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ABSTRACT

Most control schemes developed for rolling mills-have been
concerned only with the control of centre line thickness and ignore
transverse thickness variations and the important product quality
factor of flatness or 'shape'. Control of these last factors has
awaited the development of an instrument and of a basic analytic
understanding. In this thesis a detailed analysis is developed of
the transverse properties of the strip and the roll gap; the control
Tequirements for the production of flat strip are then investigated.

The shape model is complex, requires an iterative method of
solutién, and is unsuitable for use 'on-line'. A simplified model is
therefore developed which lacks the detail of the full model but -
nevertheless gives valuable insight into the shape mechanism. Explici£
forms for the sensitivities of shape to important parameters are then
developed.

The problems of scheduling a tandem mill are discussed and the
simflified model is used to explain the important interaction between
shape and reduction at a rolling stand. The scheduling problem is
formulated as an optimisation problem for which solutions are obtained
using conjugate gradient and projection techniques.

Open and closed loop shape control schemes are developed for the
output of a tandem or single stanﬂ mill. The schemes are designed to
eliminate interaction with strip thickness. Expressions for the

various loop gains are developed from the simple shape model.
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 INTRODUCTION

Rolling is one of the most important processes in thé metal
industry. Imn 1973, 929/0 of the aluminium, copper, and steel produced
in the world was rolled, a total of 728 million tonnes of metall.
Since the beginning of the century the,cold rolling process has
progressed from small manually operated mills which took a large number
of reductions to produce very unflat strip of inconsistent thickness,
to highly productive computerised multistand, or tandem, mills.

A tandem cold rolling mill consists of up to six sets of indepen—
dently driven pairs of "work rolls" each pair being stiffened by larger
diameter 'backup rolls'. The assembly of two work rolls and two backup
rolls in a support frame is called a 'four high mill stand'. In
figure 1 two stands are illustrated showing the major components of
intergst.

The cold tandem mill receives coils of strip at room temperature
which have been previously hot rolled and pickled in acid to remove
the scale. Each coil may consist of two or more hot rolled coils
welded together before pickling. The basic function of the mill is to
reduce the thickness of the incoming strip by a factor of 50 — 900/0,
to ensure that the strip at the exit is the desired coastant thickness,
and furthermore to ensure that the strip lies flat when rested on a
flat surface, exhibiting neither convexity nor wavy edges. This last
strip property is called 'shape'. Final product dimensions are
typically in the ranges: width 600 — 1600 mm, thickness 0.2 — 2.0 mm.

Strip reduction results from the high compressive stresses
experienced by the strip as it passes through the roll gap. The
required forces are applied by electro-mechanical screws or hydraulic
actuators mounted in the support frame (figure 1), assisted by the

significant tensions which are maintained in the strip between stands.



In the small roll.gap regioﬁ, typicaliy 5 to 25 mm long, the strip is
deformed plastically and considerable friction forces exist as slipping
takes place between the rolls and the strip. This 'roll gap process'’
has been the subject of much impressive researchz. The roll separating
forces are high and a considerable amount of heat is generated in the
roll gap; when rolling steel sheet of say 1250 mm width, forces of
1000 tonnes are typical. These forces cause significant squashing and
bending of the rolls and stretch the support frame. At top speed the
output strip may travel at up to 1800 metres/minute and, as a result

of friction in the roll gap, 4 - 5 MV of heat might be generated in

thé mill; lubrication in the roll gaps and coolant of the rolls are
therefore essential. In normal sheet steel rolling an oil water
emulsion is often used which serves the dual purpose of reducing
friction and removing heat. When rolling the thinner 'tinplate' sheet
steel lubricant and coolant are normally applied separately. For non-
ferrous sheet, particularly aluminium, high frictions occur and compounded
oils are used.

The transverse profile of the roll gap is determined by the squashing
and bending of the rolls, the camber ground onto the rolls, the thermal
camher produced by non uniform roll heating, and roll wear. If this
profile does not match the profile of the incoming strip, the reduction
is non uniform across the strip width and a non uniform transverse
distribution of stresses is set up which directly affects the flatness
of the strip. It is convenient to define strip shape in terms of the
stress distribution in the strip when it is constrained to lie flat.

Many mills are now being equipped with computers for the automatic
control of exit thickness which is generally monitored by radiation
gauges or contact micrometers. Under steady state rolling conditions
it is common practice to measure all roll forces, interstand tensions,

strip thickness, screw positions, and stand roll speeds. Signals from
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the sensors are used by the dompﬁter to calcuiate roll gap settings,
interstand tensions,and roll velocities required to coatrol strip
thickness within narrow limits. However most computer systems control
thickness along oaly a single track somewhere across the width where
the thickness sensor is located. Thickness variations across the width
are normally ignored by present automatic thickness coutrol schemes.

While the advances in production rolling over several decades
have been remarkable, the major remaining problem today is that of
consistently proddcing strip that is flat. To the author's knowledge
there is still only one operational automatic flatness control scheme
reported in the literaturea, and this is still in the development phase.
The situation is the result of a lack of advance in two directions.
Firstly until recently there has been no instrument available capable
of measuring strip flatness on line; secondly there has been no compléte
detailed analysis or understanding of the factors affecting flatness in
the rolling operation. One of the main aims of this thesis is to provide
the necessary analysis and insight into this phenomena.

Shape is the second largest single cause for the rejection of cold
rolled steel strip accounting for 1.50/0 of the total product and a
similar figure applies in the aluminium industry. It should be
mentioned that not all material rejected for bad shape after rolling
is necessarily scrap, the shape can sometimes be corrected by further
processing in "tension levellers" but this obviously adds significantly
to the production costs. There is therefore considerable economic
pressure for the development of an automatic flatness or shape control
scheme.

Strip flatness is a function of the transverse properties of the
strip and the roll gap. If a strip is to be flat after rolling, the
reduction in thickness experienced as it passes through a roll gap must

be coastant across the strip width. The reduction operation in metal
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rolling is one of plane strain, hence any transverse variation in
reduction must be accompanied by a transverse variation in elongation.
If a strip is constrained, either internally or by some external means,
.to be flat when it has experieaced a trénsverse variation in reduction,
a non uniform transverse internal stress distribution must result. If
however any such constraints are exceeded, an elongation variation can
exiét only in a strip with varying degrees of flatness across the width.
(For example, a strip which is buckled at the edges and flat at the
centre is longer at the edges than the centre). The internal stress
distribution caused by a transverse variation in the reduction is
termed the "Shape" of the strip: a strip with uniform stress distri-
bution is said to have "perfect shape". If the strip remains flat
with a non uniform residual stress distribution the shape is said to

- be "Latent"; if the strip exhibits buckles the term "manifest shape"
applies. |

Over the last decade a variety of shape measuring instruments have
been developed of which at least three are now commercially available.
(the Loevy Robertson "Videmon", the ASEA "Stressometer", and the IHI
instrument). Only two of these, the Videmou and the Stressometer, are
capable of measuring latent shape and so are the most promising for
inclusion in a shape control scheme.

There is no complete theoretical analysis of the shape phenomena
recorded in the literature. In an early paper Saxl4 developed a model
for gauge profile. The modelling of the roll bending was complete but
it assumed symmetry about the strip centre line. The expression for
the flattening of the work rolls against the strip was based on the
work of Hertz which assumes strip and rolls of infinite width. The
change in flattening near the edge is therefore ignored although Saxl
does discuss the effect and suggest an heuristic solution. The major

omission in this work is the effect of the transverse reduction variation
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on stress; The analyses of Haféﬁchi-et ais aﬁd of'wiiﬁbfﬁé et 316
are similar in detail to that described above. The roll bending again
assumes symmetry and the flattening assumes infinite strip and roll
width. Unlike Saxl, these authors ignore the errors in flattening
near the strip edge resulting from this derivation. The problem of
the internal stress distribution is again not coasidered. In the
case of Wilmotte this omission is justified since he is concerned
only with hot rolling. The analysis of Sabatini7 is believed to be
the first to include an expression for fhe tfansverse stress distri-
bution. Ihe derivation is based on dividing the strip into
longitudinal elements and relating elongation variations to stress
via Youngs modulus. The interaction between the strips due to shear,
and the effect of transverse slip variations are ignored. The
remainder of the model is similar to those already described. The
work of 0'Connor and Weinstein8 is similar to that of Sabatini
although the work roll flattening expression is in more detail and
does not assume infinite width strip and rolls. The model derived by
Edwards and Spooner9 differs from that of Sabatini mainly in that it
recoganises the importance of including the effect of the transverse
variations in slip at the exit of a stand,on the stress distribution.
The derivation of an expression for the stress equations is however
theoretically weak and ignores the change in the stress distribution
along the strip explained by St Venants principle.

Oae assﬁmption comrron to all the analyses discussed is that of
symmetry about the strip centre line. Asymmetric shape distributions
are not uncommon in practice, particularly in the Aluminium industry
where for certain products the strip is slit in half longitudinally
part way through a sequence of rolling operations. All of the models
discussed also assume a fixed centre line thickness for the strip.

The effect of parameter variations ou shape can be investigated but
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any interaction with thickness ié ignoredf A modeIAincluding these
effects will be required in order to study desigas of combined gauge
and shape control schemes.

In chapter 1 of this thesis a complete model of the shape phenomenon
is derived. Unlike earlier models, symmetry is not assumed and the
effecté of the interaction betweean thickness and shape are included.
An expression is derived for the transverse stress distributioa which
includes the effects of transverse slip variatioas and of loagitudinal
changes in the distribution. The flatteaing of the work rolls against
the strip is analysed without the assumption of infinite strip and
roll width. The resulting expressions for both the stress distribution
and the roll flattening are believed to be original.

The extreme complexity of the model renders it unsuitable for use
on-line and also makes it difficult to gain a simple physical under-
standing of some of the major effects. For this reason a simple
approximate algebraic expression for shape has been developed in
chapter 2. Much of the detail of the full model is lost, as the
approach adopted is to model only one important component of the shape
distribution. The model also assumes symmetry and a constant centre-
line thickness. The final expressioa is however differentiable and
expressioas can therefore be obtained for the sensitivity of shape to
important parameters.

The method and councept of developing a simple model for the
important component of the shape distribution is original. The model
is of central importance in that it provides control theoretic insight
into, and quantitative design information on, shape behaviour. In
chapters 3 and 4 of the thesis the model is used to explain the
complex interactions between shape and roll force at a rolling stand
and to overcome the schedule dependency of some gains in a control

system.
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When rolliﬁg strib in a tﬁndem mill, the shape of the final
product is important, bat also the shape at the intermediate stands
must be within certain tolerances to ensure acceptable mill operating
conditions. For reasons of economy aud>because of the mechanieal
layout of rolling mills, shape instruments cannot be installed after
every stand. The required shape must therefore be obtained by
calculating the correct "schedule" for the product using the shape
model and o2 line measurements of certain strip and mill parameters.*
This problem is studied in chapter 3.

The literature on scheduling is relatively sparse. In an early
paper, Oliver and Bowers10 obtained schedules by constraining the
stand roll force distribution. More recently, Suzuki et al11
introduced similar constraints and also considered coastraints on
rolling powers. Shape however has been largely ignored in the
scheduliﬁg studies to date.mainly because adegquate analysis of the
shape phenomena was not available. In chapter 3 the interaction
between shape, thermal crown and roll force, which is important from
the point of view of scheduling, is explained with the aid of a
"scheduling diagram" which is developed from the simple shape model.
The diagram does not offer a complete solution to the scheduling
problem as it does not include the complex interactions of shape and
thickness between stands,and unfortunately an iterative procedure is
required. The solution is obtained by formulating the problem in

state variable terms as a constrained two point boundary value problem

which is solved using coajugate gradient and projection techniques.

*  The term "schedule" refers to the distribution of the reduction
between the stands, the values of interstand tension, roll ground

crowns and roll bending jack forces.
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The understanding of the phyéicdi méchaniémslat a fblling sfand-gained
from the scheduling diagram enables the best form of cost function to
be-derived and also greatly assists in interpreting the results of the
optimisation routine into practical engineering results.

Finally the problem of on line shape control is discussed in
chapter 4. The behaviour of all available controls is analysed ‘
particularly in relation to their effect on final strip thickneés, as
a basic requirement of any shape control scheme must be that it does
not interact with strip thickness. Both open and closed loop
forms of control are discussed and the circuits derived for both are
believed to be original. Most of the gains in these circuits will be
dependent on the dimensions of the strip being rolled. The problem
of these "schedule dependencies" is solved by using the expressions

for the sensitivities derived from the simple shape model in chapter 2.
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 CHAPTER 1

ANALYSIS OI' SHAPE

The residual stresses introduced into a strip as it is reduced
in thickness through a stand of a rolling mill are determined by the
variation between the entry and exit thickness profiles. If the strip
is reduced plastically by varying amounts across the width the
elongation mast also vary. If the strip remains flat variations in
length are inhibited and transversely varying residual stresses result.

Immediately aftér leaving the roll gap the strip thickness under-—
goes an elastic recovery which is dependent upon the stress and the
thickness distributiouns. The elastic recovery will therefore, in
general, vary across the strip width and the thickness profile will
change. In order to calculate the actual thickness profile between
stands therefore the elastic recovery must be added to the roll gap
profile. The work of Ford et al12 has shown that this recovery is

related to thickness and stress by the expression,

(1 - Qz)(Kz - a,)

he =
E
where he = elastic recovery in thickness
h2 = exit thickness from the plastic zone
Y = Poissons ratio |
Oy = exit stress
K2 = yield stress
E = Youngs modulus of elasticity

A block diagram of the basic structure of the shape model is shown
in figure 2. The exit thickness profile (ignoring elastic recovery) is
determined from the sum of the deformation of the section of the work

rolls in coatact with the strip, calculated in block 4, the total
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deflection of the work rolls due to bending aﬁd sheéring;rﬁlock S,

and the initial roll profile. .As we shall show, the internal stress
distributiona in the strip is determined from the ratio of the entry
and exit strip profiles and the entry strip shape; +this is calculated
in block 1. The force developed in the roll gap at any point across
the strip is a function of entry and exit thickness and stress at that
point. The exit thickness profile however, which determines the
stresses, is itself a function of the roll force,via roll deformation.
The stresses produced in the strip by conditions in the roll gap, feed
back on the roll force and modify the roll gap conditions. The model
is therefore iterative. The bending and sheariﬁg deflection of the
work rolls is determined by the forces developed in the strip and by
the forces applied by the backup roll (block 6). These forces are
determined by the relative profiles of the adjacent surfaces of the
work and backup rolls. The effects of forces applied to the rolls by
bending jacks, used oa some mills to modify the roll bending, are also
included in these calculations (blocks 5 and 7).

To simplify the wmodel derivation the roll length is discretised
and values of the exit thickness and entry and exit stresses are
calculated at the centre of each sectioa. The forces between the strip
and the work rolls and between the work and backup rolls are approximated
by a series of point loads acting at the centre of each section.

Each section of the model discussed above will now be analysed

in detail.

1.1 Work Roll Deflection

Figure 3a shows the forces acting on the work roll. The loading
will be considered as a series of equivalent point loads p(x) - q(x)
acting at discrete intervals along the roll. The change in roll

diameter at the roll neck will be ignored as this will only affect
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the deflection of the roll in the necks and the stresses in the roll
barrel in the vicinity of the necks, neither of which will influence
the strip thickness produced. The length to depth ratio of the roll
will generally be in the region of threé for most mills and the
deflection due to shear will therefore be significant and must be
included. The expressions for deflection due to bending and shearing

will be derived separately.

l.1.1 Deflection due to bending
An expression for the deflection due to bending will be derived
using Macaulays Methodl? Consider the beam shown in figure 3b. The

bending woment at any point x along the beam can be written as*:

5 :
dy bx 3bx
E'I'—'g' = - Jlx‘-ﬁ- qiE( - at;—“J + q’zfx— a -~ —-—] e
dx ‘ 2 2
. bx
+ ql[k -a-(2n-1) —-] 1.1.1
. n .
2
where J1 = roll bending jack force at one end of the roll
E = Youngs modulus of élasticity
I = moment of inertia
y = deflection (positive downwards)

X
Cl, = resvltant force on work roll MM

A%(x)-yﬂ(&z)

distance along the roll

* N.B. By Macaulay's method if the contents of any of the square

bracket becomes negative it is iguored.
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By integrating 1.1.1 twice, expressions for the slope and the

deflection of the beam are obfained.

2
dy 1 J.x= . 6x 2 q) 35x 2
S 1 1 2[ :{
lope = — = — ¢ - +—|x—-—a-=—] +==|x—=—a—-— + o..
dx EI 2 2 2 2 2

/ -2
qn ox
2

, 1 J1x3 af 6x ay 3%
Deflection = y = == ¢ - 4 =X ~-= 3 =~ — + — X - a8 = — +
EI 6 6 2 6 2
q[’1 bx 3
+—[x-a—(2n—1) —] +Rx + S 1.1.3
6 ' 2

To evaluate the constants of integration (R and S) we assume that

the deflection is specified at two points along the roll, say

v(x)) = D
y(x,) =D,
Then

' 1 J1x13

D = — ad + QM + Rx. + S 1.1.4
1 g1 6 1 1

1 J1x23 . )

D = — 4§~ + QM_ + BRx_, + S . 1l.1.5

2 m( 6 2z

3

qi 6x 3 q; bx
where QMi=—[xi—a—'— +...+—x.—a-(2n—1)—
: 2 6 L* 2
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Solving for R and S gives,

1 1, 3 3
- - P o— - - QM M .1.
R — EI(D, D2)+6(x1 x2) QM + QM, 1.1.6
1~ %
J1"13
S = EID, + - QM. - Ax , 1.1.7
1 s 1 1

1.1.2 Deflection due to shearing

The deflection due to shearing at any point along a beam is given

by14
4 X
y(x) = — V(x) dx ) 1.1.8
) 3AG 0O
where A = cross section area
G = modulus of rigidity ;
v shear force

il

The variation of shear force along the roll is shown diagramatically
in figure 4.

