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ABSTRACT 

A review of some of the more effective methods for the solution of 

non-linear optimization problems is given. 	The mode of development of 

a new algorithm for the solution of constrained non-linear optimization 

problems is described and criteria by which to assess the relative 

merits of different algorithms are discussed. 

The algorithm presented is based on the well-known method of succes- 

sive linear approximations. 	At each stage the object function and con- 

straints are linearized and a standard implementation of the revised 

simplex technique is used to solve the resulting linear programs. 	A 

new method - the displaced origin technique - is used to set up the 

linearized problem for solution. 	This permits substantial reductions in 

both computer core storage and execution time requirements. 	An efficient 

convergence acceleration technique which employs a cubic curve fitting 

procedure has been developed. 	The computer code SLA, which implements 

the algorithm, has been tested against a wide variety of standard test 

problems. 	Comparisons are made with published data wherever possible. 

The code is shown to work well with numerical approximations to the first 

derivatives of the object function and constraints. 	This reduces the 

amount of work necessary to prepare problems for solution by numerical 

techniques. 	An easy-input self-documenting user version of the code 

SLA is described. 

SLA has been applied to the problem of determining minimum weight 

radiation shielding. 	Constraints have been applied to limit the maxi- 

mum integrated dose which any one of a set of radiation workers may ab- 

sorb whilst following a particular work schedule. 	Results obtained for 

a 25 element shield are presented and their physical significance dis-

cussed. 
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CHAPTER 1 

INTRODUCTION 

Over the last 20 years the use of mathematical programming tech-

niques to determine optimal solutions to complex problems has increased 

enormously. 	This vigorous growth has only been made possible by the 

parallel development of high-speed electronic computers, since only by 

using such machines can practical problems be solved with any reasonable 

expenditure of human effort. 	As the power and size of computers has 

increased so has the range of processes which may be effectively modelled 

and optimized. Mathematical programming techniques are now being 

applied to problems in many fields of activity such as financial planning, 

economic modelling, industrial process optimization, scheduling, stock 

control and many more besides. 

The term mathematical programming is the generic name for a set of 

techniques which are used for solving a wide variety of problems. 

Integer programming, linear programming, network flow analysis, dynamic 

programming and non-linear programming are all examples of mathematical 

programming techniques. 	The work described here belongs to the branch 

of non-linear programming. 	The problems within this field are con- 

veniently divided into two types. 	There are non-linear programming 

problems which involve the minimization of non-linear functions on which 

no restrictions are placed. 	These are known as unconstrained problems, 

and the independent variables defining the object function, may assume 

any real value, positive or negative. 	The other type of non-linear 

programming problem is referred to as constrained, since the independent 

variables are not free to assume any value. 	Conditions, in the form 	of 

constraint equations, are imposed on the values which the independent 

variables may assume. 	These conditions define an area (the feasible 
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region) where acceptable solutions to the problem may be located. 

Such solutions are known as feasible solutions. 

There are a number of very efficient techniques available for mini-

mizing unconstrained functions and most problems of this type may be 

tackled with every confidence of success. 	However the situation as 

regards constrained problems is not so reassuring. 	A variety of methods 

exist which are capable of solving non-linearly constrained problems, 

but no one algorithm has demonstrated a clear superiority. 	The develop- 

ment of techniques for solving problems of this type remains an active 

field of research. 

The algorithm presented here solves non-linear programming problems 

by replacing them with a series of linear programming problems which are 

easier to solve. 	At each stage both the object function (i.e. the 

function to be minimized) and the constraint functions are replaced by 

appropriate first order Taylor-Series approximations. 	This process is 

referred to as linearization and is achieved using either explicit for-

mulae for the required first derivatives (i.e. analytically) or by use 

of numerical approximations to these derivatives (i.e. numerically). 

The linear prograhudng problems produced are solved by a standard algorithm. 

The solution vector found for each linear program is used as the linear-

ization point (i.e. the point at which derivatives are evaluated) for 

each ensuing linear program. 

There are several important advantages which accrue from this 

approach. 

(1) 	With very few exceptions indeed all linear programming problems 

may be solved in a finite number of steps by existing tech- 

niques. 	Thus there is every reason to believe that an 

algorithm based on successive linear approximations will be 

robust. 
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(2) The simplex method for the solution of linear programs was 

devised more than 20 years ago. 	As a result, the algorithms 

available to-day are the end products of a long period of 

intensive development and are thus very efficient and numeri- 

cally stable. 	Problems involving several hundred variables 

and constraints may be solved as a matter of routine. 	There- 

fore it is unlikely that an algorithm developed by testing on 

small problems will break down on larger ones. 

(3) The method is conceptually simple. 	This makes the develop- 

ment of an effective algorithm simpler. 	It also makes it less 

likely that an implementation of the algorithm will be incor-

rectly applied by an inexperienced user. 

(4) The linear programming technique treats constraints directly. 

Many methods for solving non-linear constrained problems are in 

fact unconstrained algorithms on to which a strategy for dealing 

with constraints has been subsequently added. 	This is not 

always a successful union. 

(5) The technique of successive linear approximation has been used 

successfully before. 	This demonstrates that this approach to 

non-linear programming is fundamentally sound. 

The algorithm described here is shown to be a substantial improvement 

on other algorithms using linear approximations and that, in terms of 

computing time, it is as efficient as the best non-linear algorithms 

currently available. 	This performance has been achieved by: 

(1) Reformulating the linear program so as to avoid the necessity 

of doubling the dimensionality of the problem. 	(The independent 

variables of linear programs must be non-negative. 	This has 

meant that the independent variables of the non-linear problem 

have had to be expressed as the difference between two non- 
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negative variables. 	In this way negative values could be 

treated by the linear programming algorithm. 	By avoiding 

this 'variable splitting' approach, substantial savings in 

computer core storage requirements and calculation time have 

been achieved.) 

(2) Developing a sophisticated step adjustment strategy which 

utilizes cubic fitting procedures to accelerate convergence. 

A brief review of non-linear programming techniques is given in 

the following chapter. 	This is followed by an account of the,  mode of 

development of the algorithm and a discussion of criteria by which to 

assess competing algorithms. 	A description of the theoretical basis 

of the algorithm and details of the way in which it has been realized 

are provided. 	This is followed by the results obtained with the com- 

puter code developed for a series of standard test problems. 	Where 

possible comparisons are made with published results. 	The algorithm is 

then used to evaluate the minimum weight configuration of a radiation 

shield, subject to constraints on the maximum dose rate allowed at a set 

of dose points. 	Constraints are also applied to limit the maximum 

radiation dose absorbed by a set of workers whilst observing a prespeci- 

fied work schedule. 	The physical implications of the results obtained 

for this shield system and work schedule are discussed. 



5 

CHAPTER 2 

. A SURVEY OF NON-LINEAR OPTIMIZATION TECHNIQUES 

In this chapter a review of methods for solving non-linear opti- 

„;) 	 mization problems is given. 	Unconstrained techniques are discussed 

first since in many cases they form the basis of the constrained tech- 

niques which are considered subsequently. 	It is not possible to con- 

sider here all of the methods available for non-linear optimization so 

this survey should be regarded as indicative rather than comprehensive. 

2-1 Unconstrained Techniques 

The unconstrained problem may be stated as: 

Minimize: f(x) , 	x CEn 	 (2-1) 

In general it will be assumed that the first derivatives of f(x) 

are finite and continuous but this is not a necessary pre-requisite for 

the search methods. 	A necessary, but not sufficient, condition for 

f(x) to have a minimum is that the elements of the gradient of f(x) 

shall all be zero. 

of 
Dx. 

0 	(i = 1,n) (2-2) 

For such a point to be a minimum the matrix of second partial derivatives 

(the Hessian) must be positive definite, i.e. 

p
T 
H p > 0, for all p A 0 	(2-3) 

- where the elements of the matrix H are: 

h.. - 
13 	3x.Dx. 

It is convenient to divide the methods for solving equation 2-1 into 

two groups. 	The first group of methods makes use of gradient information 

(Gradient Methods) while the second group requires only function values 

a 2f  
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(Search Methods). 

2-1-1 Gradient Methods 

(1) Steepest descent 

This method uses the negative gradient, -g, of f(x) as the 

direction of search. 	The negative gradient gives the direction of 

greatest local function decrease. 	Thus, if xi(  is the starting point, 

the next point in the search, XK.4.1, is given by: 

x
K+1 

= x
K 
+ A

K 
s
K 
	 (2-4) 

- where s
K 

is a unit vector in the direction -g 

AK 
is a scalar. 

The method of steepest descent supplies a search direction, s
K, 

but 

not the magnitude of the step to be taken, 	In In general the approach 

usually adopted is to perform a linear search for a minimum in the 

direction s
K. 	

Thus the value of A
K 

is determined such that 

f(x
K 
 + XK.sK) is a minimum. 	A new point is generated using equation 

2-4 and the gradient is re-evaluated. 	A new linear search ensues. 

The great attraction of the method is its extreme simplicity. 	However 

the concept of steepest descent is largely illusory since by resealing 

the independent variables a new gradient vector and hence a new steepest 

descent direction is found. 	A more serious drawback lies in the perform- 

ance of the method on functions having valley structures. 	In such cases 

the method characteristically pursues an inefficient zig-zag path. 

Since several more efficient techniques are available the method of 

steepest descent is not widely used. 

(2) Conjugate gradient 

Most functions are well approximated by a quadric close to a minimum 

and so many minimization methods are based on techniques which are guaran-

teed to locate the minimum of a quadric in a finite number of steps. 
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The method of conjugate gradients is one such method. 	The method was 

originally developed by Hestenes and Steifel [Ref. 1]. 	Fletcher and 

Reeves [Ref. 2] developed the ideas and prepared a computer program to 

implement the algorithm. 	The method involves a series of linear 

searches in a direction defined by a linear combination of the current 

gradient and the previous search direction. 	The search direction on 

the kth stage is given by: 

S
K 
	

gK 13K-1 SK-1 
	 (2-5) 

- where 	13
K-1 = (gK'gK)/(g 	'g 	) K-1 K-1 

oo = 0  

This procedure for selecting the search directions ensures that they are 

mutually conjugate. 	Two directions p and q are said to be mutually 

conjugate with respect to a quadric if, and only if: 

pT H q = 0 
	

(2-6) 

- where H is the Hessian of the quadric. 

Conjugate directions are chosen since it may be shown that for a quadric 

with a unique minimum, this minimum is found in at most n steps by 

minimizing in turn along n conjugate directions, starting from any 

point. 	Thus by performing the linear searches in n mutually conjugate 

directions the required guaranteed convergence for a quadric is achieved. 

Fletcher points out that in order to preserve the quadratic convergence 

properties of the method on more general functions it is necessary to 

restart the direction generation procedure every n+1 iterations with 

the steepest descent direction. 	A disadvantage of this method is the 

requirement for accurate location of the line search minima, without 

which the quadratic convergence is lost. 	The method is however econ- 

omical with computer core storage requiring space for only three n- 
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vectors. 

(3) Davidon-Fletcher-Powell ( DFP) 

The DFP technique is a second order method in that it uses infor- 

mation about the second partial derivatives of the function. 	However 

the second order derivatives are not evaluated directly but are approxi- 

mated using first order information only. 	If the function f(x) is 

expanded in a Taylor Series about the point xK  then: 

• f(xKil.) = f (xK) + pK  gK  + !pi(  HK  pK 
	(2-7) 

- where xK+1 = xK + pK 
gK is the gradient of f(x), evaluated at xK 
H
K 

is the Hessian, also evaluated at xK 

It was noted earlier that a necessary condition for a stationary point 

of f(x) was that the gradient should vanish. 	Thus by taking the gradi- 

ent of f(x10.1) and setting it to zero the value of pK, the pertur- 

bation required to move from xK 
toK+1 

 may be found. 	If 	f(x) 

is a quadric then H is constant and the minimum may be reached in one 

move. 	If f(x) is a more general function then pK will provide a 

direction for a line search. 	Since pK 
is based on a second order in- 

formation it may be expected to be a superior search direction to the 

negative gradient. 	Formally, the gradient of f(xK+l)  is: 

gK+1 
= g

K 
+ H

K
.p
K 
	 (2-8) 

Setting gic+1  to zero: 

PK = 
-1 

-H
K 

gK (2-9) 

The DFP technique builds up an approximation to the inverse of the 

Hessian (i.e. H 1  in equation 2-9) using gradient information only. 

Initially the direction of search is chosen to be that of steepest descent 
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and a unit matrix is used for the initial inverse Hessian approximation. 

However as more gradient information is generated the inverse Hessian 

approximation is steadily updated using a formula developed by Davidon 

[Ref. 3]. 	The method was implemented by Fletcher and Powell in 1963 

and is probably the most powerful unconstrained optimization technique 

using first derivative information. 	However the method does not per- 

form reliably when numerical approximations to the first derivatives 

are used. 

2-1-2 Search Methods 

(1) Simplex 

The simplex search method, which is not to be confused with the 

simplex method for the solution of linear programming problems, was 

originally devised by Spendley, Hext and Himsworth [Ref. 4] and was later 

improved by Nelder and Meade [Ref. 5]. 	The method begins with the con- 

struction of a simplex in the n-space. 	This is a set of N+1 points 

distributed, initially at least, so as to be mutually equidistant. In 

two dimensions the simplex is a triangle and in three dimensions a 

tetrahedron. 	The search proceeds by repeatedly reflecting the vertex 

having the highest function value about the centroid of the simplex. As 

proposed by Spendley et al. the simplex remained regular and was uni-

formly reduced in size if one of the vertices remained unchanged for a 

pre-specified number of iterations. 	The method was modified by Nelder 

and Meade to allow the simplex to assume an irregular shape by allowing 

expansion and contraction as well as reflection about the centroid. The 

method is quite efficient in finding the general location of the minimum 

but is generally slow to converge. 	The performance of the method is 

also significantly affected by the choice of initial simplex. 
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(2) Rosenbrock's method 

This method starts with a set of orthonormal directions, usually 

the co-ordinate axes. 	Searches are then made along each direction in 

turn. 	The method of search adopted is a simple probe technique. A 

th 
step, A., is taken in the i 	direction. 	If a lower function 

value is found A. is multiplied by 3 and the new value for the inde- 

pendent variable, x., is retained. 	If a higher function value is 

found A. is multiplied by -0.5 and the old value of xi  is retained. 

When each direction has been searched in this way a further probe is 

made in the direction defined by the vector whose elements are the in-

dividual perturbations in each search direction; i.e. the resultant 

vector. 	After this final probe the direction between the initial point 

and the final point is used as one of a new set of orthonormal directions. 

This new set of directions is generated by the Gram-Schmidt procedure. 

The original procedure is due to Rosenbrock [Ref. 6] but was modified 

by Davies, Swann and Campey [Ref. 7] who replaced the probe procedures 

by linear searches. 	This refined method is known by the acronym DSC. 

Neither the original Rosenbrock method nor its derivative DSC, is regarded 

as efficient in terms of the number of function evaluations required to 

obtain a solution. 

(2) 	Powell's method 

The method due to Powell [Ref. 8] is probably the most powerful 

method currently available for unconstrained minimization of functions for 

which analytical first derivatives are unavailable. 	Like the method of 

conjugate gradients it is quadratically convergent in that it minimizes 

a quadric in a finite number of steps. 	The basis of the method is to 

set up a series of mutually conjugate directions, minimizing along them 

as they are set up. 	A quadric is minimized by n such conjugate line 

minimizations. 	However it takes n+1 single variable minimizations to 
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set up each conjugate direction so in general to find the minimum of 

a quadric will require n(n+l) line minimizations. 	The method begins 

with an arbitrary set of n linearly independent search directions 

Si, S2, o.., Sn. 
	Linear searches are performed along each direction 

in turn. 	This is followed by a linear search in the resultant direction: 

n 

= xo  + 	A.s. (2-10) 

i=1 

X2 = X' + An+1  (x1 - x0) 	 (2-11) 

- where xo is the starting point 

xl is the point obtained after n linear searches 

x2 is the point obtained after a linear search in the 

resultant direction. 

Tests are than made to see whether the resultant vector (X1 - x0) can 

replace one of the initial search directions, s.. 	These tests are 

necessary to ensure the preservation of the linear independence of the 

search directions thus avoiding the possibility of finding the minimum 

in a sub-space only. 	Badly scaled problems can cause the resultant 

direction to the rejected frequently and this reduces the efficiency of 

the algorithm. 

2-2 Constrained Techniques 

The methods used for solving the general constrained non-linear 

optimization problem may be divided into three groups. 	The first two 

are, as for the unconstrained cases, gradient methods and search methods. 

The third group covers methods based on linear programming techniques. 

The main features of some of the more successful methods in the first 

two groups are described below. 	Methods based on linear programming 

are discussed in Chapter 4. 
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2-2-1 Gradient Methods 

(1) Projection methods 

The common feature of projection techniques is that a search direc-

tion, chosen by some rule, is projected on to a set of 'actival  linear 

or linearized constraints. 	This has the effect of reducing components 

of the search direction orthogonal to the constraints to zero, whilst 

those parallel are unaffected. 	A linear search can thus be made in the 

projected search direction which will never leave the feasible region, 

provided the constraints are linear. 	If the constraints are non-linear 

then a correction procedure must follow the linear search to enable 

feasibility to be regained. 	An early example of a projection technique 

is due to Rosen [Ref. 9] who used the negative gradient as the basic 

search direction. 	New points are determined as: 

= xK  - A
K 
P g

K 
	 (2-12) 

- where P is a projection matrix 

A
K 

is chosen so as to minimize f(K
K+1) 

The method incorporates strategies for adding or dropping constraints 

from the set of active constraints. 	Goldfarb and Lapidus [Ref. 10] 

have devised a method whereby the basic search direction is chosen as in 

the DFP algorithm. 	The updated approximation to the inverse Hessian and 

the projection matrix are combined. 

Projection methods are very efficient in terms of the number of 

function evaluations required. 	However, for larger problems the com- 

puting time required to calculate and manipulate projection matrices can 

be substantial, and unless the evaluation of the object function is 

lengthy this can cancel out time savings due to the reduced number of 

function calls. 	A further difficulty with projection techniques is 

their sensitivity to small errors in derivatives calculated numerically 
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making the provision of analytical derivatives virtually essential. 

There are a number of methods for treating non-linearly constrained 

problems by projection techniques currently under active development. 

(2) Reduced gradient technique 

There are many points of similarity between projection and reduced 

gradient techniques. 	In fact some authors refer to the reduced gradi- 

ent method as a projection method. 	The method has been developed by 

Abadie and Carpentier [Ref. 11] from an algorithm due to Wolfe. 	In- 

equality constraints are treated by converting them to equality con- 

straints using non-negative slack variables. 	Thus the constraint: 

- becomes 

(1).(x) - x2  = 0 	 (2-13) 

- where x
s 

is the additional slack variable. 

(xs =0implies49.is an active constraint) 

The constraints are linearized and the dimensionality of the problem re-

duced by eliminating p of the independent variables using the p con- 

straint equations. 	An unconstrained search is made in the reduced 

space using a conjugate gradient algorithm. 	A correction procedure 

follows the unconstrained step to restore feasibility. 	The computer 

code implementing the generalized reduced gradient algorithm is known by 

the acronym GRG and is generally regarded as one of the most effective 

methods available for non-linear programming. 	The main drawback to its 

use lies in the necessity to provide explicit formulae for analytical 

first derivatives of both object function and constraints. 

(3) Penalty function methods 

These methods rely on converting a constrained problem to a series 

of unconstrained problems by the addition of a penalty function to the 
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object function. 	The penalty function is constructed from the con- 

straints on the problem and a wide variety of formulations have been 

used. 	A typical form of penalty function is: 

m 	 p 

f(x,r) = f(x) + r 	1  
(x) + r 

 E (Y(x)] 2 

i=1 1 	i=m+1 

(2-14) 

- where f(x) is the original constrained object function. 

(1).(x) are the m inequality constraints. 

Ti(x) are the (p-m) equality constraints. 

r is an adjustable parameter. 

It is apparent from the form of the penalty function that, as the in-

equality constraints are approached and the (Di(x) tend to zero, the 

value of the first penalty term increases sharply. 	This steep barrier 

prevents an unconstrained minimization procedure violating the constraint. 

The second penalty term in equation 2-14 takes a minimum value of zero 

when the equality constraints Ti
(x) are precisely satisfied. 	This 

ensures that f(x,r) decreases as the equality constraints are more 

nearly satisfied. 	The method begins with an initial value for r, 

selected by experience or empirical rule. 	The modified unconstrained 

function f(x,r) is then minimized. 	Any efficient unconstrained mini- 

mization technique may be used for this stage. 	The value of r is 

then decreased by typically a factor of ten, and a second unconstrained 

minimum obtained. 	The whole process is repeated, each time reducing 

r, and with each new cycle beginning from the minimum of the previous 

one. 	The steady reduction of r makes the penalty function barriers 

progressively steeper allowing the unconstrained minima to approach the 

active constraints to within an arbitrary tolerance. 	Acceleration pro- 

cedures based on the trajectory of the successive minima are sometimes 

used. 	Fiacco and McCormick [Ref. 12] have developed the method inten- 
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sively and their SUMT (Sequential Unconstrained Minimization Technique) 

program is widely used. 	The use of penalty functions has the disadvan- 

tage of converting the original problem to a series of predictably dif- 

ficult unconstrained minimizations. 	The unconstrained minimizations 

are difficult because the penalty function produces steep-sided asymmetric 

valleys. 	These are not generally well approximated by quadrics and 

thus cause difficulties for algorithms based on such approximations. 

2-2-2 Search Methods 

(1) The complex method 

This method is due to Box [Ref. 13] and is based on the unconstrained 

simplex method described earlier. 	In the complex method the simplex with 

n+1 vertices is replaced by a 'complex' which has k (>n+1) vertices. 

Box suggests a value of 2n for k but points out this is too large 

when n is greater than ten. 	It is necessary to use more than n+1 

points in order to prevent the configuration from collapsing prematurely 

into a subspace. 	Only one initial feasible point is required. 	The 

remaining k-1 feasible points required to set up the complex are deter- 

mined by a random number procedure. 	Any infeasible point generated by 

this procedure is rejected and a new trial point selected. 	Once the 

complex is set up the search proceeds as in the simplex method. 	The 

vertex having the highest function value is reflected about the centroid 

of the complex. 	Box provides a set of empirical rules for the manipu- 

lation of the complex. 	The method has been used successfully but its 

efficiency falls off rapidly as the number of independent variables 

increases. 

(2) Flexible tolerance 

This method was devised by Paviani and Himmelblau [Ref. 14]. It has 

some points in common with the penalty function technique in that the ori-

ginal problem is replaced by a related problem which, as a limiting case, 
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T(x) = 	ES .1  cl) ? (x) + E 4`i (x) 
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(2-17) 

m 
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has the same solution as the primary problem. 	However in the Flexible 

Tolerance method the reformulation affects the representation of the 

constraints only. 	The object function remains unchanged. 	The basis 

of the method lies in combining all the constraints of the original 

problem (inequality and equality) into one gross constraint. 	The object 

function is then minimized as an unconstrained problem, using the sim-

plex method of Nelder and Meade, until the gross constraint is violated. 

A separate unconstrained minimization is performed on a function defined 

by the constraints of the primary problem in order to regain feasibility 

with respect to the single gross constraint of the reformulated problem. 

In this way the processes of function reduction and constraint satis- 

faction are effectively separated. 	If the primary problem is: 

Minimize : 	f(x) 
	

x C En  

	

Subject to : 	
1

(x ) >_ 0 	(i = 1,m) 

	

Ti  (x)= 0 	(i = m+1,p) 

The reformulated problem is then: 

	

Minimise : 	f(x) 	, x C En  

	

Subject to : 	L
K 
- T(x) 	0 

(2-15) 

(2-16) 

The function T(x) is an amalgamation of all the inequality and equality 

constraints of the primary problem. 	It is defined as: 

	

- where S. i = 0 	if 	0.  1 

	

6. = 1 	if 	c1. < 0 
1 

Note that T(x) = 0 when x is a feasible point with respect to the pri- 

mary problem and also that T(x) cannot be negative. 	The function L 
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is the 'tolerance criterion' for the k
th 

stage of the search. 	It 

depends on the average distance of the vertices of the simplex from the 

centroid of that simplex. 	It is so defined as to be positive and mono- 

tonically decreasing at each successive stage. 	Each new point generated 

by the search procedure is classified as one of three types: 

(1) Feasible, if T(x) = 0 

(2) Near Feasible, if 0 S T(x) < LK  

(3) Non-Feasible, if T(x) > LK. 

