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Abstract

This paper proposes a bi-level model for traffic network signal control, which is formulated as a dynamic Stackel-
berg game and solved as a mathematical program with equilibrium constraints (MPEC). The lower-level problem is
a dynamic user equilibrium (DUE) with embedded dynamic network loading (DNL) sub-problem based on the LWR
model (Lighthill and Whitham, 1955; Richards, 1956). The upper-level decision variables are (time-varying) signal
green splits with the objective of minimizing network-wide travel cost. Unlike most existing literature which mainly
use an on-and-off (binary) representation of the signal controls, we employ a continuum signal model recently pro-
posed and analyzed in Han et al. (2014), which aims at describing and predicting the aggregate behavior that exists at
signalized intersections without relying on distinct signal phases. Advantages of this continuum signal model include
fewer integer variables, less restrictive constraints on the time steps, and higher decision resolution. It simplifies the
modeling representation of large-scale urban traffic networks with the benefit of improved computational efficiency
in simulation or optimization. We present, for the LWR-based DNL model that explicitly captures vehicle spillback,
an in-depth study on the implementation of the continuum signal model, as its approximation accuracy depends on
a number of factors and may deteriorate greatly under certain conditions. The proposed MPEC is solved on two test
networks with three metaheuristic methods. Parallel computing is employed to significantly accelerate the solution
procedure.

Keywords: traffic signal control, dynamic Stackelberg game, dynamic user equilibrium, continuum signal model,
vehicle spillback, mathematical program with equilibrium constraints

1. Introduction

Signalized intersections play a vital role in the design, management and control of urban traffic networks. These
locations are often very important restrictive bottlenecks, and therefore urban traffic control strategies tend to focus
on the operation of signalized intersections (Miller, 1963; Robertson and Bretherton, 1974; Shelby, 2004; Guler and
Cassidy, 2012; Gayah and Daganzo, 2012).

There are multiple approaches of designing and optimizing traffic signal controls on a road network, among which
we distinguish between heuristic methods, such as feedback control, genetic algorithms and fuzzy logic; and exact
approaches such as mathematical programming and optimal control. Cao et al (1999) apply fuzzy logic methods to
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determine useful junction control rules in a dynamic environment. Lin et al (1997) provide a framework for imple-
menting adaptive traffic signal controllers based on fuzzy logic. In another line of research, Improta and Cantarella
(1984) formulate a traffic signal control problem at a single road junction as a mixed integer program (MIP). Lo
(1999a) and Lo (1999b) employ the cell transmission model (Daganzo, 1994, 1995) to formulate a signal control
problem as an MIP . Han et al. (2014) further reduce the number of binary variables and eliminate the vehicle holding
problem in the MIP by applying the link transmission model (Yperman et al., 2005). These optimization problems re-
viewed above are viewed as single-level problems as they treat traffic load at the signalized network as exogenous and
do not address drivers’ reactions to the implemented signal timings in terms of their route or departure time choices.

On the other hand, signal optimization problems that address drivers’ adaptive travel choices as a result of the
change in signal timings tend to exhibit a bi-level structure. On the lower level, road users are modeled as non-
cooperative Nash players who selfishly minimize their own travel costs by adjusting departure time and/or route
choices. On the upper level, a central planner seeks to maximize the network performance through a carefully designed
signal plan, which is informed by the prediction of the behavior of the lower-level players (drivers). This bi-level
problem is expressed as a Stackelberg game and formulated as a mathematical program with equilibrium constraints
(MPEC).

In a bi-level decision-making environment, the influence of signal timing on route choices is first addressed by
Allsop (1974), who considers signal decisions in the presence of a static user equilibrium. Yang and Yagar (1995)
apply a sensitivity analysis based on Friesz et al. (1990) to determine the derivatives of link flow and delay in the
equilibrium state of a bi-level problem. The above work is extended by Cantarella et al. (1991) and Cantarella et
al. (1995), who take into consideration signal settings including cycle length, offset and green split. They derive a
lower normative bound and an upper descriptive bound for the solution of signal settings in a traffic network under
equilibrium flow. Meneguzzer (1995) develops a route choice user equilibrium (UE) model that incorporates inter-
section operations with flow-responsive traffic signals. Machemehl and Lee (2005) develop a variety of algorithms
such as genetic algorithm, local search optimization and assignment methods to solve an optimal combined UE and
signal control problem. Most of the aforementioned studies consider static traffic assignment models and static signal
strategies.

In the venue of dynamic traffic modeling and optimization, Abdelfatah and Mahmassani (1998) and Abdelfatah
and Mahmassani (2001) consider dynamic traffic signal models and propose a simulation-based solution approach.
Gartner and Stamatiadis (1998) present an intelligent transportation system that incorporates both a dynamic traffic
assignment module for traffic prediction and a real-time adaptive traffic control system. Chen and Ben-Akiva (1998)
consider the combined dynamic user equilibrium (DUE) and signal control problem as a non-cooperative game be-
tween traffic controller and road users, which is solved using game-theoretic techniques. Sun et al. (2006) employ
a heuristic solution approach for dynamic traffic signal optimization in networks with time-dependent demands and
stochastic route choices. The lower level problem in their paper is a reactive dynamic user optimal problem, as op-
posed to the so-called predictive dynamic user equilibrium (Friesz et al., 1993). Karoonsoontawong and Waller (2009)
propose a mixed-zero-one continuous linear bi-level formulation of the combined dynamic user optimal and traffic
signal optimization problem. However, their problem solution is chosen among some pre-defined signal timing plans.
Ukkusuri et al. (2013) formulate a signal optimization problem as a game between signal operator and road users.
They solve a problem with time-varying signal cycle and split on a small test network with an iterative optimization-
and-assignment method. In all the aforementioned dynamic traffic signal control models and methods, the signal
controls are captured by binary variables.

This paper presents a bi-level differential Stackelberg game formulation of the network signal control problems
with special attention given to the modeling of signalized intersections in the dynamic network loading (DNL) sub-
problem. In particular, unlike the previously reviewed papers, which all consider the on-and-off (binary) representation
of signal controls, we employ the Lighthill-Whitham-Richards (LWR) (Lighthill and Whitham, 1955; Richards, 1956)
model integrated with a continuum signal model (Han et al., 2014), which does not rely on distinct signal phases. In
the continuum signal model, a fraction, η, of the downstream links’ capacity is assumed to be available to vehicles
discharged from a given approach during the entire signal cycle. η is assumed to be equal to the green proportion
of the cycle allocated to the subject approach for movement through the intersection. The continuum signal model
has a number of distinctive advantages over its on-and-off counterpart: (1) it requires fewer integer variables when
modeling dynamics on large-scale networks, which reduces the computational complexity of the modeling and opti-
mization processes; (2) it provides more flexibility in selecting the time step size and thus increases the computational
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efficiency; (3) it eliminates discontinuities in path travel times that naturally arise from an on-and-off signal represen-
tation, which allows DUE problems to be formulated in a more exact way without the need to introduce user bounded
rationality (Szeto and Lo, 2006; Ge and Zhou, 2012; Han et al., 2014); and (4) it allows higher decision resolution
in terms of the green time allocated to each approach. The continuum signal model is suitable for predicting the
aggregate behavior that exists in large-scale signalized networks without having to handle the detailed and random
signal sequences at local intersections. When appropriately utilized, the continuum model can accurately predict the
average throughput of traffic bottlenecks, and capture the effect of queue spillbacks.

Nevertheless, as pointed out by Han et al. (2014) through theoretical investigation of the model, the accuracy
of the continuum model as an approximation of the on-and-off model is affected by a number of factors, including
the fundamental diagram and whether or not spillback is present. Such a complication arises from potential vehicle
spillbacks that are captured by the LWR-based DNL model. Following the insights provided by Han et al. (2014), we
propose in this paper a DNL procedure that incorporates the continuum signal model and maximizes its approximation
efficacy. A numerical case study is provided in Section 3.4 to illustrate the effectiveness of this DNL procedure.

The lower-level problem is formulated as a simultaneous route-and-departure-time choice dynamic user equilib-
rium (Friesz et al., 1993, 2011, 2013), with the LWR-based DNL sub-problem that incorporates the continuum signal
model. The upper-level problem, as we have previously mentioned, is formulated as an MPEC problem. We make note
of the fact that this MPEC is computationally challenging and does not admit analytical and exact solution schemes
due to the fact that the control variables (signal green splits) are embedded in the LWR-based DNL procedure, which
is known to have poor regularities (due to shock waves and complex junction models) and cannot be differentiated
in any weak sense. Adding even more computational difficulty to the problem is the fact that the proposed MPEC is
highly non-convex and has a semi-infinite constraint due to the variational inequality formulation of DUE (Friesz et
al., 1993). With these difficulties in mind, we solve the proposed MPEC problem using three different metaheuristic
methods: simulated annealing, particle swarm optimization, and nested partition. These metaheuristics do not assume
any knowledge beyond the zeroth-order information on the objective function and constraints, and thus are suitable
for optimization problems in which gradients or second-order information are unknown or difficult to calculate. More-
over, although they enjoy less rigorous results regarding convergence, solution quality and overall performance, they
provide a more flexible trade-off between computational overhead and solution quality and often yield good solutions
with reasonable computational costs. An introduction to these metaheuristic methods and a more elaborated discus-
sion of their advantages are provided in Section 4. These metaheuristics are performed for networks with small and
medium sizes, and implemented on a parallel computing platform to accelerate their solution procedures. In summary,
contributions made in this paper are listed below.