The area under the curve up to any point x is given by:

X p bx , 3bx
S V(x) = Jlx - ql[x - a - ——]‘- q2[% _— 8 - — = ...
0 2 2

- q:l[x— a—- (20-1) Z:] 1.1.9

If the contents of any square bracket is negative it is ignored.
The deflection due to shearing at any point along fhe beam is determined

by substituting equation 1.1.9 into 1.1.8.



1.2 Backup Roll Deflection

The deflection of the .ba(':ku.p br(')ll is caused By forces from the
work rolls, the screws,and aﬁy roll bending jacks. The geﬁeral form
of the loading is shown in figure 5. The same assumptions and
procedures used in the previous section to find the deflection of the
work roll are used here to find the deflection due to bending and

shearing of the backup roll.

1.2.1 Deflection due to bending

For a beam loaded as in figure 6 the expression for the bending

moment is

d2y 1 bx 36x°
_— = -Rx+J[x—a]+q[x-—z—— +q[x—-z-—— 4+ e
dxz EI 1 1 1 2 5
bx
+qn[x—,z—(2n-1)-— +J2[x—-L+a] 1.2.1
. -2

By integration the following expressions for slope and deflection are

obtained

day 1 [ Rx> J q 5x]°> q ox]?
1 1 2 1 2
S]_ope=___=__ - +.__[x_a] + —lx -2z - — b — X - 7 - — .o

2 2 2 2

q 6x2 J2 o
+—Bl;:—z—(2ne1)— + <[x-L + al]“ +A 1.2.2
. 2 ' 2 2

3

: 1 R._x J q bx q bx
Deflection=y = — - 1 +-—1-[x-a]3+—1-[x—z——-]+-—2-x-z-——.

2 6

EI 6 6 6

a, 6x3v J2 3
+-——[x—-z—(2n-—l)—- +——[x—-L+a] +Ax + B
6 2 2

1.2.3

2




The deflection at each end of the roll relative to ébhe fixéd datum

is determined by the screw positions, ie

y(0) = 5,

y(1) = 8,

The constants of integration, A and B, can therefore be evaluated:

1 : ) R1L3" (L - a)3 (L - z — °%/2)3
A = - JEI(S. - S.) + -3 —q
L 2 1 6 1 g 1 6
(L-z- (20-1) %%/2)3 a3
—q - T — 1.2.4
n 6 2 6 .
B = EIS, 1.2.5

The reaction R1 can be found by taking moments about x = L, then

1
6x 5x
R1 = i {&l(L - a) + J2a + ql(L -z - /2) + qz(L -z-37/2)....

+a(L-2-(2-1) "”‘/z)} 1.2.6

1.2.2 Deflection due to shearing

Figure 7 shows the distribution of shear force along the roll.

The shear force at any point x can be expressed by:

x b6x
J V(x)dx = - R x + J.[x - al +q [x-z---]+q[x-z-35"/2]
0 3 1 1 1 5 2
+ qn[x -z-(2n-1) 6x/2] + J2[x - L + a] 1.2.7

N.B. If the contents of any square bracket is negative it is ignored.
The deflection due to shearing is obtained by substituting equation 1.2.7

into equation 1.1.8.



1.3 Pressure Distribution between the Work and Backup Rells

The pressure developed in the contact region between the work and
the backup rélis can be determined by considering the elastic deformation
between the rolls. It is assumed that at any point along the rolls,
the work roll and the backup rell will each be deformed by equal amounts
ahd the pressure is proportional to that deformation. As discussed in
the introduction to this analysis, the roll is considered divided into
a number of equal sections; the aim of this section is to derive an
expression for a set of equivalent point loads acting on the work and
the backup rolls at the centre of each section.

Referring to figure 8 it can be seen that the deformation of the

rolls at the centre of the ith section is,

where DBi is the distance from some datum to the bottom surface
of the backup roll at section i ignoring deformation
against the work roll
and DWi is the similar distance to the top surface of the

work roll

An alternative expression for the interference can be obtained from

Hertz's theory for the deformation between two elastic cylinders with

parallel axe915

-+ 1ln — + 1n —= 1.3.2

3 b b

2(1 -92) q [2 2D, 21)2]

E 3
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2
D, D, 2(1 =V °)

b=1.6/¢q 1.3.3
(D +D,) E
where q = force per unit length
E = Youngs modulus of elasticity
Di = diameter of cylinder i
3 = Poissons ratio

This expression assumes that the force q is constant along the length
of the cylinders. The number of sectioﬁs required across the roll is,
for reasons which will become clear later, greater than 100. The
effect of assuming the force to be a constant across each of these
narrov sections is therefore small. The pressure acting between the
rollg over each section can be found by combining equations 1.3.1,
1.3.2 and 1.3.3. Unfortunately it is not possible to obtain an
explicit expression for q and an iterative procedure would be required

_ to find a solution. However it has been found that the term,

9 oD oD
-+ 1n —% 4 1n -2
3 b b

is not very sensitive to likely variations in q. For example if q
varies from 1.0 to 0.3 tonnes/mm, the above factor will change by less
than 102/0. The calculation can be simplified therefore by replacing
q in the expression for b by a constant q. q is the average value of q
and can be found by dividing the total force required to reduce the
strip, which is known, by the roll length.

The final expression for the force at the ith section along the

roll, q; is



(DB, - DW.)
i i
q. = 5 1.3.4
og(1 -v9) lz 2D, 2D2]
—_——— = + 1IN — 4+ In —
Ex 3 b b

D, D, 2(1 -v2)
where b = 1.6 /q
D1 + D2 E

The value calculated for q must satisfy the equilibrium equation for

the work roll:

+J12
>::(pi dx) + &= E(qi dx) 1.3.5
where dx 18 the width of each section

P; and q; are the values of p and q for section i

Jl and J2 are the jack forces acting on the roll
In the complete calculation of the force distribution s the distance
between the roll axis is altered by changing.DWi until the q; calculated
by equation 1.3.4 satisfies the equilibrium equation 1.3.5.

This method of calculating the pressure distribution by considering
individual sections across the roll ignores the presence of shear
stresses in the roll caused by the variation in deformation. The
geometry of the two contacting roll surfaces dictates that the rate
of change of pressure and profile will be slow. Hence it is easily
shown that the shear forces on each individual section of the roll are
of opposite sign and tend to cancel. The effect of shear forces can

therefore be neglected.
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1.4 Pressure Distribution between the Work Rolls and the Strin

The force developed between the strip and the work roll will vary
across the strip because it is dependent upon entry and exit thicknesses
and stresses. As with the inter roll pfessure, the pressure from the
strip will be approximated by a series of point loads at discrete
inteivals along the roll.

Since the roll force equation will have to be evaluated a number
of times across the roll it is essential that a simple expression is
used. In [16] a simple explicit model is derived for cold rolling
which would be suitable for this application. In the shape model
however a linearised roll force model has been found to yield
sufficient accuracy and is used to reduce computing timg. The
coefficients in the linear model, which are schedule dependent, are
obtained by differentiation of the model in [16] for the nominal
rolling schedule values.

The linearised formula gives sufficient accuracy for the following
reasons. Firstly the maximum likely transverse variation in entry
and exit thicknesses is less than 5?/0 which is well within the range
of the accuracy of the linear model. The stresses however can vary
by more than 1000/6 if the shape is bad. The sensitivity of roll
fdrce to entry or exit stress is fairly non linear (although not as
non linear as with thicknessl7). However the effect of equal changes
in entry and exit stress is very nearly linear. This can be understood
by the following heuristic explanation. Considering the diagram of
the pressure variation through the roll gap, figure 9. The total
pressure developed is represented by the area under the graph. It can
be seen that the effect on total pressure of equal changes to entry
and exit stress is linear since, to a first order, the friction hill
area is unchanged. Results from the full shape model have shown'that

the stress distributions on either side of the roll gap do tend to be
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similar. This effect is broughf'about by the compiéxwinteféctions
of slip and gauge in the transverse stress equations developed in
section 1.6.

All the roll force models derived in the literature are based
on the assumption that compression takes place in plane strain. At
the extremé edges of the strip this is untrue since there is no sfrip
present to restrain the sideways movement although there is still a
friction force. Because of this the true roll force close to the
strip edges will be less than that predicted by the classical roll
gap equation. To investigate this error we require to know the
relationship between the yield stress in simple compression (the
limiting case represents the condition at the extreme edge) and the
yield stress under plane strain. |

Von Mises criterion states18 that yielding begins under any
conditions when the distortion energy equals the distortion energy

at yield in simplevcompression.

1 1 2 2 2
Distortion energy, U, = — . = (0. =0, )" + (0, -0, )" + (0, - 0.)
d 1 2 2 3 3 1
2G 6
1.4.1
where Oi1 Tgs T4 are the three normal stresses
‘G is the modulus of rigidity
Now in simple compression two of the stresses are zero. Therefore
012
Ud = — 1.4.2
6 G

and 9, must be equal to the yield stress K, hence

K =./6 G Ud 1.4.3
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The relationship between the stresses in the case of plane strain can

be found from the Levy-Mises equation18 which states

d£1 d£2 d£3
K

(0,-3) (0,-3) (o,-3)

where £ = strain

g +O’2+O'3

3

and O is the mean stresses =

For plane strain d£3 =0

therefore 0. =0 = :

‘ro, + 0o
or o =[—1—2] 1.4.4

_ Substituting this condition into the equatidn for distortion energy

gives,

1 13 | '2
Ug=— .- |- (c1 - 02) 1.4.5

2

By Von Mises criterion equations 1.4.3 and 1.4.5 can be equated

1 1[3 ; K>
— o= =0y -0y =— 1.4.6

2G 6 L2 6G

or Kz—(ol-oz) -
2
Vg
Therefore the yield stress in simple compression equals — times the

2
yield stress in plane strain.
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If the elastic recovery regions and the effect of strip tensions
are ignored, the roll force is approximately a linear function of
yield stress. Therefore ¢§72 is an upper limit to the possible
reduction in roll force caused by spread, ie the effect on roll force
will be less than 14°/o.

An estimate for the portion of the strip width affected by spread
can be obtained from measurements of width change taken during the
rolling of strip through four stands of a tandem mill. For four
approximately eﬁual reductions of 20°/b,vthe increase in width is
typically less than 1 m. That is a 200/0 reductiop causes a width
change of less than 0.25 mm, assuming the spread is equal on all stands.
It is reasonable to assume that the degree of sideways spread is a
maximum at the extreme edge of the strip. As a limiting case we will
assume that at this point the material is reduced by simple compression
and therefore the fractional change in width is equal to half the
fractional reduction,

Sw

&8¢ = 0.5 R
Away from the strip edge the amount of spread will decrease until at
some distance X from the edge the reduction process will be plane strain.
The distance X affected by spread will clearly depend on the way in
which the spread decays. Assume that the spread decays according teo
some function f(x), where x is the distance from the strip edge, such
that,

£(0)

£(X)

1

0

Then the increase in width can be expressed by

Aw X
W =2 S 0.5R £f(x) dx 1.4.7
0
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The exact form of £(x) is unknown but it is expected that it will
decay rather rapidly initially and therefore the major effect of
spread on roll force will be limited to a very small region at the
edge. As a limiting case let us assume-that there is a region close
to each edge of the strip where the reduction process is simple

compression and, for the remainder of the width, plane strain applies.

Then,
f(x) =1 0 <x £X
f(x) =0 x > X
X
and Aw =R J dx
0

Using the measurements quoted of a 0.25 mm increase in width with a
200/0 reduction,the distance affected by the spread is,
o L25
X=—=— =1.25mm
R .2
In practice the decay will be gradual and therefore the region will be

wider but the error in the roll force will decrease. For a linear decay,

f(x) =1 - - 0 {x£X
X
f(x) =0 x> X

the region affected will be 2.5 mm but the roll force error will be
less than 79/0 at 1.25 mm.

These approximate results indicate that the effect of spread on
roll force is small. It can be shown that, assuming typical strip
and mill dimensions, the effect of this roll force error on the bending.
and shearing deflection of the work roll across the strip width is less

than 0.25°%/0.
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1.5 Work Roll Flattening

Iherfinal tr#nsverse profile of the roll gap is significantly
affected by the variation in the indentation of the roll by the strip
across the width. In the literature most authors have modelled this
term approximately using the Hertzian expression for flattening between
cylinders and flat plates. The Hertzian expressions are correct only
for cylinders subjected to a uniform pressure. The method adopted was
the same as that used for the inter roll pressure distribution, the
expression was applied to each section of the roll where the pressure
was assumed to be constant at the average value. Over most of the
strip width this method gives adequate results as the variation in
roll force is slow, however large errors result in the region of the
‘strip edges where the roll force drops suddenly to zero. The influence
of the unloaded roll on the roll deformation near’the strip edges is
not modelled and a sudden change in deformation is predicted as shown
in figure 10a. A more accurate form of the deformation is clearly
that shown in figure 10b.

It is proposed to develop here a more accurate model for the
flattening in the form of an influence function for the deformation
of the roll caused by a pressure distributed over a small area. To
obtain the total deformation the influence functions will be summed
across the complete strip width. Three assumptions will be made in
developing the model: (a) The problem can be approximated by a band
of pressure applied on thé surface of a semi-infinite solid because
of the relative sizes of the arc of contact between the strip and
roll, and the roll diameter. (In cold rolling the arc of contact is
typically 25 mm for a roll diameter 550.mm, the angle subtended by

: < .
the arc is therefore approximately 1;3 degrees.) In figure 11 the

roll is represented by the semi-infinite solid,

- o0 &x<{co+ y, —00 £ y<0+ ,—00 Lz 0
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with pressure applied at,

z=0,-a ¢y +a,-b {x +hD
(b) Tﬁe band of pressure will be assumed constant in the direction of
rolling. This is reasonable since the primary aim is to model the
transverse variation in thickness profile of the strip leaving the
stand and this will be determined by a single point on the roll
circumference. (c) The variation in roll force across the strip
width can be approximated by a number of equal sections over which
the roll force is a constant, see figure 12. The problem then reduces
to that of developing an influence function for the displacement on
the surface of an infinite solid, into the solid, caused by a uniform
pressure applied over a small rectangular area. The total flattening
along the roll can be determined by summing the effects of each
section of the strip width.

The required function can be derived from the expression for the
displacement d¥ due to a pressure p per unit area applied at a point
X, ¥y in the plane z = 019. This equation, which is derived in

appendix 2, is,

w (1-v) P dx1 dy1
d = . 105.1
2n G R

where R is the distance between the point at which the force is

applied (x ) and the point at which the displacement is

11y1
measured (x, y)
2 2 2
R = (x-x)%+ (y - y,)
1 17
The displacement caused by a pressure p per unit area applied over
an area — a Ly £ a, — b £ x & b on the surface z = 0 can be
obtained by integrating 1.5.1
(1-9) a b p dx; dy,

Wx, y) = — / / 1.5.2
: Y 27 G-a b [(x—x1)2+ (y—y1)2]172
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Let A = y - Yy and integrate with respect to x; only:

b d x
I1- / 1

1
P [x-x)?+ A% /2

Let X=x-x1

dX:-dxl
whenx1=b X=x-b
x1=-b X=x+b
x+b dx 5 21/2 x+b
1= /. — = {InX + (X + A%)
2 2.7 /2
x-b [X® + A7] x~b
I-= 1n[(x +b) _-I((x+b)2+A2)/;2-1nﬁx— b) +‘<(x- b)2 +A2) /2_]
Therefore:

W= P—(-l—-j-)- fa{ln[(x +b) + ((x + b)2 + (y - yl)2)1/2]

2n G -a
- ln[(x - b) +((x-'b)2 + (y - y1)2)1/2:)} dy1

Let A= (x+b) B=(x-b)
Y=y-vy

wheny1=a Y=-y-a
Yy =2 Y=y +a

_ y+a .
g PV {ln[A 7 r”-)l/z_] _ 1DE3 . (52 Yz)l/f‘]} a

on G

y-a
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w=p;n: [11"12]

The integral of the form I1 and I is solved in appendix 3 giving

2
the result:

pf‘ 1“E + (4% 7) 1/2]dy ={[Y in(A + (A2 4 Y2) g% 2)] : .