Since the minimum of T(x) is zero, as L
K 

decreases, the tolerance on 

near feasible points is correspondingly reduced. 	In the limit as L
K 

tends to zero points must be generated such that T(x) tends to zero 

also. 	Such points are feasible with respect to the primary problem. 

The Flexible Tolerance algorithm is quite reliable and, being based 

on the simplex search technique, requires no derivative information. 

However convergence is frequently very slow. 
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CHAPTER 3 

DESIGN, DEVELOPMENT AND ASSESSMENT OF AN OPTIMIZATION ALGORITHM 

3-1 Algorithm Design 

Algorithms used for multivariate optimization are invariably imple- 

mented on high speed electronic computers. 	In terms of both efficiency 

and reliability the way in which an algorithm is programmed for the com- 

puter can be as important as the initial choice of algorithm. 	Seemingly 

small changes in the way an algorithm is programmed can produce very sig- 

nificant effects on the rate of convergence. 	Colville, [Ref. 15] who 

conducted a survey into the efficiency of 34 different computer codes, 

states that "... it appears that the efficiency and performance of a non-

linear programming code can be greatly affected by the method of imple-

menting it on a computer." 

Bearing this in mind the algorithm developed here - subsequently re-

ferred to as SLA - has from the outset been designed for maximum numerical 

reliability and computational efficiency. 	Where these two considerations 

have been in conflict, reliability has been considered of more importance 

than sheer computational speed. 	Numerical reliability has been achieved 

, by careful preparation of logic flow diagrams for all subroutines and 

by detailed consideration of possible failure cases. 	Particular atten- 

tion has been paid to the problems associated with division by very small 

numbers. 	This approach has been supported by a great deal of testing 

against standard test problems. 	This was largely done using the test 

program N10C, described in the following section. 	The coding of SLA is 

in FORTRAN which although not as efficient as some programming languages 

is widely used and understood. 

The principal aims considered in the design of SLA are summarized 

below. 
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(1) The algorithm should be reliable, i.e. it should solve real world 

problems most of the time. 

(2) It should be a computationally efficient algorithm; i.e. it should 

not make excessive demands either on central processor time or cen-

tral memory storage. 

(3) The algorithm should be conceptually simple so allowing future 

modification and easy maintenance. 

(4) The amount of input data and option selection should be kept to a 

minimum to ensure the code is easy to use. 

(5) To produce a code which will function well using numerical estimates 

for the partial derivatives of both object function and constraints. 

(6) To produce a modular code; i.e. one built up of well-defined 

independent sections, so that program modifications do not entail 

wholesale rewriting of the code. 

(7) To produce a fully documented 'user package' to enable non-specialists 

to use SLA. 

The extent to which SLA fulfils these specifications will, it is 

hoped, become apparent in the following chapters. 	In any event these 

aims will be reexamined in Chapter 8. 

3-2 Method of Program Development 

The code was developed by linking it to a special purpose test pro- 

gram, N10C. 	This test program runs interactively via a time-sharing 

teletype on the Imperial College CDC 6400 computer. 	The code N10C allows 

any one of a series of thirteen standard test problems to be selected by 

typing in the appropriate problem number. 	For each problem there is a 

pre-programmed set of standard data which may be inspected and changed 

at will. 	Data items which may be changed include the initial starting 

vector, convergence criterion and initial step lengths. 	The user may 

choose to use analytical derivatives or numerical approximations, in which 
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case the user must supply a pertubation value to use in the forward 

difference formula. 	Several different output options are available. 

A block of iterations, say, from iteration Il to iteration 12 may be 

specified for output and at the same time every N
th 
 iteration may be 

printed. 	The user controls whether the step length for each variable 

is printed at each iteration and there is also the option of a compre-

hensive output which gives all the data supplied to the linear pro-

gramming routine as well as details of the iteration progress within the 

linear program itself. 

The test problems used by N10C are rather small and none has more 

than four variables. 	The chief reason for this is the maximum central 

memory allocation of 25000 words. 	This storage allocation is not dedi- 

cated to the one teletype but is shared between anything up to 40 other 

teletypes. 	This means that at times of peak load, with many teletypes 

connected to the computer, response times can be unacceptably long, 

unless demands on the central processor are kept to a minimum. 	This 

necessitates the use of small test problems. 	Care was taken in the con- 

struction of N10C to ensure that the optimization routines comprising 

SLA remained distinct and immediately separable. 	Figure 3-1 shows the 

logic flow within N10C. 	The test problems are described fully in 

Appendix 1. 	These problems are quite varied encompassing unconstrained, 

linearly constrained and non-linearly constrained problems. 

Once the code N10C had been developed it became a relatively straight-

forward matter to test new strategies and variations in program arrange- 

ment against the test problems. 	By plotting out the progress of the 

search for two-variable problems insight was gained into the behaviour 

of the linear approximation method. 	Causes of program failure were iden- 

tified and eliminated. 	It was found essential to test modifications 

against as many test problems as possible since too much concentration 
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FIG. 3-1. 	The Test Program N10C 
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on one particular test case held the danger of producing a problem speci- 

fic algorithm. 	Modifications which decreased the reliability of the 

algorithm were invariably rejected regardless of gains in computational 

efficiency. 	Acceptable modifications were required to have a positive 

effect on computational efficiency, for example, a reduction in core 

storage or execution time, and at least a neutral effect on reliability. 

3-3 Algorithm Assessment 

An optimization algorithm is required to solve a great variety of 

problems in a wide range of disciplines. 	As a consequence of this the 

demands made upon the algorithm are many and varied. 	Therefore there 

can be no single criterion of effectiveness. 	Since no one algorithm 

has proved to be superior to all others in all respects, it is necessary 

to assess the merits of alternative algorithms by classifying the 

various attributes a good method should possess. 	An attempt may then 

be made to quantify each of these attributes. 	However it is for the 

problem solver or 'user' himself to decide on the relative importance 

to be attached to these individual factors. 	Each user works under dif- 

ferent external constraints of time, finance and computer resources. 

Consequently each will attach different importance to these factors. 

A list of four criteria against which an algorithm may be assessed 

is given below. 	This does not purport to be an exhaustive list, but 

does include items of major importance for most problem solving situ-

ations. 

Criteria for Algorithm Assessment 

(1) Computer resource requirements. 

(2) Accuracy of solution. 

(3) Ease of use. 

(4) Algorithm reliability. 

The importance and measurement of each of these criteria is discussed 
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below. 

3-3-1 Computer Resource Requirements 

There are several ways in which demands on the computer system may 

be monitored. 	The most obvious is perhaps the central processor time 

required for solution. 	If non-linear programming algorithms were im- 

plemented in the same programming language with equal regard to com-

putational efficiency, compiled by the same compiler and finally executed 

on the same type of computer running under the same operation system 

then, and only then, would accurate comparison of algorithms on the 

basis of central processor time be possible. 	Of course this idealized 

situation is not attainable in practice and a compromise must be sought. 

Colville [Ref. 16] used a standard timing program in an attempt to pro- 

vide normalization factors for various computers. 	All solution times 

were divided by the central processor time required by the timing pro- 

gram. 	However the timing program, which performs a series of matrix 

inversions, can fail to reflect adequately the relative speeds of dif- 

ferent computing machines. 	Factors of two or three in the standardized 

times for the same code solving the same problem on different machines 

are not to be unexpected. 	However, despite this serious drawback to 

intercomparison, standardized central processor times are still widely 

used for algorithm assessment. 

A second measure of computer resource demands is that of central 

memory storage requirements. 	Again there are difficulties in making 

comparisons. 	The most important of these is the different word length 

found on different machines; i.e. the number of bits (binary digits) 

which represent each word in the machine. 	For example, the core require- 

ments for SLA quoted in Section 5-1-2 refer to the 60 bit words found 

on the CDC 6000 series machines. To obtain equivalent accuracy on 

another machine might require all variables to be represented as double- 
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precision variables; i.e. each variable is represented by a combination 

of two ordinary (single precision) words. 	Apart from considerations of 

computer word length it is well to bear in mind that different compilers 

will produce machine code in varying degrees of compactness and that 

different operating systems will supply system routines (e.g. input and 

output routines) which are of varying lengths. 	Despite these drawbacks, 

provided the precision requirements are specified (i.e. the word length) 

meaningful comparisons can be made. 	Unfortunately, core storage re- 

quirements are frequently not quoted in published work, even though 

storage limitations, unlike central processor time limits are virtually 

impossible to circumvent without a major restructuring of the computer 

code. 

A third and widely used method of measuring computational efficiency 

is that of recording the number of times the object function is evaluated 

during the problem solution. 	There immediately arises a problem when 

comparing two computer codes one of which uses analytical derivatives 

and the other numerical derivatives. 	Other factors being equal, the 

code using analytical derivatives will require fewer function evaluations 

for solution than the other code, since to evaluate the n partial deri-

vatives of an n-variable function requires at least n+1 function calls. 

Some authors do however express their results in terms of 'effective 

function evaluations' allowing an extra n+1 function evaluations for 

each analytical gradient calculation. 	The results quoted elsewhere in 

this work are all in terms of effective function evaluations (e.f.e.). 

A much more serious drawback to the use of function evaluations for com-

puter resource monitoring is that for many large constrained problems the 

computing effort required to evaluate the object function may be small 

compared to the effort required to compute the next point. 	Under these 

circumstances it is clearly good policy to ensure that the expensive 
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(in computing resources) step once taken is the best possible. 	Exces- 

sive concern to minimize the number of function evaluations by the use 

of elaborate search procedures can incur an overall penalty in terms of 

central processor time. 	Similar comments also apply to assessments of 

efficiency based on the number of constraint evaluations for solution. 

Colville in his extensive optimization code survey says that the number 

of function and constraint evaluations were 'not at all useful in analys- 

ing the results obtained' [Ref. 15]. 	Despite this, function evaluations 

are almost the universal currency of optimization code comparisons and 

for this reason some of the results presented here are given in this 

way. 

A fourth possibility for the measurement of computer resource demand 

is that of financial cost. 	This economic approach is attractive since 

a minimum cost solution to a problem is always highly desirable. However 

there are distinct practical difficulties involved. 	Charging formulae 

are installation dependent and are usually designed to penalize excessive 

use of resources which are scarce at the particular installation. 	More- 

over much code development work is done in academic institutions where 

little effort is made to assess the commercial value of the computer 

facilities used. 	Further difficulties arise when comparing commercial 

rates between different countries. 

In this work results are presented in terms of standardized central 

processor time and, for the smaller problems, effective function evalu- 

ation requirements. 	Also, estimate of computer core requirements are 

given in Section 5-1-2. 

3-3-2 Accuracy of Solution 

The accuracy desired for a particular problem solution may be ex- 

pressed in a number of different ways. 	It may be stated in terms of the 

precision required in the satisfaction of constraints both inequality and 
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equality, in the precision of the object function or in the accuracy 

required in each of the elements of the solution vector. 	When comparing 

computer codes it is clearly desirable to compare them on an equal 

accuracy basis, but because of variations in modes of convergence this 

is rarely possible. 	There are no absolute standards against which to 

rank solutions of varying degrees of accuracy since a level of precision 

which to one user is a vital necessity may be an expensive luxury to 

another. 

The code SLA accepts solution vectors as feasible if the absolute 

values of all the equality constraints are less than 10
-6 

and if the 

inequality constraints are violated by not more than the same amount. 

The accuracy achieved for the elements of the solution vector and object 

function value are largely determined by the mode of convergence adopted. 

The three ways in which convergence is recognized for constrained prob- 

lems by SLA are described in detail in Section 5-6. 	Of these three 

modes of convergence two depend upon input tolerances on the solution 

vector and the other depends on the object function remaining unchanged 

to within 1 part in 106  in ten iterations. Therefore usually the solu-

tion vector obtained will be within the user-supplied tolerances but, if 

the object function is relatively insensitive to changes in the solution 

vector it may not be. 

3-3-3 - Ease of Use 

It is clear that from a user's point of view the less preparation 

required to use a computer code the better. 	It is however, difficult 

to quantify the effort required to translate a real problem into a form 

suitable for a numerical optimization procedure. 	Attempts have been 

made to quantify preparation times required by different codes for the 

same problems but the results must be dependent upon the skill and experi- 

ence of the user. 	Even though it is difficult to draw quantitative 
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.comparions some useful qualitative conclusions may be drawn. Computer 

implementations of algorithms which require analytical derivatives to 

be supplied certainly require more preparation time than those using 

numerical derivatives. 	First, the derivatives have to be fo:med 

either by hand or by a symbolic manipulation program which will of course 

require preparation itself. 	These derivatives must then be translated 

into some programming language and supplied to the computer, usually 

through the medium of punched cards. 	All this work is unnecessary for 

algorithms not requiring analytical derivatives. 	It may be that analyti- 

cal derivatives cannot be formed at all for the object function or con- 

straints. 	This difficulty arises in problems which involve the solution 

of a complex numerical model to determine the object function. 	The for- 

mat in which data is required by a program is also of importance. 	If 

the user has a lot of preliminary programming work and a complex data 

format to work to, the number of human errors will be large. 	Even one 

such error can cost a lot of effort and computer time to track down. 

This emphasises the comments made earlier about the desirability of 

codes which work with numerical derivatives, since the less input there 

is the fewer errors which can be made. 

3-3-4 Algorithm Reliability 

The reliability of a computer code is most convincingly demonstrated 

by the successful solution of a wide variety of problems. 	Proofs of 

convergence, subject to various restrictions, are available for some 

unconstrained algorithms. 	Proofs for constrained minimization algorithms 

are more difficult to formulate due to the very general nature of the ob-

ject function and constraints likely to be encountered. SLA is essentially 

an heuristic technique and as such is not amenable to convergence analysis. 

However the linear programming routine is known to be extremely reliable 

and numerically robust, and the routines comprising SLA have been care- 
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fully designed and tested. 	This gives good confidence of reliability, 

but finally the wide variety of test problems successfully solved by 

SLA serve to indicate the reliability of the method. 

3-4 General Requirement for an Optimization Algorithm 

Bearing in mind the assessment criteria discussed above, a good al-

gorithm should meet the following three broad objectives. 

(1) It must be reliable in that it can he expected to solve to 

the required accuracy most problems posed most of the time. 

(2) It must be easy to prepare for the computer, preferably not 

requiring explicit analytical derivatives. 

(3) It should make reasonable demands on computer resources. 

Codes which 	unreliable or which require extensive or complex 

preparation will eventually lose any competitive edge they may have by 

waste of computer resources. 	It is for the user to decide what con- 

stitutes a reasonable demand on his computer resources. 	This decision 

is likely to be based upon the size of the problem to be solved and the 

value of the solution to him as well as of course the total computer 

resources he has available. 

It should be noted that the first two objectives listed above are as 

important as the last. 	Unfortunately, because computer resource require- 

ments can be assigned numerical values they are frequently regarded as 

the 'sole and absolute criteria of algorithm assessment. 	In view of the 

uncertainties surrounding the relative assessment of computer resource 

requirements, as outlined in Section 3-3-1, standardized times and function 

evaluation requirements are more properly regarded as qualitative indi-

cations of computer code efficiency. 
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CHAPTER 4 

THEORETICAL BASIS OF THE ALGORITHM 

In this chapter the general formulation of the non-linear programming 

problem is given and the range of problems to which SLA is applicable 

defined. 	A description is given of the form of a linear programming 

problem and the revised simplex method of solution is outlined. Two 

formulations are given for the application of successive linear approxi- 

mations to non-linear problems. 	The original method as described by 

Griffith and Stewart [Ref. 17] is given first and then the technique de-

veloped for SLA is presented. Much of the early work on the SLA search 

procedure was in fact done using the Griffith and Stewart formulation. 

Finally a description is given of two techniques, cubic fitting and 

pattern moves, which are used to accelerate convergence. 	Cubic fitting 

is the key element in the step adjustment strategy. 

4-1 An Overview of the Algorithm 

The code SLA arrives at a solution to the general non-linear pro- 

gramming problem by solving a sequence of linear programs. 	At each step 

both object function and constraints are linearized. 	The linearization 

is achieved either by evaluating numerically the first partial derivatives 

of the object function and constraints or by use of explicit user-supplied 

formulae for the required partial derivatives. 	The solution point of 

one linear program is used as the linearization point for the next linear 

program. 	Each linearization and ensuing linear program constitutes one 

iteration. 	Constraints are imposed on the maximum change allowed in any 

variable at each iteration. 	These maximum step length limitations ensure, 

among other things, that the linear approximations to both the object 

function and constraints remain valid to within acceptable error bounds. 

A large part of the logic in SLA is concerned with the adjustment of these 
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maximum step length limitations. 

Thus the essential function of the algorithm is to control and 

direct a linear programming routine. 	The results described here were 

obtained using the subroutine LAO1A from the Harwell Subroutine Library. 

This routine is a good example of the computationally refined algorithms 

currently available. 	SLA is coded so that any numerically stable 

linear programming routine may be used. 	This means that SLA can easily 

be upgraded as more efficient linear programming algorithms become avail- 

able. 	It also means that a user can employ a subroutine of his own 

choice if he wishes. 	However when choosing a different linear pro- 

gramming routine to use with SLA it is more important to use a reliable 

algorithm than to find the fastest available. 	Computer core require- 

ments vary between algorithms and this too must be taken into account 

particularly when attempting large problems. 

4-2 The Non-Zinear Programming Problem 

The general non-linear programming problem may be stated formally 

as: 

	

Minimize : 	f(x) 	, x C En  

	

Subject to : 	yx) 	0 	(i = 1,m) 	 (4-1) 

Ti (x) = 0 	(i = m+l,p) 

The formulation given above covers a range of problem types. 	If some 

or all of the elements of x are restricted to integer values the prob-

lems are properly described as either mixed integer or integer programming 

problems. 	If f, (D. and T. are all linear functions the problem is 

a linear programming problem. 	If f is a quadric and (Di  and Ti  

linear then it is a quadratic programming problem. 	The subset of prob- 

lems of concern here and which SLA is designed to solve are those for 

which f, (D.
1 
 and T. are continuous non-linear functions. 
 1 

It is 
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assumed subsequently that these functions also possess finite, continuous 

first derivatives. 	The algorithm cannot deal with integer variables 

but can solve quadratic programming problems and of course linear pro-

gramming problems. 

4-3 Linear Programming 

The linear programming problem takes a similar form to that given 

in equations 4-1 with the obvious restriction that f, 	 1 and T. are 
 1 

all linear functions. 	However the linear programming problem is conven- 

tionally stated in a different form and this form is given below. 

n 

Minimize : 

1=1 

Subject to : 
	E a..x. = b. 	= 1,13) 
	

(4-2) 

1=1 

x . 1 
(i = 1,n) 

Linear programs may be solved by the revised simplex technique [Ref. 18] 

of which there are numerous computer implementations. 	The revised 

technique differs from the original only in the details of the compu- 

tational procedure. 	It is more efficient but the underlying concepts re- 

mainthesame. 	The technique allows the solution of problems with in- 

. 	equality constraints by the addition of slack variables, to the inequality 

constraint equations. 	This computational device transforms the inequali- 

ties into strict equalities. 	The set of constraint equations defines 

a convex polyhedron or a convex region which is unbounded in some direc- 

tion. 	Within this convex region all points are feasible with respect 

to all constraints. 	It may be shown [Ref. 18, pp 52-54] that a linear 

function, defined over the convex polyhedron described by the constraint 

set, takes its minimum value at one or more of the extreme points of the 
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convex set. 	If the minimum lies at more than one extreme point then 

the linear function takes the same value for every convex combination of 

the minimal extreme points. 

The method of solution is iterative and is split into two phases. 

Phase one determines an initial feasible solution, if one exists, which 

satisfies all constraints. 	That is to say, it locates an extreme point 

of the convex polyhedron defined by the constraints. 	Phase two involves 

starting at the initial feasible solution generated by phase one and 

moving to other extreme point solutions, each time testing for a function 

decrease. 	When no further decrease is possible the procedure terminates. 

Since the convex polyhedron has a finite number of extreme points the 

procedure will always find a minimum in a finite number of moves. Possible 

cases of failure are: 

(1) No feasible solution exists; i.e. the convex polyhedron is 

void. 

(2) The solution is unbounded; i.e. at the minimum one or more 

variables assume infinite values. 

(3) Special cases where the simplex procedure breaks down. 

The first failure mode is the most important as far as SLA is concerned 

since a highly non-linear problem, once linearized may have no feasible 

solution even though the original problem does have a feasible region. 

There are two ways to proceed should this happen. 	One is to use a dif- 

ferent linearization point. 	This may produce a new linear problem which 

does have a feasible solution. 	The other way is to solve a subsidiary 

unconstrained problem whose object function is of the form: 

m 	p 	2 

T(x) 	 4) 0=1E6.2.(x) -1- ET(x ) 

i=1 
1 

i=m+1 

- where 6. = 0, 	if 	4)
1  
. 	0 

1  

6. = 1, 	if 	4).
1 
 < 0 1  

(4-3) 
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This is of course the same function which is used by the Flexible Toler- 

ance algorithm to regain feasibility. 	Other forms are possible. 	By 

minimizing T(x) a feasible point will be found if one exists. 	(Note: 

It is possible that T(x) will have one or more local minima which may 

prevent the determination of a feasible solution in this way. 	These 

cases should be rare.) 	The second failure mode cannot occur with SLA 

since the maximum step length limitation constraints ensure the feasible 

region is bounded. 	The third failure mode is very rare indeed and, 

although examples have been given in the literature [Ref. 18, pp 130-133] 

they have almost invariably been specially constructed problems designed 

to cause such failures. 	The routine LAO1A as never suffered such a 

failure while being used with SLA. 

4-4 Successive Linear Approximation 

Griffith and Stewart [Ref. 17] were first to describe a method for 

the solution of non-linear optimization problems involving the solution 

of a series of linear programs. 	The method involves the replacement of 

all non-linear functions by the appropriate first order Taylor Series 

approximations. 	In this form equations 4-1 become: 

	

Minimize : 	f (xK) + V
T
f (xi() . (x - xi() 

	

Subject to : 	(Di(xic) + V
T
(D i(xx).(x - xK) > 0, 	(i=1,m) 

Ti(xK) + V
T
Ti(x0.(x - xi() = 0, 	(i=m+1,p) 

- where x
K 

is the point at which linearization takes place. 

The substitution Bx = 	xK) is made and the equations rearranged 

as: 
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Minimize : 
	

V
T
f (x

K
) 

	

Subject to : 	V
T
(D i(xid Bx 	 (i=1,m) 	(4-4) 

V
T 	&x = 	 (i=m+1,p) 

(Note: The term f(xK
) has been dropped from the object function since 

the solution vector is unchanged by the addition or subtraction of a con- 

stant.) 	Equations 4-4 are now in a form suitable for solution by the 

revised simplex method of linear programming. 	Comparison with equations 

4-2 show that it is necessary to set: 

of 
ax. 	1 = c. 
1 

(i = 1,m) 

(i = m+l,p) 

6X. = X. 
1 	1 

(i = 1,n) 

This poses the problem in the conventional form of equations 4-2. 	Two 

difficulties arise from this formulation: 

(1) It is possible that a well-behaved problem, once linearized, 

will have an unbounded solution. 	This is illustrated for a 

two-variable problem in figure 4-1. 	The constraints (Di 

and (1)2 are linearized at the point xK  to yield the two 

constraints (DI and (1). 	The original problem has a unique 

minimum at X where the two non-linear inequalities intersect. 

However the linearized problem has no finite solution. 

(2) The perturbations (&x in equations 4-4) may be positive or 

negative, whereas the variables in a linear program are con-

fined to positive values. 
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FIG. 4-1 Linearized Problem with Unbounded Solution 
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To solve the first problem Griffith and Stewart introduce step 

length limitation constraints of the form: 

63c.STEP. 1 	1 

This prevents an unbounded solution but introduces further difficulties 

in that the !MP.1  values have to be gradually reduced as the calculation 

proceeds to ensure convergence. 	It turns out that the manipulation of 

the STEP.
1 
 values as the calculation progresses is one of the most 

critical components of a successful algorithm using linear approximations. 

The second difficulty was resolved by Griffith and Stewart by ex-

pressing each perturbation, ax., as the difference between two positive 

variables. 

