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ABSTRACT 

This thesis is concerned with the way in which ideas normally 

only encountered in the context of gravity may be relevant to hadron 

physics. In models of this kind the spacetime metric to which hadrons 

respond (the "strong" metric) is different from that experienced by 

leptons (the "weak" metric). 

In Chapter One a short review of the f-g theory of Isham, Salem 

and Strathdee, and Wess and Zumino, is presented. 

In Chapter Two a class of exact, spherically symmetric, classical 

solutions of the coupled f-g field equations is found and their 

properties are discussed. The f and g metrics each effectively induce 

a cosmological constant in the field equations of the other with the 

result that the solutions involve de Sitter and anti-de Sitter space-

times. 

The anti-de Sitter case may be able to provide a mechanism for 

quark confinement. For this and other reasons one is led to ask whether 

or not sensible quantum field theories exist in such a spacetime. 

Chapter Three describes an investigation of this problem. The usual 

quantisation procedures are inapplicable to anti-de Sitter spacetime 

because it is not globally hyperbolic. Nevertheless a consistent 

quantisation scheme can be devised by carefully controlling information 

entering the spacetime through its timelike spatial infinity. 

In Chapter Four a model is presented in which the strong and weak 

metrics are conformally related by a scalar field. Its basis is an 
4 

adapy_on of the Brans-Dicke scalar-tensor theory of gravity. An 

interesting consequence of the model is that when the separation of 

two quarks becomes very small the interaction between them switches 

off except inasmuch as they lower each other's effective mass. 
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Finally, in Chapter Five, a few remarks are made concerning the 

future development of strong gravity theories. 
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NOTATION AND CONVENTIONS  

- means "equals by definition". 

The metric, 
guv 

, has signature -2. 

n 11 
= diag(1,-1,-1,-1) or diag(l,-l,-r2,-r2sin20). 

g = det guv ' 

ruv = 2gaA(gAu,v + gavsu - guv,a) 

a 	a 	a 
I' 	r 	- r 
a a a o 

R 
pay 	ruv,S 	r ~,v 

+ Quv 
u 	S 	av rug ' 

R = Ra 
uv uav 

With these conventions the usual Einstein equations, including a 

cosmological term, are 

Guv 
- A guv 

= Ruv - 2guvR - A guv = + K T g uv 

where K2 = 8TrG . 
g 

= c = 1 , but 7i is sometimes explicitly shown in Chapter 3. 

Fs 
3 is defined by a Bus = a āus - B 2ua . 

O for x < 0 
8(x) 

1 for x > 0 

8 



CHAPTER ONE 
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REVIEW OF f-g THEORY 
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1.1 Why have a radically new massive spin-2 field theory?  

Isham, Salam and Strathdee's f-g theory3  (independently invented 

in a slightly different form by Wess and Zuminofi; see Sec. 1.4) 

describes a spin-2 hadron field coupling universally to other hadrons, 

and related to gravity in a fundamental way. Some of the reasons for 

trying to find such a theory may be summarised as follows: 

(i) Tensor dominance  

The vector dominance hypothesis for the interaction of electromag-

netism with charged hadronic matter has had some success, for low 

energy processes at least. The basic idea here is that photons should 

only couple to hadrons by virtue of a mixing of the Maxwell field with 

vector hadron fields of negative C-parity, the lowest mass candidates 

being the p0, w and cp mesons. In the simplest models only a single 

field, p, is considered. Of course the leptons are assumed to interact 

directly with the photon, since quantum electrodynamics is known to be 

a good theory. Diagrammatically, these couplings are represented by 

Figs. 1.1(a),(b). 

If gravity is treated in an analogous way one obtains the tensor 

dominance hypothesis5-7  in which hadrons are assumed to interact with 

gravity via tensor mesons, such as the f, f' and A2, coupled to the 

hadronic energy-momentum tensor. In the simplest versions of the theory 

only one such field is considered and is denoted by f, though it is 

not necessarily supposed to represent the experimentally observed 

f-meson. It might instead be associated with the pomeron Regge trajectory. 

(At present the pomeron and f trajectories are generally believed to 

be distinct - see e.g. Ref. 8.) Figs. l.l(c),(d) depict the appropriate 

diagrammatical representations of gravity coupling to leptons and hadrons. 
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(a) (b) 

(c) 
	

(d) 

Fig. 1.1  

(a) Direct photon-lepton coupling. 

(b) Photon-hadron coupling via p-y mixing. 

(c) Direct graviton-lepton coupling. 

(d) Graviton-hadron coupling via f-g mixing. 
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(ii) Hadrens anxt geometry.  

If the f meson field is to be closely related to gravity then 

the resulting theory is likely to have a high geometrical content. 

The differential geometry of fibre bundles has already appeared in 

particle physics in the. context of gauge theories. In addition, however, 

there is evidence that spacetime geometry could play a rōle in hadron 

phenomena. There are two main lines of thought here. 

Firstly it has been suggested that the ideas of "temperature"
10  

and "fireballs" in hadron physics might be related to Hawking radiationll  

from horizons of "strong" spacetime. Of course the correspondence, if 

any, would be with the very last stage of quantum evaporation, the 

nature of which is not yet clear. 

Secondly, it might be possible to use geometry to provide an 

interesting mechanism for quark confinement12'13.  This idea will be 

discussed in more detail later on. 

(iii) Problems with massive spin-2 field theory  

A mass M, linear, spin-2 field in Minkowski space (with metric 

n
uv = diag(1,-1,-1,-1) ) is represented by a symmetric tensor 1'

uv 

satisfying the wave equation 

( ❑ 
 + m2)11.1 

 uv 
= 0 

and the subsidiary conditions 

(1.1.2) 

and 

14J 	= 0 	 (1.1.3) 

(contractions made using nuv  ), which freeze out the spin-1 and spin-0 

parts of q . All three equations may be derived from the Fierz-Pauli 

lagrangian density: 
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LFp = 	 uv,A 'pv,X - i*Ap,u *av,v + 2*,u 
*uv,v - i*,u *,u 

2  
- 	"ivy 1Puv - 4)2) 	

. (1.1.1+) 

What happens if we try to generalise this to a theory in curved 

spacetime, replacing ordinary derivatives by covariant derivatives 

and making contractions using guv  ? It transpires that the subsidiary 

conditions may still be derived in the case of a Ricci-flat spacetime, 

but not otherwise14. The problem is that the manipulations used in 

deriving (1.1.2) and (1.1.3) make use of the commutativity of ordinary 

derivatives. In curved spacetime the commutation of covariant derivatives 

gives rise to extra terms involving curvatures. 

So in non-Ricci-flat spacetimes the scalar and vector parts of 

*uv  are not suppressed. Some of these degrees of freedom will be 

"ghosts", describing fields whose energy is of the wrong sign, making 

the physical interpretation somewhat difficult. 

One might ask why it is that spin-2 suffers in this way whereas 

spins 0 and 1 do not. Of course for spin-0 it is not so surprising 

since there are no subsidiary conditions. The reason that the massive 

spin-1 (Proca) field generalises to curved spacetime in a satisfactory 

way is that the derivative part of its lagrangian is based on the 

exterior calculus. In particular it makes use of the exterior derivative 

which does not depend on the metric at all. Indeed this derivative can 

be defined perfectly well on a nonriemannian manifold. Thus the spin-1 

field maintains a certain degree of independence of the metric. For 

spin-2 on the other hand there is no way of avoiding use of the covariant 

derivative in the curved spacetime generalisation of LFP' 
with the 

result that the metric and its derivatives become entangled with the 

would-be constraints in an altogether inextricable way. 



1~+ 

This comparison may be thought of as a guide to the construction 

of an improved spin-2 theory in curved spacetime. One should attempt 

to use derivatives which are independent of g uv. 

(iv) Experimental quantum gravity  

Due to the small size of the gravitational coupling constant, 

quantum effects in gravity (perturbative effects at least) are probably 

irrelevant for energies much smaller than the Planck energy. This is 

roughly 10i9 GeV, compared with present day experimental energies of 

order 10 GeV. So if hadron physics does involve a "strong" gravitational 

field of some description then it may provide the only experimental 

testing ground for quantum gravity theories. 

1.2 The f-g lagrangian  

In (iii) above it was suggested that the derivative part of the 

spin-2 lagrangian should be constructed without using the covariant 

derivative. Let us survey the various possibilities. 

The exterior derivative has already been mentioned. It is ideal 

for spin-1, but is unusable in the present case since there is no form 

capable of describing a spin-2 field. 

The other coordinate independent derivative which can be defined 

on a nonriemannian manifold is the Lie derivative. This, however, 

requires a vector field for its definition, and on detailed investigation 

seems to offer little hope. 

There is only one alternative left. We already know of a spin-2 

theory constructed without prior metric, namely general relativity. 

Although the derivatives in the definitions of the curvature tensor 

cannot themselves be written in a coordinate independent way, the 
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resulting object is coordinate independent. Thus it makes sense to 

postulate an Einstein type lagrangian for the f-field which is now 

represented by the metric tensor fuv. This introduction of the %trong" 

metric, fuv, realises the desire to incorporate geometry into hadron 

physics, as discussed in (ii) above. 

As a first stage in incorporating tensor dominance ideas ( (i) 

above) it is postulated that whereas leptons (the photon is included 

in this'. category) respond to the metric guv, hadrons live in the 

world of fuv. Thus we may write the lagrangian density (as yet incomplete) 

as 

where 

and 

=  0 	
+ ot (leps.,guv) + £f + L(hads.,fuv) 

_ _ K ~ Rg 
g 	g 

(1.2.1) 

(1.2.2) 

f = - f 	Rf • (1.2.3) 

Rg and Rf are the Ricci scalar curvatures constructed from guv and 

fuv respectively. The constant K is related to the gravitational 

constant, G, by 

K = 	= 2 x 10-22-1 
-1 
e 

(1.2.x+) 

whereas Kf,, the strong gravity coupling constant, is assumed to have 

a size characteristic of the strong interactions: 

Kf 
-1 

• 
(1.2.5) 

In fact the reasons given above for the use of an Einstein 

lagrangian for fuv are not the only ones. It is known that the 

universality of the coupling of gravity to matter causes gravity to 

interact with itself as a consistency requirement, and by an iterative 

process starting from linear spin-2 theory one is led to the Einstein 
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lagrangian15. The same argument can be used for the strong gravity 

field if it is to be coupled universally to hadronic matter. 

The lagrangian is not yet complete. From (1.2.1) it is clear 

that the lepton and hadron worlds do not communicate with each other, 

and that the f-meson is massless. Both defects are rectified by the 

introduction of a generally covariant mixing term, otfg, which provides 

the f-g mixing for the tensor dominance hypothesis. The invariance of 

the lagrangian is reduced by 	 fg. Whereas before,independent coordinate 

transformations could be carried out in the f and g worlds, 
fuv 

and 

guv 
must now be treated as tensors on the same manifold, and only a 

single set of coordinate transformations makes sense. 

1.3 The f-g mixing term  

The criteria which the f-g mixing term is required to satisfy 

are as follows: 

(1) General covariance. L fg must be a scalar density. 

(2) The field equations should admit the "vacuum solution" fuv = g = uv nuv, 

corresponding to Minkowski spacetime with a vanishing "physical" 

f-meson field (associated with the difference of fuv and g , as 

discussed later). 

(3) The theory should be ghost free. 

Suppose the fields are close to their vacuum values and write 

guv 
=n 

} Kg hYv 

fuv 	nuv ~- K f euv 

(1.3.1) 

(1.3.2) 

To within 4-divergences, the expansions of ,: f and £ g to bilinear 

order in euv and huv are identical to the derivative part of the 

Fierz-Pauli lagrangian density, 
LFP 

(eqn. (1.1.4) ). So what is 
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needed is a mixing term which reduces to the Fierz-Pauli mass term 

of (1.1.4) in the bilinear approximation. Now it is well known (see 

e.g. Ref. 16) that a mass cannot be attached to a single gravitational 

field in a generally covariant way. At lowest order a mass term for 

euv say would not respect invariance under the gauge transformation 

Kf euv 	Kf euv + Eu,v + Ev,u 

Kg huv ; Kg huv + E
u,v 

+ Ev,u 

(1.3.3) 

Such a gauge transformation is the lowest order part of a coordinate 

transformation in the full theory. However, an invariant mass term is 

possible for the difference Kf 
euv 

- Kg huv. This means L fg is of 

the form 

2 

~fg 	
K
f 
euv .- Kg hu.)(Kf eas 	

Kg ha~)(nua 
rj 	_ nuv na13) 

+ higher order terms. 	(1.3.4) 

Diagonalisation for mass now shows that there is a massive ghost-free 

field (K
f euv 

- Kg huv), with mass 

i 

mf = (1 + K2 K-2)2 M = M (1.3.5) 

and a massless field (Kg euv + Kf huv), to be regarded as the linearised 

f-meson and graviton fields respectively. 

The mixing term Lfg is not uniquely determined by its bilinear 

structure and general covariance. Some suggested forms are as follows: 

(a) A straightforward covariantisation of the Fierz-Pauli mass term 

for (fuv - g ) or (fuv - guv), e.g. 

= - 
M2 

	- guv)(f
a~ 

- ga~)(gua 	- 
- guv gad/7. 

	(1.3.6) 

Many simple modifications are possible e.g. exchanging g's for f's 

in the third bracket, or using 47-F instead of Ì. . It is this type 



of mass term which will receive most attention in Chapter Two. 

(b) The "cosmological" mixing term3 

a+13-z L fg = -A~ - 	+ (A + AI )(-f)a(-g)~[ det'-z(fuv + guv ] 	(1.3.7) 

where 

a = z (2A + a ) 	(x + A•)
-2 (1.3.8) 

and 

= zA (A+2X')(A+ A,)
-2 	(1.3.9) 

and the f mass is given by 

M2 = 2(K + K2)AA' (A + Að )-1 
	

(1.3.10) 

Again many simple modifications are possible. 

(c) Some attractively simple mixing terms are possible in the vierbein 

version of f-g theory due to Wess and Zumino4 which will be discussed 

in the next section. 

From the discussion above it should be clear that the physical 

f-meson field is actually associated with something like the difference 

of the two metrics (precisely the difference in the linear approximation). 

When the metrics are identical the theory reduces to the usual Einstein 

lagrangian for general relativity. 

As regards the constraints problem, the improvement over the 

linear theory described in Sec. 1.1(iii) is as follows. Because Gguv and 

Gfuv satisfy the Bianchi identities 

Vg Gguv = 7f Gfuv = 0 
1 	u 

(1.3.11) 

(where Vg and Vf denote the covariant derivatives associated with guv 
and 

fuv 
respectively), we apparently have eight first order constraints, 
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namely 

g 1 	S Lfg __ f 	1 ō"~ fg 	
(1.3.12) 

~u 	Sgu~ _ 	Du [7-i Sf uv 	
= o 

Four combinations of these are satisfied identically due to general 

covariance, which is associated with the reduction in the degrees of 

freedom of the massless field from ten to two. 

