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ABSTRACT 

Most control schemes developed for rolling mills have been 

concerned only with the control of centre line thickness and ignore 

transverse thickness variations and the important product quality 

factor of flatness or 'shape'. Control of these last factors has 

awaited the development of an instrument and of a basic analytic 

understanding. In this thesis a detailed analysis is developed of 

the transverse properties of the strip and the roll gap; the control 

requirements for the production of flat strip are then investigated. 

The shape model is complex, requires an iterative method of 

solution, and is unsuitable for use 'on—line'. A simplified model is 

therefore developed which lacks the detail of the full model but 

nevertheless gives valuable insight into the shape mechanism. Explicit 

forms for the sensitivities of shape to important parameters are then 

developed. 

The problems of scheduling a tandem mill are discussed and the 

simplified model is used to explain the important interaction between 

shape and reduction at a rolling stand. The scheduling problem is 

formulated as an optimisation problem for which solutions are obtained 

using conjugate gradient and projection techniques. 

Open and closed loop shape control schemes are developed for the 

output of a tandem or single stand mill. The schemes are designed to 

eliminate interaction with strip thickness. Expressions for the 

various loop gains are developed from the simple shape model. 
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INTRODUCTION 

Rolling is one of the most important processes in the metal 

industry. In 1973, 92°/o of the aluminium, copper, and steel produced 

in the world was rolled, a total of 728 million tonnes of metal1. 

Since the beginning of the century the cold rolling process has 

progressed from small manually operated mills which took a large number 

of reductions to produce very unflat strip of inconsistent thickness, 

to highly productive computerised multistand, or tandem, mills. 

A tandem cold rolling mill consists of up to six sets of indepen-

dently driven pairs of "work rolls" each pair being stiffened by larger 

diameter 'backup rolls'. The assembly of two work rolls and two backup 

rolls in a support frame is called a 'four high mill stand'. In 

figure 1 two stands are illustrated showing the major components of 

interest. 

The cold tandem mill receives coils of strip at room temperature 

which have been previously hot rolled and pickled in acid to remove 

the scale. Each coil may consist of two or more hot rolled coils 

welded together before pickling. The basic function of the mill is to 

reduce the thickness of the incoming strip by a factor of 50 — 

to ensure that the strip at the exit is the desired constant thickness, 

and furthermore to ensure that the strip lies flat when rested on a 

flat surface, exhibiting neither convexity nor wavy edges. This last 

strip property is called 'shape'. Final product dimensions are 

typically in the ranges: width 600 — 1600 mm, thickness 0.2 — 2.0 mm. 

Strip reduction results from the high compressive stresses 

experienced by the strip as it passes through the roll gap. The 

required forces are applied by electro—mechanical screws or hydraulic 

actuators mounted in the support frame (figure 1), assisted by the 

significant tensions which are maintained in the strip between stands. 
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In the small roll gap region, typically 5 to 25 mm long, the strip is 

deformed plastically and considerable friction forces exist as slipping 

takes place between the rolls and the strip. This 'roll gap process' 

has been the subject of much impressive research2. The roll separating 

forces are high and a considerable amount of heat is generated in the 

roll gap; when rolling steel sheet of say 1250 mm width, forces of 

1000 tonnes are typical. These forces cause significant squashing and 

bending of the rolls and stretch the support frame. At top speed the 

output strip may travel at up to 1800 metres/minute and, as a result 

of friction in the roll gap, 4 — 5 MW of heat might be generated in 

the mill; lubrication in the roll gaps and coolant of the rolls are 

therefore essential. In normal sheet steel rolling an oil water 

emulsion is often used which serves the dual purpose of reducing 

friction and removing heat. When rolling the thinner 'tinplate' sheet 

steel lubricant and coolant are normally applied separately. For non-

ferrous sheet, particularly aluminium, high frictions occur and compounded 

oils are used. 

The transverse profile of the roll gap is determined by the squashing 

and bending of the rolls, the camber ground onto the rolls, the thermal 

camber produced by non uniform roll heating, and roll wear. If this 

profile does not match the profile of the incoming strip, the reduction 

is noa uniform across the strip width and a non uniform transverse 

distribution of stresses is set up which directly affects the flatness 

of the strip. It is convenient to define strip shape in terms of the 

stress distribution in the strip when it is constrained to lie flat. 

Many mills are now being equipped with computers for the automatic 

control of exit thickness which is generally monitored by radiation 

gauges or contact micrometers. Under steady state rolling conditions 

it is common practice to measure all roll forces, interstand tensions, 

strip thickness, screw positions, and stand roll speeds. Signals from 
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the sensors are used by the computer to calculate roll gap settings, 

interstand tensions,and roll velocities required to control strip 

thickness within narrow limits. However most computer systems control 

thickness along only a single track somewhere across the width where 

the thickness sensor is located. Thickness variations across the width 

are normally ignored by present automatic thickness control schemes. 

While the advances in production rolling over several decades 

have been remarkable, the major remaining problem today is that of 

consistently producing strip that is flat. To the author's knowledge 

there is still only one operational automatic flatness control scheme 

reported in the literature
3, and this is still in the development phase. 

The situation is the result of a lack of advance in two directions. 

Firstly until recently there has been no instrument available capable 

of measuring strip flatness on line; secondly there has been no complete 

detailed analysis or understanding of the factors affecting flatness in 

the rolling operation. One of the main aims of this thesis is to provide 

the necessary analysis and insight into this phenomena. 

Shape is the second largest single cause for the rejection of cold 

rolled steel strip accounting for 1.5°,/o of the total product and a 

similar figure applies in the aluminium industry. It should be 

mentioned that not all material rejected for bad shape after rolling 

is necessarily scrap, the shape can sometimes be corrected by further 

processing in "tension levellers" but this obviously adds significantly 

to the production costs. There is therefore considerable economic 

pressure for the development of an automatic flatness or shape control 

scheme. 

Strip flatness is a function of the transverse properties of the 

strip and the roll gap. If a strip is to be flat after rolling, the 

reduction in thickness experienced as it passes through a roll gap must 

be constant across the strip width. The reduction operation in metal 



rolling is one of plane strain, hence any transverse variation in 

reduction must be accompanied by a transverse variation in elongation. 

If a strip is constrained, either internally or by some external means, 

.to be flat when it has experienced a transverse variation in reduction, 

a non uniform transverse internal stress distribution must result. If 

however any such constraints are exceeded, an elongation variation can 

• exist only in a strip with varying degrees of flatness across the width. 

For example, a strip which is buckled at the edges and flat at the 

centre is longer at the edges than the centre). The internal stress 

distribution caused by a transverse variation in the reduction is 

termed the "Shape" of the strip: a strip with uniform stress distri-

bution is said to have "perfect shape". If the strip remains flat 

with a non uniform residual stress distribution the shape is said to 

• be "Latent"; if the strip exhibits buckles the term "manifest shape" 

applies. 

Over the last decade a variety of shape measuring instruments have 

been developed of which at least three are now commercially available. 

the Loevy Robertson "Videmon", the ASEA "Stressometer", and the IHI 

instrument). Only two of these, the Videmon and the Stressometer, are 

capable of measuring latent shape and so are the most promising for 

inclusion in a shape control scheme. 

There is no complete theoretical analysis of the shape phenomena 

recorded in the literature. In an early paper Saxl
4 

developed a model 

for gauge profile. The modelling of the roll bending was complete but 

it assumed symmetry about the strip centre line. The expression for 

the flattening of the work rolls against the strip was based on the 

work of Hertz which assumes strip and rolls of infinite width. The 

change in flattening near the edge is therefore ignored although Saxl 

does discuss the effect and suggest an heuristic solution. The major 

omission in this work is the effect of the transverse reduction variation 
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on stress. The analyses of Harguchi et al and of Wilmotte et alb 

are similar in detail to that described above. The roll bending again 

assumes symmetry and the flattening assumes infinite strip and roll 

width. Unlike Saxl, these authors ignore the errors in flattening 

near the strip edge resulting from this derivation. The problem of 

the internal stress distribution is again not considered. In the 

case of Wilmotte this omission is justified since he is concerned 

only with hot rolling. The analysis of Sabatini
7 
 is believed to be 

the first to include an expression for the transverse stress distri-

bution. The derivation is based on dividing the strip into 

longitudinal elements and relating elongation variations to stress 

via Youngs modulus. The interaction between the strips due to shear, 

and the effect of transverse slip variations are ignored. The 

remainder of the model is similar to those already described. The 

work of O'Connor and Weinstein
8 

is similar to that of Sabatini 

although the work roll flattening expression is in more detail and 

does not assume infinite width strip and rolls. The model derived by 

Edwards and Spooner9  differs from that of Sabatini mainly in that it 

recognises the importance of including the effect of the transverse 

variations in slip at the exit of a stand,on the stress distribution. 

The derivation of an expression for the stress equations is however 

theoretically weak and ignores the change in the stress distribution 

along the strip explained by St Venants principle. 

One assumption common to all the analyses discussed is that of 

symmetry about the strip centre line. Asymmetric shape distributions 

are not uncommon in practice, particularly in the Aluminium industry 

where for certain products the strip is slit in half longitudinally 

part way through a sequence of rolling operations. All of the models 

discussed also assume a fixed centre line thickness for the strip. 

The effect of parameter variations on shape can be investigated but 
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any interaction with thickness is ignored. A model including these 

effects will be required in order to study designs of combined gauge 

and shape control schemes. 

In chapter 1 of this thesis a complete model of the shape phenomenon 

is derived. Unlike earlier models, symmetry is not assumed and the 

effects of the interaction between thickness and shape are included. 

An expression is derived for the transverse stress distribution which 

includes the effects of transverse slip variations and of longitudinal 

changes in the distribution. The flattening of the work rolls against 

the strip is analysed without the assumption of infinite strip and 

roll width. The resulting expressions for both the stress distribution 

and the roll flattening are believed to be original. 

The extreme complexity of the model renders it unsuitable for use 

on—line and also makes it difficult to gain a simple physical under-

standing of some of the major effects. For this reason a simple 

approximate algebraic expression for shape has been developed in 

chapter 2. Much of the detail of the full model is lost, as the 

approach adopted is to model only one important component of the shape 

distribution. The model also assumes symmetry and a constant centre-

line thickness. The final expression is ho•wvever differentiable and 

expressions can therefore be obtained for the sensitivity of shape to 

important parameters. 

The method and concept of developing a simple model for the 

important component of the shape distribution is original. The model 

is of central importance in that it provides control theoretic insight 

into, and quantitative design information on, shape behaviour. In 

chapters 3 and 4 of the thesis the model is used to explain the 

complex interactions between shape and roll force at a rolling stand 

and to overcome the schedule dependency of some gains in a control 

system. 
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When rolling strip in a tandem mill, the shape of the final 

product is important, bat also the shApe at the intermediate stands 

must be within certain tolerances to ensure acceptable mill operating 

conditions. For reasons of economy and because of the mechanical 

layout of rolling mills, shape instruments cannot be installed after 

every stand. The required shape must therefore be obtained by 

calculating the correct "schedule" for the product using the shape 

model and on line measurements of certain strip and mill parameters.* 

This problem is studied in chapter 3. 

The literature on scheduling is relatively sparse. In an early 

paper, Oliver and Bowers
10 

obtained schedules by constraining the 

stand roll force distribution. More recently, Su
zu
ki et al

11 
 

introduced similar constraints and also considered constraints on 

rolling powers. Shape however has been largely ignored in the 

scheduling studies to date mainly because adequate analysis of the 

shape phenomena was not available. In chapter 3 the interaction 

between shape, thermal crown and roll force, which is important from 

the point of view of scheduling, is explained with the aid of a 

"scheduling diagram" which is developed from the simple shape model. 

The diagram does not offer a complete solution to the scheduling 

problem as it does not include -the complex interactions of shape and 

thickness between stands,and unfortunately an iterative procedure is 

required. The solution is obtained by formulating the problem in 

state variable terms as a constrained two point boundary value problem 

which is solved using conjugate gradient and projection techniques. 

* The term "schedule" refers to the distribution of the reduction 

between the stands, the values of interstand tension, roll ground 

crowns and roll bending jack forces. 
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The understanding of the physical mechanisms at a rolling stand gained 

from the scheduling diagram enables the best form Of cost function to 

be derived and also greatly assists in interpreting the results of the 

optimisation routine into practical engineering results. 

Finally the problem of on line shape control is discussed in 

chapter 4. The behaviour of all available controls is analysed 

particularly in relation to their effect -on final strip thickness, as 

a basic requirement of any shape control scheme must be that it does 

not interact with strip thickness. Both open and closed loop 

forms of control are discussed and the circuits derived for both are 

believed to be original. Most of the gains in these circuits will be 

dependent on the dimensions of the strip being rolled. The problem 

of these "schedule dependencies" is solved by using the expressions 

for the sensitivities derived from the simple shape model in chapter 2. 



CHAPTER 1 

ANALYSIS OF SHAPE 

The residual stresses introduced into a strip as it is reduced 

in thickness through a stand of a rolling mill are determined by the 

variation between the entry and exit thickness profiles. If the strip 

is reduced plastically by varying amounts across the width the 

elongation must also vary. If the strip remains flat variations in 

length are inhibited and transversely varying residual stresses result. 

Immediately after leaving the roll gap the strip thickness under-

goes an elastic recovery which is dependent upon the stress and the 

thickness distributions. The elastic recovery will therefore, in 

general, vary across the strip width and the thickness profile will 

change. In order to calculate the actual thickness profile between 

stands therefore the elastic recovery must be added to the roll gap 

profile. The' work of Ford et al
12 has shown that this recovery is 

related to thickness and stress by the expression, 

\/ h
2
(1 — •

2AK
2 

— (5
2
) 

h
e 

— E  

where h
e 
= elastic recovery in thickness 

h2  = exit thickness from the plastic zone 

= Poissons ratio 

a2  = exit stress 

K
2 
= yield stress 

E = Youngs modulus of elasticity 

A block diagram of the basic structure of the shape model is shown 

in figure 2. The exit thickness profile (ignoring elastic recovery) is 

determined from the sum of the deformation of the section of the work 

rolls in contact with the strip, calculated in block 4, the total 

1G 
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deflection of the work rolls due to bending and shearing, block 5, 

and the initial roll profile. As we shall show, the internal stress 

distribution in the strip is determined from the ratio of the entry 

and exit strip profiles and the entry strip shape; this is calculated 

in block 1. The force developed in the roll gap at any point across 

the strip is a function of entry and exit thickness and stress at that 

point. The exit thickness profile however, which determines the 

stresses, is itself a function of the roll force viaroll deformation. 

The stresses produced in the strip by conditions in the roll gap, feed 

back on the roll force and modify the roll gap conditions. The model 

is therefore iterative. The bending and shearing deflection of the 

work rolls is determined by the forces developed in the strip and by 

the forces applied by the backup roll (block 6). These forces are 

determined by the relative profiles of the adjacent surfaces of the 

work and backup rolls. The effects of forces applied to the rolls by 

bending jacks, used on some mills to modify the roll bending, are also 

included in these calculations (blocks 5 and 7). 

To simplify the model derivation the roll length is discretised 

and values of the exit thickness and entry and exit stresses are 

calculated at the centre of each section. The forces between the strip 

and the work rolls and between the work and backup rolls are approximated 

by a series of point loads acting at the centre of each section. 

Each section of the model discussed above will now be analysed 

in detail. 

1.1 Work Roll Deflection 

Figure 3a shows the forces acting on the work roll. The loading 

will be considered as a series of equivalent point loads p(x) — q(x) 

acting at discrete intervals along the roll. The change in roll 

diameter at the roll neck will be ignored as this will only affect 
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the deflection of the roll in the necks and the stresses in the roll 

barrel in the vicinity of the necks, neither of which will influence 

the strip thickness produced. The length to depth ratio of the roll 

will generally be in the region of three for most mills and the 

deflection due to shear will therefore be significant and must be 

included. The expressions for deflection due to bending and shearing 

will be derived separately. 

1.1.1 Deflection due to bending 

An expression for the deflection due to bending will be derived 

using Macaulays Method1 .
3  Consider the beam shown in figure 3b. The 

bending moment at any point x along the beam can be written as*: 

d2y 

	

	6x 	35x 
J 

I
+ + q 

dx = 	l
x 
I
+ 	- a -4-2-J 	'2C x- a - 	1 

2 

6x, 
+ qifx - a - (2n - 1) --j 	 1.1.1 

2 

where Ji  = roll bending jack force at one end of the roll 

E = Youngs modulus of elasticity 

I = moment of inertia 

y = deflection (positive downwards) 

x = distance along the roll 

result-an t".  force as worg roil ( 
(,(x) - /960) 

* N.B. By Macaulay's method if the contents of any of the square 

bracket becomes negative it is ignored. 
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By integrating 1.1.1 twice, expressions for the slope and the 

deflection of the beam are obtained. 

Slope = 	= 	- 
dx EI 2 2 

dy 1 f' Jix 
+ 	- a - 	+ 	- a - (11 

2 	

1 2 q2 	3bx 

2 	2 

9 2 

 

qn 	bx.] 
+ -Ix - a - (2n 1) — + R 
2 	2 

 

1.1.2 

1 	J x3/ 3 	/ 	3 

Deflection = y 	- 
/I 	q 1 + --ix - a - ] + 	x - a - 	+ 

6 	

bx 	q2 

2 	6 	

3bx 

2 EI 	6  

bx 3 
11 + 1111 --{X - a - (2n - 1) --] + Rx + S.1 

6 	2 
1.1.3 

To evaluate the constants of integration (R and S) we assume that 

the deflection is specified at two points along the roll, say 

y(xi) = Di  

Y(x2)  = D2 

Then 

1 	J1x1
3 

D =   4. QM
1 + Rx 1 EI 	6 	1 

1.1.4 

1 11 J1x2
3 

- D - 	+ QM2 
+ Rx + S} 2 EI 	6 	2  

. 1.1.5 . 

ql 	bx 3 	./ bx 
where QM. 	- a -'--] + 	+ 	x. - a - (2n - 1) -- 1 6 11 	2 	6 1 	2 

3 
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Solving for R and S gives, 

R 
(x – x  ) 	

-- x – x2  – Qm1 Qm2 

	

/EI(D
1 
 – D2  ) + 	( 3 	3N  1 
	J, 

i  

1 	2 	
6 

J
1
x
1
3 

S EID1 + 	QM1 
– Ax

1 6 

1.1.6 

1.1.7 

1:1.2 Deflection due to shearing 

The deflection due to shearing at any point along a beam is given 

by  

4 
y(x) 	I V(x) dx 
	 1.1.8 

3AG 0 

where A = cross section area 

G = modulus of rigidity 

V = shear force 

The variation of shear force along the roll is shown diagramatically 

in figure 4. 

The area under the curve up to any point x is given by: 

x 	 bx 	36x 

0 	 2 	

j 
V(x) = Jix – qifx – a – —} – 	

2 
– a – 	– 

6x 
– erlx – a– (2n – 1) -- 

2 
1.1.9 

If the contents of any square bracket is negative it i-s ignored. 

The deflection due to shearing at any point along the beam is determined 

by substituting equation 1.1.9 into 1.1.8. 
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1.2 Backup Roll Deflection 

The deflection of the backup roll is caused by forces from the 

work rolls, the screws,and any roll bending jacks. The general form 

of the loading is sho,vn in figure 5. The same assumptions and 

procedures used in the previous section to find the deflection of the 

work roll are used here to find the deflection due to bending and 

shearing of the backup roll. 

1.2.1 Deflection due to bending 

For a beam loaded as in figure 6 the expression for the bending 

moment is 

+ q rx _ z _ (2n _ 1) OX] + J [x _ L + a] 1 
nt' . 2 2 J 1.2.1 

By integration the following expressions for slope and deflection are 

obtained 

1.2.2 

Deflection = y = ~ {_ R1x
3 

+ J 1[x _ a]3 + Ql[x _ z _ OX]3 + Q2[x _ z _ 6XJ~ 
EI 6 6 6 2 - 6 2 

+ :n [x _ Z _ (2n _ 1) :xt + :2[X _ L + a] 3 + Ax + B ] 

1.2.3 
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The deflection at each end of the roll relative to some fixed datum 

is determined by the screw positions, ie 

y(0) = S1  

y(L) = S2  

The constants of integration, A and B, can therefore be evaluated: 

1 	R L3 	(L — a)3 	(L — z — ox/2)3  
A . —fEI(S2  — Sl) + 

6 	jl 6 	ql L  6 
• • • 

 

(L — z — (2n — 1) 6x/2)3 	a3 

	 J
2 
-- 

qn 6 	6 

 

1.2.4 

B = EIS1 
	 1.2.5 

The reaction R1 can be found by taking moments about x = L, then 

1 	 bx, II
I 
= — J

1
(L — a) + J2a + q1

(L — z — Ox/2) + q2
(L — z — 3 /2) .... 

+ qn(L — z — (2n — 1) bx/2)../ 	 1.2.6 

1.2.2 Deflection due to shearing 

Figure 7 shows the distribution of shear force along the roll. 

The shear force at any point x can be expressed by: 

bx z 35x/2]  ... 

0 
V(x)dx:. — R1x + J1 

 [x — a] +q, [x — z — —] + q2[x 
2 

+ %[x - z - (2n — 1) 5x/2] + J2[x — L + a] 
	

1.2.7 

N.B. If the contents of any square bracket is negative it is ignored. 

The deflection due to shearing is obtained by substituting equation 1.2.7 

into equation 1.1.8. 
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1.3 Pressure Distribution between the Work and Backup Rolls  

The pressure developed in the contact region between the work and 

the backup rolls can be determined by considering the elastic deformation 

between the rolls. It is assumed that at any point along the rolls, 

the work roll and the backup roll will each be deformed by equal amounts 

and the pressure is proportional to that deformation. As discussed in 

the introduction to this analysis, the roll is considered divided into 

a number of equal sections; the aim of this section is to derive an 

expression for a set of equivalent point loads acting on the work and 

the backup rolls at the centre of each section. 