&K. = 	6x. 1 	1 	1 

Since any real number, positive or negative, may be expressed as the dif-

ference between two positive real numbers, this satisfies the linear 

programming requirement for positive variables. 	However this solution 

is very costly in terms of both computer storage requirements and central 

processor time in that the dimensionality of any problem is automatically 

doubled. 	For problems with more than about ten variables the computing 

penalty rises very steeply indeed. 	In SLA this variable splitting tech- 

nique is not used and examples are given in Section 6-3 to show the sub-

stantial savings in both computer time and core storage requirements for 

a fifteen variable problem. 

4-5 The Displaced Origin Technique 

As noted in Section 4-4 the chief disadvantage of the Griffith and 

Stewart formulation lies in the necessity to double the dimensionality 

of every problem. 	This disadvantage is removed in SLA using a co- 

ordinate transformation. 	Figure 4-2 shows a two-variable problem which 
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is subject to three inequality constraints 01, (1)2  and (D3) and 

four step length limitations. 	Both object function and constraints 

.have been linearized at the point xK. 	The solution to the linear 

problem is assumed to lie at10-1 
 and thus Sx1 < 0 and 6x2 > 0. 

If, however, the problem is linearized as before at xK  and then trans-

formed to a new set of variables 6x1, (b4 such that point P in 

figure 4-2 becomes the origin, then the solution is still at xKil.  but 

the perturbations 6x1 and 6)4 are both greater than or, as for 6x1 

equal to zero. 	This is the basis of the displaced origin technique. 

There is no need to split the new variables as in the Griffith - and 

Stewart formulation, moreover, since the linear programming algorithm 

automatically produces solutions which are greater than or equal to zero 

the lower bound step length limitations do not need to be incorporated 

explicitly. 	In general this means that for an n-variable problem there 

will be n fewer constraint equations. 	For large problems this in 

itself can lead to significant computational advantage over the original 

formulation. 

From figure 4-3 it is clear that the origin displacement required 

for each independent variable is of the form: 

Ox. + si 
= 6x. 

1 1 
(4-5) 

- where 	s. are the elements of the displacement vector S shown 

in figure 4-2. 

Substituting from equation 4-5 into equations 4-4 and using the less 

compact but more explicit summation notation, the problem becomes: 



Minimize : 

n 
o f  (Sx! - s.) 
ax. 	3 	.3 

j=1 

n 30. 
(ax! — s . ) (K )

' J 	J 	K 
j=1 3  

n 3T. 

axl (6x. - s.) = -T.(x ) J 	J 	K ' 
j=1 3  
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Subject to : (i = 1,m) 

(i = m+1,p) 

 

These equations may be further simplified as: 

n 

	

Minimize : 	E4_,..9 	— K1 
j=1 3  

n 30. 

	

Subject to : 	- (Di(xid, 
axl 

j=1 3  

n 

E ,7 = K3 - 

j=1 

n 

- where K1 = Ea 
j=1 3 

Sij 

n 

E3x  
s
j
, 

j=1 3  

n 3T. 

3 Laax. s., 
j=1 

(4-6) 

(i = 1,m) (4-7) 

(i = m+1,p) (4-8) 

(4-9) 

(i = 1,m) (4-10) 

(i = m+1,p) (4-11) 

(Note: In SLA the constant K1  is dropped from the object function since 

only the solution vector and not the value of the object function itself 

is of interest.) 

Thus in order to set up a linearized problem using the displaced 

region technique all that is required is the displacement vector, s, and 

the partial derivatives of both object function and constraints. 	The 
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procedure for determining S is described in detail in Section 5-3-1. 

4-6 Cubic Fitting 

The most characteristic feature of algorithms using successive 

linearization is the oscillatory nature of the search. 	Unless positive 

action is taken it is possible for an algorithm to oscillate indefinitely 

(see figure 4-4) or make slow zig-zag progress (see figure 4-5). Several 

authors [e.g. Ref. 19] make use of the sign of the x increments (Fc 

in equations 4-4) to detect an oscillatory variable. 	A succession of 

positive x-increments shows steady progress in the positive x-direction 

while a succession of negative x-increments shows progress in the negative 

x-direction. 	Alternating signs on x-increments indicate oscillation. 

Once oscillation is detected action is taken to reduce the maximum step 

length (i.e. the maximum value of l(Sxii) of the oscillating variable. 

There is usually provision for increasing the maximum step length by a 

constant factor following several steps in the same direction. 

In SLA oscillation is recognised by more precise criteria than alter- 

nating increment signs. 	Also, step reduction is accompanied by a cubic 

fitting procedure which attempts to locate a minimum, if any, between the 

points of oscillation. 	This minimum is used as the linearization point 

for the following iteration. 	The motive for doing this is to locate the 

axis of the valley causing oscillation. 	On the axis the object function 

gradient is directed along the line of the valley which enables progress 

to be made down the valley without oscillation across it. 	A variable, 

x., is recognised as oscillating if, and only if, two conditions are 

met: 

(1) 

	

	The value of the variable at iteration number k is the same, 

within a small tolerance, as the value it had at iteration 

number k-2. 



P- 	L 2 

SOLUTION OF LINEAR PROG• 1 IS POINT B 
SOLUTION OF LINEAR PROG• 2 IS POINT A 

FIG. 4-4 	Indefinite Search Oscillation. 
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LP1 

SOLUTION OF LINEAR PROG• 1 IS POINT B 
SOLUTION OF LINEAR PROG• .2 IS POINT C 

FIG. 4-5 	Inefficient Zig-zag Search. 
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i.e. 	if, 	Ix. - X15.-2 1 E 
1 	1 

(2) 	The value of the variable at iteration number k is not the 

same as it was for iteration number k-1. 

K-11 
i.e.i121x.- x. I > e 

1 	1 

- where c is a small tolerance factor. 

(Note: This second condition ensures that stationary variables are not 

classified as oscillating.) 	If one or more of the independent vari- 

ables is found to be oscillating then the cubic fitting procedure is 

used to estimate the position of the minimum, if any, lying between the 

current and previous points. 	The procedure is to determine a point 

X such that 

= xmxx -1 ' (1-Am) xK 	 (4-12) 

- where 0 5 Xm  1 and is chosen to minimise a cubic approximation 

to the object function, a(X), between the points xi(  and 

a(X) = a3X3  + a2A2  + alA + ao 	(4-13) 

In the early stages of the development of SLA the coefficients 	a0, al, 

a2 and a3 were determined using the two object function values f(xK) 

and f(xK_1) and also the gradients at xK  and x1(.....1. 	However the 

calculation of these gradient values, if done numerically, involved for 

an n-variable problem n+1 object function evaluations in each case. 

For complex object functions this could involve a not insignificant 

amount of computing effort. 	For this reason the cubic fitting procedure 

was changed to use four function values only to determine the coefficients 

for the cubic fit. 	The function evaluations are evenly distributed between 

x
K 

and x
K-1 

on the line defined by equation 4-12 (i.e. at X = 0, 1/3, 

2/3, 1). 	If these four function values are denoted by fl, f2, f3 and 



f4 then, by direct substitution into equation 4-13, we have: 

a0 = fl 

(1/27)a3 + (1/9)a2 + (1/3)al + a0 = f2 

	

(
8
/27)a3 + (

4/9)a2  + (
2
/3)a1 + a0 = f3 
	(4-14) 

a3 + 
	

a2 + 	al + a0 = f4 

The solution of equation 4-14 for the coefficients a0, al, a2 and 

a3 is quite straightforward. 	The minimum of equation 4-13 is found 

a 
by setting 

-5
7,-= 0 and solving the resulting quadratic equation which 

yields: 

-al 
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A
m 

   

(4-15) 

   

2 a2 ± Ira2 - 3a3a1 

 

Inspection of the second derivative of equation 4-13 shows that Am  

corresponds to a minimum when the square root in equation 4-15 has a 

positive sign. 	There are several ways in which this numerical procedure 

can break down when implemented on a finite arithmetic computer. 	In the 

cubic fitting subroutine checks are made for breakdowns such as zero or 

very small denominators in the expressions used to calculate the co-

efficients ao, al, a2 and a3 and also in the calculation of Am. 

In such cases X
m 

is set to a value corresponding to the lowest of the 

four function values. 'More complete computational details are given in 

,Chapter 5. 

It should be noted that the cubic fitting procedure is not an itera- 

tive search for a minimum but a 'once only' fit. 	The extra effort re- 

quired to locate a minimum to high accuracy would probably not be justi-

fied in terms of increased computational efficiency except possibly for 

complex unconstrained problems. 

Once A
m 

has been determined from equation 4-15 or otherwise, the 

value of the 'fitted point', x is found from equation 4.12. 	This point 
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is used as the linearization point for the next iteration. 	Before this 

next iteration begins however, the step lengths of the oscillating vari- 

ables only are reduced to a value of FACRED.Ix.
K  
- x15-1 1 • 	The value 

1 

of the reduction factor, FACRED, is supplied by the user and --ill gen- 

erally be in the range 0.1 to 0.4. 	The computer time required to 

solve a given problem is not sensitive to variations in FACRED. 	The 

choice of an optimum value for FACRED is discussed fully in Chapter 6. 

4-7 Pattern Moves 

Figure 4-6 shows the first few steps made by SLA on the well-known 

(unconstrained) Rosenbrock valley problem [Ref. 6]. 	The axis of this 

long curving valley is marked, and the effect of using cubic fitting is 

shown. 	The points marked 4F, 6F and 8F are the result of fitting 

cubic approximations to the object function between points 3 and 4, 

5 and 6, and 7 and 8 respectively. 	It is clear from figure 4-6 

that cubic fitting is able to locate the valley axis quite accurately. 

It is also clear that a 'pattern move' in a direction defined by two con-

secutive fitted points would produce a function decrease without the 

computational expense of setting up and solving a linear program. The 

procedure adopted by SLA is that whenever there are two consecutive 

fitted points a pattern move is attempted. 	The new point is first tested 

for feasibility with respect to both equality and inequality constraints, 

if any. 	An infeasible point is rejected and a new linear program is 

initiated from the last fitted point. 	If however the new point is feasible, 

the object function at that point is tested to see whether it is the best 

so far located. 	If it is not, then the procedure is as for an infeasible 

point. 	However if it is a best ever point, another pattern move of 

twice the size of the previous move is attempted. 	The rule for generating 

successive pattern moves is: 
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FIG. 4-6 	Progress along Rosenbrock Valley using Cubic Fitting. 
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x
n 

= x
n -1 

+ (K
K+1 

- x
K
).2

n-1 	
(4-16) 

- where x
n 

is the n
th

p 	 pattern move point. 

x
K 

is the 
	t 

fitted point. 

(Note: xa  = x
f
K+1 

 , and so the first pattern move is 

xl = 2.x
K+1 

 - 
 xf)  

The pattern moves are essentially unidirectional probes which terminate 

when a point is found which is either infeasible or not a 'best ever' 

point. 	Figure 4-7 shows the effect on the Rosenbrock function of using 

pattern moves. 	On unconstrained problems it has been found that the 

rate of progress is invariably enhanced by pattern moves. 	The effect 

on constrained problems is less marked but pattern moves usually provide 

some useful gains at relatively low computing cost. 

For unconstrained problems there would almost certainly be an in-

crease in efficiency by changing the probe to a unidirectional search 

for a minimum. 	However the algorithm was designed primarily for con- 

strained problems and a unidirectional search which took account of con-

straints would undoubtedly make the algorithm more complex and would not 

necessarily produce significant gains. 

The pattern move plays another important role in SLA apart from 

accelerating the search procedure. 	If two consecutive fitted points are 

the same element by element to within the input convergence criteria then 

a test is made for 'zero length pattern move convergence'. 	This test, 

which is described more fully in Chapter 5, checks the latest fitted 

point for feasibility and then checks it against the previous best ever 

point. 	If the fitted point is a 'best ever' point, or very close to it, 

convergence is declared and the algorithm terminates. 	This method of 

detecting convergence prevents a tendency of the algorithm to circle 

around the optimum point on some problems. 
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CHAPTER 5 

IMPLEMENTATION OF THE ALGORITH, SLA 

5-1 Optimization Package 

One of the objectives of the work described here is to provide a 

computer program which will be of use to others confronted with non-linear 

optimization problems. 	In this chapter a description is given of the 

program SLA which has been designed as an easy to use optimization pack- 

age. 	Great importance has been attached to the ease with which the 

code may be used since one requiring laborious input is likely to be 

passed over in favour of another which is easier to prepare even though 

it may be less efficient. 	It was originally intended to require the 

user to provide a main calling routine as well as separate routines to 

calculate the object function and constraints. 	An optional routine to 

supply analytical first derivatives was also to be provided. 	However 

in order to reduce to the very minimum the amount of preparation to be 

done by the user, empty routines have been supplied so that the user is 

relieved of the chore of punching any cards which are not absolutely 

specific to his problem. 	This has also enabled the provision of counters 

in the user subroutines so that statistics of interest (e.g. number of 

function evaluations) can be conveniently collected. 	Perhaps most import- 

ant of all it enables the documentation to be included as comment cards 

in the program itself. 	This is certainly the most direct and durable 

method of documentation. 	All that is required of the user is that he 

reads through the comment cards in the first section of the code and fol- 

lows the instructions found there. 	A listing of this first section of 

the code is given in Appendix 2. 	The most demanding task for the user 

is probably that of assigning dimensions to the main arrays. However the 

instructions are explicit and it has only to be done once in the main 
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routine. 	All other routines have variable dimensions. 

5-1-1 Structure of Optimization Package 

Figure 5-1 shows schematically the relation between the various 

routines used in the SLA optimization package. 	A line joining two sub- 

.0) 	 routines indicates that the lower routine is called by the higher. The 

routines shown in the centre section of figure 5-1 require no attention 

from the user. 	The other five routines must be completed by the user 

by the addition of information describing the problem. 	Details of the 

required information are given below. 

(1) Main routine 

Dimension main arrays. 

Set upper and lower bounds on each independent variable. 

Set: 	N = number of independent variables. 

NCONS = number of inequality constraints. 

NEQUS = number of equality constraints. 

Set: IDERIV = 1, if analytical derivatives to be supplied, otherwise 

set to zero. 

For I = 1,N set: 

TEST(I) = Convergence criterion for X(I). 

XSTRT(I) = Initial value for X(I). 

STEP(I) = Maximum step length for X(I). 

DELX(I) = Perturbation in X(I) for numerical derivative deter- 

mination. 	(Only if IDERIV = 0). 

Set four print control parameters. 

(2) Subroutine UREAL 

Provide FORTRAN statements which, given the value of X(I), evaluate 

the objection function, f. 



SIMPLEX 
ROUTINE 
(LAOIA) 

CUBIC CHECK LINEAR 

UREAL CONSTI- 

MAIN I 
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	I EQUAL 

++  
'GRAD 

++ This routine is optional 
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50. 

FIG. 5-1 	Construction of SLA Optimization Package. 
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(3) Subroutine CONST 

Provide FORTRAN statements which, given the value of X(I), evaluate 

each inequality constraint. 	These values are set in an array PHI(I), 

where I=1,NCONS. 	If there are no inequality constraints do nothing. 

(4) Subroutine EQUAL 

Provide FORTRAN statements which, given the value of X(I), evaluate 

each equality constraint. 	These values are set in an array PSI(I), 

where I=1,NEQUS. 	If there are no equality constraints do nothing. 

(5) Subroutine GRAD 

If .IDERIV has been set to zero do nothing. 	Otherwise, provide 

FORTRAN statements which, given the value of X(I), evaluate the first 

partial derivatives of the object function and set them in order into the 

array DELX(I), I=1,N. 	If there are constraints then FORTRAN statements 

must be provided to set into the location (I,J) 	of the array CDERIV 

the first partial derivative of the I
th 

constraint with respect to 

X(J). 	Only non-zero elements need be entered. 	Inequality constraints 

must be entered before equality constraints. 

Appendix 2 gives FORTRAN listings of these five routines and shows 

exactly how a complete problem is set up for solution by SLA. 

5-1-2 Core Requirements for Optimization Package 

The core (central memory) requirements for a FORTRAN computer pro-

gram may be conveniently divided into three categories: 

(1) Program instructions. 

(2) Array storage requirements. 

(3) System routines. 

The core requirement for program instructions depends partly upon which 

compiler is used. 	Some compilers produce compact machine code requiring 

relatively little storage whilst other compilers, which may be designed 

primarily for fast execution, are less economical. 	The other, usually 
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dominant factor which determines the storage required for program instruc-

tions is the number of statements necessary to encode the problem itself. 

For example, one problem may require only a single line of FORTRAN to 

calculate the object function, whilst another may require a lrrge and 

complex subroutine with many program instructions. 	Thus it is not 

possible to predict in advance exactly how much computer core will be re- 

quired for any given problem. 	However, as an example, the shielding prob- 

lem discussed in Chapter 7, which has 25 variables and 50 inequality con-

straints required approximately 4200 words of central memory for the 

search routines (i.e. APPROX, LINEAR, CUBIC, CHECK, SIMPLE and LAO1A) 

plus 3600 locations for the problem specific routines (i.e. MAIN, CONST, 

EQUAL, GRAD and UREAL). 

The array storage required by SLA for a particular problem is pre- 

cisely predictable given the number of variables and constraints. 	If 

the number of variables is N, the number of inequalities NCONS and 

the number of equalities NEQUS then: 

Cbre Requirement = (M+1)(M+5) + M(N+2) + 13N + NCONS 	(5-1) 

- where M = NCONS + NEQUS + N 

For the 25 variable shield problem equation 5-1 predicts a core require-

ment of 8480. 

The size and number of system routines (e.g. input and output 

routines) will vary from installation to installation depending upon the 

operating system in use. 	For the shield problem the system routines re- 

quired approximately 3400 central memory words. 	The total core require- 

ment for the shield problem is thus 4200 + 3600 + 8480 + 3400, which is 

19680 words of central memory. 
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In order to give an indication of the core requirements for other 

problems figure 5-2 has been constructed. 	It has been assumed for illus- 

trative purposes that an average problem will require 11000 locations for 

program instructions and system routines. 	Also it has been assumed 

that this average problem has four times as many variables as equality 

constraints. 	This latter assumption is made since, given the core avail- 

able, equation 5-1 is a function of three variables (N, NCONS and NEQUS) 

which cannot easily be plotted. 	Thus by setting NEQUS = N/4 in 

equation 5-1 it is possible to plot lines showing the maximum problem 

size attainable for a given central memory allocation as a function of 

inequality constraints and independent variables only. Therefore prob-

lems to the left of the line marked CM = 20000 in figure 5-2 have array 

requirements of 9000 or less. 	This is 20000 less the notional 11000 

locations for program instructions and system routines. 	Problems to the 

left of the line marked CM = 40000 require arrays of 29000 or less. 

It must be emphasized that figure 5-2 can only give an indication of the 

core requirements. 	For example a problem may not have any equality 

constraints at all in which case extra inequalities could be accommodated 

for a given number of independent variables. 	Also variations in the 

core requirements for program instructions and system routines will dis-

place the lines shown in figure 5-2. 

The core requirements discussed above, if met, enable the code to 

run. 	However before this is possible the code must be first compiled and 

then loaded into the central memory. 	The amount of core required for 

each of these two operations may exceed the core required to execute the 

code. 	The core requirements of the compiler and the loader vary depend- 

ing upon the particular compiler used and the operating system. 	The 

shielding code required 23300 locations to compile and 15400 to load on 

the Imperial College CDC 6400 computer. 
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5-2 The Subroutine APPROX.  

This routine is the largest and most complex part of SLA. It serves 

four main functions: 

(1) To adjust maximum step lengths. 

(2) To test for convergence. 

(3) To form pattern moves. 

(4) To increase step lengths if the linear programming routine 

find's no feasible solution. 

Figure 5-3 shows in the form of a block diagram the principal tasks per-

formed by APPROX. The preliminary housekeeping shown at the top of the 

diagram involves setting some constants which are used for variable dimen- 

sions in other subroutines. 	Also some data checking is done. 	For 

example, a check is made to ensure that the lower bounds on the independent 

variables are less than the upper bounds. 	The subroutine LINEAR which 

sets up the linear program is described in detail in Section 5-3 and will 

not be discussed here. 	The test for a failure of the linear program sub- 

routine involves only the inspection of a variable, KO. 	This is set to 

1 in the linear programming routine if it fails, and is otherwise zero. 

The loop involving a failure of the linear program only has relevance at 

the start of the calculation when the user may have set the initial step 

lengths too short to encompass the feasible region. 	If however linear- 

ization at the input starting point produces a problem which has no feas-

ible solution at all this step doubling procedure cannot help and alter- 

native procedures must be employed (see Section 4-3). 	In almost all the 

test problems on which SLA has been tried, once one successful linear pro-

gram has been executed the feasible region is never lost; i.e. there are 

no subsequent linear program failures. 	Cases where feasibility is lost 

are discussed in Chapter 6. 	The new point generated by the linear pro- 

gram is tested for feasibility by first evaluating the inequality con- 
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straints at the new point. 	For strict feasibility the value of the 

constraints should be greater than or equal to zero. 	However, small 

violations
-6 

 to 10) are tolerated. 	For most purposes this is more 

than adequate. 	If the new point is feasible with respect to the inequal- 

ities it is then tested for feasibility with respect to the equality con- 

straints. 	If however the point is infeasible with respect to the in- 

equalities an informative message is printed and no test is made for 

feasibility with respect to equality constraints. 	A point which is feas- 

ible with respect to inequalities but not equalities also produces an 

informative message. 	When satisfied equality constraints should be 

exactly equal to zero but, as for the inequality constraints, a tolerance 

of 10
-6 
 is allowed. 	Therefore any point described as feasible by SLA 

will cause inequality violations of at most 10 6  and the equality con- 

straints, when evaluated, will lie in the range -10-6 to +10
-6
. 	The con- 

vergence tests which follow the feasibility tests are fully described in 

Section 5-6. 	The bulk of the routine APPROX is concerned with the step 

adjustment strategies. 	Odd and even iterations are treated separately. 

The procedure for odd iterations is brief compared to that for even iter- 

ations. 	Both procedures are described in some detail below. 

5-2-1 Even Iteration Step Adjustment Strategy 

The functions performed by the even iteration step adjustment strat-

egy are fourfold: 

(1) To identify variables which are oscillating, if any. 

(2) If any variables are oscillating, to call the subroutine CUBIC 

and perform a cubic fit, at the same time reducing the step 

length of oscillating variables. 

(3) If a cubic fit is performed and the last even iteration also 

involved a cubic fit, to attempt a pattern move. 
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(4) 	To increase by a constant factor (FACINC) the step length of 

any variable which has made two full length steps in the same 

direction. 

These four functions are described below with the aid of flow diagrams. 

The first stage involves labelling each variable as one of four 

types. 

(1) Oscillating 

(2) Stationary 

(3) Moving 

(4) Moving - last two steps were of full length and in the same 

direction. 

The logic flow for this section is shown in figure 5-4. 	The array 

JELLY holds indicators from 1 to 4, which show the type of movement being 

made by a particular variable. 	For instance, if JELLY(7) = 1 this 

shows that X(7) is oscillating. 	In figure 5-4, X(I) is an n-element 

array containing the current values of the independent variables, and the 

array XSTRT(I) holds the values of the independent variables at the 

last but one iteration; i.e. the previous even iteration. The array 

XINC holds the changes made to the values of the independent variables by 

the current iteration. 	This means that the value of the I
th 
 independent 

variable at the previous (odd) iteration was X(I) - XINC(I). 	The array 

OSCI(I) holds the oscillation tolerance factors for each variable. 

The tolerance factors used are: 

(Input convergence criterion) x FACRED x 0.1. 

Referring to figure 5-4 it is seen that variables which move by less than 

this oscillation tolerance factor are labelled as stationary (JELLY(I)=2). 

Further if a variable moves by more than the oscillation tolerance factor 

and its current value is the same, within the oscillation tolerance fac-

tor, as its value at the previous even iteration then it is deemed os- 
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FIG. 5-4 	Classification of Variable Movement. 
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cillating. 	Variables which are neither stationary nor oscillating are 

classified as merely 'moving', but those for which the distance travelled 

between the last even iteration and the current even iteration is greater 

than 1.99 x STEP(I) are classified as moving strongly in one direction 

(JELLY(I)=4). 	The array STEP(I) holds the maximum step length for each 

of the independent variables. 	If any of the independent variables is 

oscillating then the indicator IOSC is set to 1. 	This indicator is 

used to determine whether a cubic fit should be made in the next stage 

of the even iteration step adjustment procedure. 

Figure 5-5 shows the next stage. 	Type 3 variables which move less 

than five percent of the maximum step length have this step length halved. 