L1 _g)
tan {A

- A[tan zZ = ln(sec z + tan z)
_]_(p_
tan (=

Inserting the limits, I, becomes,

1
{ [E: r 0 Gy a>2)1/2j}
I, =741n 1
@2 (o037
N IR

- (y +a) +A ln[[(x * b)2 + (v + a)2]1/2 + (y ; a)]

(x + b) x+Db

1
+(y-a)-A 1“[[(X+B)2+(y-a)2'-,/2 (Y'a):[

(x+b) +(x+b)
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For the purposes of shape modelling we are interested in the
displacement of the roll surface along a line y = constant. For

convenience let y = 0. Then,

I, =2a ln[(x +b) + ((x + b)2 + a2)1/2J

1
[(x+b)2+a2] /2+a

-2a+(x+b)_1n 1
[(x+b)2+a2]/2—a

Similarly 12 can be shown to be:

I, = % ln[(x 1) + ((x-1)% + 32)1/2:,

1
[(x—b)2+a2] /2+a
—2a+(x—b) In

1
[(x—b)2+a2] /2—a

Finally

W(x, 0) =

1
pu_v){ Fx+b)+ux+w2+a%/2
— 2a 1n

2m @ = 8) + ((x = 1)% + 2) /2

F(x + b)2 + 6.2)1/2 + a-

+ (x + b) In
Lt

1
+b)2+a2) /2-aJ

F(x b)2 + a2)1/2 + a
-(x-1b) In T 1.5.3
l((x b)% 4 a?) /2 _ o)
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It will be assumed therefore that equation 1.5.3 represents the
influgnce»function for the indentation of the roll surface caused by
a uniform pressure acting over a roll length 2b and an arc length 2a.
To compute the total indentation caused by contact with the strip,
the strip will be divided into a number of narrow sections over each
of which the pressure can be approximated by a constant. The
indentation of the roll by each of these will then be computed using
equation 1.5.3. Since we are dealing with an elastic media the
effects are linear and the total indentation is obtained by summation.

The form of the indentation given by equation 1.5.3 for the case
of a uniform roll force acting across the complete strip width is
shown in figure 13. Near the strip edge there is a rapid decrease
in the amount of deformation and this would result in a decrease in
the strip thickness at thié point. The result of such a profile
would, of course, be to set up very large compressive stresses near
the strip edges due to the increased elongation. In practice this
indentation profile is highly modified by "feedback". The profile
shown in figure 13 is the result of a uniform pressure distributien
across the strip, however the increased reduction and high compressive
stresses,which will result near the strip edges,will both cause an
increased rolling pressure in this area. The increased rolling
pressure will increase the amount of indentation and the net result
will be to reduce considerably the variation in flattening near to
the strip edges.

The effect of this feedback is included by iteration in the

final shape model.
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1.6 Transverse Distribution of Stress

When metal strip is reduced in thickness by rolling through one
or more stands, a transverse variation in the longitudinal stresses
is set up in the strip. This variation in stress in the strip at
any point between the stands is caused by (a) any transverse variation
in the reduction and hence elongation at previous stands and
(b) transverse variations in the slip and hence the strip velocity -
at the exit of the previous stand or at the entry to the next stand.
The existence of these stresses is important for two reasons. Firstly
during rolling the stresses in the strip at the entry and exit of a
stand affect the roll gap profile and hence the reduction and slip
variations. Secondly the portion of the stresses which remain in the
strip after rolling are the strip shape and determine its ability to
be flat.

In the derivation of expressions for the transverse stress
~ distributions which follow, it will be assumed that the strip remains
flat and buckling does not occur. This is justifiable when considering
strip during rolling since it is held under a tension which, except
in certain extreme cases, will be sufficient to prevent buckling.
(Buckling cannot occur unless compressive stresses are present.) After
rolling, when the strip is free from constraints, the mean level of the
stress will be zero. The level of compressive stress which the strip
can sustain without buckling is very low, and in many cases therefore,
particularly with thin wide strip, Buckling will occur after rolling.
Except for cases of very bad shape however the amplitude of the buckled

wave will be low and often indiscernible to the eye.



1.6.1 The effect of reduction variations

The transverse variation in reduction (and hence the elongation)
of an element midway between stands is determined by the conditioens
which existed at the last roll gap whenrthat element was rolled.
Consider an infinite length of strip that has been rolled under steady
stqte conditions such that the reduction at the edges is greater than
that at the centre. Because the strip is deformed plastically in the
roll gap, any transverse variation in reduction will give rise to an
equal variation in elongation. If any transverse element of the
strip is considered therefore in isolation frém the adjacent elemeﬁts,
the edges will be longer than the centre. It is clearly impossible
for every transverse element of the strip to maintain the same
variation in length (assuming the strip remains flat) and hence the
elongation variatioﬁ is inhibited and a stress variation results.

Consider the strip shawn in figure 14, the stress at any point y
across the strip can be expressed by the sum of two components. The
first component is the difference betwéen the strain at fﬁaf point
and the mean strain,

b .

E > s E(z)az - £y

2b

The second component, which is only non-zero in the case of asymmetric

stress distributions, is the resultant bending stressl3,

" where M is the bending moment

and I the moment of inertia

338
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For a rectangular strip thickness t width 2b,

2 t b3
I =~
3
Therefore
3y b 3Ey b :
O'B(Y) = 3 / E&(z).t.z dz = 5 / € (2).z.dz
2th b 2b b

Hence the expression for the stress at any point across the strip is,

., b 5y b
o (y) = —E{E(y) o ;S E(D)az - —5 £(z).z.dz} 1.6.1

b 2b b

or in discrete form,

3

- 3i6y K
o.=-E{E. - £ - n £ .joy 1.6.2
. 1 2 p° j=1 9

where 6y is the width of a discrete section

and K is the number of sections

=z 1 K
£>= — - €. by
2b i=1 '
(N.B. The last term in equations 1.6.1 and 1.6.2 will only have a
value when the stress distribution is asymmetric.)

. The strain £ can be expressed in terms of thickness at each point
across the strip before and after the previous rolling stand.
Consider an element of strip of thickness H and length L before
reduction and thickness h and length'l after reduction. By
contimity of volume,

HL=h 1
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Therefore

=2 I =]
L"In—lA

and the strain € = % = ’Z(—-fi ;—‘:I’ -1 1.6.3

Substituting equation 1.6.3 into 1.6.2 gives

H H 36y K Hj
Gxi =+E -_—_— - 3 -Z(—— j 6y - 1.6.4

h.
J

The above expressions give the internal stress distribution caused
- by variations in reduction across an infinitely long strip where trans—
verse variations in elongation are inhibited. Near the ends of a
finite length of strip a degree of elongation variation is possible
and, if the ends have no external constraints, then the end stresses
mst go to zero. In a strip of finite length therefore there must be

a region near to each end where any stresses decay to zero. This is
illustrated in figure 15 where the difference in stress from strip
centre to edge is plotted against the length for a strip of length L.
The length of these regions of stress decay is bounded according to

St. Venants principle which will be discussed in detail later.

1.6.2 The effect of slip variations

Consider a piece of strip between stands during rolling. The
ends of the strip, at the exit of stand i and the entry to stand i + 1

are not free. If the exit and entry velocities are constant across
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the stfip it is equivalent to maintaining the conditions of uniform
elongation which apply acress an infinitely long strip. In this case
therefore the transverse stress distribution will remain constant at
all points between the stands, see figure 16.

In practice the entry and exit velocities, which are a function
of slip, vary across the width. This variation in velocity is equi-
valent to enforcing a strain variation on the free ends of strip
whose length is equal to the interstand length. St Venants principle
states that the stress variation caused by end tractions will decay
to zero over a short length,and hence the final variation of the
transverse stress distribution along the strip between stands will
be of the form shown in figure 16.

The strip exit velocity at a stand is given by,

v(y) = oR(1 + £(3))

where = roll speed
R = roll radius
£(y) = slip

The strain imposed at a point y across the strip is

length of strip produced in time 6t

£

1 -

average length produced in time 6t

mR(l + f(y)) 5t
=1 -

wR(1 + T) 6t

T - £(y)

1+ 7
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Therefore the stresses imposed on the strip as it leaves a stand are,

) ﬁ{ Lfi”}
1+ £

or in discrete form,

. T -1, |
o) = E — 1.6.6
1+ £

The strip velocity at the entry to a stand is

h
V(y) = wR(1 + £(y))

H(y)

It follows therefore that the stress imposed on the strip as it enters

a stand is, in discrete form,

X h. H (1 + £.)
c; - E 1 1 _1 - 1.6.7

b H (1 +7)

1.6.3 The complete stress equations

Expressions for the stress distributions at a stand entry and
exityand at a point midway between stands (the shape),can be obtained’
by combining equations 1.6.4 with 1.6.7 and 1.6.6 respectively.

From equation 1.6.4 the shape distribution vector residual in a

strip away from any stand is

H H, 3ib6y K H,
* B h, 2b° j=1 b

The total stress distribution at the entry to a stand is a result of
the residual shape produced by the previous stand (equation 1.6.8) and

the slip variations at the entry to the current stand (equation 1.6.7).
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The stress distribution is

h, H (1 + £.) ,
o. = E{ 2 L1y +Q ' 1.6.9
N B OH (1+7)

.
where & is the residual shape produced at the previous stand.
Similarly the stress distribution at the stand exit is obtained by

combining equations 1.6.8 and 1.6.6

T - f,
. =E =¥ SN . 1.6.10
1 1+ 71 1

The shape distribution vector given by equation 1.6.8 is the transverse

stress distribution which will remain in the strip after rolling
(except close to free ends). This is therefore the shape of the final

product.

1.6.4 The rate of change of stress distribution adjacent to a stand

There is one outstanding aspect of the stress behaviour derived
so far; over what length of strip either side of a stand is the stress
distribution affected by the stresses due to slip variations. (The
same region will apply to the decéy of stresses at thé free ends of
a strip). Saint Venants principle states that the effect of self
equilibr;ting end loads on the stress distribution in a body are confined
to short regions close to'the ends. As a "rule of thumb", the length
of these regions is normally taken to be approximately equal to the
width of the material: That is if we are interested in a point at
a distance greater than one strip width from the ends, the end effect
can be ignored.

The various aspects of this end problem'can be approximated by
the behaviour of a simple structural model20 as shown in appendix 4.

A graph of the decay of the effect of a self equilibrating end load
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with distanée from the end of a plateris shown in figure 17. The
effects can be considered negligible for a distance greater than the
plate width.

Referring these results to the detérmination of stresses in a
rolled strip two observations can be made: (1) The effect on the
transverse stress. distribution of variations in slip at the entry or
exit of a stand becémes negligible at a distance greater than one
strip width from the stand. (2) After rolling when a length of strip
is laid with its ends free, fhe transverse stress variation will

decay to zero at the ends.

1.7 The Shape Algorithm

At the beginning of this section the complete shape algorithm
was described with the aid of the block diagram of figure 2. In
subsections 1.1>to 1.6 the-contents of the separate blocks were
analysed in detail and expressions derived for the various functions.
The shape model has been solved numerically on a digital computer
and a flow diagram of the calculation is shown in figure 18.

In the following description the numbers in square brackets
refer to the blocks in figure 18. At the start of the calculation
all data relevant to the particular mill and strip being considered
is read in [1] and values of the dependent mill constants are
calculated>[2]. A1l the arrays used in the calculation are initialised,
linear coefficients of the roll force are calculated,and the influence
function for the work roll flattening, derived in 1.5, is calculated [3].
A useful featufe of the computer calculation is the ability to
parameterise the calculated stress and thickness distributions to
some prespecified form. A matrix used in this parameter estimation
is initialised in [4]. In order to start the shape calculation proper

it is necessary to estimate the variation in the output strip thickness,
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this will have been setﬁp in [3]. Using the known entry thickness
variation and_the estimated exit thickness wvariation, the entry and
exit stress distributions and the shape are calculated from the
expressions developed in 1.6 [5]. In [6] the roll force variation
is calculated from entry and exit stresses and thicknesses using a
linearised roll force expression as discussed in section 1.4. The
inter roll pressure distribution and the roll deflections are inter-
dependent as shown by the expression for the pressure distribution
derived in 1.3; the calculation of these quantities therefore forms
an inner iterative loop. The inter roll pressure distributioen is
calculated in [7] using the last calculated values of roll deflection.
(The first time through the calculation the deflections are taken as
zerol. New values of backuﬁ roll [8] and work roll [9] deflection
are calculated and the last values are updated by a portien of the
difference between the past and present values [10]. The inter roll
- pressure distribution is recalculated using the new deflectioéé.
This loop is cycled three times. Using the distribution of roll force
calculated in [6],and the influence function calculated in [3],the
work roll flattening vector is calculated [11]. Finally in [12]
tﬁe stand exit thickness profile is calculated from the calculated
bending and flattening of the work roll. The thickness distribution
used to start the calculation is updated by a portion of the difference
between it and the value calculated in [12] and the calculation
restarted at [5].

After the second iteration the shape calculated during one cycle is
compared [13] with that calculated during, the previous iteration.
When the difference is within some specified tolerance, the calculation
is stopped. The stress and thickness parameters are estimated [ 14]

and all relevant information printed out [15].
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In order that the rapid changes in the stresses, shape and exit
thickness in the region of the strip edges are accurately modelled,

it was found necessary to divide the roll into 140 equal sections. -

1.8 Model Verification

In figure 19 the shape distributions calculated by the model aré
plotted together with shape measured at the output of a mill using a
Videmon shape instrument. (Shape instruments are discussed in more
detail in section 5.2). The instrument measures the average stress
over sections of the strip width. In this case the shape was symmetric
so only half the width has been plotted. The results are shown for
three different roll bending jack forces 3, 30 and 54 tonnes , and the
calculated results compare well with the instrument readings. It is
particularly interesting to note the sudden large decrease in stress
at the strip edge due to the roll flattening effect, the instrument
readings only show a very slight tend;icy of decrease in stress since
only the average stress over the rotor width, which was 67 mm, is

recorded. This is an obvious drawback with this type of instrument.

1.9 Example of program output

In the following pages a typical output from the shape program
is shown for two cases. All the relevant data concerning the mill
and the strip is included in the print out.

The difference between the two cases is the entry thickness profile.
In the first case the entry thickness is uniform and in the second
the thickness decreases rapidly close to the edges. This iatter profile
is typical of the actual input to some known mills. It can be seen
that the effect of this input profile is to reduce the edge effects

from the shape produced. This will be discussed more in later sections.
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CHAPTER 2

MODEL SIMPLIFICATION

A complete understanding of the shape phenomenon is reguired in ‘
order to désign three important areas in a full automation scheme for
a tandem rolling mill.

(1) The nominal rolling schedule. This defines the proportion of the
required reduction to be carried out at each stand and the level of

the interstand tensions. It is designed off line from considerations
of power constraints, shape, which must be held within certain practical
limits, and gauge. This topic will be discussed in more detail in
chapter 3.

(2) The on line modification of these nominal schedules to accommodate
variations in the incoming product..

(3) On line control of strip shape.

The complete analysis of strip shape developed in chapter 1,
together with the digital computer simulation which has been written,
are essential for gaining a detailed understanding of the phenomenon.
This frogran
l%(is not suitable however for use on line in schedule adaption algorithms
or.shape control schemes, and it will make the off line scheduling
calculation unnecessarily large. Also because of the iterative nature
of thershape model the form of the dependency of shape on key parameters
is not obvious. Furthermore, various sensitivities of shape are
required for on line control purposes as discussed above. These
sensitivities would have to be obtained numerically for the complete
range of likely conditions,.and then the results summarised by some
simple law. Apart froh the enormous computing effort required for
such an operation there is always the risk that, on line, a set of
conditions will arise which was not covered and extrapolation could

yield the wrong result. Also the structural form of the parameter
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dependéncies is in practice very difficult to guess from sets of
computed sensitivities. For these reasons it is desirable to develop
‘a simplified, non-iterative, model which can be differentiated to

yield the required sensitivities.

2.1 Parameterisation

All of the variables in the full shape analysis are vectors
defining those quantities %= several points across the strip and roll
width. The basic concept adopted in the simplification here is to
parameterise the stres§ distribution (shape) with a "suitable" parameter,
and to write an algorithm to calculate this parameter direct without
recourse to calculating the distributions. The definition of a
"sui@able“ parameter depends on the application. A parameter which
provides a fit to the exact distribution which is 'best', according

‘ to some prescribed criteria, is not necessarily the best to give the

_ information for, say, feedback shape control. For example the shape
distribution can, in general, be of any form, however it is characterised
by two effects. Firstly the deflectionrof the rolls due to bending

and shearing; this tends to be predominantly parabolic. Secondly

the flattening of the work rolls. This again tends te be parabolic

over the centre portion of the strip, say 750/9 of the strip width,

but with a sudden decrease near the strip edges caused by the flattening
of the rolls decaying to zero outside the strip. The magnitude of

this "edge effgct" present on the final product depends upon the
incoming strip profile and the thermal camber on the rolls. These

edge effects are not controllable through schedule changes and roll
bending; the only means of control is the coolant spray distribution.

A parabolic parameter has been chosen therefore as this will give all
the information necessary for scheduling, adaption,and shape control

with the exception of data required for coolant spray control of shape.
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It seems likely that no single parameter is sufficient for the
requirements of spray control. This is discussed in more detail in

Chapter 4.

2.2 Simplified Model Structure

The aim is to model only the parabolic component of strip shape
and only symmetric distributions will therefore be considered. Since
only the shape and not the thickness is of interest, it will be
assumed that the specified centre line thickness is always attained
by automatic screw position adjustment. It is then only necessary
to calculate deformations relative to the strip centre line.

The shape produced from a stand is determined by the relative
profiles of the incoming strip and the roli gap; the incoming shape
also has a small effect. The roll gap profile is the result of the
work roll bending and sheafing deflection, the work roll flattening
and the camber of the work rolls. In the model derivation it will
be assumed that the distribution of load acting on the work roil,
from the backup rell and from the strip, can be approximated by the
sum of uniform distributions and parabelic distributions. The
bending and shearing deflection and the work roll flattening will be
calculated for each type of load and the roll gap profile determined
by.summing the results. It is further assumed that the parabolic
components of deflection and flattening can be approximated by the
difference in the values at the strip centre and strip edge in both
cases.