Referring to figure 8 it can be seen that the deformation of the 

th rolls at the centre of the i 	section is, 

1 
	 1.3.1 

whereWis the distance from some datum to the bottom surface 

of the backup roll at section i ignoring deformation 

against the work roll 

andMis the similar distance to the top surface of the 

work roll 

An alternative expression for the interference can be obtained from 

Hertz's theory for the deformation between two elastic cylinders with 

parallel axes
15 

2(1 —12) q 12 2 2D1 	2D 
A _  	 + ln + ln — — 

E 	TC 3 
1.3.2 



24 

b 
D
1 
D
2 	

2(1 —12) 
1.3.3 

   

(Di  + D2) 

where q = force per unit length 

E = Youngs modulus of elasticity 

D. = diameter of cylinder i 

Poissons ratio 

This expression assumes that the force q is constant along the length 

of the cylinders. The number of sections required across the roll is, 

for reasons which will become clear later, greater than 100. The 

effect of assuming the force to be a constant across each of these 

narrow sections is therefore small. The pressure acting between the 

rolls over each section can be found by combining equations 1.3.1, 

1.3.2 and 1.3.3. Unfortunately it is not possible to obtain an 

explicit expression for q and an iterative procedure would be required 

to find a solution. However it has been found that the term, 

2 2D1 	2D
2 —+ ln 	+ ln 

3 

is not very sensitive to likely variations in q. For example if q 

varies from 1.0 to 0.3 tonnes/mm, the above factor will change by less 

than 10°/o. The calculation can be simplified therefore by replacing 

q in the expression for b by a constant q. q is the average value of q 

and can be found by dividing the total force required to reduce the 

strip, which is known, by the roll length. 

th 
The final expression for the force at the 

.
section along the 

roll, qi  is 
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(DBi  — DWi) 
q - 	  3. 2(1  .v2) 2  2] 2D

1 
	2D2 
 + In 	+ In 

3 

1.3.4 

D
1 D2  [2(1 —1) 2/ 

where b = 1.6 q.  
D
1 
+ D

2 	
E 

The value calculated for q must satisfy the equilibrium equation for 

the work roll: 

tTz 
E(pi  dx) + J/4.= E(qi  dx) 	 1. 3. 5 

where 	dx 	is the width of each section 

p. and qi  are the values of p and q for section i 

J
1 
and J

2 are the jack forces acting on the roll 

In the complete calculation of the force distribution qi, the distance 

between the roll axis is altered by changing.DWi  until the qi  calculated 

by equation 1.3.4 satisfies the equilibrium equation 1.3.5. 

This method of calculating the pressure distribution by considering 

individual sections across the roll ignores the presence of shear 

stresses in the roll caused by the variation in deformation. The 

geometry of the two contacting roll surfaces dictates that the rate 

of change of pressure and profile will be slow. Hence it is easily 

shown that the shear forces on each individual section of the roll are 

of opposite sign and tend to cancel. The effect of shear forces can 

therefore be neglected. 
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1.4 Pressure Distribution between the Work Rolls and the Strip  

The force developed between the strip and the work roll will vary 

across the strip because it is dependent upon entry and exit thicknesses 

and stresses. As with the inter roll pressure, the pressure from the 

strip will be approximated by a series of point loads at discrete 

intervals along the roll. 

Since the roll force equation will have to be evaluated a number 

of times across the roll it is essential that a simple expression is 

used. In [16] a simple explicit model is derived for cold rolling 

which would be suitable for this application. In the shape model 

however a linearised roll force model has been found to yield 

sufficient accuracy and is used to reduce computing time. The 

coefficients in the linear model, which are schedule dependent, are 

obtained by differentiation of the model in [16] for the nominal 

rolling schedule values. 

The linearised formula gives sufficient accuracy for the following 

reasons. Firstly the maximum likely transverse variation in entry 

and exit thicknesses is less than 5°/o which is well within the range 

of the accuracy of the linear model. The stresses however can vary 

by more than 1000/o if the shape is bad. The sensitivity of roll 

force to entry or exit stress is fairly non linear (although not as 

\ 
non linear as with thickness

17
). However the effect of equal changes 

in entry and exit stress is very nearly linear. This can be understood 

by the following heuristic explanation. Considering the diagram of 

• the pressure variation through the roll gap, figure 9. The total 

pressure developed is represented by the area under the graph. It can 

be seen that the effect on total pressure of equal changes to entry 

and exit stress is linear since, to a first order, the friction hill 

area is unchanged. Results from the full shape model have shown that 

the stress distributions on either side of the roll gap do tend to be 



a12 

U
d 
= 
6 G 

1.4.2 
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similar. This effect is brought about by the complex interactions 

of slip and gauge in the transverse stress equations developed in 

section 1.6. 

All the roll force models derived in the literature are based 

on the assumption that compression takes place in plane strain. At 

the extreme edges of the strip this is untrue since there is no strip 

present to restrain the sideways movement although there is still a 

friction force. Because of this the true roll force close to the 

strip edges will be less than that predicted by the classical roll 

gap equation. To investigate this error we require to know the 

relationship between the yield stress in simple compression (the 

limiting case represents the condition at the extreme edge) and the 

yield stress under plane strain. 

Von Mises criterion states
18 

that yielding begins under any 

conditions when the distortion energy equals the distortion energy 

at yield in simple compression. 

1 	1 
Distortion energy, ljd 	. — (al  — 12)2  + (a

2  — 3 	` 
)2  + (a

3 
 — a

11  
12_1 

`  2G 6 
1.4.1 

where a
l' 
 a2, a

3 
are the three normal stresses 

G is the modulus of rigidity 

Now in simple compression two of the stresses are zero. Therefore 

and a
1 must be equal to the yield stress K, hence 

K .1677.r 	 1.4 . 3 
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The relationship between the stresses in the case of plane strain can 

be found from the Levy-Mises equation18  which states 

d 61 
	d e l 	de3  - K 

(a 
1
- 3) 	(cr

2 
- 	(a

3 
- U) 

where E = strain 

and 75 is the mean stresses 
a
l 
+ a2 + a3 

3 

For plane strain (11.3  = 0 

therefore 	a
3 
= _ 

a + a2 + a3) 

3 

[a
1 
+ a

2 
Or 	a

3 2 
1.4.4 

Substituting this condition into the equation for distortion energy 

gives, 

1 	1 13 
U - — - - (a - 

a2 
d 

d - 	• 	1 2G 6 2 

By Von Mises criterion equations 1.4.3 and 1.4.5 can be equated 

1 1 3 
2 	

K2 

	

2G 6 2 1 2 	6G 

1.4.5 

1.4.6 

or K = — (a -a2) 
2 

1. 	2 

Therefore the yield stress in simple compression equals 	times the 
2 

yield stress in plane strain. 
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If the elastic recovery regions and the effect of strip tensions 

are ignored, the roll force is approximately a linear function of 

yield stress. Therefore 	/2 is an upper limit to the possible 

reduction in roll force caused by spread, ie the effect on roll force 

will be less than 140/o. 

An estimate for the portion of the strip width affected by spread 

can be obtained from measurements of width change taken during the 

rolling of strip through four stands of a tandem mill. For four 

approximately equal reductions of 200/0, the increase in width is 

typically less than 1 mm. That is a 200/0 reduction causes a width 

change of less than 0.25 mm, assuming the spread is equal on all stands. 

It is reasonable to assume that the degree of sideways spread is a 

maximum at the extreme edge of the strip. As a limiting case we will 

assume that at this point the material is reduced by simple compression 

and therefore the fractional change in width is equal to half the 

fractional reduction, 

SW 41# . 0.5 R 

Away from the strip edge the amount of spread will decrease until at 

some distance X from the edge the reduction process will be plane strain. 

The distance X affected by spread will clearly depend on the way in 

which the spread decays. Assume that the spread decays according to 

some function f(x), where x is the distance from the strip edge, such 

that, 

f(0) = 1 

f(X) = 0 

Then the increase in width can be expressed by 

At, 	X 
OW = 2 J.  0.5 R f(x) dx 	 1.4.7 

0 
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The exact form of f(x) is unknown but it is expected that it will 

decay rather rapidly initially and therefore the major effect of 

spread on roll force will be limited to a very small region at the 

edge. As a limiting case let us assume that there is a region close 

to each edge of the strip where the reduction process is simple 

compression and, for the remainder of the width, plane strain applies. 

Then, 

X 
and LW = R j dx 

0 

Using the measurements quoted of a 0.25 mm increase in width with a 

20°/o reductionithe distance affected by the spread is, 

ow .25 

R 	.2 
= 1.25 mm 

In practice the decay will be gradual and therefore the region will be 

wider but the error in the roll force will decrease. For a linear decay, 

x 
f(x) = 1 — — 	0 <x..‹ X 

X 

f(x) = 0 	 x > X 

the region affected will be 2.5 mm but the roll force error will be 

less than 7°/o at 1.25 mm. 

These approximate results indicate that the effect of spread on 

roll force is small. It can be shown that, assuming typical strip 

and mill dimensions, the effect of this roll force error on the bending 

and shearing deflection of the work roll across the strip width is less 

than 0.25(yo. 
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1.5 Work Roll Flattening 

The final transverse profile of the roll gap is significantly 

affected by the variation in the indentation of the roll by the strip 

across the width. In the literature most authors have modelled this 

term approximately using the Hertzian expression for flattening between 

cylinders and flat plates. The Hertzian expressions are correct only 

for cylinders subjected to a uniform pressure. The method adopted was 

the same as that used for the inter roll pressure distribution, the 

expression was applied to each section of the roll where the pressure 

was assumed to be constant at the average value. Over most of the 

strip width this method gives adequate results as the variation in 

roll force is slow, however large errors result in the region of the 

strip edges where the roll force drops suddenly to zero. The influence 

of the unloaded roll on the roll deformation near the strip edges is 

not modelled and a sudden change in deformation is predicted as shown 

in figure 10a. A more accurate form of the deformation is clearly 

that shown in figure 10b. 

It is proposed to develop here a more accurate model for the 

flattening in the form of an influence function for the deformation 

of the roll caused by a pressure distributed over a small area. To 

obtain the total deformation the influence functions will be summed 

across the complete strip width. Three assumptions will be made in 

developing the model: (a) The problem can be approximated by a band 

of pressure applied on the surface of a semi—infinite solid because 

of the relative sizes of the arc of contact between the strip and 

roll, and the roll diameter. (In cold rolling the arc of contact is 

typically 25 mm for a roll diameter 550 mm, the angle subtended by 

the arc is therefore approximately 1.5 degrees.) In figure 11 the 

roll is represented by the semi—infinite solid, 

- 01) < x <c0+ 	- 00 < y< 00+ 	- 00 < z < 0 
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with pressure applied at, 

z =0, —a<y< +a, —b<x< + b 

(b) The band of pressure will be assumed constant in the direction of 

rolling. This is reasonable since the primary aim is to model the 

transverse variation in thickness profile of the strip leaving the 

stand and this will be determined by a single point on the roll 

circumference. (c) The variation in roll force across the strip 

width can be approximated by a number of equal sections over which 

the roll force is a constant, see figure 12. The problem then reduces 

to that of developing an influence function for the displacement on 

the surface of an infinite solid, into the solid, caused by a uniform 

pressure applied over a small rectangular area. The total flattening 

along the roll can be determined by summing the effects of each 

section of the strip width. 

The required function can be derived from the expression for the 

displacement At due to a pressure p per unit area applied at a point 

xl, y1  in the plane z = 019. This equation, which is derived in 

appendix 2, is, 

(I 	p dxi dy1 
dW = 	 

2 n G 
1.5.1 

where R is the distance between the point at which the force is 

applied (xl, yl) and the point at which the displacement is 

measured (x, y) 

112  = (x — x1)2  + ( y — y11 
12  

The displacement caused by a pressure p per unit area applied over 

an area — a 4 y 4: a, — b 4: x 4: b on the surface z = 0 can be 

obtained by integrating 1.5.1 

W(x, 	_ 	 
(1 — '4) 

I 
a b 	dx

1 dy 

2 n G —a —b [(x — x1)2 (y yi)2]1/2  
1.5.2 
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Let A = y — yl  and integrate with respect to xl  only: 

b 
I = 1 	

d x1  

—b [k , 	
1 

x — x1 )2 + A 2] /2 

Let X = x — x1 
dX = —d x1 

when x1 b 	X . x — b 

x1  .—b 	X.x+b 

x+b 
I . f 

x—b 

dX 
	  = fink + (X2  + A2) 
Ex2 A2j  .Y2 

1/21  x+b 

J x—b 

I = In 	+ b) +((x + 	+A) 	—1ntix — b) 	x — b)2 A2)1/23 

Therefore: 

	

p(1 —'9) 	a 	r 

2 It G —a 
W= 	 j [14(x + b) + ((x + b)2  + (y — yi)2)1/2.1 

— ln[(x — b) + ((x —b)2 +  (y — yi.)2 )1/2].) dyi  

Let A . (x + b) 	B = (x — b) 

Y Y.—  Y1 
dY —dyi  

when yi  . a 	Y = y — a 

	

Y1 = —a 
	Y = y + a 

p(1 —V) 	y+a , / 

2 n G 	
.1" 1.11A + (A2  4. r) 1 / 2  W _ 

	

	  
y—a 

B+ (B2  + Y2) 1/2 dY 
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P(1 - W 	 LI1 - I2j 2 'it G 

The integral of the form I1 and I2 is solved in appendix 3 giving 

the result: 

/ in A + (A2 + r-, )1 Idy =PC 	+ (A2 + Y2 ) 1/2)TI 

tan lC! 
— ALtan z - ln(sec z + tan z)] 

tan 

Inserting the limits, Il becomes, 

1 
= y 	n 

 + (A2 + (y + 
1l 

11 

a) 2)1/2j} 

+ (A2 + (y - 
a) 2)1/J 

N2) 	4 4. (A2 + + a 1nVA + (A2 + (y + a j (y - 

- (y + ) + A In  a)  
+ b)2 + (y + a) 211/2 

(x + b) 

y + 
ab ).] 

[EX 

B)2 (y a\!71/2 

(y a, 

(y — a) — A In  	
) 

(x + b) 	(x + b) 



a In 	1 
(x — b) + ((x — b)2  + a2) /2  I( 

W(x, o) _ 
x + b) + ( ( x  4. 10 2  4.  a2)1/2 
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For the purposes of shape modelling we are interested in the 

displacement of the roll surface along a line y = constant. For 

convenience let y = 0. Then, 

a2)1/2.] I1  = 2a lnix  + b) + ((x + b)2  

— 2a + (x + b) In 	/ 
[(x + b)2  + a2] /2  — a 

irE( x 4. 02 4. a2j1/2 4. a  

1 

Similarly 12  can be shown to be: 

12  . 2a lnI(x — b) 	((x  _ 1:02 a2)1/2.] 

— 2a + (x  _ b) In 
il[(x — b)2  a2]112  4. a  

Finally 

[(x — b)2  + a2]1/2  _ a  

  

a2)1/2 4. a 

2.1/2 + a ) 	— a 

 

+ (x + b) In 
(X + ) 

 

 

  

_ b)2 a2)1/2 4. a 

— (x — b) In 	 1.5.3 _ b)2 
	

/2  _a 
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It will be assumed therefore that equation 1.5.3 represents the 

influence function for the indentation of the roll surface caused by 

a uniform pressure acting over a roll length 2b and an arc length 2a. 

To compute the total indentation caused by contact with the strip, 

the strip will be divided into a number of narrow sections over each 

of which the pressure can be approximated by a constant. The 

indentation of the roll by each of these will then be computed using 

equation 1.5.3. Since we are dealing with an elastic media the 

effects are linear and the total indentation is obtained by summation. 

The form of the indentation given by equation 1.5.3 for the case 

of a uniform roll force acting across the complete strip width is 

shown in figure 13. Near the strip edge there is a rapid decrease 

in the amount of deformation and this would result in a decrease in 

the strip thickness at this point., The result of such a profile 

would, of course, be to set up very large compressive stresses near 

the strip edges due to the increased elongation. In practice this 

indentation profile is highly modified by "feedback". The profile 

shown in figure 13 is the result of a uniform pressure distribution 

across the strip, however the increased reduction and high compressive 

stresses which will result near the strip edges will both cause an 

increased rolling pressure in this area. The increased rolling 

pressure will increase the amount of indentation and the net result 

will be to reduce considerably the variation in flattening near to 

the strip edges. 

The effect of this feedback is included by iteration in the 

final shape model. 
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1.6 Transverse Distribution of Stress  

When metal strip is reduced in thickness by rolling through one 

or more stands, a transverse variation in the longitudinal stresses 

is set up in the strip. This variation in stress in the strip at 

any point between the stands is caused by (a) any transverse variation 

in the reduction and hence elongation at previous stands and 

(b) transverse variations in the slip and hence the strip velocity 

at the exit of the previous stand or at the entry to the next stand. 

The existence of these stresses is important for two reasons. Firstly 

during rolling the stresses in the strip at the entry and exit of a 

stand affect the roll gap profile and hence the reduction and slip 

variations. Secondly the portion of the stresses which remain in the 

strip after rolling are the strip shape and determine its ability to 

be flat. 

In the derivation of expressions for the transverse stress 

distributions which follow, it will be assumed that the strip remains 

flat and buckling does not occur. This is justifiable when considering 

strip during rolling since it is held under a tension which, except 

in certain extreme cases, will be sufficient to prevent buckling. 

(Buckling cannot occur unless compressive stresses are present.) After 

rolling, when the strip is free from constraints, the mean level of the 

stress will be zero. The level of compressive stress which the strip 

can sustain without buckling is very low, and in many cases therefore, 

particularly with thin wide strip, buckling will occur after rolling. 

Except for cases of very bad shape however the amplitude of the buckled 

wave will be low and often indiscernible to the eye. 
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1.6.1 The effect of reduction variations  

The transverse variation in reduction and hence the elongation) 

of an element midway between stands is determined by the conditions 

which existed at the last roll gap when that element was rolled. 

Consider an infinite length of strip that has been rolled under steady 

state conditions such that the reduction at the edges is greater than 

that at the centre. Because the strip is deformed plastically in the 

roll gap, any transverse variation in reduction will give rise to an 

equal variation in elongation. If any transverse element of the 

strip is considered therefore in isolation from the adjacent elements, 

the edges will be longer than the centre. It is clearly impossible 

for every transverse element of the strip to maintain the same 

variation in length (assuming the strip remains flat) and hence the 

elongation variation is inhibited and a stress variation results. 

Consider the strip shown in figure 14, the stress at any point y 

across the strip can be expressed by the sum of two components. The 

first component is the difference between the strain at that point 

and the mean strain, 

b 

E 	E(z)dz — E.(y!  
2b —b 

The second component, which is only non-zero in the case of asymmetric 

stress distributions, is the resultant bending stress13, 

My 
aB 

where M is the bending moment 

and I the moment of inertia 
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For a rectangular strip thickness t width 2b, 

2 t b3  

3 

Therefore 

3 y  
b 	 b  3 E y 

c1B(Y) 	 E E(z).t.z dz = 	(z).z.dz 
2 t b

3 
2 b

3 
—b 	 —b 

Hence the expression for the stress at any point across the strip is, 

	

cx(y) = —E E(Y) — 
1 — 
	3Y3  I ((z) z dz  

	

2b 	2 b
3 

—b 	—b 

1.6.1 

or in discrete form, 

_cc 	ELE — E 
3 i by K 

3 	£ ' 
. by 

2 b 	j=1 
1.6.2 

where by is the width of a discrete section 

and K is the number of sections 

1 K 
E E. Sy 

2b i=1 1  

(N.B. The last term in equations 1.6.1 and 1.6.2 will only have a 

value when the stress distribution is asymmetric.) 

The strain £ can be expressed in terms of thickness at each point 

across the strip before and after the previous rolling stand. 

Consider an element of strip of thickness H and length L before 

reduction and thickness h and length 1 after reduction. By 

continuity of volume, 

HIf= h 1 



40 

H 1 
Therefore — - 

h L 

and the strain 1.6.3 

Substituting equation 1.6.3 into 1.6.2 gives 

	

H H. 	3i by K 	H. 
c+. = El— — — — 3 jE 1— =3 ) j by xi. h h. 2b =1 h. 

	

1 	 J 

In the symmetric case this reduces to 

H H. 
a. E -- 1  - 1 h. 

. 	1 

1.6.4 

1.6.5 

The above expressions give the internal stress distribution caused 

by variations in reduction across an infinitely_ long strip where trans-

verse variations in elongation are inhibited. Near the ends of a 

finite length of strip a degree of elongation variation is possible 

and, if the ends have no external constraints, then the end stresses 

must go to zero. In a strip of finite length therefore there must be 

a region near to each end where any stresses decay to zero. This is 

illustrated in figure 15 where the difference in stress from strip 

centre to edge is plotted against the length for a strip of length L. 

The length of these regions of stress decay is bounded according to 

St. Venants principle which will be discussed in detail later. 

1.6.2 The effect of slip variations 

Consider a piece of strip between stands during rolling. The 

ends of the strip, at the exit of stand i and the entry to stand i + 1 

are not free. If the exit and entry velocities are constant across 
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the strip it is equivalent to maintaining the conditions of uniform 

elongation which apply across an infinitely long strip. In this case 

therefore the transverse stress distribution will remain constant at 

all points between the stands, see figure 16. 

In practice the entry and exit velocities, which are a function 

of slip, vary across the width. This variation in velocity is equi-

valent to enforcing a strain variation on the free ends of strip 

whose length is equal to the interstand length. St Venants principle 

states that the stress variation caused by end tractions will decay 

to zero over a short length and hence the final variation of the 

transverse stress distribution along the strip between stands will 

be of the form shown in figure 16. 

The strip exit velocity at a stand is given by, 

v(Y) = wR(1 + f(y)) 

where w 	= roll speed 

R 	= roll radius 

f(y) = slip 

The strain imposed at a point y across the strip is 

length of strip produced in time 6t 
E( Y) = 1 	  

average length produced in time 6t 

wR(1 + f(y)) at 
1 

wR(1 + 7) at 

- f(y) 
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Therefore the stresses imposed on the strip as it leaves a stand are, 

150(y) 
= 

— 1(y) 

11 + 

or in discrete form, 

— f. 
Ea. = 1 1+ f 

1.6.6 

The strip velocity at the entry to a stand is 

h(y) 
1/(y
)H(y) 

 (DR(1 + f(y)) 

It follows therefore that the stress imposed on the strip as it enters 

a stand is, in discrete form, 

i 	11  h. H (1 + f.)_ E 	1 

E H.1  (1 + 3) 
1.6.7 

1.6.3 The complete stress equations  

Expressions for the stress, distributions at a stand entry and 

exitond at a point midway between stands (the shape), can be obtained 

by combining equations 1.6.4 with 1.6.7 and 1.6.6 respectively. 

From equation 1.6.4 the shape distribution vector residual in a 

strip away from any stand is 

H iH. 3 by K( 	H. 
Q. = + E 3 J .

E 	— 	j by 1 
1 E h. 2b .1 	h. 

1.6.8 

The total stress distribution at the entry to a stand is a result of 

the residual shape produced by the previous stand (equation 1.6.8) and 

the slip variations at the entry to the current stand (equation 1.6.7). 
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The stress distribution is 

a. 
1 	

tL. H (1 + f.) 	