If there has been no oscillation (IOSC=O) then this is the only step re- 

duction which is made. 	However if at least one variable is oscillating 

then a call is made to the subroutine CUBIC which estimates the position 

of a minimum, if one exists, between the current point and the last point 

in the search. 	The subroutine CUBIC requires the value of the object 

function at the current point. 	The indicator IUCALC shows whether it 

has been calculated during earlier feasibility and convergence tests. 

If the object function has not been evaluated (IUCALC=0) a call is made 

to the subroutine UREAL to do this calculation. 	Computational details 

of the cubic fitting subroutine are to be found in Section 5-4. 

The third stage of the even iteration step adjustment strategy in- 

volves the formation and testing of pattern moves. 	As described in 

Section 4-7. moves of this type are attempted following the determination 

of the second of two consecutive (even iteration) fitted points. Figure 

5-6 shows the computational logic. 	The difference between the current 

and last fitted point is assessed on an element by element basis. This 

means that in order to be considered for a zero length pattern move con-

vergence the change in the value of each independent variable must be 
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less than the prespecified convergence criterion for that variable. 	If 

at least one movement exceeds this value then a test is made, using the 

subroutine CHECK, to determine whether the current fitted point is both 

feasible and the best so far. 	If it is, it is saved in special locations 

and a pattern move is formed based upon the current and last fitted point. 

The rule for generating pattern moves is given in equation 4-16 of Section 

4-7. 	The new point is tested against the joint criteria of feasibility 

and lowest object function value so far. 	If it is a successful move 

another pattern move is attempted. 	Otherwise the step is reversed and 

no further moves are attempted. 

The fourth and final section of the adjustment strategy deals with 

type 4 variables only. 	The step lengths of these variables are increased 

by a factor FACINC provided that such an increase does not produce a 

step length which is greater than the maximum range of the variable. 

This maximum range is set to the difference between the upper and the 

lower bound for each variable. 

5-2-2 Odd Iteration Step Adjustment Strategy 

No classification of movement is necessary for the odd iteration step 

adjustment strategy. 	There are no changes in step lengths unless movement 

is less than five percent of the current step length and greater than the 

oscillation tolerance factor in which case the step length is halved. 

However there is one additional mechanism for step reduction. 	At every 

odd iteration which is an exact multiple of 5 (i.e. 5, 15, 25, ...) a 

check is made to see if any step lengths are more than 200 times the 

smallest step length. 	If there are any, they are reduced by the factor 

FACRED. 	This is done since large differences in step sizes could cause 

numerical difficulties in the linear programming routine. 	There is a 

test to ensure that this type of step adjustment does not cause the step 

lengths to be reduced to below the convergence criteria. 	This prevents 
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one rapidly convergent variable forcing convergence on all other vari-

ables. 

5-3 The Subroutine LINEAR 

The main task performed by this routine is to set up the equations 

required by the linear programming subroutine. 	Specifically, values are 

assigned to the arrays a.., b. b 	and c
i 

of equations 4-2 in Section 
1   

4-3. 	Figure 5-7 shows the structure of the routine. 	The control param- 

eter IDERIV is set to zero by the user if numerical derivatives, are 

required. 	In this case the array DELX must be given values 6xi  to 

be used in formulae of the form: 

of 	_ f(xl,x, 	x. + sx. 	xN) — f(xl,x2 	sx. ..  xN) 

3x. 	 dx. 

(5-1) 

These 15xi  values are set in the main routine (see Section 5-1-1). 

If the user wishes to provide analytical first derivatives of both object 

function and constraints then IDERIV is set to 1 and FORTRAN state-

ments for the'evaluation of these derivatives must be added to the sub- 

routine GRAD. 	The initial section of LINEAR takes the first partial 

derivatives of the object function and sets them into the array, c. 

Following this a test is applied, for unconstrained problems only, on the 

square of the gradient norm: 

N 	 N 
af  

[Gradient norm] 2 
	E 	= E [ci] 

2  

i=1 	

2 	

i=1 

(5-2) 

If the square of the gradient norm is less than 5 x 10-7  then convergence 

is assumed. 	This test gives a useful extra convergence mechanism for un- 

constrained problems. 	The next stage in LINEAR is the calculation of 

the displacement vector S (See Section 4-5). 
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5-3-1 Calculation of the Displacement Vector 

As described in Section 4-5 the vector S has elements s.1 
 which 

give the displacements required to change the origin of the linear pro-

gram from the point of linearization to the intersection of the lower 

bounds. 	The lower bound for a variable may be either the input lower 

bound constraint or it may be the linearization point (current position) 

less the current variable step length. 	The situation is illustrated in 

figure 5-8. 	In this diagram the four possible arrangements of upper 

and lower bound constraints (marked xu  and xL) with the step length 

limitations (marked by the two broken lines) are shown. 	The linearization 

point is at x. and the appropriate displacement vectors are marked Si. 

It is apparent that in general s.1  should be: 

s
1  
. = Minn 	1 - x

L  )' 	1 
STEP.1 

-whereSTEP.is the current step length for variable, x.. 

Itshouldbenotedthatx.will always lie between x 	and x L' 

5-3-2 Determination of Maximum Step Length 

In the absence of upper and lower bound constraints the maximum 

step length allowed from the displaced origin would be simply twice the 

current variable step length, STEPi. 	Figure 5-8 shows the situations 

which can arise when upper bound constraints are present. 	The maximum 

step length is seen to be the minimum of the distance between the dis-

placed origin and the upper bound, and the distance between the displaced 

origin and the linearization point plus the current step length. That 

is: 

1 
	{(xU  - x. 

	1 1 
+ s.), (STEP. + s.)} 

Values of u. are calculated for each variable x.. 	In this way step 

length limitations and upper bound constraints are combined. The pro- 
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cedure described above chooses the more restrictive of the two constraints. 

The values of u. for each of the four cases are marked on figure 5-8. 

5-3-3 The Linearization of Constraints 

The linearization of the constraints is done either numerically or 

analytically. 	If done analytically (IDERIV=1) the partial derivatives 

are simply transferred from an array which the subroutine GRAD has gen- 

erated. 	Numerical derivatives are calculated using the difference for- 

mula given in equation 5-1 of Section 5-3. 	Figure 5-9 shows schematic- 

ally the way in which the input for the linear programming routine is 

prepared. 	The notation used is that of equations 4-2 of Section 4-3 

and equations 4-6 to 4-11 of Section 4-5. 	The example given is a four 

variable problem having two constraints, one inequality, 4)1 , and one 

equality, Y. 	The first four rows of A set up the step length limi- 

tations. 	The values 	ul, u2, u3 and u4  are the upper limits on 

the step lengths and are obtained as described in the previous section. 

The next (fifth) row of A sets up the inequality 1,1, and the last row 

arranges the equality constraint Ti. 	The arrangement of A and B is 

dictated by the linear programming algorithm, LAO1A, which is used with 

SLA. 	This routine requires that the inequalities precede the equalities 

in row order in A. 	There are two other considerations to be noted 

while using LAO1A. 

(1) 	Inequalities must be in the form: 

act.. 
LE:1 Sx ' ax. j 	G. 

J=1 	3  

(i = 1 ,m) 

(Note reversed inequality as compared to equation 4-7.) 
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(2) 	Equalities must be in the form: 

3T. 

Dx. 
dx! 	

1 
= G. 

j=1 3 
j 

 

where G. 3 0 

(i = m+1,p) 

(i = m+l,p) 

(i.e. the r.h.s. must be non-negative). 

The first of these requires that both sides of the inequalities in 

equations 4-7 must be multiplied by -1 in order to reverse the inequality 

th i 
sign. 	Thus for the inequality constraint: 

a(D. 

— 

 
G. 	

ax. sj 
j=1 j  

- where (Di(xid is the value of the inequality at the linearization 

point xK. 	The partial derivatives are also evaluated at xK  and the 

s.
1 
 values are derived as shown in Section 5-3-1. 	The second require- 

ment, that G. be greater than or equal to zero for equality constraints 
1 

is met by multiplying both Gi  and the corresponding row of array A 

by -1 if Gi  is less than zero. 	Therefore: 

N aT.  

G. 
1 = 
	(E 	si  - Ti(xK) 	(i = m+l,p) 

j=1 3  

It should be noted that the use of a different linear programming 

routine with SLA may require some changes in the format of the arrays A 

and B. 	Such changes will only involve minor modifications. 

5-4 The Subroutine CUBIC 

This subroutine attempt to locate a minimum lying between two points 

xK  and 
xK-1' 

if one exists. 	The last qualifying phrase is important 

since when the routine is called it is not known whether there is a 
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minimum at all. 	As explained in Section 4-6 the subroutine originally 

used two function values and two gradients to fit the cubic equation. 

However in order to economise on the number of object function evaluations 

the final version of CUBIC uses just four function values only. Only 

the final version of CUBIC is described here. 	The most important ob- 

jective in the design of this routine was that of numerical reliability. 

To this end four tests were made to determine whether a cubic fit is liable 

to run into difficulties. 	The first test takes the four function values 

fl, f2, f3 and f4  in two sets, (flf2f3) and (f2f3f4) and tests: 

(1) fl  < f2 
	and 
	

f3 < f2 

(2) f2  < f3 	and 
	

< f3 

If either of these two tests is positive, there is a maximum in the 

interval and cubic fitting to locate a minimum is inappropriate. 	The 

second test involves assessing the separation between the maximum and 

minimum values of the fitted cubic. 	This separation is expressed in 

terms of the cubic coefficients of equation 4-13 as: 

Root separation = 	
2 	2 a2 - 3a3a1 

If the turning values of the cubic fit are too close then the fit is re-

jected, since they represent only a small kink in an otherwise monotonic 

function. 	The test actually applied is that the root separation shall 

always exceed 0.5. 	Note that the fit is scaled so that the distance 

between the two end points of the fit is 1.0. 	The third test is applied 

to the denominator of the algebraic expression for kin  given by equation 

4-15. 	If this falls below 10 12  the fit is rejected so avoiding the 

possibility of program failure due to the generation of an 'infinite' 

result. 	The final test checks whether the calculated result lies between 

0 and 1, i.e. within the interval of interest. 	Figure 5-10 shows a 

block diagram of the subroutine. 	The four tests described above are 

3a3 
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FIG. 5-10 	Block Diagram of the Subroutine CUBIC. 
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shown. 	If any one of these tests fails the value of A is chosen to 

correspond to the minimum of the four function values. 	This use of the 

minimum of the four function values is thus the 'back-up' to the cubic 

fit and is very reliable. 	The only possibility of failure arises where 

two or more function values take exactly the same minimum value. Since 

the 60 bit computer word on the CDC 6400 machine gives 12 significant 

figures such exact equality between function values is rare. 

As shown in figure 5-5 the subroutine CUBIC is called once for 

each variable during the even iteration step adjustment strategy in 

cases where there has been at least one oscillating variable. It would 

obviously be wasteful of computing effort to repeat the same cubic fit 

for each variable in turn. 	Therefore once a value of A has been deter- 

mined for a given even iteration a variable ITLAST is set to the value 

of the current iteration number, ITNO. 	In subsequent calls to CUBIC 

on the same iteration ITLAST is equal to ITNO and X is not re-

evaluated. 

Tests on a variety of problems have shown that root separation and 

small denominator failures are rare events. 	Maxima have been found in 

only one problem which involved one quadratic and one linear equality 

constraint on a quadratic object function. 	This problem (Number 12 

in Appendix 1) was successfully converged. 	By far the most common 

reason for rejecting the cubic fit is that of a A value greater than 

I or less than O. 	Almost invariably this is because the object function 

is monotonic between the two end points. 	However a well-behaved cubic 

fit with a well-defined minimum is found on most problems most of the 

time. 
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5-5 The Subroutines SIMPLE and CHECK 

The subroutine SIMPLE is called only by the routine APPROX and 

allows all the input data for the simplex routine to be printed. 	Nor- 

mally this information is not required and the indicator IDATA is used 

to suppress the output. 	The output can be very useful for tracing 

errors in, for example, user-supplied analytical derivatives. 	However 

in normal circumstances SIMPLE is a transparent routine serving only to 

call the linear programming subroutine. 

The subroutine CHECK takes a point X(I) and tests whether it is 

feasible and whether it has the lowest object function value so far. If 

the point satisfies both these conditions the value of X(I) is trans-

ferred to an array WORK19(I) and the corresponding value of the object 

function is stored as the variable ULAST. 	An indicator, IN2, is set 

to 1 to show that a new, feasible, best ever point has been found. 

The indicator is otherwise 0. 	Figure 5-11 shows the structure of CHECK. 

The elements of X(I) are only checked for boundary violations when 

X(I) has been obtained by a pattern move. 	The implementation of this 

check is controlled by the indicator IN1. 

5-6 Modes of Convergence 

There are four ways in which the code SLA detects convergence. 

(1) The changes in the elements of X(I) between any two conse- 

cutive iterations are less than the convergence criteria. 

(2) Two consecutive fitted points are the same, element by element, 

to within the convergence criteria. 

(3) There is no change in the best (i.e. lowest) feasible function 

value in ten consecutive iterations. 

(4) The magnitude of the local gradient is close to zero (uncon- 

strained problems only). 
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The convergence criteria used in the first two tests above are the 

convergence criteria supplied by the user (See Section 5-1-1) reduced by 

the step reduction factor, FACRED. 	This tightening of the convergence 

requirements is done since the cubic fitting procedure only estimates 

the position of a minimum. 	It is not an iterative search. 	This esti- 

mate may be in error by as much as the difference between the current and 

last iteration values of X(I). 	If convergence is achieved by gradual 

step length reduction, the tighter convergence criteria ensure that at 

least one cubic fit, and consequent step reduction, is required between 

points which are separated by no more than the user-supplied convergence 

criteria. 	In practical terms this means that the degree of convergence 

requested by the user is actually achieved. 

The four modes of convergence are each discussed below. 

Convergence Mode (1) 

Convergence of this type is potentially the most efficient since, if 

the number of active constraints is at least equal to the number of inde-

pendent variables, then convergence may be achieved without any step 

reduction. 	Under these circumstances the search routine effectively 

uses the linear programming routine to solve a set of non-linear simul- 

taneous equations. 	Convergence is achieved when the same point is gen- 

erated on two successive iterations. 	When the number of active constraints 

is less than the number of independent variables convergence is less rapid. 

The rate of convergence in such cases is principally dependent upon how 

far the step lengths are required to be reduced. 

Convergence Mode (2) 

Mode 2 convergence is of one of two types. 	In both these cases two 

consecutive fitted points are, element by element, the same to within the 

convergence criteria. 	However the most recent fitted point may or may 

not be the best so far (i.e. both feasible and having the lowest object 
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function value to date). 	If it is the best so far a message is printed: 

'ZERO LENGTH PATTERN MOVE CONVERGENCE' 

If the point is not the best so far a further test is made to see 

whether it is, element by element, within the convergence criteria of 

the best point so far located. 	If it is then a modified message is 

printed: 

'BEST POINT SO FAR USED FOR ZERO LENGTH PATTERN MOVE CONVERGENCE' 

Any points not satisfying either of these tests produce a message: 

'PATTERN MOVE CONVERGENCE FAILURE IT.NO.' 

- followed by the appropriate iteration number. 

These warnings are not frequent occurrences and do not indicate that the 

program is in difficulty. 	Almost invariably zero length pattern move 

convergence follows within a few iterations of such a message. 	The 

zero length pattern move convergence mechanism has proved very successful 

in preventing the search circling around the optimum point. 

Convergence Mode (3) 

Convergence tests of this type are made at iteration numbers 5, 15, 

25, 35 ... etc.. 	The test compares the function value, ULAST, which is 

the current best so far located, with the function value which was the 

current best so far located at the last test. 	This value is stored in 

a register UREF. 	If this has not changed by more than 1 in 106  

then convergence is declared. 	Convergence can not be declared at itera- 

tion number 5 since UREF is given an initial value of 1050. 	Before 

the convergence test is made a counter is checked to ensure that there 

have been at least two feasible points generated since the last test. 

This test is important since it is possible that, while SLA is following 

a non-linear constraint and making useful progress towards the optimum, 

a whole series of infeasible points are found. 	The points are infeasible 

because of the linear approximations being made. 	As the optimum is 
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approached step lengths are reduced, the approximation improves and 

feasible points are found. 	However since no infeasible point can be 

selected as a best point so far, a sequence of ten such infeasible points 

is sufficient to cause false convergence. 	The test is applied to ensure 

that at least two feasible points have been located since the last test 

was made. 	The choice of two feasible points is of course arbitrary 

but has proved sufficient to prevent false convergence. 

Convergence Mode (4) 

As stated earlier this mode of convergence only operates for uncon- 

strained problems. 	It takes the form of a test on the square of the 

gradient norm. 	The test involves very little extra computing effort 

since the components of the gradient of the object function are required 

by the linear programming routine at each iteration. 	The test employed 

is: 
N 

:E]  
oaf 

2  < 10-7  
x. 
1 

1=1 

If the test is satisfied convergence is declared. 	The value of 

7 i 10 	is arbitrary but may be altered by the user. 	It is true that a 

flat optimum or a saddle point could cause premature convergence, but 

since SLA has been designed for constrained problems no attempt has been 

made to implement more sophisticated tests. 
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CHAPTER 6 

NUMERICAL EXPERIENCE WITH SLA 

The results presented in this chapter demonstrate to what extent the 

algorithm measures up to the criteria discussed in Chapter 3. 	Computer 

resource requirements are assessed both in terms of central processor time 

used and, for the smaller problems, in terms of the number of effective 

function evaluations required for problem solution. 	The execution time 

of Colville's standard timing program [Ref. 16] was found to be 43 seconds 

on the CDC 6400 computer and this is used as a normalization factor for 

comparisons with published data. 	An indication of the core requirements 

for the algorithm is given for some of the larger problems. 	The results 

for the smaller problems have been obtained using explicit formulae for 

the first derivatives of both the constraints and object function. There 

is little, if any, deterioration in the algorithm performance using 

numerical derivatives. 	The results for the larger test problems have 

all been obtained using numerical approximations to the derivatives since 

this is by far the easiest method of problem preparation and hence the 

most likely to be used in practice. 	The use of analytical derivatives 

might in some cases reduce running times by a few seconds but usually at 

the expense of several hours preparation time. 

The presentation of the results has been divided into two parts. 

The first of these shows the results obtained with the code N10C. 	The 

problems in this section are all small. 	None has more than four vari- 

ables. 	In some cases solution times required for various increment and 

reduction factor combinations are given. 	The sensitivity of the algo- 

rithm to the choice of initial step length is discussed. 	Some compari- 

sons are made between results obtained with analytical and numerical 

derivatives. 
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The second set of results are for larger problems. 	These are taken 

from various sources and execution times are compared with published data 

wherever possible. 	For one problem (number 2) comparisons are made 

between SLA and an earlier version of the code which utilized the original 

Griffith and Stewart method of splitting the variables (See Section 4-4). 

The reductions in computational effort achieved by the use of the dis-

placed origin technique are shown to be substantial. 

6-1 Results for Small Test Problems 

The small test problems have been divided into four groups: 

Unconstrained problems. 

Linearly constrained problems. 

Non-linearly constrained problems. 

Problems involving equality constraints. 

Results and comparisons with published data are given for each problem 

in turn and, in Section 6-4, general conclusions concerning the perform- 

ance of SLA on these small problems are drawn. 	Appendix 1 gives the 

formulation and solution for each of these problems. 

6-1-1 Unconstrained Problems 

Three well-known test problems, namely the functions of Rosenbrock, 

Powell and Wood are used in this section. 	It should be noted that re- 

sults for unconstlained problems are given only in order to indicate that 

SLA is capable of solving unconstrained problems. 	SLA is not regarded 

as being a competitive algorithm for this type of problem. 

The results obtained with the first test problem, Rosenbrock's 

function, are given in table 6-1. 	The two-variable function describes 

a long curving valley with a global minimum at the point (1.0,1.0). 

There are no local minima. 	The locus of the valley axis is given by 

x2 = x12  and is thus parabolic and symmetric about the x2-axis. 
	Figure 
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TABLE 6-1 

RESULTS OBTAINED ON ROSENBROCK'S FUNCTION 

Increment 

Factor 

Reduction Factor 

0.2 0.3 0.4 

1.7 

Mode 

Time 

f 

EFE 

1 

9.11 

0.12 x 10
-1  

4146 

1 

1.55 

0.68 x 10
-5 

797 

4 

0.72 

0.82 x 10-7 

416 

1.9 

Mode 

Time 

f 

EFE 

4 

6.69 

0.14 x 10
-6 

3149 

2 

1.34 

0.29 x 10
-4 

728 

4 

0.79 

0.16 x 10
-6 

456 

2.1 

Mode 

Time 

f 

EFE 

4 

1.11 

0.38 x 10
-6 

626 

1 

1.65 

0.46 x 10
-4 

899 

4 

1.54 

0.19 x 10
-8 

829 

Notes: 
	

1. 	Modes of convergence are discussed in Section 5-6. 

2. Times are C.P. seconds on CDC 6400. 

3. f is optimum function value found. 

4. EFE - effective function evaluations. 
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6-1 shows the contours of this function. 	Rosenbrock's function is quite 

a severe test of the step increment and reduction strategies used in SLA. 

In the early stages progress must be made in the x2-direction only. The 

step length of xl must thus,be reduced rapidly and that of x2 in- 

creased. 	As the origin is approached the xl  step length must be ex- 

panded and the x2 step reduced. 	Finally, as the optimum is approached 

the xl step must be again reduced and the x2 step expanded. 	The re- 

sults in table 6-1 show the mode of convergence, execution time, object 

function value and number of effective function evaluations required by 

SLA for nine different increment and reduction factor combinations. It 

is apparent that a reduction factor of 0.2 is too severe for this problem, 

causing premature convergence. 	Inspection of the detailed output reveals 

that step lengths in these cases become very small indeed and progress 

is correspondingly slow. 	The most common mode of convergence is zero 

gradient, (mode (4)). 	That is the square of the gradient norm is less 

than 5 x 10-7. 	SLA does not have the quadratic convergence property of 

the most efficient unconstrained algorithms and so a compromise between 

high accuracy and excessive running time has to be made. 	However all but 

one of the results are of the order 10
-5 

or less which would probably be 

adequate for most purposes. 	In terms of function evaluations SLA does 

not compare well with other algorithms, the average value, excluding those 

for FACRED=0.2,being 688. 	Nelder and Meade [Ref. 5] quote 150 function 

evaluations for their simplex search procedure whilst Powell [Ref. 8] gives 

a figure of 151 for his algorithm. 	Dixon [Ref. 20] quotes 223 function 

calls for his hybrid simplex/quadratic hill climbing algorithm, ACSIM. 

No figures for execution time or core requirements are given by these 

authors. 

The second test problem, Powell's function, is more complex being a 

quadratic with four variables. 	The solution vector for this problem is 
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(0,0,0,0) giving an object function value of zero. 	It is apparent from 

table 6-2 that SLA approaches this value quite closely. 	Unlike Rosen- 

brock's function a reduction factor of 0.2 does not cause a large in- 

crease in the computational effort required for solution. 	TIne average 

number of function evaluations and the average central processor time for 

the nine calculations shown in table 6-2 are 652 and 1.54 seconds 

respectively. 	Typically the algorithms of Powell and Nelder and Meade 

would require 200 to 250 function evaluations to obtain an object 

function value below 10
-8
. 

The third test problem is a four variable quadratic function. The 

results given in table 6-3 show that the minimum is accurately located 

by SLA in all cases. 	This is primarily because the cubic fitting pro- 

cedure works much better on a quadratic function like Wood's function 

than on a quartic like Powell's function. 	Dixon [Ref. 20] quotes' func- 

tion evaluation requirements for his own algorithm and that of Powell as 

395 and 522 respectively. 	He observes that the Nelder and Meade algo- 

rithms 'frequently failed to converge on this function'. 	The average 

function evaluation requirement for SLA for the nine calculations shown 

in figure 6-3 is 425. 	The average time requirement is 1.04 seconds 

(CDC 6400). 	For short initial step lengths SLA frequently terminated on 

a saddle point with a function value of about 8.0. 	The inability of 

SLA to detect a saddle point is clearly a disadvantage but one shared by 

other algorithms using first derivative information only. 

