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ABSTRACT

I
QO
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deriving models for ordered categorised

riked, This procedure relies on the
existence of an unisrlying continuous variable which can be modelled
and whose error diszribution is known up to a few parameters. VWhen

the model is linzar and the error distribution is logistic, the model

for the category prokabilities is cumulative logit linear or cumulative
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not the error variance

The logistic =od2l for paired binary data is extended to the

many categoury <ase. Some results concerning mixtures of binomial
random variables zrs proved to help derive estimators of the pafameter
cf interest in tha pressnce of nuisance parameters. Two such estimators

are described and simulation methods are used to investigate their

i
properties. 2An sxa—sle is given to show how these estimators can be
used to compare sevaral contingency tabl
The concernis oI cermutation invariance and palindromic invariance

-

izte between models for nominal categories
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are introduce
and nmodels which zre sultable for oxdered categories.  Log linear

rnodels are shown o e suitable for nominal categories cnly. An



exanple is given of a palindromic hierarchy of models for square
tables and Stuart's (1933) distance vision data are analvsed using

one of the models in this hierarchy.
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‘LChaEtar 1

INTRODUCTION

‘Ordered categorised data play an important rqle in a wide variety_
of areas where the measurements or observations are based on.éubjective
assessments. - Examples in psycholdgy include the subjective assessment
cf cne's mental attitude to work, sport etc. In human geégraphical
studies the categories mayvbe social classes which are usually
considered‘to be orderad, or locations which are unordered. In the
pﬁarmaceutical industry, drugs for the alleviation ofvtension,
depression, etc.>have their effects measured on an ordered~scale;

e.g. no eifect, slight improvement; marked improvement, complete
‘recovery. In medicine and in the‘epidemiology of chest diseases,
patients ars assessed fér the severity of diseass on the basis of the
doctor's assessment of the patient's'radiograph; Thegse assessments
are usually on an ordered scale.’

‘bespite the wide variety of applications there has besn relatively
little consideration given to the problem by statisticians. Some
notable éxceptions includa Pearson (1901) who devised numerical scales
for colours to help explain coat-colour inheritance in thoroughbred
horses. Fisher (1963), pp.289-295, used an optimum scoring procedure
in a designed experiment to investigate the reaction of blood samples
tested with different sera. His procedure is optimal in the sense
that the scorss chosen maximise the mulitiple corxelation coefficient,
or equivalently they maximise the treatment sum of sguares for a
given total sum of sgquares. Various other optimal scoring procedures
have appeared in the statistical-psychological literature since then.
The main problem with Fisher's'method is that the estim;ted écoresA

may not be monotone and severzl non-linear programming procedures have
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baen devised Lo cops with this'groblem (Bradley et al. 11962), ﬁishisato
{1975) and others). Other scoring methods in common use include

integer scoring (Jacobsen, 1975) and scores derived from the normal
distribution (Wise and Oldham, 1363). These scoring methods are not
considered further in this thesis since (1) the scores are often
difficult to interpret and (ii) the distributions of derived test
statistics are very complicated.

The point‘of view taken in this thesis is that ordered categorised
data arise from a pértition of an underlying continuum. This was
. essentially Pearson's view and led him to develop his tetrachori
corralation cosfficisnt for the 2x2 contingency table. Consideration
of the underlying-éontinuaus variable ooviates the problem of choosing
category scores. Ianstead the parameters Qf»intarest are the category.
boundaries. These ideas led to the work of Ashford (1959a, 1959b),
Snell (1964), Plackett {1965), Clayton (1974) and Simon- (1974). Their
work is éiscussad mqre.fullf in Chapters 2 and 3. For a brief review
see Fienveryg (1975).

Much of the work in this thesis is seen as a bridge betwsen the
standard metheds for the analysis of binary data (Cox, 1970) and the
ﬁsual linear models for the analysis of continuous data. The models
suggested for ordered categories often parallel the more common log
linear mcdels which séem to dominate the mcodern statistical literature
on contingency fable analysis. In general, log linear models do not
take account of category order, and ars therefore more suited for
analjsing categories on a nominal scale.

‘The methods daveloped in this thesis concern prcblems where the
dependent variable is on an orderad categorised scale. The explanatoxy

variables may be continuous or on an unordersd scale, i.e. a blocked
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structure. A problem of interest to Bayesians arises wheﬁ the
dependent variable is continuous but there is prior information that
the block effects are ordared. Thus, 1f there ;re three blocks whose
effects are known to be ordered, we can draw strength from the obser—
vations in blocks 1 and 3 to make inferences about what might ﬁéppen
in block 2. The problem of Qrdered explanatory factors .is not
considered further in this thesis. |

To construct a model for discrate observed data we first construct
the model for the data as if the data were continuous, and use the’
associated model for the discrets data. Chapters 2 and 3 deal with
the liﬁear model including the two sample problem, regression,,randomised
block structures, etc. Some associatad nonparametric tests are derived
in Chapter‘é. These include the Wilcoxon test, the sign test, etc.
The remaining two chapters deal with‘thevproblem of matched pairs.
This is éarticularly iﬁporﬁant in longitudinal studies of pneumoconiosis .
and other dissases whare the same.individualsvare examined:a; intervals
of a few years.

Each chapter contains an example to demonstrate. the models and the

oblens involwv in interpreting the parameters.
roble involved in int rat t ramet
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THE TWO-SAMPLE PROBLEM

2.1 ‘General model for ordered categories

The models for ordered categorised data described in this thesis
can be considered as derived from models for continuous dat;. Thus,
to derive a modzl for ordered categorised data we first express the
model for the data as if it were continuous, anﬁ then use the
associated model for categorised data. Suppose;,for éxamplé; we
have a model for the continuous random variable Yi which states thaﬁ
Yi has deasity £y - ﬁi) where £ is known. The discrete catego;ised

random variable Xi is defined by

X, = Jif 951 5_' <9y (3= 1,0.0,%) 2.1
where.{ai} are a.set of increasing real numbers, usually unknownf
Hence, using (2.1.1), there is an éssoaiated model for the discrete
random variable Xi' For convenience of notation we take eo = -0
and Sk = o,  where k is the maximum value of the discrete variabie X.
Equatién {2.1.1) defines a censoring mechanism with unknown
censoring péints: It is clear that there is lass information in the
discrete variables'{xi} than in the continuous variables‘{Yi}. An
attemptvto quantify this information loss is madé in 2.6, The'{xi}
can also'be regarded as a partial ranking of the'{Yi}. Some optimum
rank tests for partially and completely ranked data are derived in

chapter 3 for testing hypotheses concerning location and scale.

For the two sample problem, a common model for continuous data

~
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X - . . . o ., 1
is that observations in the first sample have density E( )
whereas observations in the second sample have density

Y‘UZ

f(~3——) where £ is known but u Mo and ¢, the common scale parameter,

1

are uﬁknown. All observations are assumad to be independent. It is
clear from (2.l.lf that, if‘{sj} are unknown, there is no scale
information contained in‘{xi}. Similarly there is no informatién on
absolute location. The best we can hope to estimate is a scale-free
rarameter such as (ﬁz‘— ul)/c. lIt is convenient therefore, to set

the scale parameter 0 = 1 and to set ul = O or ul'+ U, = 0. It is

possibkble to do valid tests of the hypothesis H : using an
4 YL .

1

‘estimate of the scale-free quantity (uz - ul)/c. The conseguences of

)

unequal scales within groups are considered in 52.7 and §3.4.

‘There renains the guestion of_choosing.the density £ which will
usually not be known. For binary data,vthe'logistié and probit. or
inverse normal responsa functions are most popular. In §2.2 it is
argued that there is little difference between these two response
funétions, and since the logistic dénsity is the simpler, it is chosen

in pfeference to the normal density.

2.2 ‘The Logistic Model for Ordered Catagories

In‘most cases the underlying density, £, is unknown, and an
appropriate density must be ‘chosen. The usual choices are the logistic
and normal densities since thess have readily interpretable location
and scale parameters. Tukey (1970, Ch.29) describes an alternative
class of suitable distributions called "folded A-powers" of which the
logistic distribution is a special case. For binary data, methods based
on the’logistic and the normal distributions are . .callad logit and probit

analysis respectively. Some comparisons of logit and probit analyses are
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given by Cox (1965), Chambers & Cox (1967) and Berkson (1951). These
studies show thag tha two medels are virtually indistingﬁishable. The
logistic. function is mathematically tﬁe simpier of the two and is
usually preferred for the analysis of binary data. It is shown in this
thesis that some propertiés of ﬁhe logiétic_model for binary data can
éasily be extendeq to the many catagorx situation.

Thevsimplest model for the two sample problem is a direct analysis

of the normal theory model.

fi

exp(y +

N

f(y! sample'l) A)/{l + exply %_%-A)}z,

it

f(y] sample 2) exply - %;A)k{l + exp (v - %-A)}z.

- The associated model for the discrete variable - X is most easily

expressed in terms of ithe cumulative probabilities'Ylj for

r YZJ
j=1,...,k~1 by

. . 1. ’ PO A
pr (X f_]{ sample 1) = Ylj = exp(ej f iﬂ)/{l + exp‘aj + EﬂA)}i
_ (2.1.1)
. : L 1 B
< = = — — — -
pr (X ~_3! sample 2) Y2j exp(ej Eﬂ)/{l + eXp(ej 5 AY}

The model (2.2.1) is conveniently expressed in the cumulative logit

linear form

l_.l
[}
~
-~
}.J
1
-2
’—J
(WS
g
et
{
@D
+
S
>

(2.2.2)

lh{vzj/(l - yzj)}

i
@
i
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An equivalent version of (2.2.2) is

(1 -
(1

Y, b L)
L) - 23) = b (2.2.3)

Y2j

where eA is the odds ratio of the event X < j in the two populations.

The cumulative logit linear model for ordinal data as expressed in
(2.2.2) is the direct analogue of the more common log linear models for
nominal data which 2o not take account of tha dategory order,

Snell (1964) considers a more general version of the model (2.1.1)

5
o
®
H
(1
ot
o8
0]
3]
{
i
o
¢4
Q
H
{1
.

than two samples. She uses approximatevlikelihood;
‘estimators using estimated category scores in addition to the exact
maximum likelihood estimators. We consider this gene?alised model in
Chapter 3, vFor a sinilar model based on the integrated normal response.

function see Ashford (195%a, 1959b). and Aitchison and Silvey . (1957).

2.3 Ths Likelihood Ecuations

For a general contingency table the log likelihood is

L = 3 nij ln(ﬂij) + const. {(2.3.1)

where the surmation. extends over all the indices, nij is tha cell count
for the (i,3j) cell and {ﬁi.} are the cell probabilities. For the logistic

J

modal dascribed in §2.2 thess cell probabilitiss are given by

. + = = -
15 372 -1 A) 1,5 7 V1,517
1, 1 -
Toy = r(ej > A) - F (6 -3 = 2,5 7 Y2,5-1
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where F(x) = exp(x)/(L + exp{x)}. The unknown paréméters are
{e }, 3 =1,...,k-1 and A.

A useful property of the logistic function is that its derivatives
ﬁ‘(x), FP"{x} etc., are expressible as polynomials in Fkx). Tha firstv

two derivativas are

F'(x) £x) = F){L - F)}
and ‘

F"(X)

li

£100) = FEIML - FE)HL - 2F ()}
‘The derivatives of the log likelihood (2.3.1) with respect to the
unknown parameters are

a8 (4,9}
3A

i
N
I

n,, m {1 - y_ . Vg
;O3 13 13 l: 5

and

2%(4,8)
—_—————— = (n

30, 15 7 Prge1) 1y

! )

L- Y1j) tonyy - n2j+1)72j(l~' Y25

(j = 1""Ik—1)v

In the above derivatives, Ty and Yij gre'considered as functioné of
8 and A. Except when k = 2, the likelihood eguations cannot be solvéd
analytically. They are, however, easy to solve iteratively using ﬁhe
estimates in §2.4 as startihg values.

In many cases, interest centres on small to medium values of A,
Formally, therefore, we construct a null hypothesis HO : A = 0 which

can be considered as the point of division between two gualitatively

different possibilities, &4 > 0 and A < O. In an exveriment we may wish
E T Y
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to know rxoughly how many obsexrvations are necessary to discriminate

betwean these two possibilitiss. To do this we nead an estimate of the
oy

variance of A, the m.l.e. of A, In particular we nesd an estimate of

this variance for small wvalues of A.

The elements of the information matrix IAé; evaluated at A = O,

are
2
3”8% n "
-E ( 2) = ZZYj(* yj)(nj +Wj+1)
3
*E(‘iz-%“) Za, = a)y L=y, +T, ) G=1 k-1)
3830 2 P T Yy T3 T Taen? T R
2
9% 2 2.1 1 ' . '
~-E ( 2) = ny, (L - v.) (F“’+ ;”"“0 3 = 1,...,k=1)
%8 ) SR T TS |
j
and
a2 | , o |
Bl = vy g (- YO -y ) S, (o= L.l ke2)
SRS A % R I R E5 |

Y. =F(.), T, =Y. - Y. =%n ., n =ZIn . and
Qhere Yj‘ (Gj), 3 Yj Yj-l, . j nlj, By ; n23 an
nl = nl‘ + n,. All other second derivatives are zero.

L :
The asymptotic variance of A is given by the (1,1) element of

IAG‘ To evaluate this element, partition IAQ as follows.

, b
[ < a’ 1
1, = [
A9 !
L }
2 a2 LR
where ¢ = —E(é—&ﬂ is a scalar, d = —E(g—&¥0 and J = -E( 3 % ), all being
2 ~ A28 T
A - ~ 30238

evaluated at A = 0. The matrxix J is in fact a symmetric Jacobi matrix

which is more readily recognisable in its standard form 91 where
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‘Qherer = diaé{Yi(l - Yi)} and J, is tri-diagonal.

\
e
1 2 2
2onin o n
2 2 3 3 .
1 N
J. = ° - %"' ot = ™
= H "
1 3 3 4 \ ,
“ i
“ N i
. AN !
~ \\ §
N >
~ N L2 :
et ~ p
H
1 ‘1 1 :
- s T - .’;T- "i
-1 k-1 Xk |
\ 7

The .inverse of Jl is a Green's matrix G

, (Karlin, 1968, pp.112-115).
A similar pair of matrices is considered by Roy & Sarhan (1356). The
elements gf%) of G, are
ij ~1
i3 ﬁ

so that. the elements {gij} of G(=J ) are

l/{nyj(l - yi)} (i <3
ij
kly{nyi(l ~ yj')} (1> 3.
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After considerable algebraic manipulation it can be shown that the

»
asymptotic variance of A is given by

- nTn? k-1 -1
var(a) - = [—= I vy,({d -y, + 7, )] +0(A). (2.3.3)
' n J 5 RS T e

Soma alternative expressions for (2.3.3) are given in §2.4. Consideration
of terms in A shows that the coefficient of A in the expression for

-
var (A) depends on ny 0, Thus, when the experiment is balancad

{n, =n.), (2.3.3) is correct to first order in A, as can be se=n by
> .

1

considering the symmatry of the prcoolem.

“

>

Some alternatives to A are considered in §2.4. These are shown

“to be fully efficient when the trus valua of A is small.

2.4 'Two Simple 0dds Ratio Estimators of A

In this sectiﬁn two estimators of A which can bs computed‘directly
from the data, are considsred. Thése are shown to be approximately
unbiased and asymptofically fully efficient when 4 is small. They can
be used as estimators in their own right or they can be used as starting
values in an iterative procedure to f£ind the maximum likelihood estimators.

- The third formuilation of'the'logistic model {2.3.3) is in terms of
 the odds ratio
Ty = Ty A

— = e (3 = 1,...,k=1.)
Yzj (1 Ylj)

This formulation suggests an estimator based on a weighted combination

" of the k -~ 1 sample odds ratios. The two estimators considered are

>t
It

™

<h

k-1 (Ac' (L - c,l) ‘ '
. 1nzclJ s g (2.4.1)
=t 23 13 »
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with ij = 1, and

k-l -
Y5 Py e T Ry 2 |
A% = indl= - : S . (2.4.2)
jil W sz(nl -~ le)

: Y2j; le and sz are the

*

23

yhere clj' c_.. are sample estimates of Yy
cumulative sums within eacﬁ group and ﬁj and wj are weights éhosen to
minimise Var(a), var (A*) .

Clayton {1974) considers these estimators with Ylj,szj_;stimated by'

c.. = R../n,
ij 13/ i

Which is the sample cumulative frequency. In this form, hoth A and A%
can be infinite. To ensure that the estimators remain finite we take
instead

. L
Cij = (Rij + 2)/(ni + 1) C(2.4.3)

for K and add 1/2 to both numerator and denominator of (2.4.2). The

asymptotically optimum weights are

W@y (1 -y (m, + T, ' 2.4.4
3 Y]( (J)(nj ﬂ3+1) | { )

and : W, = 7, 4T .

These are also estimated from tha data. Thus the estimatox cj of Yj is

Q
]

®. + %—)/(n. + 1)
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where the subscript . indicates summabhion over the relevant index,

and'wi is estimated by cj - cj .- Clavton (1974) showed that, with
o hau

the weights (2.4.4), the asymptotic variance of both estimators is

n.n_ k-1

- . 12 1
var (Aw) _— var A = [ Z . (l“' .) (17.'*'“.

)’ (2.4.5)

1

for small A. We note that (2.4.5) is the same as var(g); the asymptotic
variance of the m.l.2. of A giﬁen’in (2.3.3). Hence botﬁ A and A* are
agsymptotically fully efficient when A is small.

Since Z and A% can.be calculatad non-iteratively they can be
éomputed on pfoqrammable hand or desk calculators. Programs are.
availabie for calculating A* on the 8R56, SR52, HP25 and HPGS pocked
calculators. Thése programs also calculate the variance by estimating
the parameters of (2.4.5).

Thece are ﬁany equi&alent versions of the expression (2?4.5).