• We propose a bi-level, dynamic Stackelberg game formulation for the design of network signal timing, which
is able to capture drivers’ adaptive travel choices and their reactions to signal timings. The embedded DNL
procedure employs the LWR model that captures vehicle spillback, and the continuum signal junction model
which has a few considerable advantages over its on-and-off counterpart.

• We show, through a detailed analysis of vehicle spillback, how the approximation efficacy of the continuum
signal model depends on (1) the fundamental diagram; and (2) the presence of queue spillback. Further inter-
pretation of the approximation error and modeling suggestions are provided.

• We propose three metaheuristic methods for solving the MPEC problem. These methods are described in detail
and compared with each other in terms of solution quality and computational efficiency. A parallelization of
one of the metaheuristics is also presented.

Notice that our proposed optimization problem does not concern the cycle length or the signal phasing schemes
as they are not explicitly considered by the continuum signal models; moreover, we are focusing on the aggregate
intersection throughputs in large signalized networks rather than detailed vehicle movements at a granular level. The
signal cycles and phases may be determined separately or in conjunction with our optimized green splits to maximize
intersection capacity and safety.

The rest of this paper is organized as follows. Section 2 presents some essential background of dynamic user
equilibrium, including its formulation and solution algorithm. Section 3 provides a comprehensive assessment of the
continuum signal model in a dynamic network loading procedure, following the theoretical guidance from Han et al.
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(2014). In Section 4, the MPEC formulation is presented, followed by detailed description of the three metaheurstic
solution methods. Section 5 presents several numerical examples. Finally, Section 6 offers some concluding remarks.

2. The dynamic user equilibrium as the lower-level problem

As the lower-level problem of the proposed bi-level formulation, the dynamic user equilibrium (DUE) considered
in this paper captures two aspects of driving behavior: departure time choice and route choice (Friesz et al., 1993).
Within the DUE model, experienced travel cost, including travel time and early/late arrival penalties, is identical for
those route and departure time choices selected by travelers between a given origin-destination (O-D) pair.

In the last two decades there have been many efforts to develop a theoretically sound formulation of dynamic
network user equilibrium that is also a canonical form acceptable to scholars and practitioners alike. As pointed out
by Han (2013), there are two essential components within the notion of DUE: (i) the mathematical expression of Nash-
like equilibrium conditions, and (ii) a network performance model, which is, in effect, an embedded dynamic network
loading (DNL) problem. There are multiple means of expressing the Nash-like notion of a dynamic equilibrium
mathematically, including a variational inequality (Friesz et al., 1993; Smith and Wisten, 1994, 1995), an evolutionary
dynamic (Mounce, 2006; Smith and Wisten, 1995), a nonlinear complementarity problem (Wie et al., 2002; Han et al.,
2011), a differential variational inequality (Friesz et al., 2011, 2013; Friesz and Mookherjee, 2006), and a differential
complementarity system (Pang et al., 2011). Clearly, another key component of the DUE is the path delay operator,
typically obtained from dynamic network loading (DNL), which is a sub-problem of a complete DUE model. The
DNL captures the relationships among arc entry flow, arc exit flow, arc delay and path delay for any set of path
departure rates. Any DNL must be consistent with the established path departure rates and link delay model, and it is
usually performed under the first-in-first-out (FIFO) rule. Examples of some commonly employed link performance
models include the M-N model (Merchant and Nemhauser, 1978a,b), the link delay model (Friesz et al., 1993), the
Vickrey model (Vickrey, 1969; Han et al., 2013a,b), the LWR-Lax model (Bressan and Han, 2011, 2012; Friesz et al.,
2013), the cell transmission model (Daganzo, 1994, 1995), and the link transmission model (Yperman et al., 2005).

2.1. Formulation and algorithm of the DUE problem

We consider a fixed time horizon [t0, t f ] ⊂ R where R denotes the set of real numbers 1. The most crucial
component of the DUE model is the path delay operator which, given a set of path departure rates, provides the time
needed to traverse any path p with any given departure time. The path delay is denoted by

Dp(t, h) ∀ p ∈ P, ∀ t ∈ [t0, t f ]

where P is the set of paths employed by travelers, t denotes the departure time, and h is a vector of departure rates. We
stipulate that each path departure rate hp(·), as a function of departure time t, is non-negative and square-integrable,
and thus belong to the set L2

+[t0, t f ] where L2[t0, t f ] is the space of square-integrable functions defined on the interval
[t0, t f ], and the subscript ‘+’ indicates non-negativity. For the complete vector of path departure rates h(·) =

(
hp(·) :

p ∈ P
)
, we have that h ∈

(
L2

+[t0, t f ]
)|P| where

(
L2[t0, t f ]

)|P| is the |P|-fold product of the space L2[t0, t f ].
The path delay (path travel time) is combined with an arrival penalty to form the more general notion of travel

cost:
Ψp(t, h) .

= Dp(t, h) + F
(
t + Dp(t, h) − TA

)
(2.1)

where F (·) is the penalty function for early or late arrival relative to the target arrival time TA. Note that, for con-
venience, TA is assumed to be independent of the O-D pair. However, that assumption is easy to relax, and the
consequent generalization of our model is a trivial extension. We interpret Ψp(t, h) as the perceived travel cost of
driver departing at time t along path p, when the collective travel decisions of all drivers are encapsulated by the path
departure rate vector h.

1In subsequent presentation we will use R+ and R++ to denote the set of non-negative and positive real numbers, respectively.
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To support the development of a dynamic network user equilibrium model, we introduce some additional con-
straints. Foremost among these are the flow conservation constraints, also known as the demand satisfaction con-
straints: ∑

p∈Pi j

∫ t f

t0
hp(t) dt = Qi j ∀ (i, j) ∈ W (2.2)

where Pi j is the set of paths connecting the O-D pair (i, j) ∈ W, andW is the set of all O-D pairs in the network.
In addition, Qi j is the fixed travel demand for O-D pair (i, j). Using the notation and concepts we have thus far
introduced, the set of feasible solutions for the DUE problem is

Λ =

h ∈
(
L2

+[t0, t f ]
)|P|

:
∑
p∈Pi j

∫ t f

t0
hp(t) dt = Qi j ∀ (i, j) ∈ W

 (2.3)

Using a presentation very similar to the above, the notion of a dynamic user equilibrium in continuous time is first
introduced by Friesz et al. (1993), who employ a definition tantamount to the following:

Definition 2.1. (Dynamic user equilibrium) A vector of departure rates h∗ ∈ Λ is a dynamic user equilibrium if

h∗p (t) > 0, p ∈ Pi j =⇒ Ψp
(
t, h∗

)
= vi j ∈ R++ ∀(i, j) ∈ W (2.4)

where vi j denotes the minimum travel cost within the O-D pair (i, j) for all path and departure time choices. We
denote the dynamic user equilibrium defined this way by DUE

(
Ψ,Λ, [t0, t f ]

)
.

In the analysis to follow, we focus on the following variational inequality formulation of the DUE problem reported
in Theorem 2 of Friesz et al. (1993).

find h∗ ∈ Λ such that∑
p∈P

∫ t f

t0
Ψp(t, h∗)

(
hp(t) − h∗p(t)

)
dt ≥ 0

∀h ∈ Λ

 VI
(
Ψ, Λ, [t0, t f ]

)
(2.5)

The variational inequality formulation VI
(
Ψ, Λ, [t0, t f ]

)
expressed above subsumes almost all DUE models regardless

of the arc dynamics or the network loading models employed.
Computational methods for DUEs vary, depending on the specific mathematical formulation used to express the

problem. In this paper we provide a fixed-point algorithm based on the differential variational inequality (DVI)
formulation (Friesz et al., 2011). The relationship between the DVI formalism and the DUE is revealed by expressing
the VI as a fictitious optimal control problem and then applying the minimum principle. Furthermore, the fixed-point
algorithm is derived in a similar fashion by solving a linear-quadratic optimal control problem. The reader is referred
to Friesz et al. (2013) for a detailed discussion on the DVI and the fixed-point method.

Fixed-point method

Step 0 Identify an initial feasible point h0 ∈ Λ. Set the iteration counter k = 0. Let α > 0 be a fixed constant.

Step 1 Solve the dynamic network loading sub-problem with path departure rates given by hk, and obtain the
path travel cost Ψp(t, hk), ∀p ∈ P, ∀t ∈ [t0, t f ].