The results obtained with SLA on the three test functions show that 

unconstrained problems may be solved but not with any great economy in 

terms of function evaluations when compared to other algorithms specially 

designed for unconstrained minimization. 
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TABLE 6-2 

RESULTS OBTAINED ON POWELL'S FUNCTION 

Increment 

Factor 

Reduction Factor 

0.2 0.3 0.4 

Mode 

Time 

f 

EFE 

1.7  

1 

2.20 

0.11 x 10
-4 

919 

2 

1.80 

0.63 x 10 

804 

2 

2.06 

0.21 	x 10
-4 

902 

1.9 

Mode 

Time 

f 

EFE 

2 

1.57 

0.40 x 10
-5 

628 

2 

1.03 

0.68 x 10
-6 

408 

2 

0.72 

0.77 x 10
-6 

306 

2.1 

Mode 

Time 

f 

EFE 

4 

1.53 

0.15 x 10-5 

624 

2 

0.29 

0.49 x 10-1  

123 

2 

2.65 

0.16 x 10
-4 

1152 

Notes: 
	

1. 	Modes of convergence are discussed in Section 5-6. 

2. Times are C.P. seconds on CDC 6400. 

3. f is optimum function value found. 

4. EFE - effective function evaluations. 
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TABLE 6-3 

RESULTS OBTAINED ON WOOD'S FUNCTION 

Increment 

Factor 

Reduction Factor 

0.2 0.3 0.4 

Mode 4 4 4 

Time 0.64 0.84 1.23 

f 0.8 x 10
-9 

0.3 x 10
-9 0.3 x 10-8 

1.7 
EFE 249 335 503 

Mode 4 4 4 

Time 0.33 0.80 2.00 
1.9 

f 0.6 x 10-9  0.1 x 10-8  0.3 x 10-8  

EFE 137 335 797 

Mode 4 4 4 

Time 0.54 0.71 2.24 
2.1 

f 0.4 x 10-9 0.5 x 10
-9 0.5 x 10

-9 

EFE 221 307 937 

Notes: 	1. 	Modes of convergence are discussed in Section 5-6. 

2. Times are C.P. seconds on CDC 6400. 

3. f is optimum function value found. 

4. EFE - effective function evaluations. 
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6-1-2 Linearly Constrained Problems 

Three linearly constrained test problems have been used. 	The first 

of these, Rosenbrock D, is Rosenbrock's function, as discussed in the 

previous section, with two constraints of 	xl  ; 0 and x2 	0. These 

constraints are of course simple bounds on the two variables and are 

treated as such by SLA. 	The solution to the problem lies at the origin 

where both constraints are active. 	As noted in Section 5-6 an important 

characteristic of SLA is that where the number of active constraints is 

equal to the number of independent variables convergence is rapid. The 

procedure is essentially the repeated solution of a set of simultaneous 

linearized equations. 	Each solution gives a better approximation to 

the point of intersection of the active constraints. 	In general two 

or three iterations are sufficient to locate the point of intersection 

to high accuracy (i.e. more than six significant figures). 	Under these 

circumstances the step reduction strategy plays little or no part in the 

convergence procedure. 	The factor governing the rate of convergence for 

a given starting point is the initial maximum step length. 	A very short 

initial step length can make many steps necessary to reach the region of 

the constraint intersection. 	The increment factor will influence the 

rate of approach to the solution point. 	Table 6-4 shows the results 

obtained for the Rosenbrock D problem with three different initial step 

lengths representing a variation of two orders of magnitude. 	The compu- 

tation time in all cases is less than one tenth of a second. 	The smallest 

initial step length requires marginally more computing effort to attain a 

solution. 	Dixon [Ref. 20] quotes the requirement of his own algorithm, 

ACSIM, as 77 e.f.e. (effective function evaluations) and that of the 

SUMT penalty function technique as 142 e.f.e.. 	SLA requires between 23 

and 29 e.f.e. 



88 

TABLE 6-4 

RAPIDLY CONVERGENT SMALL PROBLEM RESULTS 

Problem 
Initial Step 

Length 
(All variables) 

C.P. 	Time 
(CDC 6400) 

EFE 

Rosenbrock D 0.5 0.07 29 

5.0 0.05 23 

50.0 0.05 23 

Post Office 0.1 0.25 52 

Box B 1.0 0.11 24 

10.0 0.04 8 

Sefton's Problem 0.001 0.26 51 

0.01 0.19 33 

0.1 0.12 17 

Cattle Feed 0.2 0.18 24 

Problem 2.0 0.11 13 

20.0 0.15 13 

Rosenbrock 0.05 0.15 23 

Ridge 0.50 0.09 15 

1.00 0.09 19 

Note: All problems use an increment factor of 2.0 and a reduction 

factor of 0.2. 
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The second test problem, the Post Office Box A problem, has an object 

function which is a simple product of the three independent variables. 

There are upper and lower bounds on all three variables of 42.0 and 0.0, 

plus one linear constraint involving all three variables. 	As far as SLA 

is concerned this problem is more difficult than the previous one in that 

at the solution point only one constraint is active. 	Thus convergence 

is achieved by step reduction following oscillation and cubic fitting. 

The problem is therefore a good test of the sensitivity of the solution 

time to variations in increment and reduction factors. 	Table 6-5 gives 

execution times and e.f.e. requirements for four different increment and 

reduction factors and three different initial step lengths. 	The initial 

step lengths are chosen to span two orders of magnitude and are 0.1, 1.0 

and 10.0. 	It is difficult to identify definite trends in these figures. 

This is not unexpected since whilst any single mode of convergence may 

show a smooth variation with increment and reduction factors the aggre-

gate response of all the convergence mechanisms is less well-defined. 

Since the convergence of SLA on this problem is governed mainly by how 

rapidly the step lengths can be reduced, a large reduction factor (i.e. 

small in absolute size) may be expected to give the most rapid convergence, 

particularly for a large initial step length. 	This effect shows up in 

the column averages shown in tables 6-6 and 6-7 where a reduction factor 

of 0.1 gives the minimum average central processor time and e.f.e. re- 

quirement. 	There is no significant trend in execution time with increment 

factor. 	The solution to this problem is 3456.00 and this figure was 

achieved exactly in 44 out of the 48 calculations shown in table 6-5. 

The remaining four results differed by at most 2 in the fifth significant 

figure. 	All four of these calculations had a reduction factor of 0.4. 

This point will be returned to later. 



TABLE 6-5 

RESULTS OBTAINED ON POST OFFICE BOX A PROBLEM 

Increment 

Factor 

Initial 

Step 

Length 

Reduction Factor 

0.1 0.2 0.3 0.4 

Time EFE Time EFE Time EFE Time EFE 

10.0 0.58 167 0.59 205 0.62 206 0.64 201 

1.7 1.0 0.50 134 0.70 194 0.71 194 0.50 134 

0.1 1.11 315 0.81 219 0.80 236 1.01 300 

10.0 0.52 166 0.60 205 0.42 146 0.63 206 

1.9 1.0 0.44 128 0.50 136 0.43 134 0.45 134 

0.1 0.58 176 0.62 182 0.55 153 0.64 181 

10.0 0.47 149 0.60 205 0.44 146 0.64 206 

2.1 1.0 0.35 89 0.51 154 0.90 256 0.45 136 

0.1 0.67 171 0.90 244 1.12 304 1.40 363 

10.0 0.43 131 0.56 205 0.55 206 0.61 206 

2.3 1.0 0.44 137 0.32 83 0.32 83 0.64 195 

0.1 0.70 183 0.60 186 0.55 143 0.63 184 
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TABLE 6-6 

POST OFFICE BOX A PROBLEM - AVERAGE NUMBER OF FUNCTION EVALUATIONS 

Increment Reduction Factor Row 

Factor 0.1 0.2 0.3 0.4 Averages 

1.7 205 206 212 212 209 

1.9 157 174 144 174 162 

2.1 136 201 235 235 202 

2.3 150 158 144 195 162 

Column 162 185 184 204 
Averages 

TABLE 6-7 

POST OFFICE BOX A PROBLEM - AVERAGE EXECUTION TIMES 

Increment Reduction Factor Row 

Factor 0.1 0.2 0.3 0.4 Averages 

1.7 0.73 0.70 0.71 0.72 0.72 

1.9 0.51 0.57 0.47 0.57 0.53 

2.1 0.50 0.67 0.82 0.83 0.71 

2.3 0.52 0.50 0.47 0.63 0.53 

Column 
Averages 

0.57 0.61 0.62 0.69 

Note: Times are C.P. seconds on CDC 6400. 
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The Post Office Box B problem is the last linearly constrained 

example used. 	It has the same object function as the A problem but the 

upper bounds on the first two variables are reduced to 20 and 11 res- 

pectively. 	This change in the variable bounds produces a solution point 

of (20,11,15) where three constraints are active. 	SLA is thus able to 

converge rapidly on this problem as it did on the Rosenbrock D problem. 

Table 6-4 shows results obtained with three different initial step 

lengths of 0.1, 1.0 and 10.0. 	As in the Rosenbrock D problem the 

longest step length gives the most rapid solution requiring only 8 e.f.e.. 

SLA has thus demonstrated its ability to solve small linearly con- 

strained problems. 	The results obtained have all been tightly converged 

with the object function accurate to six significant figures in almost 

all cases. 	Direct comparison of the computer resource requirements of 

SLA with those of other computer codes is, for reasons outlined in Chapter 

3, not easy. 	However table 6-8 compares the results obtained with SLA 

with results given by Dixon [Ref. 20] for several other algorithms in 

terms of effective function evaluations. 	The SLA results quoted for the 

two rapidly convergent problems (i.e. Rosenbrock D and Post Office Box B) 

are average values for the three initial step lengths. 	The results given 

for the Post Office Box A problem are the average values for a reduction 

factor of 0.2 and an increment factor of 2.1. 	This anticipates con- 

clusions drawn later about the best values to use for these two parameters. 

From these results it can be seen that in all cases SLA requires fewer 

function calls than the two penalty function techniques. 	The modified 

simplex technique of Box is similarly less efficient than SLA. 	The hybrid 

technique of Dixon (ACSIM) is more efficient than SLA for the Post Office 

Box A problem but not for the other two. 	The two projection techniques 

of Goldfarb and Davies are however very efficient each requiring only 16 

function evaluations for each of the Post Office Box problems. 	However 



TABLE 6-8 

FUNCTION EVALUATION REQUIREMENTS FOR THE SOLUTION OF LINEARLY CONSTRAINED PROBLEMS 

Test 

Problem 

Solution Technique 

ACSIM 

(Dixon) 

Box 

Complex 

DFP with 

Carroll 

Goldfarb Davies SUMT SLA 

EFE CP Time 
(CDC 6400) 

Rosenbrock D 

Post Office 
Box A 

Post Office 
Box B 

77 

64 

131 

- 

310 

- 

- 

204 

328 

- 

16 

16 

- 

16 

16 

142 

256 

292 

25 

201 

28 

0.06 

0.67 

0.13 
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table 6-4 shows that where the number of active constraints is equal to 

the number of independent variables SLA is competitive with these two 

techniques. 

6-1-3 Non-linearly Constrained Problems 

Rosenbrock's function with a circular inequality constraint was used 

as the first of three test problems involving non-linear inequality con- 

straints. 	This problem, although it has only two independent variables, 

is a severe test of SLA since both the object function and the inequality 

constraint are highly non-linear. 	There is only one active constraint 

at the optimum point, and so far SLA convergence must be achieved by grad- 

ual step reduction as in the Post Office Box A problem. 	Table 6-9 gives 

the results of 48 calculations performed on the Rosenbrock C test prob- 

lem. 	The increment and reduction factors range from 17 to 2.3 and 

0.1 to 0.4 respectively and the initial step lengths span two orders 

of magnitude being 0.25, 0.025 and 0.0025. 	The results are given in 

terms of both execution time and number of function evaluations required. 

Six calculations are marked with a single asterisk to show they are of 

insufficient accuracy. 	This premature convergence occurs for all four 

calculations having a reduction factor of 0.4 and which use an initial 

step length of 0.25. 	The deviation from the true minimum ranges from 

5% for the smallest increment factor to 20% for the largest increment 

factor. 	This tendency to premature convergence has already been noted 

in connection with the Post Office Box A problem for reduction factors of 

0.4. 	The other two cases of premature convergence both have an increment 

factor of 1.7 and an initial step length of 0.025. 	The largest devi- 

ation from the true minimum is fb3%. 	One other calculation, which is 

marked with two asterisks in table 6-9 shows a minor deviation of approxi- 

mately 0.5% from the true minimum. 	Convergence in this case is caused 

by the best point remaining unchanged for ten consecutive iterations (i.e. 



TABLE 6-9 

RESULTS OBTAINED ON ROSENBROCK C PROBLEM 

Increment 

Factor 

Initial 

Step 

Length 

Reduction Factor 

0.1 0.2 0.3 0.4 

Time EFE Time EFE Time EFE Time EFE 

0.25 0.82 321 0.81 342 0.85 365 0.28 115* 

1.7 0.025 0.33 127 0.24 89* 0.24 89* 0.36 130 

0.0025 1.11 414 0.67 262 0.33 123 0.35 135 

0.25 0.90 382 0.63 277 0.59 254 0.41 171* 

1.9 0.025 0.30 123 0.27 106 0.29 115 0.23 93 

0.0025 0.80 304 0.68 263 0.31 117 0.36 134 

0.25 0.69 276 0.60 258 0.86 362 0.70 283* 

2.1 0.025 0.27 105 0.21 81 0.32 126** 0.27 107 

0.0025 0.35 134 0.31 117 0.34 125 0.36 131 

0.25 1.04 440 0.51 218 0.72 314 0.29 123* 

2.3 0.025 0.51 211 0.24 98 0.27 99 0.23 92 

0.0025 0.56 216 0.47 181 0.28 102 0.32 123 
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a mode (3) convergence). 	The convergence is premature since an early 

point in the calculation falls fortuitiously close to the true optimum. 

There is always a possibility that this can occur but it appears to happen 

so rarely that no modification to the convergence strategy has been made. 

However apart from the seven calculations mentioned above all 41 other 

calculations located the true minimum (a local minimum in fact) to six 

-6 
figure accuracy and satisfied the constraint to within 10 . 	Tables 

6-10 and 6-11 present the data of table 6-9 averaged over the three initial 

step lengths. 	For this problem there is a decrease in average computing 

effort as the reduction factor increases in size. 	This is shown by the 

two sets of column averages. 	However this must of course be balanced 

against the possibility of premature convergence with a reduction factor 

of 0.4. 	The best increment factor on average is 2.1 but the overall 

variation is relatively small. 

The second test problem used was the Post Office Box C problem. 

This has an ellipsoidal constraint. 	As for the previous problem a set of 

48 calculations was performed. 	The initial step lengths used were 1.5, 

0.15 and 0.015. 	Table 6-12 gives the results in detail and tables 6-13 

and 6-14 give these same results averaged over the three initial step 

lengths. 	The column averages show little variation in computational 

effort with reduction factor. 	The row averages show that a small incre- 

ment factor is preferable for this problem. 	All 48 calculations produced 

the same answer of -22.6274 with one exception. 	This calculation 

yielded -22.6271 and used a reduction factor of 0.4. 	The active con- 

straint was in all Cases satisfied to within 10-6. 

The third test problem was introduced by Dixon as Sefton's problem 

[Ref. 201. 	Although it has only two variables it is awkward to solve 

because of its inherent poor scaling. 	However SLA deals with it very ef- 

ficiently since there are two active constraints at the minimum. Table 6-4 
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TABLE 6-10 

ROSENBROCK C PROBLEM - AVERAGE NUMBER OF FUNCTION EVALUATIONS 

Increment Reduction Factor Row 

Factor 0.1 0.2 0.3 0.4 Averages 

1.7 287 231* 192* 127* 209 

1.9 270 215 162 133* 195 

2.1 172 152 204 174* 176 

2.3 289 166 172 113* 185 

Column 
Averages 

255 191 183 137 

TABLE 6-11 

ROSENBROCK C PROBLEM - AVERAGE EXECUTION TIMES 

Increment 

Factor 

Reduction Factor Row 

Averages 0.1 0.2 0.3 0.4 

1.7 0.75 0.58* 0.47* 0.33* 0.53 

1.9 0.67 0.52 0.40 0.33* 0.48 

2.1 0.44 0.37 0.50 0.44* 0.44 

2.3 0.70 0.41 0.42 0.28* 0.45 

Column 
Averages 

0.64 0.47 0.45 0.35 

Note: Times are C.P. seconds on CDC 6400. 



TABLE 6-12 

RESULTS OBTAINED ON POST OFFICE BOX C PROBLEM 

Increment 

Factor 

Initial 

Step 

Length 

Reduction Factor 

0.1 0.2 0.3 0.4 

Time EFE Time EFE Time EFE Time EFE 

1.5 1.11 267 0.91 203 0.95 227 0.81 204 

1.7 0.15 0.78 172 1.05 251 0.94 222 0.77 188 

0.015 1.05 241 0.84 196 0.91 222 0.91 246 

1.5 0.97 231 1.02 232 1.00 253 0.90 251 

1.9 0.15 1.08 247 0.99 275 0.76 209 0.90 245 

0.015 0.77 196 0.77 212 0.81 198 0.92 270 

1.5 1.02 240 0.92 226 1.12 273 0.77 203 

2.1 0.15 0.70 217 0.89 259 1.22 307 0.89 242 

0.015 1.02 293 1.32 307 1.07 263 1.27 316 

1.5 0.94 247 0.96 262 0.82 241 0.62 194 

2.3 0.15 0.87 234 1.14 303 1.04 264 0.90 287 

0.015 1.21 319 0.89 213 1.16 272 1.04 264 
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TABLE 6-13 

POST OFFICE BOX C PROBLEM- AVERAGE NUMBER OF FUNCTION EVALUATIONS 

Increment 

Factor 

Reduction Factor Row 

Averages 0.1 0.2 0.3 0.4 

1.7 227 217 224 213 220 

1.9 225 240 220 255 235 

2.1 250 264 281 254 262 

2.3 267 259 259 248 258 

Column 
Averages 

242 245 246 243 

TABLE 6-14 

POST OFFICE BOX C PROBLEM - AVERAGE EXECUTION TIMES 

Increment 

Factor 

Reduction Factor Row 

Averages 0.1 0.2 0.3 0.4 

1.7 0.98 0.94 0.93 0.83 0.92 

1.9 0.94 0.93 0.85 0.91 0.91 

2.1 0.91 1.05 1.14 0.98 1.02 

2.3 1.00 1.00 1.00 0.85 0.96 

Column 
Averages 0.96 0.98 0.98 0.89 

Note: Times are C.P. seconds on CDC 6400. 



100 

shows the results obtained with three different initial step lengths 0.1, 

0.01, 0.001. 	The execution time ranges from 0.12 to 0.26 seconds. 

Function evaluation requirements are also small ranging from 17 to 51. 

From these three problems it may be concluded that SLA can solve 

problems involving highly non-linear constraints. 	It does so with moderate 

efficiency when optimum points are lightly constrained (i.e. the number 

of independent variables exceeds the number of active constraints) and 

with high efficiency when the optimum point is fully constrained. Except 

in a few cases the solution obtained by SLA is to high accuracy. 	The 

results in table 6-9 show that the choice of initial step length can af-

fect the execution time and function evaluation requirements for the 

Rosenbrock C problem by a factor of three or more in some cases. However 

table 6-12 shows the solution times for the Post Office Box C problem to 

be much less sensitive to the initial step length chosen. 	This differ- 

ence in sensitivity between the two problems is probably caused by the 

differing complexities of the object functions. 	The Post Office Box func- 

tion is monotonic and is represented quite well by a linear approximation. 

The Rosenbrock function however is not so well represented by linear 

approximations and the choice of initial step length becomes more import- 

ant. 	This problem of initial step length choice will be returned to 

later. 

Table 6-15 gives a comparison of the performance of SLA in terms of 

effective function evaluations with several other algorithms. 	The com- 

parative figures are again taken from Dixon [Ref. 20]. 	It can be seen 

that as for the linearly constrained problems SLA is more efficient than 

the penalty function technique of Fiacco and McCormick (SUMT) or the com-

bination of Corroll's penalty function with the unconstrained DFP mini- 

mization method. 	The hybrid algorithm of Dixon performs well on the first 

problem but attains relatively poor accuracy (-22.5958 instead of 



TABLE 6-15 

FUNCTION EVALUATION REQUIREMENTS FOR THE SOLUTION OF NON-LINEARLY CONSTRAINED PROBLEMS 

Test 

Problem 

Solution Technique 

ACSIM 

(Dixon) 

DFP with 

Carroll 

Goldfarb Davies SUMT SLA 

EFE CP Time 
(CDC 6400) 

Rosenbrock C 

Post Office 
Box C 

Sefton's 
Problem 

103 

180 

104 

- 

376 

- 

- 

384 

- 

- 

136 

- 

200 

296 

228 

152 

264 

33 

0.37 

1.05 

0.19 
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-22.6274) on the Post Office Box C problem. 	The projection technique of 

Goldfarb does not perform well. 

6-1-4 Problems Involving Equality Constraints 

The first problem used to test the ability of SLA to deal with equal- 

ity constraints was the Cattle Feed problem. 	This has four variables, 

one linear equality constraint and two non-linear inequality constraints. 

In addition, lower bounds of zero are imposed on all four variables. 

There are four active constraints at the solution point and so SLA con- 

verges rapidly. 	Table 6-4 shows the results of three calculations with 

initial step lengths of 0.2, 2.0 and 20.0. 	Even with the shortest 

step length only 24 function evaluations are required whilst for the 

two other step lengths the requirement is reduced to 13. 	This may be 

compared with figures quoted by Dixon [Ref. 20] of 410 function calls 

for the SUMT algorithm and 141 function evaluations for his algorithm 

ACSIM. 	The solution obtained by SLA of 29.8888 is accurate to six sig- 

nificant figures. 

The second test problem used has been specially devised to test SLA 

and is referred to as the Rosenbrock Ridge problem. 	As the name suggests 

the object function is again that of Rosenbrock's function. 	The problem 

is to maximize the object function (i.e. minimize minus the object func- 

tion) subject to the equality constraint x2  = x12. 	This equality con- 

straint is the equation defining the locus of the valley axis. 	This has 

the effect of binding the search for a maximum value to the floor of a 

steeply sided curved valley and is a good test of the ability of the algo- 

rithm to follow a non-linear equality constraint. 	An exponential in- 

equality is added which crosses the valley axis at (-1.0, 1.0) and this 

is the optimum point at which the object function value is 4.0. 	The 

(infeasible) starting point used is (0.5, 0.5). 	It was found that SLA 

converged quickly and accurately provided the initial step length was less 
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than about 1.5. 	For larger step lengths feasibility was lost. 	Inspec- 

tion of figure 6-1 which shows the contours of Rosenbrock's function re-

veals that with such large step lengths the linear approximation is hope- 

lessly inadequate. 	The result of using large step lengths was that 

one or two moves were successfully completed leaving the search at a 

point where the linearized problem had no feasible solution. 	The linear 

programming routine produced an error message and SLA terminated. How-

ever table 6-4 shows that within the range of initial step lengths 0.05 

to 1.00 SLA converged rapidly. 	The important conclusion to be drawn 

from this problem is that SLA can follow non-linear equality constraints 

successfully unless the step lengths are large. 	The definition of large 

obviously depends on the problem in hand and for a complex problem may 

not be apparent at the outset. 	However a loss of feasibility during 

the search is a positive indication of too large a step length which is 

quite straightforward to correct. 

The third test problem used is due to D.A. Paviani [Ref. 21] and is 

thus referred to as the Paviani problem. 	The object function is quadratic 

in three variables, which are all constrained to positive values. 	In 

addition there is one spherical equality constraint and one linear equality 

constraint. 	Paviani gives two starting points of (2,2,2) and (10,10, 

10). 	Unfortunately when the problem is linearized at either of these 

two points there is no feasible solution. 	Thus SLA is unable to start 

from either of these points. 	The problem was however put to good use. 

First, three starting points were selected from which a feasible solution 

was available. 	Six problems were then run, three with analytical deri- 

vatives and three with numerical derivatives. 	The results are given in 

table 6-16. 	That all six problems converged rapidly and accurately shows 

that, given a starting point at which a feasible solution to the linearized 

problem exists, problems with highly non-linear equality constraints may 



TABLE 6-16 

PAVIANI PROBLEM - RESULTS FROM THREE STARTING POINTS 

Starting 

Point 

Derivatives 

Analytical Numerical 

Time EFE f Time EFE f 

(1.0, 	1.0, 	4.8) 

(4.8, 	1.2, 	0.0) 

(0.0, 	1.8, 	4.5) 

0.63 

0.75 

0.95 

107 

125 

154 

961,715 

961.715 

961.715 

0.70 

0.71 

0.92 

133 

155 

191 

961.715 

961.715 

961.715 

Notes: 	1. 	6x. used for numerical derivatives was 10
-7 

1 

2. Initial step length was 0.5 

3. Time is in C.P. seconds on CDC 6400 
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be solved. 	Also, the calculation time is virtually unaffected by the 

use of numerical derivatives as is the final accuracy of the solution. 