These arise because of the relation vy, - v, = T Some equivalent
j-

L 37

forms are:

k-1 ,
(1) Loy, -y (m, + 7, ),
j=1 3 33 J+l
k 2
(ii) r on,{(l -y, - Y._l) ’
j=1 )
k-1
(iii) IoY.Y.,. WM. ;o : (2.4.6)
. 5=1 37341 3+1 .
(iv) T 1L -y)Q -y, .,
- §=1 J J-1"3
. v k
(v) 1/3 - %- b ﬁ,3 .
: =1 3

As ‘before, YO and Yk are defined to be O and 1 respectively.
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A typical proof of the equality of expressions (i)-{iv) involves
expanding and rearranging terms. We give here a proof of (v) = (iii),

which is a littles different.

To prove {v) = (iii) we procead as follows.
ko, k ) S k
1= (% m) = T w. {Z v.°+2 % w.mw}
j=1 =1 ) =1 ] i3
k X ’ k k
= L ﬂ_3 + E n_w,z + 2 I w,7 y."j + 2 I Y,”lﬂ_z
3=1 J i3 13 i =k 31 J J
3 k 5 k k 5
= LT, + 3 L ”.~1W, + L (1 -y +2 I Yy, ,T
J j=1 J J j’-"'l_. . j"l J=x 7
k
+2 I L - vy, .7w. .
5=1 3731
Hence
” - 1,
ko5 kK 2 £ 2
1 - 5 w7, = 3 I Y, 4T +3 )} YigT
j=1 J 3=1 3=+ 3 j=1 J J
k
= 3 I y.Y. .T.
j=1 33 13
k-1 -
BN IE A
- .

Expressions (2.4.4) are important as they arise iﬁ various guises
throughout this thesis where the logistic distribution is used.

Note that for binary data (k = 2), A = A% and they are both
approximately equal to the maximum'likelihood estimator Z. For binary

data

s R Y
Rip Dy
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) -~
which is the log of ths cross ratio. Various modifications of A have
been suggested to cope with zero frequencies. The most common

modification is

: R T R
o) Rl §

o (g + 300y +35) (0

A.‘—‘ln7 :

-~

- )
\ r . L
_nlz + (n + =)

21 2

: . . 2 . "
which is unbilased except for terms of O(n "). For a discussion of these

‘modifications sze Gart and Zweifel (1967) and Plackett (1974, pp.38-40).

2.5 'Bias of 0dds Ratio fstiwmators

Tt is clear that the estimator A is asymptotically.ﬁnbiased since
it is a_weighted sum of asymptotically unbiased estimators of A.
Howevel A* iz not of this form, but is analogous to the MantelfHaenszel-
~method for combining odds ratios from several 2x2 tables {Mantel and
Haenszel, 1959). We now prove a genaral result which shows that this
type of estimator is asymptotically unbiased under faivly mild

restrictions.

Let Xj/Yj =1,...,kK)be a sequence of ratio estimators of a
<

parameter W such that, asymptotilcally, E(§£D = U < e, Y£ > 0 and
X o x
var (,fE_) = 0{n l). Let'wj G =1,...;kX)be a set of fixed positive weights.
r v
Then
k k
Po= r wX, /X w.Y,
j=1 33 Tyaq 33
is asymptotically (n - =) unbias=d for u.
Proof:
'k k k
E(p) = B{Z wX, /% w.¥Y.} = B{ZI w x./Y.}
. JJ . J 3 3 J
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* ' ' . . %
wherse w, = ijé/Zw%Y.. We neead to show that the covariance of wj
J J X :

i

and the ratio X./Yj is weak enough for the bias to tend towards zero.

Expanding further wes get

%
E(W) = w+ Z, , coviw, , X./Y,)
1,3 hE J 3
= w+ E, .0, fvar(w, ) var(X./Y.)]l/2
1.3 1] i J ]
vhere 0 ) is kounded

. is the corrzlation of W, and ¥X./Y¥.,. Since w

| a4

A
o

o

3

]
between 0 and 1 it follcws that var(wjn) is bounded between O and 1/4.

1 .
Since, by assumption, var(X;/Yj) = O(i? the double sum is of the oxder

_.1/2

- - - .

n and tends to zero. Hence ¥ iz asymptotically unbiased for u.
It is easy to sae, howsver, that Mantel-Hasnszel tvpe estimators

. .
are biased in small samples since the weights wi are negatively

correlated with the ratio X./Yj. In the above proof, it is sufficient
that Xj/Yj =IJ+OP(13. Then it follows that ¥ = ﬁ + OD(l), althoﬁgh the-
moments of ¥ may be infinite.

from ths above result it follows that A* is asymptotically unbiaéed.

Some simulation results are given in §2.8 to demonstrate its behaviour

in small samples.

2.6 Loss of Information Due to Grouving

Oné way of measuring the relative efficienconf two ewperimental
designs is to use the ratio of the number of observations required
undexr the different designs to achieve the same precision of estimation.
The abksolute éfficiency can then be defined by comparing a particular
design with the best possible design. This idea is the basis éf such

statistical measures as Pitman efficiency. A measure of inefficiency
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is therefore a‘meaSure of the information lost through using a sub-
optimal design.

FPor the two sample problem we consider A to be the sole parameter
of interest. We may be interestgd in estimation ox tes;ing the
hypothasis HO : A =0. From {2.4.3) or (2.3.3)‘the variance of an

. estimator of A is inversely proportional to

k-1

B ¢ NV I O S S W ' (2.6.1)
=1 Y3 T30 3+l _ - v

We consider alternative designs where (a) the category boundaries
.{65} can be chosen fresly but the nutber of categories k is fixed, and
(b) both § and k are allowed to vary. The 'best' design when tﬁe‘
categoxry boundaries can ke chosen is one which maximiges (2.6.1). It is
easily shown that tha'deéign which achieves this maximum has
Wj = l/k 5 =ll,;..,k},or aqﬁal cell probabilities and the maximuﬁ value

.1 2 2 R

of (2.6.1) is 5—(k - 1)/k”. The ratio of the number of ocbservations
necessary to achieve a given accuracy is inversely proportional to the
ratic of the variances, so thét the asymptotic efficiency of a design

with category boundaries 0 P relative to the best design with k.

177 k-1

’categories is
(2.6.2)

).

where T, = F(6,) -~ F(€.
=y j -1

When the alternative designs have an arbitrary number of categories

or when the continucus variables are observable, the asymptotic efficiency
. ' k 3 : '
of a given design relative to the optimum is 1 - L ﬁj which can bhe
=1

: J
obtained from (2.6.2) by putting k = =,



26

In radioloéical data, for example, typical category frequencies
“are (0.9, 0.04, 0.04, 0.02). In principle, though extremely difficult
in practice, the éategory boundaries could be redefined to give a

rore uniform set of frequencies (i/4, 1/4, 1/4, 1/4). 'The efficiéncy
of the former design relative to the latter is apprﬁﬁimately C.3. Thus,
for every 3 observations required under the re-defined schéme, lo'are
required under the old écheme. In fact the equal frequency schere for
four categories is almost as efficlent (0.94) as a scheme which has no
.censoring mechanism at all.

The importance of expression (2.4.6) is thaﬁ they measure the
efficisncy of thé‘censoriﬁg scheme.  In fact they are diract generaliéations
of the.binomial variance formula p{l - p}. We note that for well chosen
values of the censoring points>{65} and henceifﬂﬁ} the asymptotic
efficiency relative Eo the optimum under (b) is high even when k is small.: .
The efficiency is (x° - /%% (= .V75, .89, .04, .'96...)_for the first few

values of k.

2.7 'Adequacy of Model

The model described in this chapter makess tw§ aésumptions which are
(a) a logistic errvor distribution and (b) equal variances within each
saﬁple.' Aséumption (a)'may break down, but Chambers & Cox (1967) have
shown that the difference between a légistic and a normal error function
is very difficult to detect even in fairly large samples. Thus it is
likely that only gross departures from (a) can be detected. We concentrate
on models which allow departures from assumption (b).

Two approacheé are possible. The first involves testing for hetero-
scedasticity using one of the non-parametric tests in Chapter 4, and'then

fitting the logistic model if there is no evidence of heteroscedasticity.
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The second approach is to f£it a more general model which makes allowance
for heteroscedasticity. The more general mcdel can be written in

cumulative logit linear form as

. T L -
1n{Ylj/(l ) SR
(2.7.1)
ln{yzj/(l Yl szﬁj. )
where, without loss of generality, Tl = 1. Interpretation of the.

parameter A in model (2.7.1) is comélicated by the unequal within
groups variance, but iZ Té is close to 1, it.is reasonable to interpret A
as an approximate iog odds ratio.

When all the parazeters are estimated by maximum li\elihood, ox by
any other suitable method, the goodness of fit of (2.7.1) can be tested
by a X2 stétistic on k —.3 degrees of freedom. The homoscedastic model
(2.2.25 can be tested by a X2 statistic on k ~ 2 degrees of freedom.

It is impossible to give general guidelines about how to proceed
when neither model fits the data; in the example of §3.4, consideration

of the residuals indicates that one of the groups is an ‘'outlier'.

2.8 Simulation Results for the Estimators A, A%,

We present briefly some simulation results for the estimators A

w0t intended to be in any way comprehensive, but it is
Z i

{7

ara

o}

and A*5 - Thes
hoped that they give an indication of bias and variability of A* and A in
medium sized samples.

Four category data was chosen with equal sample sizes and roughly
equal frequencies for each category. A slight adjustment of the results

is necessary since the data were generated from a logistic distribution
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with unit variance as cpposed to the standard logistic distribution

. . 2, . s . .
which has variance T /3., A displacement 6 on this scale is equivalent
to A = 6“//3 = 1.814 &, The estimators § and 6* are scaled versions

of A and A* respectively. Some generxal conclusions are as follows.

(&) Both A* and A are biased towards the origin in small samples.
(b) The bias of A* is. approximately twice that of A.

, N

(c) The bias is negligible when n o

1 > 100 and is of the order of 5%

whgn nl = n2 = 20,

The conclusion {c)} will depend on the number of categories, so that the

bias could be larger than 5% when ny =N, = 20, if the ﬁwenty
observations were dividsd into, say, 10 categories. When 8y # n, the
‘bias could ke expected_ﬁo b2 of the ordefiéz-%'%; , so for the bias to
be small we heed both ny and né large. |

The simulation results for small samples (ni =n, = 20) are given
in table 2.1 and the corresponding results for large samples in table 2.2.
For both sample sizes the entries in columns 2 and 4 are the mean of
1000'repetitions at each value of 8. Columns 3 and 5 give the standard
_deviation of the 1000 repetitions;

The standard deviation as estimated by (2.4.5) was relatively
constant but increased from O.3i4 for § = 0 to 0.323 for' 6 % 1.9 for the
sﬁéll samples. Thﬁé (2.4.5) is a slight underestimate forviarger values
of A. Similarly, for the large samples the estimate of Std (A) (2.4.5)

increased from 0.142 to 0.145 dver the same range, and is smaller than

.the true standard deviation when & is large.



“Table 2.1

Small sample simulation results for A and A#y k = 4 n, =n, = 20,
1000 repetitions for sach value of S.
8 T * std (8) & std (6*)
0 ~-.C04 .308 -.003 .295
1 111 .319 .107 .306
.2 .204 .318 .195 .304
.3 ©.283 .326 . 273 .313
.4 . 404 .313 .389 .299
.5 .491 .325 .473 .314
.6 .600 .335 .578 .320
.7 677 - .325 .654 .312
.8 .783 .333 .752 .316
.9 .894 .348 .861 .331
1.0 .980 .349 .944 .328
1.1 1.075 .347 1.034 .324
1.2 1.191 .355 1.147 .333
1.3 1.260 .370 1.215 .347
1.4 1.355 367 1.305 .342
1.5 1.437 .383 1.382 .353
1.6 1.541 .371 1.484 .340
1.7 1.603 .375 1.541 .345
1.8 1.687 .334 1.617° .342
1.9 . .1.788. . ...404. . ... 1.704 .347
§ = A3/
8 = A V3/m
§* = A V3/7

+ - .
. Average of 1000 estimates of §.

23



©Table 2.2

Large sample simulation resulis for A and A*; k = 4, n = nz = 100

‘1000 repetitions for each value of §.

s 4 ~ o+
3 5ta (8) g Std (8%)
o -.010 .144 -.010 .143
.1 .103 .148 .103 .147
.2 .193 142 .191 .141
.3 .298 .143 .295 .141
.4 .394 .137 .391 .135
.5 .488 .142 .484 .141
.6 .590 .147 .584 .145 -
.7 .693 .155 686 .152
8 .804 .156 .796 .154
.9 .900 .16L .891 .159
1.0 .996 .164 .86 .161
1.3 1.204 .179 1.280 .175
1.6 1.601 .101 1.583 .186
1.9 .. 1.880 . .. .. ..207 1.859 .201..
8 = A3/n
§ = A/3ym
§*% = A3 7

+ .
Average of 1000 estimates

of §.
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Graph of simulation results for unpaired estimators 7 ,A

{see table 2.1)

in small samples.
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2.9 ‘Example-

The data in table 2.3 from Holmas & Williams (1554) are a compariscn

of the tonsil sizes of carriers and non-carriers of Streptococcus

Pyrogenes. Tonsil size is measured on an ordered three~categorxy scale.

. Table 2.3

Tonsil size of carriers and non-carriers of Streptococcus

pyrogenes
Tonsil size carriers . non-cerriers. . total
normal ' 19 497 516
enlarged 29 - 560 . 589
greatiy enlarged 24 L Tze9l U a3
TOTAL 72 1326 1398

From Holmes & Williams (1954).

The estimates A* and A are .580 and .565 respactively with

estimated standard deviation .225, thus indicating that tonsil sizes

in carriers are larger than in non-carriers.

Tc check the adequacy of the cumulative logit linear medel (2.2.2)

the complete medel was fitted by maximum likelihced. The inverse matrix

of second derivatives at the maximum. gives an estimate for var{ld) which .can -

be compared with the estimated variance 6f A and A*.. The m.l.e.'s of the

parameters with their standard deviations and covariance matrix are

Dr 2

D

I

1.061 + .122 -.023 .0l2 015

.603 + .226 .051

-.810 £ .118 , V = ~-.024 .014

I+



With the above estimates the X2 goodness of fit statistic on
one degree of freedom is 0.3C, indicating a good fit. For alternative
analyses of this data see Clayton (1974) and Arﬁitage (1971) who uses
a method based on partitioning the total X2 goodness of fit statistic.

A further analysis of the same data is given in §4.
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Chapter 3
THE GENERAL CUMULATIVE LOGIT LINEAR

- MODEL

3.1 Introduction

The linear logistic model (2.2.2) for the two sample problem.has
an vaious'extension to the mahy sample situation. The subscript 1 is
used to denote the sample and j to denote the category. We consider
first & saturated modesl where there are r row parameters'{&i} to
explain the differenceé between the r samples. An unsaturated mo@el'is
one where the xr row effscts are explained by s.< r parametérs; The

saturated linear logistic model can be written

Infy /(1= v )} = oy ¥ ej : (3.1.1)

L =1,00e,x; 3 = L,.00;k=1)

. . o . . .th
wnere Yij 1s the theoretical cumulative frequency in the i row. To

avoid redundancies in the parameters it is convenient to impose an
r v
estimability condition in (3.1.1) such as. 3§ o, = O. The parameters
ej are the category boundaries on the logit scale. Ashford {1395%a, 1959b)

considers a similar model with an integrated normal response function.
We may wish to explain the differences between rows in terms of

some explanatory variebles x, = (X, ...x%, }, with s < z. - The lineax
~1 il is :

lh{yij/(l - yij)} = B'x, + 0, (3.1.2)
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m

L ’ . . . v -
...SS) are unknown parameters. Since s < r no estimability

‘constraints are necessary provided that the sxs matrix-

r r . .
- - - 1 . . .
L (x, - x)({x. - X)T, where x = — I X., is nonsingular. Equivalently,
. =i ~1 e ~ ~ T ~i : :
1=1 i=1 _ _
the matrix X ='(§l,§2,,..,§r,§) must be of full rank s where 1 is the

unit vector of length s.

Simon (1974) considers ﬁhe saturated model {3.1.1) and-suggests an
iterative procedure for estimating the parameters. In 53;2 a generalised
empirical logistic transform is used to estimate the parameters'{di} in
(3.1.1) or alternatively the parameter B in (3.1;2). This transform is
the analogue of the empirical logistic transform for binary data. These
estimates can then be used as starting values in an iterative procedure

for obtaining maximum likelihood estimates of the parameters.

3.2 A Generalised Empirical Iogistic Transform

The empirical logistic transform (Cox, 1970, p.78f£f) is useful fér
analysing binaxry data since it transforms the frequency of success Ri
in n. trials to a variable Zi‘ which is approximately normally distri—.
buted with simple mean and variance Vi' which canvbe estimated. There
are two alternative definitions of the empirical logistic transform but
the difference between them is relatively unimportant and we consider

only the definition:

N
i

. 1 1
v, ¢ P - I, 2
ﬁn{\Ri +3)/(n, - R, 2>} (3.2.1)

(ni + l)(ni,+ 2)

‘ = -
Vi T AR +D; R F D _ (3.2.2)
A 1 i
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7We note that. for large values of n. and Ri' v,' is approximately

(nipiqi)—l whexre P, ié the probability of success in the ith group.
The analysis now proceeds using the transformed variables Zi‘ which
are assumed to be apéroximatély normally distributed with known variance
Vi'. The model can be fitted usipg iterative weighted'leasﬁ squa;es
and the scaled residuals tested for normality (Co#, 1970, pp.81-83}. -

We now examine a generalisation of (3.2.1) and (3.2;2) to multi—_
category data. This generalisation is an extension of the estimator i
of hapter 2. The alternative estimator, A* does not have an analogue

when there are more than two groups.