Step 2 For each (i, j) ∈ W, solve the following algebraic equation for µi j, using root-search algorithms.∑
p∈Pi j

∫ t f

t0

[
hk

p(t) − αΨp
(
t, hk) + µi j

]
+

dt = Qi j

Then update the next iterate hk+1(·) = {hk+1
p (·) : p ∈ P} where

hk+1
p (t) =

[
hk

p(t) − αΨp
(
t, hk) + µi j

]
+

∀p ∈ Pi j , (i, j) ∈ W

where [x]+
.
= max{0, x}.
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Step 3 Terminate the algorithm with output h∗ ≈ hk if∥∥∥hk+1 − hk
∥∥∥

L2

/ ∥∥∥hk
∥∥∥

L2 ≤ ε

where ε ∈ R++ is a prescribed termination threshold, and the norm ‖ · ‖L2 is defined as

‖h‖L2 =

∑
p∈P

∫ t f

t0

(
hp(t)

)2 dt

1/2

Otherwise, set k = k + 1 and repeat Step 1 through Step 3.

3. Continuum modeling of signalized intersections in the dynamic network loading sub-problem

This section focuses on the dynamic network loading sub-problem of DUE; that is, Step 1 of the fixed-point
algorithm presented above. The embedded network loading problem captures the relationships among arc entry flows,
arc exit flows, arc delays and path delays for any given set of path departure rates, in connection with exogenous
network configurations or controls such as traffic signal timings, as we consider in this paper.

A central focus of this section and also of this paper is to incorporate in the DNL procedure a signal control
mechanism , which not only describes the aggregate behavior that exists at signalized intersections in large urban
networks, but also facilitates efficient computation of the DNL sub-problem. For reasons well stated in the introduc-
tory part of this paper, we consider the continuum signal model (Han et al., 2014) as an alternative representation of
the binary signal controls. Notably, as pointed out by Han et al. (2014), application of the continuum model is less
straightforward than it appears: the error of the continuum approximation is dependent not only on the fundamental
diagram employed by the LWR model but also on whether or not spillback occurs in the traffic network of interest.
The main purpose of this section is to illustrate these modeling subtleties and make recommendations regarding the
use of the continuum signal model. In order to provide a comprehensive introduction to relevant signal models and
to be self-contained, we provide within this section some definitions and terminologies required to describe the exact
on-off signal model and the continuum signal model.

3.1. Problem setup and terminology
Given a fixed time horizon [0, T ], and any link Ii in the network where i = 1, 2, . . ., we define its signal control

to be a binary and periodic function ui(·) : [0, T ] → {0, 1} such that ui(t) equals one if the subject approach receives
the green signal, and zero if it receives the red signal. The cycle length, denoted ∆i, is equal to the period of ui(·). A
split parameter ηi ∈ (0, 1) is used to describe the green time allocated to the link Ii; therefore, the actual green time
provided to link Ii is ηi∆i in a full cycle.

We next turn to link-specific parameters. It is assumed throughout this paper that the fundamental diagrams that
describe traffic on all links satisfy the following mild assumptions:

(F) The fundamental diagram is concave, continuous, and vanishes at ρ = 0 and ρ = ρ jam.

where ρ denotes vehicle density, and ρ jam denotes jam density. We also let ρc be the unique critical density at which
flow is maximized, C be the flow capacity, and L be the link length. All these parameters naturally vary from link
to link, and we will always stick to the convention of using subscript ‘i’ to indicate their dependence on link Ii,
i = 1, 2, . . ..

Each link Ii is expressed as a spatial interval [ai, bi] ⊂ R. The density is denoted ρi(t, x), for (t, x) ∈ [0, T ] ×
[ai, bi]. The demand Di(t) and supply S i(t) of this link are defined according to Lebacque and Khoshyaran (1999) as:

Di(t) =

Ci if ρi(t, bi−) ≥ ρc
i

fi
(
ρi(t, bi−)

)
if ρi(t, bi−) < ρc

i

S i(t) =

Ci if ρi(t, ai+) < ρc
i

fi
(
ρi(t, ai+)

)
if ρi(t, ai+) ≥ ρc

i

(3.6)

The notion of effective supply is of crucial importance to the definition of signal models.
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Definition 3.1. (Effective supply) Given any link Ii, the effective supply for this link, denoted by Ei(t), is defined as
follows. Let {I j : j = 1, 2, . . . , mi} be the set of downstream links of Ii. For each downstream link I j, define the car
turning percentage αi, j(t) ≥ 0 such that

∑mi
j=1 αi, j(t) ≡ 1 for all t. Then

Ei(t)
.
= min

{
Ci , min

j=1, ...,mi

{
S j(t)
αi, j(t)

}}
(3.7)

The time-varying quantity Ei(t) expresses the downstream capacity available for Ii when it receives the green light.

3.2. Definition of the on-and-off and continuum signal models

This section provides a brief review of the on-and-off and continuum signal models proposed and analyzed in Han
et al. (2014). Throughout this paper we will adopt the naming convention of using the superscripts ‘∆’ and ‘0’ to
represent quantities associated with the on-and-off signal model and the continuum signal model, respectively. Using
the signal control ui(t) and effective supply Ei(t) for link Ii, the on-and-off model for this link is expressed in terms of
its downstream boundary condition as:

f ∆
out,i(t) = min

{
Di(t), ui(t)Ei(t)

}
(On-and-off signal model) (3.8)

where f ∆
out,i(t) denotes the exit flow of Ii. On the other hand, the continuum signal model is defined as:

f 0
out,i(t) = min

{
Di(t), ηiEi(t)

}
(Continuum signal model) (3.9)

Remark 3.2. The difference between the on-and-off model and the continuum model lies in the way downstream
boundary conditions are specified. A general network flow problem also involves initial and upstream boundary con-
ditions, which are implicitly considered here. In other words, the results concerning the continuum model presented
below will hold with any given initial and upstream boundary conditions. The reader is referred to Han et al. (2014)
for a Lax-Hopf treatment of various conditions in conjunction with the Hamilton-Jacobi equation and the Moskowitz
function (Moskowitz, 1965).

It should be noted that we assume here, as in nearly all first-order traffic flow models, that vehicles accelerate and
decelerate instantaneously. Of course, acceleration rates are bounded in reality, and this complication will introduce
an additional source of error. In practice, this is usually accounted for by including lost times at the signal where
flow is zero, and modeling saturation flows during the effective green time. The methodological framework presented
in this paper can be easily modified to incorporate the inclusion of lost times and/or yellow times: simply relax the
assumption that the sum of the priority parameters is equal to one and instead let this sum be equal to the fraction of
the cycle during which vehicles are allowed to discharge at saturation. This fraction can usually be detrained fairly
easily in practice for a given cycle length.

3.3. Approximation efficacy of the continuum signal model

The continuum signal model enjoys some modeling and computational advantages as stated in Section 1. However,
its accuracy in approximating the on-and-off signal model in a dynamic network where spillback is likely to occur is
conditional. In a recent work (Han et al., 2014), the authors conduct rigorous analyses on the approximation error of
the continuum signal model under a number of network conditions involving no spillback, sustained spillback, and
transient spillback, to be defined and elaborated below. In order to be self-contained, we repeat in this section some
key findings made by Han et al. (2014).

We start by noting that, by applying the continuum signal model instead of the on-and-off model, one is expected
to observe quite different density profiles such as shock waves, rarefaction waves, and boundary conditions associated
with the LWR conservation law. In other words, the continuum signal model in general overlooks detailed queuing
and discharging of vehicles, and yields very different profiles of flow, density, or velocity compared to the on-and-off

model. However, the continuum model is meant to describe the aggregate traffic behavior and throughput at signalized
intersections, an indicator of which is the cumulative vehicle count. This observation leads us to the Hamilton-Jacobi
equation and its solutions (cumulative vehicle counts). More precisely, we introduce the Moskowitz function N(t, x),
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which measures the cumulative number of vehicles that have passed location x by time t. The function N(t, x) satisfies
the following Hamilton-Jacobi equation

∂tN(t, x) − f
(
− ∂xN(t, x)

)
= 0 (t, x) ∈ [0, T ] × [a, b] (3.10)

subject to initial condition, upstream and downstream boundary conditions. The analysis of the signalized junction
involves a semi-analytical solution representation of the Hamilton-Jacobi equation (3.10), namely the generalized
Lax-Hopf formula (Aubin et al., 2008; Claudel and Bayen, 2010). For the compactness of our presentation we only
show relevant results below, and refer the reader to Han et al. (2014) for more detailed discussion and proof.

3.3.1. The case without spillback
Without loss of generality, we focus on the signalized junction A shown in Figure 1. Under the assumption that no

spillback occurs at A, Han et al. (2014) show that the continuum model approximates well the Moskowitz functions on
all the relevant links. Specifically, it is proven that the continuum approximation error is bounded uniformly and does
not grow with time. Theorem 3.3 below is a precise statement. Notice that although these results are stated for link I1,
it is straightforward to re-state those results for link I2, and more generally, for more complex junction topology and
movements.

I
2

I
3

1
I

A B

Figure 1: A signalized merge junction.

Theorem 3.3. (Han et al., 2014) Consider the merge junction A depicted in Figure 1, and a signal control u1(t) for
link I1 with cycle ∆A and green split η1 ∈ (0, 1). Given the same initial and upstream boundary conditions for I1, let
N∆A

1 (t, x) and N0
1 (t, x) be the solutions of the H-J equation on I1 with the additional downstream boundary condition

specified by (3.8) and (3.9) respectively. Furthermore, assume that the entrance of link I3 remains in the uncongested
phase. Then, we have ∣∣∣N∆A

1 (t, x) − N0
1 (t, x)

∣∣∣ ≤ η1(1 − η1)∆A min{C1,C3} ≤
1
4

∆A min{C1,C3} (3.11)

In particular, N∆A
1 (t, x)→ N0

1 (t, x) uniformly for all (t, x) ∈ [0, T ] × [a1, b1], as ∆A → 0.

