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ABSTRACT 

A general me 	for deriving models for ordered categorised 

response variables is described. This procedure relies on the 

existence of an underlying continuous variable which can be modelled 

and whose error distribution is known up to a few parameters. When 

. the model is linear and the error distribution is logistic, the model 

for the category probabilities is cumulative logit linear or cumulative 

logit multiplicative depending on whether or not the error variance 

is constant. Some simple estimators of the parameters of - interest 

are derived and simulation methods are used to examine their first 

and second order properties in small• samples. 

- The -rr,lat4crsh: between the general model for ordered categories. 

• with arbitrary error distribution and asymptotically most powerful 

rank tests is described. The joint asymptotic distribution of a pair 

of rank tests under serious hypotheses is derived and an example 

illustrates how these tests can be used jointly. 

The logistic model for-  paired binary data is extended to the 

many category case. Some results concerning mixtures of binomial 

random variables are proved to help derive estimators of the parameter 

of interest in the Presence of nuisance parameters. Two such estimators • 

are described and simulation methods are used to investigate their 

properties. An example is given to show how these estimators can be 

used to compare several contingency tables. 

The concerts of permutation invariance and palindromic invariance 

are introduced to differentiate between models for nominal categories 

and models which are suitable for ordered categories. Log linear 

• models are shown to be suitable for nominal categories only. An 



example is given of a palindromic hierarchy of models for square 

tables and Stuart's (1953) distance vision data are analysed using 

one of the models in this hierarchy. 
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Chapter 1  • 

INTRODUCTION 

Ordered categorised data play an important role in a.wide variety 

of areas where the measurements or observations are based on subjective 

assessments. Examples •in psychology include the subjective assessment 

of one's mental attitude to work, sport etc. In human geographical 

studies the categories may be social classes which are usually 

considered to be ordered, or locations which are unordered. In the 

pharmaceutical industry, drugs for the alleviation of tension, 

depression, etc. have their affects measured on an ordered•scale, 

e.g. no effect, slight improvement, marked improvement, complete 

'recovery. In medicine and in the epidemiology of chest diseases, • 

patients are assessed for the severity of disease on the basis of the 

doctor's assessment of the patient's radiograph. These assessments 

are usually on an ordered.  scale. 

Despite the wide variety of applications there has been relatively 

little consideration given to the problem by statisticians. Some 

notable exceptions include Pearson (1901) who devised numerical scales 

for colours to help explain coat-colour inheritance in thoroughbred 

horses. Fisher (1963), pp.289-295, used an optimum scoring procedure 

in a designed experiment to investigate the reaction of blood samples 

tested with different sera. His procedure is optimal in the sense 

that the scores chosen.•maximise the multiple correlation coefficient, 

or equivalently they maximise the treatment sum of squares for a 

given total sum of squares. Various other optimal scoring procedures 

have appeared in the statistical-psychological literature since then. 

The main problem with Fisher's method is that the estimated scores 

may not be monotone and several non-linear programming procedures have 
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b=,, n devised to cope with this problem. (3radley'et•al. (1962), Nishisato 

(1975) and others). Other scoring methods in common use include 

integer scoring (Jacobsen, 1975) and scores derived from the normal 

distribution (Wise and Oldham, 1963). These scoring methods are not 

considered further in this thebis since. (i) the scores are often 

difficult to interpret and (ii) the distributions of derived test 

statistics are very comolicated. 

• The point of view taken in thiS thesis is that ordered categorised 

data arise from a partition of an underlying continuum. This was 

. essentially Pearson's view and led him to develop his tetrachoric 

correlation coefficient for- the 2x2 contingency table. COnsideration 

of the underlying continuous variable obviates the problem of choosing 

category scores. Instead. the.. parameters of interest are the category. • 

boundaries. These ideas led to the work of.  Ashford (1959a, 1959b), 

Snell (1964), Plaskett (1965), Clayton (1974) and Simon (1974). Their. 

work is disctssed more fully in Chapters 2 and 3. For a brief review 

see Fienberg (1975). 

Much of the work in this thesis is seen as a bridge between the - 

standard - methods for the analysis of binary data (Cox, 1970) and the • 

usual linear models for the analysis of continuous data. The models 

suggested for ordered categories often parallel the more common log 

linear models which seem to dominate the modern statistical literature 

on contingency table analysis. In general, log linear models do not 

take account of category order, and are therefore more suited for 

analysing categories on a nominal scale. 

• The methods developed in this thesis concern problems where the 

dependent variable is on an ordered categorised scale. The explanatory 

• variables may be continuous or on an unordered scale, i.e. a blocked 
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structure. A problem of interest to Bayesians arises when the 

-dependent variable is continuous but there is prior information that 

the block effects are ordered. Thus, if there are three blocks whose 

effects are known to be ordered, we can draw strength from the obser-

vations in blocks 1 and 3 to make inferences about what might happen 

in block 2. The problem of ordered explanatory factors is not . 

considered further in this thesis. 

To construct a model for discrete observed data we first construct 

the model for the data as if the data were continuous, and use the 

associated model for the discrete data. Chapters 2. and 3 deal. with 

the linear model including the two sample problem, regression,. randomised 

block structures, etc. Some associated. nonparametric tests are derived - 

- in Chapter 4. These. include the Wilcoxon test, the sign test,. etc. 

The remaining two chapters deal with 'the problem of Matched pairs. 

This is particularly important in longitudinal studies of pneumOconiosis, 

and other diseases where the same. individuals are examined at intervals 

of a few years. 

Each chapter contains an example to demonstrate. the models. and the 

problems involved in interpreting the parameters. 
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2 

THE TWO-SAMPLE PROBLEM 

2.1 General model'for ordered'categories  

The models for ordered categorised data described in this thesis 

can be considered as derived from models for continuous data. Thus, 

to derive a model for ordered categorised data we first express the 

model for the data as if it were continuous, and then use the 

associated model for categorisLi data. Suppose,.for example?  we 

have a model for the continuous random variable Y. which states that 

Y. has density f(y - p.) where f is known. The discrete categorised 
1 	1 

random variable X. is defined by 1 

	

xi  = j if 0j...1  < 	<0 j 	(j = 1,...,k) 	(2.1.1) 

where {0i}  are a.set of increasing real numbers, usually unknown. 

Hence, using (2.1.1),• there is an associated model for the discrete • 

randomvariableX1
..For convenience- of notation we take 0 0 = -co 

and 0
k 

= co, where k is the maximum value of the discrete variable x. 

Equation (2.1.1) defines a censoring mechanism with unknown 

censoring points. It is clear that there is less information in the-

discretevariables{X.}thaninthecontinuousvariables{Y.}. An 
1 

attempt to quantify this information loss is made in 2.6. The {xi} 

can also be regarded as a partial ranking of the {Yi}. Some optimum 

rank tests for partially and completely ranked data are derived in 

chapter 3 for testing hypotheses concerning location and scale. 

For the two sample problem, a common model for continuous data 
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..Y7 Pi  
• is that observations in the first sample have denSity f( 	)  

whereas observations in the. second sample have density 
Y-P2 

f(-7----) where f is known but pi  p2  and a, the common scale parameter, 

are unknown. All observations are assumed to be independent. It is 

clear from (2.1.1) that, if {e.} are unknown, there is no scale 

information contained 	Similarly there is no information_ on 

absolute location. The best we can hope to estimate is a scale-free 

parameter such as (p2 	pi)/a. It is convenient therefore, to set 

the scale parameter a = 1 and to set pi  = 0 or p1 + p2  = 0. It is 

possible to do valid tests of the hypothesis H : p2  = pi  using an - 

estimate of the scale-free quantity (p2  pi)/a. The consequences of 

unequal scales within groups are considered in §2.7 and 53.A. 

There-  remains, theouestion•of choosing. the density £ which will 

usually not be known. For binary data, the logistic and probit. or 

inverse normal response functions are most popular. In §2.2 it is 

argued that there is little difference between these two response 

functions, and since .the logistic density is the simpler, it is chosen 

in preference to the normal density. 

2.2 -The Logistic:Model'for'Ordered'Categories  

In most cases the underlying density, f, is unknown, and an 

appropriate density must be 'chosen. The usual choices are the logistic 

and normal densities since these have readily interpretable location 

and scale parameters. Tukey (1970, Ch.29) describes an alternative 

class of suitable distributions called "folded X-powers" of which the 

logistic distribution is a special case. For binary data, methods based 

on the logistic and the normal distributions are called logit and probit 

analysis respectively. Some comparisons of logit and probit analyses are 
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given by Cox (1966), Chambers. & Cox (1967) and Berkson (1951). These 

- studies shoW that the two models are virtually indistinguishable. The 

logistic. function is mathetatidallv the simpler of the two and is 

usually preferred for the analysis of binary data. It is shown in this-

thesis that some properties of the logistic model for binary data can 

easily be extended to the many category situation. 

The simplest model for the two sample problem is a direct analysis 

of the normal theory model. 

1 a„u,r f(y! sample 1) = e>cp(y 	-f 	t1 	exp(y 	
1 

 

• ; 	, 
f(y] sample 2) = exp(y - 1 
	1 A)/11 + exp(y - — A)12  . 2 	2 

The  associated. model for the discrete variable X.  is most easily. 

expressed in terms of the cumulative probabilities y_., y . for 
13 23 

j = 1,...,k-1 by 

,n 	r 	 1 pr(X < ji sample 1) = yij  = exP‘oj 	-f-A)/11 -1- exp(8j 	-2- A) x. 

(2.1.1) 
1 	 • 

pr(X < ji sample 2) = y2j  = exp(8j  - 2A) /{1 	1 
exp(8j  - 	A)}. 

The model (2.2.1) is conveniently expressed in the cumulative logit 

linear form 

inlyij/(1 - y1i)1 = 8j  + 2 A 

(2.2.2) 

ln{Y2j 	Y2j /(1 - 	)} = 0j 	— 
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An equivalent version of (2.2.2) is 

y (1 	y .) 
1) 	?3 = eA  

72j 	- .Y1j)  
(2.2.3) 

where eA is the odds ratio of the event X < j in the two populations. 

The cumulative logit linear model for ordinal data as expressed in 

(2.2.2) is the direct analogue of the more common log linear models for 

nominal data which do not take account of the category order. 

Snell (1964) considers a more general version of the model (2.1.1) 

where there are more than two samples. She uses approximate likelihood 

estimators using estimated category scores in addition to the exact 

maximum likelihood estimators. We consider this generalised model in 

Chapter 3. For a similar model based On the integrated normal response. 

function see Ashford (1959a, 1959b).and Aitchison, and Silvev. (1957). 

2.3 The Li 
	

ihood Ecuations 

For a general contingency table the log likelihood is 

£ 	= Z n..,  ln(u..3) + const. 1 (2.3.1) 

where the summation extends over all the indices, n.. is the cell count 
13 

for the (i,j) cell and {Tr..} are the cell probabilities. For the logistic 13 

model described in 52.2 these cell.  7orobabilities are gi,ren by 

7  = F 	A) 	F (e 	— A)  = 11 • - Y1 '1j 	oi 
1 	

1 2 	r] j-1'  

- 1  7r
2j = Fo. 	

1 
 A) - F(0j-1 - 2 •- A)  = Y2,j 	 .Y2,j-1 j 	2  
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where F(x) = exp(x)/(1 exp(x)). The unknown parameters are 

{e.}, j = 1,...,k-1 and A. 

A useful property of the logistic function is that its derivatives 

F'(x), F"(x) etc., are expressible as polynomials in F(x). The first 

two derivatives are 

F' (x) = f(x) = F x){1 	F(x)} 

and 

F"(x) = f' (x) = F(x){1 --F(x)}fl 	2F(x)} 

The derivatives of the log likelihood (2.3.1) with respect to the 

unknown parameters are 

 

• I - 	E n. IF (1 - y. - y. ) —--2- 	n,. 	(1 - 
j=1 

13 lj 	13 13- 
j=1 	 j=1 43 3 

30 

and 

= (nli  - 	yli) 	(n 2j  - n2j+1)y2j(1 - y2j) 

 

(j = 1,...,k-1) 

Intheabovederivatives,.Trij and ,. yid  are considered as functions of 

e and A. Except when k = 2, the.  likelihood equations cannot be solved 

analytically. They are, however, easy to solve iteratively. using the 

estimates in 52.4 as starting values. 

In many cases, interest centres on small to medium values of A. 

Formally, therefore, we construct a null hypothesis Ho  : Ac= 0 which 

can be considered as the point of division between two qualitatively 

different possibilities, A > 0 and A < 0. In an experiment we may wish 



17 

to know roughly how many observations are necessary to discriminate 

between these-  two possibilities. To do this we need an estimate of the 

variance of A, the m.l.e. of A. In particular we need an estimate of 

this variance for small values of A. 

The elements of the information matrixA8,  evaluated at A = 0, 

are 

2  -
E3A2 	

4 = IlEyj  (1 - yj 	3  )(7. + 7.3+1 ) 

2 	1 
- TEJ6) = 	(ni 	n2  )y.(1 - y.) (1T.3 

 + 
3+1
) 	(j = 1,...,k-1) 

3  

l'Z, , 2 ,1 

	

ny. 	y.) t-- + 1—) 

	

3 	3 	'IT. 	7, 
38 

2 

	

3 	3+1 
= 1,...,k-1) 

and 

2 
a Z  

-E 	)=-ny.y(1-.)(1 - y 	) ----- , (j = 1,...,k-2) 28.28 	3 j+1 	Y3 	j+1 w. ] if]. 	 3+1 

where y. = E(8.), Trj  = Yj  -y. j-1 ,n1•=Enlj , n2 =En2j  and 
3. 	• 	3   

	

3 	3 
ni  = ni  + 	All All other second derivatives are zero. 

The asymptotic-  variance of A is given by the (1,1) element of 

I. To evaluate this element, partition IAe as follows. A8' 

C 

d 
( 

dT 

J 

1 

(k-l ) 

  

3
9
Z . 	9

2 
	22t 

m where c = -E(---) .. a scalar, d = -E(----) and J = -E(-----), all being 
DA 

 nu  
- 	038-  

evaluated at A = 0. The matrix J is in fact a symmetric Jacobi matrix 

which is more readily recognisable in its standard form J1  where 
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D JiD 

where D = diag{yi(1 yi)} and Ji  is tri-diagonal. 

f
1 	1 	'1 — 
1 	

7
2 

1 	1 	1 
7
2 	

Tr
3 	

Tr 	
3 

1 	•1 	1 
J = 	113 1 	

7
3 7T4 

1 

7
k-1 

7
k-1 

7
k 

The inverse of J1  is a Green's matrix G1  (Karlin, 1968, rp.112-115).  

A similar pair of matrices is considered by Roy & Sarhan (1956). The 

elements 
gi3
(1)  _of 91  are 

( 1 ) 
gi  = 

r 	- y.) 	(i < j) 

	

. (1 - y . ) 	(1  > j)t Y3  

so that. the elements. 
 

gi] of G(= J- 1) are 

1/{flyj(1 	yi)} fi < j) 

1/{nyi  (1 - yi  ) } (i 
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After considerable algebraic manipulation it can be shown that the 

A 

asymptotic variance of L is given by 

	

n  n
2 
 k-1 	 1 1 	+ 	(A) • 

1 	7 
Y 	" 7 	D 

	

j=1 	+1  
(2.3.3) 

Some alternative expressions for (2.3.3) are given in g2.4. Consideration 

of terms in A shows that the coefficient of A in the expression 'for 

var(A) depends on n1  - n2. Thus, when the experiment is balanced-

(n1  = n2), (2.3.3) is correct to first order in A, as can be seen by 

considering the symmetry of the problem. 

A 
Some alternatives to A are considered in g2.4. These are shown 

to be fully efficient when the true value of A is small. 

• 

2.4 Two Simple Odds Ratio Estimators of A 

In this section two estimators of A which can be computed directly 

from the data, are considered. These are shown to be approximately 

unbiased and asymptotically fully efficient when A is small. They can 

be used as estimators in their own right or they can be used as starting 

values in an iterative procedure to find the maximum likelihood estimators. 

The third formulation of the logistic model (2.3.3) is in terms of 

the odds ratio 

3. - Y21  ) . Ilj ( 
Y27(1 Yli) 

(j = 1,...,k -1.) 

This formulation suggests an estimator based on a weighted combination 

of the k - 1 sample odds ratios. The two estimators considered are 

k-1 	(.cl  Al 	2j) 
= 	F. 	V/. 

J=1 	3 	
(1 - 	) 

c2j 	
cij 

(2.4.1) 



k-1 
E 	R. j,1 .3 .lj..2 

k-1 * 
E w R (n 	R ) 

j=„1  3 2j 1 lj 
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with E.\:N7. 	and 

(2.4.2) 

where Ci., c2j  are sample estimates of y
13 

 y2.; R
13  
. and R2j  are the 

if

-   

cumulative -sumswithineachgroupandandw.are weights chosen to 
3 

minimise var(Z), var(A*). 

Clayton (1974) considers these estimators with y 	y. estimated by 
13 23 

whi.Ch is the Sample cumulative frequency. In this form, both A and A* 

can be infinite. To ensure that the estimators remain finite we take 

instead 

cij 
= (R.j 	

1  
+ —)/(n. + 1) 1 2 1 (2.4.3) 

for A and add 1/2 to both numerator and denominator of (2.4.2). The 

asymptotically optimum weights are 

and 

3 

W. 
J 

* 

Y. (1 3 

= 	7. 

- 	y.) (Tr', 3 

+ 3+1 

+ 7.+1 ) 
3 

. 

(2.4.4) 

These are also estimated frort the data. Thus the estimator 
3 	

Y3 is 

3 
= (R.. + 	+ 1) 3 

1  
2 
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where-  the subscript . indicates summation over the relevant index, 

and 	is estimated -  by cj  ci-a.  Clayton (1974) Showed that with 

the weights (2.4.4), the asymptotic variance of both estimators is 

n
1
n
2 
k:1 

var(A*) = var(Z) = 	2.; y. (1-y.) (Tr .
3

+ 
3+1

71 	) 1 

3 	
-1 

• :=1 
, 	3  

(2.4.5) 

for small A. We note that (2.4.5) is the same as var(A), the asymptotic 

variance of the M.1.e. of i given in (2.3.3). Hence both A and Li are 

asymptotically fully efficient when A is small. 

Since A and A* can he calculated non-iteratively they can be 

computed on programmable hand or desk calculators. Programs are 

available for calculating A* on the SR56, SR52, HP25 and Hi.-,65 pocket 

calculators. These programs also calculate the variance by estimating 

the parameters of (2.4.5). 