1: 

) 

E H. (1+ T) 1 

1.6.9 

where Q is the residual shape produced at the previous stand. 

Similarly the stress distribution at the stand exit is obtained by 

combining equations 1.6.8 and 1.6.6 

— f. 
E 	1 

+ Q • 1 	 1 1 + 
1.6.10 

The shape distribution vector given by equation 1.6.8 is the transverse 

stress distribution which will remain in the strip after rolling 

(except close to free ends). This is therefore the shape of the final 

product. 

1.6.4 The rate of change of stress distribution adjacent to a stand  

There is one outstanding aspect of the stress behaviour derived 

so far; over what length of strip either side of a stand is the stress 

distribution affected by the stresses due to slip variations. (The 

same region will apply to the decay of stresses at the free ends of 

a strip). Saint Venants principle states that the effect of self 

equilibrating end loads on the stress distribution in a body are confined 

to short regions close to the ends. As a "rule of thumb", the length 

of these regions is normally taken to be approximately equal to the 

width of the material: 	That is if we are interested in a point at 

a distance greater than one strip width from the ends, the end effect 

can be ignored. 

The various aspects of this end problem can be approximated by 

the behaviour of a simple structural model
20 

as shown in appendix 4. 

A graph of the decay of the effect of a self equilibrating end load 
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with distance from the end of a plate is shown in figure 17. The 

effects can be considered negligible for a distance greater than the 

plate width. 

Referring these results to the determination of stresses in a 

rolled strip two observations can be made: (1) The effect on the 

transverse stress distribution of variations in slip at the entry or 

exit of a stand becomes negligible at a distance greater than one 

strip width from the stand. (2) After rolling when a length of strip 

is laid with its ends free, the transverse stress variation will 

decay to zero at the ends. 

1.7 The Shape Algorithm 

At the beginning of this section the complete shape algorithm 

was described with the aid of the block diagram of figure 2. In 

subsections 1.1 to 1.6 the contents of the separate blocks were 

analysed in detail and expressions derived for the various functions. 

The shape model has been solved numerically on a digital computer 

and a flow diagram of the calculation is shown in figure 18. 

In the following description the numbers in square brackets 

refer to the blocks in figure 18. At the start of the calculation 

all data relevant to the particular mill and strip being considered 

is read in [1] and values of the dependent mill constants are 

calculated [2]. All the arrays used in the calculation are initialised, 

linear coefficients of the roll force are calculated2and the influence 

function for the work roll flattening, derived in 1.5, is calculated [3]. 

A useful feature of the computer calculation is the ability to 

parameterise the calculated stress and thickness distributions to 

some prespecified form. A matrix used in this parameter estimation 

is initialised in [4]. In order to start the shape calculation proper 

it is necessary to estimate the variation in the output strip thickness, 
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this will have been setup in [3]. Using the known entry thickness 

variation and the estimated exit thickness variation, the entry and 

exit stress distributions and the shape are calculated from the 

expressions developed in 1.6 [5]. In [6] the roll force variation 

is calculated from entry and exit stresses and thicknesses using a 

linearised roll force expression as discussed in section 1.4. The 

inter roll pressure distribution and the roll deflections are inter-

dependent as shown by the expression for the pressure distribution 

derived in 1.3; the calculation of these quantities therefore forms 

an inner iterative loop. The inter roll pressure distribution is 

calculated in [7] using the last calculated values of roll deflection. 

(The first time through the calculation the deflections are taken as 

zero). New values of backup roll [8] and work roll [9] deflection 

are calculated and the last values are updated by a portion of the 

difference between the past and present values [10]. The inter roll 

pressure distribution is recalculated using the new deflections. 

This loop is cycled three times. Using the distribution of roll force 

calculated in [6],and the influence function calculated in [3],the 

work roll flattening vector is calculated [11]. Finally in [12] 

the stand exit thickness profile is calculated from the calculated 

bending and flattening of the work roll. The thickness distribution 

used to start the calculation is updated by a portion of the difference 

between it and the value calculated in [12] and the calculation 

restarted at [5]. 

After the second iteration the shape calculated during one cycle is 

compared [13] with that calculated during the previous iteration. 

When the difference is within some specified tolerance, the calculation 

is stopped. The stress and thickness parameters are estimated [14] 

and all relevant information printed out [15]. 
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In order that the rapid changes in the stresses, shape and exit 

thickness in the region of the strip edges are accurately modelled, 

it was found necessary to divide the roll into 140 equal sections. 

1.8 Model Verification  

In figure 19 the shape distributions calculated by the model are 

plotted together with shape measured at the output of a mill using a 

Videmon shape instrument. (Shape instruments are discussed in more 

detail in section 5.2). The instrument measures the average stress 

over sections of the strip width. In this case the shape was symmetric 

so only half the width has been plotted. The results are shown for 

three different roll bending jack forces 3, 30 and 54 tonnes and the 

calculated results compare well with the instrument readings. It is 

particularly interesting to note the sudden large decrease in stress 

at the strip edge due to the roll flattening effect, the instrument 

2. 
readings only show a very slight tend$ncy of decrease in stress since 

only the average stress over the rotor width, which was 67 mm, is 

recorded. This is an obvious drawback with this type of instrument. 

1.9 Example of program output  

In the following pages a typical output from the shape program 

is shown for two cases. All the relevant data concerning the mill 

and the strip is included in the print out. 

The difference between the two cases is the entry thickness profile. 

In the first case the entry thickness is uniform and in the second 

the thickness decreases rapidly close to the edges. This latter profile 

is typical of the actual input to some known mills. It can be seen 

that the effect of this input profile is to reduce the edge effects 

from the shape produced. This will be discussed more in later sections. 



1NJUSINIAL 	LOU-0 ' 	IMPEN1AL COLLEUE 
	0 	 4.* 

ilrtlr „){Ant AhALYSIS 
444***4-1144*41, 4 ****** 
AU1Hu,, P.n.SAJONFP 

SEP(E43rN 11/4 
4.** ******* 

PLANT 	ANA POOUCT 

HILL 	PAPjAMLiENSt 
4444F 44444444444 

jATA 	FOk 	SIAN() 

jl:HE6ULF 	PAKAMETEi-!S 

woloc NULLS FALL 	LtNuiM 	(NA) 1550.0000 MEAN 	ANNDILLO 	fhiCKNESS 	(MM) Z.3600 
kALA,11:, 	(MN) 29 	.0000 MEAN 	F:1 	Y 	THICKNESS 	(MO) 1.2120 
uNJUhJ GNOWN 	(MI ON KAO) -.12(i0 MLAN 	EAU 	IHICKNEJ,S 	(MN) 1.1000 
IHL,-;HAL 	C.,LAN 	(MM 	ON 	.,(Aj) 0 MEAN 	Eqi,..Y 	(ToNHF/AM/Mil) . C100 

UACKUP NULLS FALL LENulH 	(NA) 155J. A600 MEAN EXIT 	TLWJION 	(TONNE/MM/MM) .0100 
IsAaiu., 	(viii) J35.0000 S -NIP WIMM 	(NM) 1114.0000 
L.,,,uUNU 	Ci<OWN 	(MO 	UN 	kAD) 0 FkON1 	SCf:EW PO,ITION 	(MM) .5910 
IH:kMAL 	,....,OWN 	(MM 	ON 	,AJ) 0 JACK SCEW POSITION 	(MM) .5910 

JACK FuitCL 	HumK NULL (IUNNL) 	25.JU 	25.0J 
LAGKOV ,,ULL (10i(NL) 	a 	0 
HuRK/iAL,KUP f';OLL (TONAE, 	54.20 	0...e0 

U1ST4NCE oLTHLLN JACK'..; (MM) 	2i. 0.0.000 
OISTANGL ULTnLLN SCKLWS (01) 	 2516.60,,J 

	

UAUuE ANu 	 PANAMETEKS 
***440*t4t4.404*** ************* 4,044 

THL GAUC,'L ANU Jit<ES.) PrOFI,,.1S AIL PANANTI:\ISLU BY 1Hr TXPRESSION, 

A + 31X-0.51 t .:(X-0.1) 4*2 

A = THE 'ILAN ■,ALur 
= T-1L TOTAL S<EW 

	

C = 	PANABOLIL: DIFFE,iENCL,LENINE TO EDGE 
THE PAAMLILA.e,S ArcE F1)TEU OY A LLAST SqJANES C,UTENION. 

A 	 it 	 C 

ENTRY viluGLoim 
oirKr .JFKE,TUNNL/MM/M 
SHAPLITuNNE/MN/MM 

1.21200 
.01038 
.40039 

—.on3no 
.00000 
.00000 

-.00000 
.60325 
.003J2 



1.2120 
1.212u 
1.2120 
1.2120 
1.2120 
1.2120 
1.2120 
1.2120 
1.2121) 
1.126 
1.c126 
1.2120 
1.2120 
1.2100 
1.C120 
1.212u 
1.2120 
1.2,20 
1.c.20 
1.2120 
1. 2120 
1. 21L0 
1.0120 
1.L'.140 
1•21.2U, 
1.c:120 
1.412u 
1.21cu 
1.212u 
.1.2120 
1.212u 
1.2120 
1.212u 
1.2120 
1.2120 
1.21,0 
1.2120 
1.212u 
1.21u 
1.212u 
1.2120 
1.21cu 
1.2146 
1.2120 
1.212u 
1.2.C2u 
1.212u 
1.212u 
1.2120 

U 
I) 

U 
U 

PAAr:ETFR J1STKI3uTIONS 
******44 ***** 444.41,,sq*** 

6ECHOU D1STH..GL 
NUM6LK 	NUKU66 

BULL FACI-
(MO/ 

	

1 	3.17 

	

6 	11.91 

	

5 	26.05 

	

7 	34.19 

	

9 	45.36 

	

11 	519.47 

	

13 	167.61 

	

15 	/8.75 

	

17 	89.69 

	

19 	1J1.03 

	

21 	11.L.i7 

	

4.5 	125.31 

	

c5 	164.45 

	

Li 	145.59 

	

29 	156./6 

	

31 	167.17 

	

33 	1/9.01 

	

65 	130.15 

	

67 	L01.29 

	

69 	212.45 

	

41 	224.51 

	

46 	264.71 

	

45 	245.65 

	

47 	2'66.99 

	

49 	206.13 

	

51 	2/9.27 

	

53 	LJU.41 

	

5') 	301.55 

	

if 	612.69 

	

59 	326.96 

	

61 	6,64.97 

	

66 	646.11 

	

65 	J97.25 

	

6/ 	66/.69 

	

69 	379.56 

	

/1 	3•Ju.67 

	

7,5 	401.61 

	

i5 	412.95 

	

i7 	4c4.W9 

	

19 	465.26 

	

81 	446.67 

	

66 	45/.51 

	

65 	468.65 

	

81 	419.19 

	

09 	496.96 

	

91 	502.u7 

	

33 	',I.J.Li 

	

95 	524.65 

	

97 	5.55.44 

	

99 	54L.66 

	

101 	557.77 

	

1
01 	566.91 
0, 58 
197 

	

t9 	
591.19 

.)  602.63 
111 

 
616.4! 

11) 624.61 

	

115 	663.(5 

	

111 	646.09 
658. 

	

119 	1.;.3 

	

121 	669.17 

	

123 	680.61 
12) 091.4 

704.59 

	

ig 	716.76 

3i 1 	
124.81 
760.01 

1 1.3 	
74/.15 

758.29 

	

139 	709.4a  

SIK1N )HLUKNLSS 2E3ILJAL 1:.TR.- ESS 

	

11I3IRi)1111u0 	OIST31JUTION) 
(MA) 	(T(NNL/Mil/MA) 

Lf4fmY 	LX/1 	ENIKY 	EXIT 
u 0 	0 	u 
u U 	b 	0 
U 	 0 	 U 	 J 
U 	U 	6 	U 
U 0 	0 	0 
U 	 J 	J 	J 
0 	 o 	 u 	 U 
u 	 a 	 u 	 g 
o u 	 0 	 J 

	

U 	 u 	a 
1.0991 -.00594 -.01,4.62 
1.u993 .03/25 .0u/10 
1.6934 .13315 .U6)11 
1.100J .01602 .11002 
1.141J .61049 .131u51 

	

1 • 100 0 	.01014 	.311171 
1.10uu .31088 .81193 
1.1011 .01095 .u110j 
1.10113 .01096 .u11U2 

	

1.10130 	.u1u95 	.ullut 
1.1000 .01092 .d1u91 
1.11608 .01087 .31092 

	

1.1601 	.01091 	.111106 
1.1603 .01u/4 .L1679 

	

1.1000 	.0106?. 	.01072 

	

i.luJO 	.01061 	.131665 

	

1.100) 	.01J55 	.011;98 

	

1.1,10u 	.J1J41 	.U1r52 

	

1.1010 	.01134.; 	.1646 
1.100u .01166 .21641 

	

1.1000 	.71034 	.41:66 

	

1.1000 	.01061 	.'7,1633 

	

1.1600 	.11126 	.0'1160 
1.1000 .1107"6 .01028 

	

1.1060 	.131045 	.011,27 

	

1.1803 	.0102", 	.01'.126 
1.1008 .0125 .n1627 

	

1.1 .0'J 	.91927 	.010;!9 
1.1000 .J1124 .01031 
1.1000 .0106L .81034 
1.103u .91636 .21631 

	

1.1000 	.91641 	.01!141 

	

1.1690 	.J104=, 	.01044 

	

1.1.u00 	.0105L 	.61L55 

	

1.1613 	.01u51': 
1.10J1 .J1d55 .01034 

	

1.1000 	.01071 	.01L7.-6 
1.10J0 .01078 .UL82 

	

1.1000 	.01064 	.01019 
1.1001 .01019 .11195 

	

1.1600 	.31u43 
1.1601 .61096 .01162 
1.1030 .01096 .11132 
1.100u .01092 .01697 
1.1003 .'01062 .01867 
1.1013 .01066 .11066 

	

1.1000 	.016 2 	.01133u 
1.0999 .00906 .u0965 
1.3944 .00842 .00/64 
1.6947 .00511 .00481 

	

9 	 1.1 

	

0 	 0 
0 
J 

O 0 

1) 
O .1743 .0175 

	

0 	.001:30 

	

-.u977 	1562.3315 	635.6834 	0 
o 

:i(52T3 	
-.0914 	1562.3343 	635.3810 	0 

	

0 	
:Mli 

	

-.6854 	1562.3301 	635.3/8/ 	0 

	

U 	
.2456 
.2639 	.0258 

.u.-5112 	
-.0796 	1562.3251 	635.3764 	0 

	

a 	.2921 
.319J 	

-.173C 	1562..3216 	635.3741 	U 
a 

	

.9)/1 	
-.0665 	1562.3174 	035.3/19 	U 

.3373 	
.u:St,d 

:W14 	
-.01633 	1562.3131 	635.3698 -.01687 

.7'015 

.6624 	
..3,,e4 	-.6533 	1562.3010 	635.3677 -.00247 

...10t 	
-.0565 	1562.3052 	035.3657 -.00091 

	

.64)2 	
.1024 

-.0484 1562.3015 635.3638 .00102 

	

.6360 	
.1034 
.1046 	-.0445 1562.2980 535.3619 .00052 

.6309 	
.44145:0 
.4128 	.1u51 	-.0403 1502.2947 635.3601 .00080 

.623U 
.4843 	

.1060 	-.0363 1562.2915 635.3534 .00095 
-.6325 1562.2886 635.3568 .03102 

	

.(t'1:63 	
.1068 

.47P.8 	-.0492: 1562.2658 635.3554 .013/04 
.6296 

	

.6272 	

.1075 
-.0256 1562.2131 635.3530 .08103 

:Mt 	
.1092 
.1014 

	

.:!.12 	.5168 	
-.0225 1562.2107 635.6524 .00099 

.6 .1u96 	-.0195 1562.2764 635.3511 .001)94 

	

.6244 	.1102 	-.0163 1562.2762 635.6448 .00097 

.61'17 

	

.6625 	

.5217 

:..g 	

.1107 

.1113 
	

-.0146 1562.2/43 038.3407 .00080 
-.0119 1582.2725 635.3476 .00073 

	

.6363 	 -.0090 1562.2708 535.346/ .00066 

.66i46: 
.5047 	

.11 22 	-.j67,3 1502.26'44 635.3458 .03059 
.665P 

.5/56 	
.1146 	-.0062 1562.2680 635.3450 .00053 

	

.6i/5. 	.5867 
.5849 	

.1129 	-.0047 1562.2669 635.3443• .00047 

.11132 	-.0034 1562.2659 635.343/ .00042 

:HV .5834 	
-.0023 1562.2651 635.3432 .00037 

	

.n34 	
.5110 

•. t),3494%4 	

.1134 

illli 	

-.6515 1562.7044 635.3423 .00033 
-.0000 1562.2019 535.3425 .00030 

.u4u6 	
-.0003 1562.2015 635.3423 .00020 

	

..::Jdi . 	

.596d 	.1140 
.1143 	

-.0001 1502.2633 665.6422 .001327 

	

.0402 	
.5934 
.5920 	

.1139 	
-.0001 1502.7633 635.31,22 .00027 
-.0002 1562.2634 635.6422 .000e7 

.5948 

	

	-.0005 1562.2537 635.3424 .08029 .1139 
.6?99 

.n(.3 	

.1137 	-.0011 1562.2641 635.3427 .00032 

	

.6 1 41 	.1166 	-.0019 1562.2647 635..5430 .00035 

.638J 	.1133 
	

-.0026 1562.2655 635.3435 .00039 
.6374 
.6354 
.6552 	

.5712 

.5727 	..11L7 
.1124 	

-.0040 1562.2664 665.3440 .011044 
-.0554 1502.26/j 065.3447 .30050 
-.007,1 1562.2687 635.3454 .00056 

..E:313 

	

.6327 	
.M.1 

5425 .--. 
.111V; 	

-.0081 1562.7/01 635.3402 .06063 
.5513 	-.0113 1502.2716 635.3471 .u007.3 

.0300 	
-.0131 1562.2734 665.3481 .0u0/7 

.6235 	.A519. 	

.1110 
-.0155 1502.2/52 635.3492 .110064 

.5110 	
:nil 	-.0191 1562.27/3 635.3504 .0,1091 
.1093 .6277 

....A 	

-.0210 1562.2795 635.3517 .10697 

	

.6264 	.1086 	-.U240 1502.2619 635.3531 .130101 

.1-.264 

	

.6254. 	
:11006/9 
.1072 	

-.0214 1562.7844 635.3545 .00104 
-.030/ 1562.2871 635.3560 .00104 

	

.6272 	 -.0344 1562.2900 635.3576 .0J094 

.6294 
. 

	

6131 	. 	
.1050 	-.0366 1562.7931 635.6593 .OU0841 

. n1.1 1 .1047 	 1 

	

.6349 	.406/ 	.1661 	
-.0424 1552.296 665.3610 .00069 
-.0467 1562.2997 665.3623 .00061 

.6681 	.1029 
.1134) 	

-.4511 	1562.3033 	039.6648 -.06067 
Z541 

.14n 	
-.3558 	1502.3071 	635.6667 -.06170 

.P434 	 -.0608 	1562.3111 	635.'6688 -.00524 

	

C 	
::3s1 	

-.0654 	1502.3152 	1)65.3709 	U 
.1010 

	

0 	
.u5L7 

	

-.0712 	1562.6145 	665.3/60 	0 

	

0 	.2814 
i?Olg 	

-.0767 	1562.3237 	665.3/52 	a 

	

0 	 -.11 824 	1562.3280 	635.3775 	o 

	

0 	.5217 	-.0 084 	1562.3322 	635.3799. 	0 

	

a 

	.2543 

.2109 	
31 :9Z 	

-.0945 	1562.3364 	035.6822 	0 
o . 	 8 .1164 

	

-.1069 	1562.3406 	635.3847 	u 
.0169 

	

0 	.1515 	-.1074 	1562.3448 	835.3971 	0 

	

0 	.1361 
.1102 	

.1142 	1562.3490 	635.3897 	a 
o 

.0157 .- 

.13147 	-.1212 	15b2.3533 	635.3922 	a 

ROLL FLNCF 	C0fITAG1 	WORM q.ULL 	TOTAL 	WOK(K1146)OLL BACKUP KOLL SHAPE 
,. 	PPEiSu,".il,LL  FLA11FH1,48 WORK ROLL OFI-LEGTIuM DEFLECTION (T/MM/Mil) 

(AA) 

	

(TONN6/411) (TONAL/AM) 	PROFILE 	(MA) 
(MI) 

	

-.1246 	1562.3549 	635.3932 	0 

	

-.117/ 	1582.3511 	035.3904 	0 

	

-.1156 	1562.3489 	635.3864 	0 

	

-.1641 	1562.3427 	635.3859 	0 

13 
0 

.6486 

.1262 
.0142 
.J152 



PLAN1 At1 PRODUCT JATA FON. STANO 
0444,4‘ 

J3NEuULE. 	PARAMETERS 

4*****440;. 

HILL PANAMETES, 

MEAN ANNEALLu THIGKNLSS (NH) 
MEAN 0.iTRY filICKNLSS (1M) 
MEAN LXIT THICKNES% (MM) 
".LAN LNTPY IFNsiON (TONNF/MM/MM) 
MEAN EXIT TENSION (TONNE/NM/MI) 
STr=,Ir WIDTH (t.M1 
FFONT SC. Err POSITIUN (MM) 
BACK SCREW POSITION (M14 

2.3600 
1.2120 
1.11)00 
.0100 
.0/00 

1114.0000 
.5929 
.5929 

INDUSTKIAL AUTOMATION GROUP , 1MPEUAL COLLEGE 

ANA-YiS 
444*44**444444448444 

AUIMO.,Z P.O.SFOONL0  

S-_rTFMRFR 1)/ 

hORK itULLS 	FAC._ LENGTH (HM) 	1550.0000 
RAO.LUS (OA) 	 ?92."000 
G.-A011114U GRUNN (Nil UN RAW 	-.1L5U 
TH::.1:jAL CROWN lAj ON RAJ) 	0 

dACKUP ROLLS FALL LENG1H (AA) 	150.0010 
0.A0I,JS (HA) 	 635.000j 
u.:OUND CR0,0 (NM uN itAD) 	0 
TmL,,IAL Gi:JWN MN ON NA5) 	0 

JACK FOKCE 	ilu,o; i.ULL (TONNE) 	25.uO 	25.J0 
tiAUKUP 1,:uLL (TONNE) 	d 	0 
mv-),K/NAGKUP KJLL (TONNE, 	54.2u 	54.20 

111SIANcL OLAWLLN JACKS (MM) 	2c5U.0000 
uIsTANLE B:AWLFN SURCW.) (Ill) 	251u.00u0 

6AUGE AN() Sl="ESJ; PROFILE PAPAHETERS 
	1********44444$44114444 ********* 

1HE GAUGE ANU SiRES•J PROFILES 151F PARAM:TEm/SEu BY THE EXPRESSION, 

A I M(h-0.5) * C(X-0.5)4}2 

A = 1HE MEAN VA_UL 
= THL TOTAL KEW 

G = THE PARANOLI; DIFFERENCE,CFNTRE TO EDGE 
THE PAtAMETEA.S AtE FITILO NY A LEAST JOJARES C:KITEr<LON. 