3.3.2. The case with sustained spillback
When spillback occurs at junction A and persists for a certain amount of time (no less than a full cycle), for which

we call the sustained spillback, the approximation accuracy of the proposed continuum model may be compromised
In fact, the aforementioned error estimate and convergence does not hold if the fundamental diagram is triangular, and
the error may grow with time and become unbounded. This will be illustrated using the following example.

Consider again the merge junction in Figure 1. Let us focus on I3 which remains in the congested phase. In the
spatial-temporal domain of I3, characteristic lines with slope −w3, which represent kinematic waves, emit from the
downstream boundary x = b3 and reach the upstream boundary x = a3, where w3 denotes the backward wave speed
(see Figure 2). When the light is red, the exit flow qout,3 is equal to zero, creating a kinematic wave with speed −w3 and
density value ρ jam

3 ; when the light is green, the exit flow qout,3 is equal to the flow capacity C3, creating a kinematic
wave with speed −w3 and density value ρc

3. As a result, the supply function S 3(t) at the entrance of I3 fluctuates
between 0 and C3, leading the effective supply E1(t) to alternate between 0 and min{C1, C3}.

8
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x 

g 

a3 

b3 r 

t 

t 

-w3 
! = !3

c ! = !3
jam

qout,3 =C3 qout,3 = 0

S3 =C3 S3 = 0

g r 

! = !3
c ! = !3

jam

qout,3 =C3 qout,3 = 0

S3 =C3 S3 = 0

Figure 2: Space-time density diagram for link I3 when the spillback is sustained at node A, and when a triangular fundamental diagram is employed.
The dashed lines represent boundaries between different density values (shocks) traveling backward at speed w3. C3 denotes the flow capacity;
qout,3 denotes the link exit flow; ρc

3 and ρ jam
3 denote respectively the critical density and the jam density; S 3 denotes the supply at the entrance of

the link.

The key observation is that the average throughput of I1 now depends not only on its own green split parameter
η1, but also on the downstream blockage effect characterized by the supply function S 3(t). In other words, it is jointly
determined by η1 and the relative configuration between u1(t) and S 3(t); thus the continuum signal model as defined
by (3.9) alone is no longer sufficient to capture these configurations. To see an example, we stipulate that u1(·) and
S 3(·) are configured in a way such that S 3(t) = C3 · u1(t), and perform the following calculation:∫ t

0
E1(τ)u1(τ) dτ =

∫ t

0
min{C1, C3} · u2

1(τ) dτ =

∫ t

0
min{C1, C3} · u1(τ) dτ =

∫ t

0
E1(τ) dτ

which is, by no means, a sound approximation of η1
∫ t

0 E1(τ) dτ, which is stipulated by the continuum signal model.
Moreover, as the cycle length ∆B for I3 tends to zero, the supply S 3(t) and the effective supply E1(t) do not have
bounded variations. As a consequence, the convergence described in Theorem 3.3 no longer holds in this case (see
Remark 3.5 below for further discussion). We therefore conclude that in the case of a triangular fundamental diagram,
or more generally, FDs with affine congested branch, the proposed continuum junction model does not yield a sound
approximation along a corridor that has multiple signal lights interacting with each other in the presence of spillback.
However, such a theoretical difficulty may be mitigated by certain choice of fundamental diagrams for I3, and the key
lies in strict concavity.

A strictly concave fundamental diagram f (·) is a piecewise smooth function that satisfies, in addition to (F),

f ′′(ρ) ≤ −b for some b > 0 (3.12)

for all ρ ∈ [0, ρ jam] such that f (·) is twice differentiable at ρ. Let us re-visit the scenario where link I3 is dominated
by the congested phase, but assuming a strictly concave fundamental diagram. We begin with the observation that
in this case the characteristic field is genuinely nonlinear. As a result, any flux variation generated by signal control
at the exit of the link gets instantaneously reduced when the waves propagate backwards, see Bressan (2000) for
more mathematical details. Therefore, it is expected that the approximation error becomes significantly smaller than
the triangular FD case, and the convergence may still hold even in the presence of sustained spillback, We have the
following theorem.

Theorem 3.4. (Han et al., 2014) In view of Figure 1, and under the same setting and notations of Theorem 3.3, we
assume that spillback coming from I3 is present and sustained at junction A. Then, if the fundamental diagram f3(·)

9
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of I3 is triangular or trapezoidal, there holds∣∣∣N∆A
1 (t, x) − N0

1 (t, x)
∣∣∣ ≤ η1(1 − η1)∆A min{C1,C3} + min{C1, C3} η1t (3.13)

If the fundamental diagram f3(·) of I3 is strictly concave, we have

∣∣∣N∆A
1 (t, x) − N0

1 (t, x)
∣∣∣ ≤ η1(1 − η1)∆A min{C1,C3} + min

{
C1, f3

(
( f ′3)−1

(
−L3

L3/w3 + ∆B

))}
η1t (3.14)

for all (t, x) ∈ [0, T ] × [a1, b1], where ∆B denotes the cycle length for link I3 and L3 denotes the length of I3; f3(·)
denotes the strictly concave fundamental diagram of I3 with f ′3(ρ jam

3 ) = −w3. In particular, N∆A
1 (t, x) → N0

1 (t, x)
uniformly for all (t, x) ∈ [0, T ] × [a1, b1] as ∆A, ∆B → 0.

Remark 3.5. In contrast to the triangular case, the convergence result holds for the strictly concave case even in the
presence of sustained vehicle spillback. An intuitive explanation, as we mentioned before, is related to the nonlinear
effect caused by the strictly concave fundamental diagram. Figure 3 compares the supply profiles observed at the
entrance of link I3 when the whole link is in the congested phase. As ∆B → 0, in the triangular case the oscillation in
S 3(t) has the biggest amplitude and becomes more and more frequent, causing the total variation to blow up and the
convergence to fail. On the other hand, in the strictly concave case the oscillation in S 3(t) is damped as it gets more
and more frequent. In fact, one may easily show that the supply S 3(t) has uniformly bounded variation regardless of
the cycle length ∆B (Han et al., 2014). Thus, the convergence continues to hold in this case.

3S  (t) 3S  (t)

3S  (t)3S  (t)

t
0 T

t
0 T

Strictly concave fundamental diagram

Triangular fundamental diagram

t
0 T

t
0 T

Figure 3: Profiles of the supply observed at the entrance of I3, when I3 is dominated by the congested phase and controlled by a signal u3(t) at the
exit. First row: the triangular case; second row: the strictly concave case. First column: larger signal cycle; second column: smaller signal cycle.

Notice that in the presence of sustained spillback, the errors associated with triangular or strictly concave funda-
mental diagrams both grow with time; see (3.13) and (3.14). However, the error in the strictly concave case is smaller
than the triangular case. This is quite clear from Theorem 3.4 and Remark 3.5 and will be numerically verified later
in Section 3.4. The main relevant findings made in Han et al. (2014) can be summarized below.
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(a) In a signalized network, if no spillback occurs, the difference between the two solutions obtained with the on-
and-off model and the continuum model is uniformly bounded and does not grow with time. This is true for any
type of fundamental diagram employed.

(b) If sustained spillback occurs, then the above difference may grow with time, regardless of the fundamental
diagram. However, when using a strictly concave fundamental diagram, the difference is smaller than when a
triangular/trapezoidal fundamental diagram is assumed. In addition, the approximation error is dependent on
the length and signal cycle of relevant links.

In this paper, we provide some further insights regarding the approximation error and the choice of the fundamental
diagram, based on the previously mentioned findings.

Proposition 3.6. In view of Figure 1, when sustained spillback occurs at junction A, the approximation error |N∆A
1 (t, x)−

N0
1 (t, x)| for link I1 decreases with larger L3 and/or smaller signal cycle ∆B, where L3 and ∆B are the length and signal

cycle of link I3. Moreover, such an error is determined only by the congested branch of the fundamental diagram of
I3.

Proof. The conclusion follows immediately from the fact that the quantity

f3

( f ′3)−1

 −L3
L3
w3

+ ∆B


 = f3

( f ′3)−1

 −1
1

w3
+ ∆B

L3


 (3.15)

appearing on the right hand side of (3.14) is a decreasing function of L3, and an increasing function of ∆B. Moreover,
we observe that (3.15) only relies on knowledge of the congested branch of f3(·), i.e. where f ′3 is negative.

Proposition 3.6 suggests that the approximation error of the continuum signal model depends, in a quantifiable
way, on the length and signal cycle of the link that triggers spillback (e.g., link I3 in Figure 1). As suggested by these
findings, in order to obtain a more accurate approximation of the on-and-off signal model with the continuum signal
approximation, one should

1. employ a fundamental diagram with a strictly concave congested branch, where appropriate; and
2. employ the continuum approximation where the link responsible for possible spillback is long, and is controlled

by a signal with relatively small cycle length.