Although no systematic surveys of the other small test problems have been 

done using numerical derivatives numerous spot check calculations have 

confirmed that their use does not impair the efficiency of SLA. 	A 

second series of calculations was performed on the Paviani problem to 

determine the sensitivity of the solution time to increment and reduction 

factors as well as initial step lengths. 	The starting point (4.8, 1.2, 

0.0) was used. 	Table 6-17 shows the results of 48 calculations. The 

three step lengths used were 0.05, 0.5 and 1.0. 	It was found that 

a step length of 5.0 was too great and, as in the Rosenbrock Ridge prob- 

- lem caused a loss of feasibility during the search. 	All the calculations 

shown in table 6-17 achieved the true minimum of 961.715. 	Tables 6-18 

and 6-19 show these same results averaged over the three step lengths. 

The column averages indicate that a reduction factor of 0.1 to 0.2 is 

most suitable for this problem. 

A fourth test problem referred to as Rosenbrock CC was used to test 

the reliability of SLA for equality constrained problems. 	The problem is 

the same as the Rosenbrock C problem discussed in Section 6-1-3 but with 

the circular inequality transformed to an equality constraint. 	The prob- 

lem has two local minima marked Ll and L2 on figure 6-1 and a global mini- 

mum marked G. 	The local minimum Ll is the solution obtained for the 

Rosenbrock C problem from the starting point (-1.2, 1.0). 	Three calcu- 

lations were performed starting at (-1.2, 1.0), (-0.5, 0.0) and (1.1, 

0.6). 	From these three points the three minima Ll, L2 and G were all 

located in less than 90 effective function evaluations. 	Table 6-20 

gives the results in full. 	Since the average computation time for the 

Rosenbrock C problem was 1.05 seconds (FACRED=0.2, FACINC=2.1) as com-

pared to the Rosenbrock CC result (FACRED=0.2, FACINC=2.0) of 0.21 



TABLE 6-17 

RESULTS OBTAINED ON PAVIANI PROBLEM 

Increment 

Factor 

Initial 

Step 

Length 

Reduction Factor 

0.1 0.2 0.3 0.4 

Time EFE Time EFE Time EFE Time EFE 

1.0 0.90 170 0.56 118 0.91 186 1.78 348 

1.7 0.5 0.44 92 0.80 258 0.78 151 1.37 278 

0.05 0.92 163 1.10 198 0.85 160 1.58 288 

1.0 0.72 138 0.44 97 0.75 149 1.00 198 

1.9 0.5 0.82 163 0.77 147 0.79 161 1.00 194 

0.05 1.08 187 0.88 157 1.17 215 1.13 208 

1.0 0.71 140 0.55 110 0.55 121 0.91 183 

2.1 0.5 0.83 137 0.64 113 0.86 143 2.17 371 

0.05 1.53 238 0.88 139 1.22 210 1.26 211 

1.0 0.75 143 0.61 126 1.15 228 0.98 198 

2.3 0.5 0.75 131 0.74 133 1.19 224 1.18 218 

0.05 1.01 179 1.32 215 1.23 235 1.45 255 
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TABLE 6-18 

PAVIANI PROBLEM - AVERAGE NUMBER OF FUNCTION EVALUATIONS 

Increment Reduction Factor Row 

Factor 0.1 0.2 0.3 0.4 Averages 

1.7 142 191 166 305 201 

1.9 163 134 175 200 168 

2.1 172 121 158 255 177 

2.3 151 158 229 224 191 

Column 
Averages 157 151 182 246 

TABLE 6-19 

PAVIANI PROBLEM - AVERAGE EXECUTION TIMES 

Increment 

Factor 

Reduction Factor Row 

Averages 0.1 0.2 0.3 0.4 

1.7 0.75 0.82 0.85 1.57 1.00 

1.9 0.87 0.70 0.90 1.04 0.88 

2.1 1.02 0.69 0.87 1.45 1.01 

2.3 0.84 0.89 1.19 0.88 0.95 

Column 
Averages 0.87 0.78 0.95 1.24 

Note: Times are C.P. seconds on CDC 6400. 
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TABLE 6-20 

ROSENBROCK CC - SOLUTIONS FROM THREE STARTING POINTS 

Starting 
Point 

Optimum 
Found 

Solution 
Vector 

Solution 
Time 

EFE 

(-1.2, 	1.0) 3.77029 (-0.94147, 0.21 66 

0.88322) 

(-0.5, 	0.0) 0.400480 (0.39413, 0.32 88 

0.13706) 

(1.1, 	0.6) 0.336724 x 10
-2 

(0.94198, 0.29 77 

0.88742) 

Notes: 	1. 	Initial step length used = 0.25 

2. Increment factor = 2.0 

3. Reduction factor = 0.2 

4. Time is in C.P. seconds on CDC 6400 



109 

seconds it seems that, other things being equal, SLA performs more effic-

iently on equality constrained problems. 

6-2 Conclusions from the Results of Small Test Problems 

The most important conclusion to be drawn from the results obtained 

with these small test problems is that SLA is capable of solving problems 

with highly non-linear constraints, both inequality and equality. 	This 

gives confidence in its potential to solve larger and more complex prob- 

lems. 	From the results of the Rosenbrock C calculations it is clear that 

a reduction factor of 0.4 is too large particularly when coupled with a 

large initial step length. 	Two cases of premature convergence with the 

same problem indicate that an increment factor of 1.7 is in some cases 

too small. 	This leaves a range of acceptable reduction factors of 0.1 

to 0.3 and a range of acceptable increment factors from 1.9 to 2.3. 

The best combination to use depends on the particular problem and initial 

step lengths used. 

A combination of 0.2 for reduction factor and 2.0 for increment 

factor has been used for the large problems described in the next section. 

This choice. is made to standardize the results so obtained and does not 

imply that better results could not be obtained with different values. 

For consistency the results shown in table 6-8 for the Post Office Box A 

problem and in table 6-15 for the Rosenbrock C problem are average values 

for reduction factors of 0.2 and increment factors of 2.1. 

The choice of a suitable initial step length for any given problem 

depends upon the complexity of the object function and the relative scaling 

of the independent variables. 	It is difficult to give a prescription for 

a 'best value' since in some cases the user will know little about the 

sensitivity of the object function to changes in the independent variables 

or the degree of non-linearity inherent in the constraints. 	However the 
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difficulties associated with step length choice are not confined to SLA. 

Most techniques involving uni-directional searches require an initial 

step length to begin the search. 	Simplex direct search techniques 

require an initial simplex which must be scaled. 	However this problem 

turns out to be not as formidable as might be thought since in general 

a range of initial step lengths spanning two orders of magnitude are 

acceptable to SLA. 	For most problems a step length of between 10 and 

50% of the total change expected in any variable may be used. 	An esti- 

mate of this nature will usually be sufficiently accurate. 	For problems 

involving non-linear equality constraints the results obtained from the 

Rosenbrock Ridge and Paviani problems suggest it is better to choose an 

initial step length which is too small rather than one which is too large. 

All the problems described in the previous section have had a con-

vergence tolerance of 0.0001 on the elements of the solution vector. 

However convergence in most cases was obtained by zero length pattern 

moves (i.e. mode (2)) or by unchanging best points (i.e. mode (3)). This 

does not necessarily imply that the elements of the solution vector were 

not converged to this tolerance. 	For most problems they were. 	It does 

however mean that savings in computational effort caused by slackening 

the convergence criteria will not be great unless the change is consider-

able, say to 0.01. 

Notwithstanding the difficulties of initial step length choice the 

algorithm is able to obtain tightly converged solutions to a variety of 

non-linear problems. 	It has proved reliable and competitive with other 

techniques in terms of effective function evaluations. 	For tightly 

constrained problems where the number of active constraints is equal to 

the number of independent variables convergence is rapid. 

The next section describes the results obtained with SLA when applied 

to larger and more complex problems. 
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6-3 Results for Large Test Problems 

Ten problems have been selected to test the capability of SLA to 

solve larger and more complex problems than those described in Section 

6-1. 	The problems originate from various sources but all may be found 

in Himmelblau's book [Ref. 22]. 	Appendix 1 contains the detailed speci- 

fication of these problems together with the standard starting points and 

solutions. 	Table 6-21 shows the general characteristics of the problems. 

The number of independent variables ranges between 3 and 24, and the 

number of constraints, including bounds, from 13 to 48. 	The presen- 

tation of the problems varies considerably. 	Some, like problems 2 and 

4, are straightforward analytical functions which present few problems 

for codes requiring analytical first or even second derivatives. Others, 

like problems 6 and 7, have object functions and constraints which can 

be manipulated analytically only with extreme difficulty, if indeed at 

all. 	In all cases numerical derivatives have been used since this is 

the easiest method of problem preparation. 	As described in Section 5-3 

a forward difference formula is used to estimate first derivatives of 

both object function and constraints. 	A perturbation of 10-7  has been 

used throughout. 	Values of 0.2 and 2.0 have been used for reduction 

and increment factors and the convergence criteria have been set to 

0.001 in all calculations. 

The initial step lengths chosen vary from problem to problem. 	In 

most cases the same value has been used for all the independent variables. 

Obviously the author has prior knowledge of the solution for each problem 

and this enables a suitable step length to be chosen. 	However in most 

practical problem-solving situations the user will be familiar with the 

relative sensitivities of the independent variables, and will have some 

idea of how much he expects them to change. 	This insight into the prob- 

lem structure should allow step lengths to be chosen which are not grossly 



TABLE 6-21 

CHARACTERISTICS OF LARGE TEST PROBLEMS 

Problem 

Number 

Inequalities Equalities Number 

of 

Bounds 

Number 

of 

Variables 

Number of 

Active 

Constraints Linear Non-linear Linear Non-linear 

1 3 10 5 5 

2 5 15 15 11 

3 10 5 5 4 

4 6 10 5 5 

5 12 2 9 7 

6 14 6 3 2 

7 4 34 10 5 6 

8 3 10 10 3 

9 8 32 16 13 

10 . 6 2 12 24 24 40 
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under- or over-sized. 	In general step lengths have been chosen which 

are between 10 and 50% of the total change expected. 	It has already 

been shown on the smaller test problems that variations of two orders of 

magnitude often cause little change in total computation time required 

for solution. 	No attempt has been made to choose the best initial step 

lengths. 	Without doubt the computation time for many of the problems 

could be reduced by a different choice of step lengths. 	By not adopting 

this approach the author hopes that the results obtained may be regarded 

as typical of what a non-specialist user with some knowledge of his own 

particular problem, could obtain. 

All the problems used were compiled and executed in less than 25000 

words of central memory. 	The results obtained with SLA are compared 

with those given by Himmelblau [Ref. 22] for seven other algorithms. The 

comparison, given in table 6-22, is in terms of standardized central pro- 

cessor time. 	This means that the actual execution time is divided by 

the time to execute Colville's standard timing program [Ref. 16]. 

Himmelblau quotes the execution time for the timing program as 22.0 

seconds on his machine (CDC 6600). 	As previously noted the timing pro- 

gram required 43 seconds on the Imperial College CDC 6400 machine. 

Each of the ten test problems is discussed below. 

Problem 1 

This problem was used by Box [Ref. 13] to introduce his Complex algo- 

rithm. 	Evaluation of the object function involves substitution into a 

cascade of equations to evaluate seven constants. 	These constants are 

then substituted into the object function formula along with the five in- 

dependent variables. 	The evaluation of the three non-linear constraints 

also involves the determination of the same seven constants. 	The prob- 

lem is easily solved by SLA since at the solution point there are as many 

active constraints as independent variables. 	Himmelblau gives only two 
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comparative times (table 6-22). 	SLA is more than ten times as fast as 

GRG and almost 500 times as fast as the Flexible Tolerance method of 

Paviani [Ref. 14]. 	Himmelblau does not indicate why the other five codes 

were not applied to this problem. 	The initial step length used for all 

five variables was 10.0. 	The maximum located by SLA was slightly 

greater than that given by Himmelblau. 

Problem 2 

This problem is more complex than the previous one having fifteen 

variables and five non-linear inequality constraints. 	There are 11 active 

constraints at the solution point. 	Table 6-22 shows that for both start- 

ing points (one feasible, one infeasible) the SUMT penalty function tech- 

nique is faster by a factor of about three. 	The code GRG is also three 

times faster from the feasible starting point. 	The SLA calculations are 

probably converged too tightly since, for the feasible starting point 

calculation, the final solution of -32.3548 had been reached by the 

36th . 36 	iteration but convergence was not achieved until the 49th. 	The 

converged object function value of -32.386 given by Himmelblau was in 

fact passed by the 25
th 
 iteration. 	The calculation beginning at the in- 

feasible starting point produced an object function value of -32.3487 

in 70 iterations. 	The converged object function value of Himmelblau 

was passed by iteration number 43. 	Table 6-22 shows that SLA performs 

significantly better than NLP which is a similar technique based on suc-

cessive linear approximations. 

In Chapter 4 it was noted that the early work on SLA was done using 

the Griffith and Stewart split variable technique. 	It is interesting 

to compare the time per iteration obtained for problem 2 using the ori-

ginal formulation with that obtained using the displaced origin technique. 

In fact three cases will be compared: 
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(1) Split variables, bounds treated as inequality constraints. 

(2) Split variables, bounds set by step length limits. 

(3) Displaced origin, bounds set by step length limits (i.e. 

the current SLA method). 

The standardized times per iteration for these three methods are 0.118, 

0.074 and 0.015 respectively. 	Thus the iterations are speeded up, 

on average, by a factor of about 1.6 by using the step length limitations 

to impose the 15 bounds of problem 2. 	A further factor of five in 

speed is gained by using the displaced origin technique thus enabling 

problem 2 to be treated as a 15 variable problem instead of a 30 variable 

problem. 	The overall gain is about a factor of eight in speed which 

demonstrates the considerable advantage gained by the use of the displaced 

origin method. 	As well as a reduction in execution time there is also 

a reduction in computer core requirements. 	The size of the matrix a.. 

of equations 4-2 in Section 4-3 being 1500, 1050 and 300 elements 

for the three cases considered above. 	For large problems reductions in 

total core requirements are substantial. 

Problem 3 

This is a relatively easy problem for SLA since all ten inequalities 

are linear. 	Convergence takes 16 iterations and at the solution point 

there are four active inequality constraints. 	Table 6-22 shows that 

SLA, GRG and NLP are require about 0.07 seconds for convergence. The 

SUMT algorithm is a little slower and the Flexible Tolerance algorithm 

considerably slower. 	Like problem 2, which is in fact the dual of prob- 

lem 3, the object function and constraints are simple analytical functions 

which are easily differentiated for use in codes which require analytical 

derivatives. 	The initial step length used for all variables was 0.2. 
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Problem 4 

This is a five variable problem having six non-linear inequality con- 

straints. 	Two starting points are used, one feasible and one infeasible. 

At the solution point there are five active constraints. 	For both 

starting points SLA converges more quickly than any of the six codes used 

by Himmelblau. 	The initial step length used for all variables was 0.2. 

Since this problem has as many active constraints as variables, convergence 

does not depend on step reduction following cubic fitting. 	A larger 

step length, which would encompass the solution point from the start of 

the calculation, would have produced a more rapid solution. 

Problem 5 

This nine variable problem produced some interesting results. From 

thestartingpointgivenbyHimmelblau(i.e.x.=1.0, i = 1,9) SLA 

converged to a local maximum of 0.67498 after 59 iterations. 	This 

is inferior to the result given by Himmelblau of 0.8660. 	The initial 

suspicion was that an error had been made in the coding of the 13 non- 

linear inequality constraints. 	To test this SLA was given a starting 

point close to Himmelblau's solution. 	The code converged in 17 iterations 

to the exact solution given by Himmelblau. 	Thus the problem appeared to 

have been correctly coded and to possess two maximum values. 	A further 

calculationwasperformedstartingfromx.=0.0, i = 1,9. 	This con- 

verged to the maximum value given by Himmelblau, but for an entirely dif- 

ferent solution vector. 	Thus there are at least three constrained maxima 

for problem 5. 	All three may be local maxima with the global maximum 

not yet located. 	Alternatively there may be two (or more?) co-equal 

global maxima with one or more local maximum values. 	The execution time 

given in table 6-22 is for the zero (i.e. non-standard) starting vector. 

The time in parentheses is the time required to reach the local maximum 

value from the standard starting vector. 	Problem 5 is clearly a diffi- 



TABLE 6-22 

STANDARDIZED TIMES REQUIRED TO SOLVE LARGE TEST PROBLEMS 

Problem 
Number 

GRG 
Flexible 
Tolerance 

NLP SUMT POPII Rosenbrock GGS SLA 

1 0.102 3.277 N.A. N.A. N.A. N.A. N.A. 0.007 

2 0.245 N.S. 4.155 0.254 N.S. N.S. N.S. 0.724 
(N.A.) (N.S.) (3.823) (0.305) (N.S.) (N.S.) (N.S.) (1.008) 

3 0.070 0.345 0.074 0.127 N.S. N.S. N.S. 0.073 

4 0.162 0.121 0.105 0.048 N.S. 0.078 0.105 0.030 
(0.296) (0.632) (0.029) (0.135) N.S. (0.136) (N.S.) (0.017) 

5 N.S. 2.709 N.S. N.A. N.S. N.S. N.S. 0.266 
(0.593)* 

6 0.174 0.192 0.073 N.S. 0.078 0.002 N.A. 0.062 

7 N.A. 4.695 0.222 N.S. N.S. N.S. N.A. 0.195 

8 0.066 1.268 0.244 0.057 - - 0.052 0.219 

9 0.133 6.455 2.518 0.363 - - 0.594 0.735 

10 0.226 23.227 N.S. - - - N.S. 0.502 

Notes: 1. N.S. = No solution found. 	N.A. = Problem not attempted. 	- = Algorithm cannot be applied. 

2. Figures in parentheses are for alternative infeasible starting point. 

3. Standardization factor for SLA (CDC 6400) = 43. 

4. * , see Section 6-3. 
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cult problem since Himmelblau reports that five of the six algorithms 

applied to this problem failed. 	Only the Flexible Tolerance code 

succeeded in solving the problem, and that required considerably more 

time than SLA. 	The initial step length used for all variables was 1.0. 

Problem 6 

This problem has only three variables but there are 14 non-linear 

inequality constraints. 	An added complication is that the object func- 

tion and constraints are defined by a FORTRAN subroutine. 	This makes 

the evaluation of analytical derivatives very difficult and time consum- 

ing. 	Surprisingly, at the solution point only one of the non-linear 

constraints is active. 	The upper bound on x2 is also active at the 

solution. 	The codes SLA, POP II and NLP recorded very similar 

times and are faster than GRG and Flexible Tolerance by a factor of two. 

The direct search method of Rosenbrock performs extremely well on this 

problem being about 30 times as fast as the three linear approximation 

codes. 	In view of this code's poor performance on other problems it 

is likely that an optimal point was located more by chance than by an 

efficient search procedure. 	It would have been inappropriate to use 

the same initial step length for all three variables in this problem since 

the total movement required for the second variable is several hundred 

times the movement of the other two. 	Accordingly, step lengths of 2.0 

were assigned to the first and third variables, and a step length of 

400.0 was chosen for the second. 

Problem 7 

This problem has a large number of inequality constraints. 	There 

are upper and lower bounds on each of the five independent variables as 

well as 34 non-linear inequalities and four linear inequalities. 	As in 

problem 1 the independent variables are used to calculate a whole series 

of intermediate quantities by successive substitutions in a cascade of 
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34 equations. 	The intermediate quantities are used in conjunction with 

the independent variables to define both object function and constraints. 

Since the functional form of the object function and some of the con-

straints is so complex, techniques requiring analytical derivatives are 

at a distinct disadvantage. 	For instance, Himmelblau states that the 

penalty function code SUMT, '... almost certainly failed because of undis-

covered errors in one or more of the 315 second partial derivatives.' 

The code SLA performs well on this problem converging in eight iterations. 

The rapid solution is again due to the number of active constraints being 

at least equal to the number of independent variables. 	The time taken 

to converge is shown in table 6-22 to be a little less than the NLP algo- 

rithm and considerably less than the Flexible Tolerance method. 	The 

step length used for all five variables was 20.0. 	This is sufficient 

to encompass the solution values of all variables except the first. Con-

vergence is thus delayed whilst the first variable moves in steps of 20 

from its initial value of 900 to the solution value of 705.17. 	The 

step length is increased twice during the calculation by the step incre- 

ment factor (2 in this case) so progress is not too slow. 	A second calcu- 

lation was performed on this problem, this time setting the initial step 

length of the first variable to 200.0, the others remaining at 20.0. 

This reduced the number of iterations required for convergence to five 

and approximately halved the execution time shown in table 6-22. 

Problem 8 

This is a ten variable problem with three linear equality constraints. 

Its most awkward feature is that the object function contains terms involv- 

ing the natural logarithms of the independent variables. 	If any of the 

variables is zero an 'infinite' value is generated by the computer and the 

program fails. 	There is no difficulty when using SLA since by setting 

the lower bound for each variable to a very small value (10 8  was used) 
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it is possible to ensure that the search never obtains values closer to 

zero. 	The code NLP could only solve the problem by using a variable 

transformation of the form: 

xi  = In (xi) 

This avoids the possibility of the program generating an infinite value 

but it also makes the equality constraints non-linear and hence much more 

difficult to deal with. 	Table 6-22 shows SLA to be less competitive on 

this problem. 	As before Flexible Tolerance is slow to converge. This 

problem is more difficult than some of the others for SLA since only 

three constraints are active at the solution. 	This means that convergence 

is by oscillation, cubic fitting and step reduction. 	The step length 

used was 0.2 for all variables. 

Problem 9 

This problem has 16 independent variables and is thus larger than any 

so far described. 	Analytical derivatives are easily obtained since the 

object function has a simple symmetric form and the eight equality con- 

straints are linear. 	Thirty-one iterations were required for solution by 

SLA. 	At the optimum point there were five active lower bounds making, 

with the equality constraints, thirteen active constraints in total. All 

the equality constraints were satisfied to 10 11 or better. 	The code 

CRC performs well on this problem being faster by a factor of three than 

the next best code, SUMT. 	The codes SLA and GCS required about the same 

amount of time whilst NLP and Flexible Tolerance were considerably slower. 

An initial step length of 5.0 was used for all variables. 

Problem 10 

This is the largest and most complex problem described in this section. 

It has 24 variables, 12 non-linear equality constraints, 2 linear equality 

constraints, 6 non-linear inequality constraints and 24 lower bounds. The 

object function is linear. 	The principal difficulty with this problem as 
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far as SLA is concerned lies in the six non-linear inequality constraints. 

It is seen from the problem specification in Appendix 1 that the con- 

stants, e., in the inequalities are all positive. 	Since all the inde- 

pendent variables are constrained to be greater than or equal to zero the 

six inequalities can only be satisfied if the variables x4, x5, xe, 

x16, x17 and x18 are exactly zero. 	If they are slightly less than 

zero then the non-negativity condition is violated. 	If they are slightly 

greater than zero then one or more of the six inequalities will be violated. 

In fact the problem is badly posed and is in reality only an 18 variable 

problem. 	An attempt was made to solve the problem as posed, with initial 

values of 0.04 for all variables. 	This failed when the linear program- 

ming routine could find no feasible solution. 	A second attempt at solu- 

tion was made this time allowing a tolerance of 10-7  on the inequality 

constraints, thus expanding the feasible region. 	Again the linear pro- 

granuaing routine could find no feasible solution. 	A third attempt at 

solution was made this time setting the six critical variables (x4, x5, 

x6, x16,  x17 and x18) to zero. 	The first iteration was successfully 

completed but in the second iteration once again the linear programming 

routine could find no feasible region. 	A detailed investigation showed 

that the cause lay in the small rounding errors incurred during the 

linearization of the inequality constraints. 	The very small errors so 

introduced caused the feasible region for the six key variables to dis- 

appear. 	Consequently a tolerance of 10 7  was reintroduced into the in- 

equalities and a fourth calculation performed. 	This calculation was 

successful. 	Setting six variables to zero enabled an initial feasible 

solution to be found and adding a tolerance of 10-7  to the inequalities 

prevented subsequent loss of feasibility. 	Convergence required only six 

iterations. 	The reason for such rapid convergence is the 40 active con- 

straints at the solution point. 	The convergence time shown in table 6-22 
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is, strictly speaking, not directly comparable with the results of the 

GRG and Flexible Tolerance algorithms, since the calculation did not 

begin at the standard starting point. 	However the code SLA is clearly 

greatly superior to the Flexible Tolerance code for this type of problem. 