The other four are the analogue of (1.1.2). Thus the four 

corresponding degrees of freedom, which cause trouble in the usual 

linear massive spin-2 theory as discussed in Sec. 1.1(iii), are 

completely removed in f-g theory. 

Regrettably an analogue of (1.1.3) cannot be found, so this 

one (possibly ghost) degree of freedom remains, and casts doubt on 

the boundedness below of the energy when an ADM decomposition is made
16'17. 

It is an attractive idea that there might be a restricted class of 

mixing terms for which the ghost is exorcised, but arduous investigations 

along these lines have not yet proved fruitful. Nevertheless the 

ghost is certainly eliminated at lowest order at least, by virtue of 

the Fierz-Pauli form of the linearised theory. Salam and Strathdee 

have suggested18 that the problem might be resolved by generating the 

f-meson mass dynamically, constructing the mixing term using Yang-Mills 

fields which may develop c-number parts19. Even in this case though 

the mixing term is still effectively of the form already discussed, and 

will be kept as such in the sequel. 

1.4 Vierbein version of f-g theory  

In the version of f-g theory due to Wess and Zumino4 the emphasis 

is shifted from metrics to vierbeins. Thus rather than using f and 

g as the fundamental fields one uses orthonormal tetrads of vectors, 
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Kau and Lau respectively. Latin indices label the member of the tetrad 

and are raised or lowered using n
ab =ab = diag(1,-1,-1,-1) whereas 

Greek indices label the components of each vector and are raised or 

lowered using the respective metric as usual. The metrics may be 

expressed in terms of the vierbeins by the formulas 

K
a 	a 

fuv = K u Kav 	guv = L p Lav (1.4.1) 

The derivative part of the lagrangian is the same as before, 

but with the above substitutions. In fact this introduces an extra 

invariance into the theory, corresponding to local Lorentz ( S0(3,1) ) 

transformations of the tetrads. So we begin with the lagrangian density 

where 

=- 2Kg K RK - 2'1K"ZLRL o 	 f  
(1.4.2 ) 

K = det Kau , L E det L
au • (1.4.3) 

A mixing term ~ 	is introduced just as in the metric theory. 

This has the effect that Kau and Lau must now be regarded as vierbeins 

on the same manifold and must be treated accordingly when performing 

coordinate and local Lorentz transformations. 	is required to be 
KL 

of the Fierz-Pauli form for (Kf kau - Kg 
Z
ap

) in the linearised limit 

in which 

Kau = Sa + Kf kau 	, 	Lau = (Sa + Kg Qau 
	

(1.4.4) 

Wess and Zumino found four particularly simple mixing terms with this 

property, namely 

- 2- M2 (3K - K Kau Lau + L) 
f 

24 2 (K - L Kau Lau 3L) 

M~ (K _ K2 L2 Kau Lau + 3L) 

M 
- 2K-Z (3K - K L2 Kau Lau + L) 

(1.4.5) 

(1.4.6) 

(1.4.7) 

(1.4.8) 
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The ability to construct such simple mixing terms is a consequence 

of the expansion of determinants: 

K = - 1 - kaa + 2 (kab kab - kaa k  ) 

 

(1.4.9 ) 

 

(contractions made using n
ab ). The bilinear part is of precisely the 

form required, and it is this fact which is exploited in constructing 

the above expressions. In the metric theory it is the square roots of 

determinants which must occur in order that the mixing term be a scalar 

density of the correct weight. These do not have the above property 

and so simple mixing terms of this type cannot be found in that version 

of the theory. 

An extra twelve degrees of freedom have been introduced in the 

vierbein theory and these must be removed again if the particle content 

is to be the same. The SO(3,1) invariance allows six of them to be 

fixed by choice, for example by stipulating that one of the vierbeins 

be symmetric. The other six are removed by the antisymmetric parts of 

the field equations since the derivative parts of these equations are 

necessarily symmetric. The way in which these constraints appear will 

be seen more clearly in Sec. 2.6 in the context of trying to find 

spherically symmetric classical solutions. 

More realistic theories should incorporate internal symmetry and 

the use of vierbeins offers an attractive way of doing so. Isham, Salam 

and Strathdee20  showed that the SO(3,1) (or more appropriately SL(2,1) ) 

invariance could be extended in a natural way to SL(2,T) x SU(2), 

SL(l,T), SL(2,0) x SU(3), SL(6,(F), etc. 

Attempts have also been made to put internal symmetry into the 

metric version, although more difficulties seem to arise here. The U(3) 

model of Isham and Tucker21  describes a nonet of tensor mesons aquiring 

their masses through a mixing with gravity. 
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For the purposes of the next chapter, however, only the simple 

theory without internal symmetry will be considered. 



CHAPTER TWO 

23 

EXACT SPHERICALLY SYNNETRIC CLASSICAL SOLUTIONS FOR f-g THEORY 
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2.1 Why look for spherically symmetric classical solutions?  

In this chapter spherically symmetric solutions of the f-g field 

equations are investigated with the emphasis on the metric version of 

the theory, for which explicit solutions can be found. 

The importance of classical solutions for field theories has 

recently been enhanced by the discovery of the relevance in a quantum 

context of solitons, instantons and related objects. An important 

class in a 3+1 dimensional theory is that composed of static, spherically 

symmetric solutions, the t'Hooft monopole being a prime example. 

In general relativity the Schwarzschild metric is perhaps the 

most discussed solution of the field equations other than Minkowski 

space. It was the desire to find the f-g analogue of this which prompted 

the investigation described in this chapter, but the results are 

rather different, as will be seen. The possible relevance to hadron 

physics has already been discussed in Sec. 1.1(ii) and so will not be 

repeated here. 

The first major attempts to find such, solutions were made by 

Aragone and Chela-Flores22,23. More recently an explicit solution was 

found by Salam and Strathdee24, but only in the approximation that the 

g-metric is that of Minkowski space. Although this might seem a 

physically reasonable approximation, many important questions cannot 

be satisfactorily resolved within this framework. For example, the 

role played by coordinate singularities is difficult to discuss when 

the g-metric is not completely known. In any case, the solutions found 

here certainly do not possess "almost flat" g-metrics in general. 

It is worth mentioning in passing that solutions with other 

symmetries have been discussed in Refs. 25-29. 
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2.2 The mixing term, field equations and imposition of symmetry  

The mixing term chosen here is of the type discussed in Sec. 1.3(a). 

It is 

 M
2 L

fg 
	

K ( g
)u(_f)v(fas - gas)(foT _goT)(g 

a6 513T - g a0 66c17.1 

(2.2.1) 

where 

u + v = 	 (2.2.2) 

so that Lfg is a tensor density of the correct weight. 

Only solutions of the matter-free equations are sought, so the 

' lagrangian is 

L = 	- K2 	Rg - K2 	Rf + L fg d4x . 	(2.2.3) 

	

g 	f 

Salam and Strathdee24 have considered the case in which u = 2 

and v = 0 , with the approximation guv = rluv (i.e. Kg -} 0). No such 

approximation is made here, but their methods are extended to solve the 

coupled equations for fuv and guv. 

The value of the parameter u is left unspecified for the sake of 

generality. It will be seen that it plays an important rōle in determin-

ing the "cosmological" (i.e. large r) behaviour of the solutions. 

Upon varying fun, the action principle SL = 0 gives the f-field 

equations 

where 

f 	f i 	2 f 
uv Guv = R - if R = 

Kf Tuv 
(2.2.x+) 

2  

Tuv ~FKf 
(ET
f ~

v fuv(fas 
-g 	-g 

_gc5t)(gaa gsT - gas 
gar) - 

-2(for0 - gas)(gap gsv - gas guv)] 	
(2.2.5) 

A useful way of re-expressing (2.2.4) is 

Rūv = K2 (Ti' - 2fuv Ti') 	(2.2.6) 



with 

Tf fuv Tf 
uv 

Variation of guv yields the Einstein equations 

26 

(2.2.7) 

Ggv Rg~ - 	iguvRg = 
K22 

Tgv 	(2.2.8) 

where 

Tg
uv = 

M2 f v 
[2cfas - gas)(gau gSv - gaR guv 

) + (fa° - gas)(faT - gaT)x 
~  

x (u guv gaa gs.~ - u guv g g ± 2gap 
	

- 2gau gBv gat)] 

(2.2.9) 

Only the spherically symmetric "static" (see below) case is to 

be investigated. Then, without loss of generality, the metrics may 

be written in the form 

f dxu dxv = C dt2 - 2D dt dr - A dr2 - B(d02 + sin20 02) 	(2.2.10) 
uv 

guv dxu dxv = J dt2 - K dr2 - r2(d@2 + sin2@ 0 2) 

with inverses 

(2.2.11) 

fuv
a u a v =āa t - 2at a r —ōar—B(a ē +sin 2@a2) 	(2.2.12) 

guvaa = J a - 1 r, a - r2 (a + sin-2@ a} 
u v 	t 	 (2.2.13) 

where 

A= AC + D2 > 0 	 (2.2.14) 

and A,B,C,D,J,K are functions of r only. As explained in Sec. 1.2 the 

theory is invariant under coordinate transformations applied simultan-

eously to both metrics, and these have been used to optimally simplify 

the form of g . uv 

The above use of the word "static" requires further elucidation. 

Each metric is static in the sense that for each of them one can find 

a hypersurface-orthogonal timelike Killing vector field. In general it 
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will not be possible to choose the same vector field for both and in 

this sense they are not relatively static. However,they are relatively 

stationary since a timelike Killing vector field for both metrics can 

be found. In the coordinate system chosen above the vector a t has this 

property. 

2.3 Curvature computations  

The Ricci curvature components may be conveniently and efficiently 

computed using the method of curvature 2-forms (see e.g. Ref. 30). To 

begin with, an orthonormal frame of 1-forms must be found. A convenient 

choice for the f-metric is wa (f superscripts will be dropped for a 

while) where 

1 	 1 
w0 =C2 dt - D.0_ 2 dr 

7 	I 

WI = g C-2 dr 

1 	 ~ 
w2 = B2 de w3 = B2 sine dcl) 

so that 

f 	dxuv =(w0)2 - (w1)2 - (w2)2 _ (w3)2 

(2.3.1) 

• (2.3.2) 

The connection 1-forms wab are deduced from the structure 

equations 

a 	b 
w bi w 

(2.3.31 

and 

ab 	ba w = - (2.3.1 ) 

The nonvanishing connection 1-forms are 

i 
w01 = w10 = 2 C' 	(CO)-2 w0 

w12 = w21 - 2B (ā)2 w2 

(ctd.) 
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1 

- w13 = 013, = 2B (C)2 w3 

- 0123 = w32 = B 
2 cote 013 

The curvature 2-forms are computed from the defining formula 

b = dwb +
wac

Awe
b 

and in this way one finds 

cx
0 	

Rl 
= LO~o' 	w0 

A 
W1 

1 	0 	

C„ 

 2D J J 

~p 0 
/!'~2 = 

` 0 _ 
R1 3 

1 

2 
- 

11 1 	`0 3 _ _ B"C + B'2C 	B'C' } B'A'C  
3 - OL 1 	L 2Bfl )+B2fl 	FB 4BA2 

ck 2 3 	 w2 
n

w3 3 R 2 [1 2C
B - ~+B2A J 

2 
+~~0 = 

3 	_ 
0 

 2 

1 

B'C' 
	W01\ 

  012 

EB 

B'C' 
BB 

W0 n W3 
 

n 	B' 2C _ B' C' WPC 

2~  + 4132A 7 B 
+ 

1+BQ2 

1 ^ w 2 
J 

w  

• 

(2.3.5) 

(2.3.6) 

(2.3.7) 

The,nonvanishing Riemann tensor components can then be read off from 

the relation 

1R,, 
ab = Rabcd w

en wd 	(summation over c > d only). 
	

(2.3.8) 

They are as follows, omitting those which are obtainable from the 

given components using -the symmetry properties of the Riemann tensor: 

0 	_ C'A' 
- 

C" R 
101 4A2 	2A 

0 	_ 0 	__ _ B'C' R 
202 - R 303 	1+Bt 

1 	_ 1 	__ _ B"C + B'2C B'C' + B'A'C 
R 
212 - 

R 
313 	2BA B2Q 4BA

BA
2 

2 	1 B'2C 
R 323 1-3

._ 

4B-A 

(2.3.9) 
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Contracting to form the Ricci tensor and converting back to the 

coordinate frame produces the following nonvanishing components (f super-

scripts are now restored) : 

Rf 
= 	[C» 

+ B'C' 	Ct_t 
tt 2A 	B 2A 

Rf = Rf = - D 	C" + 
BIC' 	C's' 

tr 	rt 	2A [ 	B 	2b 

+ R
f 	Bt2 A lt B'C' BtAt C*Qt 

rr = - B 
B" 	

2 - 2a CC + B 	BA 	2A 2B 

 

(2.3.10) 

Rf = sin 2e Rf = 1 - C [B" + B'C' 	] B's' 
98 	~~ 	2A 	C 	2a • 

 

Then the components of Rgv are simply obtained by making the replacements 

C } J, D-}0, A -- JK, B}r2, (2.3.11) 

and. the nonvanishing components are 

g __ J" Jt _ J'2 - J'Kt 
Rtt 2K + rK lJK 4K2 

g J" Kt J'K' J'2 
Rrr = - 2J + rK + 4JK + 1~J2 

(2.3.12) 

Rg = sin-28 Rg~ 
	K 
= 1 _ 1 _ 3rJ' _ rK' 

86 	4 	K 2J 2K2 

2.4+ Solving the equations  

Expressions (2.3.10) display the simple algebraic identity 

DRtt +CRtr =0 

Hence, from the f-field equations (2.2.6) 

D Ttt +C Ttr =0 

(2.x+.1) 

(2.x+.2) 

which becomes, upon substituting the explicit form of the metrics, 

(2.2.10) - (2.2.1+), 
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2r2 
B-3/ D=0 

(2.x+.3) 

It transpires that exactly the same result is obtained from the identity 

Tg Tt =O r (2.4.4 ) 

which is a consequence of Rgr = 0 and the Einstein equations (2.2.8). 

Thus we can consistently set either 

 

B= 3 r2 (2.4.5) 

or 

D = 0 (2.4.6) 

and the resulting solutions will be labelled Type I and Type II 

respectively, following Salam and Strathdee24. 