‘of the logistic difference between the first

-Th stimator A
e estimatoxr 12

two groups can be written as

k-1 .g’..R +%— 7 k-1 I +-§-

. , ki
12 Loyl

A '

32 " . 1
ny - le + 5 j=1 n, - R,. + 5
. . ' . . .th

where Rij is the cwaulative sum of the observations in the -1~ group.
Note that this is the difference between a function of the observations

in group 1 and the same function of the observations in group 2. This

contrasts with Ai2 which can be written as

k-1
12 L

\ (1 k-1 _ 2
% - - = JER -R .
; Wj le(n2 sz)} lng + .z w]“ j(nl’ )'3

RS
% = — :
A 1“{2 + 2 2 13
=1

1
Thus Aiz cannot be expressed as the difference between a function of

the observations in group 1 and the same function of the obserwvations in
group 2. One important consequence of this is that the additivity

prdperty of the parameters
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is satisfied by A but not by A*.

The transformation

| ' | (3.2.3)

is called the generalised empirical logistic transform of the observations

o

.t . R .
in the i group. The weights Wj in (3.2.3) are estimated from the

column cumulative totals-{R.ﬁ}.

L 1 : '
%, = (R.. + 3 (n. - R.., + =) (R.. - R.. : 3.2.4
5 3 2) 3 2)( 541 7 3) { v)'
k-1
with L w, = 1,
j=1 7

" For large values of n, the transformed variables'.zi can be treated as
independent and approximately normally distributed with variance Vi

estimated by

v, [ni z cj(l cj)(cj+l cj_l)} » (3.2.5)
‘where cj = R.j/n.. . Some expressions which are equivalent to (3.2.5)
but may be easier to calculate, are given in (2.4.6). When the
differences between the various groups are large and the group totals
‘n, are large, an improved estimate of Vi is given by

k-1 k-1

T w., (R.. +1)(n, - R,. + 1) + 2n.~l LI ®® (R,,+1)
=1 J A3 i i3 1 5<4. jo& iy

~1 :
(ni - Ri2 + 1)] A (3.2.6)
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Undexr the saturated model (3.1.1) the derived model for the

transformed variables Zi is
E(Zi) = U+ (i =1,...,x) {3.2.7)

where U = Zﬁjej is considered to be a nuisance parameter. The

unsaturated model {3.1.2) becomes
E(Z,) = u+ 8% (i=1 )
;) = ®H 8 X 1i=1,...,1).
The scaled residuals under the unsaturated model
(zi - Zi)/VV. (i=1,...,7)

can be tested for standard hormality, outliers etc.‘using graphical or -
other methods. (Undexr the saturated model (3.2.7) the residuals ars
all zero,) Scme loss of efficiency is to be expécted when the transformed
variables are used. The method should be used only when the number of
categories is fairly small, typically 5 or less, and the cell counts
- ¢ )

are largs, typically 5 or more. In such cases, the ease with which the
transformed variables can be handled often outweighs the small loss oxX
efficiency incurred.

A further important condition for the applicability of the
_generalised empirical logistic transform is that ths scales’wiﬁhin groups
should be equal. In the example of §3.4 this condition is not satisfied

and hence an alternative method of analysis described in §3.3 is used.



3.3 'Adeqguacy ‘of Model

'We consider first tests for the adesquacy of the saturated model .
{(3.1.1) and the unsaturated model (3.1.2) when all the parametérs are
estimated by maximum likelihood or by any other asymptotically efficient
method such as minimum chi-squared. The saturated model has r + k-1
parameters with one linear constraiﬁt and there are r linsar gonstraints

on the cell probabilities since

T, = 1 (i =1,...,r.)

W > x

This leaves (r - 1) (k - 2) degrees of freedom to test for goodness of
fit. For the unsaturated model (3.1.2) the equivalent degrees of
fresdow for goodnass of fit is (r -~ 1) (k. ~ 1) - s,

If there is evidence of inhomogeneity of wvariance such aé ﬁhe

presence of patterns of large residuals under the linear model, then

the more gensral multiplicative model

It

nly /@ - ;b = T 04+ ap) o (3.3.1)

or

. _— .
T 65+ By (3.3.2)

lh{Yij/(l - Yii)

.is appropriate. It is necessary to impose a constraint on the'{Ti} such
- . »
as T, = lor I T, = 1.

1 , i
i=1

The multiplicative models (3.3.1) and (3.3.2) each have an extra
r -1 parameters so there are (r - 1) {(k -~ 2) degrees of freedom left to
test the fit of the saturated model (3.3.1) and (r - 1){k - 2) - s to test

the fit of the unsaturated model (3.3.2).



41

It is impossible to give general guidelines on how to proceed if
the multiplicative wedels do not £it. Examination of residuals often
helps to identify outliers. These can then be discarded;if they are
errors or they may-be of particular interest precisely because they
are outliars'and should be investigated'further;

An example with unaqual scales in each group is given in §3.4.

3.4 Example

This example from Bfadley,.Katti and Coons (1962) is a S-treatment
experiment where the observations ars on a 5—categcry orderedvscale.'
The categories represant the subjective responses of individuals in a
food-testing experiment ahd range from terrible (category 1) to
excellent (category 5). Bradley et al. analysed this data using an
optimum scoring technigue., Snell (1964) aﬁalysed the game data using
a modal similar to the linear logistic model"(3;l;l), but not allowing
for differences in scales.

A fairly general Fortran p:ogramfwas written:to fit the models
(3.1.1) and (3.1.2) with options for restricting the scale parameters
or resﬁricting the block parameteré'{ai}. The saturated model (3.1.1)
is appropriate for this example sihce there is no.suggestion th;t the
five blocks (treatments) can be explained in fewer than five parameteis.

Table 3.1 gives the data. The fitted values together with the
residuals under the linear logistic model, lhfyij/(l - Yijs} = ej + éi'
are 'given in tables 3.2.

The parameter estimates under the linear model are

[ Kerk]
I

(-1.5694, -.5176, .3688, 2.6646) and

o3
I

| (-.0254, -.50%0, 1.0934, .5281, -1.0680).
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" Table 3.1

Response freguency under different treatments in a taste

testing experiment

‘Response - category

fair good excellent

terrible = poor

Treatment 1 20 3 4 s 5 ‘Total

1 9 5 9 13 4 40

2 7 3 10 20 4 44

3 14 13 6 7 o 40

4 11 15 3 5 8 42

5 0 2 10 30 C 2 44
Source: Bradley et al. {1962).

Table 3.2

Fitted values and

siduals* undar linear logistic model

' ‘Response cateqgory-

Treatment 1 2 3 4
1 6.63 ( 2.37) 7.87 (-2.87) 8.69 ( .31) 14.08 (-1.08) 2.72 ( 1.28)
2 4.89 ( 2.11) 5.71 (~3.71) 8.86 ( 1.14) 18.97 ( 1.03) 4.57 { -.57)
3 15.33 (-1.33) 10.28 { 2.72) 6.87 ( -.87) 6.61 { .39) .81 ( =.91)
a4 10.96 ( 0.04) 10.15 ( 4.85) 8.72 (-5.72) 10.51 (-5.51) 1.66 ( 6.34)
5 2.94 (~2.94) 4.55 (~-2.55) 7.13 { 2.87) 21.97 (8..03) 7.40 {-5.40)
2 2

X" = 53.4, G© = 50.4, both on 12 d.£.

*Residuals are differences between observed and fitted frequéncies;



Fitted values and

‘Table 3.3
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residuals® under multiplicative logistic

modal

e g g—

Resoponse category

Treatment 1l 2 30
1 7.86 { 1.14) 7.88 (-2.88) 7.35 ( 1.65) 12.28 ( .72) 4.62 ( -.62)
2 4.64 ( 2.35) 7.4% (-4.41) 8.98 ( 1.02) 17.56 ( 2.44) 5.41 (—1;41)
3 .- 13.79 ( .21) 12.91 ( .09) 7.22 (-1.22) 5.42 ( 1.58) .66 ( -.65)
4 13.74 (-2.74) 7.45 ( 7.55) 5.75 (-2.75) 9.54 (—4.54) 5.583 ( 2.47)
5 0.24 ( -.24) 2.22 ( -.22) 9.29 ( .71) 30.53 { -.53) 1.73 ( .27)

X2 = 20.8, G2 ;'23.2, both on 8 d.£.
- Table 3.4
Fitted values and residuals* under multiplicative logistic
nodel, omitting treatment 4.
.Respcnse category

Treatment 1 2 3 5
1 8.91 {( .09) 5.73 ( -.73) 7.89 ( 1.11). 13.61 (-.61) 3.86 ( .14)
2 5.76 ( 1.24) 5.39 (-2.39) 9.23 ( .77) 19.04 { .96) 4.58 ( -.58)
3 14.57 ( -.57) 10.66 { 2.34) 9.05 (~3.05) 5.43 {(1.57) ;30 { —.30)
5 0.58 { -.58) 1,97 ( .03) 9.01 ( .99) 30.86 ({-.86) 1457 ( .43)

2 2

4.9, G = 7.9, both on 6 4.£.

*Residuals are differences between observed and fitted frequencies.
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A large positive valua for ai'indicates a2 bias towards the lower
catsgories and conversely a large negative value indicates a biaé
towards the higher catecories. The residuals in tabler3.2 inaicate
‘that the fit is not very good in blocks 4 and 5. To ﬂudge the signifiQJ
cance of these residuals we can calculaté the usual X? goodness of fit:
statistic, but the likelihood ratio statistic, G2, is just as convenient
and has the same asymptotic distribution as xz. The values Qf fhevtwo_
statistics are X2 = 53.35 and G2 = 50.36, each 6n 12 degrees of freedom.-
Although the cell counts are not very large, it is clear that the linear
model does not fit very well. |

.There is some evidence in the data of table 3.1, of unéqaal scales’
~in each block. Censeguently we try the multiplicative model |
1h{vij/(1 - Yij)} =T &i). with zé._i =_o' and %1 = 1. The fitted

values and the new residuals are given in table 3.3. The parameter

estimates under the multiplicative model are

a2y
1l

(-1.3514, -.3757, .3687, 2.0924)

=52
i

(-.0567, —~.4430, .8838, .3986, -.7826)

Sk X

and {(1.0000, 1.1%914, 1.3721, .7572, 2;4412).

The goodness of fit statistics are Xz = 20.84 and G2 = 23.21 on 8 degrees’
of freedom. The difference 53.35~20,84 = 32.51 or 50.36 - 23.Bi = 27.i5
on 4 degrees of freedom can be used as an approximate test for eguality
of scaleé. It is thus clear that the within groups variances are
unegqual.

The multiplicative model is a considerable improvement over the’

block 4. Furthermore the goodness of fit statistics X2 and G2 are larger

.
than we might expect. (The 5% point for X on 8 degrees of freedom is

15.5) The multipliicative model was, therefore, re-fitted with block 4
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omitted. The fitted wvalues, togsther with the new residuals, are given

in table 3.4. The new parameter estimates are

o

8 = (-1.3039, -.6034, .2007, 2.1834),

&8 = (.053¢, -.3279, .9465, -.6729)
and T = (1.0000, 1.1603, 1.5597, 2.1834).

It should be noted that Ti is inversely proportional to the standaxd
deviation in the itn group. Hence lérge values of $i indicate little
scatter while small values indicate more scatter (relative to the first °

L)

group since T, £ 1),

The goodness of fit stafistics for table‘B.é are Xz = 4.9 and
G2 = 7.9, both on 6 degrees of freedom. These indicate a satisfacﬁory
. £it. There is, therefors, &onsiderable evidenée that the observations
in block 4 are ‘oﬁtliers' and do not conform to the pattern of the
remaining 4 blocks. This discrepancy was noted by Snell (1964).

.To compare thé average responses 3i we need a rough estimaﬁe of
their variability. An estimate'of the variance matrix can be ébtained
from the matrix of second derivatives of the log ;ikelihobd. vHowever,
the variance estimate (3.2.5) of the generalised empirical logistic
transform gives an indication of the variability 057{3;} when the séale
parameters'{ﬁi} are approximately equal. Thus vat(gi) m.0.3/ni n 0.00714
since the-{ni} are approximately equal. For the purpose of com?arisons,
the gi can be treated as approximately independent. Since the écale '
estimates {Ei} are, for the most part, greater than 1 then the aboves
estimate of variance is conservative. A conservative estimate of
Std(ai - 3j) is 0.12. Thus it is clear that the treatment parameters are

all significantly different from each other.
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"To summarise, treatment 5 is best (35'= -.78) and there is a
higher consensus of opinion _about this (:ES = 2.4) than about the othér
ﬁreatments. Tvreatment 3 is worst (33.= .88) and there is a f;airly
average consensus about this (‘;3# 1.4). There is little-VCOnsensus
about treatmenﬁ 4 (:Ez} =..76) but it rates worse than average |

., = .40).

4
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Chaptexr 4

LOCALLY MOST POWERFUL RANK TESTS

4.1 Introduction

Ordered categorical data are only partiélly oxdered. For example,
in the two sample problem where the observations are laid out in a
- singly ordered 2¥k contingency table of counts.{nii}; observations in
“the same'column are 'tied' but observations in differant columns are
strictly ordered. As an altern;tive to the modelling ana estimation'l
procedures ovahapters_Z and 3, we now consider methods whose main
purpose is testing of hypotheses. For example in the two sample
problem we might wish to test the two hypotheses (i) equality of
location and (ii) equality éf scale.

We assume a general underlying continuous dehsity f{y). In the
exampls of §4.4,f is assumed to be the logistic density but the theory
is qﬁite general. The locally most powerful tests are shown to be
rank tests. A special case of the test statistic is the éase where
there are nO»tieé. In this particulaf limit the tests are equivalent
to the rank tests of Héjék (1962) and Hijek and Siddk (1957), who do not
consider the optimum treatment of tied observations.

It should be pointed out that, while the analysis in this chapter
concentrates on the'two sample problem and associated tests; the methods
‘éan be genaralised to the many sample problem and regression problems.
In these cases the rank test statistics have asymptotically X2 distfi-
butions.instead of the noxmal distributions encountered in the two sample

problem.
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4.2 Darivation of Iocally Most Poweriul Tests -

We consider tests foxr hypotheses concerning only a single parameter.
For the two sample problem we are particularly interested in hypotheses
concerning location‘and scale, ;nd these two cases are considered
separately. The relevant null hypothesis is that the two densities are
equal while the alternatives are general one-sided #l > u2 for lqcation
and 01 > 02 ?or scale.

For the two sample location problem the log likelihood is

k
T 1 T
= . w - 1
2l(§,A) & nlj ln{r(Sj + EA) F(Bj—l ' EA)}
j=1
X | . L
+ 'Z‘ noj ln{F(ej - ) - F(ej—l ~ 381,
J=i
where-{ej} are the unknown categorv boundaries and F'(x) = £{x) is an

arbitrary but known density. The null hypothesis HO is HO : A= 0.

The one-sided alternatives are Hl :+ A >0 or Hl‘_: A < 0, The locally

most powerful test statistic of HO against Hl or Hl' is based on. the
3%

score function 535-(90,0) {(Cox & Hinklev, 1974, p.113) evaluated under

e

the null hypothesis. It is easy to verify that the m.l.e. GO, of 8

-under H_ is given by

o]
F(g ) = g: & 1 '
03] 7 cj = A ne, (3 = 1,...,k-1)

where Cj is the cumulative frequency up to, and including categoxry 3

in the combined sanple. Hence

= e G =1, ,k1)



B g ~ . 32 &
ara 5 = ... 8 . The o tati : — a8 : :
where 9 ( o1 o k-l) The score statistic 5= ( 0,O) is given by
3, o K JEE e - EE e, Y]
(6 . ,0) = = I (n,.-n,.) { {4.2.1)
aA o 2 . 1 2 c, — C,
j=1 J S 3 j-1 -

It is easy to see that (4.4.1) is a rank statistic since the cumulative

frequency c, depends on the maximum rank of the tied observations in

_ category j.
For the scale problem, the log likelihood £,(8,7) is

ljln{F(Gj) - F(ej_l)} + n2jln{F(T9j) - F(Tej_l)}-

k
lz(Q,T) Z n
4 j=1

T = 1 and the locally most powerful

»
»

The null hypothesis of eqguality is H
9% :

: istic == (8 ,1) i
test statistic 57 (~O‘ ) is
K2 [ Ffl(éf)f(F#;(CT))ff”Ff;fcf” )f(Ff%(é.ﬂf))v]
2 A ¢ J J 1 =1
38 (?O'l) =z 233 c. - ¢ ' b
=1 | 37 %51 ) |
(4.2.2)
We dencte the location and scale test statistics by Wi and W2 respectively
where '
kK . |
= ) £) - Y £ - 4
W, (£) ji nlj{‘z'l (e r£) - ¥y (cj_l,_)}/(cj cj_l), (4.2.3)
x ' _
= } £) - -
W, (£) ‘ZT nlj{Yz(cj,*) ‘Pz(cj_l,f)}/(cj cj—l) (4.2.4)
j=1
with Y (c.,£) = E{F T(c.)} and ¥ (c.) = F S(e)ElF Tic.)}.
1 3 273 J J

1

Note that the statistics W, (f) and Wz(f) are equivalent to (4.2.1) and
(4.2.2) respectively. These test statistics are for location and scale
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A
differences respectivaly. If we wish to test for othar types of

departure summarised in a parametar ¢ measuring, say, skewness, the
function Y(u,f) has the form

Y(u,£) = 3—-F(e;¢) 0<u=<l (4.2.5)

3¢ e=F‘1(u;¢O)

kwhere ¢O is the m;l.e. of ¢ under HO.
We now investigate some particularly important special casss of

the statistics (4.2.3) and (4.2.4). The most common special case occurs

wnen there are no tied observations. In principle, this can be incor-

porated into the above model by allowing the number of categdiies to

become arbitrarily large. The limiting values of (4.2.3) and (4.2.4)

are
L, (ul)
group. 1 L3

and
)3 P, (u,)
group 1 273

R, R,
where —l;—gk < u, < El- ’ Rj is the rank of the'jth obéervation‘from

- LY

sample 1 and the summations are taken over observations in sample 1.

il

It is usual to take uj Rj/(n.. + 1) (HBjek, 1962) so that the limiting

values are

Hpo= o 2o R/ + 1) (4.2.6)
group 1 :
and
W, = % wé{Rj/(n.. + 1)} (4.2.7)

’_J

group
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n

;] . '

3 ! e W s f = =Y _(u,f). S i ics vl
with wl(u) o l(u,«) and wz(u) 5T 2\u,J.) The statistics (4.2.6)
and (4.2.7) are precisely the asymptctically most powerful rank tests,
for the location and scale problem suggested by Hajek {(1962) and Hajek

and Sidak (1967), who have proved that these statistics are asymptotically

normal under H

o and under a general class of alternatives. It follows

from general likelihood theory that Wl and W2 are asymptotically jointly
normally distributed.