A block diagram for the simple model, shown in figure 20, should
be compared with that of the full model in figure 2. Expressions for
the parabolic components of the stress distribution, the work roll

deflection and the work roll flattening will now be derived.
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2.3 Work Roll Deflection

The forces acting on the work roll can be divided into three as
shown in figure 21: Uniform distributed loads from the backup roll
q / unit length, and the strip p / unit length (figure 21a); parabolic
distributions from the backup roll ,4% and the strip /0; (figure 21b);
and the roll bending jack force J (figure 21c). The deflection of
the roll at the strip edge relative to the centre will be derived
for each of these loadings acting separately, the total deflection

will be obtained by superposition.

2.3.1 Deflection due to uniform load distribution

The simple shape model assumes symmetry and a specified strip
centre line thickness. The work roll can therefore be represented
by a cantilever with the fixed end at the strip centre line where
the slope and deflection will be zero. The cantilever sub jected to
. the uniform loading from the strip and from the. backup roll is shown
in figure 22a; the general expressions for the bending moment at
any point x along such a beam is

dy qgx [x=-F + wﬂ2

M=EI = - P 2.3.1
dx 2 2

By integration the slope and deflection at any point can be obtained

dy qx3 [x-F + w13
dx 6 6
qxg [x-F + w]4
Deflection = Ely = — —~ p +Ax + B 2.3.3

24 24



The deflection and slope are zero at the support, ie

dy
y/x____F:O and — -0
Therefore,

pw3 qF3

Ao _ 2.3.4

6 6 '

pw3 qF4 _

B=— [w-4F] + — B - 2.3.5
24 8 ‘

The expression for the deflection due to bending at any point is

obtained by substituting equations 2.3.4 and 2.3.5 into 2.3.3.

1 qﬁi [x-F + WJ4 pwax qF3x
Deflection y = —4— - p + - —
EI (24 24 6 6
pw3 qF4
+ —— [w - 4F] + — _ 2.3.6
24 3 . e

The deflection-.at the strip edge relative to the strip centre line is
" to ‘be taken as an estimate of the parabolic component. This is

obtained by setting x = (F — w) in equation 2.3.6 to obtain

- v : 4
1 q pw ,
Yl =(F-w) == —[ﬁszz - 4Fw® + w4] - — 2.3.7
r=A EI { 24 ' 8 ,

| The deflection due to shearing is given by

4

3AG

where S is the shear force.



A diagram of the.shear force along the beam is given in figure 29b. VThe
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deflection at the strip edge relative to the centre line is therefore,

4 w2 pw2
Yg = — qF\V———)——
3AG> 2 2

2.3.2 Deflection due to parabolic load distribution

The load distributions on the work roll, from the backup roll

and from the strip, are not, in general, uniform. The expression

the deflection calculated in 2.3.1 must be corrected therefore for

the variation in the loads. It is assumed that the variations in

2.3.9

for

the

load can be approximated by parabolas. The required deflection can

be obtained by considering a cantilever subjected to parabolic load

distributions as shown in figure 22c. The loading on the beam at
(F - w) <:x L Fis

2

AL A <o

F' w

The shear force and bending moment can be obtained by integration

with the boundary conditions,

2/£%F._ 2’/%w

Shear force at x = 0 is

3 3
A A
and bending moment at x = 0 is - +
4 4
Then,
[ x> 2F', p: x> ow
S=/wlx = Alx - —5 - — |~ X = e = —
BL s 34 "SI 3@ 3
dzy /O'F2 x2 x4 2Fx /9 2wx _x2
M=El — =/ S dx = —_— — — — ] o+ —_———
dx? Bla 2 12F% 3 SLa e

2.3.10

2.3.11

X

+
1 2w2

2.3.12
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By.intégratingwfwiée and using the bdﬁndaryrconditions

dy
ylx=0=0 and — =0

//% F2x2 x4 Fx3 x6 'Wx3 iq x6 w2x2
g =28 b — + ——— 4 - 2.3.13
" BT | 8 24 9  360F% s 9 24 360w 8

The bending deflection at the strip edge relative to the centre line

is obtained by imserting x = (F - w). Then,

A | o v 10 "
y = 45F% + 15w - — - 40 FW[ - ——_ 2.3.14
360EL ' F 360EI '
The deflection due to shearing can be obtained by combining
equations 2.3.8 and 2.3.11.
: )
, 4//% el X 2Fx
Deflection due to shearing yg=——[—+—~-—5 - —
3AG [ 4 2 12F 3
4-/08 2wx X = W
+ —_———+ 5~ — 2.3.15
3AG 3 2 12w 4
The deflection at the strip edge relative to the centre line is
yg =7 -J
S ,x =F x = (F - w)
4 2 2
4 w 2Fw  w W
/fé /‘é 2.3.16
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2.3.3 Deflection due to roll bending jack forces

The deflection caused by the roll bending jack forces can be

derived by considering a cantilever subjected to an end load as in

figure 22d.
d2y
The bending moment M = EI —5 = - Jx 2.3.17
dx

By integration with the boundary conditions,

the deflection at the strip edge (x = w) can be shown to be

J 2
- )
Vp = — (w - 3L 2.3.18
B 6EI B)
The deflection due to shear at the strip edge is
4Jw
2.3.19
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2.3.4 Total work roll deflection

The total deflection of the work roll is given by summing

equations 2.3.7, 2.3.9, 2.3.14, 2.3.16, 2.3.18, and 2.3.19. Then,

-—w4 2w2 sz2 ,Fw3 w4 4Fw 2w2
Vg =P|— - — + q - + + -
8E1 3AG 4E1 6ELI 24EI 3AG 3AG

w2F2 W3F w4 w6 8Fw 2w2 W4
* /B

- + - 5 + -—t—3
8EI 9EI 24EI 360F°EI 9AG ~ 3AG 9FAG

3

19w4 w2 w 3LJW2 4w
- 1/3 + =] +d - -
360EI AG 6E1 6EL 3AG

which is clearly of the form,

v, = Egp + Kgq + KlO/oB + K /3 + K, o9 2.3.20

2.4 Work Roll / Backup Roll Pressure Distribution
The work roll / backup roll pressure distribution conmsists in

general of a uniform load acting across the roll length plus a varying
distribution equal to zero at the roll ends. (In certain extreme
cases with very large roll crowns it is possible that the work and
backup rolls may not be in contact over the whole roll width, this
condition is very rare in practice and will not be considered here.)
AThe variation in pressure (assumed parabolic) can be determined by
considering the elastic deformation between the rolls as in the full
model. It is assumed that the pfessure is proportional to the

deformation which can be obtained by comparing the relative profiles
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of the adjacent éurfaceé of the two roils.' Expressions must be

derived therefore for the profiles of the top face of the top work
roll and the bﬁttom face of the top backup roll. The stiffness of
the material can be calculated from the Hertzian expression for the

deformation between two elastic cylinders given in section 1.3.

2.4.1 Profile of top face of the work roll

An expression is required for the difference in deflection, due
to bending and shearing, between the centre and end of the roll and
not to the strip edge as in section 2.3.

| The bending deflection due to the uniform.load distribution

is given by equation 2.3.6 with x = 0,

3 4
PV qF
94E1 8EI

~ Similarly the deflection due to shearing can be obtained from 2.3.8

4 sz pw2

= - 2.4.2
3AG | 2 2

¥s

The bending and shearing deflections caused by the parabolic loads
can be shown to be,
19 A, BF4 . /asw3 w F

—_——— 2.4.3
360EX EI L72 15 '

YB=

ys = - 2&4.4
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Similarly the deflection due to roll bending jack force can be shown

to be:
L3
for bending , yB = - — 2.4.5
3EI
4J.LJ
for shearing, g = = 2.4.6
3AG
The required deflection of the work roll is given by summing
equations 2.4.1 to 2.4.6, Then,
W WP owd )
Y=o - - + q}— + —
24EI 6EI  3AG 8EI  3AG
197 F2] [WSF w we
+ /3 + — |+ - +
B 360EI  3AG /‘S, 15EI 72EI 3AG
3
L 4L
- J[.i. + __J] 2.4.7
3EI 3AG
or
y=K3p+K4q+K5/°B+K6/°S+K7J 2.4.8

Finally, for the profile of the top face of the work roll, the

work roll crown must be included. Therefore

yW=K3p+K4q+K5/‘I’3+K6/as+K,7J+CW 2.4.9
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2.4.2 Profile of the bottom face of the backup roll

The deflection of the ends of the backup roll barrel relative to
the roll centre can be determined by considering a simply supported
beam subjected to a uniform load q / unit length and a parabolic load
distribution equal to /fa /vunit length at the roll centre, figure 23.
The supports represent the screws and the loading is assumed to extend
over the complete length of the roll barrel, 2F. The deflection at
‘the barrel end relative to the roll centre due to the ﬁniform load can

be shown to be:

aF 2 3

bending deflection yp = —— (12LF° - 7F ) 2.4.10
24EI
2qF

shearing deflection yg = — [2L - F] 2.4.11
3AG ‘

- and that due to parabolic loading,

bending deflection yg =

/%F3 50F
L —-— —— 2.4.12
3EI 120

//%F 8L

shearing deflection Yg = —— |— - F 2.4.13
3AG |3
where 2F = roll barrel length
2L = distance between screws
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The total deflection of the backup roll is obtained by combining

equations 2.4.10 to 2.4.13

2

3 7FY  aFL  oF
y=q

_ + -
oEI 24EI  38AG 3AG

3 5o sF  F°

+/% - + - 204-14
3EI 360E1 9AG AG

or y = Klq + Kz//%

The profile of the bottom face of the top backup roll is therefore

ypy = Bia + Kz/% - C_B 2.4.15

where CB is the crown on the backup roll.

2.4.3 Roll stiffness

An expression was derived in section 1.3 for the relationship
between the pressure q between the work and backup rolls at any point

across the rolls and the deformation 4 of the rolls, equation 1.3.4.

9 = %ﬁ [2/3 N 1n(fl:-1'>+ 1“(%)]

_ DD, 2(1 -02)

where b = 1.6/ ¢
(D, + D) E
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1 .
q ,
Hence the roll stiffness K13 = - = 5 2.4.16
o . A 2(1 -9 5 2D1 2D2
e [%/3 4+ In — 4+ 1n —=
Ern b b

Fortunately K13 is not very sensitive to gq. For typical roll diameters,
D, = 584 mm and D, = 1270 mn, K, 4 varies from 3.14 to 2.65 as q goes
from 0.8 tonnes/mm to 0.1 tonnes/mm; it is unlikely that values of q
outside this range will be developed in practice. The stiffness K13 is

therefore assumed constant for constant roll diameters and is calculated

from equation 2.4.15 with § equal to 0.5 tonnes/mm. ..

2.4.4 Parabolic component of pressure distribution ,fg

The parabolic component of the work/Backup roll pressure distri-
bution is determined from the difference in the profiles of the adjacent

work and backup roll faces and the roll stiffness.

/3 = Kalyy - vpyl - 2.4.17

substituting for Yo and Ygy with equations 2.4.9 and 2.4.15 respectively,

_ K13
(1 - K. + Kz)

/% [Kap + By -K)qg+E QR +EJ+C + CB] 2.4.18

2.4.5 Uniform component of pressure distribution q

The levél of the uniform pressure between the rolls can be
determined by considering the equilibrium of the forces acting on the
work roll,from the strip and from the backup roll. (The weight of
the work roll is negiecfed as it is typically less than 0.50/0 of the

total roll force).



4 /OF 4 /Osw
= 2pw +

2qF + + 2J

w 92 /osw Jd 9 /B

or q=p-+ + - - — - 2.4.19
F 3F F 3

Substituting for /°B from equation 2.4.18,and rearranging gives:

Q- ! ol - K3 K13 Y 2Kyg K )
5|sF

. +[2K13(K4 - Kl) ] F 3(1- K, + Kz) ,3(1 - K + Kz)_j

3(1 - K + K2)

[c, + cB]' 9.4.20

F 3(1-K5+K2)J 3(1—K5+K2)

1 2K 2K
. J[ 13 %7 -l 13

or,

a=K,p+ K15/°S + KT+ 1{17(0w + Cp) 2.4.21

q can now be eliminated from the expression for /OB by combining

equations 2.4.21 and 2.4.18. Then,

/o 3K1:3 ] [K ' ( K)w
B—[3(1—K5+K2)+2K13(K4—K1) I S N

[ AK, - K )w (X, - K.)
4 1 4 1 -
+ K6+....__...._....__ /g-i- K7+..__....__ J+CW+CB 2.4.22

3F F

or,

/P = Kygp + K g 2 + Ko7 + Kpg(C+ Cp) 2.4.23
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2.5 Work Roll Flattening

Two expressions will be derived for the parabolic component of
the work roll flattening. Firstly the flattening caused by the
parabolic variation in roll force /‘% aione will be considered, and
then the flattening caused by the uniform roll force distribution p.

The total flattening is the sum of these two components.

2.5.1 Flattening due to the parabolic component of roll force /aé

In an earlier analysis of strip shape'9 it was shown that there
was a strong correlation between the accurate rollvflattening and the
flattening, given by Hertz's theory, between two infinitely long
cylindersls. The theory was applied to discrete sections of the roll
over which it was assumed the pressure was constant. This method
however neglects the interaction, due to shear, between the sections.
The effect of neglecting the shear stresseé is small except where
the rate of change of force is high and hence the results were
reasonable except near the strip edges wher; the force drops to zero.

When considering just the parabolic components of roll force,
which is zero at the strip edge, there is no sudden change in force
and the Hertzian model willvgive satisfactory results. Since the
loading is parabelic it will be assumed that the deformation will
also be parabolic and it is therefore only necessary to derive an
expression for the flattening at the roll centre where the force per
‘unit length is /OS' Then Hertz's theory states that the flattening

of the roll is,

(1-v2) [1 ( D.E )
A =2pR ——— " |~ 4 1n(1.25 2.5.1
e A 2,2(1 -V %)

This expression for roll flattening is unsuitable since /aé can

be negative indicating that the force is higher at the edge of the
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strip than at the centre. In such a condition the ;xpression will
contain a negative square root. The maximum likely variation of °s
is from zero to = 0.5 tonnes/mm, a graph of Al against /4% for a

typical roll diameter is shown in figure 24a2. It can be seen that A

1
is very nearly linear with respect to /Cé. Equation 2.5.1 can
therefore be replaced by:
il
Al__ K21/‘% 2.5.2

where K21 = 0.155 mmz/ionne for a roll diameter of 584 mm.

2.5.2 Flattening due to uniform roll force p

The Hertzian model éannot be used for the uniform component of
force as it will ignore the sudden change in force at the strip edge
and this is responsible for a significant change in the roll flattening
near the strip edges. In the full shape model derivation an influence
function was derived for the deformation on‘the surface of a semi
infinité solid caused by a uniform pressure applied over a rectangle,
section 1.5. In this case a uniform pressure’is applied over a
rectangle equal to the arc of contact by the strip width. The
flattening at any point across the roll is given therefore by
equation 1.5.3,

1 .
- X + + ((x + 1)% + a2 /2
W(x) = ?E—-—-)- 2 a lnlz b) (( b) )

o6 I.(x ~b) + ((x-1b)%+ 32)1/2-]
F(x'+ b)2 + a2)1/2 +.a“o
+ (x + b) In 1

L((x + 12 4+ 0272 _ o]

(x - b)2 + a2)1/2 + a-.z
(u-bﬁ+a%vﬁ_aj

- (x - b) In

where 2b is the strip width w

and 2a 1is the arc of contact
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The variation in the flattening across the strip width for a uniform roll
force is showm in figure 24b. We shall assume that the parabolic component

of flattening &, can be approximated by 150/0 of the difference between

2
the flattening at the strip centre and at the strip edge. (This parabolic
approximation which ignores the edge effects is also shown in figure 24b).

Changing this percentage will alter the fit of the simple model results

to the full model results. Then,

by = 15(W(o) - W("/2))

Therefore
) 2 1 1
.15p(1 —'Q) w/é + (7 /4 + a%) /é w o+ <w2 + az) /2
g = ————42aln - 2aln
w w2 2 1/?
anG -/2+(" /4 +a a
. 2\l . 1
Kw/4+a2)/2+a ,"v2+a2)/2+a
+ w 1ln 5 I - w 1ln I 2.5.3
(SO RCIN B I VO
or A2 = K22p 2.5.4
By combining equations 2.5.2 and 2.5.4 the total parabolic
component of roll flattening can be written as
Bp =K21/"S +Kyop 2.5.5

2.6 Transverse Distribution of Stress

In section 1.6 equations were derived for the transverse distri-
bution of stress at the entry and exit of a stand and between stands
at a distance greater than one strip width from any stand: This
last distribution being equal to the strip shape. The stress distri-

butions are functions of stand entry and exit thickness and slip
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distributions. The method of giﬁplification Adopté& here is to
apprpximate all these distributions by parabelic profiles, again
fitted over the central portion of the width of the strip ignoring
the rapid changes at the strip edges. In this way simple expressions
for the parabolic parameters of the stresses are obtained.

The equation for the stress distribution at the entry to a stand,
assuming symmetry about the strip centre line, is derived in section 1.6
as,

hiH(l + fi)

a. =E - - 1 +Q' . 2-6-1
* bHi(l + T)

where H, h are vectors of entry and exit thickness

- f is the vector of exit slip
Qr is the shape vector produced by the previous stand
and x denotes the mean value of x

By approximating the variable distributions as parabolas the equation

can be rewritten as

=]

(h + sz)(l + T+ £.2)
o, =E - P _—1p +Qp 2.6.2
(H + Clz)(l + 1) .

=t

where Cl’ C,y fﬁ and QP are the magnitudes of the parabolic

2

approximations to the variations across the strip of

H, h, f and Q respectively.