Regrettably no explicit Type II solution has yet been found, even 

in the approximation g = riuv. The large r asymptotic structure has 

been investigated in detail by Aragone and Chela-Flores
22,23

, using 

this approximation, and has a Yukawa-like behaviour for asymptotically 

flat solutions. 

Here we will only consider the Type I solutions. It is already 

clear from (2.4.5) that there will be no weak field region, since 

fuv - g
uv = 0 requires B = r2, not 3 r . 

At this point it is convenient to display the nonvanishing 

components of Tf and Tg using the explicit form of the metrics 

	

uv 	uv 

(2.2.10) - (2.2.14) and setting B = 3 r2 . 

-1 f 	1 f 	_  M2 9JK u 
C Ttt = - D T

tr = 
-A-1 

Trr
f _ 4

K- ~40 	[
3v 
2 + 2JK (1 - 

v)] 
f 

f 	-2 f 	M2r2 9JK u r~tvJK 
	*(JA T8 = sin8 T = g ~ 	L 

30 
- v + 3 - 	+KC) 

f 

J-1 Tg = -K 1 Tg -  
M2 4d )v pu 2JK(1 + u)~ 

tt 	rr - 4K2 (9JK 	0 
f 

Tg = sin 2A Tg 
-_ M2r2 ~ v 2uJK + 3(JA + KC) - 3u - 9 

68 	0 	9JK [ A 	A 	2 	2 

(2.4.7) 

(2.4.8) 

(2.4.9) 

(2.4.10) 
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Using the field equations, the simple relations A Ttt + C Trr = 0 and 

K Tgt + J Tgr = 0 become 

ARtt +CRrr =0 (2.4.11) 

and 

K Rgt + J Rgr = 0 	 (2.4.12) 

Now (2.3.10), (2.3.12) and (2.4.5) are used to substitute for Rtt , 

etc., and following a fair amount of algebra it is found that 

A' = (JK)' = 0 	 (2.4.13) 

i.e. A and JK are constants of integration. It is convenient to choose 

JK = 1 by a suitable resealing of the time parameter t, this being the 

last remaining degree of freedom in our choice of coordinates. 

Using these results, the general solution of the remaining f-field 

equations is found: 

JA +J 1C= 2 A +3 

C =2 A (1 
2u  rf 29r2 

where A is a constant given by 

u 
x - 	( 

~ Cv + (1 v)I
l 

(2.2.14) 

(2.2.15) 

(2.4.16) 

and pi, is an integration constant. 

The constant A seems very much like a cosmological constant and 

in fact, substituting (2.4.14) back into the expressions for Tuv 
one 

finds 

and consequently 

2 f. 
K f Tf = A 

f uv 

Gf - A f = 0 uv 	uv 

(2.4.17) 

(2.4.18) 
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A very similar result is found for Tg . The substitution of 
uv  

JK = 1 and (2.4.14) into (2.1+.9) and (2.4.10) yields 

K2 g K  T = Ag 
g pv 	Pv 

(2.4.19) 

where 
2 	

r 
A = 4KZ( 9v 	1 9L2u - A( +u)~ (2.4.20) 

What has happened is that the f-field configuration has induced a 

cosmological constant on the right hand side of the g-field equations 

and vice versa. 

The g-field equations 

G
g = Ag 
Pv 	111) 

(2.1+.21) 

in the chosen coordinate system have the standard general spherically 

symmetric solution 

	

2u 	2 
J = 1 	Ar --s- 

	

r 	3 

u being another integration constant. 
g 

Summarising: 

guvdxudxv =~l-
2

- A
32I

dt2 - 1_
2

_ A
32

-1 
dr2

-  
\\\\\\ 

- r2 (d@2 + sin28 d~2) 

2u 	2)f uv dxu dxv = 2Q(f_ - rf - 29r 	2 D dt dr - A dr2 - 

- 3 r2 (d82 + sin28 42) 

where 

(2.1+.22) 

(2.4.23) 

( 2.1+.21 ) 

D2 = A (1 - X)(1 - 

 

Y 
(2.4.25) 

(2.4.26) 
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2u 	2 	2u 	2 . -1 
X = 1 - rf - 29r 	1 - - 	- 

A3~ 
	(2.4.27) 

and A, X are given by respectively equations (2.4.20) and (2.4.16). 

This is the general Type I solution. 

2.5 Properties of the solutions  

The f and g equations are in a sense decoupled, each set becoming 

the Einstein equations with (related) cosmological terms. The coordinate 

system was chosen to simplify the structure of the g-metric by expressing 

it in a conventional diagonal form. Because the general covariance of 

the theory refers to simultaneous coordinate transformations for both 

metrics, the functional form of fug is already determined by that of 

guv. It is perhaps not surprising that fug appears in a form which, 

were it the only metric in the theory, would be regarded as being 

associated with a rather unconventional choice of coordinates. This 

"locking together" of the two metrics in the chosen coordinate system 

is manifested in equations (2.4.5) and (2.4.14) and in the relation 

between the two cosmological constants. 

Each metric corresponds to a Schwarzschild (uf 
or ug > 0) or 

anti-Schwarzschild 
(uf 

or ug <0) plus de Sitter (A or A > 0) or anti-

de Sitter (A or X< 0) spacetime. For a given value of u the cosmological 

constants are not independent but are related to each other through 

their dependence on the integration constant A. On the other hand, 

the Schwarzschild masses of and ug are completely independent. This 

suggests that it is the cosmological structure that is the most 

important aspect of the solution, particularly if interpreting it as 

being "solitonic". 

An interesting special case results from the choice 
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ug =0 , 	A= 
3 

(l+ū1) 	A =0 (2.5.1) 

Then gu\, = n and so g-spacetime is simply Minkowski spacetime. 

(This shows that the Salam-Strathdee solution2 happens to be exact 

for A = 4.) The f cosmological constant is fixed by (2.5.1), taking 

the value 

A 1 A=0 
3M2 	( 	27u 1u 

16(u+l) 16(u+1))  
(2.5.2) 

It is interesting that the object described by this special case 

has no mass in the gravitational -sense, since Tgv 
vanishes everywhere. 

This feature is shared by the Yang-Mills instantons of Belavin et al.31 

whose gravitational energy-momentum tensor also vanishes. Similarly 

the "ghost neutrino" solutions of Davies and Ray32 propagate without 

gravitational mass in a plane-symmetric spacetime. Massless fermions in 

a spatially flat Robertson-Walker universe also possess non-trivial 

zero-energy solutions33. 

It is noteworthy that the function D, as defined by (2.4.25), 

will in general become imaginary for some range(s) of values of r. 

This indicates the presence of coordinate singularities, removable by 

a suitable coordinate transformation. In the flat g-spacetime case 

such coordinate transformations will produce a g-metric representing 

Minkowski space, but in a peculiar coordinate system. All of this is 

avoided in the particularly simple special case 0 = 
9
14-  , which gives 

D=± 3 (1-X) (2.5.3) 

Of course we can only have a = 9 and a flat g-metric by postulating 

u = - 
2 
. Then from (2.5.2) 

a i 8M2 

A-0,u- - 2 = 
- ~+3 (2.5.x+) 

(A plus sign on the right hand side also appears to be possible, but 
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would correspond to choosing either I:T or V' negative which seems 

undesirable.) Such a fixing of the parameter A may be of relevance to 

the physical interpretation of solutions of the Klein-Gordon equation 

in f-spacetime (Ref. 13 ; see also Sec. 2.7). It should be emphasised, 

however, that 0 = 9 
is not the only way of making D real everywhere. 

Other more complicated possibilities exist, involving restrictions on 

the ranges of values of the parameters uf, ug and A. 

2.6 Other mixing terms  

The solutions discussed above were found using the particular 

class of mixing terms given by (2.2.1). It is clearly important to 

know to what extent the nature of the solutions depends on the choice 

of Lfg. Since Lfg 
is only completely fixed in the bilinear approxim-

ation, whereas the Type I solutions seem to lie far away from the usual 

vacuum, this dependence might be expected to be large. Nevertheless it 

will be seen that when solutions can be found at all for other mixing 

terms they are at least qualitatively similar to those of Sec. 2.4. 

One different class of mixing terms can be dealt with immediately 

namely 

2 
Lfg = 
	

M 
(-g)u(-f)v(fas gas)(f6T - gar)(f ao f~T 

fa  f
or ) - f 

(2.6.1) 

in which the contractions are now made with fur's instead of guy's. 

Clearly the Type I solutions can be simply obtained from those of 

Sec. 2.4, by making the replacements 

f uv 	guy , K f 
÷÷K g , u •' v , M -> M 	 (2.6.2)

Kf 

in (2.4.33) - (2.4.27), (2.4.20) and (2.4.16). Of course it will now 

be fug which is diagonal. A coordinate transformation will be needed 



2(-xa + (1-x)13)(A + a') = -xA' + (1-x) A 

(2 - 4a - 40 x (x-1)(X 

( K2 + Kg ) XA' = M2 (A + A') 

(2.6.6) 

(2.6.7) 

(2.6.8) 
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if it is desired to express guy  in conventional diagonal form. 

Other mixing terms of this type do not seem so easy to deal 

with. Consider, for example 

Lfg  = - 	(-g)u(-f)v(fas - ga8)(fQT - g6T)(fao gaT - fas gaT)  
( 2.6.3) 

in which the metrics enter in a symmetrical way. The equation taking 

the place of (2.1+.3) is 

3(p + JK) + 2(AJ + KC + 2Br2  + 2J2KB1  D = 0 	(2.6.4) 
r J 

Again D = 0 is a possibility but leads to intractable equations. Neither 

does setting the expression in curly brackets equal to zero give a 

useful simplification as it did in Sec. 2.4. 

Solutions for "cosmological" type. mixing terms were found by 

Salam and Strathdee (Ref. 24., Addendum). The trick they used to 

simplify the equations was first to generalise (1.3.7) to the form. 

L fg  = - AV-7- h' 1=F+ (A + A' )(-f)a(-g)S{ - det(xguv+(1-x)f") 
- 2- 

(2.6.5) 

with the constraints 

and then to restrict attention to the case a + s  - z > 1. The ansatz 

det(xguv+(1-x)fuv) = 0 	(2.6.9) 

now effectively decouples the f and g equations. They become Einstein 

equations with cosmological terms and hence have de Sitter or anti-de 

Sitter solutions. As before, Schwarzschild masses may also be introduced 
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and are completely independent of each other. Of course the actual 

functional forms of fuv  and  guv 
 must be such that (2.6.9) is satisfied, 

and the metrics are "locked together" in this sense. Note that (2.6.9) 

is more likely to be reasonable if x lies outside the interval [0,1]. 

So despite the big difference in mixing term, the solutions are qualit-

atively similar to those of Sec. 2.4. A disadvantage of the present 

case, however, is that g-spacetime cannot be flat since A = 0 is 

inconsistent with (2.6.8). 

Finally the possibility of solutions for the vierbein theory is 

investigated. A suitable ansatz for the vierbeins Kau  and Lau  is 

KOt  = T, Klr  = -S, KOr  = P, Klt  = Q, K26 = -Ur, K3. = -Ur sine, 

LOt  = W Llr  = -X, L20  = -r, L
34)  = -r sine, (2.6.10) 

where T,S,P,Q,U,W and X are functions of r only. Note that to maintain 

generality only one of the vierbeins can be chosen to be symmetric, so 

there is one more unknown function than in the metric theory. 

Choosing the mass term (1.4.5), the K. field equations are 

-2 K 	3 	(3Sw + TX) 	1 
M R00 = - 2 + 4 (ST - PQ) + 2U 

M-2 RK = - 	PW  
01 	2(ST - PQ) 

M
-2 RK - 	QX  

10 2(ST - PQ) 

-2 K 3 	(SW + 3TX) 	1 
M 

R _ _ 
11 2 4(ST - PQ) 	2U 

-2 K 	-2 K3 	(SW + TX)   1 M R22  = M R 
__ _ 

	

33 2 	4(ST - PQ) 

(2.6.11) 

(2.6.12) 

(2.6.13) 

(2.6.14) 

(2.6.15) 

Since R01 = R10' 
(2.6.12) and (2.6.13) produce the algebraic constraint 

PW + QX = 0 (2.6.16) 

which compensates for having an extra function to begin with. This 

exemplifies the way in which the extra degrees of freedom in the 
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vierbein theory are removed by the antisymmetric parts of the field 

equations, as discussed in Sec. 1.4. 

When the curvature components are calculated one finds the 

identity 

(Q2  + T2)R01 + QT(R0Ō  + R
K 

 = 0 ( 2.6.17) 

which is equivalent to (2.1+.1). Substituting (2.6.11), (2.6.12) and 

(2.6.11+) and making use of (2.6.16) eventually produces 

WQ = 0 	 (2.6.18) 

If guy  is to be nonsingular then W and X cannot be zero. Hence 

Q = P = 0 	 (2.6.19) 

so there are no Type I solutions at all. Precisely the same result is 

found for the other three mass terms (1.4.6) - (1.4.8). We conclude 

that the Wess-Zumino theory with these mass terms admits only Type II 

solutions (which once again seem to involve intractable equations). 

2.7 Quantised matter in classical f-g backgrounds  

It seems that when spherically symmetric classical solutions of 

the f-g equations exist and can actually be found then de Sitter and/or 

anti-de Sitter spacetimes are involved, irrespective of the particular 

choice of Lfg. This may mean that the appearance of these spacētimes 

in classical solutions is a basic feature of the theory, although too 

few examples have been found as yet to make such a statement with any 

degree of certainty. 

The matter terms in the lagrangian have been ignored up till 

now in this chapter. The first stage in remedying this is to consider 

the behaviour of matter fields propagating in the background provided 

by the classical solutions. We are interested in quantum fields of 
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course. Eventually one would hope to include the back reaction of the 

matter on the f and g fields and ultimately to quantise fuy  and g
uy  

themselves, but a programme as advanced as this lies far in the future. 

For now the first stage will provide quite enough problems! 

Thus we are faced with the task of constructing quantum field 

theories in de Sitter and anti-de Sitter spacetimes. Quantum theory 

in de Sitter space has received much attention; in anti-de Sitter space, 

very little. This is a pity since the latter spacetime provides some 

challenging and entertaining problems for the quantum field theorist. 

These problems, due basically to a lack of global hyperbolicity, are 

difficult but not insurmountable. Precisely how they can be overcome 

forms the subject matter of the next chapter. 

Salam and Strathdee12  have pointed out that f-g solutions 

involving an anti-de Sitter f-metric have properties suggestive of 

confinement. The effects of this metric are in some ways similar to 

those of an r2  potential well, and a straightforward solution of the 

Klein-Gordon equation in this background produces a discrete set of 

wavefunctions of increasing energies, with no continuum limit. In this 

sense the scalar particles are totally confined. Thus there is hope 

that if more realistic models are developed an interesting quark 

confinement mechanism might result. 