There are many equivalent versions of the expression (2.4.5). 

These arise because of the relation y.. 	= Tr.• 3 Y3-1 

forms are: 

k-1 
(i) E y.(1 - y )(Tri 	7T:14.1), 

j=1 

k 
(ii) E 17. .

3 
 (1 - y. - y. 	)

2 , 

j=1 	3-1 

k-1 

(iii) E Y'Yji-17rj+1 
j=1 3  

k-1 
(iv) E(1-y.)(1 - y. 	)7f. 

j=1  

(v)  
k 

1/3 - 
1 
	E 7. 

3 
3 j..1  j 

Some equivalent 

(2.4.6) 

As before, y
0 
 and y

k are defined to be 0 and 1 respectively. 
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A typical proof of the equality of expressions (i)-(iv) involves 

expanding and rearranging terms. We give here a proof of (v) = (iii), 

which is a little different. 

To prove (v) 

• k 
1 = 	( E 	7.1.3  

j=1 	3 	. 

k 
E 	Tr ,3 7 
j=1 	

j3 

E 	
3 
+ 3 

= (iii) we proceed as follows. 

= 	E 	E 	Tr. 	+ 2 	E 
j=1 	j 	j=1 . J 	• 1 	• 	1 	3 

k 	k 	k 
E 	2 	E 	7.u.y. 	+ 2 	E 	y. 	Tr.

2 
j2 + 
 - 	iyj 	1 3 3-1 	j=1 	3-1 3  

7 
1-74-j 	i • 

k • 	k 
E 	y. 	Tr.

2 
+ 	E 	(1 	- y.)1T.

2 
+ 2 	E 

j=1 	3-1  3 	3 	3 	j=1 

+ 2 E 	(1 - Y.)Y. 7. 
j.1 	3 j-1 3 

Hence 

1 - E Tr J  = 3 E y. 	Tr.
2 
+ 3 	y.2  'IT -. 

j=1 3 	j=1 3-1  3 	j.1 3-1 3  

k 

= 3  j!-1 YiYi-17j  

k-1 
3 E y.y. 7. • 

. 	3 3+1 3+1 

Expressions (2.4.4) are important as they arise in various guises 

throughout this thesis where the logistic distribution is used. 

Note that for binary data (k = 2), A = A* and they are both 

approximately equal to the maximum likelihood estimator A. For binary 

data 

In (n11 n22 11 22
) 

n12 n21 
 

12 21 
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which is the log of the cross ratio. Various modifications of A have 

been suggested to cope with zero frequencies. The most common 

modification is 

•1 	. 

	

c  nil •± 	(1122 .41   

(a12  + 
1 

• ) 
	1 

12 2 

which is unbiased except for terms of 0(n
-2
). For a discussion of these 

modifications see Gart and Zweifel (1967) and Plackett (1974, pp.38-40). 

2.5.  'Bias - of•Odds*Ratio 'Estimators 

It is clear that the- estimator A is asymptotically unbiased since 

it is a weighted sum of asymptotically unbiased estimators of A... 

However A* is not of this form, but is analogous 'to the Mantel-Haenszel 

method for combining odds ratios from several 2x2 tables (Mantel and 

.Haenszel, 1959). We now prove a general result which shows that this 

type Of estimator is asymptotically unbiased'under fairly mild 

restrictions. 

Let X./Y (j = 1,...,k)be a secnience of ratio estimators of a 
Xr  

parameter p such that, asymptotically, Y
r 

= p < 00 	r 
Y 	0 and 

Xr 
Var(

Y
---)=0(n-1).Letw.0 = 1,...,k)be a set of fixed positive weights. 
r 	3 

Then 

k 	k 
I) = 	E w .X . / E w.Y. 

j=1 	j=1 3 3  

is asymptotically (n 01 unbiased for p. 

Proof: 

j=1 	3  j=1 	3 	j=1 	3 3 
= BC E w.X./ E w.Y.1 = Hf I w. 	X./Y.} E(y) 

k 	* 
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* 	 * 
where w. = w Y./Ew Y . We need to show that' the covariance of w j 	 , 7 

3 3 	3 3 	 3 

and the ratio X./Y, is weak enough for the bias- to tend towards zero. 
3 3 

Expanding further we get 

* 
EN) = 	E. 	cov(w., XJY,) 

itj 	1 3 3 

= P • E 	P [var(w. ) var(X./Y.)]
1/2 

i,3 	1 	3 3 

* 	 * 
where p

ij 
is the correlation of w

i 
and X./Y . Since w. is bounded 

3 J 	3 

between 0 and 1 it follows that var(w. ) is bounded between 0 and 1/4. j  

Since, by assumption, var(X./Y ) = O(.---n
) the double sum is of the order 

J j  

n
-1/2 

and tends to zero. Hence IP is asymptotically unbiased for p. 

It is easy to see, ho:lever, that Mantel-'Ha,mszel type estimators 

are biased in small samules since the weights w„ are negatively 
3 

correlated with the ratio X./Y.. In the above. proof, it is sufficient 
D 

that X./Y = P+0 (1). Then it follows that IP 7 11. o (1)., although the 
J 

moments of IP may be infinite. 

From the above result it follows that A* is asymptotically unbiased. 

Some simulation results are given in §2.8 to demonstrate its behaviour 

in small samples. 

• 

2.6 Loss of - Information -Due -to Grouping  

One way. of measuring the relative efficiency of two experimental 

designs is to use the ratio of the number of observations required 

under the different designs to achieve the same precision of estimation. 

The absolute efficiency can then be defined by comparing a particular 

design with the best possible design. This idea is the basis of such 

statistical measures as Pitman •efficiency. A measure of inefficiency 
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is therefOre a measure of the information lost through using a sub-

optimal design. 

For the two sample problem we consider A to be the.sole parameter 

of interest. We may be interested in estimation'or testing the 

- hypothesis Ho  : A = 0. From (2.4:3) or (2.3.3) the variance of an 

estimator of A is inversely proportional to 

k-1 
E y.(1 - yi)(7i 	7ifl  

j=1 
(2.6.1) 

We consider alterhative designs where (a) the category boundaries 

f8 1 can be chosen freely but the nunther-  of categories k is fixed, and 

(b) both e and k are allowed to vary. The 'best' design when the 

category boundaries can he chosea'.is one which Tnwximises (2.6.1). It is 

easily shoWn that the design which achieves this maximum has 

= 1/k (j = 1,...,k),or eaual cell probabilities and the maximum value 

of (2.6.1) is 1 — (‹.2 
 

1)/k2. The ratio of the number of observations 3 

necessary to achieve a given accuracy is inversely proportional to the 

ratio of the variances, so that the asymptotic efficiency of a design 

with category boundaries 01,... k-1  relative to the best design with k.  

categories is 

k  
{1 - E 7.')

, 	 
} 	

k
2

-  

j=1 3 	(k2  - 1) 
(2.6.2) 

where 7 = F(6.) - F(e 	). 
3 	3 j-1 

When the alternative designs have an arbitrary number of categories 

or when the continuous variables are observable, the asymptotic efficiency 
k 

of a given design relative to the optimum is 1 - E 74
3 
which can be 

j=1 
obtained from (2.6.2) by putting k = co. 
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In radiological data, for example, typical category frequencies 

are (0.9, 0.04, 0.04, 0.02). In principle, thoUgh extremely difficult • 

in practice, the category boundaries could be redefined to give a 

more uniform set of frequencies.  (1/4, 1/4, 1/4, 1/4). The efficiency - 

of the former deSign relative to the latter is approximately 0.3. Thus, 

for every 3 observations required under the re-defined scheme, 10 are 

required under the Old scheme. In fact the equal frequency scheme for 

four categories is almost as efficient (0.94) as a scheme which has no 

censoring mechanism-at all. 

The importance of expression (2.4.6) is that they measure the 

efficiency of the censoring scheme. In fact they are direct generalisations 

Of the binomial variance formula p (1 p). We note that for well chosen 

values of the censoring points 0,1 and hence {or.} the asymptotic 
3 

efficiency relative to the optimum under (h) is high even when k is small.. 

The efficiency is (k2 - 1)/k2 (= .75, .89, .94, .96...) for the first few 

values of k. 

2.7 Adequacy of Model  

The model described in this chapter makes two assumptions which are 

(a) a logistic error distribution and (b) equal variances within each 

sample. Assumption (a) may break down, but Chambers & Cox (1967) have 

shown that the difference between a logistic and a normal error function 

is very difficult to detect even in fairly large samples. Thus it is 

likely that only gross departures from (a) can be detected. We concentrate 

on models which allow departures from assumption (b). 

Two approaches are possible. The first involves testing for hetero-

scedasticity using one of the non-parametric tests in Chapter 4, and then 

fitting the logistic model if there is no evidence of heteroscedasticity. 
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The second approach is to fit a more general model- which makes allowance 

for - heteroscedasticity. The more general model can be written in 

cumulative logit linear form as 

lnfy
lj

/ (1 

ln{y
2j
/(1 

- y1:i ) 

- 	.) } 

= 

= 

'1 (8j ± 

- -6) 2 	j 	2 

(2.7.1) 

where, without loss of geherality, T1  = 1. Interpretation of the 

parameter A in model (2.7.1) is complicated by the unequal within 

groups variance, but if 7
2 is close to 1, it is reasonable to interpret A 

as an approximate log odds ratio.. 

When all the ,  para=eters are estimated by maximum likelihood, or by 

any other- suitable method, the goodness of fit of (2.7.1) can be tested 

by a X2 statistic on k - 3 degrees of freedom. The homoscedastic model 

(2.2.2) can be tested by a X2  statistic on k - 2 degrees of freedom. 

It is impossible to give general guidelines about how to proceed 

when neither model fits the data. In the example of §3.4, consideration 

of the residuals indicates that one of the groups is an 'outlier'. 

2.8 Simulation Results for the Estimators A, A*. 

We present briefly some simulation results for the estimators A 

and A*. These are nor intended to be in any way comprehensive,-but it is-

hoped that they give an indication of bias and. variability of A* and in 

medium sized samples. 

Four category data was chosen with equal sample sizes and roughly 

equal frequencies for each category. A slight adjustment of the results 

is necessary since the data were generated from a logistic distribution 
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with unit variance as opposed to the standard logistic distribution 

which has variance Tr-/3. A displacement 6 on this scale is equivalent 

to A = 6V15= 1.814 S. The estimators 8 and 6* are scaled versions 

of A and A* respectively. Some general conclusions are as follows. 

(a) Both A* and A are biased towards the origin in small samples. 

(b) The bias of A* is approximately twice that of A. 

(c) The bias is negligible when n1, n2  > 100 and is of the order of 5% 

when n1 = n2 = 20. 

The conclusion (c) will depend on the number of categories, so that the 

bias could be larger than 5% when nl  = n2  = 20, if the twenty 

observations were divided into, say, 10 categories. When n1 n2 the 

bias could be expected to be of the order 1 
	

1, so for the bias to 
Il n2 

be small we need both n1 and n2 large. 

The simulation results for small samples (n1  = n2  = 20) are given 

in table 2.1 and the corresponding results for large samples in table 2.2. 

For both sample sizes the entries in columns 2 and 4 are the mean of 

1000 repetitions at each value of S. Columns 3 and 5 give the standard 

deviation of the 1000 repetitions. 

The standard deviation as estimated by (2.4.5) was relatively 

constant but increased from 0.314 for 8 = 0 to 0.323 for 6 = 1.9 for the 

small samples. Thus (2.4.5) is a slight underestimate for larger values 

of A. Similarly, for the large samples the estimate of Std (A) (2.4.5) 

increased from 0.142 to 0.145 over the same range, and is smaller than 

the true standard deviation when 6 is large. 
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Small sample simulation 

1000 repetitions for each 

Table 2.1 

and A*; k = 4, n1  = n2  = 20, results for 

value of 6. 

6  Std. 	(6) Std 	) 

-.004 .308 -.003 .295 

.1 .111 .319 .107 .306 

.2 .204 .318 .195 .304 

.3 .283 .326 .273 .313 

.4 .404 .313 .389 .299 

.5 .491 .325 .473 .314 

.6 .600 .335 .573 .320 

.7 .677 .325 .654 .312 

.8 .783 .333 .752 .316 

.9 .894 .348 .861 .331 

1.0 .980 .349 .944 .328 

1.1 1.075 .347 1.034 .324 

1.2 1.191 .355 1.147 .333 

1.3 1.260 .370 1.215 .347 

1.4 1.355 .367 1.305 .342 

1.5 1.437 .383 1.382 .353 

1.6 1.541 .371 1.484 .340 

1.7 1.603 .375 1.541 .345 

1.8 1.687 .334 1.617 .342 

1.9 1.788 .404- 1.704 .347 

A.  V5!7 
6 = Z.VT/IT 

6* = A V3/7 

Average of 1000 estimates of 6. 
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"Table:2.2 

Large sample simulation results for and IX; k = 4, n, = n = 100 

1000 repetitions for each value of S. 

std() ak std (6*) 

o -.010 .144 -.010 .143 

.1 .103 .148 .103 .147 

.2 .193 .142 .191 .141 

.3 .298 .143 .295 .141 

.4 .394 .137 .391 .135 

.5 .488 .142 .484 .141 

.6 .590 .147 .584 .145 

.7 .693 .155 .686 .152 

.8 .804 .156 .796 .154 

.9 .900 .161 .891 .159 

1.0 .996 .164 .986 .161 

1.3 1.294 .179 1.280 .175 

1.6 1.601 .191 1.583 .186 

1.9 1.880 .207 1.859 .201 

S 	= to//7r 

S 	= 

. A*15/7 

+Average of 1000 estimates of S. 



Graph of simulation results for unpaired estimators Z",g 

in small samples. (see table 2.1) 
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FIG. 2.2 

Graph of simulation results for unpaired estimators 

in large samples. (see table 2.2) 
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2.9 Example  

• The data in table 2.3 from Holmes & Williams (1954) are a comparison 

of the tonsil sizes of carriers and non-carriers of Streptococcus .. 

Pyrogenes. Tonsil size is measured on an ordered threecategory scale. 

Table 2.3 

Tonsil size of carriers and non-carriers of Streptococcus 
pyrogenes.  

Tonsil size 	 carriers non-carriers total 

normal 

enlarged 

greatly enlarged 

19 

29 

	24 	 

497 

560 

269: ... 

516 

589 

 293: 

TOTAL 72 1326 1398 

From Holmes & Williams (1954). 

The estimates A* and d are .580 and .565 respectively with 

estimated standard deviation .225, thus indicating that tonsil sizes 

in carriers are larger than in non-carriers. 

To check the adequacy of the cumulative logit linear model (2.2.2) 

the complete model was fitted by maximum likelihood. The inverse matrix.  

of second derivatives at the maximum gives an estimate for var(A) which can 

be compared with:the estimated variance of and A*. The m.l.e.'s of the 

parameters with their standard deviations and covariance matrix are 

= 	.603 ± .226 .051 

0
1 

= -.810 ± .118 , Y -.024 .014 

2 = 1.061 ± .122 -.023 .012 .015) 
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With the above estimates the X
2 goodness of fit statistic on 

one degree of freedom is 0.30, indicating a good fit. For alternative 

analyses of this data see Clayton (1974) and Armitage (1971) who uses 

a method based on partitioning the total X
2 goodness of fit statistic. 

A further analysis of the same data is given in §4. 
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Chapter 3  

THE GENERAL CUMULATIVE LOGIT LINEAR 
MODEL 

3.1 'Introduction 

The linear logistic model (2.2.2) for the two.sample problem.has 

an obvious extension to the many sample situation. The subscript i is 

used to denote the sample and j to denote the Category. We consider 

first a saturated modal where there are r row parameters fail to 

explain the differences between the r samples. An unsaturated model is 

one where the r row effects are exolained by s < r parameters. The 

saturated linear logistic model can be written 

	

ln{yij/(1 - yii)} = ai 	ej 
	 (3.1.1) 

	

(i = 	j = 1,...ek-1) 

where y
ij is the theoretical cumulative frequency in the i

th row. To 

avoid redundancies in the parameters it is convenient to impose an 
r 

estimability condition in (3.1.1) such as E ai  = 0. The parameters • 
i=1 

0 are the category boundaries on the logit scale. Ashford (1959a, 1959b) 

considers a similar model with an integrated - normal response function. 

We may wish to explain the'differences between rows in terms of 

1 
someexplariatoryvariablesx.

1 
 =(x

1
....x ), with s < r. The linear 

is 

logistic model is 

lnfyii/(1 - yii)} = cirrxi 	0i 	(3.1.2) 
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where 6 = (21 ...6s)1 are unknown parameters. Since s < r no estimability 

constraints are necessary provided that the sxs matrix 
r 	 r — 	--T 	-- • 1 
E(x-)(x,-x),wherex=---Ex.,is nonsingular. Equivalently, ..i.  - .1  - 	r 	--1 i=1 	 i=1  

the matrix X = (;51,x2,....,xr,l) must be of full rank s where 1 is the 

unit vector of length s. 

Simon (1974) considers the saturated model (3.1.1) and suggests an 

iterative procedure for estimating the parameters. In §3.2 a generalised 

empirical logistic transform is used to estimate the parameters {ai} in 

(3.1.1) or alternatively the parameter @ in (3.1.2). This transform is. 

the analogue of the empirical logistic transform for binary data. These 

estimates can then be used as starting values in an iterative procedure 

for obtaining maximum likelihood estimates of the parameters. 

3.2 A  Generalised Empirical Logistic Transform 

The empirical logistic transform (Cox, 1970, p.78ff) is useful for 

analysing binary data since it transforms the frequency of success R. 

inn.trialstoavariableZ.'which is approximately normally distri-

buted with simple mean and variance V
i
' which can be estimated. There 

are two alternative definitions of the empirical logistic transform but 

the difference between them is relatively unimportant and we consider 

only the definition: 

1-  
Z.' = 	- 	—)} 	(3.2.1) 
1 	1 = i 1 2 

(n. + 1) (n. + 2) 
1 	1  V.' _ 	 • 	(3.2.2) 1 	n.(ft.+1)(11.....R. 4. 1) 1 1 	1 1 
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We notethatforlargeValuesofn.'and R., V. is approximately  

(n.P.a.1-1)
-1 

where pi 
is the probability of success in the i

th 
group.. 