It is also worth noting that the solution found by SLA was nearly 10% 

lower than that located by Flexible Tolerance. 	This lower object func- 

tion value was not achieved by constraint violation since the inequalities 

were satisfied to 10
-7 

or better and the equalities to 10
-8 or better. 

It was noted earlier that problem 10 had been poorly posed. 	By 

removing the six variables which were necessarily zero the problem was 

reformulated as an 18 variable problem having 11 equality constraints 

and 18 lower bounds. 	This modified problem was solved by SLA again in 

six iterations. 	However the execution time was less than half that of 

the original problem. 	The solutions obtained by SLA for the 24 and 18 

variable problems were the same to at least six decimal places. 	The 

halving of the execution time by reformulating the original problem em-

phasizes the advantages gained by careful problem preparation. 

6-4 Discussion of the Results of Large Test Problems 

The correct and accurate solutions obtained by SLA for the ten test 

problems have established the reliability of the algorithm. 	The only 

difficulties experienced were with problem 10 and, as explained in the 

preceding section, these were caused primarily by poor problem formulation. 

Nine of the ten test problems, when linearized from the given starting 

point, had feasible regions. 	This is an indication that the requirement 

of SLA for a feasible region should not be a significant drawback. Table 

6-22 shows that only SLA succeeded in solving all the test problems. 

The standardized times in table 6-22 show that in four out of the 

ten problems SLA required the least computer time. 	Only GRG, Flexible 
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Tolerance and NLP have reliability comparable to SLA and, of these three, 

both NLP and Flexible Tolerance are consistently slower. 	GRG is the 

fastest algorithm for four of the ten problems. 	However GRG requires 

analytical derivatives and so problem preparation in some cases would 

be both long and tedious. 	GRG failed to obtain a solution for problem 

5. 	It should be noted that since no effort was made to find the optimum 

initial step lengths the results in table 6-22 are not necessarily the 

best which could be obtained with SLA. 

In most cases less calculation time is required to evaluate deriva-

tives analytically, since straightforward substitution in formulae is com-

putationally simpler than a series of subroutine calls to evaluate the 

object function and constraints numerically. 	Thus, had analytical deri- 

vatives been used in SLA the times shown in table 6-22 would probably 

have been less. 

It is difficult to assess the relative accuracies of the results ob-

tained by the algorithms shown in table 6-22, since the author does not 

have access to the detailed results. 	However as far as SLA is concerned 

all the inequalities are met to within 10 6. 	The upper and lower bounds 

on the variables are never violated. 	The equality constraints are cer- 

tainly met to 10 6 and are usually 10
-8 

or better. 	Moreover the optimal 

object function produced by SLA is in all cases as good as that quoted by 

Himmelblau and in several cases better. 

An important feature of the code SLA is its ability to utilize numer- 

ical derivatives. 	This of course greatly simplifies the preparation re- 

quired to solve most problems. 	More importantly, for problems involving 

complex object functions and/or constraints it may be impossible to ex- 

press the derivatives analytically. 	In such cases only direct search 

techniques, such as those due to Rosenbrock and Box, and techniques capable 

of using derivatives generated numerically may be applied. 	Preparation 
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times for all ten problems, excluding card punching, were typically about 

half an hour. 	Half of the problems ran correctly at the first attempt. 

The rest required one or two additional runs, mainly to correct punching 

errors in the data. 
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CHAPTER 7 

APPLICATION OF SLA TO RADIATION SHIELD OPTIMIZATION 

In the early days of the exploitation of nuclear power the radiation 

shielding provided for operating personnel was very conservatively designed. 

This was necessary since calculational techniques for radiation transport 

predictions were relatively unsophisticated and the basic data required 

for such computations were either unavailable or of limited accuracy. 

The shield designer today is equipped with an array of powerful computa-

tional techniques backed up by extensive libraries of nuclear data. He 

has access to large, powerful computers and, what is more important, has 

over twenty years of accumulated design experience. 	It is now no longer 

ncessary to design radiation shielding with enormous safety factors. In 

fact, since the cost of a shield is a significant proportion of the total 

cost of a nuclear installation, there is a great financial incentive to 

produce not merely an adequate design but an optimal design. 

The prime requirement of any radiation shield is that it attenuates 

radiation to such an extent that workers are not exposed to radiation 

doses above internationally prescribed limits. 	This has been achieved 

by restricting access to high radiation areas and also by imposing area 

dose rate limitations on the shield design such that prolonged occupancy 

of some areas is possible without incurring an excessive radiation dose. 

This use of area dose rate limitations which permit high occupancy factors 

for all workers will usually require the provision of shielding which is 

essentially superfluous. 	In most situations workers will spend their 

working days moving between several work-stations, some of which will be 

far removed from the radiation source. 	Therefore the assumption that a 

worker spends the whole of his working day close to the radiation source 

is both conservative and costly. 	In order to reduce these costs it is 
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necessary to examine the movements of individual workers and tailor the 

shield system to them. 	The limitations on the shield design thus become 

the integrated doses of the individual workers and not the area dose 

rates. 

In the work described here it is shown possible to optimize a radi-

ation shield taking into account the integrated doses acquired by indi- 

vidual workers whilst following a particular work schedule. 	Results 

are given for a 25 element shield system within and around which 25 

workers spend various parts of their working day at any one of 25 reference 

dose points. 	The effects on the optimal shield design of imposing area 

dose rate constraints of varying magnitudes in addition to the integrated 

dose limitations on workers are examined. 

7-1 Shield Optimization 

There are many parameters which may be varied in order to achieve an 

optimal radiation shield design. 	However, because of the computational 

complexities involved, it is not usually feasible to optimize a shield by 

Changing all the available parameters simultaneously. 	The optimization 

of a total radiation shield is thus usually achieved by solving a series 

of simpler sub-optimization problems. 	The main design parameters which 

are at the disposal of the shield engineer are: 

(1) The number of shields and their geometrical form. 

(2) The material composition of the shields. 

(3) The ordering of material layers within a shield. 

By changing some or all of these parameters the designer seeks, in qualita-

tive terms, to produce a 'best' or 'most desirable' shield. 

In an ideal case the designer would decide on all the attributes of 

the radiation shield of interest to him (e.g. its cost, weight, integrity) 

and would then draw up a series of 'utility functions', one for each attri- 
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bute. 	These utility functions would express, in the form of a continuous 

curve, the variation of the designer's preference for each attribute. 

They would all be to a common scale. 	It would then be possible to opti- 

mize the shield design by maximizing the sum of the utilities of the 

individual attributes. 	The qualitative behaviour of these utility func- 

tions is clear. 	A low cost shield has a high utility whilst a high cost 

shield has low utility. 	A light shield is preferable to a heavy one, 

and soon. 	However the precise shape of the utility function is not 

unique. 	Each designer will have his own relative scale of values. The 

most difficult problems arise when attempts are made to set a common 

scale to several utility functions. 	It is exceedingly difficult to 

decide on the relative values or trade-offs to be made between cost, 

weight, size, dose rate, reliability, ease of construction and so forth. 

In practice a much simpler approach is adopted. 	The most important 

or 'prime' attribute is chosen to be the object function and other attri- 

butes of concern are included as constraints. 	For example, in the case 

of a mobile reactor the prime attribute might be the total shield weight. 

Secondary attributes would be the total cost and, say, the average dose 

acquired by each radiation worker. 	Thus the problem would be formulated 

as a minimum weight problem subject to maximum cost and dose constraints. 

Prime attributes which could be used as object functions for constrained 

optimization include the cost, the weight or the volume of the shield. 

Secondary attributes which might be used as constraints are: 

Dose rates at points within the shield structure. 

Dimensions of shield elements. 

Material compatibility. 

Rate of heat production within the shield. 

Material densities. 

Thus, there are many ways of formulating a 'shield optimization problem'. 
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However, whichever formulation is used the problem of calculating 

the attenuation properties of the radiation shield for a specified source 

remains. 	For problems of practical importance the effort involved in 

calculating the radiation attenuation is considerable. 	Consequently, 

it is not possible to use a shield model which requires a complete recal-

culation of attenuation properties to be performed each time a perturbation 

is made in one of the design variables. 	This would require vast amounts 

of computing effort for all but the very simplest problems. 	An alterna- 

tive approach is to use a model in which changes in shield attenuation 

due to variations in the design variables are expressed as simple functions. 

These functions are fitted empirically to either experimental results or 

a detailed reference calculation and will therefore have a limited range 

of validity. 	However, by using such functions, changes in the shield 

attenuation properties due to pertui-bations from a reference design are 

easily calculated. 	The use of such a simplified shield model makes the 

use of mathematical programming techniques computationally feasible. 

Should the result of an optimization calculation involve unacceptable 

extrapolations from the reference design it may be necessary to repeat ex- 

periment or calculation and establish new local approximations. 	The 

optimization calculation may then be repeated within the region of valid 

extrapolation. 

7-2 The Approach Adopted 

A shield model based on perturbations from a reference design has 

been used. 	The shield is modelled by splitting it up into N sections each 

of area Ai, i = 1,N. 	The average dose rate over the surface of each 

section is known as the tolerance, Ti. 	These tolerances are assumed to 

vary exponentially with the thickness of the shield section: 

-K.t. 
1 1 

T. = R. e 
1 	1 (7-1) 
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- where 	R. is the reference tolerance. 
1 

ti  is the shield thickness perturbation. 

K. is a pseudo-attenuation coefficient suitably chosen 

to allow for obliquity effects. 

The dose rate, Dr, at any point is expressed as a sum of contributions 

from each element: 

N 

Dr = :E2 C 
rl  
.T. 
1 

i=1 
(7-2) 

th - where C 	is the fraction of the . 
	

tolerance reaching the ri 

r
th 

close point. 

These dose rates are then used to calculate the integrated doses acquired 

by workers within the shield structure. 	The integrated dose of the m
th 

man is defined as: 

Q 

I
m 

= :)] F D 
rm r 

r=1 

- where Q 	is the total number of dose points. 

Frm  is the time spent by man m at dose point r. 

Substituting (7-2) into (7-3) we have: 

Q 	N 

I
m 

= 	F
rm 	

C
ri
T
i 

r=1 	1=1 

(7-3) 

(7-4) 

The objective function used is that of shield weight and is defined as: 

N 

U = 	A.t.p. 
1 1 1 

i=1 

th. 
- where p. is the density of the I 	shield section. 1 

(7-5) 

Substitutiogfort,in equation 7-5 we have: 
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A.p. 	R. 
E " in _1 

K. 	T. 
(7-6) 

1=1 
	1 	1 

Two sets of inequality constraints are applied to the object function de-

fined in equation 7-6: 

(1) Constraints limiting the maximum integrated dose acquired by 

each worker. 

Im < Maximum Dose 
	

(7-7) 

(2) Constraints limiting the maximum dose rate at each dose 

point. 

D
r 

< Maximum Dose Rate 
	

(7-8) 

Both these sets of constraints are linear. 	Note that the independent 

variables of the model are the tolerances, Ti, not the shield thicknesses, 

t.. 1 

This model was originally developed by Vickers Limited (Barrow-in-

Furness) [Ref. 23] in order to optimize reactor shielding for nuclear 

powered submarines. 	The optimum set of shield thicknesses was calculated 

using the Lagrange method of undetermined multipliers. 	However this 

method of solution enabled the integrated dose of only one man at a time 

to be considered. 

By using SLA to minimize the object function given in equation 7-6 

subject to the inequalities shown in equations 7-7 and 7-8, minimum weight 

configurations have been obtained in which integrated dose limitations on 

all workers are satisfied. 	Results are presented in the following section 

of calculations involving a 25 element shield. 
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7-3 Shield Optimization Results Obtained with SLA 

A set of data was prepared for a hypothetical shield system having 

25 shield elements. 	A work schedule or 'Time Allocation Matrix' was 

drawn up for 25 men working at 25 dose points. 	This is shown in table 

7-1 where the percentage of time spent by each of the 25 men at each of 

the 25 dose points is shown. 	Also a Contribution Matrix was prepared 

which showed the fraction of the tolerance at each shield section which 

is contributed to the total dose at each dose point. 	This is shown in 

table 7-2. These two matrices are the F 	and C 	shown in equations 
rm 	ri 

7-3 and 7-2 respectively. 	The figures in table 7-1 are percentages and 

must be multiplied by the number of hours in a working week and divided 

by 100 to obtain the actual time worked in hours. 	Other data used in 

the calculation are shown in table 7-3. 

A series of calculations was performed in which a limit of 140 mR 

was set on the maximum integrated dose to be absorbed by any man in a 

40 hour week. 	The dose rate limit at each dose point was set at 0.5 mR/ 

hr and increased by 1 mR/hr for each successive calculation. 	The 

resultant shield weight reduction is shown in arbitrary units in figure 

7-1. 	The decrease in shield weight due to the relaxation of the area 

dose rate constraints is initially large but as the dose rate limit 

approaches 3.5 mR/hr weight reductions become progressively smaller. 

By this stage the design is entirely determined by the maximum integrated 

dose limitations. 	This change from a design limited by area dose rate 

constraints to one limited by the integrated doses acquired by the workers 

is illustrated in figure 7-2. 	When the area dose rate limit is set at 

0.5 mR/hr there are 12 limiting dose points. 	That is, there are 12 

dose points which have a dose rate of exactly 0.5 mR/hr. 	When the area 

dose rate limits are relaxed to 5.5 mR/hr no dose points are limiting 

but five of the men acquire an integrated dose of 140 mR and thus limit 



TABLE 7-1 TIME ALLOCATION MATRIX - PERCENTAGE OF TIME SPENT BY 25 MEN 

AT EACH OF 25 DOSE POINTS .  

tiEN DOSE runos 
1. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1.6 17 18 19 20 21 22 23 24 25 

1 0 3 0 7 0 15 0 5 4 0 30 0 0 2 3 0 6 0 8 0 10 U 10 3 0 

2 2 2 5 0 10 0 7 0 0 8 0 18 0 0 20 0 0 10 8 0 5 0 0 5 0 

3 0 0 0 0 0 0 0 0 8 0 7 0 23 0 0 23 0 0 0 14 0 5 0 5 15 

4 10 0 15 10 7 0 0 15 U 0 0 0 0 15 0 0 20 0 0 0 0 6 0 0 0 

5 7 0 3 0 0 15 10 0 5 0 10 0 0 8 0 0 0 0 30 0 0 2 0 6 0 

6 0 7 0 2 5 8 0 0 0 2 0 0 0 0 5 0 0 5 0 0 19 10 20 • 8 10 

7 8 0 10 0 0 0 15 20 0 3 3 10 0 0 0 7 5 0 0 15 0 0 0 0 0 

8 0 18 0 0 10 0 0 0 7 15 0 0 15 8 0 0 0 19 0 0 0 0 0 7 0 

9 5 0 0 15 0 6 0 0 0 0 14 0 6 0 20 0 0 0 20 LI 12 0 0 0 0 

10 0 13 0 0 0 0 13 0 14 0 0 18 20 11 9 2 0 0 0 0 0 0 0 0 0 

i 1 0 0 18 0 0 14 U 20 0 0 13 n 0 11 0 0 13 0 0 0 0 9 0 2 0 

42 7 0 0 3 0 0 15 0 10 6 0 0 2 0 0 0 3 0 0 5 10 8 0 0 30 

43 8 7 23 0 3 0 0 0 0 0 0 0 0 0 0 15 5 5 14 0 0 0 0 0 23 

14 10 0 0 0 15 0 10 7 0 15 0 15 0 20 0 0 0 0 0 0 0 0 8 0 3 

15 0 0 18 0 0 0 0 0 3 0 16 0 7 0 0 10 0 0 15 0 6 19 0 7 0 

16 0 0 0 13 0 20 3 0 18 LI 0 0 0 14 0 0 11 13 0 9 0 0 2 0 0 

17 7 30 0 0 3 U 6 10 0 8 15 0 10 0 0 5 3 0 0 0 0 0 0 0 2 

19 0 0 15 5 0 0 0 0 0 0 0 8 0 0 23 0 0 7 0 0 5 0 2.3 14 0 

19 0 12 0 0 18 0 15 0 5 0 0 0 22 0 0 16 0 U 12 0 0 0 0 0 0 

20 0 0 13 0 0 20 0 0 C 18 0 0 0 0 0 9 13 11 3 14 0 9 0 0 2 

21 10 0 0 15 0 0 0 10 0 0 8 7 0 15 15 0 0 U 0 3 20 0 3 0 0 

22 18 10 0 0 0 7 0 0 16 0 0 0 15 0 U 8 1 1) 0 19 0 0 0 7 22 0 

23 0 0 12 0 18 0 15 0 0 12 0 0 0 0 0 0 0 16 0 0 0 5 U U 0 

24 0 7 0 7 0 7 0 20 0 0 9 0 0 20 0 0 25 0 0 5 0 0 0 0 0 

25 12 0 18 0 0 12 0 1.6 0 0 0 5 0 0 0 0 0 0 15 1.1 0 0 0 0 22 



TABLE 7-2 CONTRIBUTION MATRIX - FRACTION OF TOLERANCE CONTRIBUTED TO EACH DOSE POINT 

SHIELD DOSE POINTS 
1 2  3 4 5 6 7 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 ,020 0 0 .041 .010 0 4.100 0 0 0 .500 0 0 0 .250 0 0 0 .010 0 0 .010 0 .060 0 

2 .020 '0 0 .085 0 0 .120 0 0 0 .700 0 0 .100 0 0 .005 0 0 0 .330 0 0 0 0 

3 0 .010 0 0 .200 0 o 0 .015 0 0 0 .070 0 0 .250 o 0 9 0 • 0 0 .083 0 0 

4 0 0 .050 0 0 .500 0 0 0 .100 0 0 0 .002 0 0 0 .005 .010 0 0 .001 0 0 3 

5 .100 0 0 0 n 0 0 4801 0 0..005 0 0 0 0 0 a 0 0 .050 0 0 0 0 .200 

6 0 .010 .006 0 .025 0 9 9 .301 0 0 0 0 0 0 0 .700 0 0 0 0 .020 0 0 0 

7 .005 0 3 .020 0 .010 0 0 0 0 0 .750 0 0 .070 0 0 .080 0 0 0 0 0 .300 0 

8 .020 .040 .010 0 .100 0 0 0 0 0 0 0 .500 .250 .010 0 0 0 0 .010 0060 0 1 0 0 

9 0 .010 0 P 0 o , 	0 .200 0 0 .010 0 0 0 0 .070 0 0 .250 0 0 0 .080 0 0 

10 0 0 .050 „200 0 0 0 0 0 0 0 0 0  0 0 0 0 .800 0 0 0 .100 0 0 .008 

11 0 0 0 0 0 0 .005 .020 .010 .750 0 0 0 0 0 .300 0 0 0 .070 .080 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 .330 0 .005 U 0 .100 :200 .120 0 .085 G .020 0 0 

13 .010 0 .200 0 .015 0 0 0 .070 0 .250 0 .080 0 0 3 0 0 0 a o . 	0 0 0 0 

14 0 .100 0 0 0 0 .500 0 0 0 0 0 0 a .008 0 o • 0 0 .050 0 .200 0 0 0 

15 .175 0 0 .120 - 	n 0 0 .120 0 0 0 .500 0 .025 0 .060 0 0 .050 .0 0 0 .050 Cl 0 

16 0 .080 .080 0 0 .080 0 0 0 .080 0 0 0 0 .100 0 .100 0 .120 0 0 .180 0 .300 0 

17 .130 0 0 .200 0 0 .200 0 .150 0 .070 0 .200 0 0 0 .025 0 0 .025 0 0 .210 0 0 

18 0 .005 0 0 .035 0 .015 0 0 .120 0 0 0 0 .025 0 0 .300 0 0 .800 0 0 0 0 

19 0 0 .175 0 0 .350 0 0 0 0 0 .020 .020 .020,.020 .020 0 0 .100 0 0 0 .175 0 0 

20 0 .100 0 0 .200 0 0 0 0 0 0 0 0 0' 0 0 o . 	0 0 0 e 0 0 0 0 

21 0 0 .050 3 0 0 0 .450 0 0 .120 0 0 .050 0 0 .050 0 0 .050 0 0 .150 0 0 

22 .065 0 0 0 .220 0 0 0 .065 0 0 0 .075 0 i 	0 .170 0 0 0 0 .075 0 0 0 0 

23 0 0 a • 500 0 0 0 .020 0 0 0 .070 0 0 .140 0 0 .020 a 0 0 0 o .120 0 

24 .140 .015 .015 0 .090 .100 .160 .010 .008 .050 .010 .010 .010 .010 .015 .015 .200 .015 .015 .170 .010 .020 .030 .100 .100 

25 .050 ri 0 n .160 0 0 0 4.090 0 .600 0 0 .070 0 0 0 0 0 0 0 . 05 0 0 0 0 
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TABLE 7-3 

DATA USED IN 25 ELEMENT SHIELD CALCULATION 

Area of each shield element. 

Integrated dose limit for each man. 

.Number of working hours per week. 

Pseudo-attenuation coefficient for each shield 

element. 

= 1 m2  

= 140 mR 

= 40 

= 0.5 cm 1 

Reference tolerance at each shield element 

surface. 	 = 1.0 mR/hr 

Convergence criterion on tolerances. 	= 0.05 mR/hr 
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the shield design. 	Figures 7-3 and 7-4 show the shield thickness per- 

. turbations for each shield element, for each of the six area dose rate 

limits used. 	When the area dose rate limit is set to 0.5 mR/hr all 

the perturbations are positive. 	This shows that only by increasing the 

total weight of the shield can such low area dose rates be met. 	As 

these limits are raised the shield sections can be reduced in thickness. 

This shows up as increasingly negative shield thickness perturbations. 

Figure 7-5 shows how, as the area dose rate limit is increased, the 

average integrated dose per man increases. 	The curve is linear until 

the area dose rate limit of 3.5 mR/hr is reached and then an asymptotic 

value is rapidly attained. 	These results reflect the interaction between 

area dose rate limits, integrated dose limits and the work schedule. 

A reduction in shield weight invariably increases the dose rates observed. 

The maximum possible shield weight reduction is therefore achieved when 

the dose rate at every dose point is at the specified maximum. 	Thus, 

an optimization procedure which attempts to minimize shield weight will 

cause all dose rates to rise towards the maximum permitted levels. 	If, 

as in the calculations described here, the same dose rate limit is applied 

to all dose points it is unlikely that shield thicknesses may be mani- 

pulated to achieve a uniform dose rate distribution. 	The geometrical 

arrangement of both shield sections and source will usually preclude this. 

Although the shield model used here does not involve geometrical calcula-

tions directly the geometry of the shield is implicit in the contribution 

matrix, C
ri
. 	When constraints on integrated doses for each worker are 

introduced it is even less likely that all area dose rate limits will be 

reached. 	Thus the weight reduction will fall further from the theoretical 

maximum attainable. 	This is apparent in figure 7-5 where an envelope is 

drawn showing the maximum value which the average integrated dose per man 

can achieve. 	The envelope is constructed by noting that, given an area 
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dose rate limit, the maximum integrated dose which can be absorbed per 

week is equal to the total number of hours worked per week times the 

maximum hourly dose rate. 	Thus, for example, with an area dose rate 

limit of 2.5 mR/hr the maximum integrated dose attainable in a 40 hour 

week is 100 mR. 	The envelope has a sharp cut-off at 140 mR since this 

is the specified maximum value for all calculations. 

For a given area dose rate limitation there is no way of improving 

the situation (i.e. reducing shield weight further) without either changing 

the geometrical arrangement of the shields or modifying the work schedule. 

For the model used here this corresponds to changing the elements of the 

arrays C
ri 

and F 	respectively. 	The easier course of action in- 
ri  

volves changing the work schedule. 	This is an operational problem involv- 

ing such questions as, 'Can all men do all jobs?', 'Must some jobs be done 

at the same time?', 'Are extra workers available?'. 	In some ways the 

problem of optimal scheduling of work is more difficult than that of opti- 

mizing the shield itself. 	The two problems interact in that by optimizing 

the shield system for a particular work schedule a new radiation field pro-

file is produced for which a new optimal work schedule may then be devised. 

This new work scheme may then be used as the basis for further shield 

optimization. 