This hope gives added motivation for the investigation described 

in Chapter Three. However, in view of the more general interest of the 

problem the emphasis will be on anti-de Sitter space on its own, rather 

than as part of an f-g solution, and more convenient coordinates than 

those encountered in this chapter will be used. In applying the results 

to either of the metrics in an f-g solution one must of course take 

carefully into account the effects of the corresponding coordinate 

transformations on the other metric. 



CHAPTER THREE 

4o 

QUANTUM FIELD THEORY IN ANTI-DE SITTER SPACETIME 



3.1 Why consider quantum fields in anti-de Sitter spacetime?  

In the previous chapter it was found that the classical spherically 

symmetric solutions of the f-g field equations, when they can be found 

at all, seem to involve de Sitter and anti-de Sitter spacetimes irres-

pective of the particular mass term chosen. There are also Schwarzschild 

terms in the metrics but these are, less important and will not be 

considered in this chapter. Thus in the presence of this kind of 

solution, the hadrons find themselves in a de Sitter or anti-de Sitter 

world, and the corresponding field theories must be defined on this 

curved background spacetime. 

Quantum field theory in de Sitter spacetime has been extensively 

studied (see e.g. Refs.. 34-39).  One of the main problems encountered 

is the lack of a positive-definite -energy operator39. 

Anti-de Sitter spacetime, on the other hand, is relatively 

unexplored territory. However, it is just as important as de Sitter 

space in the f-g theory solutions and might even be relevant to 

confinement, as discussed in Sec. 2.7. Hence this chapter is devoted 

to the ways in which quantum field theories can be constructed in anti-

de Sitter spacetime. 

'As it happens, there are other good reasons for carrying out such 

a programme. The current interest in quantum field theories in general 

curved spacetimes (for revues see Refs. 40-42) has been confined almost 

without exception to the case_of globally hyperbolic spacetimes. Such 

spacetimes possess spatial hypersurfaces, called Cauchy surfaces, on 

which classical initial value data for a wave equation may be freely 

specified, uniquely determining the solution of the equation at all 

other points. (For rigorous definitions see e.g. Ref. 43.) However, 

many spacetimes do not possess this property. Indeed globally hyperbolic 

spacetimes are necessarily of the form R(time) x E(space) (where E is 
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a three dimensional riemannian space) and so are in many respects 

uninteresting. Anti-de Sitter spacetime is a famous example of non-

hyperbolicity. It possesses both closed timelike curves and a timelike 

boundary at spatial infinity through which data can propagate. The 

latter property is also possessed by its universal covering space and 

is the main cause of the lack of hyperbolicity. These features will be 

described in greater detail in Sec. 3.3. 

Anti-de Sitter space has also appeared in another context recently, 

namely as the natural background in certain supergravity models 
44,45 

How, then, are we to proceed? 

Methods for quantising a field propagating in a fixed, but curved, 

spacetime have been studied at length during the last few years. 

Attention has in general been focussed on linear field theories, as 

will be the case in this chapter, but even with this restriction there 

is (at least for most spacetimes) no unique quantisation scheme. Various 

approaches have been suggested but here we will be mainly interested 

in the 'covariant quantisation" method in which the Heisenberg fields 

manifest themselves in the traditional way as operators defined on a 

single Hilbert space. This approach has its origins in the work of 

Segal on quantising arbitrary linear systems. Segal's methods relied 

heavily on the existence and structure of classical solutions of the 

field equations. For the problem of fields in curved spacetimes it is 

here that global hyperbolicity would normally be assumed, and so this 

is where new techniques will be needed in the present case. 

Since anti-de Sitter space is a homogeneous space of the group 

0(3,2) it might perhaps seem natural to adopt a group oriented approach 

to quantisation. Such a study has in fact been made by Fronsdal et al. 

in a comprehensive series of papers
46-51.  However, from the point of 

view taken here the emphasis is not ideally placed. Indeed the rōle 
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played by the timelike infinity is not readily discussed in this 

approach. Note that even in the well understood case of de Sitter 

spacetime, the group theoretic SO(4,1) treatment misses thermal 

radiation associated with the event horizon of an inertial observer52
. 

In view of the discussion of Sec. 1.1(ii) it is especially important 

not to lose such effects in the f-g context. Thus the sequel is 

concerned mainly with finding an analogue of the covariant quantisation 

scheme by coming directly to grips with the problem of controlling 

information entering the spacetime through timelike infinity. The 

results obtained in this way may be regarded as complementary to those 

found using group theory. 

The emphasis will be on anti-de Sitter space itself as opposed 

to its universal covering space. The latter has no closed timelike 

loops but is much less intersting topologically, being homeomorphic 

to E. From the technical point of view the closed timelike loops 

are not too much of a problem. From the physical point of view one 

could think of anti-de Sitter spacetime as a "periodic system". 

For the sake of simplicity only scalar fields will be considered, 

since it is expected that spinor and vector fields could be dealt with 

in a similar manner. To begin with, a short resumē of the standard 

covariant methods will be given. 

3.2 The covariant quantisation scheme  

The aim of the covariant approach to quantisation is to construct 

a quantum field 1(x) satisfying both the classical field equation 

(0 + u(x) ) 1(x) = 0 	(3.2.1) 

and the covariant commutation relation 

[(x)  , 1(x")] = -iii G(x,x') 	. 	(3.2.2) 
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In (3.2.1), ❑  is the d'Alembertian operator associated with the back-

ground spacetime, and u(x) is a smooth c-number function which, if 

constant, may be very loosely interpreted as the "mass squared" of the 

field. The unique classical commutator function G(x,x'), defined as 

the difference of the advanced and retarded Green's functions, evolves 

classical Cauchy data specified' on a Cauchy hypersurface E according to 

1P( x ) = I I (xx ) ū*(x') dau(x') 	(3.2.3) 

and it is here that global hyperbolicity is seen to be an essential 

prerequisite. 

For our purposes we will only need to consider static spacetimes, 

i.e. spacetimes possessing a globally, defined, hypersurface orthogonal, 

timelike Killing vector field. (Definitions of these and other differen-

tial geometry concepts used in this chapter can mostly be found in 

Ref. 43.) This is fortunate because for these special cases there is 

a natural and essentially unique way of proceeding. 

One begins by finding a complete orthonormal (in the sense defined 

below) set of positive frequency classical solutions of the field 

equation (3.2.1), of the form 

f.(x) = exp(-iwt) h.
J
(x) , 	w. > 0 (3.2.1+) 

Here t is a time coordinate such that 9
t 
 is a global, hypersurface 

orthogonal, timelike Killing vector field, and h.
J
(x) are a complete 

set of functions of the spatial coordinates only. The f. form an 

orthonormal basis of a Hilbert space te having the positive definite 

Klein-Gordon inner product 

B(a,6) 	i 	a aP  dou = i 
I  a

* ōos goo 	d3x ; 	c 

t=const 	 (3.2.5) 

which is independent of E by virtue of the field equations. For 



convenience E is often chosen to be a surface of constant t. 

The f. are also required to satisfy 

15 

J 
f.(x) ft(x') - fJ(x) f.(x') 	= -i G(x,x') 	. (3.2.6) 

If now the real classical field is expanded as 

p(x) = G 	a. f~( x) + a~ ft(x) 	a. e 0 
J 

and the a. are promoted to the rank of operators a. satisfying 

ra. , āk] = [a , ales] = 0 , rā , fl 	t 
Sik 

(3.2.7) 

(3.2.8) 

then the resulting hermitian field operator (x) will automatically 

satisfy (3.2.2). 

The a. and a4f are interpreted as annihilation and creation 
J 	J 

operators on the Fock space construc d in the usual way as an infinite 

tensor product of simple harmonic oscillator Hilbert spaces. The Pock 

representation is almost inevitably used in these circumstances, since 

when it exists it provides the unique quantisation for which the 

spectrum of the hamiltonian operator (the generator of time translations) 

is positive definite. 	

~~nn 
The Hilbert space 0-t, automatically carries a unitary represent-

ation of the time translation group. One might further require that 

any other isometries of the background spacetime be placed on the same 

footing in this respect. 

3.3 Problems associated with anti-de Sitter spacetime  

Anti-de Sitter spacetime ("AdS" for brevity) may be realised as 

the four dimensional hyperboldi.d 

( O)2 - 
( 1)2

- ( 2)2 - 
(0)

2 4.  (0 )2 =K 1 	(3.3.1) 
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in a five dimensional space with metric 

ds2 = nās) 
dEa dys = (dE0)2 - (dE1 )2 - (dE2)2 - (dE3)2 + (a )2 

(3.3.2) 

(see Fig. 3.1). AdS is a pseudoriemannian space of constant curvature 

K, related to the Ricci scalar R and cosmological constant X (when it 

is regarded as a solution of the Einstein equations with cosmological 

term) by 

K = R = - A 
12 	3 (3.3.3) 

With the conventions used here K is positive. 

The isometry group of AdS is 0(3,2) which is simply the "Lorentz 

group" of the embedding space. 

AdS has the topology S1(time) x B3(space) and hence contains 

closed timelike curves. "Unwrapping" the $1 gives the universal covering 

space ("CAdS") which has the topology of B4 and contains no closed 

timelike curves. 

For the purposes of this chapter the metric of AdS, or CAdS, is 

most usefully written using the following parametrisation: 

1 	 1 	 1 

= ic- COST  secp , E1 = K 2tanp cos° , E2 = K 2tanp sine cos4 , 

1 	 1 
t3 = K 2tanp sine sin. , 4 = K 2sint seep , 	(3.3.4) 

ds2 =•K lsec2p {dr2 - dp2 - sin2p (de2 + sin 2° d~2) 	(3.3.5) 

0 p< 

 

71. 
 , 0 S ° 4. it , 0 4 q5 < 2Tr 

For AdS -Tr < T 	it with T = -Tr and T = it identified. 

For CAdS 	co < T < = • 

These dimensionless coordinates cover the whole of AdS and CAdS, except 

for the usual polar type singularities. 

In this coordinate system spatial infinity has finite coordinate 



TO 

1+7 

Fig. 3.1  

Anti-de Sitter spacetime as a four dimensional hyperboloid embedded 

in five dimensions. Two dimensions (2  and 3) are suppressed in 

the diagram. 



1t8 

Fig. 3.2  

Penrose diagrams for 

(a) anti-de Sitter spacetime (top and bottom surfaces identified) 

(b) its universal covering spacetime. 

See text for discussion. 

(Diagram drawn by S.J. Avis.) 
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values (p =i) and AdS and CAdS are conveniently represented using 

Penrose diagrams53'43  as in Fig. 3.2 (compare with Fig. 3.1). The 

coordinates 8 and 4)  are suppressed. The null lines at ±15°  are drawn 

to clarify the conformal structure; a light ray crosses AdS within 

half the natural period. Some timelike geodesics (y,y") are also 

indicated, showing that in CABS there is a residual effect of the time 

periodicity in AdS. In fact timelike geodesics emanating from any point 

in CAdS, which may be taken to be T = p = 0 since CAdS is a homogeneous 

space, reconverge at p = 0 for T = 7, 27, 37, etc. It is in this sense 

that the spacetime acts rather like an r2  potential, as mentioned in 

Sec. 2.7. 

These Penrose diagrams show clearly the two striking features of 

the AdS causal structure which preclude global hyperbolicity. 

Firstly, AdS contains closed timelike curves, a feature lost in 

CAdS as already discussed. 

Secondly, the surface at P = 2 (i.e. at spatial infinity) is 

timelike, a feature shared with CAdS. The effect of this is that 

information may be lost to, or gained from, spatial infinity in finite  

coordinate time. A change of coordinates is of no avail here since any 

time coordinate for which this is not so will not be globally defined 

(and will not give a manifestly static metric). It is this loss and 

gain of information which has the most disruptive effect on the Cauchy 

problem, and the closed timelike curves are in many ways a lesser evil. 

There is another related possible source of trouble in this 

context, which is of a more technical nature. Rigorous quantisation 

schemes in a globally hyperbolic spacetime attach considerable importance 

to Cauchy data of compact support. As a consequence of global hyperbol-

icity the Cauchy data on any Cauchy hypersurface will then possess this 

property. However, it is easily seen that in our case "initial value} 
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data with compact support on one spacelike hypersurface will in general 

evolve in such a way that it becomes noncompact on many other spacelike 

hypersurfaces. 

Some of the difficulties mentioned above are similar to those 

encountered when considering quantisation in a box in Minkowski spacetime. 

If the box is "transparent", information may escape or be thrown in from 

outside, and the Cauchy data within the box at a given time obviously 

does not uniquely determine that at other times. 

Of course when dealing with boxes one usually ascribes special 

physical properties to the walls. Typically the field, or perhaps its 

normal derivative, is required to vanish there, so that information is 

reflected and not lost. The time evolution of the Cauchy data is then 

unique.. However, in less simple examples great care must be taken 

regarding the self-consistency of such mixed boundary conditions. In 

any case the "walls"of AdS are at infinity and so the concept of 

reflecting boundary conditions is somewhat obscure. This will be 

clarified in Secs. 3.5 and 3.6. 

Returning to the transparent box, one way of establishing a 

well defined Cauchy problem is simply to accept that the box constitutes 

an incomplete manifold, and require that Cauchy data be specified on a 

Cauchy surface of the surrounding spacetime, not just within the box. 

But unlike the box AdS is complete and there is no such surrounding 

spacetime. Nevertheless, an analogue can be constructed, as explained 

in the next section. 
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3.4 Conformally coupled massless field -"Transparent" boundary conditions  

To clarify the analogy between AdS and a box in Minkowski space 

it is convenient to begin by considering a massless scalar field, 

conformally coupled to the background metric. The appropriate wave 

equation is 

( ❑  - *) = (❑  - 2K) * = 0 
The d'Alembertian operator, ❑  , is given by 

❑* gin) v31 V - 	au(~ gu" a , ) 

in general, and 

(3.4.1) 

(3.4.2) 

K 1 	2 a2. 	2 f 	2 a 	2 11-) 1a❑tp = cos p āTg - cot p cos p āp(tan p 
	+ sine a8(sin8 ā8) + 

+ si
1

~6 2 
	

(3.4.3) 

in particular, for the AdS metric (3.3.5). 

Now it so happens that CAdS may be conformally mapped into half 

of the Einstein static universe43'53 ("ESU"), as depicted in Fig. 3.3. 