C 

LNTRY GAUGL I MM 
iNTRY aTRLS:),T,A,4E/MM/ii 
limPLOUNUL/HM/MM 

1.21314 
.00936 
-.000J5  

.00J00 
-.00000 
-.00000 

-.06042 
.0U199 
.00198 



SL1.11.614 
NUMoUK 

1 
3 
5 
7 
9 
11 
16 
15 
1/ 
19 
21 
16 
45 
27 
29 
31 

5 
67 
S9 
41 
43 
45 
47 
49 
51 
53 
55 
5/ 
59 
61 
66 
65 
6/ 
09 
71 
7s 
75 
/7 
79 
61 
u3 

87
69  

by 
41 
96 
05 
Jr 
94 

101 
103 
155 
197 
109 
11 
1 1 3 
1 15 
117 
119 
12 
121

5 
 

127 
129 
131 

133 
139 

ROLL 

olSiAkCL 
AL,,,06.':,  

FiCLE 
(o t1) 

3.17 
11.91 
26.05 
J4.19 
45.63 
56.4/ 
6/.61 
78.15 
89.69 
101.LS 
114.1/ 
126.61 
164.45 
145.59 
156./3 
15/.87 
179.61 
190.15 
2u1.49. 
112.43 
246.5/ 
e.:.4.71 
445.65 
256.59 
258.13 
2/9.27 
[90.41 
601.55 
614.69 
623.63 
664.97 
646.11 
057.25 
660.39 
679.53 
690.67 
401.01 
412.95 
424.09 
4.35.26 
446.37 
45/.51 
406.65 
4/9.79 
490.96 
502.07 
516.21 
544.65 
565.49 
546.5o 
5!././7 
506.91 
5110.05 
541.19 
6u2.33 
613.41 
524.61 
065./5 
6.45.89 
558.56 
665.17 
650.61 
051.45 
704.59 
113.1s 
724.87 
766.01 
/47.15 
756.29 
769.43 

	

Si...1P 	1HIGNNE.,3 
usiRi5U3ION 

(AN) 

	

ENTRY 	EXIT 

	

0 	0 
0 	U 

	

a 	a 

	

U 	U 

	

U 	U 

	

() 	U 
• J 	U 

	

U 	U 

	

U 	U 

	

1) 	U 

	

1.1128 	1.4685 

	

1.1L22 	1.0566 

	

1.175/ 	1.0614 

	

1.1674 	1.c789 

	

1.1951 	1.0659 

	

1.2003 	1.090) 

	

1.2045 	1.u544 

	

1.487e 	1.0968 

	

1.2090 	1.09.34 

	

1.21u1 	1.0995 

	

1.2161 	1.1002 

	

1.2114 	1.1006 

	

1.2117 	1.1bu9 

	

1.2118 	1.1010 

	

1.2119 	1.1011 

	

1.2140 	1.1L11 

	

1.2120 	1.1u1e 

	

1.2120 	1.1012 

	

1.4140 	1.1014 

	

1.212u 	1.1012 

	

....2140 	.1.1012 

	

1.24e0 	I.Lu12 

	

1.21e0 	1.1012 

	

1.2120 	1.1412 

	

1.2140 	1.1012 

	

1.2120 	1.1012 

	

1.4120 	1.1012 

	

1.2140 	1.1112 

	

1.41e0 	1.1012 

	

1.41411 	1.1U12 

	

1.214u 	1.1012 

	

1.41[0 	1.1012 

	

1.214U 	1.1012 

	

1.2140 	1.1012 

	

1.212u 	1.1611, 

	

1.2119 	1.1u11 

	

..2L19 	1.1411 

	

1.2116 	1.1004 

	

1.4115 	1.10J7 

	

1.2112 	1.1004 

	

1.2165 	1.099) 

	

1.4)9(5 	1.6110 

	

1.4.101 	1.0977 

	

1...2L00 	1.0957 

	

1.2u27 	1.0928 

	

1.19h1 	1.6886 

	

1.1416 	1.0827 

	

1.1125 	1.11/45 

	

1.1700 	1.u643 

	

1.1502 	1.0481 

	

0 	J 

	

u 	U 

	

U 	0 

	

0 	0 

	

U 	0 

	

a 	a 

	

U 	U 

	

U 	U 

	

0 	U 

	

u 	U 

PA;;ANETE: DISTRIBUTIONS 4.4,4...***rn** ****** 

kEsIOUAL 	ROLL FORCE 

	

6131.4141)1109 	P 

	

(10i.NE/.id/mM) 	(TUNNE/MM) 
ENTRY 	EXIT 

	

0 	0 	0 

	

0 	0 
0 
a 

	

3 	0 
U 

	

U 	U 	U 

	

3 	U 

	

0 	0 

	

0 	U 

	

.01302 	.U1336 	.5419 

	

.01534 	.01560 	.5479 

	

.01646 	.01676 	.5828 

	

.01143 	.01201 	.6107 

	

.01015 	.11493 	.6303 

	

.01014 	.L1016 	.F,.3.2 

.0u9c 	.0090d 	.0512 

	

.00946 	.0093j 	.5559 

	

.00928 	.00123 	.6544 

	

.00921 	.110915 	.6595 

	

.00410 	.00414 	.6548 

	

.00119 	.06112 	.6696 

	

.00920 	.00416 	.6543 

	

.00922 	.00)15 	.6550 

	

.00943 	.00916 	.6517 

	

.34126 	.0011/ 	.6386 

	

.00424 	.00917 	.6585 

	

.00424 	.0041( 	.6545 

	

.00926 	.009.6 	.5556 

	

.00922 	.00416 	.6546 

	

.10922 	.00115 	.6539 

	

.00921 	.uu114 	.6591 

	

.00920 	.00913 	.6)92 

	

.00920 	.0u413 	.6513 

	

.04914 	.1)011s 	.6314 

	

.0u919 	.00112 	.63)4 

	

.146920 	.00116 	.65)3 

	

.00520 	.00913 	.6533 

	

.00121 	.40114 	.6591 

	

.00921 	.10914 	.6590 

	

.00322 	.uu915 	.6533 

	

.00126 	.0.1410 	.6597 

	

.00123 	.30417 	.61516 

	

.00524 	.01117 	.0535 

	

.1)3924 	.0041/ 	.6585 

	

.00923 	.00513 	.6530 

	

.00122 	.10915 	.6555 

	

.00921 	.00114 	.6591 

	

.00919 	.10916 	.6595 

	

6919 	.1.0412 	.5517 

	

.00420 	.00113 	.6)97 

	

.00924 	.u0116 	.6541 

	

.3u934 	.u1424 	.6574 

	

.00954 	.101).1 	.6539 

	

.90904 	.00159 	.6477 

	

.01045 	.61051 	.6375 

	

.u1164 	.01145 	.6215 

	

.J1262 	.31284 	.5431 

	

.01434 	.01413 	.5660 

	

.01623 	.01614 	.5334 
O 
U 
0 

	

0 	U 
0 	0 	U 

	

a 	0 
0 

	

0 	0 
U 	U 	0 
U 	U 	0 

CO6TA.A.  
PKEsSJR2,4 
(TONNL/.1111 

.0893 

.114? 

.1406 

.1654 

.1904 

.2155 

.23)7 

.2664 

.2066 

.3035 

.3314 

.3536 

.3744 

.3942 

.4132 

.4512 

.4462 

.4643 

.4/95 

.493/ 

.5070 

.5194 

.5309 

.5415 

.5512 

.55C0 

.5674 

.5749 

.5811 

.5564 

.5909 

.5945 

.5973 

.5192 

.6002 

.6035 

.5416 

.5983 

.5960 

.9926 

.5838 

.5634 

.5731 

.5715 

.5640 

.5557 

.5464 

.5153 

.5253 

.5133 

.5005 

.436/ 

.4720 

.4564 

.4398 

.4225 

.4066 

.3644 

.3641 

.3429 

.3208 

.2551 

.2751 

.2916 

.2277 

.2066 

.1784 

.1531 

.12/3 

.1039 

WORK Ru2L 
6LA1TCNiNG 

(NN) 

.0140 

.0145 

.0160 

.0171 

.0105 

.0201 

.J220 

.0245 

.u282 

.0345 

.0794 

.085/ 

.0929 

.0464 

.1025 

.1056 

.10/5 

.1096 

.1110 

.1140 

.1144 

.11.)5 

.1140 

.1145 

.114) 

.1156 

.115o 

.1159 

.1161 

.1163 

.1165 

.116/ 

.1168 

.1168 

.1169 

.1169 

.1155 

.1155 

.11E/ 

.1166 

.1154 

.1162 

.1160 

.1157 

.1154 

.1151 

.1147 

.1143 

.11.38 

.1132 

.1124 

.1115 

.1104 

.1055 

.1068 

.1042 

.1006 

.0955 

.0896 

.0813 

.0433 

.0614 

.0262 

.0232 

.u210 

.u192 

.0175 

.0165 

.0154 

.0145 

TOTAL 
WORK 	...W.I.. 
FKGF1LL 
(Mm) 
-.1248 
-.117/ 
-.1108 
-.1041 
-.0977 
-.0914 
-.0854 
-.0796 
-.073e 
-.0685 
-.C633 
-.0553 
-.0535 
-.0489 
-.G445 
-.u403 
-'.0363 
-.0325 
-.0490 
-.U256 
-.0225 
-.0195 
-.0164 
-.0143 
-.0119 
-.0096 
-.0079 
-.00be 
-.0047 
-.0064 
-.0023 
-.U015 
-.0008 
-.0003 
-.0001 
-.0010 
-.0002 
-.0005 
-.0011 
-.0019 
-.0025 
-.0040 
-.0054 
-.0070 
-.0080 
-.0104 
-.0131 
-.0155 
-.0101 
-.0210 
-.02411 
-.0273 
-.0307 
-.0344 
-.0683 
-.0424 
-.0467 
-.0511 
-.0553 
-.0908 
-.0654 
-.0712 
-.076/ 
-.0824 
-.0884 
-.0945 
-.1009 
-.1074 
-.1142 
-.1212 

WoRK NULL 	UALKU4 ROLL 
1.1E):LECliON 	OLFLEL:110N 

(MM) 	(MM) 

	

1562.3602 	635.3953 

	

1562.3563 	635.3439 

	

1562.3520 	635.3905 

	

1562.3475 	665.6880 

	

1562.3433 	665.6855 

	

1562.3389 	635.3631 

	

1562.3346 	665.3807 

	

1562.3302 	635.3/64 

	

1562.3255 	635.3762 

	

1562.3214 	635.3/40 

	

1562.3170 	635.3713 

	

1562.3120 	635.3698 

	

1562.3086 	1335.3578 

	

1562.3047 	535.3056 

	

1662.3509 	635.6640 

	

1562.2973 	635.3622 

	

1562.2569 	635.3604 

	

1562.2906 	635.3558 

	

1562.2876 	635.3572 

	

1562.2847 	635.3557 

	

1562.2620 	635.3543 

	

15o2.2795 	635.3530 

	

1562.2772 	635.3518 

	

15o2.2/51 	635.3506 

	

1562.2731 	635.3496 

	

1552.2714 	635.3486 

	

1562.2698 	635.3478 

	

1562.2653 	665.3470 

	

1562.2671 	635.3463 

	

1562.2660 	635.6457 

	

1562.2651 	635.3452 

	

1562.2644 	635.3445 

	

1562.2638 	635.3445 

	

1562.2634 	635.3442 

	

1562.2E32 	635.3441 

	

1562.2632 	635.3441 

	

1562.2633 	635.3442 

	

1562.2136 	635.3443 

	

1552.2541 	645.3446 

	

1562.2147 	665.6450 

	

1562.2659 	635.3454 

	

1562.2155 	635.3460 

	

1562.26/7 	635.3465 

	

1562.2650 	635.3473 

	

1502.2705 	6.55..5432 

	

1502.2722 	035.3491 

	

1962.2741 	635.3501 

	

1562.2/61 	635.3512 

	

1502.2784 	635.3524 

	

1562.2605 	635.3537 

	

1562.2834 	635.6553 

	

1562.2551 	535.3565 

	

1502.2891 	635.3550 

	

1562.2922 	635.3596 

	

1562.2955 	635.3013 

	

1502.2911 	635.6630 
1562.3023 	635.6649 
1562.3165 	639.3660 
1562.3107 	635.3663 
1552.3149 	669.6/05 
1502.311? 	635..3729 
1562.3236 	665.6751 
1502.3250 	1665.3773 
1552.3624 	635.3796 
1562.3367 	635.6019 
1562.3411 	635.3546 
1562.3454 	639.3867 
1562.3495 	665.6892 
1552.3541 	635.3917 
1562.3565 	635.3943 

SHAPE 
(T/MA/MM) 

0 
0 
0 
0 
0 
0 
0 
U 
0 
0 

.00335 

.00586 

.00377 

.00211 

.00094 

.0jJ16 
-.00063 
-.00362 
-.00078 
-.00080 
-.00081 
-.00051 
-.00087 
-.00006 
-.00064 
-.00084 
-.00083 
-.11054 
-.00054 
-.00085 
-.00086 
-.00067 
-.00087 
-.00008 
-.00086 
-.00036 
-.00068 
-.00000 
-.0u087 
-.uu086 
-.00065 
-.00084 
-.03084 
-.00083 
-.00003 
-.00004 
-.00085 
-.00087 
-.00000 
-.00009 
-.00088 
-.00003-
-.00072 
-.00050 
-.00011 
.00051 
.00146 
.00286 
.00477 
.00678 

0 
0 
0 
0 
0 
0 
U 
U 
0 
0 
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CHAPTER 2  

MODEL SIMPLIFICATION 

A complete understanding of the shape phenomenon is required in 

order to design three important areas in a full automation scheme for 

a tandem rolling mill. 

(1) The nominal rolling schedule. This defines the proportion of the 

required reduction to be carried out at each stand and the level of 

the interstand tensions. It is designed off line from considerations 

of power constraints, shape, which must be held within certain practical 

limits, and gauge. This topic will be discussed in more detail in 

chapter 3. 

(2) The on line modification of these nominal schedules to accommodate 

variations in the incoming product..  

(3) On line control of strip shape. 

The complete analysis of strip shape developed in chapter 1, 

together with the digital computer simulation which has been written)  

are essential for gaining a detailed understanding of the phenomenon. 
'AL) rtO9ralvl 
/*Xis not suitable however for use on line in schedule adoption algorithms 

or shape control schemes, and it will make the off line scheduling 

calculation unnecessarily large. Also because of the iterative nature 

of the shape model the form of the dependency of shape on key parameters 

is not obvious. Furthermore, various sensitivities of shape are 

required for on line control purposes as discussed above. These 

sensitivities would have to be obtained numerically for the complete 

range of likely conditions, and then the results summarised by some 

simple law. Apart from the enormous computing effort required for 

such an operation there is always the risk that, on line, a set of 

conditions will arise which was not covered and extrapolation could 

yield the wrong result. Also the structural form of the parameter 
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dependencies is in practice very difficult to guess from sets of 

computed sensitivities. For these reasons it is desirable to develop 

a simplified, non—iterative, model which can be differentiated to 

yield the required sensitivities. 

2.1 Parameterisation 

All of the variables in the full shape analysis are vectors 

defining those quantities as several points across the strip and roll 

width. The basic concept adopted in the simplification here is to 

parameterise the stress distribution (shape) with a "suitable" parameter, 

and to write an algorithm to calculate this parameter direct without 

recourse to calculating the distributions. The definition of a 

"suitable" parameter depends on the application. A parameter which 

provides a fit to the exact distribution which is 'best', according 

to some prescribed criteria, is not necessarily the best to give the 

information for, say, feedback shape control. For example the shape 

distribution can, in general, be of any form, however it is characterised 

by two- effects. Firstly the deflection of the rolls due to bending 

and shearing; this tends to be predominantly parabolic. Secondly 

the flattening of the work rolls. This again tends to be parabolic 

over the centre portion of the strip, say 75°/o of the strip width, 

but with a sudden decrease near the strip edges caused by the flattening 

of the rolls decaying to zero outside the strip. The magnitude of 

this "edge effect" present on the final product depends upon the 

incoming strip profile and the thermal camber on the rolls. These 

edge effects are not controllable through schedule changes and roll 

bending; the only means of control is the coolant spray distribution. 

A parabolic parameter has been chosen therefore as this will give all 

the information necessary for scheduling, adaption,and shape control 

with the exception of data required for coolant spray control of shape. 



52 

It seems likely that no single parameter is sufficient for the 

requirements of spray control. This is discussed in more detail in 

Chapter 4. 

2.2 Simplified Model Structure  

The aim is to model only the parabolic component of strip shape 

and only symmetric distributions will therefore be considered. Since 

only the shape and not the thickness is of interest, it will be 

assumed that the specified centre line thickness is always attained 

by automatic screw position adjustment. It is then only necessary 

to calculate deformations relative to the strip centre line. 

The shape produced from a stand is determined by the relative 

profiles of the incoming strip and the roll gap; the incoming shape 

also has a small effect. The roll gap profile is the result of the 

work roll bending and shearing deflection, the work roll flattening 

and the camber of the work rolls. In the model derivation it will 

be assumed that the distribution of load acting on the work roll, 

from the backup roll and from the strip, can be approximated by the 

sum of uniform distributions and parabolic distributions. The 

bending and shearing deflection and the work roll flattening will be 

calculated for each type of load and the roll gap profile determined 

by summing the results. It is further assumed that the parabolic 

components of deflection and flattening can be approximated by the 

difference in the values at the strip centre and strip edge in both 

cases. 

A block diagram for the simple model, shown in figure 20, should 

be compared with that of the full model in figure 2. Expressions for 

the parabolic components of the stress distribution, the work roll 

deflection and the work roll flattening will now be derived. 



53 

2.3 Work Roll Deflection  

The forces acting on the work roll can be divided into three as 

shown in figure 21: Uniform distributed loads from the backup roll 

q / unit length, and the strip p / unit length (figure 21a); parabolic 

distributions from the backup roll 4 and the strip /Os  (figure 21b); 

and the roll bending jack force J (figure 21c). The deflection of 

the roll at the strip edge relative to the centre will be derived 

for each of these loadings acting separately, the total deflection 

will be obtained by superposition. 

2.3.1 Deflection due to uniform load distribution 

The simple shape model assumes symmetry and a specified strip 

centre line thickness. The work roll can therefore be represented 

by a cantilever with the fixed end at the strip centre line where 

the slope and deflection will be zero. The cantilever subjected to 

the uniform loading from the strip and from the backup roll is shown 

in figure 22a; the general expressions for the bending moment at 

any point x along such a beam is 

d
2
y qx

2 	[x— F + 2  
M EI 	— p 	 

dx2 2 	2 

 

2.3.1 

 

By integration the slope and deflection at any point can be obtained 

dy qx
3 	Ex — F + w] 

Slope . EI 	= 	— P 	 + A 
	

2.3.2 
dx 6 	6 

qx
4 	

Ex — F + wT1  
Deflection = EIy  	+ 	+ B 

	
2.3.3 

24 	24 



54 

The deflection and slope are zero at the support, ie 

i
x  = F  0 and 

dy 

dxx = F. 

0 

Therefore, 

pw3 qF3 

A . 	 2.3.4 
6 	6 

Pw
3 
	qF4 

B = 	[w — 41] + 	 2.3.5 
24 	8 

The expression for the deflection due to bending at any point is 

obtained by substituting equations 2.3.4 and 2.3.5 into 2.3.3. 

I
Deflection y = 

EI 24 

filtz Ex — F + wT4  pw3x qF3x 

24 
--- — p 	+ 

6 

4 

Pw
3 	qF4 

+ 	[w — 4F] + --- 
24 	8 

2.3.6 

The deflection-at the strip edge relative to the strip centre line is 

to'be taken as an estimate of the parabolic component. This is 

obtained by setting x = (F — w) in equation 2.3.6 to obtain 

Yix = (F — w) 

4 

1 q L f t,2  61: w2 	vi3  — 4F w3  w4] — Pw 
EI 24 	8 

2.3.7 

The deflection due to shearing is given by 

4 

YS = 	S dx 
3AG 

2.3.8 

where S is the shear force. 



Shear force at x = 0 is 
2 /0,1,  

3 	3 

F2 Alsir2 
/ S 

4 	4 
and bending moment at x = 0 is 
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A diagram of the.shear force along the beam is given in figure 22b. The 

deflection at the strip edge relative to the centre line is therefore, 

2 	2 

YS = 
3AG 
[(1(Pw  — 	- 

4 	Pw 
2.3.9 

2.3.2 Deflection due to parabolic load distribution  

The load distributions on the work roll, from the backup roll 

and from the strip, are not, in general, uniform. The expression for 

the deflection calculated in 2.3.1 must be corrected therefore for 

the variation in the loads. It is assumed that the variations in the 

load can be approximated by parabolas. The required deflection can 

be obtained by considering a cantilever subjected to parabolic load 

distributions as shown in figure 22c. The loading on the beam at 

(F — w) <:x <F is 

/1[1_ - ()2] 
— 411 — (!) 2 

	
0 	x 	w 	2.3.10 

The shear force and bending moment can be obtained by integration 

with the boundary conditions, 

Then, 

	

x3 2F1 	x3 21 
S "wdx = /147 — 	— --I— 	x— 2 — -- 3F 	3.i 	3w 	3 

2.3.11 

M = EI 	S dx /4 	+ 	— 
d2y IF2 x2 x

4 

+ 
2Fx.1 

3 	S 3 2 12 

I 2wx x2 

_ 
dx 	4 9  12F2 

	
w2 4 

x
4 

!I 

2.3.12 



3AG 3 2 12w2 

4/15s  awx x2 x4 

— + 2.3.15 
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By integrating twice and using the boundary conditions 

Y 
dy 

x 0 = 0 and -- dx 
. 0 

x = 0 

   

the bending deflection can be shown to be, 

2 2.1 F2x2 x4 Fx3  x6i 	tx3 x4 

	

x6 	w x 
y = 	 2  + /Ps 	— 	+ 	---- 2.3.132EI 	8 	24 	9 	360F 	9 	24 360w 	8 

The bending deflection at the strip edge relative to the centre line 

is obtained by inserting x = (F — w). Then, 

jtw2 w4 	19/3w4 

y = 	45F2  + 15w2  — 	— 40 FW 
360E1 	F2 360E1 

2.3.14 

The deflection due to shearing can be obtained by combining 

equations 2.3.8 and 2.3.11. 