TheanalysisnowproceedSusingthetransformedvariablesZ.'which 

are assumed to be approximately normally distributed with known variance 

V.'. The model can be fitted using iterative weighted least-  squares' 

and the scaled residuals tested for normality (Cox, 1970, pp.81-83). • 

We now examine a generalisation of (3.2.1) and (3.2.2)- to multi-

category data. This generalisation is an extension of the estimator A 

of 'banter' 2. The alternative estimator, A* does not have an analogue. 

when there are more than two groups. 

• The estimator ic
12 

of the logistic differende between the first 

two groups can be written as 

k-1 	
R. '2  

. 	k-1 	.R . 
1 1 .  

12 = E W. 	
1j  E W. In 	27].  ' 	' 

j=1 3 n1  - R
lj 

+ 	j=1 3 	n2 R2j 	2 
+ 777 ' 

	

where R. , 	the cumulative sum of the observations in the 	group. 

	

ij 	
.th 

Note that this is the difference between a function of the observations 

in group 1 and the same function of the observations in group 2. This 

contrasts with A*
12 
 which can be written as 

X12 
• 
1 + E 	1 1 	E k-1  n 

k-1 
i— 2 	• 	

lj(n 
2
-R 	- 
2j 	

+  

	

2 	j 
j=1 wj*R 
	

j1 w 
.*R

2  

Thus A*
12 

 cannot be expressed as the difference between a function of 

the observations in group - 1 and the same function of the.observations in 

group 2. One important consequence of this is that the additiVity 

property of the parameters 

X12 + A 
	A 

12 	23 	13 



k-1 	r R. 1 + — -. 	2 
Z1  . --= 	E w. ln 

i=1-3‘.11.-2. ij 1  

(3.2.3) 
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is satisfied by A but not by A*. 

The transformation 

is called the generalised empirical logistic transform of the observations 

in the i
th 

group. The weightsqj  in (3.2.3) are estimated from the 

column cumulative totals {R..}. 

	

1 
+ 3 	- R.. 	 1 wj   

	

. 	.. 	- . 2 	2 + 	R..) 3+1 - 3 (3.2.4).  

k-1 
with 	E w. = 1. 

j=1 3  

Forlargevaluesofni thetransformedvariables.Z.can be treated as 

independent and approximately normally distributed - with variance V. 

estimated by 

k -1 
V. = En. E c.(1 	c.) c. 	- 	)] 1 	1 3 3 3+1 3-1 

j=1 
(3.2.5) 

wherec.=R. ./n.. . Some expressions which are equivalent to (3.2.5) 

but may be easier to calculate, are given in (2.4.6). When the 

differences between the various groups are large and the group totals 

1 are large, an improved estimate of V. is given by 

k-12 	
-1 k-1 

-1  
P., t“) (R

i 
 + 1)- 

1 	1 	j 	ij 	1 	ij 	1 	3 Z 	j j=1 	 j< 

(n. - R. + 1)]
-1 

 1 	1Z (3.2.6) 
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Under the saturated model (3.1.1) the deriired model for the 

transformed variables Z. is 

E(Z.) 	= p 	a. 	(i = 1,...,r) 	 (3.2.7) 
1 

where p = Ei4.8. is considered to be a nuisance parameter. The 
7 

unsaturated model (3.1.2) becomes 

E(Z.) = p g
T
x. 1 

(i = 1,...,r). 

The scaled residuals under the unsaturated model 

(z. 	z.)/1177 
	

(i = 1,...,r) 

can be tested for standard normality, outliers etc. using graphical or 

other methods. (Under the saturated model (3.2.7) the residuals are 

all zero.) Some loss of efficiency is to be expected when the transformed 

variables are used. The method should be used only when the number of 

categories is fairly small, typically 5 or less, and the cell counts 

are large, typically 5 or more. In such cases, the ease with which the 

transformed variables can be handled often outweighs the small loss of 

efficiency incurred. 

A further important condition for the applicability of the 

. generalised empirical logistic transform is that the scales. within groups. 

should be eaual. In the example of §3.4 this condition is not satisfied 

and hence an alternative method of analysis described in §3.3 is used. 
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3.3 11.dequacy of Model  

We consider first tests for the adequacy of the saturated model. 

(3.1.1) and the unsaturated model (3.1.2) when all the parameters are 

estimated by maximum likelihoOd.or by any other asymptotically efficient 

method such as minimum chi-squared. The Saturated- model has •r k-1. 

parameters with one linear constraint and there are r linear constraints 

on the cell probabilities since 

k 
E 	7.. 	= 	(1 = 1,...,r.) 

j=1 13  

This leaves (r - 1)(k - 2) degrees of freedom to test for goodness of 

fit. For the unsaturated model (3.1.2) the equivalent degrees of 

freedom for goodness of fit is (r 	1) (k - 1) 	s. 

If there is evidence of inhomogeneity of variance such as the 

presence of patterns of large residuals under the linear model, then 

the more general multiplicative model 

ln{y..
1)
/(1 - y..)} = T.(0. 	a.) 	(3.3.1) 

	

1j 	j 	1 

or 

r ... 0 + T
x.) 13 	yi) 	. T 

j 	-1 - 
(3.3.2) 

is appropriate. It is necessary to impose a constraint on the (Ti}  such 
r 

as T = 1 or 1I Ti  = 1. 

i=1 

The multiplicative models (3.3.1) and (3.3.2) each have an extra 

r - 1 parameters so there are (r - 1)(k - 3) degrees of 'freedom left to 

test the fit of the saturated model (3.3.1) and (r - 1)(k - 2) - s to test 

the fit of the unsaturated model (3.3-2). 
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It is impossible to give general guidelines on how to proceed if 

the multiplicative models do not fit. Examination of residuals often 

helps to identify outliers. These can then be discarded,if they are 

errors or they may be of particular interest precisely because they 

are outliers and should be investigated further. 

An example with unequal scales in each group is given in §3.4. 

3.4 Example  

This example from Bradley, Katti and Coons (1962) is a 5-treatment • 

experiment where the observations are on a 5-category ordered scale. 

The categories represent the subjective responses of individuals in a 

food-testing. experiment and range from terrible- (category, l) to 

excellent (category 5). Bradley et al. analysed this data using an-

optimum scoring techniaue. Snell (1964) analysed the Same data using 

a model similar to the linear logistic model.  (3.1.1), but not allowing 

for differences in scales. 

A fairly general Fortran program. was written'to fit the'Models . 

(3.1.1).  and (3.1.2). with options for restricting the scale parameters 

orrestrictingtheblockparametersfa,
1
I. The saturated model (3.1.1) 

is appropriate for this example since there is no suggestion that the 

five blocks (treatments) can be explained in fewer than five parameters. 

Table 3.1 gives the data. The fitted values together with the 

	

residuals under the linear logistic model;  ln{y../(1 -•y.. 	. )1 - 0 	a., 13 	13 	J . 1 

are given in table 3.2. 

The narameter estimates under the linear model are 

(-1.5694, -.5176, .3688, 2.6646) and 

(-.0464, -.5090, 1.0934, .5291, -1.0660). 



• •Table - 3.1 
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Response frequency under different - treatments'in'a•taste 

testing experiment 

Response category 

terrible poor 	fair 	good excellent 

Treatment 	1 	 2 	3 	4 3 Total 

1 	9 5 	9 	13 4 .40 

2 	7 3 • 	10 	20 4 44 

3 	14 13 	6 	7 0 40 

4 	11 15 	3 	5 8 42 

0 2 	10 	30 2 44 

Source: 	Bradley et al. (1962). 

Table 3.2 

Fitted values. and'residuals*'under'linear'logistic model  

''Response category  

Treatment 1 2 • 3 

1 6.63 ( 	2.37) 	7.87 (-2.87) 8.69 ( 	.31) 14.08 (-1.08) 2.72 ( 1.28) 

2 4.89 ( 2.11) 	5.71 (-3.71) 8.86 ( 1.14) 18.97 ( 1.03) 4.57 ( -.57) 

3 15.33 (-1.33) 	10.28 ( 	2.72) 6.87 ( -.87) 6.61 ( 	.39) .91 ( -.91) 

4 10.96 ( 0.04) 	10.15 ( 	4.85) 8.72 (-5.72) 10.51 (-5.51) 1.66 ( 6.34) 

5 2.94 (-2.94) 	4.35 (-2.55) 7.13 ( 	2.87) 21.97 ( 8.03) 7.40 (-5.40) 

X
2 
= 53.4, G

2 
= 50.4, both on 12 d.f. 

*Residuals are differences between observed and fitted frequencies 



43 

Table 3.3 

Fitted values and residuals*:undermultiplicative'logistic 
model 

Treatment 1 

Resnonse category 

3 	 2 

1 7.86 	( 1.14) 7.88 	(-2.88) 7.35 ( 1.65) 12.28 ( 	.72) 4.62 ( -.62) 

2 4.64 	( 2.36) 7.41 	(-4.41) 8.98 ( 1.02) 17.56 ( 	2.44) 5.41 (-1.41) 

3 13.79 	( .21) 12.91 	( 	.09) 7.22 (-1.22) 5.42 ( 1.58) .66 ( -.66) 

4 13.74 	(-2.74) 7.45 	( 	7.55) 5.75 (-2.75) 9.54 (-4.54) 5.53 ( 2.47) 

5 0.24 	( -.24) 2.22 	( 	-.22) 9.29 ( 	.71) 30.53 ( -.53) 1.73 ( .27) 

2 
X 	= 20.8, = 23.2, both on 8 d.f. 

-Table 3.4 

Fitted values and residuals* under multiplicative logistic 
model, omitting treatment 4. 

Treatment 1 

.Resoonse category. 

3 2 

1 8.91 ( .09) 	5.73 ( 	-.73) 7.89 ( 	1.11). 13.61 (-.61) 3.86 ( .14) 

2 5.76 ( 1.24) 	5.39 (-2.39) 9.23 ( 	.77) 19.04 ( 	.96) 4.58 ( -.58) 

3 14.57 ( -.57) 10.66 ( 	2.34) 9.05 (-3.05) 5.43 (1.57) .30 ( -.30) 

5 0.58 ( -.58) 1.97 ( 	.03) 9.01 ( 	.99) 30.86 (-.86) 1.57 ( .43) 

X2 = 4.9, G2 = 7.9, both on 6 d.f. 

*Residuals are differences between observed and fitted frequencies. 
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A large positive value for ai  indicates a bias towards the lower 

categories and conversely a large negative value indicates a bias 

towards the higher categories. The residuals in table 3.2 indicate 

• that the fit is not very good in blocks 4 and 5. To judge the signifi-

cance of these residuals we can calculate the usual X2 goodness of fit 

, statistic, but the likelihood ratio statistic, G2, is , s Just as convenient 

and has the same asymptotic distribution as X2. The values of the two 

statistics are X2-= 53.35 and G
2 
= 50.36, each on 12 degrees of freedom. 

Although. the cell counts are not very large, it is clear that the linear "- 

model does not fit very well. 

There is some evidence in the data of table 3.1, of uneqUal scales 

in each block. Consequently we try the multiplicative model 

1nCY../(1-- 13 
	3 Y..)1 = 	a,) with Ea,. = 0 and T1  = 1.. The fitted 13 	• • 	• 	1 

values and the new- residuals are given' in table 3.3.' The parameter 

estimates under the multiplicative model are 

e = (-1.3514, -.3757, .3687, 2.0924) 

a = (-.0567, -.4430, .8838, .3986, -.7826) 

and T = (1.0000, 1.1914, 1.3721, .7572, 2.4412). 

The goodness of fit statistics are X2 = 20.84 and G2  =.23_21 on 8 degrees 

of freedoM. The difference 53.35-20.84 = 32.51-or. 50.36 	23.31 = 27.15 

on 4 degrees of freedom can be used as an approximate test for equality 

of scales. It is thus clear that the- within groups variances are 

unequal., 

The multiplicative model is a considerable improvement over- the.  

linear model, but there are still some large residuals especially in 

block 4. Furthermore the goodness of fit statistics X2 and G
2 
are larger 

than we might expect. (The 5% point for X-  on 8 degrees of freedom is 

15.5) The multiplicative model was, therefOre, re-fitted with block 4 
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omitted. The fitted values, together with the new residuals, are given 

in table 3.4. The new parameter estimates are 

8 = (-1.3039, .-.6034, 	.2007, 	2.1334), 

= (.0534, -.3279, .9465, -.6729) 

and I.  = (1.0000, 1.1603, 1.5597, 	2.1834). 

It should be noted that t is inversely proportional to the standard 

deviat.ionintheith gcoup,HencelargevaluesofT.indicate- little 

scatter while small values indicate more scatter (relative to the first . 
A 

group since 	E 1). 

2 , • The goodness of fit statistics for table 3.4 are X = 4.9 and 

G
2 
= 7.9, both on 6 degrees of freedom. These indicate a satisfactory 

. fit. There is, therefore, considerable. evidence that the observations 

in block 4 are 'outliers' and do not conform to the pattern of the 

remaining 4 blocks. This discrepancy was noted by Snell (1964). 

C. 
To compare the average responses a. we need a rough estimate of 

their variability. An estimate of the variance matrix can be obtained 

from the matrix of second derivatives of the log likelihoOd. However, 

the variance estimate (3.2.5) of the generalised empirical logistic 

• . 
transform gives an indication of the variability o f {a.} when the scale 

• -1  

parameters {f3.} areapproximatelyequal.Thusvar(c
A  

0.00714 

sincethefn.lare approximately equal. For the purpose of comparisons, 

the a: can be treated as approximately independent. Since the Scale 

estimates {8i} are, for the most part, greater than 1 then the above 

estimate of variance is conservative. A conservative estimate of 

Std(ai a.
3
) is 0.12. Thus it is clear that the treatment parameters are 

all significantly different from each other. 
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A 
To summarise, treatment 5 is best (a5.= -.78) and there is a 

higher consensus of opinion about this (T5  = 2.4) than about the other 

treatments. Treatment 3 is worst (a3 = .88) and there is a fairly 
A 

average consensus about this (1.3 = 1.4). There is little consensus 
A 

about treatment 4 (T4  = .76) but it rates worse than average 
A 

(a
4 = .40). 
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• Chapter 4  

LOCALLY MOST POWERFUL RANK TESTS 

4.1 Introduction  

Ordered categorical data are only partially ordered. For example, 

in the two sample problem where the observations are laid out in a 

• singly ordered 2xk contingency table of counts {n..}, observations in-
ij 

the same column are 'tied' but observations in different columns a e 

strictly ordered. As an alternative to the modelling and estimation . 

procedures of Chapters 2 and 3, we now consider methods whose main 

purpose is testing of hypotheses For example in the two sample 

problem we might wish to test the two hypotheSes.(i) equality of 

location and (ii) equality of scale. 

We assume a general underlying continuous density f(y). In the 

example of §4Aff is assumed to be the logistic denSity but the theory 

is quite general. The locally most powerful tests are shown to be 

rank tests. A special case of the test statistic is the Case where 

there are no-ties. In this particular limit the tests are equivalent 

to the rank tests of Hgjek (1962) and Hgjek and Sidgk (1967), who do not 

consider the optimum treatment of tied.  observations.- 

It should be pointed out that, while the analysis in thiS-chapter -

concentrates on the two sample problem and associated tests, the methods 

can be generalised to the many. sample problem and .regression problems. 

In these cases the rank test statistics have asymptotically X2  distri-

butions instead of the normal distributions encountered in the two sample 

problem. 
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4.2 Eirivation'of•Lccally MostTowerfal'Tests. 

We consider tests for hynotheses concerning only a single parameter. 

For the two sample problem we are particularly interested in hypotheses-

concerning location and scale, and these two cases are considered 

separately. The relevant null hypothesis is that the two densities are 

equal while the alternatives are general one-sided vi  > v2  for location 

and a1  > a2 for scale. 

For the two sample location problem the log likelihood is 

k 1 
(e A) = .

E n 
	
1 [ (9. + 	- F(e 	+ —A)1 -' 

	

	3 2 	j-1 2 
3=1 

1 	1 , E n2j ln{F(0. 	-A 1-1 2 - F(9 	- 	) .rr 2  
3=1  

where {e.} are the unknown category boundaries'and F'(x) = f(x) is an 

• arbitrary but known density. The null hypothesis H0 
 is H

0  : A = O. 

The one-sided alternatives are H
1 
: A > 0 or H

1 
 : A < O. The locally 
 • 

most powerful test statistic of Ho  against H1  or H1' is based on the 
as 

"' score function — (e0  ,o) (Cox & Hinkley, 1974, p.113) evaluated under 9A  

the null hypothesis. It is easy to verify that the m.l.e. 00, of 0 

under H0  is given by 

F(eoj ) = c.
3 	n.. 

E 	n. = 	(j = ,...,k-1) 
k=1 

wherecj  is the cumulative frequency up to, and including category j 

in the combined sample. Hence 

Oj = F
-1 

(c . ) 
3 

(j = 1,...,k-1) 
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aQl  

where 00  = 	 ad (901 	6
0 k-11' The score statistic — (80  ,o) is given by -  

32, 	 r (c,)1 - fTh4-1  
1 "' 	1 	 P. )1i 

77 0010) = 	(n . - n ) 	j 	3-  

J 
=1 	13 	2j 	c. - c. 

3 	3-1 
(4.2.1) 

It is easy to see that (4.4.1) is a rank statistic since the cumulative 

frequency c, depends on the maximum rank of the tied obserVations in 
J 

category j. 

For the scale problem, the log likelihood 2. 2  (O,T is 

k 
(0,T) = 	n ln{F(3.) - F(6j-1)1 	n2jln{F(Te.) - F(TO. )1. 2- 	lj 	 3-1 j=1 

The null hypothesis of equality is H0  : T = 1 and the locally most powerful 

2 	,,,, 
test statistic as — 	1) is 

2 '4  
as (Porl) 	E n  

j=1 

We denote the location and scale test statistics by W., and W
2 respectively 

where 

k 
W1  (f) = 	E nlj {T (c.,f) - T1 	' 

	

(c. 	f)1/(c. - c. 3  J=1 

k 
W2(f) = 	E n {T (c ,f) - T (c. d f) }/(c. - c. ) 3 	-1 lj 2 	2 -1 	3-1 j=1  

(4.2.3) 

(4.2.4) 

with 	,f) = f 	)1.  and T2  (c .) = F-1  (c ) f{F-1  (c j) }. 

Note that the statistics W1  (f) and x'72  (f)are equivalent to (4.2.1) and 

(4.2.2). respectively. These test statistics are for location and scale 
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differences respectively. If we wish to test for other types of 

departure summarised in a parameter ¢ measuring, say, skewness, the 

function flu,f) has the form 

T(u,f) = —
a 

F(0;4) 
e=F-1(11;q)0) 

0 < u < 1 	(4.2.5) 

  

where ¢
0 
 is the m.l.e. of ¢ under H0. 