ESU may be realised as the four dimensional cylinder 

(11 1)2 + (112)2 
+ 
(n3)2 

+ (114)2 = K-1 

in a five dimensional space with metric 

ds2 = (dn8)2 - (d111)2 - (dn2)2 - (dn3)2 - (dn4)2 

(3.4.4) 

(3.1+.5) 

and hence it has the topology E(time) x $3(space). (In Fig. 3.3 two 

spatial dimensions are suppressed so that ESU appears as M x $1.) The 

scalar curvature is 

RE = -6K (3.4.6) 

The ESU metric may be written in the globally defined form 

(dsE)2 = K-1 	dT2 - dp2 - sin2p (d82 + sin28 42) j 	(3.4.7) 

-.co < T < co , 0 	p : 	, 0 : 9 	0. <:= < 2.r. (compare (3.3.5).) 





Fig. 3.3  

(a) The Einstein Static Universe with two spatial dimensions suppressed 

is the cylinder O(time) x $1(space) . 

(b) As above, cut along p = n and flattened out, showing the images 

under conformal mapping of CAdS (shaded) and AdS (double shaded, E2 and 

E2 identified). The null lines at ±45°  are the support of GE(x,0). When 

restricted to the image of AdS they are the image of the support of 

GT(x,0). Note that the identification of E2  with E2 is commensurate 

with the periodicity of GE(x,0) (and all other nonsingular, finite norm 

solutions in ESU). 

53 
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The coordinate systems have been chosen to make the conformal 

mapping as simple as possible. In fact 

E = Q2 g 
	guv (3.4.8) 

where S2, the conformal factor, is given by 

Si = cosp 	 (3.4.9) 

The field equation (3.4.1) is invariant under conformal mappings 

provided the field is assigned a conformal weight of -1, i.e. 

*E =SZ-l * • 	 (3.4.10) 

So if t  is a solution of (3.4.1) in CAdS then 
*E 

 is a solution of 

E 
(QE 
 - RE *E 

	
(GE "+ K) E =0 	 (3.4.11) 

in the appropriate half of ESU, where 

K-1 ❑E  E= 
2E 	1 [f(sin2p 	) + 	h(sine 

 	+
377  	āp 	sine 	88 

a2E  
+ 	

(3.4.12) 

	

sib 8 	. 

Now ESU is a globally hyperbolic spacetime, and quantisation 

therein is well known and follows the pattern of Sec. 3.2. A summary 

will presently be given. It is proposed to use this quantisation, mapped 

back, to give an acceptable quantum field theory in AdS. 

Separation of variables yields the following collection of 

positive frequency, finite B-norm (eqn. (3.2.5) ) solutions of (3.4.11) 

defined on the whole  of ESU: 

*wtm - Nwt 
e-iwT (sinp)t  C

±
Q-1(cosp) YQ(8,*) ( 3.4.13) 

where w, 2 and m are integers such that w-1 ? Q ? Imi. Here Cq(z) are 

Gegenbauer polynomials54, YQ(e,*) are the usual spherical harmonics and 

Nwt  are normalisation constants. 

The WQm form an orthonormal basis for the Hilbert space #1, of
loE 
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all finite norm, positive frequency solutions of (3.4.11), with inner 

product defined by 

B(a,R) = i I a oa ~/-g7 d3 	, 	a,R E f~E 
T=const 

(3.4.14) 

(c.f. (3.2.5) and note gEoo = 1). Hence all such solutions are periodic 

in T with period 27r. This is related to the fact that, in the absence 

of interactions, a classical massless particle passing through the point 

(T,p,6,4) will also pass through the points (T+27rn,p,e,.) for n = ±1,±2, 

etc. So the spatial "periodicity" of ESU has induced an effective 

temporal periodicity. Moreover, upon restricting the solutions to the 

image of CAdS, and mapping back using (3.4.10), this periodicity is seen 

to be precisely that which allows the functions to be defined on AdS. 

In addition to the periodicity discussed above, we also have 

E, 	E, 
 = - ~rE(T+(2n+1)7t,n-p,7r-e,0+7r) 	, 	n = 0, ±1, ±2, ... 

(3.4.15) 

(A classical massless particle passing through (T,p,6,(1)) must not only 

pass through (T+27rn,p,6,4) but also through (T+(2n+1)7r,7r-p,7r-6,o}+70. It 

is more difficult to find an intuitive classical explanation of the 

minus sign!) It follows that the specification of Cauchy data on the 

complete surface T = 0 is equivalent to its specification on the pair  

of incomplete surfaces IT = 0, p< 	
and IT = 7r, p< 2 in the 

following sense. If the solution is Co then so is the induced data on 

these partial surfaces. However the converse is not strictly true since 

there is a consistency condition on the boundary values of the partial 

data to ensure that the induced solution in ESU really is C . On the 

other hand if distributional solutions are considered there is no such 

restriction, but it is now necessary to include the boundary at p = i-

on on one of the partial Cauchy surfaces in order to obtain a complete 
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specification of the solution in terms of this partial data. 

The quantisation schemes in AdS being developed here employ only 

those solutions in AdS whose ESU counterparts are everywhere C solutions 

of the wave equation (3.4.11). In the sense defined above they are 

specified by their "initial value" data on the pair of surfaces 

f
T = 0, p < 2 1 and ft  = Tr, p < 	

in AdS, denoted by El and E2 

respectively (see Fig. 3.3). (Note that with respect to the AdS metric 

these are complete surfaces.) The set of all such solutions generates a 

Hilbert space R T with inner product 

H 410 
BT(a,~) = i 	a* 3oR g°° V' d3x 	, 	a,s s CI, T 	(3.4.16) 

ElUE2 

Of course by construction HT is identical to HE, the Hilbert space 

of solutions in ESU equipped with the BE-norm of (3.4.14). Indeed this 

norm maps conformally into (3.4.16) with the integration region being 

transferable from the single Cauchy surface in ESU to the pair of 

surfaces in AdS by virtue of (3.4.15). 

To actually reconstruct the AdS solution from its "Cauchy data" 

we require GT(x,x'), the analogue of the classical commutator function. 

Just as for the basis functions this is obtained from the ESU commutator 

function, GE(x,x'), by restriction and mapping back, using (3.4.10). 

Since AdS and ESU are both homogeneous spaces, GE(x,x') and GT(x,x') are 

characterised by their behaviour as functions of a single variable x, 

with x' chosen to be the coordinate origin for convenience. The commut-

ator function GE(x,0) is readily constructed from the well known Feynman 

function55 (propagator) and may be.written in the form 

GE(x,0) = - 	(S(cosp - cost) Ē(T) 	, 
	(3.4.17) 

where 

E(T) E sign(sinT) 	. (3.4.18) 



w2,m V - L ('wQm awit + V* 	
a*a*  ) 

(3.4.21) 
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Hence (noting cosp > 0 in AdS) 

GT(x,0) = -F S(1 - COST secp) s(T) 	(3.4.19) 

The supports of GE(x,0) and GT(x,0) are concentrated on the light cones 

through the origin in ESU and AdS respectively (see Fig. 3.3). This 

"Huygens' principle" is in fact a major reason for referring to the 

field as "massless"55. 

The classical solution may now be constructed from the "effective 

Cauchy data" on E1 and E2 using 

I(x) = J T(x,x) oV(x') goo 	d3x' 	(3.4.20) 

E1uE2 

and so E1 U E2 will be called an "effective Cauchy surface" for AdS. 

Now that the classical Cauchy problem is under control, quantisat-

ion is fairly straightforward and follows the pattern outlined in 

Sec. 3.2, based on the field operator 

where the 
Vam 

are given by 

wQm = 	
wkm - NwQ e-iwT cosp (sinp)Q C

w+Q-1
( cosp)  1'Q(o, ) (3.x+.22) 

and are regarded now as functions on AdS. It may be checked explicitly 

that the relation (3.2.6) survives the restriction and mapping back. 

This completes the quantisation since we have constructed a quantum 

field on AdS satisfying both the field equation and our analogue of the 

covariant commutation relation ( (3.2.2), using GT). 

An alternative way of completely specifying a quant»m field theory 

is to construct a Feynman function. Hence it is of interest to try to do 

so for AdS, and in particular to see if any meaning can be attached to 

the term "time-ordered product" in a space containing closed timelike 

curves. 
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In Minkowski space the commutator function is simply related to 

the real part of the Feynman function which in turn is the boundary 

value of a unique analytic function of the Minkowskian invariant 

distance, satisfying the wave equation with a single S-function source. 

To look for an analogous function in AdS it is advantageous to introduce 

the invariant distance a(x,x'). This is the analogue of [(t_t)2_ (x-x')2] 

in Minkowski space and in fact- is half the distance from x to x' in the 

embedding space: 

a(x,x') _ 	~l(5) ( a - E'a)(e - t'S) (3.4.23) 

(c.f.(3.3.2) ). In particular 

K a(x,0) = 1 - COST secp 	(3.4.24) 

The points x satisfying 6(x,x') = 0 lie on the "light cone" through 

= (T',p',8',0') whilst those satisfying a(x,x') = 2K-1 lie on the 

"light cone" through the antipodal point x' =  

Expressed in terms of a, (3.4.1) becomes 

f
a(2  - Ka)--2 + 4(1 - Ka)d a - 2K 	G(a) = 0 , a # 0, K . 	(3.4.25) 

The most general analytic solution of (3.4.25) is an arbitrary linear 

combination of (Ka)-1 and (Ka - 2)-1. In Minkowski space the correct 

function is uniquely determined by demanding that the real part be 

causal. Although causality is an obscure notion in AdS it is nevertheless 

reasonable to require that the prospective Feynman function must at 

least look locally like the Minkowski one. With this in mind we take 

GT(a) = (4z1 Ka 
1 
 - i0 (3.4.26) 

as the Feynman function for "transparent" boundary conditions, which in 

fact solves the inhomogeneous equation (a real) 

(0 - 2K) GT(a) = - 64(x,x') 	. 	(3.4.27) 
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With this choice the commutator function GT 
T. 

related to GT by 

GT(x,0) = 2 (T) Re GT(x,0) (3.4.28) 

in close analogy with the relationship in Minkowski space. 

The way in which GT can be related to a suitably defined "time-

ordered product" will be explained in Sec. 3.6, since our remarks will 

also apply to the Feynman functions constructed in Secs. 3.5 and 3.6. 

Likewise, discussion of the extent to which the Hilbert space H T 

carries a representation of the AdS isometry group will be postponed 

until then. However, it is convenient to discuss the related topic of 

conservation laws at this stage. In view of the loss of energy, angular 

momentum, etc. to infinity, as discussed in Sec. 3.3, this will be of 

particular interest in AdS. To begin with some remarks on the definitions 

of energy-momentum tensors are in order. 

The lagrangian density for a conformally coupled scalar field is 

L = 2 7 guv a 
u4) av* — ( u2 — *) IU2 	• (3.4.29) 

(A mass u has been included for later use.) There are two distinct 

energy-momentum tensors associated with this lagrangian density. 

(1) The variational ("new improved"56) energy-momentum tensor obtained 

by varying the action S with respect to the metric: 

6S = 6 J 	d4x = J 2 Tuv ✓-T dguv d4x 

From (3.4.29) 

(3.4.30) 

2 

Tuv = auf, av* - 2 guv 1g~o a ,V a 4 oV - (u - 	~ 

	

2 ~) 2 + R uv 	+ 

+ 	guv 0 - Du ;v
1 

Ip2 
	( 3.4.31) 

For u = 0, T has conformal weight -2 and is traceless. 
uv 
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(2) The canonical energy-momentum tensor 

tuv =auf a~V - 2 guv gXa ya6iP - (u2 - *) 4)
2) . (3.4.32) 

This may also be obtained by variation of S with respect to the, metric 

but in this case R is treated as though it were independent of guv. Thus 

tuv is just the same as for a minimally coupled theory with mass 

(u2 - 	(which may be imaginary in the case of AdS). 

Let Ea , a = 0, 1, ... , 9 , be a complete set of global Killing 

vector fields on AdS such that el corresponds to time translation, 

e1
' E2 and 3 to spatial rotations, and the other six to "Lorentz boosts" 

in the five dimensional embedding space. Table 3.1 gives a suitable set. 

Define 

Qa(T) _ 	
T 	I 
uv Ea dQu = 	T 	g°° 

ov Eā 	
/7i1 dp dO d4 	(3.4.33) 

	

T=const 	T=const 

The Qa(T) will not be independent of T in general. 

Since Tuv has conformal weight -2 for a massless field, the 

integrand of (3.4.33) is conformally invariant and so (3.4.33) is 

equivalent to 

Qa(T) = 	
Tov 

Eav 
-g dp d8 d41. 

T=const 
. p < 2~ 

(3.4.34) 

The EEvare the vector fields induced on half of ESU by the action of the 

conformal mapping on the 	The The components remain unchanged by this 

mapping and so are as listed in Table 3.1. It is clear from this table 

that they can be extended in a simple manner to the whole of ESU. 

v
However,whereas EOv, El,, 

Elv and E3v still generate isometries the 

other six do not, but rather correspond to proper conformal motions 

of ESU, i.e. 

oEu Ev + DEv GEU - 	guv 
a 	a 	a 

(3.4.35). 



Table 3.1 Killing vector fields for anti-de Sitter spacetime  

T component. p component e component 0 component 

EP 1 0 0 0 

El 0 0 sing) cote cos4 

E2 0 0 cos4 - cote sini 

E3 0 0 0 1 

el  COST sinp sine cosh sinT cosp sine cos4 sini cosecp cos° cos4 - sinT cosecp cosece sino 

5 
cosT sinp sine sino sini cosp sine sino sini cosecp cos° sino sini cosecp cosece cos4 

e6 cost sinp cos() sini cosp cos@ - sinT cosecp sine 0 

e7  sinT sinp sine cos - cost cosp sine cos4 - cost cosecp cos° cos4 cost cosecp cosece sine 

E8 sinT sinp sine sino - cost cosp sine sini - cost cosecp cos° sino - cost cosecp cosece cos4 

9 
sini sinp cos° 	— COST cosp cos° 	cost cosecp sine 	0 
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where A
a 
= 0 for a = 0,1,2,3, but Aa 

# 0 for a = 4,5,6,7,8,9. Now 

VEu(TŪv  EEv) = 0a (3.4.36) 

by virtue of (3.4.35) and the fact that Tuv 
 is traceless and has 

vanishing four-divergence. Thus, integrating (3.4.36) over the compact 

region between two constant T hypersurfaces of ESU and applying Gauss's 

theorem, it follows that 

Pa = I Tov 
Eaav -g dp de dO 

T=const 

(3.4.37) 

is independent of T. Indeed these are the usual conserved quantities 

for a globally hyperbolic manifold. But now (3.4.15), along with the 

symmetry properties of the Ea  , allows Pa  to be decomposed as 

Pa  = Qa  (T) + Qa(T +  Tr ) ( 3.1  .38) 

In other words, although in general the one hypersurface quantities 

Qa(T) are not T-independent, the sums Qa(T) + Qa(T + Tr) are. Such sums 

are equal to Pa, conserved quantities corresponding to global conformal 

motions of ESU. 