The functions wi(u) and ¥, (u) given by

fF T lelE )} (O <u<1)

u'Jl(u)

. _.1 . _l . . -

and ¢2(u) L+ F "' {r “(u}/slF l(u)}. 0 <u<1)

are usually known as the score functions for the location and scale

" problem respectively. Note that if £ is symmetric *1 is odd about 1/2
and wz is even about 1/2. The asymptotic null variance of the location

test statistic (4.2.8) is

nn_ 1
2
'-J:—%' f IP (U)du (4.2.8)
n 1
o .
whe?e ny, =Dy. s 0, =N, and n = ny + n,.

~ VWhen £ is the logistic density, the location test staﬁistic‘(4;2.6)
is equivaleﬁt to the ordinary Wilcoxon test statistic while (4;2-3)'is
the averaged ranks Wilcoxecn statistic. The two sided exponential distri-~
bution gives the sign test, the normal distribution leads to the expacted
normal scores test etc.
We now revert to the problem of primary interes%t, namely optimum
rank tesfs with tied observations. Hiajek and Siddk (1967) pp;118—124“~

suggest various methods for handling tied observations. These methods
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include randomisation, averaged scores and mid-ranks. None of these
is claimed to be optimal. Behnen (1976) showed that the averaged scores
Irank statistic is asymptotically superior to randomisation and mid-rank
™ statistics. Note that for the Wiléoxon test, ¢1(u) is linear and ﬁénce
the mid-rank and averaged scores statistic are egual. In éeneral thougﬁ
they are not equal. We now show that the locally most powerful statistic
(4.2.3) is asymptotically equal to the averaged scores statistic and
hence this provides an aliernative proof of Behnen's (1976) result.

The ranks of the observations in the jth category are n cj—l + 1

.th . m
up to n cj. The average score for the j category is therefore -

_ i=ncj
1 .1
e T o .
n.. i=nc +1 lp(n+].)
J j"l

" For large h, this is approximately equal to the integral
1
et f- P(u) du
c

) .

= {w(cj) - w(cj_l)}/(cj g

Hence the locally most powerful test statistics (4.2;3) and (4;2.4) are
asymptotically equél.to the averaged scores rank Statistic. This
concludes the proof that the averaged scores test is asymptoticélly
most powerful.

The asymptotic null variance of the locally most powerful tests Wl
and W2, and hence the asymptotic varianca of the averaged scores rank

test for the two sample problem are

) ' (4.2:9)

o]
3

o]
1 o1 &

. N . . 2
, tryleg) = ¥yte, 113/ (e - ey
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k
A ' Y12 _
and —— i {Wz(cj) - Wzlcj_l)f /(cj cj-l) .

(c_:j - cj_l) (L ~c, - ¥ U . , f4.2.1o)

The exact variance of the Wilcoxon tied rank statistic is knowh to be

1 1
iﬁ-nlnz(n+l) {1~

17

e - e
j 3

n{n"-1) j=1

. . . . .t
(Gibbons, 1975, p.l653) where t, is the number of ties in the jJ hgroup
5 X

or categery. Since W, is related to the Wilcoxon statistic W through

3(n+l) n(nz_l) 3

i~ &

It follows from thé idéntities (2.4.86) that the'éxact variance is
asymptotically equal to (4.2.10) as expected. |
It should be pointed out that since the Wilco#on.test statistic W
(ox Wl) and the maximum likelihood estimator A of Chapter 2 are based on
the same likelihood function,btests of HO : A = O based on A or W are
asymptoticaily equivaient (Cox & Hinkley, 1974, pp.3l4—3155. Hows=aver,
the Wilcoxon statistic does not provide an estimate of the parameter A,
“but it is a valid test of Hobagainst a wide non—parameﬁric class of
'alté;nétives}ve.g. ﬁi : Fl(x) > F,(x).
Finally,‘table.4.l gives the functions wl(u) and Y, (u) for some

common densities.



Density P, () A,
Normal g™t (u) Lo ) )P

Double exp. sign (2u - 1) -1n{1 - ]2u—l'!}
Logistic 2u - 1- (2u-1) In{u/ (1=u) }
~Cauchy ~sin 2mu coszﬂu
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4.3 ‘Joint Distributicn of Several Rank Test Statistics

The methods of §4.2 provide rank statistics for testing specific
hypotheses about a sinhgle parameter. All other parxameters ars assumed
to remain constant. TFor most purposes this is an,unreaéonable assump= -
tion. It.is often necessary to use a single set of data to make
inference about several parameters. The interpretation and analysis
of such data sets is greatly facilitated if the paramater estimatas
or the test statistics are independent or approximately independent.

A éimple notation is developed which is useful for calculating joint
moments of general xank sﬁatistics undeyr various hypotheses,. For
simplicity we consider only the location scale model and the assoclated

hypotheses for the two sample problem.

HO : Fl(x) = Fz(x)
Hl : Fl(x) = Fé w o+ A
H, s Fl(x) = Fz(Tx)
Hyt F G0 = Fyltx + A)

It is convenient to consider only densities £(x) which are symmetric
‘since this implies that the scoxe functions ¢l(u) and wz(u)-are éd& and
even respectively about u = %u Hence they are orthogonal over {0,1).
This relationship is expressed in inner product notation as
<wl,¢z>n= 0. Note in addition that §wl,l> = <P, ,1> = 0,

We will consider the two-sample problem although the analysis could
be extended to regression problems. Let ﬂi.be the probability that the
ith ordered observation in the combined sample of size n came from the
first sgmplg. The joint probability ﬁij is defined as the probahility

. .th .t . , :
that both the i and j h ordered observations are from the first sample.



We define the related functions Eln(u), £ Efn(u;v) by the differential

1n
relations
i ' .. .th . .
ag. {(—— = 1/n if 1 ranked observation from sample 1
I1n n+l
0 otherwise
~and
2 T i j ro 1 .. .th .th '
d ——, ) = -1f ] X . from s 1
Elngln(n+l 7 ) \ if i7" and j = ranked obs. from sample 1

n+l ;TH:IT
i, 0 otherwisa
Thus E{diln(u)} is a function which takes. the values'{ri} at the
points i/ (a+l) and zexo elsewhere. Similarly E{dzglngfn(u,v)} takés
‘values Wij at the péints (i/(p+1), i/ {n+1)) and zero elsewhere.  |
For the two sample problem the asymptotically most powexful rank

test statistics for location and scale respectively, are of the form

1 : .
w = = 7. {R,/(n+l) }
in n oLt (4.3.1)
_vand ) .
W. = =5 {R./(n+1)}
2n n “Y2" i !

where the summation is taken over the ranks of the observations iﬁ the -
first sample. The statistics (4.3.1) are conveniently expressed in

inner product notation as

=
il

N | :
1n Wy 1y (2.3.2)

il

| w e
and "on War E1p7
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The statistics wlﬁ and w?q are based on the derivatives of the log
i el R

likelihood with nuisance parameters evaluated under HO - Hence, from

general likelihood theory, Wln and W2n are asymptotically jointly

normally distributed with zero mean under HO and variance-covariance

matrix given by Fisher's information matrix, We are interested in their

joint distribution under H_, H_, Hyy H
1r 72

9] 3°

The first order moments can be evaluated by taking expectations

of (4.3.2). This gives

elw, Y= <y, e{E_}> :
1n 1 ‘in” (4.3.3)

and

Blw, } = .<1p2, E{g, J>.

. s

Under'Ho,'E{El;} takes the value- nl/n at gaCh of the'pointév;if ;'

i = 1,...,n and hence the expectationsin (4.3.3) are both zero: Under
Hl' E{Elﬁ} can be expressed as the sum of é constant and an odd function.
Hence.E{Wzs} = O under H,. Under H,, E{Eln} is even. Hence E{Wln} f 0
under HZ' ynder Hz, the first moments are, in general, non-zero.

The above results depend on ¢l being odd and wz being even. We
have already noted that when the data are grouped, averagaed scores are
asymptotically most powefful. However, averaging the scores usually
destroys the symmetrybof ¢l and wz. Hence the results that E{Wig}_= 0
under H2 an& E{W25} = 0 underxr Hl do not apply, in general, when the data
are grouped.

The second order moments of W,, and W, are Obtained‘by taking

expectations of the equations
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3

l .
’ 2 2 2 2 iy
w o= [/ @ wmate £ ),
00
11 )
2 2 2 T
— l - u,%
"1n"2n [ ] byt nydTE, By (ue) (4.3.4)
00 , :
11
2 "2 2. 2 T
= ! ) 1
and W, | é é 12 (u)w2 (v)d Elngln(b,v).

In a generalised inner product notation these equations become

2 T
Y = <] =4 =g > .
" P8 nfin YT
W, W. = < ,E. EX > ' (4.3 5)‘
n2n - Purtinfiate ' ‘ A
2 T
and W, = BB v

The analogy with matrix multiplication and quadratic forms iz clezar.

Taking expectations of the equations (4.3.5) gives generalised inner

>

products with kernel E{an

T : . . . N
Eln(u,v)}. It is easy to verify that under
Ho and H, this kernel is symmetric about u = v and about u = l-v. Sinca

Y. is odd and V. is even it follows that under H_ and H,, the statistics
2 » 0 2

1
Wln and-w2n are uncorrelated. This result does not hold under Hl~or H3,
nor does it hold when the data are grouped, ekbept in the special case -
when the grouping is symmetric, i.e. the number of ties in the'it5 group
is equal to the number of ties in the (k+l - i)th éategory where k is the

number of categoriss.

For grouped or categorised data we write

4 K
W = = L ¥Y,. n_.
in n 5=1 13 13 (4.3.6)
" and
-1
w2n Y Z q23 nlj
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' : ' L L.th e
where wlj' w?j are the integrated scores for the ] category. Explicitly

=
[
Ii

¥ (e} = ¥ (c. )7,
c. ) 1 1 -1
3 J-1 J J

and similarly for ij .

It follows from (4.3.6) and {4.3.7) that

1 k
W = -= % Y_.n_.
2
ln n j=1 13 23
and similarly for Wzn’ so that

k X :

L ¢..n., = L Y. .n. .= O.
j=1 Y3 5oy 20D

This is a useful check for the calculated scores wlj' ¢2j'
From (4.2.7) we can calculate the second moments of W

under HO' which are:

. n.n x
172 2
Var(Ww, ) = - X n..y. .
ln n3 j=1 3713
: n.n k
L2 : 2
Var(w,, ) = X LY
2n. n$ j=1 3723
and
n_n k
S Cov(i W, ) = =2 X b LY
T Int 2n" n3 5=1 FTL1iT25

Since Wln and W2n are asymptotically joint normal with zero mean under H_,

1n

(4.3.7)

(4.3-8)

and W2n

A(4.3.9)

0

~ these second moments specify the asymptotic distribution completely.
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T Bxample

We use the data of 52.9 to illustrate the simultaneous épplication

.0f two rank tests. The test statistics for location and scale are

" denoted by W

1 and W2 respectively. We use a'logistic density and the

score functions wl(u), ¥, (0) derived from the logistic density.

For grouped data it is more useful to have the functions ¥, (u) and Yz(u)

1

! -
vl(u) 2u - 1

0 <u <1) | (4.4.1)

It

¥, (u) (2u-1)1n{u/ (1-w)} - 1

which are, apart from changes of sign

i

?l(u)_ uf{l - w)

(o %u <1) o {4.4.2)

and |

and

are

The

Y1y

w(l - winfu/(1 - w)} .

]

¥y )

Table 4.2 demonstrates»the steps involved in calculaiing the“iooation
scale rank statistics Wl and W, as given in (4;3.6).‘

The original data is in'the columns headed groups. Columns 1, 2, 3
category totals, probabilities and cumulative probabilities”respectively:
scores wlj iﬁ column 4 can be calculated direcflyAfrcm the formula

= 1 - cj - cj 1 This is purely a consasquance of the lagistic

model sinca

{Wl(cj) - wl(cj—l)} =  1 -y T cj—l .
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Table 4.2

Calculation of location and scale rank test statistics for
= )
LS

logicikic models

Groups 1 2 2 4 5 _ .6
Category 1 2  Total pj Ci wli Wz{cj) ' ij
0 - - - o} o - 0 -
1 19 497 516  .3691 .3691 .6309 ~-.1248  -.3382
2 .28 560 589  .4213 .7504 -.1515 = .2199 .8182
3 24 269 293 .2096 1.0 ~.7904 . 0 -1.0492
Total 72 1326 1398 1.0

Column 5 gives the values ?z(cj) and column 6 is obtainad from 5 and 2

from the formula

1
v, = ———{¥_ (c.) - ¥, (c. )}.

2 c,~C, 2 2 -1

J 57%5-1 3 3
Note that the inner products of column 1 with columns 4 and 6 are zero.
The statistics nW, and nd, are simply the inner products of columns 4
and 6 with the numbers in group 1. Their values aré -11.6087 and
~7.8785 respectively. The second moments of nW, and nW, are obtainad

1
from (4.3.9). They are

Var(nWl) = 19,7073
var (nW,) = 237.9034
and ,Cov(nwl,nwz) = 2.,7360.
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The standardised statistics T, = Wl/std(wl) and Té = Wz/std(wz)

have wvalues -2.6150 and -1.2797 with covariance matrix

The statistic Tl should he compared with the ratio K/std(a) in 82.9.

For testing H, against H we use T1 which is approximately standard

o

normal, and for H

5 against H_ we use T, which is again standard normal.

] 2

However, since the tests are not indepsndent we should use
2 2 2 ‘ ‘ R
{r.” +7.° - ZQTlT.,)/(J. ~07) o (4.4.3).

where p = .1001 for testing Hy against H . The statistic (4.4.3) is

0"
asymptotically X22 and has a value of 7.8848. - From the numerical
calculations in this example, it appears that when there are only three"
categories, the combined location-scale statistic (4.4;3) is exactly e@ual
to Pearson's x2 goodness of £it statistic. Thus Tl and T, are non-
orthogonal cémponents of the X2 statistic.' For data with more than three
categories, the two statistics are not equal.

In this pa;ticular examplae it is fortunate that the correlation.:
between T, and T, is small. If the correlation is large, this suggests
that either unequal scales or unequal locations adequately a2xplains
the differencas betwean the two groups. It may be preferable, from
prior information etc., to use the location alternative Hl'rather than
the scale alternative Hyy but because of the high correlation the data
does not distinguish between the two alternatives. Of course, if the

differences are sufficiently great, it may be necessary to use the more

general alternativest.
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Thus if we are prapared, on the grounds of prior information, to

accept H, as a likely explanation of the differences between the two

1

groups we may wish to test the adequacy of Hl with Hy as alternative.

It is thus appropriate to do a conditional test based on T, given the
= 2

value of Tl. Thus

E(TZITI) = pTl r

2 B

2

Var(t,|T) = Var(r,) (1 -pe% = 1-g

since Tl and T2 are asymptotically joint normal. For the data of

table 4.2 the conditional test statistic

Ty = 0Ty
21/2
(L - p7) /‘

has a value of -1.0230. However in this example there is no ambiguity /
and the location parameter alone is sufficient to explain the differences

between the two groups.



" ‘Chapter 5

MATCHED SAMPLES

5.1 "Introduction

The first section of this chapter‘comprises a review of the
literature for matched categorised data, matchad binary data etc.,
together with some general remarks on latent structure or l;tent trait
modelé. The discussion of further parametric models for sgquare contin-
gency tables is postponed to §6.1.

Section 5.2 includes a description of the paired logistic model
for binary data and this model is extended in §5.3 to orderad multi-
category daté; In the extended model, difficulties arise COncerniﬁg
hypothesis testing and parameter estimation, which do not arise in the
binary model, To tackle these problems, some resuits concerning
mixtures of binonial distributions and multivariate binomial distributions
are outlined in §5.4. These results are used in §5.5 to combine the
information from various marginal distributions and hence to obtain a
reasonable estimatof of the parameter of interest, called A. Two such
estimators are described in §5.5 and simulation results of §5.6 indicata =
that the two estimators of A are asymptotically unbiased and the result
of §5.8 shows fhat'the estimators achieve full asymptotic efficiency: at
least in a spacial case. An empirical Bayes procedure is_dgscribed in
§5.7 and an eﬁample concarning some radiological data ié provided in 85.9.

A matched design is a blocked design with a fixed and equal number
of observations per block. In particular, a matched pairs, or éaired
‘comparisons design, has two cbservations per block. Usually; one'member
-§freach pair ié a 'control' and the second is a 'treated’ éhservation.

The principal objective of such an experiment is usually to make inference
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about the treatment effect indepsndantly of the block effects.
Questions about the interaction batween blocks and txeatments may also

" be important in many cases, but in this chapter we make the simplifying
~assumption that the treatment effect remains constant on the logistic
scale. In §5.10 a simple test is suggested for checking theivalidity
of the assumption of nc interaction.