Notice that one may choose any functional form for the uncongested branch of the fundamental diagram without
affecting the approximation accuracy. For example, it is suitable to choose the piecewise-defined fundamental diagram
(3.16) with a linear uncongested branch and a strictly concave congested branch. Such a fundamental diagram is also
consistent with some empirical evidence (Papageorgiou et al., 1990).

f (ρ) =

v0ρ ρ ∈ [0, ρc]
g(ρ) ρ ∈ (ρc, ρ jam]

(3.16)

ρ jam

v0

ρg(  )

f

ρ
0 cρ

In (3.16), v0 denotes the free flow speed, ρc denotes the critical density, and ρ jam denotes the jam density. The function
g(·) satisfies

g(ρc) = v0 · ρ
c , g′′(ρ) ≤ − c for some c > 0 , g(ρ jam) = 0

If the congested branch of the fundamental diagram is piecewise linear instead of strictly concave, then the approx-
imation accuracy can also be improved, especially with more linear pieces in the congested branch. This observation
stems from the fact that a strictly concave FD can be approximated by a piecewise linear FD, and the resulting solution
can be also approximated via the wave-front tracking method (Dafermos, 1972).
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Remark 3.7. Another type of vehicle spillback, in contrast to the sustained spillback, is transient spillback in which
the spillback does not persist at the junction but instead recurs from cycle to cycle. This situation arises when the
discharged flows from upstream links are insufficient to keep the entrance of the downstream link congested through-
out a cycle. An illustration of the transient spillback is provided in Han et al. (2014). The existence of transient
spillback poses additional difficulties to the continuum modeling of signalized junctions regardless of the fundamental
diagram employed, although one may argue that modeling these phenomena exactly loses importance in large scale
applications. Therefore, this should not completely diminish the value of the continuum signal model in the venue of
engineering applications.

3.4. Implementing the continuum signal model in the DNL procedure: A numerical test

In this section we will conduct a numerical case study to demonstrate the approximation accuracy of the continuum
signal model while taking into account a range of contributing factors. These include the fundamental diagram, and
the signal cycle and length of the link that triggers spillback, whose effects on the approximation accuracy have been
illustrated in Proposition 3.6. The LWR-based DNL model, together with the on-and-off signal model (3.8) or the
continuum signal model (3.9), will be employed and compared in this study.

We consider the seven-arc, six-node network shown in Figure 4, with one origin-destination pair (1, 6) and three
paths p1 = {I1, I2, I5, I7}, p2 = {I1, I2, I4, I6, I7}, and p3 = {I1, I3, I6, I7}. The network is controlled by signal lights
at the merge nodes 4 and 5. Two types of fundamental diagrams (FDs) are considered for comparison purposes: a
triangular FD and a Greenshields (quadratic and thus strictly concave) FD; their parameters are shown in Table 1.
Initially, the lengths of all links are set to be 3 (in mile). Later on we will change the length of link I6 to illustrate its
impact on the approximation accuracy of the continuum signal model in the event of spillback.

2

I
1

I
2

I
3

I
4

I
7

I
6

I
5

1

3

5 6

4

Figure 4: The seven-arc, six-node network

I1 I2 I3 I4 I5 I6 I7

Triangular

v0 (mile/hour) 30 30 30 30 30 30 30
ρ jam (vehicle/mile) 400 200 400 200 200 200 200
ρc (vehicle/mile) 100 50 100 50 50 50 50
C (vehicle/hour) 3000 1500 3000 1500 1500 1500 1500

Greenshields

v0 (mile/hour) 30 30 30 30 30 30 30
ρ jam (vehicle/mile) 400 200 400 200 200 200 200
ρc (vehicle/mile) 200 100 200 100 100 100 100
C (vehicle/hour) 3000 1500 3000 1500 1500 1500 1500

Table 1: Link parameters corresponding to the triangular and the Greenshields fundamental diagrams. v0 denotes the free-flow speed, ρ jam denotes
the jam density, ρc denotes the critical density, and C denotes the flow capacity.

We fix a time horizon [0, 3] (in hour). Throughout this section, the path departure rates are set to be: h1(t) =

400, h2(t) = 1200, h3(t) = 2000 (in veh/h) for t ∈ [0.05, 0.45] (in hour); and h1(t) = h2(t) = h3(t) = 0 otherwise.
We also specify the signal splits at nodes 4 and 5 by setting η3 = 1/2, η5 = 2/3; by default η4 = 1 − η3 = 1/2,
η6 = 1 − η5 = 1/3.
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Given the link parameters in Table 1, one expects node 5 to be a potential bottleneck, causing congestion on link
I6 to accumulate and eventually trigger vehicle spillback at node 4, affecting both I3 and I4. In the rest of the section,
we will compare the effectiveness of the continuum signal model in approximating the on-and-off model, when the
triangular and the Greenshields fundamental diagrams are respectively used. Previously established theoretical results,
including Theorem 5.4 of Han et al. (2014), and Proposition 3.6 of this paper, suggest that (1) the Greenshields
fundamental diagram will yield a lower approximation error than the triangular FD; (2) for the Greenshields FD, the
error grows with larger signal cycle at nodes 5 and/or with shorter length of link I6. In order to verify these results,
we consider three scenarios:

(I) the cycle length at nodes 4 and 5 is equal to 54 s, and the length of I6 is 3 miles;

(II) the cycle length at nodes 4 and 5 is equal to 54 s, and the length of I6 is 1.5 miles;

(III) the cycle length at nodes 4 and 5 is equal to 108 s, and the length of I6 is 1.5 miles.

Figures 5-7 show, for Scenarios I, II, and III respectively, the cumulative exit vehicle counts of I3 and I4, which are
affected by the possible spillback at node 4 triggered by link I6. From these figures, we see that the continuum model
with the triangular FD misinterprets the dynamics predicted by the exact on-and-off model. In particular, for all three
scenarios there exists a period in the [triangular + on-and-off] case where the throughput of I3 is zero, as can be seen
from the flat part in the cumulative exit vehicle counts. The reason for the zero throughputs is that, when a sustained
spillback occurs at node 4, the signal control u3(t) for I3 and the supply S 6(t) of I6 are configured in a way such that
u3(t) = 0 whenever S 6(t) = C6 (see the discussion at the beginning of Section 3.3.2). Thus the discharged flow from
I3 is effectively zero in the duration of the spillback. The [triangular + continuum] case, on the other hand, predicts a
positive discharge flow from I3 during the spillback, and thus does not capture well the throughput of I3. As a result,
use of the triangular FD yields significant discrepancies in the vehicle counts, with the biggest being 200+ (vehicles).
In contrast, the Greenshields case yields a much smaller error during spillback in all three scenarios, due to the strict
concavity in the FD as we illustrated in Theorem 3.4 and Remark 3.5. In addition, within the Greenshields case we
see a worsening of the approximation quality from Scenario I→ II→ III, which is consistent with the findings made
in Proposition 3.6 and the discussions presented thereafter.

Figures 8-10 show, for Scenarios I, II, and III respectively, the path travel times, which are the main outputs of
the DNL procedure. One may similarly conclude that using the strictly concave (Greenshields) FD yields improved
continuum approximation than the triangular FD, when spillback is present.
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Figure 5: Exiting vehicle counts of links I3 and I4 in Scenario I. First row: link I3; second row: link I4. Left column: triangular case; right column:
Greenshields case.
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Figure 6: Exiting vehicle counts of links I3 and I4 in Scenario II. First row: link I3; second row: link I4. Left column: triangular case; right column:
Greenshields case.
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Figure 7: Exiting vehicle counts of links I3 and I4 in Scenario III. First row: link I3; second row: link I4. Left column: triangular case; right
column: Greenshields case.
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Figure 8: Comparison of path travel times in Scenario I. Top row: path 1; middle row: path 2; bottom row: path 3. Left column: triangular case;
right column: Greenshields case.
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Figure 9: Comparison of path travel times in Scenario II. Top row: path 1; middle row: path 2; bottom row: path 3. Left column: triangular case;
right column: Greenshields case.
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Figure 10: Comparison of path travel times in Scenario III. Top row: path 1; middle row: path 2; bottom row: path 3. Left column: triangular case;
right column: Greenshields case.
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4. Signal control problem formulated as a mathematical program with equilibrium constraints

The proposed bi-level signal control problem is expressed as an optimization problem with an objective typically
involving the minimization of network-wide travel costs, and with the lower-level dynamic user equilibrium (DUE)
problem expressed as constraints. In our upper-level problem, the decision variables are the signal green splits that
are embedded within the continuum signal model in the dynamic network loading (DNL) sub-problem of DUE. We
denote by the vector η(t) the possibly time-varying signal green splits associated with the entire network. The obvious
dependence of the DNL procedure on these signal splits is indicated in the following notation:

Ψ(t, h; η) =
(
Ψp(t, h; η), p ∈ P

)
η(t) ∈ Y

where Y denotes the set of feasible signal splits. In this paper we stipulate that the sum of the green splits associated
with all incoming approaches of the same junction is equal to one at any time. However, in some cases the sum can
be less or greater than one, depending on the detailed signal phasing plans. For example, if there is a pedestrian phase
or all-red phase, then the sum is less than one. If there exists a signal stage with two or more non-conflicting streams
from different approaches, then the sum of green splits may be larger than one. These complications will not be
elaborated in this paper. Notice that the feasible set Y may be further shaped by minimal green/red times, pedestrian
phase, traffic safety and equity, etc.