Thus the effect of the "transparent" boundary conditions obtained 

by conformally mapping into ESU is to recirculate the energy, angular 

momentum, etc. lost to timelike infinity, resulting in a well defined, 

 rather unusual, conservation law. 

In the next section the possibility of a "closed" quantisation, 

analogous to a box in Minkowski space with reflecting walls, will be 

considered. This is achieved in practice by demanding conservation of 

the Qa  i.e. conservation of quantities integrated over a single hyper- 

surface. 
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3.5 Conformally coupled massless fields -"Reflective" boundary conditions  

In the preceding section a quantisation was discussed which 

involved - the specification of effective Cauchy data on a suitable 

pair of spacelike hypersurfaces, and it was shown that most field 

configurations did not have conserved energy, momentum, etc. as 

calculated by integrating the appropriate density over only one surface. 

In this section two alternative quantisation schemes will be 

obtained by finding those maximal subsets of the positive frequency 

solutions (3.4.22) which have the property that all finite linear 

combinations 

V(x) = G 	 wQm' cam(x) + cwQm *Qm(x)} '. c 	e 0 	 (3.5.1) 
cam 

give Qa(T) (defined in (3.4.33) ) independent of T i.e. we are looking 

for conservation laws based on a single hypersurface. 

First note that from (3.4.36), (3.4.34) and Gauss's theorem 

T2  
0 = dv = Qa(T2) - Qa(T1) + VE.(TUv E a 

 Xa  dT (3.5.2) 
T IGT<T2 

where 

T1 

Xa = 	
I 

TE 1  gE 11 g dA dcp 	. (3.5.3) 
p=2ir 

The requirement that Qa(T1) = Qa(T2) for all T1  and T2  is equivalent 

to X 
a 
= 0 (i.e. no net flux across p = '-sir). The minimal conditions 

imposed on the cwQm  by setting X0  = 0 (energy conservation) is that 

for each Q independently either all the cwQm  with w odd must vanish 

or all the cwQm  with w even must vanish. No further restriction is 

imposed by demanding X1  = X2  = X = 0 (angular momentum conservation). 

Finally, on requiring X4  = X5  = X6  = X7  = X8  = X9  = 0, the complete 

restriction is that either all the c
am 

 with w - 2. odd must vanish or 
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all the cwkm 
with w - Q even must vanish. 

Thus the requirement that all the Qa(T) be independent of T decomposes 

the basis functions *cam 
into two disjoint classes which are listed 

below together with their principal properties: 

(1) *1Qm = 'TNwQ e-iwT  cosp (sinp)2  C2n1 (cosp) Ym(e,4) 

where w = 9 + 2n + 1 and n is a non-negative integer. 

'wkm(xA) = - *wkm(x) 

- (secp ''wQm) + 0 as p } 2w 

(2) wkm 
= 	NwQ e-iwT cosp (sinp)Q  C2n+1(cosp) YQ(8,4) 

where w = Q + 2n + 2 and n is a non-negative integer. 

*w2m(xA) = *w2m(x)  

seep tp2 } 0 as p 

(3.5.4) 

(3.5.7 ) 

(3.5.8) 

(3.5.9) 

Each class corresponds to a definite "parity" under the point to 

antipodal point transformation and a well defined behaviour at spatial 

infinity. 

Let W.  and ff 2  denote the Hilbert spaces formed from the 

functions (1) and (2) respectively. It is clear that all elements of 

1  or Oti 2  have the same definite parity in the above sense and it 
follows that a solution in one of these spaces is completely determined 

by its initial value data on one spatial section, E1 say. Indeed in 

view of this parity it is clear that the classical commutator functions 

to be used for evolving data on E1 uniquely forward in time are 
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Gi(x,0) = GT(x,0) - (-1)j GT(xA'0) 
	

j = 1,2 	(3.5.10) 

= - 	VT) S(Kc) - (-1)j 6(Kcr - 2)/ 	(3.5.11) 

where G&(x,x') is the commutator function associated with W. The 

support of Gj(x,0) is indicated in Fig. 3.4. 

The It norm may be defined in a natural way as in (3.2.5) but 

now integrated over E1 only (hence the extra normalisation factor /' in 
the *w2m). 

Just as for Sec. 3.1 the quantisation is implemented without 

difficulty now that the Cauchy problem has been taken care of. The 

relationship (3.2.6) follows easily from its "transparent" counterpart, 

using the symmetries of the commutatator functions and basis functions. 

The field operator 

(pj 	aj 	+ *j* 	) camcam w9,m cam cam (3.5.12) 

satisfies both the field equation and covariant commutation relation as 

required. 

To make clear the analogy with the box in Minkowski space it is 

only necessary to point out that the image of CAdS (and hence AdS under 

identification) is effectively the interior of a box in ESU with a "wall" 

at p = 2Tr. For the two schemes of this section the ESU counterparts of 

the fields satisfy 

a
p 11; 0 as p 3 ~r (3.5.13) 

in one case and 

42E 4 0 as p -} 2w 	(3.5.11k) 

in the other. These are precisely the conditions usually imposed on the 

boundary of a box with reflecting walls in Minkowski space, hence the 
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Z=0 

 

       

        

P =0 

Fig. 3.4  

The "reflective" conformal massless case. Single spacelike hypersurfaces, 

e.g. E1, form effective Cauchy surfaces. The null lines (at ±45°) are 

l 	2  the support of the commutator functions G(x,0) and G(x,0). 
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description of the boundary conditions as "reflective". Of course the 

boundary conditions on the AdS fields themselves, (3.5.6) and (3.5.9), 

are more complicated, and their meaning would be much less clear in any 

naive approach to the problem not involving ESU. 

As in the transparent case, each of the two commutator functions 

G~ can be related to the real part of its corresponding "Feynman" 

function Gj via 

Gj(x,0) = 2 s(T) Re Gj(x,0) 

where 

	

j
(x,0) = iK ( 

	

1 	_ 	j 	1  

	

2 (Ka - 	i0 	(-1) Ka - 2 - i0 
G  

with cr as in (3.5.24). The Gj satisfy the inhomogeneous equation 

(❑  - 2K) Gj(x,0) _ - 64(x) - (-1)j 64(xA) (3.5.17) 

The appearance of two sources here is another manifestation of the 

fact that in the "reflective" schemes effective Cauchy data can only be 

consistently set on one constant T hypersurface. 

The relationship between the three quantisations for the massless 

field in AdS is essentially summarised by the decomposition of the 

"transparent" one-particle Hilbert space in terms of those of the 

"reflective" cases: 

T _ R1 6) fl2 
• (3.5.18) 

Consequently, the Fock spaces are related by 

(3.5 .19) 

Thus an n-particle "transparent" state may be written, rather 

symbolically, as 

In >T = A0In~l 	10>2 ® Al In-l>1 ® I1>2 	... 

... @ An-111>1 ® In_l>
2 8 An l0>1 ® 

In>2 (3.5.20) 
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(AiI2 
= 1 

1=0 
• (3.5.21) 

From the point of view of either "reflective" scheme this state will in 

general appear as a mixture of n, n-1, ..., 1, 0 -particle states. The 

"transparent"  vacuum is an exception in this respect, corresponding 

only to pure "reflective" vacuum states: 

 

 

10>T  = 1
0 >1 	1 0

>
2  . 	 (3.5.22) 

A more typical example would be a one particle "transparent" state, 

interpreted in the ō ' or 1FC2  scheme as a mixture of one particle 

and vacuum states. 

3.6 Massive scalar fields  

The equation of motion for a "conformally" coupled, massive, 

spin-zero field in AdS is 

( ❑  + u2  - 	= (❑  + u2 - 2K) * = 0 , p2 >0 (3.6.1) 

Most of this section also applies to a minimally coupled field with mass 

p' = + ipz - 2K , provided u2 3 2K . 	(3.6.2) 

The only significant difference is that for the minimal theory the 

canonical and variational energy-momentum tensors are identical. 

Unlike the conformally coupled massless case, (3.6.1) is not 

conformally invariant. The corresponding equation in ESU is 

E 
( ❑E+ u2522  - RE) _ ( ❑  + u2cos2p + K) * = 0 (3.6.3) 

and has a position dependent "mass". Thus the method of conformal 

mapping employed in Secs. 3.4 and 3.5 is slightly less appropriate 
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here. Nevertheless it still proves useful in providing a concrete 

realisation of spatial infinity and in simplifying calculations related 

to conservation laws, as demonstrated for the massless case. 

We will begin by considering separable, positive frequency 

solutions of (3.6.1) in AdS itself. These are of the form e-1wT  h(p,8,4)) 

where w is required to be an integer to ensure that the solutions are 

single-valued in AdS. It is convenient to write 

u2 =K(M-1)(M-2) , M>2 (3.6.4) 

Then it is found that nonsingular, finite B-norm, separable solutions 

can only exist if M satisfies either (i) 2.:< M <i-or (ii) M = 3,4,5,... . 

So we have something resembling a "mass spectrum" consisting of a small 

continuum and an unbounded discrete part. The corresponding solutions are 

(i) = N'M e-iwT (cosp)M  (sinp)
k 
 x 

w2m w2 

x 2F1(1-(2,+M-w),2(Q+M+w)4 +Q;sin2p)  YQ(8,4) 	(3.6.5) 

where w, 2 and m are integers such that Q 	!mI and 2F1(a,b;c;z) are 

hypergeometric functions 

(ii) M 	= N
M e-iwT (cosp)M  (sinp)Q 

P(Q+ ,M- 2)(cos2p) Ym(805) 
wkm 

 
wk 	n  

(3.6.6) 

where w = M + Q + 2n and Q, m and n are integers such that 2 	Imi and 

n 3 0. The normalisation constants in this case are 

N:Q  n! (n+Q+M- 1) (3.6.7) 
r(n+Q +2)  r(n+M- z) 

and the Pna'S)(z) are Jacobi polynomials54. 

4 



To 

If, as in Sec. 3.4, we were to require that the ESU counterparts 

of these functions be Ce° on all of ESU then (i) would be lost. Nor 

would (i) occur if only the minimally coupled case is considered. In 

any event, our attention will be focussed mainly on the solutions (ii). 

For each M = 3,4,5,... all the solutions have the same definite 

parity under the point to antipodal point transformation, and hence so 

do their linear combinations. In particular, 

*M(xA) = (-1)M *M(x) 	. 	(3.6.8) 

When restricted to a single spacelike hypersurface the 11,am 
form a 

complete set and it is found that energy, angular momentum, etc. are 

conserved when integrated over such a surface. 

It is clear then that for M odd these cases are analogous to the 

massless reflective case (1) (c.f. (3.5.5) ) while for M even they are 

analogous to the massless reflective case (2) (c.f. (3.5.8) ). Hence 

the quantisations of these massive fields may be modelled on the 

quantisations of Sec. 3.5. The *(Am form an orthonormal basis for the 

Hilbert space U M with inner product (3.2.5), the integration region 

being E1 say. They also satisfy (3.2.6) where the classical commutator 

function, which evolves "effective Cauchy data" specified on a single 

hypersurface, is given by 

M(x,0) = ~ Ē(T) €S(Kc) - (-1)M S(Ka -_2) + 

+•[A(-Ka) - 0(2 - Ka)] PM (i - Ka)/ 	(3.6.9) 

where PN(z) denotes the derivative of the Legendre polynomial of 

degree N. 

The support of GM(x,0) is shown in Fig. 3.5 and reflects in a 

striking way the behaviour of classical massive particles in AdS. All 

timelike geodesics through T = p = 0 lie entirely within the shaded 
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1:=0 

p=o 

Fig. 3.5 

"'M The support of G (x,O) for a massive field. It is regular within the 

shaded regions, singular on their boundary, and zero elsewhere. 
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regions. The observation that such geodesics reconverge and do not 

reach spatial infinity also offers a heuristic classical explanation 

for the lack of a "transparent" quantisation scheme for massive fields. 

In fact the massless reflective cases fit into the present scheme 

in a very natural way. Comparing (3.5.4) with (3.6.6) and using 

Equation 10.9(21) of Ref. 54 it is seen that the k 1  basis functions 

of Sec. 3.5 correspond to M = 1. Likewise, comparing (3.5.7) with 

(3.6.6) and using Equation 10.9(22) of Ref. 54, the te 2  basis functions 

correspond to M = 2. This identification is clear cut, despite the fact 

that M = 1 and M = 2 are indistinguishable from the point of view of 

the wave equation (3.6.1), bearing in mind (3.6.4). 

Thus the quantisation of these "special mass" fields (M = 1,2,3,...) 

is completed and it is convenient to briefly mention the relationship 

with the group theory approach at this stage. Fronsdal47  has shown, by 

group theoretic arguments, that there exists a collection of irreducible 

representations of the universal covering group of S0(3,2), labelled by 

a positive number M (EO  in his terminology) which correspond to solutions 

of the wave equation (3.6.1) in CAdS. Those which may be defined on AdS 

correspond to M integral and reduce to ours, but the representation is 

now only faithful for S0(3,2) itself. Thus 6ti  does carry the desired 

representation of the AdS isometry group. 

The Feynman function generalising those of Sec. 3.5 is found by 

solving (3.4.25) with a suitable mass term included. It is given by 

GM(x,0) = T2 QM-2(1 - Ka + i0) (3.6.10) 

iK 	1 	1 	+ 
8n2  LKa - i0 Ka - 2 - i0 PM-2(1 - Ko) 

+ [ln(Ka - 10) - ln(Ko - 2 - 10)] PM (1 = Ka) + 2WM-3(1 - Ko) 1 

(3.6.11) 
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where Q(z) is a Legendre function of the second kind and WN(z) is a 

polynomial of degree N given by Christoffel's formula 

[Dij 	2N - 4m +  1  
WN(z) 	

m0 
 (N + 1 - m)(2m + 1) PN-2m(z)  (3.6.12) 

in which the symbol [iN] denotes the greatest integer less than or 

equal to N. GM(x,0) satisfies the inhomogeneous wave equation 

( ❑  + u2  - 2K) GM(x,0) = -(x) - (-1)M  S4(xA) (3.6.13) 

and is related to the commutator function by (3.5.15), where M and j 

are now interchangeable. 