The purpose of matching or blocking is to reduce the effecht of
uncontrolled variations and thus to increase the precision of the
experiment (Cox, 1958b, p.23; Davies, 1954, p.l17). Much of the work
on matched desigﬁs refers to continuous, usually normally distributed,
random variables. As in Chapters 2 and 3, we derive a model for the
underlying continuous variable Y and examine the propertiesv§f the
associated discrete model. For matched pairs the following mode; is

considered in greater detail throughout this chapter.

L er _ 1
Bl b = A -5
(5.1.1)
m{y. } = A, +2A
Li2 it3

‘where, conditional on Ai' Y.. and Yi are independent random variables

il 2

with a logistic distribution. The parameter of interest, A, is the

common difference batween the means of each pal:'Lr..{Y:.L }, and the block

4
1’742

parameters {li} are nuisance parameters.
More generally, for matched designs with t obsarvations per block
and arbitrary but known density, f(yll,r), depending on the block

parameter A and the treatment parameter T, the joint conditional density

of the t observations in the ith block is

Y. | A.rT

t : .
n £ . (y.[x.,r.). A {(5.1.2)
=7 j i j ] 1 J

3
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The formulation (5.1.2) is ealled the conditional modal since the
distribution is conditional on the parameters ,{-XJ.},. and in such
generality is not considered further, Model (5.1.1) is a particulér
case of the more general conditibnal medel (5.1.2) and is considered
in greater detail throughout this chapter.

Some other specialisations of (5.1.2) have been examined in the
statistical literature. In particular; the normal theory modél ig a
special case of (5.1.2). VHowever, the simplicity of the-normal theory
model for continuous data does not carry over to categorised data. For
this reason tha»logistic version of (5.1.2) is chosen for the analvsis
of categorisad data.

So far no assuﬁptions haﬁa been made about the block parameters
'{Ai}. In some cases it is reasonable to assume. that thé'{xi} are i.i.d;
random. variables from some parametric family G(A). Then'tﬁevjoint
marginal density of the t observations in a given'bléck is

t

: f {.H ij_’XIT

Y ’ .) 3d .> ~-..l‘.'3
Ny (jj_[}\ TJ)} G(2) | '(: )

This type of model is known as a latent structure model (Andersen;’l973;
Anderson, 1959; Lazaréfeld, 1950, 1955) and the parametep'i.is the létent
trait variable. |

For matched pairs (5.1.3) defines a joint density for (Yi,fz); Since
(5.1.3) is a mixtufe of conditionally independent random variables, the °
unconditional variables Yl and Y, are positively correlated. A particular
case of some interest occurs when £ and G are both normal distributions.
In this case Yl and Y, are bivariate normal, However; in general the
~integral in (5.1.3) is rather intractabie and this imposes some limitations
on the appliéability of the model, One pafticular case théhAis of special

interest for hypothesis testing, is A = O oxr more generally in (5.1.3)
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Ti =0, 1i=1,...,t. This implies symmetry for the joint distribution

of Yl""Yt'

Wa now examine some of the models in the literature for matched
categorised data. Thess are special cases of models for square
_conﬁingency tables. Two properties which all the modeals have iﬁ common
are that they have éymmetry as a special case and they allow.a completé
range of association from independence to complete dependence..

The models for square contingency tables can be roughly divided
into two classes. The first type (Bishop et al. 1975, Ch.8) are the.
log-linear models, such as quasi-symmetry and aré discussed rore fully
in §6.1. The sscond type is characterissd by thé é#plicit fitting of a
bivariate distribution to the data.l These make use of the ordering
among. the categories. Tha distributions usad in this context include
the bivariate riormal and the contingency or'C—fype distributiéns
(Mafdia, 1970, pp.55-73; Plackett, 1965). PBoth distributions allow a o
complete range of association, but only the bivariate normal dist:ibution
has a simple explanatipn in terms of a latent trait variable. It should
be pointed out that the two classés are not distinct since the bivariate
normal model implies quasi symmetry but the converse is not. true.

An interesting question arises when an unconditional model such as
the bivariate normal model or the bivariate logistic modei'(5;7.8) are
féﬁnd not to fit the data. It is not clear whether the lack of fit is
due to a wrong conditional formulation or whether it is due to a wrong
mixing distribution for the nuisance parameters. It is the purpose of
the model described in this chapter to make inference about the parameter

of interest independently of the nuisance parameters.
£y —



68

5.2 ‘Binarv Paired Comparisons

The logistic model for binary pairsd comparisons has been discussed
widely in the literature; see, for example, Cox (1958a), {1970), and

Altham {1971} who gives a Bayesian analysis. Let Xi x,

12 bz binary

1’
random variables for the i - pair of observations. The logistic model

can be written as

4 ; fowd . -— -!: . -— -]:- .
pr(Xil = “illli) = exp{(li 2A)xil}/{1 + exp(li 2A)},
(5.2.1)

pr(}{i:Z = xizlli) = expt(li + Eﬂ)xiz}/{l + exp(li.+ EA)}'

Thus {Ai} are the block parameters or the latent trait variables and A

. " i T . S s -
is the treatment effect.  Then for the i h pair the logistic transforms

of the conditional probabilities (5.2.1) are Ai - %ﬂ and li + %ﬂ

. 1 s . . v . th
respectively, where Ai is a nulsance parameter characteristic of the i

pair and A is a treatment effect assumed constant on the logistic scale.

As many authors have noted, the conditional probability

. A A .

= = + = = 2.

prob(Xil o, Xi2 1 Xil Xi2 1) e /(1 + &) (5 2)

" is independent of the nuisance parameter li. Thus the conditional

distribution of the numbex of (0,1) pairs Y conditional on the total
0l 10

number of 'mixed' pairs n.. + n is exactly binomial with parameter

A A
e /(1 - e ) (Cox, 1970, 55-58). Then the conditional maximum likelihcod

estimator of A is

o
A = ln(nol/nlo) .
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Note that this conditional analysis ignores the numbers of 'unmixed’

Andersen {1873) has investigated the consistency

pairs nOO and nll'

of the unconditional and conditional maximum likelihood estimator of .
The unconditional estimator is inconsistent. Under mild conditions on
the sequence of incidental or latant parameters Xl,lz,...,ln,_the

conditional maximum 1likelihood estimator,.Ac, converges almost surely

?

to the true Valueb(Andersen, 1973, pp.19-22, 45), and hence is consis-—-
teng. The restrictions on the segquence of incidenﬁal parameters are
necessary to ensure that Ny + Nig - ® with probability 1. A sufficient
condition on the sequence of incidantal parameters, tolensure that Zc"
is consistent, is that the.ii should be i.i.d. randem variables. An
alternative condition is that the_li should all belong to some compact
subsets of the real line. The purpose-Of these conditions is to ensure
" that the probability of success or ﬁhe probability of failure does not
become dominant as the sequence of observations gets longsr. If the
probability of success were to increase too rapidly the number of
'mixed' pairs would not increase beyond a cerxtain point and thus the
: o
variance of Ac would not tendvto zero. For such sequences it seems

clear that theras is no consistent estimator of A and that the information

on & is bounded as the number of observations increases.
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5.3  The Logistic Model for Matched Ordzred Categorised Data

One possible, though not -a necessary, physical explanation for

the model (5.2.1), is in terms of an underlying continuous variable Y.

Suppose Yil

and Yi2 are two logistic random variables with means

-li - %A and Ai + %A respactively, and whose variances are conventionally
fixed at ﬂ2/3 which is the variance of the standard logistic distribution;
A success (X = 1) is obsexved when Y is positive and a failure (X = 0)

is obsexved when Y is negative. The derived model for the pairvof binary
random'variables is (5.2.1). We exploit this physical interpretation of
the logistic model for binary data,lto extend the model to handlevoraeredﬂ
categorised variables.-

As in §2.1 we introduce k-1 unknown parameters 81,...,9k_1 to
represent the category boundaries. Without loss of generality one of
these boundaries can be set équal to zaro pro&iaed the block parameters

.{Ai} axre either arbitrary constants oxr have a distribution with arbitrary

location parameter.

Explicitly, the modsl for the obserVed'X‘s is
X =3 if 8y £¥ <8 (=100 | (5.3.1)

whe?e - = eo

<'e1 € vees % ek = . In addition

' ' 1
prob(¥.. < ¥|},-4) Fly = a; + 54

(5.3.2)

fl

1
prob(¥., < y|A;s4) = Fly - 3, = Fa)

where P ({X) = eg/(l + ex)‘and, conditional on Ai, Y., and ¥,, are

il i2

independent.
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As it stands, the mcdel has n incidental or nuisance parameters

{x,} and x structural parameters € ,...,8,
NS -—

‘_T,A . The terminology is

somewhat misleading here since we might consider 61,..., ek_] as

nuisance parameters. It is easy to see that not all of the parameters
are estimable. For example, we can add an arbitrary constant to each

of the ki's and the same constant to the 8,'s and tha modal is unchanged.

4
o

To eliminate this indeterminateness we can arbitrarily fix one of the"
Gj or constrain the ii to ba centred‘around some fixed point, say, zero.
If the {Xi} are considered random it is convenient to eliminaté the
confounding by choosing a distribution for the {ii} which is centred

on zexo.

From {(5.3.1) and (5.3.2) we note that

pr (X, 5 f_Aj_lKirA;Q)v = F(Bj At 3) =1,k
prix,; < 3Dy 8,0 = FG, -0 - ) 6= Loee. k1)

Hence, for j = 1,...,k=1

> 3[%,08:9)

o - <35
pr{X., 2.3, X,

= e : {5.3.3)
pr(xil > jr Xi2 i Jill’AI’g) A

so that the conditional probabilities

A A . - ' .
have the common value of e /{1 + e ) for j = i,...,k-1, and this
conditional probability is independent of the nuisance parameters.

" We note in passing that the model {5.3.1) and (5.3.2) does not

completely specify the k2 cell probabilities when the {Ai} are treated
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as random variableé with an unknown distribution. ©n the otﬁer hand

~ when the {Xi} are treated as fixed parameters the ztandard methods
based on the likelihood function do not, in general, vield consistent
estimates even of the structural parameters. However, thg conditional
mo&él does imply the restriction (5.3.3) on the cell probabilities. It
would be of interest to know whether or not the conditional modelliﬁplies
any further restrictions on the cell probabilities. This can be
expressed formally by the question "Do there exist‘functions gvand h

such that
cglpr(xy = 4,%, = 3[1,8,4) i,3 = 1,...,kx} = hte,n),

where g is a function of the k2 conditional cell prdbabilities and h is
independent of‘i?". Cf course, from ﬁhe implicit function theorem;
such functions mﬁst exist. .In fact, since there are k2'~ 1 functionally
independént cell prmbabilities definad by k + 1 parameters, there must
be k2 - 2 such relationships. .We have chosen for simpliciﬁy“to |
use only k-lkof thése defined in (5.3.3) to estimate A. Consequently;
- our estimate of A cannot be expectad to be fully efficient unless the
- statistics associated with (5.3.3) are, in some sense, sufficient for A.
.Sﬁppose that the observed cell frequencies'areA{mis} 1 s_i,j é_k
where mij is the ngmber of pairs of X'é fér which the first X is i and
the second, j. Consider the 2#2 table obtained from the original sguare
ka table by combining categories 1,2,...,3 as, say, failure and categories
j+l,;..,k as success. 'There are k~l such tables and for each the conditional
model (5.3.1), (5.3.2) reduces to the model for binary paired comparisons
(5.2.1). Let,ﬁhgloff—diagonal elements in these tables ba rj and nj—rj
wheré rﬁ is the nuﬁber of pairs (Xil,Xiz) where X

I p, > J.
i1 < J and xiz 3

Similarly nj—rj is the number of pairs where Xil > j and Xié < j. From



{5.3.3), the conditional distribution of rj given nj is binomial with
index nj and parameter eA/(l + eA), We propose to estimate A by

e e - . . . T s
examining the. joint distribution of r = (rl,...,r }7 conditional on

k-1

D= (N,seen,n

iy 1 r—l)T' Unfortunately, the distribution ofvrj is not

independenf of ni when i # J so that, conditiqnal on n the marginals are
no longer binomial and the joint distribhtion of r given n depends on
the nuisance éarameters. Intuiﬁively, though, we would expect the
4 mérginal dependence of rj on the nuisance parametsrs to be small.

Since the indicesA{nj} are interdependent it could be argued.that
it is not very meaningful to condition on ail of them jointly. A second
approach might be to examine the joint diqtribution‘ofi{rj}and.{nj -.rj}'
. condiﬁional'énly on the total‘number of off-dlagonal observations. In
§5.4 we develop some theory concerning mixture properties of binomial
and multinomial ‘distributions. These results are used in §5.5 to derive

an estimator for A.

5.4 ‘Some Multivariate Binomial Mixtures

" In this section we try to develop some multivariate binomial distri-
-butions which are useful for describing the joint distribution of the

vector r = (rl,...,r )T where the elements of x are defined in §5.3.

k-1 v
The covariance structure of ¥ arises through random components_which the
elements of r have in common (Lancaster, 1974; Patil & Joshi, 1968); and

- through mixing over the indices of the constituent independent random

variables. Another equivalent way of generating correlated binomial

random variables is to extend the definition of a binomial random variable
as the joinﬁ distribution of two Poisson random variables whose sum is

. fixed. We first derive a few simple resulis for uniyariate binomial and

multinomial distributions.



Lat Xi,i = 1,...,5 be s independent binomial random variables with
indices {ni} and parameters {p,}. Suppose, in addition that the {ni}

are themselves random variables from a multinomial distribution with
' s . s
index n = I nj and parameter vector ¢ =-(¢l,...,¢s) where I ¢, = 1.
' . J .
j=1 , i=
We are interested in the distribution of ij and in the joint 4

1
4
1
3.

stribution
‘of xl""'X° conditional only on n. By using pxobability generating

functions it is easy to show that ZXj is a binomial random variable with
, s
index n and parameter 5-= I ¢.p. which is a weighted average of the
o ' j=1
parameters {pj} of the original independent binomials.

The joint probability generating function for Xl,xz,...;xs'is

’ s e ko h o
— R n "
l1-p+ ¥ t.9.p.] = I ... It .o X, =
[ P ]¢ pjl t, © ts P( = F

. ] .
=1 LyreeeX

Pl ¥y = rsln)-
That is to say that Xo,Xl,...,xs, whare XO = n —,ZXj, have a joint multi-
nomial distribution with index n and paranster vectox

a - p,'¢lp1, ¢2p2,...,¢sps). In addition the joint distribution of

Xl’XZ""'Xs conditional on ZXj is multinomial with index’ZXj and

parameter vector (¢lpl/§} ¢292/§) ceey ¢Sps/§3.

These examples demonstrate some of the mixture properties of univariaté
binomial distributions. Since binomial and multinomial réndom variables
can be generated from independent Poisson iandom-variables'with fixed sum,
the above reproducibility properties of the binomial and multincmial
disfributions have simple analoguas for the Poisson distribution.

Note that the distribution of {Xj}conditional on n,,...,n  depends
en 2s parametexrs Nyreeerfgy pl”"’psf whereas the distribution conditional
on n depends ohly on two parameters n, E:

We now try to extend these ideas to multivariate binomial distributions.
For simpiicity we consider only the bivariate case. As before we let

n n

1’ 2

XI'XIZ'XZ be independent binomial random variablas with indices n 127
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and parameters Py Y

+ P,. Ve generate correlated variables Y. Y,

7 P1ar Py
by setting

The joint distribution of Yl and Y, depends on the six parameters

Nyr Nyor Ny Py P12' PZ and has p#obability generating fupction

n n ' n

1 , 12 |
(qy + Pyt Tlay, + ppytty) TTlg, *opyt) T (5.4.1)

When.pl = pl2 =P, this distribution is called bivariate binomial with
overlapping trials (Patil & Joshi, 1968, p.50) and both marginals are
binomial. In general, however, the marginals are not binomial since
the Y's are sums of binomiais with different parameters. ~If,,however;
.the indices are random it is possible that the marginalé could be

binomial as in the univariate case. For &xampla, if n2is fixed and n,

‘and ny, are independent Poisson random variables whose sum is fixed -
(nl +'nl2 = Nl’ say) then Yl is binomial but Y2 is the sum of ﬁwo

binomials and has p.g.f.

n2 N

1

A natural extension is to let n,, n have independent Poisson

1" Py B

2

distributions with parameters Al‘ ll A, and to fix n; *+ By, T Nl and

2!
n, + Ny, = N2. This effectively leaves one degree of freedom among the

variables n., n

1 127 n2 and the distribution of n12 is
T2
. . . " .
pln_|¥ 0,0 = ¢ — , ————; : (5.4.2)
1271727 (Nl )¢ nlz.(N2 nl2)'
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where O f_nl2 ﬁ_min(Nl,Nz),'u = Xlz/klkz and ¢ is a constant to make

the distribution sum . to unity. ILet r(t) be the probability generating

function for hlz in (5.4.2). Then

tl{t) = c L

{(5.4.3)

so that ¢ depends on Nl' NZ, 1 as well as t. Then from (5.4.1) and

(5.4.3) the joint p.g.f. of ¥

1 and Y2 conditional on Nl' N2 is glvgn by

N

N 4.+ pott
1 , 2 . 1.2 127152
(q, + pltl) (a, f poty) g

ql+pltl)(q2fpzt2)

(5.4.4)

and neither marginal is binomial as mentioned towards the end of §5.3.

The first few moments are

+ 1) Py, = py)s , ' (5.4.5)

E(y) = Nipy Py
: 2 : 2. .
Var(Yl) = N,pq; - plc'(l)(plz*pl)+(plz-pl) [g" (1) - {g* (1)} }‘ (5.4.6)

and

| " ) v 2 3 € )
COV(Yl'Y2) = (plz-pl)(plz—pz)lc (L-{z' W11 + c'(l){plz(l—pl—pz) ; plpz}-

{(5.4.7)

It does not appear possible to express Z(t) or £'(1) in a simpler form.