The lower-level dynamic user equilibrium problem with a given signal timing η(t) is formulated as the following
variational inequality.

find h∗ ∈ Λ such that∑
p∈P

∫ t f

t0
Ψp(t, h∗; η)

(
hp(t) − h∗p(t)

)
dt ≥ 0

∀h ∈ Λ

 VI
(
Ψ, Λ, η, [t0, t f ]

)
(4.17)

where Λ is defined in (2.3). The objective of the upper-level problem is to minimize the total travel costs on the entire
network, through the controls η(t). This is formulated as

min
η(t)∈Y

∑
p∈P

∫ t f

t0
Ψp(t, h∗; η)h∗p(t)dt

where h∗ is determined by the VI problem (4.17). To sum up, the mathematical program with equilibrium constraints
(MPEC) formulation of the proposed bi-level dynamic signal control problem is given as follows.

min
η(t)

∑
p∈P

∫ t f

t0
Ψp(t, h∗; η)h∗p(t) dt (4.18)

subject to


∑
p∈P

∫ t f

t0
Ψp(t, h∗; η)

(
hp(t) − h∗p(t)

)
dt ≥ 0 ∀h ∈ Λ

h∗ ∈ Λ, η(t) ∈ Y

(4.19)

We make three observations regarding this MPEC. (1) The variational inequality poses a semi-infinite constraint
to the optimization problem because the inequality has to be satisfied for infinitely many departure flow vectors h ∈ Λ.
In other words, this inequality constraint has an infinite index set. (2) The delay operator Ψ(t, h; η) enjoys very
little regularity with respect to any of its arguments or parameters. This is caused by the presence of shock waves
(discontinuities in vehicle density and flow) inherent in the LWR model, as well as the non-differentiable algebraic
equations expressing the continuum signal junction model (3.9). (3) The equilibrium constraints expressed by the
VI is nonconvex. To illustrate (2) and (3) with visualization, we consider again the seven-arc, six-node network
depicted in Figure 4 where the continuum signal control variables are η3(t) and η5(t). We set both η3(t) and η5(t) to
be time-independent and reduce the control space to a subset of the two-dimensional plane. We then calculate the
objective values (4.18) for a range of control values η3 and η5, by solving DUE problems with the following network
configuration:
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1. Only node 4 and 5 are signalized intersections.
2. The O-D demand is 1000 (vehicles).
3. The signal splits at nodes 4 and 5 for each incoming link are time-independent, chosen within the interval

[0.2, 0.8].
4. The Greenshields fundamental diagram is used for all links, with parameters given in Table 1.

From these calculations a two-dimensional surface representing the objective function is constructed as shown in
Figure 11. We observe that the objective function is indeed nonconvex in its two decision variables, and that the
regularity of the objective function is poor. If η3 and η5 are time-varying, the problem becomes even more complex
and difficult to visualize, but observations (2) and (3) will remain valid.
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Figure 11: Visualization of the simplified MPEC problem. Left: the surface representing the objective function; right: the contour plot of the
surface on the left.

In view of the observations made above, we will employ metaheuristic solution methods for the MPEC. A meta-
heuristic method, although enjoying less rigorous results regarding convergence, solution quality and overall perfor-
mance, has a few distinctive advantages over exact methods. Firstly, it usually does not assume knowledge beyond
the zeroth-order information of the objective function and constraints. As a result, it usually entails a considerably
reduced per-iteration complexity in comparison with methods that utilize the first-order (gradient) and second-order
(Hessian) information (for example, the gradient descent algorithm and the interior point algorithm). This allows
metaheuristic algorithms to be naturally applied to complex optimization problems whose first- and second-order in-
formation is hardly available. Secondly, in large-scale engineering applications, the exact global optimal solution is
often of secondary importance compared to a “coarsely optimized” solution obtained yet in a timely fashion. Meta-
heuristic algorithms can often be terminated at any time to satisfy user-defined time constraint, and provide some
useful improvements to the system of interest.

In this paper, we consider three metaheuristic algorithms: particle swarm optimization (PSO), simulated annealing
(SA), and nested partition (NP). A short introduction to these metaheuristics is provided below.

4.1. Simulated annealing

Simulated annealing (SA) is a probabilistic search method proposed by Kirkpatrick et al. (1983) and Černý (1985)
for nonconvex optimization. This method imitates the physical process of natural annealing, i.e. a material cools down
from a high temperature to a relatively low temperature, reaching a minimal energy crystalline structure. Within such
imitation, the SA algorithm randomly generates and randomly accepts new solutions. More specifically, at each iter-
ation, a random perturbation to the current solution is made to generate a new solution. If the new solution improves
the current solution, this new solution is accepted and replaces the current solution; otherwise, the new solution is
accepted according to a certain probability. This probability is determined by the current temperature TS A, and de-
creases as TS A gets lower. During early iterations when TS A is relatively high, acceptance of non-improving solutions
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is more likely to happen; as TS A decreases after several iterations, acceptance of a new solution becomes more diffi-
cult. The algorithm terminates when the temperature drops below a prescribed level. The following pseudocode for
SA is presented, where we useU(·) to denote the objective function.

Pseudocode for simulated annealing

Input Fix α ∈ (0, 1), and the terminal temperature Tterminal > 0. Fix a positive integer L.

Step 0. Start with a feasible solution xcurrent. Initialize the temperature TS A > Tterminal. Denote by xbest the best
solution so far and let xbest = xcurrent. Set k = 0.

Step 1. Perturb from the current solution xcurrent to find a different feasible solution xtrial.

Step 2. If U(xtrial) < U(xcurrent), accept state xtrial and let xcurrent = xtrial. Otherwise, compute the transition
probability

Prob = exp
(
U(xcurrent) −U(xtrial)

TS A

)
(4.20)

Randomly generate r uniformly within [0, 1]. If r < Prob, accept state xtrial and let xcurrent = xtrial.

Step 3. Update the best solution so far, i.e., ifU(xtrial) < U(xbest), let xbest = xtrial.

Step 4. If k < L, let k = k + 1 and go to Step 1. Otherwise go to Step 5.

Step 5. If TS A ≤ Tterminal, the algorithm terminates with output xbest. Otherwise, set k = 0 and TS A = αTS A; go
to Step 1.

4.2. Particle swarm optimization

Particle swarm optimization (PSO) is a metaheuristic optimization algorithm first introduced by Kennedy and
Eberhart (1995), based on the social behavior of a group of animals such as a flock of birds or a school of fish, both
called a swarm. In a swarm, the animals are represented as particles, and can collaborate and share information to
adjust their positions in the search for a certain location. The adjustment of their positions is based on the swarm’s
collective memory on the best location attained so far (subsequently referred to as “gbest”), and the individual memory
of the best location that the individual particle has attained so far (referred to as “pbest”). As a result of the position
adjustment, the particles tend to converge to either “gbest” or “pbest”. Compared with other algorithms or approaches
based on natural paradigms, such as simulated annealing, genetic algorithms and artificial neural networks, PSO is
relatively new and still emerging. However, it has gained much popularity among researchers and has been applied
to many domains of application with great success (Banks et al., 2007). Although the performance of PSO varies
depending on the application or parameters chosen, research shows evidences of PSO or its variations outperforming
well-established metaheuristics such as genetic algorithm, ant colony optimization, simulated annealing, and tabu
search (Yin, 2006; Savsani et al., 2010; Sha and Hsu, 2007).

The canonical PSO process for minimizing an objective function U( · ) within a feasible region S ⊂ Rn can be
represented as the following discrete dynamics:

Vk+1
i = ωkVk

i + c1r1(Pk
i − Xk

i ) + c2r2(Gk − Xk
i ), ∀i, k (4.21)

Xk+1
i = PS [Xk

i + Vk+1
i ], ∀i, k (4.22)

where Xk
i , Vk

i ∈ Rn denote the position and velocity of the i-th particle at the k-th iteration, respectively; Pk
i ∈ Rn is

the “pbest” of the i-th particle so far until the k-th iteration; and Gk ∈ Rn is the “gbest” of the entire swarm so far
until the k-th iteration. ωk ∈ (0, 1) is the weight of inertia, which maintains certain level of consistency between the
velocities in two consecutive iterations. Constants c1 and c2 are the acceleration rates, which determine the impacts
of the individual memory “pbest” and the swarm’s collective memory “gbest” on the decision at the current iteration.
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The larger the c1 and c2, the faster the particles move towards the memorized best locations. r1 and r2 are random
numbers with a uniform distribution in [0, 1] generated at each iteration. PS : Rn → S is the Euclidean projection,
defined as PS [x] .