Despite the existence of closed timelike curves, GM(x,x') can 

be related to the vacuum expectation value of a "time-ordered" product 

in the following sense: 

- ici GM(x,x') = <olT{iuM( x) M(x-)110> 	 (3.6.14) 

where 

1 M(x) M(x')1 	8(T-T') V(X) I,M(x') - (1-8(T-T')) M(x) V(X) 

(3.6.15) 

and 

8(T-T') = 8(sin(T-T')) 	. ( 3.6.16) 

This applies equally well to the "transparent" massless case, i.e. 

in (3.6.14) M = 1, 2, 3, 4, ..., or T. In effect the time ordering 

is carried out using the smaller angle between T and T'. 



3.7 Summary and further remarks  

Three quantisations for a conformally coupled massless scalar 

field have been constructed by conformally mapping AdS into ESU. One 

scheme is associated with "transparent" boundary conditions in which 

information flows freely out of the image of AdS, passes through the 

other parts of ESU, and re-enters the image of AdS elsewhere. The other 

two schemes correspond to "reflective" boundary conditions in which the 

image of AdS may be thought of as a box with reflecting walls in ESU. 

These latter two schemes generalise to include a sequence of massive 

fields for each of which there is a unique natural quantisation. 

The Feynman functions for these schemes were all constructed 

from first principles. An alternative procedure would be to try to 

obtain them from de Sitter space Feynman functions by analytic 

continuation. De Sitter space may be realised as the hyperboloid 

(e)2  _  ( 1 )2-  ( E2 )2 - ( 3 )2 - (0)2 . 	K-1 (3.7.1) 

in a space with metric 

ds2 = "a13 
	dra de = (dE0)2  - (dE')2  - (dE2)2  - (dE3)2 	(dE4)2  

(3.7.2) 

and so the continuation required is 

0 i K } -K 	 (3.7.3) 

In fact it is more convenient to take 

Ej ± iV1  for j = 0,1,2,3 	(3.7.4) 

instead. This changes the signature so the mass squared will also have 

to be continued to the opposite sign. 

An expression for the Feynman function of a minimally coupled 

field in de Sitter space is given in Ref. 37. Converting to conformal 

coupling this becomes 
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Gd5(x,x') 	16
iK  
n2 r(3-M) r(M) 2F1(3-M,M;2;1-1K(a+i0)) 

where 

Q = 2 nā(5) (Ea - 
e

)(e E'$) 

r 	2 '~ 
M='11[3+ (1+ 4K 

(3.7.5) 

(3.7.6) 

(3.7 .7) 

and (-u2) is the de-Sitter mass-squared. Now a and u2 must be-continued 

from their de Sitter values to the appropriate AdS values. 

For u2 = 0 this is straightforward and yields precisely the 

"transparent" AdS Feynman function given in (3.4.26). The "reflective" 

massless AdS Feynman functions are obtained as analytic continuations 

of de Sitter Green functions solving the de Sitter inhomogeneous wave 

equation with two sources, one at x' and the other at the de Sitter  

antipodal point to x'. 

The expression (3.7.53 has simple poles in M at the points 

3, 4, 5, ..., and so the AdS Feynman functions (3.6.10) corresponding 

to these "special masses" are not related by analytic continuation to 

(3.7.5). So the overall conclusion is that analytic continuation from 

de Sitter space is not a particularly useful tool for investigating 

quantum field theories in AdS. 

A further point of interest is that both Minkowski and de Sitter 

spacetimes may also be mapped into ESU, in a similar manner to AdS 

(see Fig. 3.6). Moreover the four-volumes of the images of all three 

spacetimes are the same. The solutions of the conformal massless wave 

equation in ESU are periodic in such a way that they are uniquely 

determined by their behaviour in any of these images. Thus a basis for 

such functions in ESU may be mapped back to form a basis in anti-de 

Sitter, de Sitter, or Minkowski space. In particular, mapping back the 

basis (3.4.13) to Minkowski space results in the "elementary states" 
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Fig. 3.6 

The images of anti-de Sitter space (green), de Sitter space (blue) 

and Minko,vski space (red) conformally mapped into the Einstein 

static universe (black). Two dimensions are suppressed. 
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of twistor theory. 

To conclude, there are many problems to be faced in the construct-

ion of quantum field theories in anti-de Sitter spacetime, but none of 

these is insurmountable. Of course AdS is a very special spacetime with 

a high degree of symmetry. Whether techniques similar to those used 

here can be applied to more general non globally hyperbolic spacetimes 

is an open question. 
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SCALAR STRONG GRAVITY 
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1.1 Why consider scalar strong gravity?  

The tensor meson dominance hypothesis, summarised in Sec. 1.1(i), 

postulates that the hadronic stress-energy tensor should act as a 

source for a universal spin-2 field. It has also been suggested (Refs. 

1+, 56 and refs. therein) that the trace of the hadronic energy-momentum 

tensor should be related in a similar way to a universal scalar field. 

Linearised spin-2 field theory is easily generalised to include 

a spin-0 field by simply choosing the mass term to be other than in 

Fierz-Pauli form. This scalar would be ideal for the present purposes 

if it were not for the fact that it is a ghost field. As discussed in 

Sec. 1.3 this means that it must be eliminated in linearised f-g theory. 

Of course the spin-0 part of the lagrangian can be given the correct 

sign, but only at the expense of making the spin-2 field into a ghost. 

Hence it seems desirable to consider the scalar field on its own, and 

such a theory will be in a sense orthogonal to f-g theory in that at 

the linearised level it describes the very field which is eliminated 

in f-g theory. 

The idea, then, is to look for a theory of strong and weak metrics 

in which the only independent fields are one metric and one scalar. Now 

for ordinary gravity there is a well known theory with precisely this 

field content namely the Brans-Dicke57(-Jordan58  -Thiry59) theory, and 

its generalisations due to Bergmann6o  and Wagoner61. This theory will 

be adapted to our needs by re-interpreting the Brans-Dicke scalar as 

a hadron field. The strong and weak metrics will be conformally related 

by this scalar. 

The Brans-Dicke theory was formulated as an attempt to incorporate 

Mach's principle into a field theory of gravitation. Loosely speaking, 

Mach's principle asserts that the inertia of an object should depend on 

the distribution of surrounding matter. Is there any evidence for such 
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an effect in hadron physics? In fact there is. The effective masses of 

quarks in close proximity to each other, i.e. inside hadrons, appear 

to be rather small (about 300 MeV) whereas it is postulated, to explain 

confinement, that their masses when they are alone are large (partial 

confinement) or even infinite (total confinement). This is the so-called 

"Archimedes effect". The way in which an effect of this kind occurs in 

the model to be considered here will be described in Sec. 4.5• 

Having conformally related weak and strong metrics contrasts 

sharply with f-g theory in which the metrics are, a priori at least, 

completely independent of one another. An advantage of having such 

related metrics is that it may be easier to regard one of them as being 

in a sense the "real" metric of spacetime. This will be particularly 

clear for the model discussed in the sequel. In f-g theory, by way of 

contrast, there seems to be no combination of fug  and guy  which plays 

this rōle, except in the linearised approximation where the fields can 

be diagonalised for mass. 

One might ask if other theories of related metrics are possible. 

For example, they could perhaps be related through a vector field 

describing some kind of universal spin-1 hadron. However, as will be 

seen in the next section these other theories do not seem so attractive 

for various reasons. 

4.2 Problems with other related-metric theories  

Let us begin by considering vector-related metrics. (In fact 

covectors have been used but this is unimportant.) There are two 

obvious possibilities here: 

(i) 	g
uv 
 = gPv + k(V Vv  + V VU) 	(where k is a constant) 
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(Kerr-Schild related metrics62) . (ii) guv = guv + kVV U v  

In this chapter the strong metric is denoted by guv,  to avoid f-meson 

connotations. 

In (i), V could denote the covariant derivative with respect to 

either 
guv 

 or guv• In fact the presence of derivatives makes (i) a 

rather unpleasant prospect since objects likemust occur in the 

coupling to hadronic matter, even if they are somehow avoided in the 

source-free part of the lagrangian. If terms like 	Rg  occur then 

even the linearised field equations will involve third derivatives. 

Case (ii) has the attractive feature that if the constant k is 

chosen to be negative then the 
g
uv light cones will always lie within 

the guv  light cones, assuming Vu  is never so large that guv 
 becomes 

riemannian, as opposed to pseudoriemannian. So if guv  is regarded as 

the "real" spacetime metric then the world lines of hadrons, i.e. 

curves which are timelike with respect to guv, will always be causal 

in the sense of being timelike with respect to g uv. Construction of a 

suitable lagrangian poses some problems however. It would be easy to 

write down the standard Maxwell or Proca lagrangian for Vu  in the 

curved spacetime with metric guv, but this seems rather ad hoc. In 

particular it bears no relation to the way Vu  has been coupled to 

matter. It would be more natural to try to construct the lagrangian 

from guv  and "guv 
 alone, for example by using i7E Rg  and 4-7F Rg. 

Unfortunately this has the consequence that the field equations at 

lowest order are cubic, rather than linear, in V and so we drop this, 

idea as well. 

As regards scalar-related metrics, the only possibility not 

involving derivatives is to have conformally related metrics. These 

possess the same causality property as (ii) above, since - in this ease 

their light cones are identical. The use of derivatives, e.g. 
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gpv =g  uv 
+ oii  ') 

suffers from the same drawbacks as in (i) above. 

Thus attention will be confined to the case of conformally related 

strong and weak metrics. As discussed in the previous section, the 

Brans-Dicke scalar-tensor theory of gravity is a natural starting point 

for such an investigation. A brief resume of this theory is presented 

in the next section. 

4.3 A brief review of the Brans-Dicke theory  

The Brans-Dicke lagrangian density for (ordinary) gravity and 

its coupling to matter is 

BD 	grav + L  matter 

_ 	( - Rg  + w g" ,11 Cb,v 4)-1) + Lmatter 
g 

. 	(x+ .3.1) 

The dynamical field 	K-2  replaces the constant K 2, the Brans-Dicke 

interpretation of Mach's principle being that the gravitational 

"constant" G ( = K2/87f ) should not be constant, but should be 

determined by the stress-energy tensor of matter. In fact 0  is coupled 

to the trace of this tensor. Of course it is assumed that in our 

region of the universe 0  is unity to a good approximation. 

In the term of (4.3.1) involving derivatives of 0  inclusion of 

the factor 0-1  makes the matter-free equations invariant under scale 

changes of 0. The constant w is then dimensionless and is assumed to 

be of order unity. 

It is well known63  that in the absence of matter the theory is 

equivalent to general relativity plus a massless scalar field. This is 
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guV a 4 guV 	and tp __ K-1 .1n 4 • (4.3.2) 

Using standard formulas for conformally related metrics (see e.g. 

Ref. 43), and ignoring four-divergences, the result is 

g~ 

grav 	(- 	+ (2 + w) *,u *0 g•uV 
g 

(4.3.3) 

It now becomes transparent that w had better be greater than or 

equal to - 
2 
, since otherwise i will be a ghost. This same requirement 

was made by Brans and Dicke to ensure that matter acts as a source 

for the scalar with the correct sign. 

In the Brans-Dicke theory the metric g' is not very important 
Pv 

since it is guv 
which matter is coupled to. But in the weak and strong 

gravity theory introduced in the next section both are used, one 

being the metric seen by leptons, which can be interpreted as the 

"real" spacetime metric, the other being the "strong" metric. 

4.4 The scalar strong gravity theory  

We begin with the lagrangian density for gravity plus the 

universal hadron field ip : 

t 0 = 	(- 
Rg 
 + 2 

*,u lj',Vg") 	• 

g 

(4.4.1) 

Leptons are coupled to the "real" metric, 	but hadrons will be 

made to respond to 	wheree 

-1 	= e 
g = uV 	guV 	guV 

(4.4.2) 

The constant X is a strong interaction coupling constant. As will be 
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seen later it plays a role similar to that of the constant Kf in f-g 

theory. Written in terms of gin) and (I) the lagrangian density becomes 

K2 
L0 = 	- 	

l 
, Rg + C 	2 ) guv ;u~ ,v 	 (4.4.3) 

g 

i.e. a Brans-Dicke lagrangian with w very slightly greater than -  
2 

(Taking X >0 for reasons given in the preceding section.) 

To illustrate the coupling to matter, consider a massive real 

scalar field x coupled, for-the -sake of generality,_to g(h); where 
Pv 

g(h) E h guv + (1-h) guv = (h4-1 + 1 - h) guv (4.4.4) 

-and the constant- h. is a measure of the "hadron-ness" of the field. 

A lepton has h = 0 whereas a "pure" hadron has h = 1. It will turn out 

later to be sensible to restrict h to the range 0 h 1. The lagran-

gian density for x is 

1 /-g(h)' 	g(h)uv 
x 	x 	- m2 x2 ~u ,v 

(1+.4.5) 

= 2 	(he-AIR + 1 - h) guv X x - m (he-4 + 1 - h)X2 1 ,u ,v 
(4.4.6) 

The field equations which result from the action principle 

J
cL0  + 	 ) d4x = 0 

are as follows: 

g field equations: 

2 	2 (*) (X) G = K T = K uv 	g uv 	g(Tuv +Tuv ) 

(4.4.7) 

(1+.4.8) 

where 

ū~ ) = z(* 	
' ~

~u 
,v 

- z 
guv 

ga$ *

,cc 

*~~ ) 
(4.4.9) 
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and 

T(X) = 2(he-A~+1-h) X X - Zg g"X X - m2 (he-A141-h)X2 
uv 	,p ,v 	uv 	,a ~~ 

(+.1+.10) 

V field equation: 

guv 
*;uv 

= Xh e-A _ X 	x v 
guv + 2m2(he-X'~+1-h)X2

l . 
	(1+.>+.11) 

,u , 

X field equation: 

g(h) v p(h)X 	+ m2X = 0 , 	 (4.4.12) 
P ,v 

where V(h) denotes the covariant derivative with respect to g(h). 
11 	 Pv 

Note that for h = 1 the source of V is T(X)V, i.e. the trace of 

the hadron stress-energy tensor, and the coupling constant is A, 

justifying the remarks made about this constant earlier on. Of course 

V is not coupled to leptons (h = 0) at all. 

The lagrangian written using guv as opposed to guv looks just 

like, and is, a lagrangian for standard general relativity including 

matter fields, albeit with rather strange matter interactions. As usual, 

the Bianchi identity Guv = 0 is compatible with the conservation 
;u 

law Tuv = 0 which follows from the V and x field equations. It is 

in this sense that the weak metric guv can actually be regarded as the 

"real" metric of spacetime. 