2
2x
and z = (—) s X is the distance from the strip centre line
w

Rearranging equation 2.6.2 using a first order approximation to the

. L, . .
Binomgal expansion gives

di=E{(_1_%—?—)- (1+C2/Ez)(1—Cl/ﬁz)(1+?+fpz)—1 +Q'p

2.6.3
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Expand, neglecting multiple of small terms,

1 C2 C1 -
0. =B{e—o |1+ “/hz- /Hz+T+fpz|-1)+Q'p 2.6.4
1 (1 +7) :

Finally, since <K 1, the parabolic component of the entry stress

distribution at a stand is

C2 C1 .
01 =E{ — - =+ fp +Q'p o 2.6.5
h B

The equations for the exit stress distribution (1.6.9) and the

shape (1.6.10) can be simplified in a similar way to yield:

Parabolic component of stress,

gE/c. c.\ .
o =E _(._2_._1)-f- 9.6.6
2 i \h e P

h H

Parabolic component of shape,

Hfc C | V RRE
E\i B

2.7 Exit Slip Variation

The slip at the exit of a rolling stand .is a function of .entry
and exit thickness and stress and the coefficient of friction. It
is assumed that the coefficient of friction is a constant across the
strip and the transverse variation of the thicknesses and stresses
are small enough to enable the slip equation to be linearised. Then

the parabolic component of slip can be expressed by,
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or fp=F101+FC+Fc+F4c 2.7.1

2 V2 ¥ Y391 p2

Substituting equations 2.6.6 and 2.6.7 for Upl and cp2 and rearranging,

o= AQ' -7-
£ =A C +A, C,+A,Qp , 2.7.2

p

where A1 [Fl - E(.:.ig + _-;-)J [1 - E(F3 - F4)]-1

F_ + B[S _‘*_)][1-E:(F-F)]"1
) Iiz+ (E +E z 3~ ‘4

2

&)

.
i
=)
&
= |

.
i

= * Ty - B(r, - )]

2.8 Roll Force Variation

The parabolic component of roll force /‘% can be obtained in a
similar way to the parabolic component for slip in the previous section.
oP oP P OP

=—C, +—C, +—0_+ —o0
/g oH 1 dn 2 301 pl 302 p2

or /g = P, c1 + P, C, + P, °p1+ P, op2 2.8.1

(Coefficient of friction and hardness are assumed constant across the

strip).
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Then by substituting for ¢ 1and %ﬂzand rearranging we obtain

p
‘ PE PE PE PE
peefr -l L]
LI i R E &
+ fP[E(Ps + P4)] +PQ'p 2.8.2

Finally, substituting for fp from equation 2.7.2

/% =8, Cl+A,C,+A O | 2.8.3
P3E P4E
}where A4 = P1 -—-— AIE(P3 - P4)
H h
P3E P4 EH ( )
A =P_ +—— 4 +A E(P_-P
5 2 T i B 2 3 4’ -

>
!

. A3E(1>3 - P4) + P

2.9 The Simple Shape Model

It is assumed that the exit thickness profile is equal to the
roll gap profile; that is variations in the elastic recovery across

the strip are ignored. The exit thickness profile, C_,, can therefore

2,
be expreésed as a function of the original (ground) profile of the
work rolls, the deflection due to bending and shearing of the work
rolls, and the flattening of the work rolls against the strip.

An expression for the bending and shearing deflection in terms

of roll force p and /OS’ the roll bending jack force J, and the work
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and backup roll crowns Cw and C_, can be obtained b& eubsfituting

for q and /OB in 2.3.20 with equations 2.4.21 and 2.4.23. Then

Yy = (K8 + K9K14 + K10K18)p + (K11 + K

Kis + K K19) A5

+ (K12 + KK o+ K10K20)J + (KgKl L 28)(c +C ) 2.9.1

An expression for the exit thickness profile 02 can now be written

by combining equations 2.9.1 and 2.5.5,and substituting the roll crown

(expressed over the strip width). A factor of two must be included

to account for the upper and lower rolls.

w

- ? 1 - -

C, = 2[K23p + B g+ By I + K p €+ K Cp CW(F)
Ky /5 Kzzp]

Finally subsfituting equation 2.8.3 for /‘% and rearranging

K,qp + K25J + 1«126(:w + K27CB + (K21 + K24)A

0.5 - (K21 + K24)A5

c

_ C1 + (Kzl + K24)Aéﬂ P
2 - .

2.9.2

_ ]
whe?e K23 = K23 + K22
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Then by substituting for C. in the shape expfeésion, equation 2.6;7,

2
a simple algebraic expression for the parabolic component of strip

shape is obtained.

HFK239 +Kyod + Ky €+ K Cp+ (Byy + K24){A4CI + (B, + K24)A_6§avp)

h n(0.5 - (K21 + K24)A5)

The coefficients K23 to K27 are complicated functions of mill
dimensions and the strip width. For any particular mill the dimensions
are constant and the only variable is strip_;&dth. The variation of
each of these coefficients with strip width for a particular mill is
shown ih the graphs in figure 25. It can be shown that all five
curves are closely quadratic and therefore each of the coefficients

can be represented by a law of the form

2 . j
K.1 = Alw + A2w + A3 i = 23-27 i
where the coefficients Ai are chosen to give a good least squares fit E
|

to the actual curves. For the mill dimensions used in figure 25 the
i
!

actual equations are:

K,q = —0.275 * 1079 w2 + 0.546 * 1073 w - 0.218

K,, = -0.088 * 1678 +% 4 0,271 # 1073 w — 0,112 |
K, = -0.875 x 107" v* + 0.812 * 1078 w — 0.208 * 1072 ;
K, = —0.475 * 1070 % - 0.217 * 1073 w + 0.082 - 2.90.4

K_ - 0.025 * 1079 w2 - 0.232 * 107° w + 0.002

97 =
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A siﬁple algebraic expréssibn has been derived'fbf the parabolic
component of strip shape. It is interesting to compare this with the
complexity of the block diagram for the full shape calculation shown
in figure 2. It should be emphasized that the simple expression is
not a substitute for the full model since it is only valid for
symmetric conditibns and only models the parabolic component. This
component is particularly important in mill scheduling studies,
which will be discussed in the next section, and in designing

certain feedback shape control loops.

2.10 Model Verification

The shape distributions computed from the full and simple models
for two different widths and two different jack forces are plotted in
figure 26. The difference in the full and simple model results is
due mainly to the sudden change in stress near the strip edges caused

by the work roll flattening in the full model.

2.11 Shape Sensitivity

An understanding of the behaviour of shape to variations in the
available controls assists in the design of scheduling algorithms and
shape control schemes, both of which will be discussed in later sections.
Because the full shape analysis derived in Chapter 1 is iterative,
senditivities of shape to any other variables can only be obtained
numerically. The simple expression for the parabolic component of
strip shape, equation 2.9.3, can however be differentiated to yield

expressions for the required sensitivities as follows.

Sensitivity of shape to roll force:
Q H
0 K,

_ 2.10.1
op BlE(0.5 - (K, + K24)A5)




The coefficients K2$ ana K24 are funcfiops of width which can be
approximated by the quadratic equations 2.9.4. The sensitivity of
shape to roll force is therefore highly width dependent and the form
of this dependency is shown in figure 27. As the strip width decreases
the rolls tend to bend more easily because the strip acts as a pivot.
For very narrow widths however the sensitivity tends to decrease
because the effect of bending over the narrow portion at the centre
of the rolls is small. As the strip width increases and more of the
roll width is in contact with the strip, the resistance to bending
increases and the sensitivity again decreases. The sensitivity is a
maximum for about 1000 mm wide strip.

Sensitivity of shape to jack force:

Q-
O
==]N]

K
5_ -F - 25
J b [h(0.5 - (11:21 + K24)A5)
Since K25 has a similar width dependency to K23, the variation of

this sensitivity with width is similar to that described above.

Sensitivity of shape to roll crown:
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CHAPTER 3

Tandem Mill Scheduling

In a tandem cold rolling mill, which can consist of up to six
stands, the strip is successively reduced in thickness at each stand
as it passes through the mill. At each stand the force required to
reduce the strip is applied via the rolls by screws situated in the
top of the main frame,or by means of hydraulic actuators usually
situated below the bottom backup roll. To assist in the reduction
process the s;rew position and motor speeds are adjusted to maintain
the strip in tension between the stands. The problem:pf scheduling
is concerned with choosing the'proportion of the overéll reduction
to be carried out at each stand, the levels of interstand tension,
the crown to be ground on the rolls at each stand and, if available,
the level of roll bending jack forces required for good‘shape.

In practice scheduling policies are usually based on past
experience and trial and error. These procedures are often adequate
particularly when backed up with experienced manual interventions
and long runs of standard products. However in certain extreme cases
when the product is very variable or mill werking is erratic, so that
the thermal conditions never reach a steady state, it is imporxrtant to
have an understanding of the physical process underlying the scheduling
behaviour.

The basis of most existing scheduling policies is said to be to
maximise throughput, no account being taken of strip quality. The
problem then becomes one of choosing the reductions and tensions so
that at any speed the ratio of the power required to the power
available, is the same at all stands. With this approach the shape
of the strip produced is completely‘ignored, both in the final product,

where it could lead to scrap material, and at intermediate points
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through the mill where it could cause operating difficulties and
expensive delays. Shape is particularly important on the nose of
each coil during threading. If the nose becomes buckled it is
difficult to thread it into a stand and roll damage can occur.
Clearly the question of throughput cannot be totally ignored and on
an existing mill some acceptable compromise must be made between
throughput and strip quality. When designing a new mill however the
power requirements for each stand should be computed for the ideal
scheduling policy first,and this information used when designing the
motors. For the discussion which follows we shall ignore the power
requirements and investigate scheduling from shape considerations
only.

The shape produced by a stand can be considered to be the result
of three factors (1) the transmission of shape produced at preceding
stands, (2) the effect of roil deformation (bending, shearing and
flattening) and the initial ground camber on the work rolls, and
(3) the thermal camber on the rolls caused by the friction heating
in the roll gap. It is convenient to investigate separately the
behaviour of each of these three factors to changes in schedule before

combining the effects.

3.1 Shape Transmission

The effect on the shape produced at one stand of that produced
at the preceding stand can be demonstrated by referring to the simple
expression for the parabelic component of shape (equation 2.9.3)

developed in Chapter 2.

Qp:E

=g N}

or ’ ]
H[(Kgsp + Ky d + Ky o€+ Ko Cp o+ (K, + Ko JA Co+ (K, + Ky )AQ'D)
h(0.5 - (K21 + K24)A5)

|
=)o
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Differentiate with respect to Q'p, then

o Qp il (B, + Ko )AL
h

— _E
. | =05
20'p h&\" (Kgy + Kpg)Ag

If this Sensitivity'is evaluated for a typical schedule, values of
approximately —-0.54 are obtained. This implies that the magnitude of
the shape produced by one stand will be reduced by a half as it passes
through the next stand, and the sign will be changed; +tensile stresses
at the centre of the strip leaving one stand,will cause compressive
stresses at the centre after the next stand. (This sensitivity has
been verified numerically using the full shape model, a value of -0.6
was obtained).

It is interesting to also investigate the transmission of gauge
profile through a stand. The effect of the entry profile C1 on the

exit profile C  can be found by rearranging equation 2.9.2,

2

\)
Kyp + Ky J + K, 0+ K Cp o+ (K, + K24)Q]

0.5 ~ (K, + Ky A, !

[ By + Ep Ay

c, =
2
0.5 - (k,, + Ky )A,

C

1 ¥
3.1.2
or

C. = D1 C1 + D

2 2

By inserting coefficient values into the first term it is found that
the minimum likely value of (K21 + K24)A5 is 44 and the expression

can therefore be reduced to

A
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If the equations forA4 and A5 from equation 2.8.3 are inserted, and

small terms are discarded it can be shown that
E .
H

2

crowns and shape from any previous stand. However if typical values

The second term D, is a function of roll force, jack force, roll

for these parameters are inserted it can be shown that D2 is very émall,
less than 0.002 mm, compared with strip crowns which are typically at‘
least an order higher. Hence to a first order the strip profile at

the egit of a stand is approximately equal to the profile at the entry
reduced by the reduction ratio. Hence the ratio of strip profile to
thickness remains approximately constant through'a mill. (This

transmission of strip profile has been verified experimentally as

reported in 9).

3.2 Roll Deformation

The effect of schedule changes on the roll deformation can again
be investigated using the simple shape model. The controls available
at any one stand for modifying the shape via the schedule,are reduction
and entry and exit strip tension. However none of these controls has
a direct effect on roll deformation. The effect is via roll force
and we shall therefore study the effect of roll force changes on roll
deformation.

Ideally a schedule is chosen so that the roll forces developed
at each stand together with the total crown on the rolls, due to
grinding thermal expansion and roll wear, are such that strip with
perfect shape is prodﬁced. Whatever the roll force developed at a
stand, there is a value of roll crown which, to a first order at least,

will cancel out the effects of roll deformation and cause strip with
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perfect shape to be rolled. The relationship between this "crown for
perfect shape" and roll force can be derived by equating equation 2.9.3

to zero,

(K23p + K25J + K%Cw + K27CB 4. (K21 + K24)A401 + (K21 + K24)A6§2') C

h(0.5 — (K21 + K24)A5)

3.2.1

and rearranging for roll crown,

C =D, +D,P 3.2.2
w

1 (h .
where D, = —<{=1T0.5 — A - - -
P AR (Byy + Bpg)AglC) = Kpud = KppCp = (B, + Ky JALC
26 ,
_ '
(K21,+ K24)A6§2 }
b 23
, =
26

Hence fhe relationship is linear and this has been confirmed by results
from the full model.

The value (Dl) of Cw when p = 0 represents the roll crown required
to produce perfect shape when the roll force is zero. Clearly this
is not a practical situation since Vith zero roll force there is no
reduction, however zero force implies zero bending shearing and
flattening (assuming the jack force is also zero). The roll crown -

must therefore be the negative of half the exit strip crown. (There

=)
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is a factor of a half as the strip crown is produced by the top and
bottom rolls). For simplicity let us assume that the jack force J,
the backup roll crown CB,and the shape from the previous stand are

all zero, then D, in equation 3.2.2 can be rewritten as,

1

C, h h

=4 .5 == A+ A .2,
D, 5 = (K21+K24) =A + A, 3.2.3

Koo H H

A4 and A5 are the sensitivities of roll force to entry and exit gauge
respectively. These sensitivities are always opposite in sign and of

similar magnitude so that

h
=A_+A -0
" 5 4
- 2
From equation 2.9.2: K26 = K26' _ (_)
F
2
w
If this is evaluated for different widths it is found that (-)
F.

always dominates. Equation 3.2.3 can therefore be rewritten as,

=’

1

|

(o)

P2
[==1 N =y |
- —

| =
vm

Pf?

X

o

-

2
F
The factor (-) is required since the strip crown C1 is defined over
w

the strip width w, and the roll crown Cw is defined over the roll
width F; both crowns are assumed to be parabolic. In section 3.1

we have shown that the exit strip crown is approximately equal to the

entry crown reduced by the reduction ratio. Therefore

2

F
DT - 0.5-] C, 3.2.5
w o
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As indicated by the full expression for D1 in equation 3.2.2
the intercept is also dependent on the roll bending jack force dJ,
the backup roll crown CB7

It should be noted that since none of these parameters appear in the

and the shape from the previous stand Q'p.

slope D2, changes to any of them will have the effect of simply
shifting the zero shape line of equation 3.2.2 vertically.

The slope of the 'zero shape line',

is dependent on strip width only. If the approximate representation

of K 3 and K. given in equation 2.9.4 is used, the slope becomes

2 26

_0.257*10"6\-;2 + 0.546%10 % — 0.218
D = : 3.2.6
2 _0.475%10 %2 — 0.217%10 %y + 0.082

Using this expression a graph has been drawn for slope D2 against
width, figure 28. It is easier to understand the behaviour of this
slope with width if the horizontal axis of the zero shape.graph is

changed from specific roll force p to total roll force P, where,
P=p*w 302-7

Then the slope becomes

1K

D' o-o 23 ' 3.2.8

W'K26

This new slope is also plotted in figure 28 and the result is close
to a straight line with negative slope. This implies that for a given
total roll force more bending and shearing occurs for narrow strip

than for wide strip,since a larger crown is required to cancel the
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effect. This is obviously a sensible practical result as when the
complete width of the roll gap is full of strip, bending mmst be
severely inhibited. |

To summarise, the relatioﬁship between roll force and roll crown
for zero shape is a straight line. The infercept on the roll crown
axis is dependent on thé‘rdil-ﬂending jack force, backup roll crown,
and the shape from the previous stand but wﬁen these parameters are
zero the intercept is equal,and opposite in sign,to the strip crown.

The slope of the line is dependent on strip width only.

3.3 Roll Thermal Crown

As the strip passes through a roll gap heat is generatedvboth
by the work done in the.reduction and by the frictioh forces between
the strip and therrplls; this heat flows partly into the ?61ié'an&
partly into the strip. Heat is extraéééd from the rolls outside the
roll bite by coolant sprays acting over the complete roll width and
as a result a thermal crown is deveioped across the rolls. (The
heat flows are shown in figure 39) . |

The magnitude of the thermal crown is affécted by entry and exit
strip thickness and tension, strip hardness,and the coefficient of
friction. If all these variables are fixed and only exit thickness
is allowed to vary a graph can be drawn of thermal camber against
roll force. A model of thermal crown has been developed in [21]
where it is shown that the heat generated Q, is a convex function of

the specific roll force p ie

Q - L(n+l)/nl

The relationship between roll crown and the heat generated is developed

in [22] where it .is also shown that the difference in crown from the



roll centre to the roll edge is approximately independent of strip
width and bears a linear relationship to the amount of heat generated.
The crown profile however is a function of strip width, changing

from near parabolic for narrow sirip,to near quartic for wide strip.
As we are concerned here only with the parabolic components of the
distributions, the equivalent thermal crown is width dependent.