) and 2{n 1)} raspectively.

o
12 12 12

The bivariate distribution of Yl and Y2 can be extended to a multi-

variate distribution for Yl’Y2""’Ys’ but an elaborate notation is needed

Of course £'(l) and §"{l) are egual toc E{n

to describe the general analogues of (5.4.2)~(5.4.4). No esseantially new

points arise in the general case.
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We note that the distribution whose p.g.f. is given by (5.4.4)

has the property that if we ignore N, or *et'Nz be very. large then

2
the distribution (5.4.2) becomes binomial with index Nl and parametear

Alz/(kl +:A12). Hence, by an earlier result Yl_is binomial with index
o ; + A + . The distributi
Ny and parameter (pl)\1 1 12)/(Xl_ llz) he distribution of

EyreeesX conditional on n is the multivariate analogue of

k-1 s T |

the joint distribution of ¥, and Y, conditional on Ny and N,.

Another extension of the univariate result is to assume n,,

1t Mot

2

P2,

to have independent Poisson distributions with parameters‘llf,llz

and to fix the total N =n, + n. + n,.. Thus n_, are tfinomially

17 P2 T My 1’ M2r T2
distributed with index N and parameter vector ¢ :,(ll/k' ’ Xlz/k, r Ay /A )

where A. = A + kz + A12‘ Then the jeint distribution of ¥y and ¥_ has

1 2

p.g.f.

. . N . ' . . s V J__\N‘ A
(biay + 9,9, + ¢,ay + ¢k, + dypot) + 4P e )T (5.4.8)

so that the marginal distributions are both binomial. The p.g.f. for-
the general multivariate analogue of this distribution is given in Patil

& Joshi {1968) p.8l. The marginal distributions have parametars

¢ p, *+ ¢ respectively, with common index N. In

1 and ¢2P2 + ¢

12P12 1212

" addition, the conditional distributions of Y, given N, = n. + n and of

1 1 1 12

. Yzlgiven N2 =n, +tn are both binomial with indices'Nl and N

5 12 respectively

2
| + | o, '
and parameters (p,P; + ¢1,P )44 + ¢;,) and (6,25 + ¢,,0, .0/ (6, + ¢y5)

respectively.

We note that, as in the univariate case, there is a reduction in the
number of parameters from six in (5.4.1) to four in (5.4.8). In the

. C p+l P

general p-variate analogue the reduction is from 2 -~ 2 to 2°. However

the version we require has the restriction that all parameters whose

indices are not in strict sequence,

»e,g. P13' 9124 etc. are all zero.
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In this special case the number of parameters is reduced from p (p+i)
1
to 3~p(p+l) + 1.
For our present purposes it is useful to write the p.g.f. (5.4.8)

- in an alternative form which generates the probabilities for

I - - ' b } - r - 3 -+
nl + 112 rl ?12, 12 + n12 5 r12 as we;l as for rl r12'
x, + r12' The alternative version of (5.4.8) is
N

: + S ; 3 1t
(019250 * 91512515 * 9a%p%p ¥ 0P Fy T EpPpE Ty T Ryt (5.4.9)

The p.g.f. (5.4.9) applies only to the bivariate case. In the application
to matched contingency tables, the paramsters ¢, p, g have the following

properties:

. L > : \
$9; + $,,q, E pe(x; > 1, x, < 1[0,

A
h = i . |
$.py * b Py, = i pr(x, <1, X, > 1),
E=3 oy
and '
= F < > 2>
9p, + &P, | I[.‘; prx, <2, X, > 2[N).
Hence
$.p, + O A
1Pyt Py T oe (8t daa,)
and
bp + & = Moq )
gPa T PPy T e (R, + vy 0).
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Note that the marginal p.g.f. obtained from {5.4.9) by putting £, = 1 is

[(¢1ql + 9 )s. + (¢lp + ¢ + ¢2JN 4,10)

C e~
\.,}

12%12 ?pl"

. o _ .

and hence the marginal likelihood estimator of A is Al = ln{rl/(nl - rl)}
& . . . i ’

or A2 = ln{rz/(n2 - rz)} from the second marginal distributicn. To obtain

an efficient estimatcr of & from the two marginal likelihood estimators we

n, =

need an estimate of the covariance matrix of rl, rz( nl - rl, 9 2.'
It follows from (5.4.10) that
E(rl) = @ E(nl - rl)
and
E(r,)) = e'E )
ry,) = § (n2 r,).
The second moments are obtained from (5.4.9):
coviry,ry) = WO Py = (§yPy + 61,05) (950 + ¢5,P5)
== } -
~cov{n,~xr, /n Mdp91p = (099 *+ 9159 5) (658, + 7,59, ,)

It

'cov(rl,nl-rl) —(¢lq1 + ¢12q12)(¢lpl + ¢12P12)

cov(rz,nl rl) = -(¢2p2 + ¢12912)(¢1q1 + ¢12q12)

etc.

When N is large, the only important covariances are cov(rl,rz) and
cov(n —Ty gy 2), which are approximately N¢12912 andimazqiz respectivaly.

It is easy to show that E(r and E(nlz—rlle)

12l ¥) = Né,04, = Ngyo9yoe

For small A,‘p12’= 1/2, so that cov(rl,rz) = cov(nl ryen, rz) . i—n(nlzln).

This approximate result could have been obtained by considering the n's
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fixed and examining the variation of ¥ relative to n. In §3.5 we
show how to combine the information from the marginal likelihoods, in

the general case where there are k categories.

5.5 Estimation of A

We now consider the rroblem of estimating A in the conditional
model (5.3.1)~(5.3.2). Where necessary, we will assume that the-{hi}
are i.i.d. random variables. In particular this means that the cell
counts are multinomial or, equivalently, they dre indepgndent Poiséon
‘random variables whose sum is fixed. This is the motivation behind the
multiva;iate distributions in §5.4.

In §5.3 it was shown that the distribution of rj conditional on
nj is binomial with index nj and parametar eA/(l + eA). It follows that
lhfrj/(nj—rjj} tendz almost surely to &, (Andersen, 1974), or equivalen#ly,
rj/(nj - rj) tends a.s. to eA for § = i,...,k—l._ Of course the‘indices’
'{nj} are themselves random and interdspendent. The analysis of 855.4
shows that the distribution of rj conditional on nl,...,nk_l is not
binomial and the marginal expectation of rj depends in general on all the

. However, the joint distribution of the indices n

indices n, .-.,n
i’ k-1

is_mgltivariate binomial with index n = §¢¥ mij and parameters Py Pij'

Pijk etc. which depend on the nuisance pa;aieterslé; g. This gives a

jbint distribution for r conditional on n which is the k-1 variate -

genaralisation of (5.4.8), with the restriction that the'pafameters of
A

all the conditional marginal distributions are equal to eA/(l + e},

The marginal expectation of r conditional only on n has the form

Ez|n) = Emlmel/ + eb). - | (5.5.1)
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"We consider now two estimators of A based on r.

>
Il
™

(5.5.2)

o]
W
"y

- : 1

W, In{i(r., + &} /{n., - . +
g ol + 3/ -y

and

AF

It

-ln'['{%—+ yz*Tg}/f-;f- -fnvg*T(g - 1)} | o {(5.5.3)

where ; ﬁj = 1. These estimators ére analogous to the estimators & and
Ax in t%e two-sample problem of Chapter 2.

We assume that the case A = 0 plays a.special role in that it is the
dividing point between two qualitatively different poséibilities némely
A <0 and A>oO. Formally, therxafors, we construct a null hypothesis of:

- symmetxry Hd : A = 0 with a general alternative Hl : A # 6. We choose
weights w* and w = (%1;...;ﬁk;l) to minimise the variances of A*.and A
under HO. |

The addition of 1/2.to both numerator and denominator in (5.5.1)
and (5.5.2) ensures thatbﬁhe estimates remain finite. In fact it alsa
ensures mean squaré convergence in addition to almost sure convergence.
Séveréi other types of combinationiare possible. For example, in (5.5.2)
we could take logs after summation.

We consider first the null distribution of r and later examine some

of the non-null properties. First we define the symmetric matrix

N ="{n,.} by

n,, = & ¥ m_+m ) (i < 3)
+J agi p>d B Ba
where m’ is the number of palrs of observations (Xil'XiZ) wnich are
O.r ol .

equal to (a,8). Thus the diagonal elements of N are equal to n (nii e ni),



and the element nij is a measure of the random elements which T, and rj
have in common. We first obtain the null distribution of r conditicnal
~on ¥ and this enables us to get the unconditional first and second
moments., Conditioninngn M is equivalent to conditicning on all

L .

I k(k-1) quantities'{mij

are sums of binomial random variables each with parametar 1/2. Hence the

the elements o

Ih
B

+ mji} i <Aj 50 that, undexr HO,

null distribution of xr conditional on N is multivariate binomial with

' overlapping trials (Patil & Joshi, 1968, p.60). Its-joint p.g.f. is

given by
k=1 T N LT

b (q+pt) J:3 JrL,.3 1 (q_l_pt't-:.k ) Ji J ,'j’...(q_‘f‘?t + “‘tk )
j=1. ]=l 3 _‘nl : 12 -1

with p = g = 1/2. The First two conditional mements axe

-
»

it
N
3

i

Bq (2l

and

!
NI
141

v, (zlm

The same moments conditional only on n axe

A ) ‘ o ’
EO(EI{}) —_EO{EO(ngIj)Ig} = 7 n {5.5.4)
and
voleln) = B v lwla} + v iz zln i)
1. '

The subscript O refers to the null distribution with A = 0.
Equation (5.5.5) tells us that, regardless of the nuisance parameters,

1 . . .
Z-§ 1s an unbiased estimator of the null variance matrix of r given n.

™™
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Note that conditional only on n, the sum of the off diagonal elements

of the square table, the null variance matrix bscomes
v (rln) = l-E (Nln) + }-V (n!n). (5.5.6)
~ 4 0~ 4 0~

It is easiest to obtain an expression for the asymptotic ﬁull
variances of A and A* conditional on all the elements of n. We do
ﬁhis by ignoring the factors of %—in the numerators and denominators
because these faétors have no asymptotic effect on the estimators. Using
..%-g as an estimate of the null variance of r, the weights W and w* which

minimise the null variances of A and A* are

- m -
7 o= oy n/G'N p)
and
. -1 ,
w'ﬂ' == ’.‘.[\J Q’ (5.5.8)
where
D = aiagla;,-..m ).

k-1

A similar result can be cbtained by examining the joint distribution

of ¥ and s = n - r conditional on n. Under H_ these have a symmetric

O

multivariate binomial distribution where p.g.f. has the form

. : . n
[q{zi ¢.u; + zj by uguy + oo} + plEb e, + Zo tE 4Ll Y, (5.5.9)
’

He

with p =g = %u Note that the joint p.g.f. of n has the form

£+ ... 10, (5.5.10)

z £, + 2
[Bo b, + Bb b b, + s

37 Mg

obtained from (5.5.9) by putting u = t. From (5.5.10) it follows that
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E{n,) = nd,. and E(n,,) = n¢,,. , where ¢$,. is the summation of all
i i ij ij i

¢'s which have i as one of their subscripts, and similarly for ¢, ..
13

T T .
It follows from (5.5.9) that the null variance of (w* x)/(w*"s) is

asymptotically given by
_ - - _ L
v T /yTs) = R e/ Iz v B (1,

and hence

o= EmITE@,

\ . . -1
so the obviocus estimator of w* is w* = N "n.
The asymptotic null variance of A* is therefore given by -
T -1
n

VO(A*) = 4/n

-~ - ~

. {5.5.11)

The asymptotic null variance of A is élsq given by {5.5.11). The non-null
variances of A and A* can be approximated by (5:5.11) for small A, but

for slightly larger values of A the follqwing variance estimator is
sﬁggested,

VY = vd) = 4@+ 78 /m'y n  (5.5.12)

13-4

This approximation is suggested by the relation

A A2
V(c,|n;) = n, e /(1 +e)
]l ] 3 /
The covariances are not deflated by the same factor. Nevertheless,

(5.5.12) seems to be a reasonable approximation for medium values of A.
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If the observed matrix N is singular, as can happen when the

criginal data are sparse, it is sufficient to find ¥, w* which satisfy

and

where 1 is the unit vector. In this case the asymptotic variance of
. . 20, T .y
both estimators is (4 + A™)/(n"w*).

An interesting mathematical problem arises concerning the consistency
of A* when the complete ranking of all 2n observations is available. We
nota that for a fixed number of categories, both A* and A are consistent.
However, when the complete ranking is used ths effective number of

categories increases with n and it can be shown that A* reduces to

{No of pairs where X, > X ft%ﬁi
. . 2 1 2

exp (A¥) = . =~
(No of pairs where X, > X.,) + 3

and that, for small A, plim{A*)= 2/3A + O(A3): Henbe~A*.is inconsistentv

for completely ranked cbservations. It seems likely that A is also

inconsistent in the same limit but it does hot have a simple limiting form.
It seems reasonable, therefore, to expect that when the number of

categories is large, the estimator A% will be biased towards the origin.
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5.6 Simulation Results for the Estimators A, A*

li

To teét the adéquacy off E and A* in both medium (n 100) and

large (n = 1000) samples, four categories were.taken'so +hat the square
tables each had 16 cellé.‘ This gives an average cell count of 6 and 60
for fhe medium and large samples respectively. However, many of the
obsarvations léy on the diagonal cells and did not enter into the
analysis. Thus, the effective sample size or the number of off diagonal
elements was considerably less‘thaﬁ n.

e Y,
1

Pairs of continuous random variables Yi 5

1 were gensrated as the

sum of a uniform and a logistic random variable

iv oL T %
i2 17 %2

where {Zil’zi?} are independent logistic random variablas with @ean

(- %5) %5) and variance 1. The uniform random VariableS:{Ui} had a

1 2

This high correlation reduces the efficiency of the simulation since

range of (0,8). Hente the correlation of Yi and Yi was 16/19 = 0.84,
many observations fall in the diagonal cells.of the table and do not
enter in the analysis. However, correlations of about .8 are encountered
in real data in practice, and in this sense fhe geherated data mimic real
data.

The category boundary points 8 were chosen to be § = (-=, 2, 4, 6, =)
so that reasonable numbers of observations fall in each category. The
range of true values of § was 0,(.1),.929. This is equivalent to wvaluss of'
A in the range (0,1.6) since A = &1/Y3.

The‘data in table 5.1 show the true value of § together with the

average of 100 large~sample and the average of 100 small-sample estimates
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A and A*, The statistics A and A% or equivalently, § and §* were

calculated on the same data sets and hence are highly correlatad.

-~

Unlike the corresponding unpaired estimators, neither A nor A* show

. any bias towards the origin even in medium sized samples.

~

'Small' sample 'Large' sample

n =100 ..n = 1000

§ 8 &% 3 e
0 .019 .016 .002 .C02
.1 . : .117 .119 .103 . .103
2 .199 .203 .198 .197
.3 ;288 | .296 ;288 .289
iy 402 ' . 414 .403 ' . 404
.5 .496  .515 .502 .504
.6 .594 ‘ .608 .595 .597
.7 . .676 .696 .701 . 704
.8 .808 .840 .807 .812
.9 .887 . 916 .899 . 902

All entries are the means of 100 repetitions at each value of 8 (=AY3/m) .

The estimated standard deviation fxrom (5.5.12) was adeguate for
values of 6 in the range studied here. The standaxrd deviations of § and

§* for the small samples ranged from .01l8 at § = O to .022 at § = 1, while

for the large samples the corresponding range was .005 to .C07.



FIG. 5.1

Graph of simulation resulits for paired estimatois 3,4
in small samples. (see table 5.1)
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5.2

FIG.

Graph of simulation results for paired estimators K,f

in large samples.

{see table 5.1)

1S PANCEMENTS
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5.7 A Random Effects Model

Suppose the nuisarnce paramatersbfki} are i;i.d. random variables
with known distribution function G(i;é) which depends on.the unlnown
parameters ¢. The parameter of interést; 4, is assumed fi#ed. A
similar problem concerning the linear model is considered by Co# {1975) .

As in §5.1 let Y. and Y2 be the uncbservable continuous random variables.

1
From (5,1.3) the joint marginal density of pairs of variables (Yl,Yz) in

the same block is

(v, |A,A) a6 (e) . | (5.7.1)

. -’ 2. N
f{ i[ ij_I)\ 3

=1

If the parametric form of both f and G is known then (5.7.1) defines
the jointvdistribution of pairs of observations in tha same block. A1l
pairs have independsnt identical distributions which dépend on the para--
meters A, é. Since the number of parameters is now fixed, the method of
maximum likelihood based on the marginél distribution of (Yl,Yz) in

(5.7.1) vields consistent estimates of the parémeters A, é;

In many cases of interest, the distribution of the nuisance parameters
'{ki} is unknown. If the family of distributions G(k;é):is sufficiently
‘flexible we coﬁld expect at least one member of the family to bs a close
approximation to the true distribution of‘the:{Xi}; It is not clear how
much thils empirical Bayes procedure is affected by an infleﬁible choice
of prior distribution for the nuisance parameters; but in any casa it is
possible to test for the adsquacy of the chosen model (5.7.15.‘ what this
test does not tell us is vhether the inadequacy lies in the"conditiﬁnal

formulation (5.7.2) of the model or in a poor approkimation to the distri-

bution of the nuisance parameters.
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The joint density of the continuous uncobservable variables Yl and

Y, conditional on A is
2 ,

cexply, +y, T 20)

S T L2 - {5.7.2)
{1+ exply, A+ S0 L + exply,~A-~ 380}

£ (v, v A, 0)
Ylyzlk 172!

Since it involves ohly a linear transformation we conéider, without loss
of generality, the symmetric case with A = O.