In view of this it is reasonable to consider the approximation 

K 	0, guv -} nuv, with the consequence that g(h) is now conformally  Pv 

flat. The lagrangian density reduces to 
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L. = z *
,u i  11 + 2(he-4+1—h)jX ,u 

	— m2(he—A1P+1—h) X2  

	

2A20- 	2(h(P-1+l-h) X,u X,u - m2(114-1+1-h)X2 

	

02 02u 	2(h4'+l-h)€X,u X
,u - m2(h.'+1-h)X2 

2A 

(4.4.13) 

(4.4.14) 

(4.4.15) 

where 4' 
	

-1  and index contractions are made using n ug. Written in 
terms of c', this lagrangian is similar in appearance to that considered 

by Freund and Nambu64  but in fact has some quite different properties 

as well as having been derived in a completely different way. For 

example, the Freund-Nambu lagrangian can be transformed into polynomial 
S 

form whereas (4.4.10 cannot. The attractive features of the present 

model will become apparent in the next section. 

It may seem a little distressing that the hadron field is 

massless. Generalisations of (4.4.13) in which is given a mass, based 

on the Bergmann-Wagoner generalisation of the Brans-Dicke theory, will 

be discussed in Sec. 4.6. Such generalisations do not qualitatively 

alter the phenomena described in the next section, in which the 

lagrangian is kept as it is to simplify calculations. 

4.5 The "Archimedes effect" and confinement  

From the lagrangian density (4.4.13) it is seen that the effective 

mass of the field x (which from now on will sometimes be referred to as 

the "quark" field) is 

me  = m(he 	+l-h)2  . (4.5.1) 

If a non-derivative quark self interaction was included then precisely 
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the same remarks could be made for the corresponding coupling 

constant(s). In addition there is an overall *-dependent factor in 

front of the x lagrangian density, adding an extra term to the x 

field equations. 

The field equations following from (4.4.13) are 

. 1=I*   = 2Xh e {- X 	X 	+ 2m2(he-
X 
 +1-h)X2/ ,u ,u 

= Ah ē X  (hē 
X*
+1-h)-1  T )  

PP 

and 

0 X - Xe-X  (he-X  +1-h)-1  * X 	+ m2(he-' +l-h)X = 0 . 	(4.5.4) 
eu eu 

It will be of interest to consider the .(static) field 4  in the 

vicinity of a point source at the origin. Since El*  = 0 in the absence 

of hadronic matter, such a field will be given by 

' 	Xr (4.5.5) 

which actually satisfies 

- 02*  =  4"  63(r)  
A 

(4.5.6) 

where c is a measure of the strength of the source. (The tacit assump-

tion I ÷ 0 as r - 00 will be discussed later.) A point source may be 

realised as a singular contribution to Tōō), and must be positive if 

the source particle is of positive mass. Hence, since the factor 

multiplying T(x)  in (4.5.3) is positive (with h restricted to 0 < h < 1), 
UP 

the constant c is positive. 

The effective mass of the x-field in the vicinity of this source 

is now given by 

me = m(he
-c/r 

 + 1 - h)2  (4.5.7) 
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2 
m - 

m2(1-h 4- ē) 

mQ=m2(1-h) 

 
3 	 4 

r 

c 

Fig. 4+.1  

The dependence of effective mass squared on the distance from a 

point source (sketched for h = 0.8 ). 

0 
0 1 2 



❑ X +mpx=0 	for h< 1, 

or ❑  X - r 0 for h = 1 , 
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This is sketched in Fig. 4.1. Such a reduction of mass in the vicinity 

of matter is characteristic of Brans-Dicke theory63. 

As r =, (4.5.4) becomes a free field equation for x, with 

mass m. The most important feature, however, is the r 0 behaviour 

in which me  -} m(1-h)2  - m0  and the x field equation becomes • 

this limit being reached exponentially fast. For h< 1 the field 

equation in the vicinity of r = 0 is simply that for a free field of 

mass m0. For h = 1 the mass vanishes in this region but a strange 

first derivative term appears. Perhaps the biggest surprise is the 

total absence of any kind of singularity in (4.5.8) at r = 0. 

Does this mean that two quarks in close proximity ignore each 

other except inasmuch as they lower each other's effective mass? 

There is a convenient way of checking this effect by looking at it 

in a different way. We can ask what the path of a point-like test quark 

would be in the field of the source quark. Since the test quark lives 

in the world of g(h)  the classical paths we want to look at are pv 

precisely the timelike geodesics of the connection 
(h)rsy 

 corresponding 

to g(h). They are solutions of the geodesic equations 
Pv 

d2xa  + (h)ra  dxs  dxy 
 = 0 

71:r7 4- 	dT dT 
(1+.5.10 ) 

where 	aree the particle coordinates and T is the affine parameter of 

the geodesic. 

For the sake of simplicity only radial geodesics will be considered 

since these provide all the information required at the moment. When the 
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gū~) = the 
c/r + 1 

- h)nuv 

is inserted the geodesic equations become 

d2t che-c/r(he-c/r+l-h)-1 at fir = 0 
dT2 	r2 	dT dT 

d2r + che-c/r -c/r 	-1 ( dt 
2 	~,  

dT2 	2r2 	
(he 	+l-h) i (dTj + 

( )2 

 = 0 • 

(+.5.11) 

(4.5.12) 

(4.5.13) 

It is possible to integrate once and eliminate T, eventually 

yielding 

B=ā = 11-k(he c/r +1-h)1 2 (4.5.14) 

where k is an integration constant. 

The final integration, which would allow r to be given as a 

function of t, is a bit daunting but in fact is unnecessary. The nature 

of the geodesics is easily deduced from (4.5.14). For h < 1 they are of 

six types (sketched in Fig. 44.2(a) ): 

(i) k< 0 : spacelike geodesics. 

(ii) k = 0 lightlike geodesics. 

(iii) 0 < k< 1 : timelike geodesics reaching infinity. 

(iv) k = 1 : timelike geodesics "only just" reaching infinity. 

(v) 1 < k< (1-h)-1 : "confined" geodesics, turning back 

when k(he-c/r+l-h) = 1. 

(vi) k = (1-h)-1 : the geodesic r = 0. 

The same categorisation applies to the case h = 1 (Fig. 4.2(b) ) but 

now all geodesics except (vi) become- lightlike at the origin. 



Fig. 4.2  

(a) Geodesics of g(b)  for h < 1. 
Pv 

(b) Geodesics of g(1). 
uv 

(a) 
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(b) 

r 



We note that 

i 

-}0p = fl-k(1-h)12 	as r4-0 (45.15 ) 

the limit being reached exponentially fast. The geodesics are straight 

(from the Minkowski space viewpoint) in the vicinity of r = 0, correspon-

ding to free particles. 

It is not difficult to check that these paths can also be inter-

preted as the paths of particles in Minkowski space whose mass varies 

according to (4.5.7) and whose four-momentum is conserved. 

Thus the behaviour of the x field is corroborated by the nature 

of the motion of classical particles. The mass of a hadron in the 

vicinity of other hadronic matter is reduced from the point of view of 

the weak metric, which is Minkowski space in this case. 

An alternative way of viewing this mass decrease, closer in 

spirit to the original Brans-Dicke interpretation of Mach's principle, 

is as follows. From the point of view of the hadron metric, the mass 

in the x  field equation is constant but the effective strong gravitat-

ional constant (the strong analogue of G), which from (4.4.3) is seen 

to be associated with G(1)-1, decreases as r } 0. Thus the "effective 

local strong Planck mass" increases. Now as discussed in Ref. 57 only 

mass ratios, not masses, can be compared at different points, and a 

natural way to obtain an unambiguous definition of the mass of a 

particle is to use its ratio to the Planck mass. The dimensionless 

"mass" defined in this way decreases as r 0. 

The "confinement" exhibited here is of the "partial confinement" 

variety in which the free quark mass m may be very large while that of 

bound states can be very low, of the order of m0. In (4.4.5) the 

boundary condition i  4- 0 as r = has been applied. This is somewhat 

ad hoc unless 4  is given a mass as discussed in the next section. In 
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Brans-Dicke theory itself a natural boundary condition appears to be 

4 0 as r -} 03. From (4.4.14) this would seem to correspond to an 

infinite quark mass as r -} 00, i.e. "total confinement". However, the 

idea is rather problematical since it implies I } -00 as r } 00 so that 

an infinite constant must be subtracted from (1+.5.5). Hence it will 

not be pursued further. It is notable that difficulties are also 

experienced in trying to apply this boundary condition in the Brans- 

t cke theory itself65. 

Other models using scalar fields to produce partial confinement 

are to be found in Refs. 66-74. In particular Refs. 69 and 73 discuss 

the validity of the quasiclassical approximation in this type of model. 

Such an approximation would be the next step up from the simple 

classical methods used here. 

1+.6 Generalisations and internal symmetry  

The hadron field p  discussed above is massless. Since there are 

no observed massless hadrons, a useful simple generalisation of the 

theory would be to insert such a mass, attaching 

oL U - 

 

112 (1+.6.1) 

to the lagrangian density (1+.1+.13). The boundary condition i } 0 as 

r -> 00 now has a proper physical basis, whereas before it was slightly 

ad hoc. 

As regards the static solution in the presence of a point source, 

(1+.5.5) is replaced by 

* 	
c e 
a r 

(1+.6.2) 
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The main point to be made here is that the results of the previous 

section are not qualitatively altered. For small r the exponential in 

(4.6.2) is of no consequence and me still approaches m0 exponentially 

fast. For large r the only difference is that me approaches m more 

rapidly than before. 

Similarly a self interaction could be added if desired, especially 

if looking for "nontopological solitons"70,72. All these modifications 

correspond to special cases of the generalisations of the Brans-Dicke 

theory studied by Bergmann6o and Wagoner 

The next stage in improved realism is to replace the "scalar 

quark" field x by a spinor field (still denoted by x). A vierbein 

corresponding to g(h) must be found, and the natural choice is 

(h)aP _ (he-4 + 1 - h)-2 Sa (x+.6.3) 

The appropriate lagrangian density is then 

spinor (he-A1'+1-h)3/2 2 X iu a x- m(he-a~+l-h)? X Xi . (1 .6.4) 

Note that the contribution due to the spin connection vanishes identic-

ally. The effective mass is related to m, h and 1p in exactly the same 

way as before. 

Eventually the problem of internal symmetry will have to be faced 

but only a brief general discussion will be given here. The symmetry 

relevant to confinement is colour symmetry. The confinement forces 

should be such that only colour singlets are observed (at present day 

energies at least). In this theory there is an easy way and a difficult 

way to proceed. 

The easy way is to regard as a colour singlet and turn the 

hadron part of the theory into a colour gauge theory in the usual way. 
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As in Ref. 71+ the idea would be to try to realise a suggestion made by 

Nambu, that the vector gluons should be used to unglue colour nonsinglets. 

If the vector gluons are given a mass by spontaneous symmetry breaking 

then the effective mass will have just the same behaviour as for other 

fields, arising in this case from the factor (he-X 1'+1-h) in front of 

the derivative part of the Higgs scalar lagrangian. 

The more difficult thing to try to do would be to have i  transform-

ing in a non-trivial way under colour symmetry transformations. One of 

the problems here is deciding whether to attach internal symmety indices 

to *, or to (, or to 4)13  for some power p. Then the problem of deciding 

which way to make contractions arises. Choosing to convert 0-E4)-1  into 

a U(3) nonet would give the scalar analogue of the U(3) version of f-g 

theory21. The scalar theory would be simpler of course. For example the 

matrix-valued strong metric Bguv = 
A . guv  would now have just one 

inverse namely 
B
4) guv  , symmetric in p and v, whereas in the f-g theory 

case there are two natural inverses, not symmetric in p and v in general. 

However, the-problem-of ordering the various factors in the lagrangian, 

before multiplying and taking traces, still remains. One advantage of 

this approach is that the gauge vectors could be given a mass using the 

nonvanishing vacuum expectation value of B4) (which would be 6B),  without 

the necessity of introducing Higgs scalars especially for that purpose. 

Such a mass would in fact be position independent. 

An alternative approach might be to try to extend the Weyl group 

of vierbein transformations, by analogy with the SL(6,(C) version of f-g 

theory
20
. 

In conclusion, it is fair to say that the inclusion of internal 

symmetry is a non-trivial task. Neither is quantisation straightforward 

since the theory is nonpolynomial. An important point worth stressing 
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is that this nonpolynomial feature is essential to the phenomena 

described in Sec. 4.5. The function exp(-c/r) is finite at the origin 
but no polynomial in 1/r is. 



CHAPTER FIVE 
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CONCLUDING REMARKS 
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This thesis has hopefully shown that strong gravity theories may 

be of considerable importance in hadron physics. Nevertheless, much work 

remains to be done since only the most simplified theories have been 

investigated in any depth so far. Of all the generalisations necessary, 

perhaps the most important is the introduction of internal symmetry. 

It is of interest to know what happens to the results of Chapter 

Two when internal symmetry is 'included. Salam and Strathdee75'13 have 

shown how one can use the classical solutions of the simplified theory 

to give solutions for a vierbein version of f-g theory with the vierbein 

invariance extended from SL(2,0) to SL(2,0) x SU(2) . In these 

extended solutions the triplet part of the vierbein, Liu  (i = 1,2,3), 

may be written in the form n'Lau  where ni  points in a fixed direction 

in isospin space. It would also be interesting if a monopole-like 

solution, with nlr.,  xi/r , could be found. 

Even as they stand the results of Chapter Two invite further 

questions. For example, how can the manifold on which f and g are 

defined be analytically extended? One seeks an analogue of the well 

known extensions found for the standard solutions in general relativity. 

Another important topic is the stability or otherwise of the f-g 

solutions, and an investigation of this problem has been begun by Baran76. 

It would also be useful to know more about the Type II solutions, whose 

explicit form has proved so elusive. 

A merging of f-g theory with another recently developed theory, 

namely supergravity, may well prove advantageous. Particles of other 

spins, notably fermions, would thus be introduced. Whereas the f-g 

theory itself attempts to unify gravity with strong interaction forces 

there would now be the possibility of incorporating the weak and 

electromagnetic interactions. An amusing fact, whose significance is 

not yet clear, is that anti-de Sitter spacetime makes an appearance in 
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both f-g theory and certain supergravity models. A beginning in such a 

merging of the two theories has in fact already been madeT7. One 

encouraging finding is that the requirement of supersymmetry seems to 

reduce the arbitrariness of the f-g mixing part of the lagrangian. 

When quantisation is considered, all of the theories described 

in this thesis suffer in the same way. They are all nonpolynomial and 

nonrenormalisable. This is an inevitable consequence of their kinship 

with gravity. Although techniques are now being developed to cope with 

such difficulties it is likely to be a long time before there is a 

complete, consistent, quantum theory of gravity. Should such a theory 

eventually appear then to find out whether or not it is the "correct" 

theory will be an awesome problem. This brings us back to a remark made 

in Sec. 1.1. It may be that the only hope of experimentally testing 

quantum gravity lies in strong gravity theories. 
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