 393 300

SCO 2000 8.26 7.91 2.78 9.71 9.64 2.46 71 73 57 1610 1681 2971
4000 8.36 7.62 1.88 9.62 9.54 2.35 73 72 59 1964 1667 3232
8000 8.03 7.39 1.39 9.61 9.47 2.84 74 75 59 2046 2116 3417
16000 7.65 7.23 0.93 9.62 9.81 2.17 77 76 62 2327 2291 3779
32000 7.55 6.88 0.97 9.67 9.38 2.54 85 81 65 3070 3157 4232
64000 7.21 6.43 0.78 9.74 9.82 2.35 92 86 68 4752 4795 4573
128000 6.84 6.21 0.65 9.68 9.76 2.27 96 90 71 6471 6303 5109
256000 6.14 5.75 0.53 9.65 9.12 2.23 102 96 75 8083 8066 6200

FPM 2000 8.91 8.53 2.01 8.75 9.14 2.55 36 35 33 301 305 387
4000 8.16 7.72 1.85 9.82 9.04 2.96 38 37 35 320 345 417
8000 8.58 7.44 1.27 9.45 9.12 2.85 39 38 36 332 357 459
16000 7.83 7.39 0.92 9.34 9.35 2.86 44 42 39 403 395 469
32000 7.48 7.05 1.11 9.72 9.02 2.64 49 46 47 481 490 633
64000 7.21 6.52 0.84 9.41 8.97 2.47 56 52 51 618 602 731
128000 7.03 6.61 0.72 9.60 9.22 2.35 68 59 55 958 831 814
256000 6.75 6.26 0.59 9.64 9.16 2.24 74 68 59 1255 1187 923

DBCP 2000 4.26 4.03 1.85 7.59 7.02 2.05 30 30 23 168 171 271
4000 4.02 3.74 1.64 7.41 6.97 1.96 32 32 24 207 192 346
8000 3.69 3.32 1.25 7.36 6.86 1.84 35 34 26 237 237 381
16000 3.41 3.21 0.98 7.45 6.78 1.93 39 38 28 284 282 415
32000 3.32 3.02 0.82 7.54 7.06 1.85 43 42 29 388 400 438
64000 3.17 2.85 0.77 7.34 6.92 1.85 50 48 34 639 636 556
128000 3.09 2.79 0.69 7.22 7.01 2.04 58 56 39 954 967 719
256000 2.91 2.64 0.56 7.38 6.88 1.86 62 59 46 1222 1213 928

EEP 2000 3.45 3.21 1.73 6.87 6.32 2.13 39 37 29 90 57 248
4000 3.23 3.03 1.52 6.42 6.26 2.42 42 41 28 123 110 250
8000 3.19 2.95 1.47 6.56 6.26 2.04 43 40 31 151 153 284
16000 3.06 2.82 1.12 6.77 6.33 2.45 48 47 35 180 214 379
32000 2.91 2.56 0.97 6.64 6.28 2.10 55 52 38 331 358 448
64000 2.72 2.43 0.73 6.70 6.31 2.36 63 59 39 576 529 503
128000 2.63 2.34 0.79 6.51 6.35 2.22 70 66 45 1027 846 720
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8256000 2.46 2.09 0.74 6.43 6.32 2.21 74 71 48 1374 1233 1087

TNP 2000 4.61 4.29 2.01 7.68 7.15 2.21 23 22 22 45 81 163
4000 4.32 4.31 1.22 7.93 7.41 2.14 26 23 25 55 85 185
8000 4.21 4.17 1.35 7.65 7.32 2.11 26 25 24 61 115 205
16000 3.85 3.79 0.97 7.79 7.12 2.08 30 29 25 97 154 225
32000 3.69 3.56 0.96 7.52 7.28 2.22 33 33 26 124 202 256
64000 3.27 3.05 0.83 7.84 7.08 2.08 37 36 28 199 317 324
128000 3.18 2.94 0.86 7.89 7.44 2.24 43 40 31 432 482 387
256000 3.09 2.86 0.76 7.76 7.06 2.32 48 43 34 737 735 537

BIP 2000 7.42 7.32 2.04 8.46 8.31 2.71 85 81 69 1030 696 2237
4000 7.33 7.04 1.43 8.35 8.44 2.64 85 83 70 1243 1208 2370
8000 6.89 6.83 1.58 8.67 8.33 2.83 87 86 70 1497 1635 2623
16000 6.67 6.26 0.94 8.51 8.42 2.48 91 90 72 1721 1888 2813
32000 6.59 6.23 0.74 8.32 8.38 2.34 94 95 75 2882 3370 3484
64000 6.42 5.87 0.81 8.68 8.39 2.71 99 100 82 4753 4066 4593
128000 5.89 5.62 0.71 8.75 8.35 2.31 107 106 93 7811 6255 5567
256000 5.82 5.29 0.68 8.48 8.34 2.19 117 116 102 10850 10410 6699

Table 6 Average number of rejections when generating 3000 samples (Mr)

Problem σ= 1 σ= 2 Rare-event

AOS 3849 6287 14154
FP 7683 9974 17408
EI 8952 12889 23785
SCO 5086 7514 15987
FPM 12463 15518 20584
DBCP 4653 6782 10562
EEP 13949 18318 28185
TNP 10761 15951 32714
BIP 9605 12789 35314
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