= argminy∈S ‖x − y‖. Eqns (4.21)-(4.22) are iterated, while “pbest” and “gbest” are updated at each
iteration. Such a procedure can be interpreted as a multi-start, zeroth-order (derivative-free) optimization heuristic.
The velocities {Vk

i } can be regarded as potential descent directions determined by sampling feasible candidate solu-
tions. Intuitively, solutions in the neighborhood of “pbest” and “gbest” hold promise in achieving better objective
values, thus the potential descent direction determined by the PSO is a combination of the directions from the current
particle location to “pbest” (Pk

i − Xk
i ), and to “gbest” (Gk − Xk

i ), plus an additional deviation term ωkVk
i . During early

iterations, the PSO tends to sample uniformly the entire feasible region. As the swarm gradually “migrates” along the
potential descent directions, the particles tend to gather around either the “pbest” or the “gbest”, so that the neighbor-
hoods of the “pbest” and the “gbest” are sampled more intensively. The algorithm usually terminates when no more
improvement of the objective is attained for a given number of iterations. A pseudocode of the PSO is given below,
whereU(·) denotes the objective function.

Pseudocode for particle swarm optimization

Input. Choose a population size Pop > 0. Fix {ωk : k ≥ 0} ⊂ (0, 1), c1, c2 > 0.

Step 0. Let k = 0. Initialize randomly the particle locations X0
i and velocities V0

i , 1 ≤ i ≤ Pop. Initialize “pbest”
P0

i and “gbest” G0 as follows:

P0
i = X0

i 1 ≤ i ≤ Pop, G0 = P0
i∗

where i∗ = argmin
1≤i≤Pop

U(P0
i ).

Step 1. Update the velocities and positions of the particles. That is, for all 1 ≤ i ≤ Pop,

Vk+1
i = ωkVk

i + c1r1(Pk
i − Xk

i ) + c2r2(Gk − Xk
i ), Xk+1

i = PS [Xk
i + Vk+1

i ]

where r1 and r2 are random numbers uniformly generated within [0, 1].

Step 2. Find the objective valuesU(Xk+1
i ) for all 1 ≤ i ≤ Pop.

Step 3. Update “pbest” and “gbest”:

Pk+1
i =

Xk+1
i IfU(Xk+1

i ) < U(Pk
i )

Pk
i Otherwise

∀1 ≤ i ≤ Pop

Gk+1 =

Pk+1
i∗ If min

1≤i≤Pop
U(Pk+1

i ) < U(Gk)

Gk Otherwise

where i∗ = argmin
1≤i≤Pop

U(Pk+1
i )

Step 4. If the stopping criterion is met (e.g. no improvement in the objective within a given number of con-
secutive iterations), terminate the algorithm with output Gk+1. Otherwise, let k = k + 1, and go to Step
1.

4.3. Nested partition
The nested partition (NP) method systematically partitions a feasible region and selects promising subregions

through random sampling and local search until a singleton is reached. It has been found to be effective in solving
large-scale problems in many applications (Al-Shihabi et al., 2008; Shi and Ólafsson, 2000a,b; Shi et al., 2011).

20



ARTICLE LINK: http://www.sciencedirect.com/science/article/pii/S0968090X15001266
PLEASE CITE THIS ARTICLE AS

Han, K., Sun, Y., Liu, H., Friesz, T.L., Yao, T., 2015. A bi-level model of dynamic traffic signal control with
continuum approximation. Transportation Research Part C 55, 409-431.

At each iteration of the NP algorithm, the feasible region is divided into two subsets heuristically; one called
“most promising” and the other called “complimentary”. The algorithm then further partitions the “most promising”
subset into M smaller subregions. Together with the “complimentary” region, the algorithm now divides the feasible
domain into M + 1 subsets. From each subset a fixed number of points are randomly sampled, and their objective
values are used to determine a promising index for this subset. The subset with the highest promising index is then
selected as the “most promising” set, and is subject to further partitions following the same procedure described
above. A backtracking mechanism is incorporated to explore the “less promising” regions. The pseudocode for NP is
summarized as follows.

Pseudocode for nested partition

Input. Fix a positive integer M. Denote by S ⊂ Rn the feasible domain.

Step 0. Let k = 0 and randomly select a non-empty subset Rk of S . Let P = Rk (“most promising” set) and
C = S \ P (“complementary” set).

Step 1. Randomly partition P into M non-empty subsets {Pi}1≤i≤M . Randomly sample a fixed number of points
from each of the M + 1 subsets of S (M subsets of P, plus C) and calculate their objective values. For each
subset Pi, define its “promising” index as the best (lowest) objective value, denotedU∗i , 1 ≤ i ≤ M. For C,
define its “promising” index as the best (lowest) objective value, denotedUc.

Step 2. If min1≤i≤MU
∗
i < Uc, let Rk+1 = Pi∗ where i∗ = argmin1≤i≤MU

∗
i ; define P = Rk+1 and C = S \ P; and

continue to Step 3. Otherwise, set P = Rmax{0, k−1} and C = S \ P and go to Step 1.

Step 3. The algorithm terminates if no improvement in the objective value is made within a given number of
iterations (indicated by k); otherwise, let k = k + 1 and go to Step 1.

5. Numerical examples

5.1. Seven-arc network with constant signal splits

We first test the proposed bi-level model and solution algorithms on the seven-arc network shown in Figure 4. For
this study we stipulate that the signal splits η3 and η5 are constant throughout the time horizon, and all the network
configurations are identical to those employed earlier in the construction of Figure 11. By doing so we have made
available a priori knowledge about the global optimum, thus it is possible to evaluate the performance of the three
metaheuristics in terms of their solution quality and optimality.

Before we present the computational results obtained from the three metaheuristics, we first provide an informal
illustration of the bi-level problem at hand. As shown in Figure 11, the network is at its worst performance when
both η3 and η5 are small and close to their lower bounds (0.2). This makes sense as in this case most of the road
capacity was allocated to links I4 and I6, in other words, to path p2, which has the longest free-flow time and is
the least efficient route in the network. Therefore, such a signal timing plan makes the network more restricted and
less efficient. Next, we notice that the total network cost is uniformly low when η3 ∈ [0.7, 0.8], regardless of the
value for η5. This suggests that allocating more green time to the major approach I3 (link I3 has a flow capacity of
3000 veh/h while others have only 1500 veh/h) improves the performance of the traffic system, at least locally. This
straightforward observation is somehow complicated by the fact that there exist a number of local minima, shown
as canyons or basins in the 3-D graph, which yield nearly the same objective value for smaller η3. This suggests
the existence of a Braess-type paradox in which restraining links with the highest capacity (I3) does not necessarily
worsen the overall network performance. This example, despite its simple and low-dimensional nature, reveals the
complexity of the MPEC problem and the non-trivial decisions to be made on relevant signal timings. Moreover,
such complexity is expected to grow when the dimension of the decision space increases, i.e., when the signal splits
become time-varying and/or the underlying network becomes larger.
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Figure 12: Objective values generated at each intermediate iteration of the three algorithms. ‘NP’ and ‘SA’ stand for nested partition and simulated
annealing, respectively. Pbesti, where 1 ≤ i ≤ 10, is the best objective value obtained at the current iteration by the i-th agent employed by PSO.
‘Optimal’ is the known global optimal value.

We employ the three heuristic algorithms to seek solutions of the nonconvex MPEC with good quality. In Figure
12 we show and compare intermediate objective values generated by the algorithms at each iteration. From this figure,
we can observe the search patterns of these three algorithms. In particular, ‘Pbest1-Pbest10’ are concerned with the
particle swarm optimization, which employs 10 search agents. Each ‘Pbesti’ represents the search history of a single
agent i (1 ≤ i ≤ 10). At the beginning, these 10 agents had varied objective values, but they quickly converged to the
same objective value within 20 iterations. For the nested partition (NP) and simulated annealing (SA), their objective
values show an descending trend overall but with local fluctuations.

All three algorithms achieve close-to-optimal objective values upon termination, where the theoretical optimal ob-
jective is calculated a priori through the construction of the objective surface as shown in Figure 11. More accurately,
the global minimum is 517.3, and both PSO and SA attain an objective value of 518.3, which has a relative global
optimality gap of 0.19%2. They are followed by NP, which produces an objective value of 519.1 and a relative global
optimality gap of 0.35%. It can be seen that all three methods reach satisfactory solution optimality.

5.2. Seven-arc network with time-varying splits

In this numerical example, we set the time horizon to be 5 h and each signal split to be time-varying and change
its value every 30 min. One of the goals of this numerical study is to perform a sensitivity analysis for SA and PSO
with respect to their parameters. More specifically, the following parameters are considered.

1. We test SA with different combinations of Tterminal andL, where Tterminal ∈ {10, 20, 40, 80} denotes the terminal
temperature, and L ∈ {5, 10, 15} is the number of replications performed at each level of temperature. The
initial temperature Tinitial = Tterminal + 80 and α = (Tterminal/Tinitial)0.01; see the SA pseudocode for the definition
of these parameters.

2. We test PSO with different choices of the acceleration rates c1 = c2 ∈ {0.2, 0.6, 1.0, 1.4} and the weight of
inertia ωk ∈ {0.2, 0.5, 0.8}, while fixing the population size to be Pop = 20.

The test results are presented in Figures 13 and 14. From Figure 13 regarding SA, we notice three choices of the
parameters that yield relatively good performance, namely (Tterminal, L) ∈ {(10, 5), (40, 10), (40, 15)}. The first one
is more preferred among these three as it yields the minimal average cost, and its upper bound is among the smallest.