4/0 
B F

2 x2 

	

1- 	

x4  2Fx] 
Deflection due to shearing y 	-- = ---- 	+ -- — 	--- --- S 

	

MG 4 	2 	12F
2 
	3 

The deflection at the strip edge relative to the centre line is 

Ys - Y1 

= 

x = F 

4/213 p4 

Ylx 

2Fw 
+ 

(F — 

w2 
 

2 

/44e2 
— 2. 

3AG 	12F 
_ 
3 3AG 

2.3.16 
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2.3.3 Deflection due to roll bending jack forces  

The deflection caused by the roll bending jack forces can be 

derived by considering a cantilever subjected to an end load as in 

figure 22d. 

d2y 
The bending moment M = EI 

  

= — Jx 	 2.3.17 
dx2 

By integration with the boundary conditions, 

dy 
=0 YB

x = L 	dx 
. 

x = L 

  

the deflection at the strip edge (x = w) can be shown to be 

Jw2 

YB —6E1 (w — J 3L) 
	

2.3.18 

The deflection due to shear at the strip edge is 

4Jw 
2.3.19 

3AG 
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2.3.4 Total work roll deflection  

The total deflection of the work roll is given by summing 

equations 2.3.7, 2.3.9, 2.3.14, 2.3.16, 2.3.18, and 2.3.19. Then, 

w4  4Fw 2w27 —w  2w2 
F2w

2 Fw3 
yor  = p 	.---] 	 ---- 4- 

8E1 3AG 	4E1 6E1 24E1 3AG 3AG 

rB 

w2F2 w3F w4 	6  8Fw 2w2 w4 

- + 
8E1 	9E1 24E1 360E-E1 RAG - 3AG 9F AG 

19w4 w2 	 w3 3Ljw2 4w 4.  j   

360E1 3AG 	6E1 6EI 3AG 

which is clearly of the form, 

yw  = Ksp + K9q + K104 + 	K12j 	 2.3.20 

2.4 Work Roll / Backup Roll Pressure Distribution  

The work roll / backup roll pressure distribution consists in 

general of a uniform load acting across the roll length plus a varying 

distribution equal to zero at the roll ends. (In certain extreme 

cases with very large roll crowns it is possible that the work and 

backup rolls may not be in contact over the whole roll width, this 

condition is very rare in practice and will not be considered here.) 

The variation in pressure (assumed parabolic) can be determined by 

considering the elastic deformation between the rolls as in the full 

model. It is assumed that the pressure is proportional to the 

deformation which can be obtained by comparing the relative profiles 



Ys= 3AG 2 2 

4 [qP2  pw2  
2.4.2 
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of the adjacent surfaces of the two rolls. Expressions must be 

derived therefore for the profiles of the top face of the top work 

roll and the bottom face of the top backup roll. The stiffness of 

the material can be calculated from the Hertzian expression for the 

deformation between two elastic cylinders given in section 1.3. 

2.4.1 Profile of top face of the work roll  

An expression is required for the difference in deflection, due 

to bending and shearing, between the centre and end of the roll and 

not to the strip edge as in section 2.3. 

The bending deflection due to the uniform load distribution 

is given by equation 2.3.6 with x = 0, 

YB 
P w

3 q F4 
[w — 4f] 

24E1 	8E1 
2.4.1 

Similarly the deflection due to shearing can be obtained from 2.3.8 

The bending and shearing deflections caused by the parabolic loads 

can be shown to be, 

19 tBF4 "sw 3 w F 
YB 	 — — 

360E1 EI 72 15 
2.4.3 

A
F2 A"2 

YS = 3AG 	3AG 
2.4.4 
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Similarly the deflection due to roll bending jack force can be shown 

to be: 

for bending , = 

J L3 

3E1 
2.4.5 

4J.LJ  
for shearing, ys  - 

	

	 2.4.6 
3AG 

The required deflection of the work roll is given by summing 

equations 2.4.1 to 2.4.6. Then, 

y = 

w4 w3F 2w2 F4 2F2] 

24E1 6E1 3AG 
q 
8E1 3AG 

19 F4 

	

F2 	4 w3F 	w2] 

+  

	

360E1 3AG 	15E1 72E1 3AG 

or 

r
J
3  4LJ] _ j 

au 3AG 
2.4.7 

y = K3p + 	+ K5/13  + K6  /°S  + K7J 	 2.4.8 

Finally, for the profile of the top face of the work roll, the 

work roll crown must be included. Therefore 

yw = K3p + K4q + K5/113  + K5/1 + K7J + C
w 
	2.4.9 
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2.4.2 Profile of the bottom face of the backup roll  

The deflection of the ends of the backup roll barrel relative to 

the roll centre can be determined by considering a simply supported 

beam subjected to a uniform load q / unit length and a parabolic load 

distribution equal to 4 / unit length at the roll centre, figure 23. 

The supports represent the screws and the loading is assumed to extend 

over the complete length of the roll barrel, 2F. The deflection at 

the barrel end relative to the roll centre due to the uniform load can 

be shown to be: 

qF 
\ bending deflection yB 	k12LF2  — 7F3) 

24E1 
2.4.10 

2 qF 
shearing deflection ys 	[2L — F] 

3AG 

and that due to parabolic loading, 

thF3[ 591 
bending deflection yh 	--- L — 

an 	120 

2.4.11 

2.4.12 

//IF I8L 
shearing deflection ys 	— F 

3AG 3 

where 2F = roll barrel length 

2L = distance between screws 

2.4.13 
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The total deflection of the backup roll is obtained by combining 

equations 2.4.10 to 2.4.13 

1 [LF3 7F4 4FL 2F- 
2 

= q 	t 
2E1 24E1 3AG WIG 

 

[L, F3 59F4 8LF F2  
+ 

3E1 360E1 9AG 3AG 
2.4.14 

 

or y = Klq K211 

The profile of the bottom face of the top backup roll is therefore 

YBU = Klq + K2/13  — CB 
	 2.4.15 

where CB is the crown on the backup roll. 

2.4.3 Roll stiffness  

An expression was derived in section 1.3 for the relationship 

between the pressure q between the work and backup rolls at any point 

across the rolls and the deformation A of the rolls, equation 1.3.4. 

qi- 

  

2(1 —10)[2 	2D1) 	(2D1 
	 /3 + ln(--± + ln --- 

En 

—  D1 
D
2  

V/I

2(1 — 2) 
where b = 1.6 q 

(D
1 
+ D

2
) 	E 
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Hence the roll stiffness K
13 
_ _ 	  2.4.16 N A 	2(1 -1)2) 2/ 2D

1 	2D
2 
] 

	 /3 + In 	+ ln 

Fortunately K13  is not very sensitive to 71. For typical roll diameters, 

D
1  = 584 mm and D2 

1270 mm, K
13 varies from 3.14 to 2.65 as q goes 

from 0.8 tonnes/mm to 0.1 tonnes/6m; it is unlikely that values of 

outside this range will be developed in practice. The stiffness K
13 

is 

therefore assumed constant for constant roll diameters and is calculated 

from equation 2.4.15 with Ti equal to 0.5 tonnes/mm...  

2.4.4 Parabolic component of pressure distribution 4 

The parabolic component of the work/backup roll pressure distri-

bution is determined from the difference in the profiles of the adjacent 

work and backup roll faces and the roll stiffness. 

/11B = E13[Yw YHU3 
	

2.4.17 

substituting for yw  and yBu  with equations 2.4.9 and 2.4.15 respectively, 

PB -  13 	Knp + (K4  - Ki) q + K6 	+ K7J + Cw  + CBj 	2.4.18 
(1 - K5 + K2) 

2.4.5 Uniform component of pressure distribution q  

The level of the uniform pressure between the rolls can be 

determined by considering the equilibrium of the forces acting on the 

work roll,from the strip and from the backup roll. (The weight of 

the work roll is neglected as it is typically less than 0.5°/o of the 

total roll force). 
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4 AF 	4 /0sw 
2qF + 	= 2pw + 	+ 2J 

3 	3 

w 2,Pw J 2/13 or q = p — + 	+ — — 
F 3F F 3 

2.4.19 

Substituting for /0B  from equation 2.4.18,and rearranging gives: 

[K13 (K4  — K1) 	IF 3(1 	— K5  + K2) 
+ 	

3(1 — K5 
+ K2)J 

3(1 — K5 + K2) 

1 	2K3  K13 	2K13  K6 	1 

+ J 
1 	2K13  K7 	2K13  EC_ + CB] 	2.4.20 

	

IF 3(1 — K5 + K2) 	3(1 —5 + K2) 	" 

or, 

q = K14p + K15A + K16J + K17(Cw  + CB) 	 2.4.21 

q can now be eliminated from the expression for /44B  by combining 

equations 2.4.21 and 2.4.18. Then, 

_ 	  

	

B

3 K„ 	
K3 + (K4  — K1) 	p 

wi 

	

" 	 f[  
(1 — K5 + K2) + 2K13(K4 — K1) 

or, 

2(K — 	(K — K +1-K6 + 	 /S)  + {K7 	1  J + Cw  + CB  
3F 

1.4.22 

= Kl8P K19/4)S K20j K
28(Cw + CB) 
	

2.4.23 
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2.5 Work Roll Flattening 

Two expressions will be derived for the parabolic component of 

the work roll flattening. Firstly the flattening caused by the 

parabolic variation in roll force /4's  alone will be considered, and 

then the flattening caused by the uniform roll force distribution p. 

The total flattening is the sum of these two components. 

2.5.1 Flattening due to the parabolic component of roll force /as  

In an earlier analysis of strip shape 
9 
 it was shown that there 

was a strong correlation between the accurate roll flattening and the 

flattening, given by Hertz's theory, between two infinitely long 

cylinders
15
. The theory was applied to discrete sections of the roll 

over which it was assumed the pressure was constant. This method 

however neglects the interaction, due to shear, between the sections. 

The effect of neglecting the shear stresses is small except where 

the rate of change of force is high and hence the results were 

reasonable except near the strip edges where the force drops to zero. 

When considering just the parabolic components of roll force, 

which is zero at the strip edge, there is no sudden change in force 

and the Hertzian model will give satisfactory results. Since the 

loading is parabolic it will be assumed that the deformation will 

also be parabolic and it is therefore only necessary to derive an 

expression for the flattening at the roll centre where the force per 

unit length is /°s. Then Hertz's theory states that the flattening 

of the roll is, 

(1 --"4
2
) [1( 	D.E 

= 2/3 	
+ In 1.25 	 

l S  
nE 	3 	2fi5(1 —92) 

2.5.1 

This expression for roll flattening is unsuitable since /41"s  can 

be negative indicating that the force is higher at the edge of the 
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strip than at the centre. In such a condition the expression will 

contain a negative square root. The maximum likely variation of /os  

is from zero to ± 0.5 tonnes/mm, a graph of Al 
against " for a 

typical roll diameter is shown in figure 244a. It can be seen that A
1 

is very nearly linear with respect to /4%. Equation 2.5.1 can 

therefore be replaced by: 

K2i fis 
	 2.5.2 

where K
21 = 

0.155 mm2//tonne for a roll diameter of 584 mm. 

2.5.2 Flattening due to uniform roll force p  

The Hertzian model cannot be used for the uniform component of 

force as it will ignore the sudden change in force at the strip edge 

and this is responsible for a significant change in the roll flattening 

near the strip edges. In the full shape model derivation an influence 

function was derived for the deformation on the surface of a semi 

in-DA-at-6 solid caused by a uniform pressure applied over a rectangle, 

section 1.5. In this case a uniform pressure is applied over a 

rectangle equal to the are of contact by the strip width. The 

flattening at any point across the roll is given therefore by 

equation 1.5.3,.  

x + b) + ((x + b)2  + a2)1/ -%)) 	 2  
W(x) _ p(i —1.2 a In  t 	

1 2nG 	
(x — b) + ((x — b)2  + a2) /2  

+ 	+ b) In 	
1 / 

	

((x + b)2  a2) /2 	
a  

. 1/  
(x — b)2 aL) /2 + 

	

b) Ini(((x b)2 a2)1/2 
	‘i 

where 2b is the strip width w 

and 2a is the arc of contact 

1 / 
(x  + b)2 + a2) /2 + a  . 

I 
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The variation in the flattening across the strip width for a uniform roll 

force is shown in figure 24b. We shall assume that the parabolic component 

of flattening A2  can be approximated by 15°/o  of the difference between 

the flattening at the strip centre and at the strip edge. (This parabolic 

approximation which ignores the edge effects is also shown in figure 241)). 

Changing this percentage will alter the fit of the simple model results 

to the full model results. Then, 

A
2 	

.15(W(o) — W(W/2)) 

Therefore 

., .15p(1 —1)) 	i—w/2 + (w2/4 + a2,) /2 	w + 6,2 4. a411 
A2= 	 2a In 	2 	1 

2a In 	 / 
arcG 	—w/2 + tw  /4 + a2)/2 	a 

+ w In 

r
2

2 '012 a2)1/2 a 

2 	
1  

/ 	1/2 4 + a2  ) + 
w In 	 

(
N /4 + 2)/2 — a 	612 a2P 

2.5.3 

or 
02 

. K
22
p 	 2.5.4 

By combining equations 2.5.2 and 2.5.4 the total parabolic 

component of roll flattening can be written as 

AT = 1121PS K22p 
	

2.5.5 

2.6 Transverse Distribution of Stress  

In section 1.6 equations were derived for the transverse distri-

bution of stress at the entry and exit of a stand and between stands 

at a distance greater than one strip width from any stand: This 

last distribution being equal to the strip shape. The stress distri-

butions are functions of stand entry and exit thickness and slip 
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distributions. The method of simplification adopted here is to 

approximate all these distributions by parabolic profiles, again 

fitted over the central portion of the width of the strip ignoring 

the rapid changes at the strip edges. In this way simple expressions 

for the parabolic parameters of the stresses are obtained. 

The equation for the stress distribution at the entry to a stand, 

assuming symmetry about the strip centre line, is derived in section 1.6 

as, 

+ f 
E 	

f.) 
1.1 + Q' 1 

1-5Hi(1 + 1) 
2.6.1 

where H, h ,are vectors of entry and exit thickness 

f 	is the vector of exit slip 

Q' 	is the shape vector produced by the previous stand 

and x 	denotes the mean value of x 

By approximating the variable distributions as parabolas the equation 

can be rewritten as 

H (h + C2z)(1 + 1 + f„z) 
E 	F.   _ 	gpp  

11 	+ ce)(1 + 7) 
2.6.2 

where C1,  C2, fp 
 and Q

p 
 are the magnitudes of the parabolic 

approximations to the variations across the strip of 

h, f and Q respectively. 

( 2x 
2  and z = -- , x is the distance from the strip centre line 

w 

Rearranging equation 2.6.2 using a first order approximation to the 

Binomial expansion gives 

a. E 	 
1 	

(1 + C 	— C1  Z)(1 + + fpz) — 	+ Q ip 

	

(1 + 1) 	2/h z /11 

1 

2.6.3 
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Expand, neglecting multiple of small terms, 

1 {
2 	

C — 
	 1 + /h z— 17Hz+7+ fpz] —1 + Q'p 2.6.4 
(1 + 7) 

Finally, since f << 1, the parabolic component of the entry stress 

distribution at a stand is 

C C 
E 	2 	4. fp 	4. ca ,p  

E 11 
2.6.5 

The equations for the exit stress distribution (1.6.9) and the 

shape (1.6.10) can be simplified in a similar way to yield: 

Parabolic component of stress, 

H (C„, 
a — E 	` 	— f 
2 	E 

2.6.6 

Parabolic component of shape, 

C2  Ci  Qp  = EIll ()} 

E 	11 
2.6.7 

2.7 Exit Slip Variation  

The slip at the exit of a rolling stand As a function of entry 

and exit thickness and stress and the coefficient of friction. It 

is assumed that the coefficient of friction is a constant across the 

strip and the transverse variation of the thicknesses and stresses 

are small enough to enable the slip equation to be linearised. Then 

the parabolic component of slip can be expressed by, 
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of 	)f 	cif 	of 
fp = C +—C + --- a + — a 
• aH 1  )h 2  )cr1  P1  aa2  p2 

Or fp . F,C +F C +Fa +F4  a 1 	2 2 	3 pl 	p2 2.7.1 

Substituting equations 2.6.6 and 2.6.7 for pa l  and P2 
 andrearranging, 

fi)  = Al Cl + A2 C2 + A3 Qtp 
	 2.7.2 

F4).] 	–1 
where Al = [F1 – E(-

3 
 + 	11 – E(F3 – F4-).] E 

_ 

A2  = F2  + E(F  + !1 11  [1 – –I2 	E(F3  – F )] –1  
Ti[ 	

)] 
i 	13 1 	3 	4 

A3 = + F3/[1 – E(F3  – F4)] 

2.8 Roll Force Variation 

The parabolic component of roll force /2  can be obtained in a 

similar way to the parabolic component for slip in the previous section. 

aP 	s)13 	aP 	,)13  
4 =--c +--C +—a +—a h 2aal  pl2 P2 

Or 	=P Cl  +P C +Pa +Pa 1 	2 2 	3 pl 	4 p2 
2.8.1 

(Coefficient of friction and hardness are assumed constant across the 

strip). 



Then by substituting for d and o,and rearranging we obtain 
pl 

P,E P4E] 	P3E P4E 
/ 14s Cl P, — _ 	+C2  P + 	+ 	— — 

2 2 Ta 	Ti 

+ p  [E(P3  + P4)] + P3  Qip 
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2.8.2 

Finally, substituting for f from equation 2.7.2 

= A4  Cl  +A5  C2  + A6  OW 	 2.8.3 

P
3
E P

4
E 

where A
4 
 = P

1  — 
	+ A

I
E  

H E — P4) 

P
3
E P

4 
EH 

A, = Pn  + — + — +A E(P — P4) 
E E 	2 3 4 

A6  = A3
E(P

3 
—) + P3  

2.9 The Simple Shape Model  

It is assumed that the exit thickness profile is equal to the 

roll gap profile; that is variations in the elastic recovery across 

the strip are ignored. The exit thickness profile, C2, can therefore 

be expressed as a function of the original (ground) profile of the 

work rolls, the deflection due to bending and shearing of the work 

rolls, and the flattening of the work rolls against the strip. 

An expression for the bending and shearing deflection in terms 

of roll force p and 	the roll bending jack force J, and the work 
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and backup roll crowns Cw  and CB, can be obtained by substituting 

for q and "B  in 2.3.20 with equations 2.4.21 and 2.4.23. Then 

yw = (K8  + K9K14  + K10K
18
)p + 

(K11 
 + K9K15  + K

10
K19)/408  

(K12 K9K16 K10K20)j 
 (K9K17  + K

10
K28)(Cw  + CB) 2.9.1 

An expression for the exit thickness profile C
2 
can now be written 

by combining equations 2.9.1 and 2.5.51 and substituting the roll crown 

(expressed over the strip width). A factor of two must be included 

to account for the upper and lower rolls. 

Iv  2 

C - 2[Kn K /6° KJ K 1 C +K C-C(-) 2 - 	23' -I-  24 S 	25 4-  26 w 	27 B 	w 

4.  K2 /13S K221)] 

Finally substituting equation 2.8.3 for /41 and rearranging 

K
23

p + K
25
J + 

K26Cw 
+ 
K27CB 

+ CK21 + K24)A4C1 + (K21 + K24
)A
6
Q'p 

C
2 

_ 
0.5 - (K

21 
+ K

24
)A
5 

2.9.2 

where K
23 

= K
23
' + K

22 
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Then by substituting for C2  in the shape expression, equation 2.6.7, 

a simple algebraic expression for the parabolic component of strip 

shape is obtained. 

11 II (K23- 
D + K

25 
 J + 

K26Cw 
+ 
K27CB 

+ (K
21 
 + K

24 
 gA
4  C1 

 + (K
21 

+ K
24

)A
6
p'p) 

Qp . E 
10.5 - OK + K 	) 

21 
	24)A5 

2.9.3 

The coefficients K
23 

to K
27 are complicated functions of mill 

dimensions and the strip width. For any particular mill the dimensions 

are constant and the only variable is strip gidth. The variation of 

each of these coefficients with strip width for a particular mill is 

shown in the graphs in figure 25. It can be shown that all five 

curves are closely quadratic and therefore each of the coefficients 

can be represented by a law of the form 

K.1  A l w2 + A2w + A3 
	i = 23-27 

wherethecoefficientsli.are chosen to give a good least squares fit 

to the actual curves. For the mill dimensions used in figure 25 the 

actual equations are: 

K23 = 
-0.275 * 106 w2 + 0.546 * 103 w - 0.218 

K
24 = 

-0.088 * 10-
6 w2 + 0.271 -r 10

3 w - 0.112 

K
25 = 

-0.875 * 109 w2 + 0.812 * 10
6 w - 0.298 * 103 

K
26 

 = -0.475 * 106 w2 - 0.217 * 103 w + 0.082 2.9.4 

K
27 = 

0.025 * 10
6 w2 - 0.232 * 10

3 w + 0.092 
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A simple algebraic expression has been derived for the parabolic 

component of strip shape. It is interesting to compare this with the 

complexity of the block diagram for the full shape calculation shown 

in figure 2. It should be emphasized that the simple expression is 

not a substitute for the full model since it is only valid for 

symmetric conditions and only models the parabolic component. This 

component is particularly important in mill scheduling studies, 

which will be discussed in the next section, and in designing 

certain feedback shape control loops. 

2.10 Model Verification 

The shape distributions computed from the full and simple models 

for two different widths and two different jack forces are plotted in 

figure 26. The difference in the full and simple model results is 

due mainly to the sudden change in stress near the strip edges caused 

by the work roll flattening in the full model. 

2.11 Shape Sensitivity 

An understanding of the behaviour of shape to variations in the 

available controls assists in the design of scheduling algorithms and 

shape control schemes, both of which will be discussed in later sections. 

Because the full shape analysis derived in Chapter 1 is iterative, 

sensitivities of shape to any other variables can only be obtained 

numerically. The simple expression for the parabolic component of 

strip shape, equation 2.9.3, can however be differentiated to yield 

expressions for the required sensitivities as follows. 