There is considerable difficulty in finding a parémetric family of
aistributions for {Xi} which is reasonably flexible and for which the
integral |

[==3

f ERALSEARE

- OO

can easily be evaluated. The simplest density g(+) which I could find is

. . . . o, +o
Col : : e 42 '
g, (i)~ = 'exfp{(a_.—?\)al}/[{l + exp (ay~A) ] B oy r0))]
= ; > 3 i ; ion.
where o (al,az,uB), &y s 0 qnd,B(ul,uz) is the beta function. The
parameter o is simply a location parameter and can be‘ignored without
loss of generality since the category boundary parameters 8 take care of

location information. It is therefore sufficient to consider the restricted

family

. . _ (d“+a Yy ..
ghe) = exp(-a)/I{L + exp(-1)} + Bloag )], {5.7.3)

where o = (& ,a,).

We naw consider some properties of the family of densities (5.7.3).

(i) If 2 is a beta random variable with parameters ¢, and @, then

2
lh{Z/(l - Z)} has the density (5.7.3).
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(ii) %he w.g.f. of (5.7.3) is

B(al,az)

’ o (5.7.4)
so the cumulant generating function is
oy —t) f ¢(§2+t) - ¢(al) = ylay) -~ (5.7.5)

where { is the log-gamma function. (The psi-function given in Abramowitz

& Stegan (1970) is the derivative of the log~-gamma function.)

(iii} The density g is unimodal, the maximum freguency occurring

at A = ln(az/al).

From (5.7.5) the cumulants, K, are

@, = 1 ey + 0T )

s (5.7.6)

)

where ¢(r is the rth derivative of ¢. For the relationship betwsen the

cumulants, «_, and the moments . see Kendall and Stuart (1959, wvol.l, p.€8).

and Koo These are ~

The mean .and variance are given by Ky

o= oKy o= LRGP —tp'(czl)
and
02=K =1’J"(6L)+lp"(d.) .
2 ' 2 1
When o, = o, the distribution g(k;g) is symmetric about zero; while

ey > . means that the distribution is negatively skewed and vice-versa.
We now consider the joint marginal distribution of paixs (Yl,YZ)

after the nuisance parameter A has been removed by integration. The

joint cumulative distribution function of Yl and Yz'is
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. . exp (v, ty,~20)expl=da,) . ... .. v
F(ylyzig) = Im> ” - —
{1+exp(ylfk)}{1+exp(y2#1)}{1+9XP(fA)}

ar .

(5.7.7)

S8y _ s S -y, :
Ie “) - Ite 1} (¥q

o ) <a-1+a2>(e el |
- ik |  (5.7.8)

S
<

where .
-y —y(a1+l) } . —y
= - -1 . H - )
Ile *) e _ 2Fl(al+a2, alﬁl, al a2+l, 1-e *)
and . .
o, F 1 -0y . )
. - R IR -
I'(e y) e yrsereraroli - 0 L F_{a, +o +2; a,ta,+2; l-e y) '

(o +a,+1) 21 %2 %y 1 %2

(see Gradshteyn & Ryzhik {1965), 3.315, p.305). The function F. is the

hypergeometric function which can be computed from a power series convergent
wheﬁ the argument.is less than 1 in modulus. For other values of ﬁhe
argument there are recurrence xelations given in Abramowitz & Stegun

(1970) Ch.15.

There are considerable computational problems associated with fitting
the bivariate cumuiative distribution (5.7.8); The main problem is the
existence of numerous poles'of both the'hypergéometric function and the
gamma function. An additional problem is the slow convergence rate of the
hypergeometric series expansion for certain values of the argument. Until
a fast reliable algorithm is found for evaluating the hypergeometric
function it seems unlikely that (5.7.8) will provide a practiéal alternative
to standard bivériate distributions.

Despite these problems, a Fortran program was written to evaluate the

distribution (5.7.8). The Series expansion was used to calculate the



hypargeometric function when the argument was small and translation
formulae were used for large values of the argument. To avoid poles’
in the gamma function, its reciprocal was calculated instead.

An application is given in §5.9.

5.8 'Random Pairing

Suppose pairs are formed at random, for e#ample by deliberate
matching on variables which are iﬁ fact unrelated to the factor in
question. In this rather unusual case both the two-sample model of
chapter 3 and the paired model are applicable. Intuitively; though, it
seems that we would do better by using the model with fewer parameters
i.e. the.independent samples model.

Armitage (1975) investigated the problem of random pairing for binary
variables and concluded that the unmatched model'wés generally mere
efficient than the matched model. He uses as his cyiterion the aiffereﬁce
between the asymptotic variances of the cross-ratio and the equivalent
estimator for matched binary data. The two models are asymptotically-
equally efficient when there is no treatment effect. In this section
it is shown that this result can be extended to multi-category models
based on the logistic distribution.

We consider first the varianceFOE the estimator of A from thé paired
or matched model described in §5.5. To distinguish the two estimators
the subscript p is used foxr the paired estimators. From (5.5.12) the

variances of Zp and A*P are given hy

~ 1
v, = V(AP).= 4(1 + 7 47)/@N "n). ‘ {5.8.1)



95

Random pairing implies that all the block parameters'{li} are

equal and hence independence in the sguare table of obsexvations. Hence

prix; 24, X, > 3) = prix; =

=
3
&
—
oS
[
Y
(o ¢
~
»
o
J\
Lo

We consider the null case and define: Yi = pr({X, < i) = pr(X

< i).
1= <)

"
L
Let the total number of pairs of observations be n. It follows that the
eiements'{nij} of N have expectation

‘So(nij) = 2nyi(l - Yj), i<3 - (5f8.2}

and the elements‘{ﬁi} of n havg-expectation
Eq(n,) = 20y (1 -v,).

From (5.8.2) we see that EO(N) is the Green's matrix encountered in’
Chapter 2. The inverse is a symmetric Jacobi matrix, so the asymptotic

value of Vp when A = 0 is

k-1
: y =
V 22/n{Z v, -y){m, + 7.0} 7 - 5.8.3
p / {'—1 Yj( Yj) \TFJ u3+1} ( «3)
J_.
where ﬂj = Yj - Yj—l' It would be of interest to know the behaviour of

Vp for non-zero values of A but I have not bsen able to get even a first

order approximation to VD for non-zero A.

-

For the two sample model we get from (2.3.3)

k-1
- 3 = (R _ vl
v{A*) = V(A) = {3 i Yj(l Yj)(ﬂj + "j+1)}

j=1
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when A = 0. Thus there is no asymptotic loss of efficiency when the
true value of A is zero, and this extends Armitage's result for binary

data. It seems intuitively clear, although there is no proof, that A

is inefficient compared to A when the true value of A is non-zero.

5.9“Examgle

This.example;’from Wise .& Oldham (1963), concerns the degree of
pnaumoconiosis in coalface wérkers as measured radiologically. There
are 8 mines denoted by the letters A,...,H with sample sizes ranging
from 33 to 148. At every site each individual was radiographed at the
beginning and at.the end of a 2.5 year period. The degree of pneumo-
coniosis is classified on a four category scale indicating increasing:

severity of the disease. A typical table is given below.

Table 5.2

Paired readings for 82 coalface workers at mine 'G' from

~table 1 of Wise & Oldham (1963).

Second reading

Category . . l ..... 2,3 ........ 4 ...... TOtal

‘First 1 : 43 8 3 ) 54
reading 2 ‘ 2 2 s 3 12
3 1 0 7 2 10
4 0 0 1o 5 6

Total 46 10 : H”lei.:u Sy g
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Iﬁ is fairly cleér from table 5.2 that there is a strong associafion
betwean pairs of readings as we would expect and that; on the averags,
the second readings are higher than the first: Thus there appears to
. be some evidence of disease progression at mine 'G'. The interesting
gquestion to ask is whether or not the progression is the same at each
site, and if not to identify those sités which show most progression.

It shonld be stressed that we are interested in progression only
and not in the absolute levels of the disease. Thus it is possible,
“though in practice probably unlikely, that the sample chosen at a parti-
cular site may have a high averagzs level of pneumoconiosis but show ;itﬁle
or no change over a 2.5 year psriod. Conversely; on a,néw‘site with a
young workforce, the. average level may be low buk the prograssion rate
may be fést.v It is therefore desirable that we should be able to estimate
progression independently of the absolute levél'of-the diséaSe. This is
precisely the role of the matched pairs modell

To compare values of Z obtained from different tables an exitra
assumption is necessary. The observer or reader variation must be logistic
with constant variance throughout. The actual logistic form is unlikely
té be crucial, But the assumption of constant observer'vafiance from
“table to table is very important since the observer variancé determines
the scalé on which A is measured. In this particular data set, all
readings were by the same panel and hence it is reasonabie.to expect the
variance to remain constant throughout.

To compute A and Ax we need the guantities N, p and ¢ for each table.

For table 6 these are

14 4 o0 {14 11!
i i i
N = 4 12 30 , g = 12 , r = 11
L b
o 3 6Jl L6 L s} :
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The weights'ﬁ and w* are (.523, .283, .194) and (.847, .524, .733)
respectively. The two estimates, A and A* are 1.45 and 1;50 respectivaly
with common standard deaviation .53;

- Table 7 gives the estimates A and A together with their standard
deviations for the other'mines'A .;. ﬁ from the data in tablé 1 of Wise'
& Oldham (1963). In the matched pairs modél the quantity eA has a |
conditional odds interpretation: it is the odds. of obsérving progression |

conditional on observing a change.
Table ‘5.3

Progression estimates A, A% for 8 mines A ... H.

MINES
........... I UERE TIHRE TUE T SIS
A .84 .37 2,38 2.88 3.06 3.20 1.45 1.90
A .92 .51 2.22 ,3'_'22_ 370 3.26 1.-50 1.62
std .89 138 66 .74 1Al 60 .53 .58
n 90 .. .33 . .87 . 83 82 148 ' 82 84

There is strong evidence of positive progression in all mines except
for B and possibly A. Amongithe other mines it is clear that D, E, F
have greatest progression. There may be an explanation for this in terms
of location, type pf coal, work conditions etc: but no information on
such factors is available.

It is of interest to compare the present analysis with other methods
which use only the information in the marginals of the table. The data
have been analysed by Hutchinson (1976) using an exponeﬁtial model and by
Wise & Oldham (1963) using a Normal distribution for the marginals. Table

5.4 shows the results of these analyses for mine 'G' togethsr with the
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estimate obtained by using the method of Clayton (1974) outlined in
Chapter 2. All three methods show some evidence of progression although

none is conclusive.

" Table "5.4

Progression estimates for mine 'G' from marginals cnly

Model” - Estimate - 'Std "  ratio
H exponential .27 .17 1.59
W&o Normal .29 .13 l.61
c | - Logistie . .48 .31 1.55.

It should be emphasised thab the different estimates in table 5,4 
are not directly.comparable although we would ekpect the estimateé from
the normal and logistic modgls to be approximately in the ratio
V3/% : 1 (Cox (1970) pp.26~22). In addition, since the paired model
has the'conaitional variances fixed and models based on the marginals
have the marginal variances fixed we would expect matched estimates and
marginal estimates to be related thréugh the correlation of pairs of
observations. We write this relationship as

/2

a, = a0 -t (5.9.1)

b
where AP is the paired estimator and A is the marginal estimator. In
Mo
fact there is no justification for examining the marginals alone except
when p = 0 and this corresponds to the case of random pairing discussed
in §5.8. A model for matched data, which estimates the marginal by odds

ratio AM is discussed in §6.3.
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The empirical Bayes model of 85.7 was also used to analyse the
data in table 5.2. The model was f£ixst fitted with @, = &, S0 that the
mixing distribution of the nuisance parameters was symmetric. The

BN

: A s s &N -
maximum likelihood estimates of the parameters (o, 4, el,,ez, 63).Were :

(.265, 1.624, 2.184, 4.144, 7.618) and std(X) = .52. & X° goodness of

fit statistic was calculated although some of the cell frequences are
small and this had a value of 11.05 on 10 d.f.
In fact the parameter o determines the correlation structure in the

distribution <5.7.8), since
p = ,é¢"<¢>/{zw"<é) + 72/3} {(5.9.2)
or more generally, whan'&l # &2
p = ol ley) + ¥T ) IAY @) () + 703 (5.9.,3)»

where w(d) is the log-gamma function at &. Substitution of & in (5.9.2)
gives p = .9036 for the data of table 5.1. (Tables of the digamma and
 trigamma function are given in‘Abramowitz & Stegun (1970), Ch.6.)

Using this value of p substituted in (5.92.1) gives the approximate
relationship AP = 3.2 AM. This relationship is verified by examining
the estimates of A for table 5.2.

A
P

i

1.45 - 1L.50 from table 5.3

.48  from table 5.4.

=]
if

M

The ratio is approximately 3 as expectad.
In conclusion we point out that, for such highly correlated data,
there is considerable gain from using the paired model. The asymptotic

gain in efficiency increases as the correlation increases.
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5.10 Discussion sion

It is nearly always preferable in any statistical application to
uée a model.whose adeguacy to explain the data can be tested. The
conditional model described in 55;2 and 55.3 where the nuisance
parameters'{Ai} are unrestricted cannot easily be tésted for gqodness
of fit (Cox (1970}, p.58);‘ However it is in principle possible to test

that the sequence of estimators
~ : -1 -1
A, = In{(r. +3)/(n. —r. + H}
3 j 2/ g7 F TR
have common m=an A. A suitable test statistic would be

a . |
ad - an™y l(A -3y (5.10.1)

&~

where g = (Zl;...; Ak~l)T; A is giveﬁ'by (5;5.2) or (5.5;3)'and 1lis ihé
unit vector. The statistic (5.10.1) has a distribution which is
asymptotiéally X2 on k~2 degrees of freedom when the model is true.
Large values of (5.10.1) indicate some interaction between blocks and
treatments.

With the empirical Bayes procedure it is possible to test the adeguacy
"of the model as shown in the’e#amplé of §5.9; Unfortunately it is not easy
to interpret a large X2 value since it oould arise from a false conditional
model or from a false distribution for the nuisance parameters_-

An alternative hierarchy of parametric models which is closely

related to the models discussed in this chapter, is developad in Chapter 6.
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FURTHER MODELS FOR SQUARE CONTINGENCY TABLES

6.1 ‘Introduction

One important criticism of the conditional model described in
Chapter 5 is that its adequacy to explain the data cannot be tested
directly. The adequacy of the empirical Bayes model can be tested, but
if it is found to be inadequate the inadeguacy may be in the mixing
distribution, ij;d), and not in the conditional formulation. The modals

described in this chapter have been developed to reﬁain scme of the useful
rpropert;es of the pairéd logistic model with the.additional proparty of
being easily tested for goadness of fit. Further, the models form a
hierarchy, so that if a paﬁticulér version is foundrto be iﬁadequate,

a more general version can be fiﬁted.

The most common model in the literature for square contingancy
tables is the model of quasi-symmetry defined by Caussinus (1965). This
médel'can be expressed in Log—lihear form (Bishop et al. (1975)) but %he

multiplicative version is

¢ij {6.1.1)

2
I
a
Q[;?

3

i = = 1 = & . y % ¥ =
with ¢ij ¢ji' zz¢ij 1, 0y 1 and ¢ is a constant to make LZﬁij 1.
Symmetry is a special case of quasi-symmetry obtained by the restriction

L =1, 1=1,...,k,
C!l ’ ’ ’
In §6.2 a useful invariance criterion is suggested for deciding
whether a particular model is suitable for analysing data on a nominal

or on an ordinal scale. It is shown in §6.3 that quasi-symmetry is

suited to data on a nominal scale whereas an alternative model, p-symmetry,



103

is suitable only for data on an ordered scale.
A third model is also describad. +Yhis model has the advantage of

being easily extended to higher dimensional matched tables.

6.2 Invariance Properties of Models for Ordinal and Wominal Data

We consider two invariance properties which may enable us to decide
which of two models is aporopriate for a given situation. This analysis
relates only to square contingency tables although slightly different
invariance properties could be suggested for rectangular tables. The
first transformation considered is the somewhat trivial row to column
interchange. In the categorised matched data problem, it is a matter of
taste or convention which variable to place in the rows. The corresponding
modzl should be, in seme sense, invariant under this transformation. This
transformation will not be considered further because all the models
considered are so invariant.

The second, and more important transformation considered is the
permutation transform. The permutation transformation involves reordering
or permuting both rows and columns of the square table. It is understood
that the same permutation transformation is applied to both rows and
columns. We formally define permutation invariance as follows.

. - . . . 2

Let 11(0) = {nij(e)} 1 <1, j £k bea model for the k~ cell
probabilities which depends on a parameter vector §. The set of pernutation
transformations’é) form a group whose typical element T is a kyxk unitary

: ‘ ~0 L
matrix which transforms the vector J = (1,2,...,k)  to the permutation
3T ) P i £
a = (al,...,ak) . Thus Ty J = g and the elements {tij(u)} of T, are

~

given by

ij = . i

e} otherwise.
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The special subgroup G)v of 63 consisting of the identity Ik and. the
reversa permutation matrix, Tv' which sends J to the reverse permutation
. T . . .
(k, k-1,...,2,1)" is of particular importance for ordered data.
The model I(8) is said to be permutation invariant if, for evexry

O in the parameter space, O, there exists a 8* € O depending on § and T

such that
TE(Q)? = (Q*) . (6.2.1)

for every T in the permutation group G).

Models which satisff (6.2.1) but only for transformations @ in G?u
are said to be palindromic invariant.' |

Roughly speaking, the definition (6.2.1) means that if the data can
be expiained'by the modél'g(g), then if the rows and columns aré presented
in a different order, the new data can be explained by the same model
E(g*) with just a chénge in the wvalusz of the parameter. Usually 6* can
be obtained from § by a permutation transformation; although this
restriction is not necessary. Similarly; models which are pélindromic
invariant can accept the data only in a specified order or its reverse.
Clearly, palindromic invariance is a desirable property for ordinal data

and permutation invariance is a corresponding property for nominal data.

6.3 ‘Some Parametric Models and their Properties

To contrast the differing properties of permutation invariance and

palindromic invariance both types of model are given. ILet X. and X2 be

1

the row and column variables respectively where both variables take

possible values 1, 2, ..., k. Define
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T4 = p:(xl =i, X2 = j) (L=i, j 2Kk
B, = % I (L<i<j<k
+J agi, B3 i
Q_;. = I roow ) (lf_i'{jf_k)
] arj i OP

and
6., = I I 7 (L <i,j<k.)
ij a<i <3 aB :

We note that Pij' Qij and Qij have little rmeaning except in the context

of ordered categories. Three models are considered.