A graph of the total roll crown (thermal plus ground) is shown
in figure 30. Clearly the intercept on the vertical axis is equal
to the ground crown as the thermal crown must be zero for zero roll
force.

In the previous section the effects of changes in roll force,
and roll bending jack forces on the roll crown required to produce‘
strip with perfect shape,were analysed. If this "zero shape" line
and the thermal crown curve are plotted on a common pair of ax;%,
points of intersection between the lines will indicate perfect shape
conditions; that is the actual roll crown indicated by the curve is
equal to the crown required for perfect shape, indicated by the
straight line. Figufe 31 shows such a graph drawn for particular
entry and exit tensions, strip hardness, strip width, strip crown and
roll crown. Under these conditions perfeet shape will be produced at‘
roll forces A and B. However as shown in the previous section the
zero shape line can be shifted vertically by changes in jack forces,
also the thermal ecrown curve can be shifted vertically by changes
in ground crown, it is therefore possible tb obtain perfect shape at
any roll force.

There are three regions on the graph. For forces below A the
thermal erown curve is above the zero shape line. The roll crown
generated at these roll forces is therefore greater than that required
to produce strip with perfect shape: Strip with full middle shape -

will be produced. In the second region, roll forces between A and B,
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the crown required is greater than that generated: Strip rolled
under these conditions will therefore have wavy edges. Roll forces
above B will produce strip with full middle since, as with the first
region, too large a thermal crown will be generated.

The diagram described is a valuable tool for understanding the
behaviour at any one stand of a mill as the schedule parameters are
varied. To design an optimum rolling schedule requires only that the
thicknesses, tensions, ground crowns and jack fqrces be chosen so that
at the operating roll force for each stand the two curves are, ideally,
coincident. Unfortunately the calculation of tensions and reduction
at a stand is an iterative procedure owing to the interdependency of
roll force, reductions and tensions. Also each stand cannot be treated
in isolation because of the requirement to meet a specifiéd mill exit
thickness and because of the transmission of shape through the mill.

A method of obtaining an optimum solution to this problem is discussed

in the next section.

3.4 Solution of the Scheduling Problem | -

The problem is to derive schedules for given mill entry
thicknesses and strip widths which will enable strip to be rolled to
the required thickness with good shape at the mill exit,and which
will also maintain good shape throughout the mill.

As the mill entry thickness and total reduction are specified
it is rareiy possible to produce strip with perfect shape at all
stands of the mill. The one exception is when roll bending jacks are
available on all stands; shape can then be adjusted independently of
any other mill variable. Even this observation must be interpreted
with caution, since deformation patterns generated from thermal causes
do not have the same parabolic characteristics of those generated by

roll bending and hence perfect cancellation is mnot possible. It is
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assumed that buckling can not occur unléss there are compressive
stresses in the strip. Under rolling conditions the strip is under
tension between the stands and hence the fransverse stress variation
mﬁst exceed this mean level before buckling can occur. When threading
the mill however the nose of the strip is unconstrained and the
possibility of Suckling is much greater. Whén designing schedules
therefore we are interested in pfoduciné strip with good shape at
intermediate stands during threading and at the mill exit during

rolling.

3.4.1 Mathematical Formulation

Scheduling has been formulated as a non-linear sample data problem
where the states are sampled at intervals of space rather than time.
The sample points correspond to the stands of the mill where the
controls are also specified. It is a two point boundary value problem
as the dimensions and physical properties of the incoming strip are
fixed, as are the mill exit thickneés and tension. The dynamicv
behaviour of the shape, thermal crown and roll force is incorporated
in a sample data state variable description of the mill.

Procedures for specifying the system adjoint equations and the
control space gradient for such a problem are well known. As the end
point constraints are linear, gradients were suitably projected to
obtain constraint satisfactionszS; the projected gradients were then,
used with a conjugate gradient iterative proce&uregé. When formulating
the equations to represent the mill in this way it is convenient to
specify six "states" and four "controls" at each stand. The six
states are:

1) entry thickneés (mm)

2) entry tension (tonne/ﬁmz)

3) roll force (tonne/bm)
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4) shape parameter (tonne/ﬁmz)
5) difference in roll force developed between threading
and running (tonne/hm)

6) thermal crown (mm)

The four controls are:

1) reduction (mm)

2) exit tension (tonne/hmz)

3) roll bending jack force (tonne)
4) work-roll ground crown (rom)

The six states are chosen as mill variables which might be either

constrained or costed at some point through the mill. The change in

roll force from the threading to the rolling condition is required to

calculate the value of shape while threading,from that while rolling.

The reason for tension appearing as both a state and a control will

become clear as the six state equations are derived.

(1)

(2)

The entry thickness at one stand is equal to the entry thickness

to the previous stand minus the reduction at that stand:

i+l i i

The entry tension at one stand is equal to the exit tension at
the previous stand, hence the need for tension as both a state

and a control:

x. =TU: 3.3.2

. In the above two equations sample point i refers to the stand

number.



(3)

(4)
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The roll force at a stand is a complex non-linear function of
several states and controls at that stand, ie. entry and exit
tension and thickness, and strip hardness which is a function
of total reduction. For a state variable formmlation, the value
of a state at one sample point must be a function of states and
controls at the previous sample point. To overcome this the
roll force at sample point i is defined as the roll force at
stand i-l. Therefore,

xi+1
3

= roll force at stand i

To assist in the calculation of gradients in the optimisation

routine the roll force model is linearised17. The state equation

is therefore,

i+l i i i i i

x = A1x2 + A2U2 + A3x1 + A4[x1 - Ulj + constant 3.3.3

States 4, 5 and 6 are similarly defined at sample point i as

being the values at stand i+1.

The strip shape, and hence the shape parameter at the exit of a
St’and

stand, is a function ofAroll force, thermal crown, ground crown,

jack force,and shape from the previous stand. As with the roll

force the function is linearised and, incorporating the equation

for the roll force, 3.3.3, the state equation for shape becomes,

i+l 1 i i i i 1
x, = K1x2 + K2U2 + K3x1 + K4[x1 - Ul] + K5U4

+ KéU; + K7x; + constant o 3.3.4
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(5) The difference in therroll force at stand i between the threading
and rolling condition, rgpresented by'state'5 at sample pdint i+l,
is brought about by the absence of exit tension during threading.
The result is an increase in the roll force and the exit: thickness.
The total roll force change at a stand is due therefore, to the
zero exit tension and to the increase in entry thickness caused
when threading the previous stand. The increase in entry thickness
is a function of the roll force difference at the previous stand.

- The state equation which is derived using linear coefficients of

roll force is therefore,

-

. mA . Aw .
22 (ot |3 |4 : 3.3.5
.S m-A4A, w 2 m-Aw S
4 4

where m is the mill stiffness.

(6) The final state x, is defined at sample point i as being the work

6

roll thermal crown at stand i~-1. Thermal crown is a non linear

22

function of stand entry and exit tensions and thicknesses , but

as with roll force and shape a linearised expression will be used
to assist in the gradient calculation. Therefore,
xé+1 = le; + BZU; + Baxi + B4(xi - Ui) + constant 3.3.6

The practical aspects of the scheduling problem dictate that the
endpoints of some of the states are constrained. At the first sample
point the first state, Xs represents the mill entry thickness. In
finding the solution to a normal scheduling problem this would be
specified, however it could be left free to obtain fhe optimm mill
entry thickness for a required mill exit thickness. The mill entry
strip tension (x2 at the first sample point) is fixed at zero on most

mills, but it could be controlled in the same way as the other tensions.
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The remaining states are constrained to zero at the first sample
point (i=1) to give the correct initial conditions at stand 1.

The last sample point corresponds to the mill exit and hence
the finished strip. The definition of states 3 to 6 dictates that
there shall be one more sample point than there are stands, in order
to accommodate the values of these states at all stands. Becaunse of
this, at the last sample point the first two states represent th;
entry thickness and tension to an imaginary stand after the last
stand. However, by definition, these must be equal to the thickness
and tension at the exit of the previous stand, ie the final thickness
and tension between the last stand and the coiler. The twb states
are theréfore fixed, the thickness for obvious reasons and the tension
to facilitate satisfactory coiling of the strip. At the last sample
point states 3 to 6 represent the values of certain mill variables
at the last stand. The roll force (x3) is normally constrained by
considerations of surface finish and shape. It is desirable that )
the final strip shape (x4) shall be zero. If roll bending jacks are
installed it is possible to force the shape parameter to zero and
hence X, would be fixed. The reméining states are free, their final

value being chosen to satisfy a cost function. The constraints are

summarised in table 3.3.1.

3.4.2 Cost function

The unconstrained controls are chosen to satisfy the endpoints
and to minimize a cost function. A quadratic cost function was
derived from practical considerations of the mill and the strip.

The cost function is divided into three sections: (1) A cost on the
shape during threading each stand, this has a weighting which increases
through the mill to account for the increased 1ikelihéod of buckling

as the thickness decreases. (2) A cost on the tension which must be
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State‘

[OPp——.

Sample Definition Endpoint condition
Point
1 ! First | Mill entry thickness Constrained or free
2 First | Mill entry tension Constraiped or free
(normally zero)
3 First Constrained to zero
4 First Constrained to zero
Meaningless
5 First Constrained to zero
6 First Co;strained to zero
1 L;st Mill exit thickness Constrained
2 Last Coiler tension Constrained
3 Last Last stand roll force Constrained
4 Last ‘Final strip shape Constrained or free
5 Last Difference in roll force between Free :
threading and rolling on the last stand
6 Last Thermal crown on last stand Free

Table 3.3.1 Summary of Endpoint Constraints
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held to within limits imposed by consideration of skidding in the roll
gap or loss of tension,with expected disturbances. (3) A cost on
thermal crown. If a schedule is designed with a large crown on any
stand, the loss of that crown after a roll change may lead to unacceptable
strip being produced. The form of the complete cost function is,
5
Cost = _

1 1
i, a4l i i+1n2 5Tiv1 [T+ T
K x + S'x +K. ¥ |x S
1 % 5 s & 1%
i=1 i=1 2

5 i j\e
+ K3 . ; (x6 - x6) .
i, j=2

if;

where S' is the linear coefficient of shape to roll force
at stand i
Ti is the lower tension limit at stand i

T; is the upper tension limit at stand i

A digital computer program for'solving the scheduling problem
has been written for use on a CDC 6400 computer. Examples of the
results obtainable are shown and discussed in reference 25. Scheduling
policies derived in this way are now in use on two five stand tandem
cold mills.

In theory the scheduling problem can be solved using the above
technique without the physical understanding of the complex interactions
between roll force, shape and thermal crown developed in sections 3.2
and 3.3. This understanding is however necessary in order to design
the best form of cost function which has a strong influence on the
results produced. The physical understanding also assists in inter-

preting the results from the optimiser in terms that can be appreciated

by practicing engineers and plant personnel.
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CHAPTER 4

Shape Control

The primary aim of any shape control scheme is to produce strip
with an acceptably low transverse stress variation at the mill exit.
The shape produced at one stand is improved by a factor of
approximately 0.5 as the strip passes through the next stand
(section 3.1),'bence in most cases only the conditions at the last
two stands have an& appreciable effect on the mill exit shape. The
shape at all intermediate stands must however be good enough to aveid
either high edge stfesses, leading to strip breakage, or manifest

shape which could produce roll damage.

4.1 Means of Control

The foregoing analysis has shown that the means of affécting
the shape produced at any stand are (a) by changing tﬁe roll deformation,
(b) by changing the roll thermal crown aﬁd (e) by changing the entry
strip erown.

In section 3.2 the ratio of strip crowﬁ to thickness was shown.
to be approximately constant through a mill irrespective of schedule
or jack forces, this can therefore be discounted as a possible control.
Roll deformation can be controlled by jack forces, and reductions or
tensions causing roll forces changes. Thermal crown is alsoe affected
by reductions and tensions but also by changes in the roll coclant
distribution across the roll width. The suitability of each of these

controls will now be discussed in more detail.
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4.1.1 Roll bending jack forces

The most direct way of altering the roll deformation is by the
use of hydraulic jacks situated at the ends of the rolls. There are
three possible configurations for these ‘jacksz-6 (a) between the work
and backup rolls, figure 32a, (b) between the work rolls, figure 32b
and (c¢) between the backup rolls, figure 32c¢c. All three configurations
have essenfially a parabolic effect on the strip shape being produced
although for very wide strip, relative to the roll barrel length, the
effects tend to be restricted to the edges of the strip. The degree
of control available for work and work / backup roll jacks tends to
be similar as both operate by bending the work rolls. The backuﬁ roll
jacks have much less effect on shape because of the large diameter to
length ratio and bending stiffness of the backup rolls.

All three jack configurations affect, by different degrees, the
thickness of strip being produced which is generally taken to be the
thickness at the strip centre line. This nominal thickness can only
be affected therefore by changes in ﬁork roll flattening and inter
roll squashing at the centre line, changes in the deflection of the
backup roll relative to the screws, and changes in the reaction on
the screws (S in figure 32) causing a change in the frame stretch.

The first three of these effects are small and thickness changes afe
dominated by changes to the reaction S.

Consider the fofces acting when jacks are applied between the
work and backup rolls (figure 32a). An increase in jack force from J
to J + AJ will cause an increase in the total roll force P(= Zp)
because.the rolls are bent towards the strip at the strip edges, and
a decrease in the inter roll force Q(: Eq) as the work rolls are bent
away from the backup rolls at the roll ends. Therefore the equilibrium

equation of the work roll is,

J+ AF = (P + 4P) = (Q + Q) 4.1.1
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To maintain equilibrium the change in P and Q must cancel the change

in J, hence equation 4.1.1 can be rewritten as
J+A =P +1nAJ - (Q - (1~ n)ad) 4.1.2

where O si.n <1

Considering the equilibrium of the combined work and backup roll,

AS = AP
therefore
AS = n AJ _ 4.1.3

In the case of work roll jacks (figure 32b) the change in jack force AJ

is again shared between the changes in P and Q,
J+ A = (Q +4Q) - (P + AP) ' 4.1.4

and again to maintain equilibrium

AP:—-n' AJ

and Q = (1 - n') AJ
where 0 £ n' £ 1
For equilibrium of the backup roll

AS = AQ
Therefore, AS = (1 = n') AJ _ ' 4.1.5

An increase in the backup roll jack force will cause an increase in Q

as the roll will bend about the screws towards the work roll. Therefore

AS = AT + AQ 4.1.6
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The increase in @ will depend upon the relative stiffnesses of the
stand frame and the backup roll bending.

Comparison of equations 4.1.3, 4.1.5 and 4.1.6 shows that change
in the screw reaction and therefore in the centre line strip thickness
is much greater in the case of the backup roll jacks than for the
other two cdnfigdfﬁtions. Tﬁe reiative effects of work roliiand:wofk /
backup roll jacks.on the centre line thickness depends on the value
of the constants n and n' and this will depend on the dimensions of
" the folls. For all.mills investigated the work / backup roll jacks
- have been found to affect the centre line thickness the least, however
they do not afford a "mon interactive" control for shape as is often

assumed in the literature.

4.1.2 Roll force

The deformation of the work rolls is highly sensitive to changes
in roll force. However changes in roll force obviously have a direct
effect on the strip thickness and there is no way of correcting for
this. The only situation when roll force can be used as an effective
form of shape control is when the strip is very hard so that the
sensitivity of thickness to roll force is very much smaller than the
sensitivify of shape to roll force; the latter being unaffected bf
the hardness. This condition would apply on the last stand of a 5
or 6 stand tandem mill.

As well as affecting the deformation of the work rolls, changes
in roll force also modify the thermal camber. The sensitivity of
thermal crown to roll force was described in section 3.3 and is shown
in figure 30; as the roll force increases so does the thermal crown.
Changes in roll force therefore cause changes in shape by changing
the deformation of the rolls (section 3.2) and by changing the thermal

crown. Unfortunately these two effects oppose one another; the
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combined effect can be described with reference to the combined graph
of figure 31. For operating roll forces below A and greater than B,
the roll crown (ground plus thermal) is greater than the crown required
for perfect shape (indicated by the straight line) and the shape is
therefore compressive at the centre and tensile at the edges. However
in order to corgect the shape the operating roll force must be cpanged
to either A or B and this will require an increase in one case and a
decrease in the other.

A difficulty of usiné roll force as a control for shape therefore
is that on line it is not possible to know, from shape or roll force
measurements, whether an increase or a decrease in roll force is
required to correct shape in the steady state.

Because the strip thickness is defined at the centre line,
differential roll force (the difference in the roll force at each
edge of the strip) may be used as a control for asymmetric shape

errors.

4.1.3 Coolant spray distribution

The thermal crown developed on the work rolls during rolling is
a result of the balance between the heat input across the strip width
in the roll gap and the heat lost to the coolant. By varying the
intensity of the coolant on different parts of the rolls, the thermal
expansion and hence the strip shape can be modified. This form of
control has not been widely used on mills to date because as yet there
are no instruments available for measuring thermal crown on line.
With the advent of shape measuring instruments, however, it will be
possible to infer the thermal crown from the shape readings and mofe
sophisticated forms of.spray control may be developed to thermally
contour the rolls to correct bad shape. Such equipment27 will be
particularly advantageous in tinplate and aluminium relling where

more heat is generated and the shape tdlerahces are much tighter.