2Calculated by Computed Objective Value−Global Minimum
Global Minimum × 100%
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Figure 13: Tuning the parameters in SA. The horizontal axis presents 12 choices of the algorithm parameters (Tterminal, L). The vertical axis shows
the objective values attained. For each choice of the parameters, the vertical bar represents the confidence interval for the average objective value
with 90% confidence level.
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Figure 14: Tuning the parameters in PSO. The horizontal axis presents 12 choices of the algorithm parameters (ωk , c1) (recall that c1 = c2). The
vertical axis shows the objective values attained. For each choice of the parameters, the vertical bar represents the confidence interval for the
average objective value with 90% confidence level.

Moreover, since it requires the least number of replications L = 5 at each temperature level, this choice results in less
computational cost than the other two. From Figure 14 regarding PSO, we notice two good choices of parameters
(ωk, c1) ∈ {(0.8, 1.4), (0.8, 1.0)}, among which we prefer (0.8, 1.4) as it generates both a lower average cost and a
lower upper bound than the other one.

We now compare the tuned SA and PSO with NP. Each algorithm has been repeated 30 times to gain some
statistical significance as each algorithm involves stochasticity to some extent. For the PSO and NP, the optimization
procedure is terminated once there is no improvement in the objective value in 10 consecutive iterations. The results
are presented in Table 2. We observe from this table that PSO substantially outperforms both SA and NP in terms
of solution optimality, and the SA uses the least amount of time to reach convergence. In addition, we can clearly
see that by allowing the signal timings to be time-varying (that is, to be adaptive to the dynamic traffic flows in the
network), the total network travel cost under equilibrium can be reduced from 517.3 (see Figure 12) to 479.4 (PSO),
with a 7.3% reduction.

We also compare the acquired solutions with two simple and intuitive signal timing plans in order to highlight
the significance of the proposed bi-level approach and the complexity of the decision-making environment. The first
alternative signal timing allocates green times equally to all the incoming approaches (indicated as ‘Equal’ in Table 2
and Table 3); the second timing plan allocates green times that are proportional to the saturation flow (flow capacity)
of each incoming approach (indicated as ‘Capacity’ in Table 2 and Table 3). Table 2 shows that the best heuristic
solution, given by PSO, yields on average 14.6% improvement over ‘Equal’ and 11.7% improvement over ‘Capacity’.
Finally, Figure 15 shows the time-varying green splits for I3 and I5, which are the best solutions obtained from PSO.
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Algorithm Best obj. Worst obj. Aver. obj. CPU time (s)
SA 488.9 532.9 509.0 991
NP 497.8 550.4 527.1 3384

PSO 472.7 497.7 479.4 2529
Equal 561.4 561.4 561.4 —

Capacity 542.8 542.8 542.8 —

Table 2: Optimization results for the 7-arc network.
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Figure 15: Seven-arc network: The best time-varying solutions for η3(t) and η5(t) obtained from PSO.

5.3. The Sioux Falls network

The bi-level problem is tested on a larger network; namely the Sioux Falls network (see Figure 16). We select 6
origin-destination pairs and 119 paths for the lower-level DUE problem. All intersections in this network are assumed
to be signalized, and the signal splits are assumed to change every 15 min. The optimization results are summarized
in Table 3, from which we see that the metaheuristic solutions again produce significantly improved objective values
over the simple signal strategies. In particular, PSO reduces the network-wide total travel cost by 25.1% over ‘Equal’
and 43.4% over ‘Capacity’. Figure 17 shows, within the best solution, the time-varying green splits allocated to link
6 and 22 in the network.

Algorithm Best obj. Worst obj. Aver. obj. CPU time (s)
SA 1.1283e+04 1.3117e+04 1.2161e+04 4101
NP 1.5472e+04 1.6577e+04 1.6121e+04 13989

PSO 1.0688e+04 1.1980e+04 1.1251e+04 7159
Equal 1.4992e+04 1.4992e+04 1.4992e+04 —

Capacity 1.9818e+04 1.9818e+04 1.9818e+04 —

Table 3: Optimization results for the Sioux Falls network.

Summarizing the test results on the two networks, we conclude that PSO provides the best solution quality mea-
sured by best, worst, and average objective values. However, this is offset by the higher computational times compared
to SA. SA is the fastest algorithm among the three, although its solution quality is slightly worse than PSO. NP is
outperformed by both PSO and SA in terms of solution quality and computational efficiency.

24



ARTICLE LINK: http://www.sciencedirect.com/science/article/pii/S0968090X15001266
PLEASE CITE THIS ARTICLE AS

Han, K., Sun, Y., Liu, H., Friesz, T.L., Yao, T., 2015. A bi-level model of dynamic traffic signal control with
continuum approximation. Transportation Research Part C 55, 409-431.

3 4 5 6

9

3

1

2

8

6

47

5

1 2

7 10

12 11 10 16

49

13 23 16 19

21

24

2625

29

51

8

36 32

4833

22

7

18

20

17

50

55

18 54

13

23

14 15 19

22

24 21 20
74 66

75

62

64

697673

42

59

65
63

34 2840

71

43

30

53 58

61

52

17

56
60

46 67

68

3837

3135

4 14

12

15

27

9

11

45

5741

44

72

70

39

Figure 16: The Sioux Falls network.
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Figure 17: Sioux Falls network: The best solution for η6(t) and η22(t) obtained from PSO.

5.4. Algorithm acceleration via parallel computing

To improve the computational efficiency of PSO while maintaining its effectiveness in finding a satisfactory solu-
tion, we implement a parallelization of the PSO algorithm on 4 computing nodes for both test networks. The results
are presented in Table 4, from which we can see 61.05% and 66.58% improvements in the computational efficiency for
the seven-arc network and the Sioux Falls network respectively. Furthermore, based on 10 replications of the parallel
computing procedure, we calculate the p-value for the objective values to determine the difference between the solu-
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tion quality of sequential and parallel PSOs. And the p-values of 0.907 (seven-arc network) and 0.810 (Sioux Falls
network) imply that the differences are insignificant. We thus conclude that the parallel implementation of the PSO
algorithm may significantly accelerate the solution procedure without significantly deteriorating the solution quality.

Network Seven-arc network Sioux Falls network
Algorithm CPU time (s) p-vallue CPU time (s) p-vallue

Sequential PSO 2154 0.907 7250 0.810
Parallel PSO 839 — 2423 —

Table 4: Comparison between the sequential and parallel PSO.

6. Conclusion and future research

This paper presents a bi-level Stackelberg game approach for optimizing signal timings on a network, based the
continuum signal representation to describe and predict the aggregate traffic dynamics at signalized intersections. The
proposed problem is capable of capturing drivers’ adaptive travel decisions in response to the implemented signal
timing plans. The upper-level problem seeks to minimize network-wide travel costs by controlling time-varying
signal green splits at road intersections; the lower-level problem is a dynamic user equilibrium (DUE) with embedded
LWR-based dynamic network loading (DNL) sub-model that employs the continuum signal approximation instead of
the traditional binary (on-and-off) representation. Implementation details of the continuum signal model in the DNL
procedure are provided based on the discussion from Han et al. (2014). The bi-level signal optimization problem
is formulated as a mathematical program with equilibrium constraints (MPEC) and solved with three metaheuristic
methods. Solution quality, computational efficiency, and parameter sensitivity of these methods are analyzed and
compared. A parallelization of one of the methods is presented and its acceleration on the solution procedure is
illustrated.

One of the novel aspects of the proposed model is the use of a continuum signal model, which is an effective
alternative to the more conventional and exact on-and-off signal model. The continuum signal model has the ability to
predict the aggregate traffic behavior that exists at signalized intersections without knowledge of detailed signal phas-
ing, vehicle movement, and vehicle queuing/discharging. For this reason, it is suitable for applications on large-scale
urban networks with considerable advantages in computational efficiency. Compared with the on-and-off approach,
the continuum model does not rely on the binary (i.e. on-and-off) signal controls, allows larger time step sizes to
be employed for improved computational efficiency, yields much more refined decision resolution in terms of green
splits, and eliminates undesirable travel time discontinuities that typically arise when on-and-off signal models are
considered. Despite these advantages, the effectiveness of the continuum model as an approximation of the on-and-
off model is dependent on several factors including spillback and the fundamental diagram (Han et al., 2014). And
the continuum signal model may yield significant error compared with the exact on-and-off approach if not properly
implemented. We provide some practical guidance regarding the use of the continuum signal model to improve its
approximation efficacy.

The proposed MPEC is computationally challenging due to the nonconvexity and semi-infiniteness of the equilib-
rium constraint, as well as the poor regularity in the constraints/objectives caused by the LWR-based DNL sub-model.
Three metaheuristics are proposed in order to strike a balance between the optimality of the solution and the efficiency
of the solution procedure. One of the metaheuristics is implemented with parallelization with a significantly improved
computational efficiency. The resulting solutions reveal interesting managerial insights such as a Braess-like paradox
and complex decisions in terms of time-varying signal green splits. However, the signal control decisions do not
include parameters such as cycle, offset, and signal phases. Further study is required to determine these additional
signal control parameters through the maximization of intersection capacities and throughputs.
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