Model I: OQuasi-symmetry

Q.‘

T,, = Q==¢,,
RN . 1
J i J

(1 <i,j<k) _ (6.3.1)

where éij = ¢ji' ZZ@ij =1, 0

This model is permutation invariant and is cone of the log linear models

1 = 1 and ¢ is a constant toc make ZZﬁij = 1.
considered by Bishop et al. (1975) p.286 and others. The log linear
version of (6.3.1) in the notation of Bishop et al. is

ln(vi.) = u (6.3.2)

370F U F Uiy T U2y T Yias)

with u and further linear constraints on the parameters

12(3) - "12(31)
which make {6.3.2) squivalent to (6.3.1). The properties of guasi-~symmetry
are not discussed here since these appear elsewhere in the literature,
but we note in passing that marginal homogeneity plus quasi-symmetry
implies symmetry.

We now invesfigate the invariances properties of quasi-symmetry. It

is easy to verify from {6.3.2) that if the rows and columns are permuted

in the same way the new model isg
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. 'n-l \ = + 1t 3 | . + 1 . .
In ij’ Yo T M1ga) B209) ulZ(l,j)
wnare
357 Tae, 0 Y¢S YM20a,00 ©
j i j Ij b i! j
! = 3 ' 3 = -' LI 3 1
ul(i) ul(ai) and uz(j) u2(aj) where al, ,ak ig a

permutation of the numbers 1,2,...,k.

Model II: p-symmetry

P, = ce T =, (1<i<j<x
ij j-1
N (6.3.3)
TP %y
Q.. = ce -y (L<i<3j<k
ij G, ij -
i
U T (L < i <k)
ii ii T —
where V., =V¢.., o, = 1, ¢ is chosen to make ZEZ7,. = 1 and since {¥. .}
ij Ji 1 13 13
are probabilities they satisfy the estimability condition
k .
Loy, + Iy, - L Y,. = 1.
e 1 T EC | - T
This estimability condition is the analogue of the constraint Zz¢ij =1

for quasi symmetry as can be seen by examining the multiplicities of
inclusion for the k2 cells in the above e#pression;

The model for p-symmetry has several interesting properties wﬁich are
in sharp contrast to guasi-symmetry. Special cases of p-symmetry include
marginal homogeneity, conditional symmetry and symmetry; Marginal
homogeneity is obtained by putting Ai =0,1=1,...,k=1, but this does
not imply symmetry. Conditional syrmmetry is obtained by putting di =1,
i=1,...,k-1 and Ai =4, i = l,...:k~1, and has the conditional

interpretation
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For & discussion of this model see Bishop et al. (1970), pp.285-286. The

model for p-symmetry has a similar conditional interpretation

. - A, A,
, . . . o s . . i i
pr(X1 < i, X2 > i Xl i, X2 > i or Xl > i, X2 <i)=e /{1 +e ), .
' (6.3.4)
Ay
X - s o1 N . .
since Pi,i+l/Qi,i+l e , 1 1,...,k-1. This property is related to

the pairad logistic model described in Chapter 5. The more useful
version cf p-symmetry has the restriction that all the parametesrs {Ai}
are equal, It is easy to show that p-symmetry is not eguivalant to the

]

- paired 1ogisticlmodel of Chapter 5 in the sense that no distribution for

the nuisance parameters can produce p~symmetry. Despite this; they are

sufficiently alike and the parameters Ai can be interpreted in the same

way for both models, i.e., as a measurs of the lack of marginal homogeneity.
We now show that p-symmetry is palindromic invariant. BAfter a

reverse permutation transformation the relation between the transformed

ij' Qij and the original Pij' Qij is

1 - s e
Pig T Fegargeian G F)
v - . .
Qi3 Pregel, xmaer < T
and
Co= L= ).
Tii Tyemitl, k-itl & = )

These can, in turn, be expressed as functions of the criginal parameters
and hence the model is palindromic invariant. It is easy to verify that

p-symmetry is not invariant under general permutation transformations.
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ivariate logistic model (DBL)

Tnis is a model fcr the cumulative bivariate probability Qij which

shares scna of the procasrties of the paired logistic model of Chapter 5.
It is
2
,czﬁ.s,_.kjj _____ -
5 — L < a - <
15 T v e @ T B i35
1i3 3 13
aixik
> = 2L < i <
ik T Teek, (1 2i=k)
(6.3.5)
3., . . ' .
5 = —3 X1 (1 <3<k
Tij I+ B, L -
’ -1 k3
f_) = ;\-.- = >\.- -
kk i ( i3 31)

Some estimability conditions are necessary since we can multiply .

and 8, by arbitrary
J

the model unchangad. The simplest constraints are Ai

=

I

actors and divide Aij by the same factors to leave

k=1’ i:‘l’-.-,k"l-

Since A,y = Ay the cumulative marginal probabilities are how ai/(l +oa.)
and Bj/(l + R.) so we can esasily interpret lack of marginal homogeneity
4

by referring to the logistic distribution. Marginal homogeneity is

obtained zy putting «. = 3, and, like quasi-symmetry, this also implies
L

symmetry. Sometimes it is useful to summarise the lack of marginal

homogeneity in a single paramater. We do this by constraining g and

whereas

scale.

g.

-

@.) - 1n(3,) = d. DNote that d is measured on the narginal scals
the paired esiimator A 1s measured on a conditional distribution
As pointed out in §5.10, d and A are related through the coxrelation

a = &1 -3
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The DBL model does not have the property {(6.2.4) but it does
have the advantage over p-symmetrv that it vields estimates of the
category boundaries on & logistic scale, Thus the category.boundaries
are %-ln(diBi) and the lack of marginal homogeneity is suﬁmarised in
the parameters ln(ai/si) = di. |

The DBL mcodel is related to the iogistic modei of Chapter 5 by

taking an arbitrary distribution on the nuisance parameter A so that

exp(®, + o, - 22)
El = J e ]
{l+exp(ei—k)}{l+exp(@j-x)}

Qij = pr(xl < i, X, <3 =
where expectation is taken over the distribution of i. Despite the
close similarity between the two mecdels, thev are not eguivalent since
the DBL model is not palindromic invariant whereas the paired logistic
model is palindromic invariant.

It is sometimes necessary to e#tend these models to three or more
dimensions. Of the models considered here, only guasi symmét:y and the
DBL model'have general nmultivariate analogues; Fox quési—s mmatry the.
- general multivariate analogue can ke written in log-linear form in the

_ notation of Bishop et al.

Inm, . =W+ Foug . U, . . + i 5
Mgk T 0 T Yy T2 T Ym0 T Y209 Y Yian) T Ueaga) T Uaas IR

i cay = .., etc. Ly = . .ee .
WIER U1a39) T Praggny €% Uia3(ign) T %123 (3ik) ete

There are further estimability constraints on the parameters.

The discrete trivariate logistic model is

R aiBjYQK'iiz"" .
152 (lta.A.. +8.A. . +y .
i3e ( qlkljg)(l 53\132)(1 f%lijﬁ)

1< 4i,3,2 <%

{6.3.6)



110

'-.ézhere_k,.!Z = K;42 =_K.z. etc., with two and one-dimensional marginals
1] S d* 1~3 . :

as in (6.3.5). 1In (6.3.6) homogsneity of the one-dimensional marginals

implies symmetry in the two-dimensional marginals and also homogeneity

of the three two-dimensional marginals. The multivariate gsneralisaticn

is straightforward.

In addition, the DBL model provides an estimate of the correlaticon
which is a useful parameter for summarising a further aspect of the data.
We note that for positive random variables X, Y with joint density
f{x,y) and cumulative distribution F{x,y) the e#pectaﬁion of XY is -

2]

; f Xy f(ﬁ,y)dx dy

BE(XY) =
0]
@ o - -
= f [ {1~ Fl(x) - F(y) + Fi{x,y)} dx dy,
00 ‘
so that
@ 0 )
cov(x,¥) = [ [ {Flx,y) - F{(x)F,(y)} ax dy _ (6.3.7).
00 - : o
where Fl(x) = F(x,o) and Fz(y) = Flo,y).
Now &,. = ¢,, 9 . is analogous to the expression in the integrand ofA(6.3.7)

ij ik “kj

" and is given by

R & 2% . ()\,; -.;-—A [l)-. .' (‘1- ‘ﬂw' -‘)V -
i i ;k k.' L+ ) ll . l . » l! . P

(6.3.8)

which is positive when Aij > 1. To approximate (6.3.7) using (6.3.8) we
need a finite upper limit for the integral so we assume that X and Y have
been transformed on to the range (0,1). Then (6.3.7) is approximated by

a weighted sum of &,, - 0 - i : i fox tf
ghte g i3 ikaj An appropriate expressicn for the

-
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correlation, P, is

k

= 2 a, - -} y{& "@ i v
p 1 jil jil (ai_ai_l)(bj Dj—l){@ij ik@k]} | (6.3.9)

= Bj/(l + Bj)' a_ =Db_ =0 and

where a; = ai/(l + ai)r b 0 o

3
a, = bk = 1., What we have done hers is to transform the marginals so

that they are uniform and then estimate the correlation of the transformed
variables.

An easier method of estimating the correlation is teo use the
estimates of the category medians on the logistic scales and then compute
the ordinary product moment correlation coefficients using these scores.

m 3 HE TN .l N1 o

The category medians are the logit transforms of {E{ai + ai l); for the
1 . i ) -

rows and {5-(bj + bj l)} for the columns. The two methods should give

similar results.

Finally, table 6.1 givées the number of parameters associated with

each model and ths degrees of freedom left over for testing the adaguacy

of the model.

" Table 6.1

Number of parameters and degrees of freedom under different

models
“Model - Restrictions' =~ ‘Parameters ~~ " d.f.
quasi symmetry none } %4k-1)(k+4) V %%k-l)(k-Z)
' -1 1
symmetry none 5k(k+1)~l 5k{k-l)
1 1, .
p-symmetry none : 3k(k+5)~4 §4kr2)(k~3)
: -1
p-symmetry A =4 S-1) (b4) Sk-1) (k=2)
p-symmetry o, = 1, A =A i{k(k+l) . Ek(k—1)—l
e i ’ i 2 > A
. ’ 1 . 1
DBL none 5(k=1) (k+4) Flk-1) (k-2)
L - . =

DBL “i/s. =g A %k(k+1) 4 %k(k-l)—l
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6.4 Example

This example from Stuart, 1952, concerns the unaided distance
yision of 7477 viomen aged 30-39 employad in Royal Ordnance factories
in Britain during the period 1943-46. The data have bsen extensivaly
analyséd in the statistical literature; see, for example, Stuart (1953,
1955) and Bishop et al. (1975), p.284, for further anal?ses, The roﬁ
variable represents ths right eye grade and the column variable the
left eye grade. The cateqgories are orderzad from highest (1) to lowest
._(4).

Table.6.2 gives'the data énd the fitted values under reétricted
p-symmetry (Ai = A) are given in table 6.3. The fitted valuss under
guasi symmetry are given in table 6.4.

The restricted p-symmetry model gives a reasonable fit (X2 = 6.2
on 3 d.£.) and is a slight improvement over quasi-symmetry (XZ = 7.3
on 3 d.£.). The maximum likelihood estimate of A is 0.157 with agproxi;
mate standard deviation .046. Thus the lack of marginal homogeneity is
adequately summarised in the single parameter; The interpretation of
this resuit is that the left eye is on average worse than the right eye.
The model for p-symmetry does not unfortunately give a measure of corre-
lation or association between the two wvariables.

A second interpretation of the parameter A in the model for p—symmetry
involves the conditional odds ratio. This-interpretation is the same as
that given to the parameter A in the paired logistic model of Chapter 5.

Thus we define the conditional odds of the event X < j to be

odds (X, < 3|A;) = prix,; = 3[A))/pr (., > 300,
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The model for p-symmetry implies

odds (X, < j|A.) A, o
il o= e (3 = 1,...,k-1)

odds (X, < j[')\,)
12 - g

whereas restricted p-symmetry and the logistic model of Chapter 5 both
imply
odds(x,. < 31X
1} =ty

A .
= e (j = 1,...,k-1)

.. < A,
odds (x,, < 3[A;)
This should be contrasted with the marginal odds ratios

odds (X, <3 , pr(Xi 2 3px (X, > 3)
. = - (J = 1,.0.,k"1)
odds(X2 < 3) pr(Xé _'f_j)pr(xl > 9)

_which are not constaht under any of the models so far considersd except
when the variables Xl and X2 are independent. - In general, the marginal
odds rafio is smaller than the conditional oddsg rétio, since pairs of
obserVations (X1X2) are positively correlated.

Table 6.5 gives the expected frequencies under the discrete kbivariate
logisﬁic'model (6.3.5) with the restriction that the marginal odds ratiocs
are equal {1ln e, - in B; = AM). It was mentionsd without proof in §6.3
that the DBL model is not palindromic. Table 6.5 gives the expected
frequehcies when the order of the categories is reversed. kAlthqugh the
fitted frequencieé are different when the categories are reverséd, the
parameter estimates are very similar. For tables 6.5 the estimates of the
log marginal odds ratio and the category boundaries are .046 and
(—l.¢48, 0.237, 2.101) while for table 6.6 the estimates are -0.044 and
(—2.101, -.238, 1.048) respectively. Ideally we would expect the sigﬁ of
the log odds ratio to change and the category boundaries to be in the
feverse order with sign changed. The estimated standard deviation of the

log odds ratio is .0l6.



114

"Table'G;g

Unaided distance vision of 7477 women aged 30~39 amployed

in Royal Ordnance Factories from 1943 to 1946

Left Eye Grads

Highest ’ Lowest
o Sy (2) o (3) (4) o Total L
High (l) 1520 266 124 66 : 1976
Right {2) 234 1512 432 78 2256
eve

{3) 117 362 1772 205 ' 2456

Low (4) - - 36 - 82 179 492 739

Total 1907 2222 2507 841 7477

Source: Stuart (1953)
Table 6.3
Fittad frequencias under restricted p-symnetry (Ai = A)
.Left Eye Grade
Highest |
(1) Co(2) (3) (4) - - Total
High (1) 1520.000 264.490 133.212 58,946 1976.648
Right (2) 235.589 1512.000 = 423.397 86.778 2257.764
e (3) 107.301 370.905 1772.000 204.176 2454 .382
Low , (4)'1"‘43;683"‘72;667'"179#555:'452;006"l‘""'788;206f
Total 1806.573 2220.062 2508;465 841,800 7477.000
2

X = 6.2 on 3 d.f.
ps ‘ ,



Table 6.4
Fittad frequencies under guasi symmetry
Left Eye Grade

{4

[
1=
Ut

......... (l) . oo Total
High . (1) 1520.000 262,380 133.584 59,036 1976.00C0
. . {(2) 236.620 1512.C00 418,986 88,394 2255.000
Rignt . .
eye (3) 107.416 375.014 1772.000  201.570 2455 .00
Low {4) - 42,964 - 71,606 0 "l82.430° 492,000 785.000
Total 1907.000 2222.000 2507.000 841.000 7477.000
2
X = 7.3 on 3 4d.f.
Qs :
" Table 6.5
Fitted Erequencizs under discrete bivariate
logistic model’
Left Eye Grade
(1) (2) (3) {4)
(1) 1519,493 262.291 135,810 56.141 1973.735
(2) 237.248 1511.828  410.419 88.533 2248.028
- (3) 107.402 382.072 1772.115 194.853 2456.442
(4) - 44,096  ©73.;327° °188.998 "  '492.374 728.795
Total 1908.238 2229.518 2507.342 831.901

x% = 30.73 on 5 d.f.

7477 .0Q0
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Table 6.6
Fittad frequencies under discyete bivariate logistic

medel with category orxder reverssd.

Left Eye CGrade

4) (3) {2} {1 Total
(4) 492.740 185.897 . 75.398 45,150 799.185
Right (3) 197.803  1770.610 382.227 105.562  2455.202
e (2) 85.341 410.252  1513.048 239.757  2248.398
(1) 55.334 138,698 259.830° 1519.352 ~ 1973.214
Total 831.#18 2505.457  2230.503  1309.821  7476.999
2

X" = 10.95 on 5 d.f.
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Under the unrestricted-discrate bivariate logistic mcdel there is
only a slight reduction in the 32 goodness of fit statistic (X2 = 2.46
on 3 d.f.). This indicates that the difference betweeﬁ tha twé rarginals
is adeguately summarised in a. single parameter.

‘Finally; we note, without explanation, the residual pattern in
tables 6.3, 6.4, 6.5 and 6.6. Under quasi symmetfy and undg; p-symmetxy
the.diagonals are fitted exactly so that the residuals are zero on the
diagonal. Under the D.B.L. model thes residual§ on the diagonal are not

zero but they are small. For all the tables 6.3-6.6 the residual pattern

is essentially

o) + - +
- 0 + -
+ - o) +
- + - o) .

It is unlikely that this pattern is random since it occurs in all the

- models considered. Therefore thers is some aspect of the data; connected
with the above residual pattern; which all of the mcdéls ignore. It
_lobks like this pattern is connected with the difference; left minus
righﬁ, between the two méréins;

‘The estimated category medians are -1.903, ;367, .969 and 2.854 from
the D.B.L. model. These give a product moment éorrelation estimate of
.701 which is somewhat lafger than the value of ;633 obtained by Stuart‘
(1953) using a variation of Xendall's rank correlation coefficient.

The correlation estimator (6.3.9) gives a value of .674. This
particular correlation estimator is more difficult to calculate than the
usual product moment estimator. It is difficult to say that any one of
fhese correlation estimators is preferable to all the others, but it is
importaﬁt to be consistent when comparing the degree of association in

two tables.
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