We now investigate some particularly important special cases of 

the statistics (4.2.3) and (4.2.4). The most common special case occurs 

when there are no tied observations. In principle, this can be incor-

porated. into the above model by allowing the number of categories to 

become arbitrarily large. The limiting values of (4.2.3) and (4.2.4) 

are 

E 	tpl(u.) 
group 1 ' 3  

and 

E 	1P2(uj)  
group 1 

R. 1 	
1 	 .th where 	 < uj < 11,...  ,11.  is the rank of the 3 	observation from n.. 

sample 1 and the summations are taken over observations in sample 1. 

It is usual to take u.
3 
 = R.

3
/(n.. + 1) (Hgjek, 1962) so that the limiting 

values are 

and 

Wl 	R./(n.. + 1)} 
group 1 

V72 =-EtPfR.
3
/(n.. + 1)1 

group 1 

(4.2.6) 

(4.2.7) 
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'a 
Du with IP(u) = 
2
-.T1 	41 (u; f) and IP2(u) = — '2 (u,f). The statistics (4.2.6) 

and (4.2.7) are precisely the asymptotically most powerful rank tests, 

for the location and scale problem suggested by H6jek (1962) and Haljek 

. and Sidak (1967), who have proved that these statistics are asymptotically 

normal under H0 
 and under a general class of alternatives. It follows 

from general likelihood theory that 	andd W2  are asymptotically jointly 

normally distributed. 

The functions 11; (u) and 1P2  (u) given by 

yu) = VCF-1(u)1/f(F-1(u)1 	< u < 1) 

and 
	

11)2(u) = 1 	F-1(u)f'{F-1(u) / {F-1(u)1 	< u < 1) 

are usually known as the score functions for the location and scale 

problem respectively. Note that if f is symmetric IP
1 is odd about 1/2 

and IP2 is even about 1/2. The asymptotic null variance of the location 

test statistic (4.2.6) is 

n n  r2 
 

J ip
1
2(u)du 

0 
(4.2.8) 

- where n1 = n1. , n2 = n2. and n = n
1 	

n2. 

When f is the logistic density, the location test statistic (4.2.6) 

is equivalent to the ordinary Wilcoxon test statistic while (4.2.3) is 

the averaged ranks Wilcoxon statistic. The two sided exponential distri- 

bution gives the sign test, the normal distribution leads to the expected 

normal scores test etc. 

We now revert to the problem, of primary interest, namely optimum 

rank tests with 'tied observations. H6jek and Sid6k (1967) pp.118-124.  

suggest various methods for handling tied observations. These methods 



n.. j i=nc
j-1

+1 

i=nc 

J 	n+1 

c. - c. 
3 	3-1 c

j-1 

c. 

q)(u) du 

52 

include randomisation, averaged scores and mid-ranks. None of these 

is claimed. to be optimal. Behnen (1976) showed that the averaged scores 

rank statistic is asymptotically superior to randomisation and mid-rank 

statistics. Note that for the Wilcoxon test, yu) is linear and hence 

the mid-rank and averaged scores statistic are equal. In general though 

they are not equal. We now show that the locally most powerful statistic 

(4.2.3) is asymptotically equal to the averaged scores statistic and 

hence this provides an alternative proof of Behnen's (1976) result. 

th 
The ranks of the observations in the j category are n cj-1 + 1 

th. 
up to n c.. The average score for the 3 category is therefore 

For large n, this is approximately equal to the integral 

= U(c.) - T(c 	1/(c - c. ) j j 

Hende the locally most powerful test statistics (4.2.3) and (4.2.4) are 

asymptotically equal to the averaged scores rank statistic. This 

concludes the proof that the averaged scores test is asymptotically 

most powerful. 

The asymptotic null variance of the locally most powerful tests Wi  

and W2, and hence the asymptotic variance of the'averaged scores rank 

test for the two sample problem are 

n
1  n2 
 k 

E 
n 	. 

3=1  
(c.) 	T (c. 	)12/(o - 0j ) 

J 	1 .3-1 	j 	-1 
(4.2.9) 
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and 
n
1
n
2 

k 
E {T 	-- T (c 	1 2 • -- 

• n 	2 j-1) 	c .-1) 
j=1  

3 	3 

For the logistic density the expression (4.2.9) reduces to 

n n k 
1 2 	 2 
n 	j 

E 
 1 
 (c. 	

3 
c.
-13 

) (1 - c. 	3 c.-1 ) 
= 

(4.2.10) 

The exact variance of the Wilcoxon tied rank statistic is known to be 

1 	1  
n1  n2  (n+1) {1 	

E 3 
12 	 - t 

n(n
2-1) j=1  

.th 
(Gibbons,19715,o.165)wheret.is the number of ties in the 3 	group 

or category. Since W1  is related to the Wilcoxon statistic W through 

it follows that the exact variance of W1  is 

n
1
n
2 - 1  

3(n+1) 	2 
E 	(t .

3 
- t.

7
) 

n(n-1) j=1 

It follows from the identities (2.4.6) that the exact variance is 

asymptotically equal to (4.2.10) as expected. 

It should be nointed out that since the Wilcoxon test statistic W 

(or W1) and the maximum likelihood estimator A of Chapter 2 are based on 

the same likelihood function, tests of H
0 
 : A = 0 based-on A or W are 

asymptotically eauivalent (Cox & Hinkley, 1974, pp.314-315). However, 

the Wilcoxon statistic does not provide an estimate of the parameter A, 

but it is a valid test of H0  against a wide non-parametric class of 

alternatives, e.g. Hi  : F1(x) > F2(x). 

Finally, table 4.1 gives the functions W1(u) and 11)2(u) for some 

common densities. 
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Tal-le A1 _ 

. Score functions IP
1
(u) and 11,2(u) for some common densities 

Density 1 4. )2 (u) 

 

 

Normal  

Double exp. 	sign (2u - 1) 	-mCi - 12u-111 

Logistic 	2u - 1 	(2u-1)1n(u/(1-u)1 

2 
Cauchy 	-sin 27u 	cos 7u 
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4.3 Joint Distribution. of Several Rank'Test'Statistics  

The methods of 54.2 provide rank statistics for testing specific 

hypotheses about a single parameter. All other parameters are assumed 

to remain constant. For most purposes- this is an. unreasonable assump. 

tion It is often necessary to use a single Set.  of data to make 

inference about several parameters. The interpretation and analysis 

of such data sets is greatly facilitated if the parameter estimates 

or the test statistics are independent or approximately independent. 

A simple notation is developed which is useful for calculating joint 

moments of general rank statistics under various hypotheSes. For 

simplicity we consider only the location scale model and the associated -

hypotheses for the two sample problem.  

H0  : F1(x) 
= 

F2 (x) 

H1  : F1  (x)F2(x + A) 

H2  : F1  (x) = F2  (Tx) 

H3  : Fl  (x)F22(TX 	A) 

It is convenient to consider only densities f(x) which are symmetric 

since this implies that the score functions V1(u)  and ‘2(u) are odd and 

even respectively about u = T. Hence they are orthogonal over (0,1). 

This relationship is expressed in inner product notation as 

<71,1,11),› = 0. Note in addition that 4:1P,,1> 	<1,b2,1> = 0. 

We will consider the two-sample problem although the analysis could 

be extended to regression problems. Let Tr
i
-be the probability that the 

ith  ordered observation in the combined sample of size n came from the 

first sample. The joint probability vii  is defined as the probability 

th 	. 
3
th 

that both the i and 	ordered observations are from the first sample. 
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We define the related functions
ln
(u), Flnan

T 
(U,v) by the differential 

'  

relations 

ln n+1 
= l/n if i

th ranked observation from sample 1 

0 otherwise 

and 

d2C ET  (I , 	= 	 if ith  and . 3th . 	. ranked obs. from sample 1 In In n+1 n+1 	n(n-1) 

L 0 	otherwise 

ThusEfd in(u):Iisafunctionwhichtak.esthevaluesfir.lat the 

points i/(n+l) and zero elsewhere. Similarly Eld2 E E (u,v)1 takes 
In In 

values7ij at the points (i/(n+l), j/(n+1)) and zero elsewhere. 

For the two sample problem the asymptotically most powerful rank 

test statistics for location and scale respectively, are of the form 

1 
W
in 

= —n  F. R./ (n+1) } 
(4.3.1) 

and r  
i W2n 	

1 	
2 tR/(11+1)}: n  

where the summation is taken over the ranks of the observations in the 

first sample. The statistics (4.3.1) are conveniently expressed in 

inner product notation as 

W
ln = <14)1' le 
	

(4.3.2) 

and 
	

W2n 
<1p
2 ln

›. 
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The statistics Win  and W2,1  are based on the derivatives of the log 

likelihood with nuisance parameters evaluated under Ho  - Hence, from 

general likelihood theory, Win  and W2n.are asymptotically jointly 

normally distributed with zero mean under H
0  and variance-covariance 

matrix given by Fisher's information matrix. We are interested in their 

joint distribution under- Ho, Hi, H2, H3. 

The first order moments can be evaluated by taking expectations 

of (4.3.2). This gives 

E {W1 
(4.3.3) 

and 
E{W2n ) = 

Under H
0, E  1.111 takes the value• ni/n at each of the points 7,7. , 

1,...,n and hence the expectatiorsin (4.3.3) are both zero. Under 

H1, 
 Ef

lnI can be expressed as the sum of a constant and an odd function. 

Hence E{W2n} = 0 under Hl. Under H2'in1  is even. Hence EfWln  1 = 0 

under H2' Under H3, the first moments are, in general, non-zero. 

The above results depend on *1  being odd and *2  being even. We 

have already noted that when the data are grouped, averaged scores are 

asymptotically most powerful. However, averaging the scores usually 

destroys the symmetry of *1  and *2. Hence the results that E{Win} = 0 

under H.)  and E{W2n} = 0 under Hi  do not apply, in general, when the data 

are grouped. 

The second order moments of W
ln 

and W2n are obtained by taking 

expectations of the equations 
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1 2  

	

f 	2 
W
in 	

(u)11)  2(v)d2r 	T (u,v), 
 In l0 0 

a 1  W
in
W
2n = I 	4)

1
2  (u)4)

2
2
(v)d

2
Ein'i  

F
T
n  (71,v) 

0 0 

1 1 
r 	- 

and W2n
2 
 = s j  4)

2

2 
 (u)4) 2(v)d

2
Ein- 

E
T 
 
in (u,v). 

2  
0 0 

In a generalised inner product notation these equations become 

2 	yT 
=  ln 	1"ln ln 1>, 

W 	=.
T 

W 
ln 2n 	1 ln- ln 2 

and W
2n
2 

<1.1)2, lnEin4 

(4.3.4) 

(4.3.5) 

The analogy with matrix multiplication and quadratic forms is cleat. 

Taking expectations of the equations (4.3.5) gives generalised inner 

products with kernel *r_1(: ET  (u,v)}. It is easy to verify that undet 
"ln'In 

H
0 
 and H2 this kernel is symmetric about u = v and about u = 1-v. Since 

4)
1 

is odd and 4)2 is even it follows that under H0  and H / the statistics 

W
In 

and•W2n are uncorrelated. This result does not hold under H1 
 or Har  

nor does it hold when the data are grouped, except in the special case 

th 
when the grouping is symmetric, i.e. the number of ties'in the i group 

is equal to the number of ties in the (k+1 i)th categOry whete k is the 

number of categories. 

For grouped or categorised data we write 

• 3. k 
W 	= 	E 	n . 
ln 	n 	ij 13 

(4.3.6) 

 

1 
W = I 
2n 	n 

j=1 

 



11)lj  c.-c 
3 

c.) - Ti  (c. 
3 

1. 
(4.3.7) 
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.th 
• where *lj 

*
2j 

are the integrated scores for the 3 	category. Explicitly 

and similarly for 1P2j  . 

It follows from (4.3.6) and (4.3.7) that 

1 W
ln

E 	.n23 . m 
j1 	

3  

and similarly for W2n, so that 

k 	 k 
E 	n. 	E * .n 	0 . 	(4.3.8) 

j=1. 13 3 	j=1. 23 j 

This is a useful check for the calculated scores *lj, *2j. 

From (4.2.7) we can calculate the second moments of W
In a

nd W2n 

under H
0
, which are: 

4/n2 
k - 

Var(W
ln) = 	E n..*

13  

2  
3 
n j=1 - 

n n 	k 
Var(w2n) 	

1
32 E n.j2j2  

n j=1  (4.3.9) 

Cov(W ,W 
ln 2n 

n
1  n2 
 k 

E n..
3
* . 

j=1 

Since Win  and W2n  are asymptotically joint normal with zero mean under Ho, 

these second moments specify the asymptotic distribution completely. 
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4.4 ExamPle  

We use the data of §2.9 to illustrate the simultaneous application 

of two rank tests. . The test statistics for location and scale are 

denoted by W1  and W2  respectively. We use a logistic density and the 

score functions IP
1
(u), IP2(u) derived from the logistic density. 

11) (u) = 2u - 1 

<1.1 < 1) 	 (4.4.1) 

2(u) = (2u-1)1n{u/(1-u)} - 1 

For grouped data it is more useful to have the functions T
1
(u) and T2(u) 

which are, apart from changes of sign 

T1(u) 	(1 	
<u <1) 	(4.4.?) 

and 

2  (u) = u (1 - u)ln{u/(1 - u) } . 

Table 4.2 demonstrates the steps involved in calculating the location 

and scale rank statistics W1  and W2 as given in (4.3.6). 

The original data is in the columns headed groups. Columns 1, 2, 3 

are category totals, probabilities and cumulative probabilities respectively. 

The scores IP . 
7 
 in column 4 can be calculated directly from the formula 

= 1 - 	
j-1. 

This is purely a consequende of the logistic cj  

model since 

1  
c.-o. 	1 (c.) - 	(c. 	).1 	3 - c. - c.-1 

 . 
3-1   3 3-1 
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Table 4.2 

Calculation of location and scale rank test statistics for 
logistic models 	• 

Groups 2 3 4 5 

Category 1 2 Total P. c•  11)11 TZ. ,(c1  .) 111 21 

0 - - 0 0 - 0 

1 19 497 516' .3691 .3691 .6309 -.1248 -.3382 

2 29 560 589 .4213 .7904 -.1515 .2199 .8182 

3 24 269 293 .2096 1.0 -.7904. 0 -1.0492 

Total 72 1326 1398 1.0 

Column 5 gives the values T (c ) and column 6 is obtained from 5 and 2 2 j 

from the formula 

1  
{T
2 
(c
j
) 	(c 

j-1) 
1. 

c.7c, 	2 j-1 
D J-1 

Note that the inner products of column 1 with columns 4 and 6 are zero. 

The statistics nW1 and nW2 are simply the inner products of columns 4 

and 6 with the numbers in group 1. Their values are -11.6087 and 

-7.8785 respectively. The second moments of nW1  and nW2  are obtained 

from (4.3.9). They are 

Var(nWI
) = 19.7073 

Var(nW1) = 37.9034 

and Cov(nW1,nW2) = 2.7360. 
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The standardised statistics Tl  = W1/std(W1) and T2  = W2/std(112) 

have values. -2.6150 and -1.2797 with covariance matrix 

ti 

I 1 .1001 ' 

V 
.1001 	1 

The statistic T should be compared with the ratio A/std(A) in g2.9. 

For testing H1  against Ho 
we use T

1 
which is approximately standard 

normal, and for H2  against Ho  we use T2  which is again standard normal. 

However, since the tests are not indeoendent we should use 

(T
1
2 	

T2
2 
- 2oT12 	" T )/(1 	p2) '  (-.4.3). 

where p = .1001 for testing H3  against Ho. The statistic (4.4.3) is 

asymptotically X2
2 and has a value of 7.8848. From the numerical 

calculations in this example, it appears that when there are only three 

categories, the combined location-scale statistic -(4.4.3) is exactly equal 

to Pearson's X
2 
goodness of fit statistic. Thus T

1 
and m2  are non-

orthogonal components of the X2 statistic. For data with more than three 

categories, the two statistics are not equal. 

In this particular example it is fortunate that the correlation 

between T
1 
and T2 is small. If the correlation is large, this suggests 

that either unequal scales or unequal locations adequately explains 

the differences between the two groups. It may be preferable, from 

prior information etc., to use the location alternative H
1 
rather than 

the scale alternative H2' but because of the high correlation the data 

does not distinguish between the two alternatives. Of course, if the 

differences are sufficiently great, it may be necessary to use the more 

general alternative H3. 
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Thus if we are prepared, on the grounds of prior information, to 

accept Hi  as a likely explanation of the differences between the two 

groups we may wish to test the adequacy of Hi  with H3  as alternative. 

It is thus appropriate to do a conditional test based on T2  given the 

value of Ti. Thus 

E (T9 I T1) = PT] 

Var(T2IT1) = Var(T2) (1 	p
2
) = 1 - p2 

since T1  and T2 are asymptotically joint normal. For the data of - 

table 4.2 the conditional test statistic 

pTi  

- p
2
)
112 

has a value of -1.0230. However in this example there is no ambiguity 

and the location parameter alone is sufficient to explain the differences 

between the two groups. 
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Chapter 5  

MATCHED SAMPLES 

5.1 Introduction 

The first section of this chapter comprises a review. of the 

literature for matched categorised data, matched binary data etc., 

together with some general remarks on latent structure or latent trait 

models. The discussion of further parametric models for square contin-

gency tables is postponed to §6.1. 

Section 5.2 includes a description of the paired logistic model.  

for binary data and this model is extended in §5.3 to ordered multi-

category data. In the extended model, difficulties arise. Concerning 

hypothesis testing and parameter estimation, which do not arise in the 

binary model. To tackle these problems, some results concerning 

mixtures of binomial distributions and multivariate binomial. distributions 

are outlined in §5.4. These results are used in §5.5 to combine the 

information from various marginal distributions and hence to obtain a 

reasonable estimator of the parameter of interest, called A. Two such • 

estimators are described in §5.5 and simulation results of §5.6 indicate 

that the two estimators of A are asymptotically . unbiased and the result 

of §5.8 shows that the estimators achieve full asymptotic efficiency, at 

least in a special case. An empirical Bayes procedure is described in 

• §5.7 and an example concerning some radiological data is provided in §5.9. 

A matched design is a blocked design with a fixed and equal number 

of observations per - block. In particular, a matched pairs, or paired 

comparisons design, has two observations per block. Usually, 'one member 

of each pair is a 'control' and the second is a 'treated' observation. 