Sensitivity of shape to roll force: 

= E 
	K23 	

2.10.1 

441 	Ti(0L5  — (K21 	K24)11.5)  



cw E [E(0.5 - (K
21 

+ Id
24
)A
5
.).1 

E 26  
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The coefficients K
23 

and K
24 

are functions of width which can be 

approximated by the quadratic equations 2.9.4. The sensitivity of 

shape to roll force is therefore highly width dependent and the form 

of this dependency is shown in figure 27. As the strip width decreases 

the rolls tend to bend more easily because the strip acts as a pivot. 

For very narrow widths however the sensitivity tends to decrease 

because the effect of bending over the narrow portion at the centre 

of the rolls is small. As the strip width increases and more of the 

roll width is in contact with the strip, the resistance to bending 

increases and the sensitivity again decreases. The sensitivity is a 

maximum for about 1000 mm wide strip. 

Serthitivity of shape to jack force: 

-E 
4)  J 	Ii[71(0.5 — (K21  + K24)A5) 

Since K25  has a similar width dependency to K23, the variation of 

this sensitivity with width is similar to that described above. 

Sensitivity of shape to roll crown: 

)S2 	H 	K
25 
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CHAPTER 3 

Tandem Mill Scheduling 

In a tandem cold rolling mill, which can consist of up to six 

stands, the strip is successively reduced in thickness at each stand 

as it passes through the mill. At each stand the force required to 

reduce the strip is applied via the rolls by screws situated in the 

top of the main frame7 or by means of hydraulic actuators usually 

situated below the bottom backup roll. To assist in the reduction 

process the screw position and motor speeds are adjusted to maintain 

the strip in tension between the stands. The problem of scheduling 

is concerned with choosing the proportion of the overall reduction 

to be carried out at each stand, the levels of interstand tension, 

the crown to be ground on the rolls at each stand and, if available, 

the level of roll bending jack forces required for good shape. 

In practice scheduling policies are usually based on past 

experience and trial and error. These procedures are often adequate 

particularly when backed up with experienced manual interventions 

and long runs of standard products. However in certain extreme cases 

when the product is very variable or mill working is erratic, so that 

the thermal conditions never reach a steady state, it is important to 

have an understanding of the physical process underlying the scheduling 

behaviour. 

The basis of most existing scheduling policies is said to be to 

maximise throughput, no account being taken of strip quality. The 

problem then becomes one of choosing the reductions and tensions so 

that at any speed the ratio of the power required to the power 

available, is the same at all stands. With this approach the shape 

of the strip produced is completely ignored, both in the final product, 

where it could lead to scrap material, and at intermediate points 
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through the mill where it could cause operating difficulties and 

expensive delays. Shape is particularly important on the nose of 

each coil during threading. If the nose becomes buckled it is 

difficult to thread it into a stand and roll damage can occur. 

Clearly the question of throughput cannot be totally ignored and on 

an existing mill some acceptable compromise must be made between 

throughput and strip quality. When designing a new mill however the 

power requirements for each stand should be computed for the ideal 

scheduling policy first and this information used when designing the 

motors. For the discussion which follows we shall ignore the power 

requirements and investigate scheduling from shape considerations 

only. 

The shape produced by a stand can be considered to be the result 

of three factors (1) the transmission of shape produced at preceding 

stands, (2) the effect of roll deformation (bending, shearing and 

flattening) and the initial ground camber on the work rolls, and 

(3) the thermal camber on the rolls caused by the friction heating 

in the roll gap. It is convenient to investigate separately the 

behaviour of each of these three factors to changes in schedule before 

combining the effects. 

3.1 Shape Transmission 

The effect on the shape produced at one stand of that produced 

at the preceding stand can be demonstrated by referring to the simple 

expression for the parabolic component of shape (equation 2.9.3) 

developed in Chapter 2. 

Qp =E H (K
23p + Ko 

 e K26Cw K27C13 (K21 K24)A4C1 (K21 K24)A6QTP)  

1(0.5 - (K91  +1(24)A) 

C 
1 
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Differentiate with respect to Q'p, then 

p 	
H I- (K21 + 1124)A6  E 

g-P op 	E r (K
21 + K24)A5 

3.1.1 

If this sensitivity is evaluated for a typical schedule, values of 

approximately –0.54 are obtained. This implies that the magnitude of 

the shape produced by one stand will be reduced by a half as it passes 

through the next stand, and the sign will be changed; tensile stresses 

at the centre of the strip leaving one stand will cause compressive 

stresses at the centre after the next stand. (This sensitivity has 

been verified numerically using the full shape model, a value of –0.6 

was obtained). 

It is interesting to also investigate the transmission of gauge 

profile through a stand. The effect of the entry profile C1  on the 

exit profile C
2 

can be found by rearranging equation 2.9.2, 

C 	
(K

21 
+ K

24
)A
4 	C + K

23p + K25J + K26Cw  + E27CB  + ( 
K21 + K24)Q' 

2 10.5 – (K
21 

+ K24)A5 1 ] 	0.5 – (K
21 

+ K
24
)A
5 

3.1.2 

or 

C2 = D
1 
C
l 
+ D

2 

By inserting coefficient values into the first term it is found that 

the minimum likely value of (K21 
+ 
K24)A5 

is 44 and the expression 

can therefore be reduced to 

C2 	
4 – — C

1 
+ D

2  • 

	A 

A 5 
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If the equations for A4  and A
5 

from equation 2.8.3 are inserted, and 

small terms are discarded it can be shown that 

h 

co = — C
1 
 + D

2 
	 3.1.3 

The second term D
2 

is a function of roll force, jack force, roll.  

crowns and shape from any previous stand. However if typical values 

for these parameters are inserted it can be shown that D
2 

is very small, 

less than 0.002 mm, compared with strip crowns which are typically at 

least an order higher. Hence to a first order the strip profile at 

the exit of a stand is approximately equal to the profile at the entry 

reduced by the reduction ratio. Hence the ratio of strip profile to 

thickness remains approximately, constant through a mill. (This 

transmission of strip profile has been verified experimentally as 

reported in 9). 

3.2 Roll Deformation  

The effect of schedule changes on the roll deformation can again 

be investigated using the simple shape model. The controls available 

at any one stand for modifying the shape via the schedulel are reduction 

and entry and exit strip tension. However none of these controls has 

a direct effect on roll deformation. The effect is via roll force 

and we shall therefore study the effect of roll force changes on roll 

deformation. 

Ideally a schedule is chosen so that the roll forces developed 

at each stand together with the total crown on the rolls, due to 

grinding thermal expansion and roll wear, are such that strip with 

perfect shape is produced. Whatever the roll force developed at a 

stand, there is a value of roll crown which, to a first order at least, 

will cancel out the effects of roll deformation and cause strip with 
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perfect shape to be rolled. The relationship between this "crown for 

perfect shape" and roll force can be derived by equating equation 2.9.3 

to zero, 

(K
23

p + K
25
J + 

K26  C 
 +K

27  CB 
 + (K

21 
+ K

24
)A
4
C
1 
+  (K21  + R24

)A
6
SP) 

w  

171(°.5  — (K21 + K24)A5)  

3.2.1 

and rearranging for roll crown, 

C
w 

D
1 
+ D

2
p 
	

3.2.2 

fE 
where D = 	[0.5 — 

1 	(K21 K24)A5 K
26 

— K
25
J — K

27
C
B — (K21 + K24)A4C

1 

— (K
2 

+ K24)A6Q  vi 

D
2 
. — 

K26 

Hence the relationship is linear and this has been confirmed by results 

from the full model. 

The value (D
1
) of C

w 
when p = 0 represents the roll crown required 

to produce perfect shape when the roll force is zero. Clearly this 

is not a practical situation since Vith zero roll force there is no 

reduction, however zero force implies zero bending shearing and 

flattening (assuming the jack force is also zero). The roll crown _ 

must therefore be the negative of half the exit strip crown. (There 

K23 
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is a factor of a half as the strip crown is produced by the top and 

bottom rolls). For simplicity let us assume that the jack force J, 

the backup roll crown CB,and the shape from the previous stand are 

all zero, then D1  in equation 3.2.2 can be rewritten as, 

C
1 

D1 = 	iT .5 — — (K21+ K24) — 11— A
5 
 +Ajj 

4 
K26 

3.2.3 

A
4 

and A
5 
are the sensitivities of roll force to entry and exit gauge 

respectively. These sensitivities are always opposite in sign and of 

similar magnitude so that 

h 
_A +A LO 
— 5 	4 7  

2 
From equation 2.9.2: K26 = 

Zb K26,  — 1—fl 

If this is evaluated for different widths it is found that (:1  
F/ 

2 

always dominates. Equation 3.2.3 can therefore be rewritten as, 

—  h (F 2 
D
1 
 = — 0.5 — —) C 

H  • 	w  
3.2.4 

F 2 

( 
The factor — is required since the strip crown C1 

is defined over 
w 

the strip width w, and the roll crown Cw  is defined over the roll 

width F; both crowns are assumed to be parabolic. In section 3.1 

we have shown that the exit strip crown is approximately equal to the 

entry crown reduced by the reduction ratio. Therefore 

F ) 
— 	2  D 

1 ' 
= 

wl 
3.2.5 
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As indicated by the full expression for D1  in equation 3.2.2 

the intercept is also dependent on the roll bending jack force J, 

the backup roll crown CB,and the shape from the previous stand Q'p. 

It should be noted that since none of these parameters appear in the 

slope D2, changes to any of them will have the effect of simply 

shifting the zero shape line of equation 3.2.2 vertically. 

The slope of the 'zero shape line', 

D
2
.— 

K23 

K26 

is dependent on strip width only. If the approximate representation 

of K
23 

and K26 
given in equation 2.9.4 is used, the slope becomes 

—0.257*10-6w2 + 0.546*103w — 0.218 
D
2 

_ 	  
—0.475*10 6w2  — 0.217*10

3
w + 0.082 

3.2.6 

Using this expression a graph has been drawn for slope D2  against 

width, figure 28. It is easier to understand the behaviour of this 

slope with width if the horizontal axis of the zero shape graph is 

changed from specific roll force p to total roll force P, where, 

P = p * w 	 3.2.7 

Then the slope becomes 

1K23 
2 
D' — — 

w K
26 

3.2.8 

This new slope is also plotted in figure 28 and the result is close 

to a straight line with negative slope. This implies that for a given 

total roll force more bending and shearing occurs for narrow strip 

than for wide strip since a larger crown is required to cancel the 
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effect. This is obviously a sensible practical result as when the 

complete width of the roll gap is full of strip, bending must be 

severely inhibited. 

To summarise, the relationship between roll force and roll crown 

for zero shape is a straight line. The intercept on the roll crown 

axis is dependent on the roll bending jack force, backup roll crown, 

and the shape from the previous stand but when these parameters are 

zero the intercept is equalland opposite in signito the strip crown. 

The slope of the line is dependent on strip width only. 

3.3 Roll Thermal Crown  

As the strip passes through a roll gap heat is generated both 

by the work done in the reduction and by the friction forces between 

the strip and the rolls; this heat flows partly into the rolls and 

partly into the strip. Heat is extracted from the rolls outside the 

roll bite by coolant sprays acting over the complete roll width and 

as a result a thermal crown is developed across the rolls. (The 

heat flows are shown -in figure 29). 

The magnitude of the thermal crown is affected by entry and exit 

strip thickness and tension, strip hardness,and the coefficient of 

friction. If all these variables are fixed and only exit thickness 

is allowed to vary a graph can be drawn of thermal camber against 

roll force. A model of thermal crown has been developed in [21] 

where it is shown that the heat generated Q, is a convex function of 

the specific roll force p ie 

Q= b 
r[(n+1)/n] 

The relationship between roll crown and the heat generated is developed 

in [22] where it.is also shown that the difference in crown from the 



roll centre to the roll edge is approximately independent of strip 

width and bears a linear relationship to the amount of heat generated. 

The crown profile however is a function of strip width, changing 

from near parabolic for narrow striplto near quartic for wide strip. 

As we are concerned here only with the parabolic components of the 

distributions, the equivalent thermal crown is width dependent. 

A graph of the total roll crown (thermal plus ground) is shown 

in figure 30. Clearly the intercept on the vertical axis is equal 

to the ground crown as the thermal crown must be zero for zero roll 

force. 

In the previous section the effects of changes in roll force, 

and roll bending jack forces on the roll crown required to produce . 

strip with perfect shape were analysed. If this "zero shape" line 

and the thermal crown curve are plotted on a common pair of axh, 

points of intersection between the lines will indicate perfect shape 

conditions; that is the actual roll crown indicated by the curve is 

equal to the crown required for perfect shape, indicated by the 

Straight line. Figure 31 shows such a graph drawn for particular 

entry and exit tensions, strip hardness, strip width, strip crown and 

roll crown. Under these conditions perfect shape will be produced at 

roll forces A and B. However as shown in the previous section the 

zero shape line can be shifted vertically by changes in jack forces, 

also the thermal crown curve can be shifted vertically by changes 

in ground crown, it is therefore possible to obtain perfect shape at 

any roll force. 

There are three regions on the graph. For forces below A the 

thermal crown curve is above the zero shape line. The roll crown 

generated at these roll forces is therefore greater than that required 

to produce strip with perfect shape: Strip with full middle shape 

will be produced. In the second region, roll forces between A and B, 
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the crown required is greater than that generated: Strip rolled 

under these conditions will therefore have wavy edges. Roll forces 

above B will produce strip with full middle since, as with the first 

region, too large a thermal crown will be generated. 

The diagram described is a valuable tool for understanding the 

behaviour at any one stand of a mill as the schedule parameters are 

varied. To design an optimum rolling schedule requires only that the 

thicknesses, tensions, ground crowns and jack forces be chosen so that 

at the operating roll force for each stand the two curves are, ideally, 

coincident. Unfortunately the calculation of tensions and reduction 

at a stand is an iterative procedure owing to the interdependency of 

roll forCe, reductions and tensions. Also each stand cannot be treated 

in isolation because of the requirement to meet a specified mill exit 

thickness and because of the transmission of shape through the mill. 

A method of obtaining an optimum solution to this problem is discussed 

in the next section. 

3.4 Solution of the Scheduling Problem 

The problem is to derive schedules for given mill entry 

thicknesses and strip widths which will enable strip to be rolled to 

the required thickness with good shape at the mill exit,and which 

will also maintain good shape throughout the mill. 

As the mill entry thickness and total reduction are specified 

it is rarely possible to produce strip with perfect shape at all 

stands of the mill. The one exception is when roll bending jacks are 

available on all stands; shape can then be adjusted independently of 

any other mill variable. Even this observation must be interpreted 

with caution, since deformation patterns generated from thermal causes 

do not have the same parabolic characteristics of those generated by 

roll bending and hence perfect cancellation is not possible. It is 
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assumed that buckling can not occur unless there are compressive 

stresses in the strip. Under rolling conditions the strip is under 

tension between the stands and hence the transverse stress variation 

must exceed this mean level before buckling can occur. When threading 

the mill however the nose of the strip is unconstrained and the 

possibility of buckling is much greater. When designing schedules 

therefore we are interested in producing strip with good shape at 

intermediate stands during threading and at the mill exit during 

rolling. 

3.4.1 Mathematical Formulation  

Scheduling has been formulated as a non—linear sample data problem 

where the states are sampled at intervals of space rather than time. 

The sample points correspond to the stands of the mill where the 

controls are also specified. It is a two point boundary value problem 

as the dimensions and physical properties of the incoming strip are 

fixed, as are the mill exit thickness and tension. The dynamic 

behaviour of the shape, thermal crown and roll force is incorporated 

in a sample data state variable description of the mill. 

Procedures for specifying the system adjoint equations and the 

control space gradient for such a problem are well known. As the end 

point constraints are linear, gradients were suitably projected to 

obtain constraint satisfactions
23
; the projected gradients were then,  

used with a conjugate gradient iterative procedure
24. When formulating 

the equations to represent the mill in this way it is convenient to 

specify six "states" and four "controls" at each stand. The six 

states are: 

1) entry thickness (mm) 

2) entry tension (tonne/6m2) 

3) roll force (tonne/mm) 
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4) shape parameter (tonne/6m2) 

5) difference in roll force developed between threading 

and running (tonne/60 

6) thermal crown (mm) 

The four controls are: 

1) reduction (mm) 

2) exit tension (tonne/6m2) 

3) roll bending jack force (tonne) 

4) work—roll ground crown (mm) 

The .six states are chosen as mill variables which might be either 

constrained or costed at some point through the mill. The change in 

roll force from the threading to the rolling condition is required to 

calculate the value of shape while threading from that while rolling. 

The reason for tension appearing as both a state and a control will 

become clear as the six state equations are derived. 

(1) The entry thickness at one stand is equal to the entry thickness 

to the previous stand minus the reduction at that stand: 

i+1 	i 	i x
1 

= x
1 
— U

1 
3.3.1 

(2) The entry tension at one stand is equal to the exit tension at 

the previous stand, hence the need for tension as both a state 

and a control: 

i+1 
x
2 

= U
2 
	 3.3.2 

N.B. In the above two equations sample point i refers to the stand 

number. 
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(3) The roll force at a stand is a complex non—linear function of 

several states and controls at that stand, ie. entry and exit 

tension and thickness, and strip hardness which is a function 

of total reduction. For a state variable formulation, the value 

of a state at one sample point must be a function of states and 

controls at the previous sample point. To overcome this the 

roll force at sample point i is defined as the roll force at 

stand i—l. Therefore, 

x
i
3
+1  

= roll force at stand i 

To assist in the calculation of gradients in the optimisation 

routine the roll force model is linearised
17
. The state equation 

is therefore, 

x
3
i+1 

= A
1  x2 

 + A22 Ui + A
3  x
i  + A

4 
 [xi — U

i
] + constant 

111 
3. 3. 3 

States 4, 5 and 6 are similarly defined at sample point i as 

being the values at stand i+1. 

(4) The strip shape, and hence the shape parameter at the exit of a 
Stand 

stand, is a function ofroll force, thermal crown, ground crown, 

jack forcel and shape from the previous stand. As with the roll 

force the function is linearised and, incorporating the equation 

for the roll force, 3.3.3, the state equation for shape becomes, 

xi
4
+1  = K

12  
xi  + K

22  
Ui  + K

3  x
i  + K

4 
 [xi  — 

1
+ K 
54  
Ui 

1  

+ K
6  U5 

 + t 4 
 + constant 
	

3.3.4 
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(5) The difference in the roll force at stand i between the threading 

and rolling condition, represented by state 5 at sample point i+1, 

is brought about by the absence of exit tension during threading. 

The result is an increase in the roll force and the exit thickness. 

The total roll force change at a stand is due therefore, to the 

zero exit tension and to the increase in entry thickness caused 

when threading the previous stand. The increase in entry thickness 

is a function of the roll force difference at the previous stand. 

The state equation which is derived using linear coefficients of 

roll force is therefore, 

i+1 I mA2 	U
2 
+ i 	A3w 	

x
i 

x - 
5 m - A4 w 	m - A4w 5  

3.3.5 

where m is the mill stiffness. 

(6) The final state x
6 

is defined at sample point i as being the work 

roll thermal crown at stand i-l. Thermal crown is a non linear 

function of stand entry and exit tensions and thicknesses22, but 

as with roll force and shape a linearised expression will be used 

to assist in the gradient calculation. Therefore, 

/ 
x
i
6
+1 

= B
12  
xi  + B

22  
Ui  + B3 xi + B

4 
 kx

i 
 - U

i 
 ) + constant 3.3.6 

The practical aspects of the scheduling problem dictate that the 

endpoints of some of the states are constrained. At the first sample 

point the first state, xl' 
represents the mill entry thickness. In 

finding the solution to a normal scheduling problem this would be 

specified, however it could be left free to obtain the optimum mill 

entry thickness for a required mill exit thickness. The mill entry 

strip tension (x2  at the first sample point) is fixed at zero on most 

mills, but it could be controlled in the same way as the other tensions. 
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The remaining states are constrained to zero at the first sample 

point (i=1) to give the correct initial conditions at stand 1. 

The last sample point corresponds to the mill exit and hence 

the finished strip. The definition of states 3 to 6 dictates that 

there shall be one more sample point than there are stands, in order 

to accommodate the values of these states at all stands. Because of 

this, at the last sample point the first two states represent the 

entry thickness and tension to an imaginary stand after the last 

stand. However, by definition, these must be equal to the thickness 

and tension at the exit of the previous stand, ie the final thickness 

and tension between the last stand and the toiler. The two states 

are therefore fixed, the thickness for obvious reasons and the tension 

to facilitate satisfactory coiling of the strip. At the last sample 

point states 3 to 6 represent the values of certain mill variables 

at the last stand. The roll force (x
3
) is normally constrained by 

considerations of surface finish and shape. It is desirable that 

the final strip shape (x4) shall be zero. If roll bending jacks are 

installed it is possible to force the shape parameter to zero and 

hence x
4 

would be fixed. The remaining states are free, their final 

value being chosen to satisfy a cost function. The constraints are 

summarised in table 3.3.1. 

3.4.2 Cost function 

The unconstrained controls are chosen to satisfy the endpoints 

and to minimize a cost function. A quadratic cost function was 

derived from practical considerations of the mill and the strip. 

The cost function is divided into three sections: (1) A cost on the 

shape during threading each stand, this has a weighting which increases 

through the mill to account for the increased likelihood of buckling 

as the thickness decreases. (2) A cost on the tension which must be 
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State 	Sample 

Point 

Definition Endpoint condition 

1 First Mill entry thickness Constrained or free 

2 First Mill entry tension Constrained or free 

(normally zero) 

3 First Constrained to zero 

4 First Constrained to zero 
Meaningless 

5 First Constrained to zero 

6 First Constrained to zero 

1 Last Mill exit thickness Constrained 

2 Last Coiler tension Constrained 

3 Last Last stand roll force Constrained 

4 Last Final strip shape Constrained or free 

5 Last Difference in roll force between 

threading and rolling on the last stand 

Free 	
., 

6 Last Thermal crown on last stand Free 

Table 3.3.1 Summary of Endpoint Constraints  
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• 

held to within limits imposed by consideration of skidding in the roll 

gap or loss of tension with expected disturbances. (3) A cost on 

thermal crown. If a schedule is designed with a large crown on any 

stand, the loss of that crown after a roll change may lead to unacceptable 

strip being produced. The form of the complete cost function is, 

5 
 I 	 i+1\ 2 

 2 

Cost = E 
4  

1 L4 	x5 	
12  E.  Ti T2 1  

i=1 	
. = 	

2 
1 	2 

5 
/ 	j\2 + K 	kx, — x6) 

3  i, j=2 

i,'j 

where Si  is the linear coefficient of shape to roll force 

at stand i 

Ti is the lower tension limit at stand i 

Ti 
2 
is the upper tension limit at stand i 

A digital computer program for solving the scheduling problem 

has been written for use on a CDC 6400 computer. Examples of the 

results obtainable are shown and discussed in reference 25. Scheduling 

policies derived in this way are now in use on two five stand tandem 

cold mills. 