Coolant spray control has the advantage over the other shape
controls discussed that a wide range of roll profiles and therefore
stress distributions can be developed. For exémple, if the strip
entering the mill has a thick band at some position across the width,
shown exaggerated in figure 33, a band of compressive stress will be
set up in the strip after rolling. This cannot be corrected by roll
deformation. However if a coolant flow at that pesition across the
roll is increased relative to the rest ofvthe roll, the inverse
profile can be generated on the roll and the shape corrected.

There are two disadvantages of spray control. On some mills
the coolant and the lubricdnt are combined so that reducing the
coolant will also reduce the lubrication: +this can cause a bad
surface finish to be produced on the strip and rolls. Secondly there
is a long time constant of several minutes involved in changing the

thermallcrown;

4.2 Measuring Instruments

Over the last 15 years a variety of 'instruments have been
developed for measuring strip shape. The instruments can be
conveniently divided into two categories, contact and non contact.

The non contact instruments operate on one of three principles:
a) The reflection of a straight line source of light on the strip
surface28; if the surface is buckled the reflection will not be
straight. Latent shape is not detected by this method. (b) An
electromagnetic measurement, at several points across the strip, of
the amplitude or frequency of vibrations induced in the strip by

some resonator. The amplitude and frequency are both functions of

the local tension and hence are an indication of stress and shape.
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c) Steel changes its magnetic permeability when subjected to mechanical

stress. A measurement of this permeability can be used therefore at

several points across the strip to detect stress changes.
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With the exception of the IHI light scurce instrument which is
useful for detecting the shape in hot rolling where contact instruments
are not practical, the non contact instruments have had very limited
success. The biggest problem is the effect of the large vibrations
in the strip at the exit of a high speed tandem mill, also the
instrument working on the magnetic principle can obviously only pe
used for steel rolling.

Contact instruments work on the prinéiple of measuring the
downwards force at several points across the strip as it passes over
a segmented roll. Two of this type of instrument are now commercially
available; +the Loevy Robertson "Videmon" and the ASEA "Stressometer".
In the ASEA instrument the forces are measured by pressductors, and
in the Loevyvﬁobeftson by the diffefence in pressure at the top and
bottom of gas bearings on which the segments are mounted. The only
apparent disadvantage with igf:type of instrument is the degree of
resolution attainable since the instrument measures the average
‘stress over each segment and the segments cannot be made arbitrarily
thin. This is probably adequate for the central 75?/0 of the strip
width, but the sudden changes in stress possible near the strip
edges due to the work roll flattening (section 1.5) may not be

detected by the instrument.

4.3 Parameterisation

Parameterisation of the shape signal has already been discussed
in section 2.1 in relation to the development of the simple shape
model. The parameterisation choice for shape control is dictated
by the controls available. The two main controls are roll bending
Jacks and roll coolant sprays. The roll bending jacks predominantly
affect the pafébolic component of shape; a parabolic parameter is

therefore required for control of the jacks. The degree of spray



control available varies considerably between mills. On steel mills
rolling sheet material the sprays are typically divided into 3 or 5
banks across the roll and in this ¢ase it may only be possible to’
utilise informaﬁioﬁ:on the parabeolic parameter. On some aluminium
mills however coolant jets at a 2 inch pitch across the roll are
individually controllable. In this case parameterisation may be
unnecessary, it may be more convenient to use the actual output
from thé shape instrument. Lastly it is éonvenient to filter any
asymmetric or "skew" component from the shape reading‘and control
'this by a differential screw movement.

The output from the shape instrument may therefore be

parameterised by a quadratic function,

X x 2
Q =A + B}- - 0.5] +4C |- - 0.5
W w

where A is the mean stress level

B is the asymmetric component

C is the parabolic coﬁponent

W is the strip width

and x is the distance across the strip
from one edge, 0 L x L W

Having chosen a set of suitable parameters, it is equally as
important to adopt a practical fitting criterion. The problem of
choosing an incorrect fitting criterion can be illustrated by
considering a shape distribution with a rapid change near the strip
edges as shown in figure 3a. Suppose the method of fitting for the
parabolic parameter was simply to take the two edge and the centre
values; the resulting parabola is shown dotted. A control scheme
which reduced this parabola to zero would produce the shape>shown

in figure 34b and this may not be the optimum result.

100



101

The best fitting criterion to use may be mill dependent because
it is strongly affected by any edge effects caused by the work roll
flattening. The degree of this edge effect is affected by the thick-
ness profile of the incoming strip as illustrated by the results
shown in 1.10. For the purposes of this control design we will
assume the parameters are fitted by least squares over the central
750/0 of the strip width thus ignoring the edge effects. The edge

effects will be controlled separately.

4.4 Open Loop Control

It is not feasible either mechanically or economiéally to install
shape instruments after every stand of a rolling mill. As the shape
at the intermediate stands is less critical it is sufficient to
provide én open loop predictive form of control.

Changes in shape during rolling are caused by changes in strip
profile, roll profiles and roll force. Any change in strip profile
will tend to be slow except possibly.at a weld. Strip thickness
profile cannot be measured on line and therefore shape variations
caused by this can only be corrected manually from a visual shape
assessment. (Strip profile produced on a hot mill will normally tend
to be fairly constant throughout the length of a coil.) Changes in
roll crown due to roll wear and thermal expansion also tend to be
very slow. Again roll profiles cannot be measured on line at present
and correction must be applied manually. Manual corrections to the
jack forces are indications of the offsets in the strip or roll
profiles. If the applied corrections are consistent therefore over
a long period they can be used to update the crown estimates. Most
of the shape changes along the length of a coil stem from changes in
roll forece which can be caused by changes in thickness or hardness

of tlie strip entering the mill,or by changes to the motor speeds,or
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screw positions resulting from the operation of thickness and
tension controllcircuits.

Changes in roll force are measured by load cells on each‘stand.
Changes in shape due to roll force can therefore be eliminated by a
control loop from the roll force measurement to the roll bending jack
force. The circuit for this control is given in figure 35. The
gain G1 can be obtained from the sensitivities of shape to roll force

and of shape to jack force ie

EQ] del!
G, = fe— R
1 pJldg

Expressions for these sensitivities, obtained from the simple shape

model, are given in section 2.9. Combining the two we obtain:

where K23 and K25 are defined in chapter 2.

It is assumed that both work roll and work / backup roll jacks are
installed so that both positive and negative changes in roll bending
can be effected.

As we have already discussed in section 4.1.1, changes in the
force applied by roll bending jacks will affeet the strip thickness
by changing the frame stretch. To correct for this a compensating
signal must be applied to the screw position via gains 62 and G3
as shown in the circuit in figure 35. The values of these gaiﬁs are
given by equations 4.1.3 and 4.1.5: G2, the compensation for work
roll jacks 1is (n' = 1) and G3, for the work backup roll jacks is -n.
The exaet values of n and n' are dependent on the mill dimensioné
and must be determined from results from the full shape model for

each particular mill.
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4.5 Feedback Control

An automatic feedback control of shape at the exit of all
rolling mills is by no means a necessity. Except possibly at a weld
(where two hot roll coils have been joined to form one coil for cold
rolling) the rate of change of strip and roll parameters will be
fairly slow. Furthermore roll force disturbances can probably be
adequately controlled with an open loop jack force control as
described above. When rolling steel sheet material the thermal crown
on the final stand is small due to a low reduction and in this casé
manual control may well be.adequate. When rolling steel for tinplate
matgrial where the final stand reduction is much larger or when
rolling aluminium, the thermal crown is comparatively large and a
coolant spray control will usually be required to maintain the precise
shape required for these products. In this case the essential
difficulty is that of processing information rather than speed of
response and automatic shape control would seem to.offer real
advantages.

The structure of a feedback shape control scheme is éhown in
figure 36. The readings from the shape instrument will be of the
stress at several points across the strip. These readings are first
parameterised to give signals suitable for deriving the various
control functions. The three control functions are (a) a signal to
the screws to correct for asymmetry, (b) a signal to the roll bending
jacks to correct the parabolic component of the shape and (c) a signal
to the coolant sprays to (1) correct possible components in the stress
distribution which cannot be controlled by the jacks and (2) to change
the thermal crown so that in the event of a long term error, the jack
forces will slowly be reduced; large jack forces promote roll and
bearing wear. Parameters 1 and 2 in figure 36 dre obtained therefore

by fitting a quadratic function to the shape signal, as discussed in
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section 4.3. The third parameter is for the coolant spray control
and assuming that individual jet control is available, the signals
from the instrument can be filtered to remove noise before bei;g fed
" direct “to the jet controls.

Any asymmetric component in the shape is fed to cause a
differential movement of the screws. Since the strip thickness is
defined at the strip centre line, there should be no interferenc;
with output thickness.

The parabolic parameter (2) is fed to either the work roll or
the work / backup roll jacks depending on the sign of the correction
required. As exélained earlier, both of these jack forces will
affect the strip thickness and therefore compensating signals mmst
be fed to the screws.

The coolant sprays are controlled by parameter 3 and also by
parameter 2 fed through ; slow filter to correct long term roll
profile errors by thermal crown changes rather than steady state
jack forces. The changes in the coolant spray distribution are
recorded and used to impfove the on line estimation of the thermal
crown.

Incorporated in the control scheme discussed above are two
loops involving proportional plus integral controllers and the gains
in these loops must be chosen to ensure optimum response. The
problem is more complicated because the gains involved in the process
dynamics in both loops are schedule dependent. Consider the loop
to the roll bending jacks shown in isolation in figure 37. The shape
parameter 2 is fed via the P + I and gain G1 to the roll bending
jacks. The sbape being produced by the stand is then affected via
the jack and process dynamics and after a transport delay the shape
change is measured by the instrument and fed back to the parameterisetion.

The dynamics of the jacks and the instrument will be very fast and
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can probably be ignored. The steady state gains ofufﬁése items wiil
be specified. The process dynamics will also be very fast but the
steady state gain of the process will be highly schedule dependent
and this will complicate the design of the P + I gains. The
schedule dependency has been modelled by the shape analysis.
Therefore by incorporating in G1 the inverse of the process dynamics,
the design is trivialised to that of a loop with unity gain. Th;
transfer required is of jacks to shape and therefore,

as]"l
@G —
1755

I

hin(0.5 — (K21 + 1{24)15‘5

EH K25

where A5 and Ki are as defined in chapter 2.
The compensating gains to the screws are the same as for the open
loop control and are mill dependent. Therefore from section 4.1.1,
(}2:3'—'1

G3 = -n'
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CONCLUSIONS AND FUTURE RESEARCH

The phenomenon of strip shape has been analysed in depth and a
detailed model developed. The relevance of shape to associated
problems in control and scheduling has been investigated. A digital
computer simulation of this model has been developed and results-have
shown encouraging agreement with plant data. The model is iterative
and complex and therefore unsuitable for use on-line in shape control
and scheduling. For this purpose a simple algebraic expression for
strip shape is developed from the full model.

The simple model has been used to explain the complex interactions
at a relling stand which strongly affect the design of tandem mill
schedules. A full procedure has been developed for designing tandem
mill schedules. A shape control scheme has been developed and the
problem of schedule dependency solved using the results of the simple
shape model.

The most urgent piece of future work muét be further experimental
verification of the model. This requires only a fairly modest program
of trials on a mill equipped with a shape instrument, and rolling a.
fairly wide range of product thicknesses and widths.

In order to proceed further with the shape control, two areas
need attention. Firstly the problem of parameterisation choice for
the purposes of dynamic control design needs careful study. Secondly
before coolant spray control can be fully exploited it will be
necessary to develop an accurate model of the effects of coolant
spray patterns on the thermal profile. The theoretical analysis
will certainly nee& the backing of piant trials particularly as the

process contains parameters that are difficult to forecast from theory.
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SYMBOL TABLE

Cross sectional area

- Distance from roll bending jack to end of roll barrel

Half the arc of contact
Work roll crown

Backup roll crown

Entry strip crown

Exit strip crown

Roll diameter

Youngs modulus of elasticity

Half the roll barrel length

l Slip

Modulus of rigidity

Strip thickness

Moment of inertia

Roll bending jack force

Yield stress

Half the distance between the screws
Half the distance between the jacks
Bending moment

Total roll force

Roll force per unit 1engthv

Force per unit length between the work and the backup rolls
Roll radius

Thickness

Distortion energy

Stand entry velocity

Shear force

Stand exit velocity
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Work roll flattening

Strip width

Deflection

Strain

Poissons ratio

Stress

Roll speed

Parabolic component of force between the work roll and the strip

Parabolic component of force between the work and backup roll

Mean valve
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APPENDIX 1

Derivation of the Relationships between Forces Applied,

Stresses and Displacement of an Element in an Elastic Bo@ylg

Al.1 Strain in terms of displacements in two dimensions -

Suppose that a plane body is strained so that all particles remain
in one plane after the strain, and refer all displacements to a pair
of axes fixed relative to some particles of the body; (see figure 38)
Let the origin 0 be situated at one of the particleé of the body, and
if that particle moves, 0 is supposed to move with it. Let the axis 0X
pass throﬁgh one other given particle of the body and axis 0Y be
vperpendicular to OX or in the plane of the particles.

Let the particle situated at (x, y) before the strain move to
(x +u, y + v) after strain. Both u and v are functions of x and y.
We shall investigate the change in the size and shape of the element
which, before strain, was a rectangle dx by dy.

In figure 38 the rectangle CDHK is displaced relative to the axes
to C'D'H'K'. The displacement of C has components u, v.

Now u = f(x, y)

The point D moves a distance u + Su in the direction of the 0X axis
and, since the coordinates of D are x + 6x,

u + bu = £f(x + 6x, y)

hence bu = f(x + bx, y) - f(x, y)
Expanding by Taylors series and neglecting terms in 6x2 and higher
powers gives:

M (x, y) du

bu = bx = — bx

dx ox
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Since 6u is the increase in length of the face CD relative to the 0X axis,

bu du
the extensional strain Ex = — = b_.
bx x

Similarly the extensional strain in the direction 0Y,

ey -2

dy

The shear strain for the lines C'D' and C'H' is, by definition, the

whole change in the angle at C;: therefore shear strain = ¢% + ¢£.

ND'

?& —

C'N

ov

ox

du
and = —
2 by

v  du

Shear strain = — + —

dx 9y

Al1.2 Strain in terms of displacement in 3 dimensions

Let a particle originally at (x, ¥ z) move to (x +u, y+v, z+ w).
The displacements parallel to the x, y plane are the same as if w were
zero, therefore the extensional strains parallel to 0X and 0Y and the
shear strain perpendicular to the axis 0Z are as for the two

dimensional case.
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For three dimensions therefore the three extensional straims are

du ov ow
— 3y —— and —

dx dy oz

and the three component shear strains are

(bv aw) (bw bu) (bu bv) »
3 ay/ \ox 92/ \¥ -

For convenience, denote the extensional strains by a, 8 and ¥ and

the shear strains by a, b and ¢

du v oW
6 =—  Ape—  ¥=— Al.1
ox dy oz '

(bv bw) (bw du ) du )v)
a=|l—+— ], b=f—+—], ¢c=f —+— Al.2
dz Oy dx 2z (aY ox

Al.3 Stress strain relationships

In figure 39 one view of a small rectangular block under

tensional stresses Pl’ P2, P3 and shear stresses Sl’ 82 and S3
is shown.
_ P1
The strain in the direction of Pl =0a = — due to P1
E
P2
- V-2 due to P,
B
P
- \)—3 due to P
E 3

where Y = Poissons ratio

E = Youngs modulus
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1
Therefore o = — [P, — V(P + P_)] ' A1.3
E 1 2 3
S, -
and similarly g = E [P2 - (Pit+nP3)Jv‘ _ : ‘ Al.4
1
- - [p, - v ~(I.>1 + Py)] Al.5

The shear stress and shear strain are related simply by the modulus

of rigidity G,

v oW :
S, =Ga=G—+— - Al.6

1 2 Oy

S, =6b . - Al.7

and S Gec A1.8

Al.4 Tensional stresses in terms of strains

By addition of equations Al.3, Al.4 and Al.5 and rearranging

we get

. .
(0 +8 +¥) = EK(a +8 +¥) Al.9

P. + P +P_=
273 oy

where K is the bulk modulus
If a block of dimensions 0x, by, 0z is strained in three directions,

the new volume becomes,

5x(1 + a) * 57y(_1 +8) *6z(1 + ¥) = ox0ybz(1l + @ +8 +¥)
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neglecting products of a,8, and %. The ratio of the increased volume
to the original volume, that is the volumetric strain (A), is (o +4 +5).