The principal objective of such an experiment is usually to make inference 
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about the treatment effect independently of the block effects. 

Questions about the interaction between blocks and treatments may also 

be important in many cases, but in this chapter we make the simplifying 

assumption that the treatment effect remains constant on the logistic 

scale. In §5.10 a - simple test is suggested for checking the validity 

of the assumption of no interaction. 

The purpose of matching or blocking is to reduce the effect. of 

uncontrolled variations and thus to increase the precision of the 

experiment (Cox, 1958b, p.23; Davies, 1954, p.17). 	Much of the work 

on matched designs refers to continuous, usually normally distributed, 

random variables. As in Chapters 2 and 3, we derive a.model for the 

underlying continuous variable Y and examine the properties of the • 

associated discrete model. For matched pairs the following model is 

considered in greater detail throughout this chapter: 

ETY 
it 

- 2 

(5.1.1) 
1 

E{Yi2} A. -A 2 

where, conditional on A., Yil  and  Yi2 are independent random variables 

with a logistic distribution. The parameter of interest, A, is the 

common difference between the means of each pair {Y. 	i }, and the block 2 

parameters {A.} are nuisance parameters. • i 

More generally, for matched designs with t observations per block 

and arbitrary but known density, f(yjX,T), depending on the block 

parameter A and the treatment parameter Ti  the joint conditional density 

th. of the t observations in the 1 block is 

t 
E fY (y4 lXiirj). 
j=1 	31  1 j 

(5.1.2 ) 
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The formulation (5.1.2) is called the conditional model since the 

distribution is conditional on the parameters {Ai}, and in such 

generality is not considered further. Model (5.1.1) is a particular 

case of the more general conditional model (5.1.2) and is considered.  

in greater detail throughout this chapter. 

Some other specialisations of (5.1.2) have been examined in the 

statistical literature. In particular, the normal theory model is a 

special case of (5.1.2). However, the simplicity of the normal theory 

model for continuous data does not carry over to categorised.data. For 

this reason the logistic version of (5.1.2) is chosen for the analysis 

of categorised-  data.. 

So far no assumptions have been made about the block parameters 

-(x.I.Insomecasesitisteasonabletoassume.that-ate -{.)are 

random. variables from some parametric family G(X). Then the joint 

marginal density of the t obserVations in a given block is 

t 
f { II f , =1 Y.IX.T. (17i1•3

XIT.)}dG(x) 
 • 

(5.1.3) 

This type of model is known as a latent structure Model (Andersen, 1973; 

Anderson, 1959; Lazatsfeld, 1950, 1955) and the parameter. ), is the latent 

trait variable. 

For matched pairs (5.1.3) defines a joint denSity for (Y1,12). Since 

(5.1.3) is a mixture of conditionally independent random variables, the 

unconditional variables Y1 and Y2  are positively correlatecorrelated.A particular 

case of some interest occurs when f and G are both normal distributions. 

In this case Y
1  and Y2 are bivariate normal. However, in general the - -  

integral in (5.1.3) is rather intractable and this imposes some limitations 

on the applicability of the model. One particular case WhiCh.is of special 

interest for hypothesis testing, is A = 0 or more generally in (5'.1.3) 
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Ti  = 0, i = 1 	This implies symmetry for the joint distribution 

of Y ..„Y,. 

We now examine some of the models in the literature for matched 

categorised data. These are special cases of models for square 

Contingency tables. Two properties which all the modelS have in common 

are that they have symmetry as a special case and they allow a complete 

range- of. association from independence to complete dependence.. 

The models for square contingency tables can be roughly divided 

into two classes. The first type (Bishop et al. 1975, Ch.8) are the 

log-linear models, such as quasi-symmetry and are discussed more fully, 

in §6.1. The second type is characterised by the explicit fitting of a 

bivariate distribution to the data..• These make use of the ordering • 

among.the categories- The distributions used in this context include 

the bivariate normal and the contingency or C-type distributions • 

(Mardia, 1970, pp.55-73 Plackett, 1965). Both distributions allow a 

complete range of association, but only the bivariate normal distribution 

has a simple explanation in terms of a latent trait variable. It should 

be pointed out that the two classes are not distinct since the bivariate 

normal model implies quasi symmetry but the converse is nottrue. - 

An interesting question arises when an unconditional model such as 

the bivariate normal model- or the bivariate logistic model.  (5.7.8) are 

found not to fit the data. It is not cleat whether the lack of fit is 

due to a wrong conditional formulation or whether'it is due to a wrong 

mixing distribution. for the nuisance parameters. It is the purpose of 

the model described in this chapter to make inference about the parameter 

of interest independently of the nuisance parameters. 
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5.2 Binary Paired Comparisons  

The logistic model for binary paired comparisons has been discussed 

widely in the literature; see, for example, Cox (1958a), (1970)., and • 

Altham (1971) who gives a Bayesian analysis. Let X. , X.
12 
 be binary 

11  
th. 

random variables for the 1 pair of observations. The logistic model 

can be written as 

pr(Xii  = xiliXi) = axP{(Xi 	;;A)xi1}/{1 	exp(ai  - -}A)}, 

(5.2.1) 

pr (X.
2 
 = x

i2 
 IX.) = exp{(X. 	1.A

1
)  x.2 	"-• }{1 	1 exo(X. 1  1 	 A)1 2   

3.1 
	= 0,1; -m < X.

1
, A < 

Thus {X.} are the block parameters or the latent trait variables and A 

th is the treatment effect.. Then for the . pair the logistic transforms 

	

1 	1 of the conditional probabilities (5.2.1)•.are X - -A and X • i 2 	i 2 

respectively, where X. is a nuisance parameter characteristic of the .th 1 

pair and A is a treatment effect assumed constant on the logistic scale. 

As many authors have noted, the conditional probability 

prob(Xii  = 0, X12  = 11Xil 	Xi2  = 1) = eA/(1 	eA) 	(5.2.2) 

is independent of the nuisance parameter Xi. Thus the conditional 

distribution of the number of (0,1) pairs n01, conditional on the total 

number of 'mixed' pairs n
01 4- n10 is exactly binomial with parameter 

e
A
/(1 - eA) (Cox, 1970, 55-58). Then the conditional maximum likelihood 

estimator of A is 

Ac = ln(n
01In ) . 
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Note that this conditional analysis ignores the numbers of 'unmixed' 

pairs nob  and nll. Andersen (1973) has investigated the consistency 

of the unconditional and conditional maximum likelihood estimator of 

The unconditional estimator is inconsistent. Under mild conditions on 

the sequence of incidental or latent parameters Al,X2,...,X
n
, the 

conditional maximum likelihood estimator, k, converges almost surely 

to the true value (Andersen, 1973, pp.19-22, 45), and hence is consis-

tent. The restrictions on the sequence of incidental parameters are 

necessary to ensure that n01 n10 ÷ 00 with probability 1. A sufficient 

condition on the sequence of incidental parameters, to ensure that k 

is consistent, is that the Xi  should be i.i.d. random variables. An 

alternative condition is that the Xi should all belong to some compact 

subsets of the real line. The purpose of these conditions is to ensure 

that the probability of success or the probability of failure does not 

become dominant as the sequence of observations gets longer.. If the 

probability of success were to increase too rapidly the number of 

'mixed' pairs would not increase beyond a certain point and thus the 

variance of 4c  would not tend to zero. For such sequences it seems 

clear that there is no consistent estimator of A and that the information 

on A is bounded as the number of observations increases. 
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5.3 The Logistic  Model for Matched Ordered Categorised Data  

One possible, though nota necessary, physical explanation for 

the model (5.2,1), is in terms of an underlying continuous variable Y. 

Yil Yi2 are two logistic random variables with means 

• 1 	•  Al  - =7-A, 	1 2 and X. + 
1 
 respectively, and whose variances are conventionally 2   

fixed at 72/3 which is the variance of the standard logistic distribution.. 

A success (X = 1) is observed when Y is positive and a failure (X = 0) 

is observed when Y is negative. The derived model for the pair of binary 

random variables is (5.2.1). We exploit this physical interpretation of 

the logistic model for binary data, to extend the model to handle ordered 

categorised variables. 

As in 52.1 we introduce k-1 unknown parameters 01,...,0k-1  to 

represent the category boundaries. Without loss of generality one of 

these boundaries can be set equal to zero provided the block parameters 

{X.} are either arbitrary constants or have a distribution with arbitrary 

location parameter. 

Explicitly, the model for the observed X's is 

X = j if 8. 	< Y 	8. 3-1- 	3 = (5.3.1) 

where -05 = 00  < 01  < 	< 
	In addition 

prob(Y.• 
11 

• 1 , 
,A) = F Cy 	+ -.7A) 

(5.3.2) 

prob(Y.12  < yIA.,A) = F(y - Xi 	-t) - I 

where-F(X) = eX  /(1 + eX) and, conditional on A., Y.1  and Y
i2 

are 

independent. 
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As it stands, the model has n incidental or nuisance parameters 

iX.1 and k structural parameters •e ...,ek_i ,A. The terminology is 1 

somewhat misleading here since we might consider 61,..., ek-1  as 

nuisance parameters. It is easy to see that not all of the parameters 

are estimable. For example, we can add an arbitrary constant to each 

of the X. 's and the same constant to the O.i s and the model is unchanged. • i 

To eliminate this indeterminateness we can arbitrarily fix one of the 

0. or constrain the Ai to be centred around some fixed point, say, zero. 

If the {X.}  are considered random it is convenient to eliminate the 

confounding by choosing a distribution for the {hi}  which is centred 

on zero. 

From (5.3.1) and (5.3.2) we note that 

1 pr (X 	< j ( X.,A,O) = F (0 .J 1 	2 — X. + (j = 1,...rk-1) 

pr (X f. j1XitA70) = F(0 - X 	1-A) j 	.  1,...,k-1) 

Hence, for j = 1,...,k-1 

pr(X 	< j, X. 	j A 	  = e  

pr(x.
11  > j, X.2 < jix.,A,e) — 

(5.3.3) 

so that the conditional probabilities 

pr(X. < j, X, 
12 11 

< j, x. 2 
	j or 1 is 

have the common value of e
A
/(1 e

A
) for j = 1,...,k-1, and this 

conditional probability is independent of the nuisance parameters. 

We note in passing that the model (5.3.1) and (5.3.2) does not 

completely specify the k
2 
cell probabilities when the fiI are treated 
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as random variables with an unknown distribution. On the other hand 

when the {X.} are treated as fixed parameters the standard methods . 1 

based on the likelihood function do not, in general, yield.consistent 

estimates even of the structural paraMeters. However, the conditional 

model doeS imply the restriction (5.3.3) on the cell probabilities. It 

would be of interest to know whether or not the conditional-model implies 

any further restrictions on the cell prObabilities This can be 

expressed formally by the question "Do there exist functions g and h 

such that 

g{pr(X1  = i,X2  = jIX,O,A) i,j = 	} = h(e,A), 

where g is a function of the k2 conditional cell probabilities and h is 

independent of X?". Of course, from the implicit function theorem, 

such functions must exist. In fact, since there are k2 - 1 functionally 

independent cell probabilities defined by k 1 parameters, there must 

be k2  - 2 such relationships'. We have chosen for simplicity to 

use only k-1 of these defined in (5.3.3).  to estimate A. Consequently, 

our estimate of A cannot be expected to be fully efficient unlesS the 

statistics associated with (5.3.3) are, in some sense, sufficient for A. 

Suppose that the observed cell frequencies are {m..} 1 < i,j < k 
13 

wherem.is the number of pairs of X's for which the first X is i and ij 

the second, j. Consider the 2x2 table obtained from the original square 

kxk table by combining categories 1,2,...,j as, say, failure and categories. 

j+1,...,k as success. There are k-1 such tables and for each the. donditional 

model (5.3.1), (5.3.2) reduces to the model for binary paired comparisons 

(5.2.1). Let the off-diagonal elements in these tables be r. and n
i 
 -r. 

3   

wherer.isthenuithero.pairs(X,X)whereX<jand.>j . 
3 	 il i2 	il — 

	X. 

Similarly n.-r. is the number of pairs where X
il 

> j and X. < j. From 
3 3 	 i — 
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(5.3.3), the conditional distribution of rj  given nj  is binomial. with 

index. nj  and parameter eA/(1 Y e
A
). We propose to estimate A by 

, 
examining the joint distribution of r = (r.,...,rk-1

T  , conditional •on - •  

• n = (n ,...,n. )
T
. Unfortunately, the 	_ distribution of, 	is not 

1 	. 

independent of n
i 
when i -j so that, conditional on n the marginals are 

no longer binomial and the joint distribution of r given n depends on 

the nuisance parameterS. Intuitively, though, we would expect the 

.marginaldependenceofr.on the nuisance parameterS to be small. 
3 

Since the indices {n.} are interdependent it could be argued that j  

it is not very meaningful to condition on all of them jointly. •A second 

approachmightbeto. examinethejointdistributionoffrjand {n. - 
3 	

3 rj}  

conditional only on the total number. of off--diagonal observations. In  

§5.4 we develop some theory concerning mixture properties of binomial 

and multinomial distributions. These results are used in §5.5.to derive 

an estimator for A. 

5.4 Some Multivariate Binomial Mixtures  

n this section we try to develop some multivariate binomial distri-

butions which are useful for describing the joint distribution of the 

vector r = (r1,...,rk_1)T where the elements of r are defined in §5.3.. 

The covariance structure of r arises through random components which the 

elements of r have in common (Lancaster, 1974; Patil & Joshi, 1968), and 

• through mixing over the indices of the constituent independent random 

variables. Another equivalent way of generating correlated binomial 

random variables is to extend the definition of a binomial random variable 

as the joint distribution of two Poisson random variables whose sum is 

fixed. We first derive a few simple results for univariate binomial and 

multinomial distributions. 
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Let Xi,i = 1,...,s be s. independent binomial random variables with 

indices{n.}and parameters {pd. Suppose, in addition that the {xi
i
} 

are themselves random variables from a multinomial distribution with 

index n = E n. and parameter vector 	=• (y5 	
s
) where 	E (45, = 1. 

• 1 
j=1 	 j=i 3  

We are interested in the distribution of EX, and in the joint distribution 

of X1,..,Xs  conditional only on n. By using probability generating 

functionsitiseasytoshowthatEx. - is a binomial random variable with 

index n and parameter p = 

	

	which is a weighted average of the 

j=1 

parameters {p.} of the original independent binomials. 

The joint probability generating function for X1,X2,... 
	'S 

n 
r r2 

2 
(1 - p 	E t.().p.1= 	E 	E t

1 
t
2 

...t
s 	

P(X
1 
= r 	= r

s j,1 
r.
1 
 1...r 

That is to say that X0,X1,...,Xs, where X0  = n - EXi, have a joint multi-

nomial distribution with index n and parameter vector 

(1 - 	•¢1pi , (2p2,..., sps). In addition the joint distribution of 

conditional on Ex. is multinomial with index X. and 

parameter vector (4112,175, cP2p2/5, 	CsIps5)* 

These examples demonstrate some of the mixture properties of univariate 

binomial distributions. Since binomial and multinomial random variables 

can be generated from independent Poisson. random •variables with fixed sum, 

the above reproducibility properties of the binomial and multinomial 

distributions have simple analogues for the Poisson distribution. 

Note that the distribution of {X.}conditional on n 	n
s 
depends 

on 2s parameters ni ,...,ns, pl,...,ps, whereas the distribution conditional 

on n depends only on two parameters n, p. 

We now try to extend these ideas to multivariate binomial distributions. 

For simplicity we consider only the bivariate case. As before we let 

X1,X12,X2  be independent binomial random variables with indices nl, n12, n2 
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and parameters 
p1, p12' p2.  

by setting 

We generate correlated variables Y
1, 
 Y2  

Y
1 

= X
1 
+ X

12 
and Y2• = X + X12. 2 	12 

The joint distribution of Yl  and Y2  depends on the six parameters 

n , n12, n2' 
p1,  p12, p

2  and has probability generating function 

(q1 	P1t1) 1 (q12 

nn
2 
' t t ) 12 

( 1 2 	c12 	D2t2)  (5.4.1) 

When p1 = p12 = p2  this distribution is called bivariate binomial with 

overlapping trials (Pati) & Joshi, 1968, p.60) and both marginals are 

binomial. In general, however, the marginals are not binomial.  since 

-the-  Y's are sums of binomials with different parameterS. -If,. however, 

the indices are random it is possible that the marginals Could be 

binomial as in the univari ate case. For example, if n2  isfixed and n
1 

and n12 are independent Poisson random variables whose sum is fixed .   

(n1 -1-'n12 
= N

1, 
say) .then Y

1  is binomial but Y2 is the sum of-  two 

binomials and has p.g.f. 

n
21 

(q2 	P2t2) 	(1  - 4)21312 	412P1 

A natural extension is to let n
1

- , n
12' 

 , n
2  have independent Poisson 

distributions with parameters X_ X 
1'. -12'. A

2  and to fix 
1  37,... .f n

12 
= N1 

and 

n2 + n12 = N2. This effectively leaves one degree of freedom among the 

variables n
1,  n12' 

n2 and the distribution of n12 is 

n
12 

p(n 
2
IN
1
,N
2
,u) = 

(Nl-n12)1 n
121 (N2-n12) (5.4.2) 
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• where 0 < n12  < min(Nl' N2'  
) :11 = X

12/
X
1
X
2 
and c is a constant to make 

 

the distribution sum.to unity. Let C(t) be the probability generating 

functionfor. n12 in (5.4.2). Then 

min(N
1
,N
2
) r r 	 

• 	 (t) 	= 	11 t  
r=0 	

(N
1
-r)1r:(N2-r 

(5.4.3) 

so that depends on N1, N2, p as well as t. Then from (5.4.1) and 

(q 	P1t1) N1 (q9 	P2t2) 2  
Pl2t3t2  

- 	1 glip1y(q2i.p2t2) ,  
(5.4.4) 

and neither marginal is binomial as mentioned towards the end of §5.3. 

The first few moments are 

E(Y1) = Nipi  V(1)(p12  .191), 

Var(Y
1 
 ) = N

i
p
l
q
l - p V(1)(p12-p )+(p12-p1)

2
W(1) - {r e(1)}

2 	
(5.4.6) 

and 

Cov(Y 
sY2)  = (P12-P1 )(P12-P2)R"(1)-{V(1)}2  ] 	t(1){1)12(1-pl-  ) 

	p1p2}. 

(5.4.7) 

It does not appear possible to express (t) or V(1) in a simpler form. 