In theory the scheduling problem can be solved using the above 

technique without the physical understanding of the complex interactions 

between roll force, shape and thermal crown developed in sections 3.2 

and 3.3. This understanding is however necessary in order to design 

the best form of cost function which has a strong influence on the 

results produced. The physical understanding also assists in inter-

preting the results from the optimiser in terms that can be appreciated 

by practicing engineers and plant personnel. 
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CHAPTER 4 

Shape Control 

The primary aim of any shape control scheme is to produce strip 

with an acceptably low transverse stress variation at the mill exit. 

The shape produced at one stand is improved by a factor of 

approximately 0.5 as the strip passes through the next stand 

(section 3.1), hence in most cases only the conditions at the last 

two stands have any appreciable effect on the mill exit shape. The 

shape at all intermediate stands must however be good enough to avoid 

either high edge stresses, leading to strip breakage, or manifest 

shape which could produce roll damage. 

4.1 Means of Control  

The foregoing analysis has shown that the means of affecting 

the shape produced at any stand are (a) by changing the roll deformation, 

(b) by changing the roll thermal crown and (c) by changing the entry 

strip crown. 

In section 3.2 the ratio of strip crown to thickness was shown. 

to be approximately constant through a mill irrespective of schedule 

or jack forces, this can therefore be discounted as a possible control. 

Roll deformation can be controlled by jack forces, and reductions or 

tensions causing roll forces changes. Thermal crown is also affected 

by reductions and tensions but also by changes in the roll coolant 

distribution across the roll width. The suitability of each of these 

controls will now be discussed in more detail. 
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4.1.1 Roll bending jack forces  

The most direct way of altering the roll deformation is by the 

use of hydraulic jacks situated at the ends of the rolls. There are 

/ 
three possible configurations for these jacks

26 
 (a) between the work 

and backup rolls, figure 32a, (b) between the work rolls, figure 32b 

and (c) between the backup rolls, figure 32c. All three configurations 

have essentially a parabolic effect on the strip shape being produced 

although for very wide strip, relative to the roll barrel length, the 

effects tend to be restricted to the edges of the strip. The degree 

of control available for work and work / backup roll jacks tends to 

be similar as both operate by bending the work rolls. The backup roll 

jacks have much less effect on shape because of the large diameter to 

length ratio and bending stiffness of the backup rolls. 

All three jack configurations affect, by different degrees, the 

thickness of strip being produced which is generally taken to be the 

thickness at the strip centre line. This nominal thickness can only 

be affected therefore by changes in work roll flattening and inter 

roll squashing at the centre line, changes in the deflection of the 

backup roll relative to the screws, and changes in the reaction on 

the screws (S in figure 32) causing a change in the frame stretch. 

The first three of these effects are small and thickness changes are 

dominated by changes to the reaction S. 

Consider the forces acting when jacks are applied between the 

work and backup rolls (figure 32a). An increase in jack force from J 

to J + AJ will cause an increase in the total roll force P(. Ep) 

because the rolls are bent towards the strip at the strip edges, and 

a decrease in the inter roll force Q(= Eq) as the work rolls are bent 

away from the backup rolls at the roll ends. Therefore the equilibrium 

equation of the work roll is, 

J + AJ (P + AP) — (Q + AQ) 
	

4.1.1 
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To maintain equilibrium the change in P and Q must cancel the change 

in J, hence equation 4.1.1 can be rewritten as 

J + AJ =P+ n AJ— (Q — 	— n)AJ) 	 4.1.2 

where 0 4. n 4:: 1 

Considering the equilibrium of the combined work and backup roll, 

AS = AP 

therefore 

AS = n AJ 	 4.1.3 

In the case of work roll jacks (figure 32b) the change in jack force AJ 

is again shared between the changes in P and Q, 

J + AJ = (Q + AQ) — (p pp) 	 4.1.4 

and again to maintain equilibrium 

AP = — n' AJ 

and tQ = (1 — n') AJ 

where 0 4; n' 4; 1 

For equilibrium of the backup roll 

AS . AQ 

Therefore, AS — (1 — n') AJ 	 4.1.5 

An increase in the backup roll jack force will cause an increase in Q 

as the roll will bend about the screws towards the work roll. Therefore 

AS . AJ + AQ 
	

4.1.6 
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The increase in Q will depend upon the relative stiffnesses of the 

stand frame and the backup roll bending. 

Comparison of equations 4.1.3, 4.1.5 and 4.1.6 shows that change 

in the screw reaction and therefore in the centre line strip thickness 

is much greater in the case of the backup roll jacks than for the 

other two configurations. The relative effects of work roll -andwork 

backup roll jacks on the centre line thickness depends on the value 

of the constants n and n' and this will depend on the dimensions of 

the rolls. For all mills investigated the work / backup roll jacks 

have been found to affect the centre line thickness the least, however 

they do not afford a "non interactive" control foi- shape as is often 

assumed in the literature. 

4.1.2 Roll force  

The deformation of the work rolls is highly sensitive to changes 

in roll force. However changes in roll force obviously have a direct 

effect on the strip thickness and there is no way of correcting for 

this. The only situation when roll force can be used as an effective 

form of shape control is when the strip is very hard so that the 

sensitivity of thickness to roll force is very much smaller than the 

sensitivity of shape to roll force; the latter being unaffected by 

the hardness. This condition would apply on the last stand of a 5 

or 6 stand tandem mill. 

As well as affecting the deformation of the work rolls, changes 

in roll force also modify the thermal camber. The sensitivity of 

thermal crown to roll force was described in section 3.3 and is shown 

in figure 30; as the roll force increases so does the thermal crown. 

Changes in roll force therefore cause changes in shape by changing 

the deformation of the rolls (section 3.2) and by changing the thermal 

crown. Unfortunately these two effects oppose one another; the 
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combined effect can be described with reference to the combined graph 

of figure 31. For operating roll forces below A and greater than B, 

the roll crown (ground plus thermal) is greater than the crown required 

for perfect shape (indicated by the straight line) and the shape is 

therefore compressive at the centre and tensile at the edges. However 

in order to correct the shape the operating roll force must be changed 

to either A or B and this will require an increase in one case and a 

decrease in the other. 

A difficulty of using roll force as a control for shape therefore 

is that on line it is not possible to know, from shape or roll force 

measurements, whether an increase or a decrease in roll force is 

required to correct shape in the steady state. 

Because the strip thickness is defined at the centre line, 

differential roll force (the difference in the roll force at each 

edge of the strip) may be used as a control for asymmetric shape 

errors. 

4.1.3 Coolant spray distribution 

The thermal crown developed on the work rolls during rolling is 

a result of the balance between the heat input across the strip width 

in the roll gap and the heat lost to the coolant. By varying the 

intensity of the coolant on different parts of the rolls, the thermal 

expansion and hence the strip shape can be modified. This form of 

control has not been widely used on mills to date because as yet there 

are no instruments available for measuring thermal crown on line. 

With the advent of shape measuring instruments, however, it will be 

possible to infer the thermal crown from the shape readings and more 

sophisticated forms of spray control may be developed to thermally 

contour the rolls to correct bad shape. Such equipment
27 

will be 

particularly advantageous in tinplate and aluminium rolling where 

more heat is generated and the shape tolerances are much tighter. 
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Coolant spray control has the advantage over the other shape 

controls discussed that a wide range of roll profiles and therefore 

stress distributions can be developed. For example, if the strip 

entering the mill has a thick band at some position across the width, 

shown exaggerated in figure 33, a band of compressive stress will be 

set up in the strip after rolling. This cannot be corrected by roll 

deformation. However if a coolant flow at that position across the 

roll is increased relative to the rest of the roll, the inverse 

profile can be generated on the roll and the shape corrected. 

There are two disadvantages of spray control. On some mills 

the coolant and the lubricant are combined so that reducing the 

coolant will also reduce the lubrication: this can cause a bad 

surface finish to be produced on the strip and rolls. Secondly there 

is a long time constant of several minutes involved in changing the 

thermal crown. 

4.2 Measuring Instruments  

Over the last 15 years a variety of Instruments have been 

developed for measuring strip shape. The instruments can be 

conveniently divided into two categories, contact and non contact. 

The non contact instruments operate on one of three principles: 

a) The reflection of a straight line source of light on the strip 

surface
28; if the surface is buckled the reflection will not be 

straight. Latent shape is not detected by this method. (b) An 

electromagnetic measurement, at several points across the strip, of 

the amplitude or frequency of vibrations induced in the strip by 

some resonator. The amplitude and frequency are both functions of 

the local tension and hence are an indication of stress and shape. 

e) Steel changes its magnetic permeability when subjected to mechanical 

stress. A measurement of this permeability can be used therefore at 

several points across the strip to detect stress changes. 
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With the exception of the MI light source instrument which is 

useful for detecting the shape in hot rolling where contact instruments 

are not practical, the non contact instruments have had very limited 

success. The biggest problem is the effect of the large vibrations 

in the strip at the exit of a high speed tandem mill, also the 

instrument working on the magnetic principle can obviously only be 

used for steel rolling. 

Contact instruments work on the principle of measuring the 

downwards force at several points across the strip as it passes over 

a segmented roll. Two of this type of instrument are now commercially 

available; the Loevy Robertson "Videmon" and the ASEA "Stressometer". 

In the ASEA instrument the forces are measured by pressductors, and 

in the Loevy Robertson by the difference in pressure at the top and 

bottom of gas bearings on which the segments are mounted. The only 
Als 

apparent disadvantage with tho type of instrument is the degree of 

resolution attainable since the instrument measures the average 

stress over each segment and the segments cannot be made arbitrarily 

thin. This is probably adequate for the central 75°A of the strip 

width, but the sudden changes in stress possible near the strip 

edges due to the work roll flattening (section 1.5) may not be 

detected by the instrument. 

4.3 Parameterisation 

Parameterisation of the shape signal has already been discussed 

in section 2.1 in relation to the development of the simple shape 

model. The parameterisation choice for shape control is dictated 

by the controls available. The two main controls are roll bending 

jacks and roll coolant sprays. The roll bending jacks predominantly 

affect the parabolic component of shape; a parabolic parameter is 

therefore required for control of the jacks. The degree of spray 
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control available varies considerably between mills. On steel mills 

rolling sheet material the sprays are typically divided into 3 or 5 

banks across the roll and in this case it may only be possible to 

utilise information: on the parabolic parameter. On some aluminium 

mills however coolant jets at a 2 inch pitch across the roll are 

individually controllable. In this case parameterisation may be 

unnecessary, it may be more convenient to use the actual output 

from the shape instrument. Lastly it is convenient to filter any 

asymmetric or "skew" component from the shape reading and control 

this by a differential screw movement. 

The output from the shape instrument may therefore be 

parameterised by a quadratic function, 

2 

SZ A + B — 0.5 + 4C1-- — 0.5} 

where A is the mean stress level 

B is the asymmetric component 

C is the parabolic component 

W is the strip width 

and x is the distance across the strip 

from one edge, 0 4 x 4 W 

Having chosen a set of suitable parameters, it is equally as 

important to adopt a practical fitting criterion. The problem of 

choosing an incorrect fitting criterion can be illustrated by 

considering a shape distribution with a rapid change near the strip 

edges as shown in figure 34a. Suppose the method of fitting for the 

parabolic parameter was simply to take the two edge and the centre 

values; the resulting parabola is shown dotted. A control scheme 

which reduced this parabola to zero would produce the shape shown 

in figure 34b and this may not be the optimum result. 

111 
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The best fitting criterion to use may be mill dependent because 

it is strongly affected by any edge effects caused by the work roll 

flattening. The degree of this edge effect is affected by the thick-

ness profile of the incoming strip as illustrated by the results 

shown in 1.10. For the purposes of this control design we will 

assume the parameters are fitted by least squares over the central 

75°/o of the strip width thus ignoring the edge effects. The edge 

effects will be controlled separately. 

4.4 Open Loop Control  

It is not feasible either mechanically or economically to install 

shape instruments after every stand of a rolling mill. As the shape 

at the intermediate stands is less critical it is sufficient to 

provide an open loop predictive form of control. 

Changes in shape during rolling are caused by changes in strip 

• 

	

	
profile, roll profiles and roll force. Any change in strip profile 

will tend to be slow except possibly at a weld. Strip thickness 

profile cannot be measured on line and therefore shape variations 

caused by this can only be corrected manually from a visual shape 

assessment. (Strip profile produced on a hot mill will normally tend 

to be fairly constant throughout the length of a coil.) Changes in 

roll crown due to roll wear and thermal expansion also tend to be 

very slow. Again roll profiles cannot be measured on line at present 

and correction must be applied manually. Manual corrections to the 

jack forces are indications of the offsets in the strip or roll 

profiles. If the applied corrections are consistent therefore over 

a long period they can be used to update the crown estimates. Most 

of the shape changes along the length of a coil stem from changes in 

roll force which can be caused by changes in thickness or hardness 

of the strip entering the mill,or by changes to the motor speeds, or 
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screw positions resulting from the operation of thickness and 

tension control circuits. 

Changes in roll force are measured by load cells on each stand. 

Changes in shape due to roll force can therefore be eliminated by a 

control loop from the roll force measurement to the roll bending jack 

force. The circuit for this control is given in figure 35. The 

gain G
1 

can be obtained from the sensitivities of shape to roll force 

and of shape to jack force ie 

G1  = 
)Q-1 

iP ITJJ 

Expressions for these sensitivities, obtained from the simple shape 

model, are given in section 2.9. Combining the two we obtain: 

K23 G
1 = K

25 

where K
23 

and K
25 

are defined in chapter 2. 

It is assumed that both work roll and work / backup roll jacks are 

installed so that both positive and negative changes in roll bending 

can be effected. 

As we have already discussed in section 4.1.1, changes in the 

force applied by roll bending jacks will affect the strip thickness 

by changing the frame stretch. To correct for this a compensating 

signal must be applied to the screw position via gains G
2 
and G

3 

as shown in the circuit in figure 35. The values of these gains are 

given by equations 4.1.3 and 4.1.5: G2, the compensation for work 

roll jacks is (n' — 1) and G3, for the work backup roll jacks is —n. 

The exact values of n and n' are dependent on the mill dimensions 

and must be determined from results from the full shape model for 

each particular mill. 



103 

4.5 Feedback Control  

An automatic feedback control of shape at the exit of all 

rolling mills is by no means a necessity. Except possibly at a weld 

(where two hot roll coils have been joined to form one coil for cold 

rolling) the rate of change of strip and roll parameters will be 

fairly slow. Furthermore roll force disturbances can probably be 

adequately controlled with an open loop jack force control as 

described above. When rolling steel sheet material the thermal crown 

on the final stand is small due to a low reduction and in this case 

manual control may well be adequate. When rolling steel for tinplate 

material where the final stand reduction is much larger or when 

rolling aluminium, the thermal crown is comparatively large and a 

coolant spray control will usually be required to maintain the precise 

shape required for these products. In this case the essential 

difficulty is that of processing information rather than speed of 

response and automatic shape control would seem to offer real 

advantages. 

The structure of a feedback shape control scheme is shown in 

figure 36. The readings from the shape instrument will be of the 

stress at several points across the strip. These readings are first 

parameterised to give signals suitable for deriving the various 

control functions. The three control functions are (a) a signal to 

the screws to correct for asymmetry, (b) a signal to the roll bending 

jacks to correct the parabolic component of the shape and (c) a signal 

to the coolant sprays to (1) correct possible components in the stress 

distribution which cannot be controlled by the jacks and (2) to change 

the thermal crown so that in the event of a long term error, the jack 

forces will slowly be reduced; large jack forces promote roll and 

bearing wear. Parameters 1 and 2 in figure 36 are obtained therefore 

by fitting a quadratic function to the shape signal, as discussed in 
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section 4.3. The third parameter is for the coolant spray control 

and assuming that individual jet control is available, the signals 

from the instrument can be filtered to remove noise before being fed 

direct'to the jet controls. 

Any asymmetric component in the shape is fed to cause a 

differential movement of the screws. Since the strip thickness is 

defined at the strip centre line, there should be no interference 

with output thickness. 

The parabolic parameter (2) is fed to either the work roll or 

the work / backup roll jacks depending on the sign of the correction 

required. As explained earlier, both of these jack forces will 

affect the strip thickness and therefore compensating signals must 

be fed to the screws. 

The coolant sprays are controlled by parameter 3 and also by 

parameter 2 fed through a slow filter to correct long term roll 

profile errors by thermal crown changes rather than steady state 

jack forces. The changes in the coolant spray distribution are 

recorded and used to improve the on line estimation of the thermal 

crown. 

Incorporated in the control scheme discussed above are two 

loops involving proportional plus integral controllers and the gains 

in these loops must be chosen to ensure optimum response. The 

problem is more complicated because the gains involved in the process 

dynamics in both loops are schedule dependent. Consider the loop 

to the roll bending jacks shown in isolation in figure 37. The shape 

parameter 2 is fed via the P + I and gain G
1 
to the roll bending 

jacks.. The shape being produced by the stand is then affected via 

the jack and process dynamics and after a transport delay the shape 

change is measured by the instrument and fed back to the parameterisation. 

The dynamics of the jacks and the instrument will be very fast and 
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can probably be ignored. The steady state gains of these items will 

be specified. The process dynamics will also be very fast but the 

steady state gain of the process will be highly schedule dependent 

and this will complicate the design of the P + I gains. The 

schedule dependency has been modelled by the shape analysis. 

Therefore by incorporating in G, the inverse of the process dynamics, 

the design is trivialised to that of a loop with unity gain. The 

transfer required is of jacks to shape and therefore, 

r

D

s] -1 

G 
1 - 

J 	• 

EHT(°.5 (K21 1424)1L5 =  K25 
 

where A5  andli. are as defined in chapter 2. 

The compensating gains to the screws are the same as for the open 

loop control and are mill dependent. Therefore from section 4.1.1, 

G2  . n' - 1 

G
3 
 = -n. 
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CONCLUSIONS AND FUTURE RESEARCH 

The phenomenon of strip shape has been analysed in depth and a 

detailed model developed. The relevance of shape to associated 

problems in control and scheduling has been investigated. A digital 

computer simulation of this model has been developed and results have 

shown encouraging agreement with plant data. The model is iterative 

and complex and therefore unsuitable for use on—line in shape control 

and scheduling. For this purpose a simple algebraic expression for 

strip shape is developed from the full model. 

The simple model has been used to explain the complex interactions 

at a rolling stand which strongly affect the design of tandem mill 

schedules. A full procedure has been developed for designing tandem 

mill schedules. A shape control scheme has been developed and the 

problem of schedule dependency solved using the results of the simple 

shape model. 

The most urgent piece of future work must be further experimental 

verification of the model. This requires only a fairly modest program 

of trials on a mill equipped with a shape instrument, and rolling a 

fairly wide range of product thicknesses and widths. 

In order to proceed further with the shape control, two areas 

need attention. Firstly the problem of parameterisation choice for 

the purposes of dynamic control design needs careful study. Secondly 

before coolant spray control can be fully exploited it will be 

necessary to develop an accurate model of the effects of coolant 

spray patterns on the thermai -profile. The theoretical analysis 

will certainly need the backing of plant trials particularly as the 

process contains parameters that are difficult to forecast from theory. 
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SYMBOL TABLE 

A 	Cross sectional area 

a 	- Distance from roll bending jack to end of roll barrel 

Half the arc of contact 

Cw 	Work roll crown 

C
B 	Backup roll crown 

C
1 	

Entry strip crown 

C
2 	

Exit strip crown 

D Roll diameter 

E Youngs modulus of elasticity 

F 	Half the roll barrel length 

f 	Slip 

G Modulus of rigidity 

h Strip thickness 

I 	Moment of inertia 

J Roll bending jack force 

Yield stress 

L Half the distance between the screws 

LJ 	Half the distance between the jacks 

M 	Bending moment 

P Total roll force 

p 	Roll force per unit length 

q 	Force per unit length between the work and the backup rolls 

R 	Roll radius 

t Thickness 

U
d 	

Distortion energy 

✓ Stand entry velocity 

Shear force 

v 	Stand exit velocity 
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W 	Work roll flattening 

w 	Strip width 

y 	Deflection 

6 	Strain 

Poissons ratio 

Stress 

co 	Roll speed 

/°S 	Parabolic component of force between the work roll and the strip 

/B 	Parabolic component of force between the work and backup roll 

Mean tia /ye 



APPENDIX 1  

Derivation of the Relationships between Forces Applied, 

Stresses and Displacement of an Element in an Elastic Body19 

A1.1 Strain in terms of displacements in two dimensions  

Suppose that a plane body is strained so that all particles remain 

in one plane after the strain, and refer all displacements to a pair 

of axes fixed relative to some particles of the body; (see figure 38) 

Let the origin 0 be situated at one of the particles of the body, and 

if that particle moves, 0 is supposed to move with it. Let the axis OX 

pass through one other given particle of the body and axis Or be 

perpendicular to OX or in the plane of the particles. 

Let the particle situated at (x, y) before the strain move to 

(x + u, y + v) after strain. Both u and v are functions of x and y. 

We shall investigate the change in the size and shape of the element 

• 	 which, before strain, was a rectangle dx by dy. 

In figure 38 the rectangle CDBK is displaced relative to the axes 

to C'D'H'K'. The displacement of C has components u, v. - 

Now u = f(x, y) 

The point D moves a distance u + 6u in the direction of the OX axis 

and, since the coordinates of D are x + 6x, 

u + 6u . f(x + 6x, y) 

hence 	6u = f(x + 6x, y) - f(x, y) 

Expanding by Taylors series and neglecting terms in bx
2 
and higher 

powers gives: 

)f(x, y) 	au 
6u - 	 6x — 6x 

ax 	ax 



= ■•• = ..■•■ 
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Since bu is the increase in length of the face CD relative to the OX axis, 

bu 
the extensional strain e 

Similarly the extensional strain in the direction OY, 

EY = 
 aQ 

The shear strain for the lines C'D' and C'H' is, by definition, the 

whole change in the angle at C;; therefore shear strain = 	+ 02. 

ND' 

= 
C'N 

• - ax 
 

au 
and 0 = -- 2 )y  

av au 
Shear strain = 	+ 

1.)3r 

A1.2 Strain in terms of displacement in 3 dimensions  

Let a particle originally at (x, y, z) move to (x + u, y + v, z + w). 