Therefore equation A1.9 can be rewritten,

P1+P + P_ = 3KA Al.10

By combining equation A1.10 with Al1.3, Al.4 and Al.5 respectively,

expressions for Pl’ P2, and P3 in terms of the strains can be found:

[ v du

P, = 2G A+ / XJ

1 1 -2y 2

P, = G 2. vy A1.11
1 - 29V

v oW
P_=2G A
3 [1 -2y ¥ /3z]

u v Bw
whereA=a+/5+X=é—+?—+__

2x dy oz

Al.5 Relation between stresses and external forces

Cpnsider the block shown in figure 40 with its centre at x, y, 2
and external dimensions b6x, by, 6z. Let thevbody force per unit
mass acting at x, y, z be X, Y, Z. The mass of the block is/"bxéybz,
where ©is the density. The body force on the block has components
therefore of,

Xpoxbydz

YLoxbybz

ZPoxbyd z
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Suppose also that the element has component accelerations of

fl, f2 and f3.
Let Pl’ P2’ P3 and Sl’ S2, S3 denote the stresses at (x, ¥, z).
Then
BPI 1
PI" = P1 + == , - bx
2x 2
P 1
and Pl' = P1 + —1(__ bx
dx 2
hence P." - P ' = — 8x Al.12
1 1 3x
3s3
Similarly, 83" - Sa' = — by
dy
25,
82" - Sz‘ = == b2z
oz

Therefore the total force acting in the direction 0X as a result of

the stresses on the faces of the block is

OP ds ds
1 ex|oyez +(_3 6)6x6z +(—2 6z)6 %3
(ax )y > 3w )

dP.  dS. S :
=( 1,3, 2)6x6y6z A1.13
Ox oy Oz
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Hence the equation of motion can be written as

9P, 35, IS,
bxbydz + + +PX| = mass * acceleration =/06x6y6z * f
: 1
: dy  dz
0P, 23S, s,
or + + +PX = pof Al.14
= % 5 T/ A '
Similarly,

3P2 le bs3

Sy 5 e /NN o
JP. dS. S
an(li 323 + bx2 +By1 +/OZ =/0f3 ' Al.16

Also the accelerations can be expressed in terms of the displacements

b2u é2v bzw
f = — f, = — f, = — Al.17
1 2 2 2 2

Ox dY 3 Oz

Al1.6 Equations of motion in terms of dispiacements

By combining equations A1.6 to A1.8 and Al.1l with equations Al.14
to A1.16 and rearranging the equations of motion can be expressed in

terms of displacements:

G dA
2

e — + GY 0 + 22X = pf Al.18
(1 - 29)| 3x !
r ° b—A- + GV2v +PY =/af2 Al.19
L(l - 29M oy

G [da -
————)]— + G72w +/4Z = f3 A1.20
(1 -2V dz
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APPENDIX 2

Displacement on the Surface of a Semi Infinite

19

Solid due to a Pressure Applied at a Point

The expression for the displacement dw caused by a pressure p
applied at a point can be derived from the general equations reléting
the forces applied to, the stresses in, and the displacements of, an
element in an elastic body. The relevant equations, which are derived

in appendix 1 are,

a) Equations of motion:

G |dA 5
+ GV u +/0X =/0f1

1 - 29|3x

G [dA 0
—_—+ GV V+/0Y= f A2.1
1 - 29}y 7

G oA
T 2“]32 + G’Vzw +/°Z f/’f3

du v Iw
where A = volumetric strain = — + — + —

dx dy 0z

u, v, W = the displacement in the x, y and z directions
XY Z = body forces
fl, fz, f3 = acceleration in the x, y and z directions

R
n

density

]
1

modulus of rigidity

2 2 2
2 AR +é
d3x>  dy° Do
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b) Stress strain relationships

2G J A+ azi]
1 1- 2y ox

a-!
il

v o
P_ = 2G A 4+ — A2.2
2 1- 29 dy '
oW
P3=2G A 4+ —
[1- oV 2z
PLAN A4
Sl = G — + —
dy oz
[?u. aw] '
S = Gl— + — A2-3
2 z 0Ox _
I du
53=G—+—
dx oy| -

where Pi are the normal stresses
and Si are the shear stresses
In this particular problem the accelerations are zero and* there

are no body forces. Equations A2.1 therefore reduce to:

oA 5

— +(1-29)v%u =0

X

oA 5

b_+(1-29)\7v=0 A2.4
y

>a

—+(1-29) 93 =0
dz
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By differentiating equations A2.4 with respect to x, y and z respectively

and adding the results we get a differential equation for A alone ie
V2A = 0, (Laplaces equation) A2.5

There. are many known solutions to Laplaces equation, among the simplest

and most useful are the spherical harmonics:
If r2 = x2 + y2 + 22 A2.6

then it can be shown that
l-1=o0 o v A2.7
T i :

Differentiating equation A2.7 with respect to x gives:
1
2 72(_) -0
ox r

or V2[—E (-1-)] =0 | - A2.8

Repeating this process 1 times gives
1
v 3(1) o
dx \r

Similarly it follows that,

3 V3 (}
Sl 3 3

) =0 -~ A2.9
r

1, m and n being integers.
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Therefore one solution of the equation

7F = 0 | A2.10

r

1 m n
is 95 =-B_.A--;—ﬁ(l) | Az

Let % be any solution of equation.A2.10; then

if A =2(1- 2Y) of | A2.12
Dz

A satisfies A2.6 and substituting this into A2.4 gives

&
v2u = - 2 é ¢ A2o13
oxdz
A particular integral of this is
UMW = = ZM ' A2-14

ox.

since

2 2 2
3525

RTINS Y.
dx° dyDx  dztx  dzdx

<
(34
i
N
IQ/
Y
N
|

Z V2 .é_d_ 2 é—é
a X a be
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but from equations A2.10 and A2.11, V2 M =0
dx

2

A more general solution to A2.13 is
w=-23. A2.15
dx
where 7P -is also a solution to Laplaces equation
ie V27y1 =0

Likewise the values of v and w corresponding to the assumed value of A

are
Y4 -
= - —— A .1
v z Ay + "VZ 2.16
D)
W=_za_¢=1,é | A2.17
z
1p2 and }é also being solutions of Laplaces equation.
du IV ¥w
Now 4 = volumetric strain = — + — + —
dx oy 2z

! Inserting equations A2.15 to A2.17 gives

-é—é+ B.?'/1+ >%+bh’3
dz dx dy dz

A =




M W Y

therefore + +
dx dy dz oz
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_A....b_d: (3 - 4v) .A_.ﬁ A2.18

dz

For convenience let ‘;";'3 = ‘},3'+ (3 - 4d)¢ then equation A2.18 becomes

2% . 2 _

+ 0
3x dy dz

andw:—z-a—¢+ (3—4\))¢ +7V3

oz

A particular solution is obtained by putting

3y p) D)
hess V2='a':' 7"3=3—:

Substituting these values into A2.19 gives

vy =0

A2.19

A2.20

therefore 7Y is another solution to Laplaces equation. The equations

for u, v, w and A become

-_-.?.l‘-/—zlg
ax ax
V=-b—?V—Z.M
3y 2y

w=;)—}-/—zé-é—zd+ (3—40)¢

A=(2_4\7)_3_4.

&/
N

A2.21

A2.22
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By substitution into equations A2.2 and A2.3 the stresses corresponding

to these displacements are,

| 2 2
_2G[2\? M—zbq +QZ
Oz x

Py = 32
2 2 )
p) 2
P2=2G[2\7_}_z_di_ z%;,é_yg A2.23
. 3 34
P, = 2G((2— 2\7)5;- zbz2 +a_zé':

2 2
S =2GD7" - zAﬂ +(1-2~0)§-‘é]
V" opde  dyda dy

2 2 :
S =2G3L—z2¢+(1-2'9)b—-d

A2.24
2 dxdz dxdz dx

2 2
3 dx¥y Iy

Now consider the case of a concentrated normal force W applied at the
origin on the surface of a semi infinite elastic solid bounded by z = O.

On the surface (z = 0) the shear stresses S, and S2 (see figure 41)

1

mst be zero. Referring to equations A2.24 this condition is satisfied

if

bélv o - (1- 2V A2.25

z

(it is assumed that é_’; is finite over the surface).

2z ’



Then

2 2
Sl=-2Gz‘)¢' ' Sz=-2GzA¢
dydz 0xdz

and the stress normal to the surface,

z P

P3 = 25}[:bﬂ‘ -z ézd;
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A2.26

A2.27

Now P3 must be zero all over the surface except directly under the

force W at the origin. To satisfy this condition it is necessary that

§g§ shall contain a factor z.

o

Suppose fé

then M:-z— )ﬁ =—-1—+——-

dz r3 : sz r3
and
2 2
y z X Zz
S1 = - 6G 5 S2 = — 6G 5
r r
3
z
P3 = = 6G-—3
T

A2.28

A2.29

These stresses are all zero therefore except possibly at the origin

where r is also zero.
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Let S equal the resultant of the two component shear stresses, then,

z2 :
S2 = 36G~2(x2 + yz) —5)
T
: . 5
2 2 2f%
5% = 36G r -5 A2.30
N .
because r2 = x2 + y2 in the plane z = 0.
2
z
Therefore S=26 G--Z A2.31
T

which acts on the surface along a radius vector from the origin,
hence the stress system is symmetric about the z axis.

In order to verify the choice of ¢‘equa1 to I/E we must find
the resultant force at the origin and this must be equal and opposite
to the applied force W.

Consider the equilibrium of a small c¢ylindrical portion of the
solid having the z axis as its axis of symmetry. Let the faces of
the cylinder be in the planes z = 0 and z = C and let the radius
equal a (figure 42). 1If we assume that a/b is infinite while a itself
is finite, then the resultant of the shear stresses S acting on the
curved area is zero. The resultant of the stresses P3 on the circle

of radius a must therefore be equal to -F.

a
F=- / 2n,ad/P3 A2,.32
0

where /42 = x2 + y2.
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But, from A2.29,

z3 C3
P =-6G—==-60G
3 5
r5 (lpz + 02) /2
Therefore
a Y 03
F=127n6G J — = dp
0 2 2:°/2
(p" + )
_ C3 a C3
=12=n G ' =4 n GJ1 - 3 A2.33
3%+ c®) /3 (a® + ¢?) /2
-
but since /a = 0
Equation A2.33 becomes
F-4x6 | | A2.34

But we require that F must equal W, the applied force. Therefore we

should have taken

W 1

.« - ' A2.35

The displacement w in terms of ﬁf is given by combining equations A2.21

and A2.25,

w=2(1 _\))¢ -z .éﬁ A2.36
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By inserfing the expression for ;d from equation A2.35, the expression

for w becomes

Y ,.2(1 -V) 22
- + — A2.37

w =
47 GL T b o

which at the surface becomes,

¥ (1-v)
2n G b o

Equation A2.38 gives the displacement at any point over the surface
of a semi infinite elastic body caused by a single force acting at
the origin. We require an expression for the displacement at any
point on the surface caused by a pressure applied over some area. _
Suppose a pressure of p per @it area is applied at some point in the

plane z = 0 denoted by the co ordinates x The force on the

1 Y1

area dx dy1 is therefore pdx, dyl. From equation A2.38 the

1’

displacement at some point x, y in the plane caused by this force is,

(1 -9) pax; dy,

2t G R

dw = A2.39

where R is the distance between the point at which the force is

applied (xl, yl) and the point at which the displacement is

measured (x, y) .

i x1)2 + (v - yl)z-
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APPENDIX 3

Solution of the Integral

q 1
1= J 1n[A+ (A% + Y?) /‘ﬁdY
P

Integrate by parts:

let u%ln[A+(A2+Y2)1/2] dv = dY
-1
Y(A2+Y2) /2
du = 1 dY V=Y
A+(A2+Y2)-/2
q q 2
I=[Y 1n(A+(A2+Y2)1/2>] -/ ldY T
P P [A+(A2+Y2)‘/2J£A2+ J/Z
=I1-I2
1 Y2 ay
12= S

1
P A2+Y2+A(A2+Y2)/2

let Y=A tan z therefore z = tan ! 1/A

dY = A sec2 z dz

when Y

|
o

= '{;an_1 p/A'_.

Y=gq z=tan_1q/A=d

1l
-]
N

|
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Therefore

a A2 tan2z.Aseczzdz
I =/ T
c A2 + A_2 tan2 z + A(A2 + A2 tan2 z) /2

d A tan2 z 5902 z dz
I =/ :

1
c 1+tanzz+(1+tanzz)/2

2
Using the identity tan~ z = secZ z - 1, this reduces to

d .
12=Af (sec z = 1) sec z dz
c
d 5 d
=A / sec“dz-A J sec z dz
c c
d
= Altan z - 1n (sec z + tan z)]c
Therefore

/' 1n [A + (A2 + Y2)1/2]dY -

E{ ln(A + (A% 4 Y2)1/2)Jq _ A[tan z - ln('sec z + tan Z)]tan-l(g)

p tan—l(llg) :
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APPENDIX 4

The Variation in the Stress Distribution at the

End of a Plate

The various aspects of the problem can be approximated by the
behaviour of the simple structural model shown in figure 4320. The
model consists of three rods commnected by two thin plates, thickness t
width b. Quantities felating to the centre rod are denoted by a
subscript ¢ and those of the side rods by a subscript s. At-the ends
of the rods, x = 0, they are attached to a beam of moment of inertia I.
Quantitieé related to the beam are denoted by subscript B. The entire
structure is assumed to be of the same material with modulus of
rigidity G and Youngs modulus E.

The forces in the body are assumed to be in equilibrium,

therefore
oF (x) + F (x) = 0 ' A4.1
8 c
and, considering a small element in one of the side rods,
where T(x) is the shear stress in the plate.
For equilibrium in the beam, the force in the beam at y = b must

equal the difference between the force applied and the force in the

side rod at that point,

Fp = F - FS(O) A4.3
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The total strain energy U is the sum of the strain energies in the

two side rods, the centre rod, the two plates and the beam,

2 L 5 1 L ) bt L o
U= S F “dx + S F “dx + — J 17dx
AEO0 ° 2AEO0 € 2G 0
. [+
2 b D) ’
2EI 0

where M is the bending moment in the beam,
M= Fp(b - y) 0Ly <D

Substituting for Fc’ T and M gives

' 1 2 L o Eb L /dF 2 h3 9
EU=(—+—— J P Gx +— J [—21dx +— [F-F (0)]° A4.5
A, Ajo - ® Gt 0 \ dx 31 S

A solution to this will be found by using the principle of least work
which states that the strain energy of any system must be a mininmum.
A solutioen for F can be found therefore by differentiating

equation A4.5 and equating to zero.

1 2 L Eb L /dF\ /aF
OFU = 0 = — + — | / PO6F dx + — J | —|8&[—S)ax
A A_jo s s Gt 0 \dx/ \dx

3

- b_ (F - FS(O))() Fs(o) A4.6
31

which by integrating the second term by parts becomes:
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L 1 2 Eb sz Eb dFs
Sl — + \F - — 25 8F dXx + = ¢ —— 6F (L)
0 A Al ®% Gt ax s Gt | dx 8
s c x=L

Gtidx

b3 Eb [aF -
-{—(F-F) + —|--E 6F (0) = 0 A4.7
31 S S
0 .

Since the variation 6FS is arbitrary, FS must satisfy the differential

equation,

sz
8

A

with the following boundary conditions:

_K.°%F -0 ‘ A4.8
1"'8 .

aFr
either —— = 0 or 6F =0atx=L " A4.9
d(f_) .
2b
K, 'sz
and either — — F or 6F =0atx=0 A4.10

——— F =
K, a(%/en) s 8

Gtb A ’ 3I [ Eb AS
where K1 =)/ — (1 +2-2 3 K2 = —3 1 +2—
EA A b GtAS A

c

The two possible boundary conditions at x = L in A4.9 correspond
to a fixed end (T = 0; from equation A4.2, because relative end
displacements are prevented) or prescribed end forces. The two
possibilities at x = 0 (A4.10) correspond to the case where the end
forces in the rods are determined by the presence of the beam (as in

the present problem) or are prescribed.
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Consider the case of a fixed end at x = L, the solution is

F (x) pe-Eqx/(2b)]
F (x) = - ¢ | 1+ oK (L = x)/2]
) 2 1+K,+ (1- K2)e-[K1(L/b)J- .}

Ad.11

and from A4.2

(2bt)T(x) = 1 - e"[Kl(L - x)/1] Ag.12
1+ K2 + (1 - K2)e~K1(L/b)

Equations A4.11 and A4.12 give the solution for the variation
of the forces F2 and tbe shear stresses T along the length of the body.
By observation, if the structure is sufficiently long, that is, if

La 1
then Fs(x) and T(x) will be approximately independent of F and hence
of y provided that x is not too close to zero or L. The exact
variétion of Fs(x) and‘T(x) in the regions close to the ends will
depend on the parameter Kl' Since K1 will have the same effect at
both ends, the equations can be simplified by considering only the

region close to x equal zero, and setting L to infinity. Then

equations A4.11 and A4.12 become

1 F ~(K,x/(2b)]
F(x)===F(x) =——— e A4.13
s 2 °© (1 + K2)
'FK -[K.x/(21b)]
and T(x) = 1 ™/ : Ad.14

(1 +K2) )
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We require a solution for a solid structure of uniform cross section
(a plate). So that the behaviour of the structure considered above

will approximate that of a solid plate,

3G
then K1=2 —_ %2.2
E
1
Therefore Fs(x) = - - Fc(x) _ FeL2-2 x/(2D)] = .91 btt(x) A4.15
2
F (x) ‘ .
or S - g[2:2 =/(2b)] - A4.16

F

A plot of equation. A4.16 is shown in figure 17 and this shows that
the effects of forces applied to the end of a plate may be considered

negligible for x 2 2b.
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Figure 29. Heat Flow into and out of a Work Roll.
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Figure 31. Scheduling Diagram.
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Figure 38. Strain in Two Dimensions.

Figure 39, Rectangular Bloclk Under Tensional

and Shear Stresses,
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Figure 410. Relation Between Stresses and External
Forces. ' ' ’




Figure 41. Concentrated Normal Force on the
Surface of a Semi-Infinite Solid.

Figure 42, Small Cylindrical Portion of a Solid.
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Figure 43. Simple Structural Model for
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