Of course r,"(1) and C"(1) are equal to 
E(n12) and  E{n12(n12-1)} respectively. 

The bivariate distribution of Y
1 

and Y2 can be extended to a multi-

variate distribution for Yi,Y2,...,Ys, but an elaborate notation is needed 

to describe the general analogues of (5.4.2)-(5.4.4). No essentially new 

points arise in the general case. 

(5.4.3) the joint p.g.f. of Y and Y conditional on N
1,  N. is given by 1 	2 



(5.4.8) (ct) q +412- 	-I- I 1 	 12 
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We note that the distribution whose p.g.f. is given- by (5.4.4) 

has the.property that if we ignore N2  or let N2  be very.large then 

the distribution (5.4.2) becomes binomial with index N1  and parameter 

X
12
/1

1 
+X

12
). Hence, by an earlier result Y, is binomial with index 

(1)111 P12112)/(11 112)* Ni  and parameter 	 The distribution of 

conditional on n1,...,nk_1 
 is the multivariate analogue of 

the joint distribution of Y1 
 and Y2  conditional on N1 

and N2. 

Another extension of the univariate result is to assume nl, nI2, n2  

to have independent Poisson distributions with parameters 
11'• 112'. 12 

and to fix the total N = nl + n2 
+ n12. Thus n

1,  n12' 
n2 

are trinomially 

distributed with index N and parameter vector = J11/1. 

where 1. =X
1  4-12 +112. Then the joint distribution ofYandYhas • • 	.  

p.g.f. 

ii2lx. ' 1211- ) 

so that the marginal distributions are both binomial. The p.g.f. for 

the general multivariate analogue of this distribution is given in Patil 

& Joshi (1968) p.81. The marginal distributions have parameters 

41
p
1 
+

12
p
12 

and (1)
2
p
2 
+ 
(12p12 respectively, with common index N. In 

addition, the conditional distributions of Yl  given N1  = nl  + n12  and of 

Y2  given N2  = n2  + ni2  are both binomial with indices N1  and N2  respectively 

and parameters 41p1  (12.13  )/ 1241 	¢12) and (2P' 	ch.2P12)/(412 	4'12)  

respectively. 

We note that, as in the univariate case, there is a reduction in the 

number of parameters from six in (5.4.1) to four in (5.4.8). In the 

general p-variate analogue the reduction is from 2p+1 - 2 to 2P. However 

the version we require has the restriction that all parameters whose 

indices are not in strict sequence, 	
* ' 
D 
' P  

a 
e*- 	

etc. are all zero. 13124 
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In this special case the number of parameterS is reduced from p(p+1) 

to 1p (p+1) + • 

For our present purposes it is useful to write the p.g.f. (5.4.8) 

in an alternative form which generates the probabilities for 

n + n
12 rl r12' n2 n12 r2  

- 	r12  as well as for r1  + r12
, 

r2  + r12. The alternative version of (5.4.8) is 

[(P1 1s1 	4)12q12s1s2 + 
O
'2 2 2' 	1 1 1 
gs + ¢pt ,N p

12
t
1
t
2 
+ ¢ t 

2-2 2 	(5.4.9) 

The p.g.f. (5.4.9) applies only to the bivariate case. In the application 

to matched contingency tables, the parameters t, p, q have the following 

properties: 

+ 
¢12812 = E pr  (X1 > , X, < 1-1X), 

411P1 + q)12P12 E pr(X. < 1, X2  > 1IX), 
A 

and 

r1)2c12 	(13 12(112 = E Pr(X1 A 
X2  < 21X) ' 	' 

+ ¢
12
p12 = E pr  (X1< 2, X2 > 21 

Hence 

+ p 	= eA(¢q + 	a ) 12 12 	11 	12.12 

¢2p2 + ¢12p12 = eA (¢2
g
2 
+ ¢

12812
). 
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Note that the marginal p.g.f. obtained from (5.4.9) by putting t2  = 1 is 

2q12)31 + 
(4
1p1 + ( 12P12)t1 4. 4)21  

N 
(5.4.10) 

and hence the marginal likelihood estimator of A is 	= infri/(n, r1)1 

or 72  = ln{r2/(n2  r2)} from the second marginal distribution. To obtain 

an efficient estimator of A from the two marginal likelihood estimators we 

need an estimate of the covariance matrix of rl, r2, nl  - rl, n2  - r2. 

It follows from (5.4.10) that 

E(r
1 
 ) = e

A 
 E(n - r1) 

and 

E(r2) = 	 (n2  r2). 

The second moments are obtained from (5.4.9): 

cov(rl,r2) = Ncf)12P12 (¢1p1 q2P12)(4)2P2 4)12P12)  

cov(ni-ri,n -r ) = N 12q12 	41q1 C 12q12)(b252 q2812)  

cov(r
1
,n
1
-r
1
) 

cov(r2,n1-r1) 

= 

= 

- ql 

-42P2 

4'12q12)41P1 

(1)12212)(c 1q1 

12P12)  

11)12(112)  

etc. 

When N is large, the only important covariances are cov(ri,r2) and 

coy(n1-r1 ,n2-r2), which are approximately Nti2
p12  andN6...a respectively. 

az-12  

It is easy to show that E (r N) and E(n12 12  -r1N) 
= Nq2P12 	= N4)12q12.  

 
For small A, p12 = 	

1 
1/2, so that cov(ri,r2) = cov(ni-ri,n2-r2) = E(n121

N)
7 

This approximate result could have been obtained by considering the n's 
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fixed and examining the variation of r relative to n. In §5.5 we - 

show how to combine the information from the marginal likelihoods, in 

the general case where there are k categories. 

- 5.5 Estimation'of A  

We now consider the problem of estimating A in the conditional 

model (5.3.1)-(5.3.2). Where necessary, we will assume that the fail 

are i.i.d. random variableS. In particular this means that the cell 

counts are multinomial or, equivalently, they are independent Poisson. 

•random variables whose sum is fixed. This is the motivation. behind the 

multivariate distributions in §5.4. 

In §5.3 it was shown that the distribution of r. conditional on 

n. is binomial with index / • and parameter e
A 
/(1 e

A
). It follows that 

lnfr./(n -r.)1 tends almost surely to A, (Andersen, 1974), or equivalently, 

r./(n-ritends a.s. to en for j = 1,...,k-1. Of course the indices 

{n.1 are themselves random and interdependent. The analysis of §5.4 

shows that the distribution of r, conditional on n ...,nk-1 is not 
3 

binomial, and the marginal expectation of r. depends in general on all the 
3 

indices n1,...,n11. However, the joint distribution of the indices n 

is. multivariate binomial with index n = E 	mij and parameters p4 , p..,  
i!j 

pijk 
etc. which depend on the nuisance parameters X, 0. This gives a 

joint distribution for r conditional on n which is the k-1 variate 

generalisation of (5.4.8), with the restriction that the parameters of 

all the conditional marginal distributions are equal to e
A
/(1 e

A
). 

The marginal expectation of r conditional only on n has the form..  

E(rIn) = E(121 n)eA/(1 	eA). 	 (5.5.1) 



k-1 
= 	ln{(rj 2 

1 	
r. 3 2 

j=1 3  
(5.5.2) 
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• We consider now two estimators•of A based on r. 

and 

 
A* = ln[f--

1 	
w*T {

1 	w*-(n 	r)}] 
2 

(5.5.3 

where E W. = 1. These estimators are analogous to the estimators A and 
, 

A* in the two-sample problem of Chapter 2. 

We assume that the case A = 0 plays a special -role in that it is the 

dividing point between two qualitatively different possibilities namely 

A < 0 and A > 0. Formally, therefore, we construct a null hypothesis of 

symmetry Ho  : A = 0 with a general alternative HI  : A r  0. We choose 

weights w* and W = 	to minimise the variances of A* and Ak 

under HO. 

The addition of 1/2 to both numerator and denominator in (5.5.1) 

and (5.5.2) ensures that the estimates remain finite. In fact it also 

ensures mean square convergence in addition to almost sure convergence. 

Several other types of combination are possible. For example, in (5.5.2) 

we could take logs after summation. 

We consider first the null distribution of r and later examine some 

of the non-null properties. First we define the symmetric matrix 

N = {n..} by 
13 

n.. = E E (ma  m 13 	2 	uf3 	fkt 
(i<j) 

where 
maff3 

is the number of pairs of observations (X. 
 ,X. ) which are 

equalto(a,5).ThusthediagonalelementsofNareequalton(n.=11.), 
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and the element n. is a measure of the random elements whiCh r. and r. 
ij 	 1 

have in common. We first obtain the null distribution of r conditional 

on N and this enables us to get the unconditional first and second 

moments. Conditioning on N is equivalent to conditioning on all 

1 
k(k-1) quantities. {mi 	} i < j so that, under- H

0, 
the elements of r 

j. 

• are sums of binomial random variables each with Parameter 1/2. Hende the 

null distribution of r conditional on N is multivariate binomial with 

overlapping trials (Patil & Joshi, 1968, p.60). Its joint p.g.f. is 

given by 

k-1 	m. 	k-2 	m. 	+m. 
+1 +1 H (q+pt.) i1 
	

3 	(q+P t 	) j,j+2 3+2,3. 
3 	 3 +1 	 L1-2 j=1 	j=1 

m
Ikkl 

with p = q = 1/2. The first two conditional moments are 

E ( 	) = 2 

and 

V (rIN) = o 	4 

The same moments conditional only on n are 

E0  (rIn) = 
	.112.1.)1n1 = 2 n 
	

(5.5.4) 

and 

V0 	0 
(rIn) = E {V

0 
 (Lr t) n + 	{E

0 
 (r.  lN) 

— 	0  

= 	 . E 0(NI 1 	 (5.5.5) 

The subscript 0 refers to the null distribution with A = 0. 

Equation (5.5.5) tells us that, regardless of the nuisance parameters, 

1 
TN is an unbiased estimator of the null variance matrix of r given.n. 
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Note that conditional only on n, the sum of the off diagonal elements 

of the square table, the null variance matrix becomes 

; 	1 
0  (rin) = 	E

0 
 NI n) 	— 0On - 	4 	- 	4   

(5.5.6) 

It is easiest to obtain an expression for the asymptotic null 

variances of A and A* conditional on all the elements of n. We do 

1 this by ignoring the factors of Tn the numerators and denOminators 

because these factors have no asymptotic effect on the estimators. Using 

1 
--N as an estimate of the null variance of 	the weights W and w* which 4  

minimise the null variances of A and .A* are 

T -1 
= DN n/(n-N n) 

and 

17.* = , N-ln 	 (5.5.8) 

where 

= diag{ni,...,nk_1}- 

A similar result can be obtained by examining the joint distribution 

of r and s = n - r conditional on n. Under H0  these have a symmetric 

multivariate binomial distribution where p.g.f. has the form 

(q(E(1).u. + E 	.u.u. + 
i  1 1 	. 

1 
 . i] 	3 
rD 

+ P(E iti  + 4
1j
t
1
tj  + 

i n 
(5.5.9) 

1 
with p = q = -T. Note that the joint p.g.f. of n has the form 

[E43iti  + + 	+ 	]n, 
13 1 3 	ijk 1 3 k 

(5.5.10) 

obtained from (5.5.9) by putting u = t. From (5.5.10) it follows that 
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E(n.) = r0.. and E(n..) = n()
ij

. , where (1)... is the summation of all 
1 

Vs which have i as one of their subscripts, and similarly for bii. 

It follows from (5.5.9) that the null variance of (w*
Tr)/(w* s) is 

asymptotically given by 

. V tw*T  r/w* T 0 (N) w T -I 	E (n) 
2 

 

and hence 

w* = (E (N) -1E (II) 

so the obvious estimator of ly* is w* = N-1n. 

The asymptotic null variance of A* is therefore given by • 

V(A*) = 4/nT N-1  n . (5.5.11) 

The asymptotic null variance of A is also given by (5.5.11). The non-null 

variances of Z and A* can be approximated by (5.5.11) for small A, but 

for slightly larger values of A the following variance estimator is 

suggested. 

1 V (A*) = V (1) = 4 (1 ± -4- d2) /nT N-1  (5.5.12) 

This approximation is suggested by the relation 

1 V (r.ln.) = n. eA  /(1 	eA)2 	1 = 	n. (1 	— 4 A
2 
...) 3 3 	3 	4  

The covariances are not deflated by the same factor. Nevertheless, 

(5.5.12) seems to be a reasonable approximation for medium values of A. 
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If the observed matrix N is singular, as can happen when the 

original data are sparse, it is sufficient to find i7r, w* which satisfy 

_ 	 ri 
 

ND w = n 	• with 1 w = 1 

Nw* 

where 1 is the unit vector. In this case the asymptotic variance of 

both estimators is (4 + A
2 
 )/(n

T 
 v*). 

An interesting mathematical problem arises concerning the consistency 

of A* when the complete ranking of all 2n observations is available. We 

note that for a fixed number of categories, both A* and A are consistent. 

However, when the complete ranking is used the effective number of 

categories increases with n and it can be shoWn that A* reduces to 

exp(A*) = 	 1 
(No of pairs where X > X ) + 

1 	2 	2 

and that, for small A, plim(A*)= 2/3A + 0(A j). Hence A* is inconsistent 

for completely ranked observations. It seems likely that A is also 

inconsistent in the same limit but it does not have a simple limiting form. 

It seems reasonable, therefore, to expect that when the number of 

categories is large, the estimator A* will be biased towards the origin. 

* 
.(No of pairs.where X2 	 ) t -1  
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-• 
5.6 Simulation'Results for the' Ec'timators - A, A* 

To test the adequacy of A and A* in both medium (n = 100) and 

large (n = 1000) samples, four categories were taken so that the square 

tables each had 16 cells. This gives an average cell count of 6 and 60 

for the medium and large samples respectively. However', many of the 

observations lay on the diagonal cells and did not enter into the 

analysis. Thus, the effective sample size or the number of off diagonal 

elements was considerably less than n. 

Pairs of continuous random variables Y. , Y. were generated as the 
11  

sum of a uniform and a logistic random variable 

Y 	= U. + Z. 
1 	1 

Y
i2 

= U. 1 	i2 

where CZ
il

,Z
i2
I are independent logistic random variables with Mean 

1 1 
(---6,--Oandvariancel.TheuniformrandomvariablesU.lhad a 2 2 

range of (0,8). Hence the correlation of Yil  and Yi2  was 16/19 = 0.84. 

This high correlation reduces the efficiency of the simulation since 

many observations fall in the diagonal cells of the table and do not 

enter in the analysis. However, correlations of about .8 are encountered 

in real data in practice, and in this sense the generated data mimic real 

data. 

The category boundary points 8 were chosen to be 0 = (-m, 2, 4, 6, c) 

so that reasonable numbers of observations fall in each category. The 

range of true values of 6 was 0,(.1),.9. This is equivalent to values of 

A in the range (0,1.6) since A = 67/VI. 

The data in table 5.1 show the true value of 6 together with the 

average of 100 large-sample and the average of 100 small-sample estimates 
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A and A*. The statistics A and A* or equivalently, 6 and 6* were 

calculated on the same data sets and hence are highly correlated. 

-Unlike the corresponding unpaired estimators, neither A nor A* show 

any bias towards the origin even in medium sized samples. 

Table 5.1 

Simulation results for paired sample estimators Z, A*. 

'Small' sample 
n 	= 	100 	..... 

'Large' sample 
n.=.1000 

6* S .6* 

0 .019 .016 .002 .002 

.1 .117 .119 .103 .103 

.2 .199 .203 .198 .197 

.3 .288 .296 .288 .289 

.4 .402 .414 .403 .404 

.5 .496 .515 .502 .504 

.6 .594 .608 .595 .597 

.7 .676 .696 .701 .704 

.8 .808 .840 .807 .812 

.9 .887 .916 .899 -.902 

All entries are the means of 100 repetitions at each value of 8(=A115/70. 

The estimated standard deviation from (5.5.12) was adequate for 

values of S in the range studied here. The Standard deviations of 6 and 

6* for the small samples ranged from .018 at 6 = 0 to .022 at 8 = 1, while 

for the large samples the corresponding range was .005 to .007. 



FTG. 5.1 

Graph of simulation results for paired estimatola 

in small samples. (see table 5.1) 
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Graph of simulation results for paired estimators -E,2' 

in large samples. (see table 5.1) 
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5.7 A Random Effects:Model  

Suppose the nuisance parameters {Xi} are i.i.d. random variables 

with known distribution function G(X;a) which depends on the- unknown 

parameters a. The parameter of interest, A, is assumed fixed.--  A 

similar problem concerning the linear model is considered by Cox (1975). 

As in §5.1 let.  Y1 and Y2 he the unobservable continuous random variables. 

From (5.1.3) the joint marginal. density of pairs of variables (Y1,Y2) in 

the same block is 

2 

f{ n 	fY IX (17j  IA a)}dG(X;a).  
j =1 	3 

(5.7.1) 

If'the parametric form of both f and G is knOwn then (5.7.1) defines 

the joint distribution of pairs of observations in the same block. All 

pairs have independent identical distributions which depend on the Para-• 

meters A, a. Since the number of parameterS is now fixed, the Method of 

maximum likelihood based on the marginal distribution of (11'Y
2
) in 

(5.7.1) yields consistent estimates of the parameters A, a. 

In many cases of interest, the distribution of the nuisance parameters 

{X.} is unknown. If the family of distributions G(X;a) is sufficiently 

flexible we could expect at least one member of the family to be a close 

approximation to the true distribution of the {xi}. It is not clear how 

much this empirical Bayes procedure is affected by an inflexible choice 

of prior distribution for the nuisance parameters, but in any case it is 

possible to test for the adequacy of the chosen model (5.7.1). What this 

test does not tell us is whether the inadequacy lies in the conditional 

formulation (5.7.2) of the model or in a poor approximation to the distri-

bution of the nuisance parameters. 
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The joint density of the continuous unobservable variables Yl  and 

Y, conditional on A is 

fY
1
Y
2 

ex.P(Y1. 47 Yo  -.3X) . .......... 

'1721") = 	
. 	1 • 	• 1 	2 ' 

	

{1 + exi?(V  -X+ 	+ exiD(Y2 X- 1 	2 

(5.7.2) 

Since it involves only•a linear transformation we consider, without loss 

of generality, the symmetric case with A = 0. 