The displacements parallel to the x, y plane are the same as if w were 

zero, therefore the extensional strains parallel to OX and OY and the 

shear strain perpendicular to the axis OZ are as for the two 

dimensional case. 



113 

For three dimensions therefore the three extensional strains are 

au CV 
—) — and - 
ex 	ez 

and the three component shear strains are 

by bw \ 	bw au 	au )v 
+ ,3;/' ( 	+ 

For convenience, denote the extensional strains by a, 8  and N and 

the shear strains by a, b and c 

au 	av 	bw 
a = — = 	= 

ax by 

	

()w ?)u 	)11  
a . (— + —) , b .(— + —) , c .(— +

v 

	

bz 	by bx 

A1.3 Stress strain relationships  

In figure 39 one view of a small rectangular block under 

tensional stresses P1, 
 P2, P

3 and shear stresses S1, S2 and S3 

is shown. 

P  The strain in the direction of P1 = = 	due to P1  E 

P, 
— '0= due to P 

E 	2  

PI  
— '1) 	due to P3 

where)) = Poissons ratio 

E . Youngs modulus 

A1.1 

Al . 2 
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1 
Therefore a = — [Pi  — 	+ P3)] 

E 
A1.3 

1 
and similarlyA = — [P2 	+ )] 
	

A1.4 

1 
[P3  — 	Pi  + 112)] 
	

A1.5 

The shear stress and shear strain are related simply by the modulus 

of rigidity G, 

S
1 
=Ga=G-- + 

s)z 	?)y• 

S
2 
= G b 

and S
3 
= G c 

A1.6 

A1.7 

Al.8  

A1.4 Tensional stresses in terms of strains  

By addition of equations A1.3, A1.4 and A1.5 and rearranging 

we get 

E 
P
1 
+ P

2 
+ P

3 
 = 	 (a +13 -4) = 310(x +A +y) 

1— 2s) 
A1.9 

where K is the bulk modulus 

If a block of dimensions bx, by, bz is strained in three directions, 

the new volume becomes, 

Enc(1 + cc) * 6)7(1 +3) *5zo. 	Ox5ybz(1 + a, +fl 44) 
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neglecting products of a,13, and I. The ratio of the increased volume 

to the original volume, that is the volumetric strain (A), is (a +/6 +X). 

Therefore equation A1.9 can be rewritten, 

P
1 
+ P

2 
+ P

3 
. ao 	 A1.10 

By combining equation A1.10 with A1.3, A1.4 and A1.5 respectively, 

• 
expressions for P1, P2, and P3  in terms of the strains can be found: 

P
1 
 2Gp-- A + xj 

1 — 29 

P2 = 2G 	 A 4.  'lir/q 
— 29 

A1.11 

• P
3 
= 2G 

A .4.  

1 - 	 2v 

)w 
where A = a +/61  + = 	+ 	+ 

y dz 

A1.5 Relation between stresses and external forces  

Consider the block shown in figure 40 with its centre at x, y, z 

and external dimensions bx, by, bz. Let the body force per unit 

mass acting at x, y, z be X, Y, Z. The mass of the block isrbxbybz, 

where "is the density. The body force on the block has components 

therefore of, 

Nobxbybz 

Vbxbybz 

Zebxbybz 
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Suppose also that the element has component accelerations of 

fl, f2  and f3. 

Let P
1, 
 P2, P

3 
and S

l' S2' S3  denote the stresses at (x, y, z). 

Then 

111. 	1  
P1
"  P1 + 	. — bx 

)P 	
1 

	

P1 'r 	

1 
and P

1
' = 	• 	' — bx 
 2 

aP 
hence P1" — P1' = 1 bx 

ax 
A1.12 

)S3  
Similarly, S3" — 	--- by 

ay 

as 
S
2
" — S2' = 

2 bz 

Therefore the total force acting in the direction OX as a result of 

the stresses on the faces of the block is 

k), 	3s, 	)s, 
63)63roz + 	b3)oxbz + 	o)byqc  

•)3T 

( )1), 3s, )s, 
. 	- + - + - bxbybz 

x 	y 
A1.13 

)x 2 



+ G P2u +rx ./of i 

+ G 172v +/OY =p2 

+ G172w +/44Z 7/of3 

A1.18 

A1.19 

A1.20 

G 	'tl 

[-(1 - 2'0 )3i 

G aL 

IS1 - 21) by 

G -11)A 

- 2V az 
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Hence the equation of motion can be written as 

{ 

131 	S3 	S2 oxbyt5z --- + --- + --- +fiX = mass * acceleration =/05x5y6z * f 
ax ay az 	

1 

aP aSq aS 

	

Or --A + 	+ 	+/OX 
/
of
1 

ax 	00z 

Similarly, 

a1 2 !cS1 S3 

	

+ 	 110 + — + Y = f 

	

)z ax 	/ 2 ay  

aP
3 

a S
2 

.SS
1 

	

and --- + 	+ 	+/OZ = 

	

az ax )y 	/ 3 

A1.14 

A1.15 

A1.16 

Also the accelerations can be expressed in terms of the displacements 

...2 

	

0 u 	2v 	a2w 

	

fl = bx2 	12 = 2 	13 = 2 
ay 	z 

A1.17 

A1.6 Equations of motion in terms of displacements  

By combining equations A1.6 to A1.8 and A1.11 with equations A1.14 

to A1.16 and rearranging the equations of motion can be expressed in 

terms of displacements: 
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APPENDIX 2  

Displacement on the Surface of a Semi Infinite  

Solid due to a Pressure Applied at a Point  

The expression for the displacement dw caused by a pressure p 

applied at a point can be derived from the general equations relating 

the forces applied to, the stresses in, and the displacements of, an 

element in an elastic body. The relevant equations, which are derived 

in appendix 1 are, 

a) Equations of motion: 

r G - + G P2u +X ./ofi  
— 2"9 ex 

• G ) A + G 72v +/el y  . "f2  

1— 21 e)y. 
A2.1 

• 

r G ..1)A 
+ G V2w +/0  Z / .,0 f 

11 — 2.0 )z 	3 

)u v )w 

	

where A = volumetric strain = 	+ 	+ -- 
)x ay Oz 

u, v, w 	= the displacement in the x, y and z directions 

X, Y, Z 	= body forces 

fl, f2, f3  = acceleration in the x, y and z directions 

/0  = density 

G 	= modulus of rigidity 

.?1 2 

0 
2 

= 2 13,2 8iz2 
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b) Stress strain relationships 

P 
1 
= 2G  a   A 

— 211 

1.) P2 = 2G 1 — 2i 
A A2.2 

P3 = 2G 	 A 

	

1 — 21) 	'i)z 

[1w  1 
1 
• G 	+ -- 

ay 

S 	+ 
az 2 	C)x 

A2.3 

av ,)1.1 
S = G — + 
3 	ay] 

where P. are the normal stresses 1 

and Si  are the shear stresses 

In this particular problem the accelerations are zero an&.there 

are no body forces. Equations A2.1 therefore reduce to: 

aA 
— + (1 — 21) 17' 2u = 0 
•f3c 

a A 
— + (1 — 29) V2v = 0 
63T 

a A 
- + (1 — 2'0) V2w = 0 

z 

A2.4 



120 

By differentiating equations A2.4 with respect to x, y and z respectively 

and adding the results we get a differential equation for A alone ie 

V20 = 0 , (Laplaces equation) 
	

A2.5 

There-are many known solutions to Laplaces equation, among the simplest 

and most useful are the spherical harmonics: 

If r
2 
. x

2 
+ y

2 
+ z

2 	 A2.6 

then it can be shown that 

A2.7 

 

Differentiating equation A2.7 with respect to x gives: 

s72(1) 0  = 
r 

	

or s72  p: 	= 0 
6x r 

Repeating this process 1 times gives 

Q2 	 = 0 

	

42c 	r 

Similarly it follows that, 

A2.8 

• 

 

 

21g am  g 0)1 
° LS7c, 	T1 r = ° 

m and n being integers. 

A2.9 
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Therefore one solution of the equation 

0 
	

A2.10 

A2.11 is 
ax krin  )zn  r 

Let / be any solution of equation A2.10, then 

if A = 2(1 — 21)) 
a z 

A satisfies A2.6 and substituting this into A2.4 gives 

v u = — 

A2.12 

A2.13 

A particular integral of this is 

U = - Z 1)-1  
ax 

since 

 

A2.14 

2 -z - ( 	 ( ix  

 

3 	2 
3fii 	 2 sti  = — Tx7.3. — z )y2 x  

z s72 11_ 2  
ax 	azx 
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but from equations A2.10 and A2.11, 72  5)-0 = 0 
ex 

	

„2(— z 	= _ 2 
ax/ 	azx 

A more general solution to A2.13 is 

u = — z 

	

ex 
	 A2 . 15 

where 3Pis also a solution to Laplaces equation 

ie 2 
1
. 0 

Likewise the values of v and w corresponding to the assumed value of A 

are 

v=— Z 
y

4_ . 1112 
	 A2 . 16 

w = — z Lti  = 
z 

1p
2 
and 13 also being solutions of Laplaces equation. 

)11 by.  )yr 

	

Now A = volumetric strain = 	-- _— 
bx ay z 

Inserting equations A2.15 to A2.17 gives 

	

).1$/ 	)/Pt  A 	2 	3 

ex 	ay 	ez 

A2.17 

• 
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therefore 
1, 2 	a1"."3 = A 4.  el =  (3 _ 41) 21Y 

x 	z 	z 	 z 
A2.18 

For convenience let V - 3 - 3'3 

+ 	+ 	=n  
ax ay az 

(3 - 4a) 0 then equation A2.18 becomes 

A2.19 

and w -z )f  + (3 - 4'0)0 	11/3  
t3z 

A2.20 

A particular solution is obtained by putting 

ele 	ei4' 	)14/ 
/91 = 	 e z  ax 

Substituting these values into A2.19 gives 

v21,, = 0 
therefore lris another solution to Laplaces equation. The equations 

for u, v, w and A become 

u _ 	z 0  
ax 	ex 

v 	— z # 
	

A2.21 
ay 	)Y  

w 	z 	(3 - 4i)0 
az 	Z 

A . (2 - 	--- 
ez 

A2.22 

■ 
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By substitution into equations A2.2 and A2.3 the stresses corresponding 

to these displacements are, 

2 	2 
;1 5 P1  2G[2:9 	— z 	+ 

 ez 	ax2  

2 

P2  . 242' 	—z a"2  
42  ez  

2 

P3  = 20E2 — 27) 	z 11(L. + 
Uz z2  az2  

\2 

S = 201/ z 211- + (1 - 2i)) 11°4 1 
1 	E)yz 	by4z 

S
2 
 = 2Gla z 	+ (1 — 2-0 a4q 
 a Az 	exaz 	Ux 

A2.23 

A2.24 

S
3 
. 2GpL _ z  

sx.s, 	axlyj 

Nov consider the case of a concentrated normal force W applied at the 

origin on the surface of a semi infinite elastic solid bounded by z = O. 

On the surface (z = 0) the shear stresses S1  and S2  (see figure 41) 

must be zero. Referring to equations A2.24 this condition is satisfied 

if 

sz 
	_ (1— 2 ))0 
	

A2.25 

(it is assumed that d is finite over the surface). 
2#z 



and 

2 	2 

	

y z 	x z 

	

S
1 

— 6G
5 	

S
2 
 = — 6G 

r
5 r  A2.28 
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Then 

S
1  = — 2G z 1)ybz 

S
2 
= — 2G z 

xr)z 
A2.26 

and the stress normal to the surface, 

P„ 2G _ (1   dz .)z2 
	 A2.27 

Now P
3 must be zero all over the surface except directly under the 

force W at the origin. To satisfy this condition it is necessary that 

shall contain a factor z. 

1 
Suppose 15 = — 

r 

I 
then )0 

— 
z 1 	3z2 

a z2 
= r3  r5  

z3 

P
3 
= — 6G -- 

r
5 A2.29 

These stresses are all zero therefore except possibly at the origin 

where r is also zero. 



z 
S
2 
 = 36u2.  kx2 	2\ + y ) -(.7  

2 
z 2 

S
2 
 = 36G

2 
r
2
(-4) 
5 
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Let S equal the resultant of the two component shear stresses, then, 

2 

A2.30 

because r
2  = x2 + y2  in the plane z = 0. 

z2 

Therefore 	S = 6 G— 
4 
r 

 
A2.31 

which acts on the surface along a radius vector from the origin, 

hence the stress system is symmetric about the z axis. 

In order to verify the choice of 0 equal to 1Ar we must find 

the resultant force at the origin and this must be equal and opposite 

to the applied force W. 

Consider the equilibrium of a small cylindrical portion of the 

solid having the z axis as its axis of symmetry. Let the faces of 

the cylinder be in the planes z = 0 and z = C and let the radius 

equal a (figure 42). If we assume that a/C is infinite while a itself 

is finite, then the resultant of the shear stresses S acting on the 

curved area is zero. The resultant of the stresses P
3 

on the circle 

of radius a must therefore be equal to -F. 

a 
F - 

o
i 2 71/9 di° P3 
	 A2.32 

where /02 = x2 + y2. 



C3 

= 12 TC G 

but since C/a = 0 
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But, from A2.29, 

z
3 

P
3 

— 6 G — = — 6 G 
2 	2)

5
/2 r

5 	
io ( 	+ C 

Therefore 

a 	/a C3  
F = 12 it G 0 

	(/32 + c2)5/2 

a C3 

	 _ 4 n 	
(a2 c2)3/2 

0 

A2.33 

• 
Equation A2.33 becomes 

F = 4 n G 	 A2.34 

But we require that F must equal W, the applied force. Therefore we 

should have taken 

95 	
NV 	1 - 	. 

4 n G r 
A2.35 

The displacement w in terms of i5 is given by combining equations A2.21 

• 	 and A2.25, 

bie w = 2(1 —1')c6 — z 
dz 

A2.36 
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By inserting the expression for )6 from equation A2.35, the expression 

for w becomes 

 

NI/ [2(1 —9) 	z
2 

w=   + 7.1 
4 n G 

which at the surface becomes, 

A2.37 

• 

 

w (1 -V) 

  

 

W = 

    

A2.38 

     

  

2n G 

   

Equation A2.38 gives the displacement at any point over the surface 

of a semi infinite elastic body caused by a single force acting at 

the origin. We require an expression for the displacement at any 

point on the surface caused by a pressure applied over some area. 

Suppose a pressure of p per unit area is applied at some point in the 

plane z = 0 denoted by the co ordinates xl, yl. The force on the 

• 

	

	
area dxl, dy, is therefore pdx1  dy1. From equation A2.38 the 

displacement at some point x, y in the plane caused by this force is, 

(1 
 —V) pdx, dyi  

dw 
2 n G 

where R is the distance between the point at which the force is 

applied (xl, yl) and the point at which the displacement is 

measured (x, y). 

= (x — x 12  + (— — y 12. \ 	1. 	\J 	l. 

A2.39 
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APPENDIX 3  

Solution of the Integral 

, 1/ 
I = 	In EA + (A2  + r") 	dY 

Integrate by parts: 

1/0  
let u In 	+ (A2  + 	 dV = dY 

Y(A2  + /2)1/2  
du   dY 

	
V Y • 

A+ (A2  + Y2) /2  

04 	Y2  dY 
I . {Y In (A + (A2  + Y2)1/)11  — 

. I1 — 12 

Y2 dY 
12  . 1 	 

p A2 + y2 + A(A2 y2)1/2 

let Y = A tan z Y therefore z 	1 tan 	/A 

dY = A sec2 z dz 

	

when Y = p 	z tan 1  P/A= 

	

Y = 4 
	 z tan-1  q/A = d 

P P 
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Therefore 

A2 tan2 z . A sec2 z dz 

12 = J 	 1 
c A2 + A2  tan2  z +A(A2 + A2  tang z 

d 	A tang z sect z dz 
12 = J.  

 

1 + tan2 z + (1 + tan
2 

Using the identity tang z = sec
2 z — 1 , this reduces to 

d 
12 = A J (sec z — 1) sec z dz 

d 	 d 
=A f sec2 — A I sec z dz 

= A[tan z — In (sec z + tan z)41  

Therefore 

q 
in 	+ (A2 .1. Y2)

1  /2 

E ln(A + (A + Y2Yil  —A tan z — ln sec z + tan z tan1(2) 2  
tan 
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APPENDIX 4  

The Variation in the Stress Distribution at the  

End of a Plate  

The various aspects of the problem can be approximated by the 

behaviour of the simple structural model shown in figure 4320.  The 

model consists of three rods connected by two thin plates, thickness t 

width b. Quantities relating to the centre rod are denoted by a 

subscript c and those of the side rods by a subscript s. At the ends 

of the rods, x = 0, they are attached to a beam of moment of inertia I. 

Quantities related to the beam are denoted by subscript B. The entire 

structure is assumed to be of the same material with modulus of 

rigidity G and Youngs modulus E. 

The forces in the body are assumed to be in equilibrium, 

therefore 

2Fs(x) + Fe(x) . 0 	 A4.1 

and, considering a small element in one of the side rods, 

dF (x) 
s 	 + t T(x) . 0 
dx 

A4.2 

where T(x) is the shear stress in the plate. 

For equilibrium in the beam, the force in the beam at y = b must 

equal the difference between the force applied and the force in the 

side rod at that point, 

FB  F — Fs(0) 	 A4.3 
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The total strain energy U is the sum of the strain energies in the 

two side rods, the centre rod, the two plates and the beam, 

2 L 	
F 

1 L 	2bt L 2, U 	F 
2 	2 
dx + 	.1 r dx +— r 	

a T x 
2AsE 0 	8 	2AE 0 2G 0 

2 b 2  

	

+ 	M dy 
ZEI 0 

A4 .4 

where M is the bending moment in the beam, 

M = F
B(b — y) 
	o G y L b 

Substituting for Fe, T and M gives 

EU = 
1 

+ 
AAO s  

2 ) 

C 

L 2  
F 	dx + 

Eb 	L(dF 
s  — 

2 

dx + 
b3 

[F — F(0)]2  
31 	

s 
 

A4.5 
Gt 0 	dx 

A solution to this will be found by using the principle of least work 

which states that the strain energy of any system must be a minimum. 

A solution for F can be found therefore by differentiating 

equation A4.5 and equating to zero. 

1 	2 	L 	 Eb L dF (IF 

	

2E6U = 0= —+— 	F OF dx + — 	 ---2s dx 
A A 0 s s Gt 0 	dx 	dx 

S 	C 

b
3 

— 	(F — Fs(0))6 Fs(0) 
31 

A4 . 6 

which by integrating the second term by parts becomes: 



(--x  d ) 
2b 

A4.8 

2 dFs  
2 K1 

2F s = 0 
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iL 

	

a 1 2 	Eb d
2
F 	Eb [dF1 

+ 	F
s 
-- 	

s 
5F dx + •— 	

s 	OF (L) 
0 	A 	A 	Gt dx2 	s Gt dx 1., s 	c 	 x= 

Ir. b

3 

-- 
Eb(dF):1 

— 	(F — Fs) + -- --2 	of (0) = 0 A4.7 
31 	Gt dx x.0 

s 

Since the variation OF
s 

is arbitrary, Fs must satisfy the differential 

equation, 
p 

with the following boundary conditions: 

dF 
either s  = 0 	or OFs 

= 0 at x = L 
	

A4.9 

K
2 	
 dF

2  and either 	+ F = F 

Kl d ec/2131 	s  

or OFs 
. 0 at x . 0 A4.10 

Gtb A 	3I Eb 
where K 	-- = 2 	— 1+ 2-2 ; K2  . —.5  ___— 1+ 2 A_.2 i  

EA
s 	

Al
c 

	b3  GtAs 	
Ac 

The two possible boundary conditions at x = L in A4.9 correspond 

to a fixed end (T = 0, from equation A4.2, because relative end 

displacements are prevented) or prescribed end forces. The two 

possibilities at x = 0 (A4.10) correspond to the case where the end 

forces in the rods are determined by the presence of the beam (as in 

the present problem) or are prescribed. 
p 



2 	1 + 	+ (1 - K )e Dii(0)1 
2 	2 [ 1 + e-EKi(L  - x)/1)]  Fs(x) =— 

Fc(x) Fe
[K

1
x/(213)] 
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Consider the case of a fixed end at x = L, the solution is 

A4.11 

and from A4.2 

(2bt)T(x) - 

 

—C /(213)] EK e  Kix 
1 

e-[Ki(L - x)/b] 
A4.12 

 

1 + K
2 
 + (1 K

21  
)e- l(L/b)  

 

Equations A4.11 and A4.12 give the solution for the variation 

of the forces F
2 
and the shear stresses T along the length of the body. 

By observation, if the structure is sufficiently long, that is, if 

LA) )l 

then F
s
(x) and T(x) will be approximately independent of F and hence 

of y provided that x is not too close to zero or L. The exact 

variation of F
s
(x) and t(x) in the regions close to the ends will 

depend on the parameter K1. Since K1  will have the same effect at 

both ends, the equations can be simplified by considering only the 

region close to x equal zero, and setting L to infinity. Then 

equations A4.11 and A4.12 become 

-Dilx/(213)] 1 
Fs(x) = - Fc(x) - 	K)  e

2 	
2  A4 .13 

1 	-EK
1 
 x/(2b)] 

and T(x) _ 
(1 + K

2
) 

A4 .14 
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We require a solution for a solid structure of uniform cross section 

(a plate). So that the behaviour of the structure considered above 

will approximate that of a solid plate, 

let A =A = tb =A 
s 	c 

f

E

iT 
then K1=2 — -1.7. 2.2 

 • 

1 
Therefore Fs(x) = — — F (x) = Fe 

[2.2 x
/
(2b)] = .

91 btT(x) 
2 c  

A4.15 

Or F
s(X) = e—[2.2 02b)] 	 A4.16 
F 

A plot of equation.A4.16 is shown in figure 17 and this shows that 

the effects of forces applied to the end of a plate may be considered 

negligible for x 2b. 

I 
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Figure 11. Band of Pressure on Semi-Infinite Solid. 
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Figure 29. Heat Flow into and out of a Work Roll. 
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Figure 38. Strain in Two Dimensions.  
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Figure 39.  Rectangular Block Under Tensional  
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Figure 40. Relation Between Stresses and External  
Forces.  
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Figure 41. Concentrated Normal Force on the  
Surface of a Semi-Infinite Solid.  

Figure 42. Small Cylindrical Portion of a Solid.  
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Investigating St.Venants Principle.  