There is considerable difficulty in finding a parametric family of 

distributions for {Xi} which is reasonably flexible and for which. the 

integral 

 
fY   1X(Y 

;X)dG(X;a) 
-°1 2 

 

can easily be evaluated. The simplest density g(-) which I could find is 

g1  (20,a ) 	= exp { al-l-a2 
}/[fl + exp(a3-X)1 	B(a1  ta )1 

where a = (al,a2,a3)al,a2 > 0 and 13(a1,a2) is the beta function. The 

parameter a
3 
is simply a location parameter and can be ignored without 

loss of generality since the category boundary parameters t take care of 

location information. It is therefore sufficient to consider the restricted 

family 

(a.,-1-042 	

l'

) 	. 	. 

g(X;a) = exp(-Aa1 
 )/(fl + exp(-X)} 	B(a a

2 
 )] 
 ' (5.7.3) 

where a .
l'  
,
2 
 ). 

We now consider some properties of the family of densities (5.7.3). 

(i) If Z is a beta random variable with parameters a1 and a2 then 

lnfZ/(1 - Z)1 has the density (5.7.3). 
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(ii) The m.g.f. of (5.7.3) is 

 

B(a - t 
.1. 	• 

 

(5.7.4) 

(5.7.5) 

B(al,a ) 

so the cumulant generating function is 

Oal-t) 	ili(a2+t) - (a?) - 

where ip is the log-gamma function. (The psi-function given in Abramowitz 

& Stegan (1970) is the derivative of the log-gamma function.) 

(iii) The density g is unimodal, the maximum fregUenCy occurring 

at X = ln(a2/a1). 

From (5.7.5) the cumulants, Kr, are 

K
r  =

(r) 
2 a ) 	(-1). r (r) 1 (a ) (5.7.6) 

where ip(r) is the rth derivative of 	For the relationship between the 

cumulants, Kr, and the moments ur  see Kendall and Stuart (1969, vol.1, p.68). 

The mean and variance are given by K1  and K2. These are 

= K1 
110(a.,  

and 

a
2 
= K2 = u" (a2)4)"(a ) 1 

When a1 = a2 
the distribution g(X;a) is symmetric about zero, while • 

a1 > a2 means that the distribution is negatively skeWed and vice-versa. 

We now consider the joint marginal distribution of pairs (Y1,y2) 

after the nuisance parameter X has been removed by integration.. The 

joint cumulative distribution function of Yi  and Y2  is 



a1 
 I'(e Y) (a

l + a2) 
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F (Y1Y2,  

	exP(111+172-2X)exP(77Xa,) 	 
7  s 	 a1+a2 -m. 

{l+exp(y1-X))-{1+ewp(y2-XJ-{1+exio(7 

dX 

(5.7.7) 

 

1 71 	-Y, 
(e 	- I (e ') (y1  v 1 -2 

 

)  

• 
(a1+a2)(e Y

2 
- e- 1) 

(5.7.8) 

( yl  = Y2 = Y) 

where 
-y (a +1) 

I e-Y) = 	1 
2F1  (a1  +a2 ' - a1+1; a

1 
 +a
2 
 +1; 1-e Y) 

,t 1 	-aly 

( 	+1) 	F1  (a1 +a2' 
a1+2; a1  +a2  +2; 1-e 7) , a +a 1 2 	2  

(see Gradshteyn & Ryzhik (1965), 3.315, p.305). The function 2F1  is the 

hypergeometric function whiCh can be computed from a power series convergent 

when the argument is less than 1 in modulus. For other values of the 

argument there are recurrence relations given'in Abramowitz & Stegun 

(1970) Ch.15. 

There are considerable computational problems associated with fitting 

the bivariate cumulative distribution (5.7.8). The main problem is the 

existence of numerous poles of both the' hypergeometric function and the 

gamma function. An additional problem is the slow convergence rate of the 

hypergeometric series expansion for certain values of the argument. Until 

a fast reliable algorithm is found for evaluating the hypergeometric 

function it seems unlikely that (5.7.8) will provide a practical alternative 

to standard bivariate distributions. 

Despite these problems, a Fortran program was written to evaluate the 

distribution (5.7.8). The series expansion was used to calculate the 

and 

I' (e 
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hypergeometric function when the argument was small and translation 

formulae were used for large values of the argument. To avoid noles 

in the gamma function, its reciprocal was calculated instead. 

An application is given in §5.9. 

5.8 Random Pairing  

Suppose pairs are formed at random, for example by deliberate 

matching on variables which are in fact unrelated to the factor in 

question. In this rather unusual case both the two-sample model of 

Chapter 3 and the paired model are applicable. Intuitively, though, it 

seems that we would do better by using the model with fewer parameters 

i.e. the independent samples model. 

Armitage (1975) investigated the- problem of random pairing for binary 

variables and concluded that the unmatched model.  was generally more 

efficient than the matched model. He Uses as hiS criterion the difference 

between the asymptotic variances of the cross-ratio and the equivalent 

estimator for matched binary data. The two modelS are asymptotically 

equally efficient when there is no treatment effect. In this section 

it is shown that this result can be extended to multi-category models 

based on the logistic distribution. 

We consider first the variance of the- estimator of A from the paired 

or matched model described- in §5.5. To distinguish the two estimators 

the subscript p is used fok the paired estimators. From (5.5.12) the 

variances of A and A* are given by 

4 
1 

V = V (A ) 	+ — 2 4(1 	)/(nT N-1  n). (5.8.1) 
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Random pairing implies that all the block parameterS {X.} are • 

equal and hence independence in .the square table Of observations. Hence 

pr(X < 	X2 	j) = pr (X1 < i) 	 (X' 1 	2 -- • 	pr  — 	2 i<j 

We consider the null case and define: yi  = pr(X1  < i) = pr(X, < 1). 
4 - 

Let the total number of pairs of observations be h. It follows that the 

elementsfn.
a.j
lof N have expectation 

E
0
(n
ij
) = 2ny

i
(1 - y

j
), 	i < j 
	

(5.8.2) 

and the elements 	of n have expectation 

E0 i  (n) = 211 .Y1  (1 - 

From (5.8.2) we see that E
0 
 (N) is the Green's matrix encountered in 

Chapter 2. The inverse is a symmetric Jacobi matrix, so the asymptotic 

value of V when A = 0 is 
p 

k-1 
V r. 2/n { E y.(1 - y.

3
)(r.

3 	
7.,,)} 

j=1 
(5.8.3) 

whereTr.=yj yj-1' - 	It would be of interest to know the'behavioUr of • 
3  

V for non-zero values of A but I have not been able to get even a first 

order approximation to Vn  for non-zero A. 

For the two sample model we get from (2.3.3) 

k-1 
V(A*) = V(A) = 	E y.(1 - y4)(a. 	)1-1  

j=1 3 	j 3 3+1 
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when A = O. Thus there is no asymptotic loss of efficiency when the 

true value of A is zero, and this extends Armitage's result for binary 

data. It seems intuitively clear, although there is no proof, that dp  

is inefficient compared to Zi when the true value of A is non-zero. 

5.9 Example  

This example,'from Wise& Oldham (1963), concerns the degree of 

pneumoconiosis in coalface workerS as measured radiologically. There 

are 8 mines denoted by the letters A,...,H with sample sizes ranging 

from 33 to.148. At every site each individual was radiographed at the 

beginning and at the end of a 2.5 year period. The degree of pneumo-

coniosis is classified on a four category scale indicating increasing 

severity of the disease. A typical table is given below. 

Table 5.2 

Paired readings for 82 coalface workers at mine 'G' from 

table 1 of Wise & Oldham (1963). 

Category 1 

Second'reading 

4 Total 2 3 	 

First 1 43 8 3 O 54 

reading 2 2 2 5 3 12 

3 1 0 7 10 

4 	 0 0 1 5 6 

Total  46 10 16 10 82 
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It is fairly clear from table 5.2 that there is a strong association 

between pairs of readings as we would expect and that, on the average, 

the second readings are higher than the first. ThuS there appears to 

be some evidence of disease progression at mine 'V. The interesting 

question to ask is whether or not the progression is the same at each 

site, and if not to identify thoSe sites whiCh shoW most progression. 

It should be stressed that we are interested in progression only 

and not in the absolute levels of the diseaSe. ThuS it is possible, 

though in practice probably unlikely, that the sample ChOSen at a parti-

cular site may have a high average level of pneumoconiosis but show little 

or no change over a 2.5 year period. Conversely, on anew site with a 

young workforce, the:average level may be low but the progression rate 

may be fast.. It is therefore desirable that we should be able - to estimate 

progression independently of the absolute level of the diseabe. This is 

precisely the role of the Matched pairs model, 

To compare values of A obtained from different tables an extra 

assumption is necessary. The observer or reader variation must be logistic 

with constant variance throughout. The actual logistic form is unlikely 

to be crucial, but the assumption of constant observer variance from 

table to table is very important since the observer variance determines 

the scale on which A is measured. In this particular data set, all 

readings were by the same panel and hence it is reasonable to expect the 

variance to remain constant throughout. 
4,1 

To compute A and A* we need the quantities N, u and r for each table. 

For table 6 these are 

1111  

	

14 	4 	0 	1 ? 14: 

I 

	

4 	12 	3 : 	, 	D = 	1.21 	r r = 	i 1 
; 

	

i 	1 
, 

	

0 	3 	6 	 L 6  j 	 ( 5, 
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The weights it".7 and w* are (.523, .233, .194) and (.847, .534, .733) 

respectively. The two estimates, A and A* are 1.45 and 1.50 respectively 

with common standard deviation .53. 

Table 7 gives the estimates A and A* together with their standard 

deviations for the other mines A ... H from the data in table 1 of Wise 

& Oldham (1963). In the matched pairs model the quantity eA has a 

conditional odds interpretation: it is the odds of observing progression 

conditional on observing a change. 

Table 5.3 

Progression estimates A, A* for 8 mines A ... H. 

mINZS 

ABCDEFGH 

.84 .37 2.38 2.88 3.16 3.20 1.45 1.90 

A* .92 .51 2.22 3.22 3.70 3.26 1.50 1.62 

Std .49 1.18 .66 .74 3 	1 / .60 .53 .58 

n 	 90 33 87 83 82 148 82 84 

There is strong evidence of positive progression in all mines except 

for B and possibly A. Among the other mines it is clear that D, E, F 

have greatest progression. There may be an explanation for this in terms 

of location, type of coal, work conditions etc. but no information on 

such factors is available. 

It is of interest to compare the present analysis with Other methods 

which use only the information in the marginals of the table. The data 

have been analysed by Hutchinson (1976) using an exponential model and by 

Wise & Oldham (1963) using a Normal distribution for the marginals. Table 

5.4 shows the results of these analyses for mine 'G' together with the 
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estimate obtained by using the method of Clayton (1974) outlined.  in 

Chapter 2. All three methods show some evidence of progression although 

none is conclusive. 

Table'5.4 

Progression estimates for mine 'G' from marginals only 

Model 	 Estimate Std ratio 

exponential .27 .17 1.59 

W& 0 Normal .29 .18 1.61 

C Logistic .48 	 .31 1.55 

It shoilld.be emphasised that the different estimates in table 5-.4. 

are not directly comparable although we would expect the estimates- from 

the-normal and logistic models to be approximately in the.ratio 

: 1 (Cox (1970) pp.26-29). In addition, since the paired model 

has the conditional variances fixed:and models based on the Marginals 

haVe the marginal variances'fixed we would expect matched estimates and 

marginal estimates to be related through the correlation of pairs of 

observations. We write thiS relationship as 

Ap  = An/(1-p 1/2 
	

(5.9.1) 

where A is the paired.  estimator and A
M 
is the marginal estimator. 

- fact there is no justification for examining the marginals alone except 

when p = 0 and this corresponds to the case of random pairing discussed 

in §5.8. A model for matched data, which estimates the marginal by odds 

ratio AM is discussed in §6.3. 
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The empirical Bayes model of 55.7 was also used' to analyse the 

dataintable5.2.Themodelwasfirstfittedwitha.=a2 
so that the 

mixing distribution of the nuisance parameters was symmetric. The . 
4 	P. 

maximum likelihood estimates of the parameters (a, A, 01,. 82, 83) were 

(.265, 1.624, 2.184, 4.144, 7.619) and std(A) = .52. A X2 goodness of 

fit statistic was calculated although some Of.the Cell frequences are 

small and this had a value of 11.05 on 10 d.f. 

In fact the parameter a determines the correlation structure in the 

distribution (5.7.8), since 

P = 2t1P(a)/{24t (a) TF2/3} 	 (5.9.2) 

or more generally, when al  a2  

P = Pfr(al) 	4"( )1/{r(a ) 	r(a2) 	n2/3). 	(5.9.3) 

0. • 
where 1P(a) is the log-gamma function at a. Substitution of a in (5.9.2) 

gives p = .9036 for the data of table 5.1. (Tables of the digamma and 

trigamma function are given in Abramowitz & Stegun (1970), Ch.6.) 

Using this value of p substituted in (5.9.1) gives the approximate 

relationship A = 3.2 AM. This relationship is verified by examining 

the estimates of A for table 5.2. 

= 1.45 -.1.50 from table 5.3 

AM  = 	.48 from table 5.4. 

The ratio is approximately 3 as expected. 

In conclusion we point out that, for such highly correlated data, 

there is considerable gain from using the paired model. The asymptotic 

gain in efficiency increases as the correlation increases. 
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5.10 Discussion 

It is nearly always preferable in any statistical application to 

use a model whose adequacy to explain the data can be tested. The 

conditional model described in §5.2 and §5.3 where the nuisance 

parameters {X1} are unrestricted cannot easily be tested for goodness 

of fit (Cox (1970), p.58). However it is in principle possible to test 

that the sequence of estimators 

• 	 • 1, 
A, = ln{(r3 	2  . 	- 

1 )/(n. - r. + -1} 3 	3 	2 

have common mean A. A suitable test statistic would be 

 

4 	- Al)T  N 	- Z1) (5.10.1) 

where A = ( 	., 1. 	) • A is given by (55.2) or (5.5.3) and 1 is the A  • 	 - 	 . 
- 	• 	''' 	k-1 T' 	 - 

unit vector. The statistic (5.10.1) has a distribution which is 

asymptotically X2  on k-2 degrees of freedom when'the Model- is true. 

Large values of (5.10.1) indicate some interaction between blocks and 

treatments. 

With the empirical Bayes procedure it is possible to test the adequacy 

of the model as shown in the example of §5.9. Unfortunately it is not easy 

to interpret a large X
2 value since it could arise from a false conditional 

model or from a false distribution for the nuisance parameters. 

An alternative hierarchy of parametric models which is closely 

related to the models discussed in this chapter, is developed in Chapter 6. 
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Chapter 6  

FURTHER MODELS FOR SQUARE CONTINGENCY TABLES 

6.1 Introduction  

One important criticism of the conditional model described in 

Chapter 5 is that its adequacy to explain the data cannot be tested 

directly. The adequacy of the empirical Bayes model can be tested, but 

if it is found to be inadequate the inadequacy may be in the mixing 

distribution, G(A;a), and not in the conditional formulation. The models 

described in this chapter haVe been developed to retain some of the useful 

properties of the paired logistic model with the additional property of 

being easily tested for goodness of fit. Further, the models form a. 

hierarchy, so that if a particular version is found to be inadequate, 

a more general version can be fitted. 

The most common model in the literature for square contingency 

tables is the model of quasi-symmetry defined by Caussinus (1965). This 

model can be expressed in log-linear form (Bishop et al. (1975)) but the 

multiplicative version is 

a. 
1 

=  13 	c
a. (6.1.1) 

with ¢ij  = ji, ZE¢ii  = 1, al  = 1 and c is a constant to make EEIrii  = 1. 

. Symmetry is a special case of quasi-symmetry obtained by the restriction 

a.1  = 1, i = 1,...,k. 

In §6.2 a useful invariance criterion is suggested for deciding 

whether a particular model is suitable for analysing data on a nominal 

or on an ordinal scale. It is shown in §6.3 that quasi-symmetry is 

suited to data on a nominal scale whereas an alternative model, p-symmetry, 
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is suitable only for data on an ordered scale. 

A third model is also described. This model has the advantage of 

being easily extended to higher dimensional matched tables.-  

6.2 invariance Properties of - Models'for'Ordinal-and'Nominal -Data  

We consider two invariance properties which may enable us to decide 

which of two models is appropriate for a given situation. This analysis 

relates only to square contingency tables although slightly different 

invariance properties could be suggested for rectangular tables. The 

first transformation considered is the somewhat trivial row to column 

interchange. In the categorised matched data problem it is a matter of 

taste or convention which variable to place in the rows. The. corresponding 

model should be, in some sense, invariant under this transformation. This 

transformation will not be considered further because all the models 

considered are so invariant. 

The second, and more important transformation considered - is the 

permutation transform. The permutation transformation involves reordering 

or permuting both rows and columns of the square table. It is understood 

that the same permutation transformation is applied to both rows and 

columns. We formally define permutation invariance as follows. 

Let 11(0) = {r.,(0)} 	j t k be a model for the k
2 
cell 

probabilities which depends on a parameter vector 0. The set of permutation 

transformations 0 form a group whose typical element T.  is a kxk unitary 

matrix which transforms the vector J = (1,2,...,k)
T 
to the perMutation 

,T 
a = (a1k

) . Thus Ta  J = a  and the elements It
ij  (0)1 of Ta  are 

given by 

tj
(a) = 

	

	1 	(j = a i 	 .) 

O 	otherwise. 
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The special subgroup 6 v  of 	consisting of the identity I
k 
 and. the 

reverse permutation matrix, Tv, which sends J to the reverse permutation 

(k, k-1,...,2,1)
T 

is of particular importance for ordered data. 

The model 11(0) is said to be permutation invariant if, for every 

a in the parameter space, 0, there exists a 0* e 0 depending on 0 and T 

such that 

Trt(e)TT  = n(0*) 
	 (6.2.1) 

for every T in the permutation group . 

Models which satisfy (6.2.1) but only for transformations T in 

are said to be palindromic invariant. 

Roughly speaking, the definition (6.2.1) means that if the data can 

be explained by the model H(0), then if the rows and columns are presented 

in a different order, the new data can be explained by the same model 

11(0.*) with just a change in the value of the parameter Usually 0* can 

be obtained from 0 by a permutation transformation, although this 

restriction is not necessary. Similarly, models whiCh are palindromic 

invariant can accept the data only in a specified order or its reverse. 

Clearly, palindromic invariance is a desirable property for ordinal data 

and permutation invariance is a corresponding property for nominal data. 

6.3 Some Parametric Models and their Properties  

To contrast the differing properties of permutation invariance and 

palindromic invariance both types of model are given. Let Xi  and X2  be 

the row and column variables respectively where both variables take 

possible values 1, 2, 	k. Define 



 

7
ij 

	Pr (K1 
 = 2 = j) 

E 
gas 

a<i, 

(1 < 	j < k) 

(1 < 	< j < k) 

(1 < i < j 

(1 < ,j < k.) 
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and 

gij = E E 1Taa 
- 	a>j f3<i 

6.. = E E 
1] 

a<i 13<j c"' 

 

We note that P.., Q.. and 0ij 
have little meaning except in the context 

of ordered categories. Three models are considered. 

Model I: Quasi-symmetry 

a4  

i 
= c 

j 
 
a ij 

(1 < i,j < k) 	(6.3.1) 

where c')
ij 

=
ji 

EE()
ij 

= 1, a
1 
= 1 and c is a constant to make EEuij = 1. 

This model is permutation invariant and is one of the log linear models 

considered by Bishop et al. (1975) p.286 and others. The log linear 

version of (6.3.1) in the notation of Bishop et al. is 

in) = u +u 	+u 
(7ij 	0 	1(i) 	2(j) 	12(ij) (6.3.2) 

with u
12(ij)

= U12(ji) and further linear constraints on the parameters 

which make (6.3.2) equivalent to (6.3.1). The properties of quasi-symmetry 

are not discussed here since these appear elsewhere in the literature, 

but we note in passing that marginal homogeneity plus quasisymmetry 

implies symmetry. 

We now investigate the invariance properties of quasi-symmetry. It 

is easy to verify from (6.3.2) that if the rows and columns are permuted 

in the same way the new model 	• 
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1n(10) = u u' 	u' 	u' ij 	0 	1 (i) 	2(j) 	12(i,j) 

where 

n' = n 	u 	
I. 

ij 	a.a
j  12(i,j) 

= 
I 	

U
12(a.,a. 3 

u
1  
' 	' (i) = U1(a.) 	and u2 (j) = u2 (a where a) 	l' .. "a 

k 
 is a 

] 
permutation of the numbers 1,2,...,k. 

Model II: p-symmetry 

Cc. 	• 2 

- 

1 	1 = c e 	T - Yij 
Pij  

j-1 

1 
- -Ai a. 2 

a. 	1j 1 

(1 < i < j < k)  

(1 < i < j < k) 

( 1 < 	< k) 

Q 	e13, 

(6.3.3) 

where IP
ij 

= ji
, a

1 = 1, c is chosen to make EEnij = 1 and since 1j..1 413  

are probabilities they satisfy the estimability condition 

k 

	

111.. 	E 	11).. 	= 	1. 

	

i=1 " 	li-j1=1 13 	li-j1=2 " 

	

This estimability 	condition is 	the analogue- of the Constraint 	= 1 • 
x3 

for quasi symmetry as can be seen by examining the multiplicities of 

inclusion for the k2 cells in the above expression. 

The model for p-symmetry has several interesting properties- which are 

in sharp contrast to quasi-symmetry. Special cases of p-symmetry include 

'marginal homogeneity, conditional symmetry and symmetry. Marginal 

homogeneity is obtained by putting Ai  = 0, i = 1,...,k-1, but this does 

not imply symmetry. Conditional symmetry is obtained by butting ai  = 1, 

i = 1,...,k-1 and A = A, i = 1,...,k-1, and has the conditional 

interpretation 
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pr(X1  = i, X2  = j IX1  < X2) = pr(X1  = j, X2  = ilX2  < Xi) 	(i < j).. 

For a discussion of this model see Bishop et al. (1970), pp.285-286. The 

model for p-symmetry has a similar conditional interpretation 

A. 	A. 
pr (X < i, X, 	< 	x2  i or X1 

 > i, X
2 
 < i) = e 1/(1 	e 1) 

(6.3.4) 

A. 
since Pi,i+1/Qi,i4.1  = e 	i = 1,...,k-1. ThiS property is related to 

the paired logistic model described in Chapter 5. The more useful 

version of. o-symmetry has the restriction that. all the parameters fA.) 

are equal. It is easy to show that o-symmetry is not equivalent to the • 

• paired logistic model of Chapter 5 in the Sense •that no distribution for 

• the nuisance parameters can produce p-symmetry. Despite this, they are 

sufficientlyalikeandtheparametersA.can be interpreted in the Same. 

way for both models, i.e. as a measure of the lack of marginal homogeneity. 

We now show that n-symmetry is palindromic invariant. After- a 

reverse permutation transformation the relation between the transformed 

Ply Q.  and •the.original P. 	Qii  is 

Pij = Qk-j+1,k-11-1 

! 	= 	< i), -13 

and 

= )• 

These can, in turn, be expressed as functions of the original parameters 

and hence the model is palindromic invariant. It is easy to verify that 

p-symmetry is not invariant under general permutation transformations. 



a..X.. 
1  -11 1J  

ij 	(1 + a,X. ) (1 4. 5.X. ) 
1 13 	13 

5 
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Model III: The discrete bivariate logistic model (DBL) 

This is a model for the cumulative bivariate probability ij
which 

shares some of the proserties of the paired logistic model of Chapter 5. 

is 

6 = ai
X
ik 

ik 	a.X 
ik 

X 
- 	3 kj  

ij 	1 + j
X
kj 

(1 < 1,j < k) 

(1 < 	< k) 

(1 < j < k) 

(6.3.5) 

kk 
= 1 	(X.. = X..) 

1J 	DI 

Some estimability conditions are necessary since we can multiply ai  

and B. by arbitrary factors. and divide X
ij 

by the same factors to leaVe 

the model unchanged. The simplest constraints are Xik  = 1, i = 1,...,k-1. 

Since X.
k 
 = aki, the cumulative marginal probabilities are row ai/(1 + al) 

andB./(14-3.)so we can easily interpret lack of marginal homogeneity 
'3 

by referring to the logistic distribution. Marginal homogeneity is 

obtained by cutting 3. and, like auasi-symmetry, this also implies 
1 

symmetry. Sometimes it is useful to summarise the lack of marginal 

homogeneity in a single parameter. We do this by constraining a and 

ln(5.) = d. Note that d is measured on the Marginal scale 

whereas the paired estimator A is measured on a conditional distribution 

scale. As pointed out in 85.10, d and A are related through the correlation 

p. 

d = A(1 - p) 1/2 



(Di 	- jk 	(1+a.X. 	)(1+.X. 	)(1+7  . 	) 	1 	< k 
1 17;2, 	3 1j2, 	

x 
 1j2, 

	ai 	
,3 

jZA  

109 

The DBL model does not have the property (6.3.4) but it does 

have the advantage over p-symmetry that it yields estimates of the -

category boundaries on a logistic scale. Thus the category boundaries 

are — 2 ln(a) and the lack of marginal homogeneity is summarised in 

the parameters ln(ai/y = di. 

Th0 DBL model. is related to the logistic model of Chapter 5 by 

taking an arbitrary distribution on the nuisance Parameter X so that 

exp(Oi 	- 2X)  
ij 

	pr (X1 < it X2 < j) = EEll+exP(0.-X){1-1-exP( -X)} 1 

Where exoectation is taken over the distribution of X. Despite the-

close similarity between the two models, they are not equivalent since 

the DEL model is not palindromic invariant whereas the paired. logistic 

model is palindromic invariant. 

It is sometimes necessary to extend theSe modelS to three or more 

dimensions. Of the models considered here, only quasi symmetry and the 

DBL model:have general multivariate analogues. For quasi-syrmetry the 

general multivariate analogue can be written in log-linear form in the 

notation of .Bishop. et al. 

lnuijk  = u + ul(i)  + 
u2  (j)+ u

j(k)  + u12(ij)  + u13(ik)  + u23 (ii)  + u123(ijk) 

with u12(13) = u12( 31 ..) etc. u123( ijk) 7 u123(jik) .00 etc. 

There are further estimability constraints on the parametetS. 

The discrete trivariate logistic model is 

(6.3.6) 
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where X.. = X 	= X
12,j 

etc., with two and one-dimensional marginals 
1]Q 	jiz

as in (6.3.5). In (6.3.6) homogeneity of the one-dimenSional marginals 

implies symmetry in the two-dimensional marginals and also homogeneity 

of the three two-dimensional marginals. The multivariate generalisation 

is straightforward. 

In addition, the DBL model provides an estimate of the correlation 

Which is a useful parameter for summarising a further aspect of the data. 

We note that for positive random variables X, Y with joint density 

f(x,y) and cumulative distribution F(x,y) the expectation of XY is 

E(xy) 	f f xy f(x,y)dx dy 
0 

0 b 
	- F1  (x) - F2

(y) 	F(x,y)1 dx dy, 

so that 

cov(X,Y) 	f f fF(x,y) - Fi(x)F,(y)} dx dy 	(6.3.7).  

0 0 

where 	F1  (x)= F x,c0 and F2  (y)= r(.,y). 

Now
ij 

- 0ik 6-kj is analogous to the expression in the integrand of (6.3.7) 

and is given by 

. .
ala.; 	2.:1 (1±a.±5.)} 1 	 1 3 •  

) (1+a) ) ( l+c: .7, 	) 	) 
1 	1 1.] 	3 3-3 

(6.3.8) 

which is positive when X.. > 1. To approximate (6.3.7) using (6.3.8) we 
• 

need a finite upper limit for the integral so we assume that X and Y have 

been transformed on to the range (0,1). Then (6.3.7) is approximated by 

a weighted sum of
ij 

-
ikkj 	

An appropriate expression for the 
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correlation, p, is 

k k 
p = 12 	E 	(a

1
,-a
1
. 	)((1, 	- 	(13 ) 
-1 	3 j-1 	ij 	ik kj 

1=1 j=1 
(6.3.9) 

whereai=a7(11-ai),b.=13. 	
3 

/(1 + f3.), a
0 
 = b

0 
 = 0 and 
 

ak = bk 
= 1. What we have done here is to transform the marginals so 

that they are uniform and 'then estimate the correlation of the transforMed 

variables. 

An easier method of estimating the- correlation is' to use the 

estimates of the' dategOry medians on the logistic scales and then compute 

the ordinary product moment correlation coefficients using these scores. 

The category medians are the logit transforms of T--.
1  

i (a + a,)for the -  

rows and 
1  (b. + 	)} for the columns. The two methods should give 3 2 	bi-l) 

similar results. 

Finally, table 6.1 gives the number of parameters associated with 

each model and the degrees of freedom left over for testing the adequacy 

of the model. 

Table 6.1 

Number of parameters and degrees of freedom under different 
models 

Model 

 

Restrictions Parameters 

 

d.f. 

 

   

quasi symmetry 

symmetry 

p-symmetry 

p-symmetry 

p-symmetry 

DBL 

DBL 

none 

none 

none 

= 
1 

Ct = 
i • 

none 

a./(3  = ea 
 

= A 

(k-1) (k+4) 

1 
-k(k+1)-1 2 

-k 
1 
(k+5)-4 2 

2 (k-1)(k+4) 

1 
(lc (k+1) 

1 
--(k-1) (k+4) 2 

•  -k 1 (k+1) 2 

 1 
-(k--1 )(k-2) 2 - 

• 1 
-1) 

4 

. 
-2(k-2) (k-3) 

1 
2 (k-1) (k-2) 

-k (k-1)-1 2 

• 1 
(k-1) (k-2) 

•  -k 1 (k-1)-1 2  
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6.4 Examole  

This example from Stuart, 1953, concerns the unaided distance 

vision of 7477 women aged 30-39 employed in Royal Ordnance factories 

in Britain during the period 1943-46. The data haVe been extensively 

analysed in the statistical literature; see, for example, Stuart (1953, 

1955) and Bishop et al. (1975), p.284, for further analyses. The row 

variable represents the right eye grade and the-  column variable the 

left eye grade. The categories are ordered from highest (1) to lowest. 

(4). 

Table 6.2 gives the data and the fitted values under restricted 

p-symmetry (Ai  = A) are given in table 6.3. The fitted values under 

quasi symmetry are given in table 6.4. 

The restricted p-symmetry model- gives a reasonable fit (X4  = 6.2 

on 3 d.f.) and is a slight improvement over quasi-symmetry (X2 = 7.3 

on 3 d.f.). The maximum likelihoOd estimate of A is 0.167 with approxi-

mate standard deviation .046. Thus the lack• of marginal homogeneity is 

adequately summarised in the single parameter The interpretation of 

this result is that the left eye is on average worse than the right eye. 

The model for-  p-symmetry does not unfortunately give a measure of corre-

lation or association between the two variables. 

A second interpretation of the- parameter A in the model for p-symmetry 

involves the conditional odds ratio. ThiS interpretation is the Same as 

that given to the parameter A in the paired logistic. model.  of Chapter 5. 

Thus we define the conditional odds of the event X < j to be 

odds (X 	< jIX.) = pr (X, < 	
(`Yil  
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The model for p-syauetry implies 

odds(X. < j[X.) 	A 

	

11 	'1  e j  
odds (Xi  < 	) 

	

2 	• i • 

(j = 1,...,k-1) 

whereaS restricted p-symmetry and the logistic model of Chapter 5 both 

imply 

odds(X 	< j X.) i/ -- 	- e 
odds(X. < jIX-1) 12   

(j = 1,...,k-1) 

This should be contrasted with the marginal odds ratios 

odds(X
1 <.j) 

odds(X2  < j) 

pr(X•
1 
 < j)or(X

2'  >
. j) 

•-  (j = 1,...,k-1) 
pr (X2 < j)pr(X1  > j) 

which are not constant under. any of the models so far considered except 

when the variables X and X2 are independent. In general, the marginal 

odds ratio is smaller than the conditional odds ratio, since pairs of: 

observations (X1X2) are positively correlated. 

Table 6.5 gives the expected frequencies under the discrete bivariate 

logistic model (6.3.5) with the restriction that the marginal odds ratios 

are equal (in ai  - In Si
= Am). It was mentioned without proof in §6.3 

that the DBL model is not palindromic. Table 6.6 gives the expected 

frequencies when the order of the Categories' is reversed. Although the 

fitted frequencies are different when the categories are reversed, the 

parameter estimates are very similar. For table 6.5 the estimates of the 

log marginal odds ratio and the category boundaries are .046 and 

(-1.048, 0.237, 2.101) while for table 6.6 the estimates are -0.044 and 

(-2.101, -.238, 1.048) respectively. 	Ideally we would expect the sign of 

the log odds ratio to change and the category boundaries to be in the 

reverse order with sign changed. The estimated standard deviation of the 

log odds ratio is .016. 
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able 6.2 

Unaided distance vision of 7477 women aged 30-39 employed 

in Royal Ordnance Factories from 1943 to 1946 

Left Eye Grade 

Highest 

(1) 	 (2) 	 (3)' 

Lowest 

(4) 	 Total 	 

High (1)  1520 266 124 66 1976 

Right 
eve 

(2)  234 1512 432.  78 2256 

(3)  117 362 1772 205 2456 

Low (4) . 36 	 82 179 492' 789 

Total 1907 2222 2507 841 74.77 

Source: Stuart (1953) 

Table 6.3 

Fitted frequencies under -'-7estricted 

Left Eye Grade 

Highest 

(1) 	(2) 	(3) (4) Total 

High (1)  1520.000 264.490 133.212 58.946 1976.648 

Right 
eye 

(2)  235.589 1512.000 423.397 86.778 2257.764 

(3)  107.301 370.905 1772.000 204.176 2454.382 

Low (4)  43.683 72.667 179.856 492.000 	 788.206 

Total 1906.573 2220.062 2508.465 841.900 7477.000 

X2. = 6.2 on 3 d.f. 
ps 
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Table. 6.4 

Fitted frequencies under quasi symmetry 

Left Eye Grade 

(1) (2) 	 (3) 	 (4) 	 Total 

High (1)  1520.000 263.380 133.584 59.036 1976.000 

Right 
eye 

(2)  236.620 1512.000 418.986 88.394 2256.000 

(3)  107.416 375.014 1772.000 201.570 2455.000 

Low (4)  42.964 71.606 182.430 492.000 789.000 

Total 1907.000 2222.000 2507.000 841.000 7477.000 

X2
Q 
 = 7.3 
s 

on 3 d.f. . 

Table 6.5  

Pitted frequencies under discrete biyariate 
logistic model 

Left Eye Grade 

(1) 	(2) 	(3) • 	(4) 

 

(1) 1519.493 262.291 135.810 56.141 	1973.735 

(2) 237.248 1511.828 410.419 88.533 	2248.028 

(3) 107.402 382.072 1772.115 194.853 	2456.442 

(4) 	44.096 	73.327 	188.998 	492.374 	798.795 

	

1908.239 2229.518 2507.342 831.901 	7477.000 Total 

X2 = 10.73 on 5 d.f. 



116 

Table 6.6 

Fitted frequencies under discrete bivariate logistic 

model with category order reversed. 

(4) 

Left Eye Grade 

(3) 	(2) (1) Total 

(4) 492.740 185.897 75.398 45.150 799.185 

Right 
eye 

(3) 197.803 1770.610 382.227 105.562 2456.202 

(2) 85.341 410.252 1513.048 239.757 2248.398 

(1) 55.334 138.698 259.830 1519.352 1973.214 

Total 831.218 2505.457 2230.503 1909.821 7476.999 

2 X = 10.95 on 5 d.f. 
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Under the unrestricted discrete bivariate logistic model there is 

only a slight reduction in the X goodnesS of fit statistic (x
2 
= 9.46 

on 3 d.f.). This indicates that the difference between the two marginals 

is adequately summarised in a. single parameter. 

Finally; we note, without explanation, the residual pattern in 

tables 6.3, 6.4, 6.5 and 6.6. Under quasi symmetry and under p-symmetry 

the diagonals are fitted exactly so that the residualS are zero on the 

diagonal. Under the D.B.L. model the residuals on the diagonal are. not 

zero but they are small. For all the tables 6.3-6.6 the residual pattern 

is essentially 

0 

It is unlikely that this pattern is random since it occurs in all the 

models considered. Therefore there is some aspect of the data, connected 

with the above residual pattern, which all of the models ignore. It 

looks like this pattern is connected with the difference, left minus 

right, between the two margins. 

The estimated category medians are -1.903, .367, .969 and 2.854 from 

the D.B.M. model. These give a product: moment correlation estimate of 

.701 which is somewhat larger than the value of .633 obtained by Stuart 

(1953) using a variation of Kendall's rank correlation coefficient. 

The correlation estimator (6.3.9) gives a value of .674. This 

particular correlation estimator is more difficult to calculate than the 

usual product moment estimator. It is difficult to say that any one of 

these correlation estimators is preferable to all the others, but it is 

important to be consistent when comparing the degree of association in 

two tables. 
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