The value of the shield optimization analysis is that it will imme- 

diately identify the limiting constraints. 	This enables operational 

decisions about work scheduling, redeployment and job automation to be 

made with full knowledge of the workers and/or dose rates which limit the 

design as a whole. 	Also with the aid of curves like that shown in figure 

7-1 it enables area dose rate limits to be 'costed' directly in terms of 

shield weight. 

The calculations described here each required approximately 300 seconds 

of central processor time on the CDC 6400 machine. 	They are therefore not 
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to be classed as small problems. 	However an easy way of reducing the 

number of constraints and hence the calculation time is to replace the 

area dose rate constraints by simple bounds on the tolerances. 	This 

limits the average dose rate at the surface of the shield and indirectly, 

the area dose rates. 	In this way the number of inequality constraints 

may be halved and a significant reduction in computing time achieved. 

Alternatively, larger problems could be attempted. 
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CHAPTER 8 

CONCLUSIONS 

The mode of development of an algorithm to solve the general non- 

linear programming problem has been described. 	The advantages gained 

by using an interactive test program for the development and evaluation 

of a computer code to implement the algorithm have been stressed. The 

provision of a range of test problems and the ability to obtain detailed 

diagnostic output has enabled numerous strategies to be tested and evalu- 

ated. 	This mode of development has produced a computer program which 

is both reliable and numerically robust. 

The algorithm is conceptually simple and is therefore easily under- 

stood by the non-specialist. 	This basic simplicity has enabled a modular 

code to be developed. 	For example it would be an easy matter to change 

the cubic fitting procedure without modifying, say, the search routines 

in APPROX. 	A few small changes will allow the use of an alternative 

linear programming subroutine. 	This is an important advantage since 

although the subroutine LAO1A has proved both reliable and efficient, 

there are circumstances where it may be necessary or desirable to use 

alternative linear programming routines. 

Stress has been laid on the importance of a program which involves 

the user in as little preparatory work as possible. 	The proven ability 

of SLA to work with numerical derivatives is a strong argument in its 

favour. 	In a situation where the real costs of computing are falling, 

whilst the costs of human labour are rising, minimal problem preparation 

will become an increasingly important factor in the choice of solution 

technique. 	The ten large test problems described in Chapter 6 were all 

prepared and successfully run in the space of four working days. 	The 
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major part of this time was in fact spent punching the required computer 

cards. 

The use of the displaced origin technique gives SLA a substantial 

computational advantage over the original formulation for successive 

linearization given by Griffith and Stewart. 	It is no longer necessary 

to double the dimensionality of a problem and this produces considerable 

savings in both storage requirements and calculation time. 	Cubic fitting 

and pattern moves provide an efficient method of convergence acceleration. 

The resulting algorithm has been shown to be superior to penalty function 

techniques and at least as good as the best projection methods currently 

available. 	Moreover it has the significant advantage over projection 

techniques of not requiring analytical derivatives. 	Since there are no 

doubts about the ability of the revised simplex technique to solve large 

linear programs the method may be used with confidence for large-scale 

non-linear optimization work. 

Although the code SLA is a fully operational problem solving proce-

dure there are two changes which, given more time, the author would have 

wished to investigate. 	The first is concerned with initial feasibility. 

The step doubling procedure currently employed when no feasible region 

is found is only of use where a feasible region exists but is not encom- 

passed by the maximum step length constraints. 	A steepest descent phase 

using an object function of the form given for T(x) in equation 2-17 

would enable the search to progress even from a point where the linearized 

problem had no feasible solution. 	This would relieve the user of the 

chore of choosing a new starting point or of setting up an unconstrained 

probrem as described in Section 4-3. 

The second change involves reducing the number of inequality con-

straint equations supplied to the linear programming routine. It should 

be possible in the subroutine LINEAR to check each inequality constraint 
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in turn to ascertain whether all points in the region defined by the 

maximum step length limitations were feasible with respect to the con- 

straint. 	If this were the case then the constraint could be dropped 

since only points within the region defined by the step length limitations 

are admissible as feasible points. 	If they are all feasible with res- 

pect to a particular constraint then that constraint is redundant. 

It would be necessary to investigate whether the time required to make 

such tests was in fact justified by the time savings due to a reduced 

linear program size. 	In large problems with many constraints.the savings 

could be substantial. 

In Chapter 7 it has been shown possible to optimize, in a minimum 

weight sense, a radiation shield taking into account via a work schedule 

the doses absorbed by individual workers within the shield structure. 

This has been made computationally possible by adopting a greatly simpli- 

fied non-geometric model of the shield. 	The computer resource require- 

ments are practicable for small to medium sized problems, i.e. less than 

100 shield sections. 	The analysis presented makes it possible to locate 

the men and/or the dose points which limit the design as a whole. This 

information provides a good basis for the rearrangement of operational 

procedures. 	The shield model used here has been employed successfully 

in the optimization of marine reactor shielding, but unfortunately much 

of this work is of a classified nature and not reported in the open 

literature. 	The optimal shield analysis work described here could be 

usefully followed up by an investigation of the operational problems 

associated with the rearrangement of work schedules. 	This would involve 

precise specification of all the available options such as using extra 

workers, interchanging jobs between workers, automating high dose jobs. 

Given specifications such as these, efforts could be made to model the 

interaction of the shield optimization and work schedule problems. Such 
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an overall optimization procedure would undoubtedly require substantial 

computer resources for development and use. 	A careful appraisal of the 

likely benefits should be made before attempting such a development. 

There is still much to be done in the field of non-linear programming. 

It seems unlikely that any one approach to the solution of such problems 

will prove to be the best for every type of problem. 	A much more likely 

outcome is that a range of efficient methods, each particularly suited 

to a sub-set of problems, will emerge. 	It is hoped that the algorithm 

described here will play a part in such an evolutionary process. 
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APPENDIX 1 - TEST PROBLEMS USED 

Specifications of all the test problems used in Chapter 6 are given 

here. 	As well as the form of the object function and constraints, 

details are given of the standard starting point, solution point and 

value of the object function at the optimum. 	The thirteen small test 

problems incorporated into N10C are given first and then the ten larger 

problems are specified. 

A1-1 Small Test Problems 

(1) Rosenbrock's Function 

Minimize: 	f = 100(x2  - x1)2  + (1 - x1)2  

Starting point: (-1.2, 1.0) 

Solution point: (1.0, 1.0) 

Optimum: 	f = 0.0 

(2) Powell's Function 

Minimize: 
	

f = (x1 + 10x2)2  + 5(x3 - x4)2  + (x2  - 2x3)4  + 

+ 10(x1 - x4)4  

Starting point: (3, -1, 0, 1) 

Solution point: (0, 0, 0, 0) 

Optimum: 	f = 0.0 

(3) Wood's Function 

Minimize: 	f = 100(x2  - xi)2  + (1 - x1 )2  + 9O(x4  - x3)2  + 

+ (1 - x3)2  + 10.1(x2  - 1)2  + 10.1(x4  - 1)2  + 

+ 19.8(x2  - 1)(x4  - 1) 

Starting point: (-3, -1, -3, -1) 

Solution point: 	(1, 1, 1, 1) 

Optimum: 	f = 0.0 
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(4) Rosenbrock D 

Minimize: 	f = 100(x2  - x1)2  + (1 - x1)2  

Constraints: 	xl < 0 

x2 .5 0 

Starting point: 	(-0.5, 0.5) 

Solution point: 	(0, 0) 

Optimum: 	f = 1.0 

(5) Post Office Box A 

Minimize: 	f = -xlx2x3 

Constraints: 	0 < xi  < 42 	(i = 1,3) 

xl + 2x2  + 2x3 < 72 

Starting point: 	(10, 10, 10) 

Solution point: 	(24, 12, 12) 

Optimum: 	f = -3456.0 

(6) Post Office Box B 

Minimize: 	f = -xix2x3 

Constraints: 	0 < xl . 20 

0 . x2  < 11 

0 < x3 . 42 

xi + 2x2  + 2x3 < 72 

Starting point: 	(10, 10, 10) 

Solution point: 	(20, 11, 15) 

Optimum: 	f = -3300.0 

(7) Rosenbrock C 

Minimize: 	f = 100(x2  - x.)2 4.  (1 - x1)2 

Constraint: 	xi + (x2 - 1)2 	0.9 
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Starting point: 	(-1.2, 1.0) 

Solution point: 	(-0.94147, 0.88322) 

Optimum: 	f = 3.77029 

(8) Post Office Box C 

Minimize: 	f = -xix2x3  

Constraints: 	1 
	(i = 1,3) 

x1 + 2x2
2 
 + 4x32  	48 

Starting point: 	(1, 1, 1) 

Solution point: 	(4.0, 2.828427, 2.0) 

Optimum: 	f = -22.627416 

(9) Sefton's Problem 

Minimize: 	f = 	0.7 .(1000x2)2  + 	 (1000xix2) 

= 0.1717.10-4, B = 200.0) 

Constraints: 	0.005 .5 xl .; 0.020 

xl(1000x2)2  5. 2300 

x2(x1)0.8 	0.0223785 

Starting point: 	(0.0125, 0.0010) 

Solution point: 	(0.02000, 0.33912) 

Optimum: 	f = 29.6161 

(10) Cattle Feed Problem 

Minimize: 	f = 24.55x1 + 26.75x2  + 39xs  + 40.5x4  

Constraints: x 1 . >_ 0 
' 

(i = 1,4) 

12x1 + 11.9x2  + 41.8x3 + 52.1x4  - 1.645[(0.53x1)2  + 

+ (0.44x2)2  + (4.5x3)2  + (0.79x4)21°.5  - 

- 21 	0 

2.3x1  + 5.6x2  + 11.1x3  + 1.3x4  - 5 >, 0 



153 

xl + X2 + X3 + X4  1 

Starting point: (10-5, 	10-5, 0.9, 	0.1) 

Solution point: (0.63588, 	0, 0.31267, 0.05146) 

Optimum: f = 29.8888 

(11) Rosenbrock Ridge 

Minimize: 	f = -[100(x2 - xj.)2  + (1 - x1)2] 

Constraints: 	x2 	
e -(1+xl) 

2 
X2 = Xi 

Starting point: 	(0.5, 0.5) 

Solution point: 	(-1.0, 1.0) 

Optimum: 	f = -4.0 

(12) Paviani Problem 

Minimize: 	f = 1000 - xi - 2x - xi - x1x2 - xix3 

Constraints: 	xi 	(i = 1,3) 

Xi
2  + x2 + X3

2 
  = 25 

8x1  + 14x2  + 7x3 = 56 

Starting points: (2, 2, 2), (10, 10, 10) 

Also: (1.0, 1.0, 4.8), (4.8,1.2, 0.0) and 

(0.0, 1.8, 4.5) 

Solution point: 	(0.35121, 0.21699, 3.5522) 

Optimum: 	f = 961.715 

(13) Rosenbrock CC 

Minimize: 	f = 100(x2  - 4)2  + (1 - xl)2  

Constraint: 	xi + (x2  - 1)2  = 0.9 

Starting points: 	(-1.2, 1.0), (-0.5, 0.0), (1.1, 0.6) 

Solution points: 	(-0.94147, 0.88322), (0.39413, 0.13706), 

(0.94198, 0.88742) 
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Optima: 	3.77029, 0.40048, 0.00336724 

A1-2 Large Test Problems 

Problem 1 

Source: M.J. Box, A New Method of Constrained Optimizat;on and a 

Comparison with Other Methods, Computer J. 8:42 (1965). 

No. of variables: 5 

No. of constraints: 3 non-linear inequality constraints 

10 upper and lower bounds. 

Problem 1 is an example of determining parameters in highly non- 

linear differential equations from experimental data. 	The object func- 

tion was the sum of squared residuals between experimental data and 

numerically integrated solutions of the differential equations. 

Object function: 

Maximize: 	f(x) = [50y1 + 9.583Y2 + 20y3 + 15374 - 852,960 

38,100(x2 + 0.01x3) + k31 + k32x2 + k33x3 

+ k34x4 + k35x5]xl- 24,345 + 15x6 

Calculation of x6, the yi's, and x7,xts: 

x6 = (k1 + k2x2 + k3x3 + k4x4 + k5x5)xl 

yl = k6 + k7x2 + kgx3 + k9x4 	k10x5 

Y2 = k11 + k12x2 + k13x3 + k14x4 + k15x5 

Y3 = k16 	k17x2 + k18x3 	k19x4 	k20x5 

Y4 = k21 	kZ2X2 	k23X3 	k24X4 	k25x5 

x7 = (yi 	Y2 	573)x1 

x8 = (k26 + k.27x2  + k28x6  + k29x4  + k30x5)x1  + x6 + x7 

where: k1  = -145,421.402 	k5  = 15,711.36 

k2  = 2,931.1506 	k6 = -161,622.577 

k3 = -40.427932 	k7 = 4,176.15328 

k4 = 5,106.192 	kg = 2.8260078 
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kg 	= 

ki p = 

9,200.476 

13,160.295 

k23  = 

k24 = 

16.243649 

-3,094.252 

k11 = -21,686.9194 kz5 = -5,566.2628 

k12  = 123.56928 k26 = -26,237 

k13  = -21.1188894 k27 = 99 

k14 = 706.834 k28 = -0.42 

k15  = 2,898.573 kzg = 1,300 

k16 = 28,298.388 k30  = 2,100 

k17 = 60.81096 k31 = 925,548.252 

k18  = 31.242116 1c32  = -61,968.8432 

klg = 329.574 k33  = 23.3088196 

k20 = -2,882.082 k34 = -27,097.648 

k21 = 74,095.3845 k35 = -50,843.766 

k2z  = -306.262544 

Constraints: 

0 < xl  < 5 

1.2< x2  < 2.4 

20 < x3  E 60 

9 < x4 X9.3 

6.5 - x5  . 7 

x6  < 294,000 

x7  . 294,000 

x8  < 277,200 

Starting point: 

x
(0) 

= [2.52 2 37.5 9.25 6.81T  

f[x(°)] = 2,351,243.5 
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c..
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0+j 	ij 

+ e. - 11E: ax. 	0 

i=1 	 i=1 

i = 1,...,15 
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Results: 

x 	= [4.538 2.400 60.000 9.300 

f(x) 	= 5,280,254 

x6 = 75,570 

x7 = 198,157 

x8 = 277,200 

calculated from xi, X2, X3, x4 	and x5. 

SLA solution: x = [4.5374, 2.4, 60.0, 9.3, 7.0]T  

f(x) = 	5,280,340 

Problem 2 

Source: Shell Development Co. (cited in Colville, IBM N.Y. Sci. 

Center Rept. 320-2949, June, 1968, p. 22). 

No. of variables: 15 

No. of constraints: 5 nonlinear inequality constraints 

15 bounds on independent variables 

This problem is the dual of Problem 3. 

Object function: 

10 	5 	5 

Maximize: f(x) = E b.x. _E E c..x .x 	- 2 
lj 10+1 10+j 

1=1 	j=1 i=1 

  

 

djx3 
10+j 

7.000]T  

Note: 	x6 x7 and x8 are not independent variables. 	They may be 

Constraints: 

j = 1,..., 5 
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Feasible starting point: 

); 13)  1 = 0.0001 i = 1,..., 15, i # 7 

xr)  = 60 

f[x(0)] = -2400.01 

Infeasible starting point: 

x(0)(0)  = 	b. i 	1 

x(0) 	= 	0 

,c 0) 	= 	1 

i 	= 	1,..., 	10 

i 	= 11, 	..., 	14 

i = 15 

( 
fix

0) 
 ] = 	6829.06 

Results: 

x 	= 	[0.0000 	0.0000 	5.1740 0.0000 	3.0611 11.8395 0.0000 

0.0000 	0.1039 	0.0000 0.3000 	0.3335 0.4000 0.4283 

0.22401T  

f(x) = 	-32.386 

SLA solution: 

x 	= 	[0.0, 	0.0, 	5.1723, 	0.0, 3.0616, 	11.837, 	0.0, 0.0 

0.10381, 0.0, 0.30009, 0.33333, 0.40019, 

0.42825, 0.22413]T  

f(x) = -32.3487 

(Note:Thee.,c..,c1.,a..,anclb.are given in the accompanying table.) 
J 	1.7 	J 	1J 
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Data for Test Problems 2 and 3 

j 1 2 3 4 5 

e. -15 -27 -36 -18 -12 
.1 
cli  30 -20 -10 32 -10 

c2 • j 
-20 39 -6 -31 32 

c8j  -10 -6 10 -6 -10 

c4j 
32 -31 -6 39 -20 

c5j  -10 32 -10 -20 30 

d. 4 8 10 6 2 
3 

al. 
-16 2 0 1 0 

a2j 
0 -2 0 4 2 

a3j 
. -3.5 0 2 0 0 

a4j 
. 0 -2 0 -4 -1 

a5j 
. 0 -9 -2 I -2.8 

a6j 
2 0 -4 0 0 

a,
t
. -1 -1 -1 -1 -1 
j 

a8j  -1 -2 -3 -2 -1 

a,. 1 2 3 4 5 
..1 

a10j 
1 1 1 1 1 

b
1 

b
2 	

b
3 

b
4 	

b
5 

b
6 	

b
7 	

b
8 

b
9 	

b
10 

-40 -2 	-.25 -4 	-4 -1 	-40 	-60 5 	1 

Problem 3 

Source: Shell Development Co. (cited in Colville, IBM N.Y.Sci. 

Center Rept. 320-2949, June, 1968, p. 21). 

No. of variables: 	5 

No. of constraints: 10 linear inequality constraints 

5 bounds on independent variables 

Object function: 

    

5 

 

Minimize: f(x) = 

  

C..X.X. ii 1 j 
3 

d.x. 
J J 

   

i=1 j=1 
	

j=1 
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Constraints: 

5 

	

a..x. - b. 	0 	i = 1, ..., 10 
J 

j=1 

	

x. 	0 	j = 1, 	5  

Feasible starting point: 

x(0) = [0 0 0 0 l]T  

fLx
(0) 
 = 20 

Results: 

x = [0.3000 0.3335 0.4000 0.4285 0.224]r  

f(x) = -32.349 

SLA solution: 

x = [0.30000, 0.33347, 0.40000, 0.42831, 0.223961T  

f(x) = -32.3487 

Problem 4 

Source: Proctor and Gamble Co. (cited in Colville, IBM N.Y.Sci. 

Center Rept. 320-2949, June, 1968, p. 24). 

	

No. of variables: 	5 

No. of constraints: 6 nonlinear inequality constraints 

10 bounds on independent variables 

Note that x2  and x4 are not included in the definition of f(x). 

Object function: 

Minimize: f(x) = 5.35785474 + 0.8356891x-, 5 	37.293239x1 

- 40792.141 



160 

Constraints: 

85.334407 + 0.0056858x2x5 + 0.0006262x1x4  - 0.0022053x3x5 	92 

	

90.580.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.00218134 	110 

	

20<.  9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 	25 

78 .5 xl 	102 

33 	x2 .5. 45 

27 .5 x3 	45 

27 x4 .5 45 

27 x5 	.5.. 45 

Feasible starting point: 

x
(0) 	= 	[78.62 

f[x
(0)
] 	= 	-30367 

33.44 31.07 44.18 	35.22]T  

Infeasible starting point: 

(0) 

f[x(°)] 

= 

= 

178 	33 

-32217 

27 27 271T  

Results: 

x = [78.000 33.000 29.995 45.000 	36.776]T  

f(x) = -30665.5 

SLA solution: exactly as above. 

Problem 5 

Source: J.D. Pearson, On Variable Metric Methods of Minimization, 

Research Analysis Corp. Rept. RAC-TP-302, McLean, Va., 

May, 1968. 

No. of variables: 	9 

No. of constraints: 13 nonlinear inequality constraints 

1 upper bound 
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The problem was to maximize the area of a hexagon in which the 

maximum diameter was unity. 

Object function: 

Maximize: 	f(x) 

Constraints: 

= 	0.5(xix4 - xzx3 + x3x, 

2 
1 - x32  - X4 

1 - )c 
2 1 - x52  - x6 

x5x9 + x5x8 - x6x7) 

0 

0 

0 

1 - x1  - (X2  - x9)2  0 

1 - (X1 - x5)2  - (x2 - x6)2  0 

1 - (x1 - x7)2  - (x2 - x6)2  0 

1 - (x3 - x5) 2  - (x4  - x6)2  >, 0 

1 - (x3 - x7)2  (X4 - x6)2  0 
2 1 - x7 - (x8 - x9)2  0 

X1X4 - X2X3 >, 0 

X3X9 ; 0 

-x5x9 ; 0 

x5x8 	x6x7 0 

X9 0 

Starting point: 

x(0) = 	
i = 1, ..., 9 

f[x
(0)

] = 0 

Results: 

Himmelblau 

[xi=1 	(i=1,9)] 

SLA 

[xi=1 	(i=1,9)] [xi=0.0 	(i=1,9)] 

f(x) 0.8660 0.674981 0.866025 

xi 0.9971 0.60791 -0.96676 
x2 -0.0758 0.20600 -0.25568 
x3 0.5530 0.53684 -0.26192 
x4 0.8331 0.84368 -0.96509 
x5 0.9981 -0.23585 -0.96675 
x6 -0.0623 0.74271 -0.25571 
x7 0.5642 -0.36894 -0.26195 
xs 0.8256 0.41993 -0.96508 
x9 2.4 	. 	10-6 1.00000 0 
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Problem 6 

Source: A.R. Colville, A Comparative Study on Nonlinear Programming 

Codes, IBM N.Y.Sci. Center Rept. 320-2949, June, 1968, p.31. 

No. of variables: 	3 

No. of constraints: 14 nonlinear inequality constraints 

6 bounds on independent variables 

Problem 6 is typical of problems in which functions are described 

by a self-contained computer subroutine. 

Object function: 

Maximize: 	f(x) = 0.063y2y5 - 5.04x1  - 3.36y3  - 0.035x2  - 10x3  

Constraints: 

0 . xl  < 2000 

O < x2. 16,000 

O < x3 < 120 

O < Y2 < 5000 

O < y3 < 2000 

	

85 < y4 	93 

90 < y5 < 95 

3. y6 < 12 

0.01 < y7 <4 

145 < y8 < 162 

Fortran description of the calculation of y2  to yg. 

Y(2) = 1.6*X(1) 

10 Y(3) =. 1.22*Y(2) - X(1) 

Y(6) = (X(2) + Y(3))/X(1) 

Y2CALC = X(1)*(112.+13.167*Y(6)-0.6667*Y(6)**2)/100 

IF(ABS(Y2CALC - Y(2)) - 0.001)30,30,20 

20 Y(2) = Y2CALC 
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GO TO 10 

30 CONTINUE 

Y(4) = 93. 

100 Y(5) = 86.35+1.098*Y(6)-0.038*Y(6)**2+0.325*(Y(4)-89.) 

Y(8) = -133.+3.*Y(5) 

Y(7) = 35.82-0.222*Y(8) 

Y4CALC = 98000.*X(3)/(Y(2)*Y(7)+X(3)*1000.) 

IF(ABS(Y4CALC-Y(4))-0.0001)300,300,200 

200 Y(4) = Y4CALC 

GO TO 100 

300 CONTINUE 

Feasible starting point: 

x(0)  = [1745 	12000 	110]T  

f [x
(0) 

]= 868.6458 

Results: 

x = [1728.37 	16000 	98.13]T  

f(x) = 1162.036 

SLA solution: 	exactly as above. 

Problem 7 

Source: G.K. Barnes, M.S. thesis, The University of Texas, Austin, 

Tex., 1967. Adapted from C.W. Carroll, Ph.D. dissertation. 

The Institute of Paper Chemistry, Appleton, Wis., 1959. 

No. of variables: 	5 

No. of constraints: 	4 linear inequality constraints 

34 nonlinear inequality constraints (as listed 

- some can be eliminated) 

10 bounds on independent variables 
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The object function in Problem 7 is the net profit of a hypothetical 

wood-pulp plant. 	The constraints (or model) include the usual material 

and energy balances as well as several empirical equations. 

Object function: 

Maximize: 	f(x) = 0.0000005843)717  - 0.000117)714  - 0.1365 

- 0.00002358)713 - 0.000001502)7.16  - 0.0321y12  

C15 	Y2 
- 0.004324y5  —0.0001 — - 37.48 cib 	c12 

Calculation of y.'s and c.'s: 

yl  = xz  + x3  + 41.6 

cl  = 0.024x4  - 4.62 

12.5 + 12.0 Y2 = 	ci  

C2 = 0.0003535x2 + 1 0.5311x1  + 0.08705y2x1 

c3  = 0.052x1  + 78 + 0.002377Y2x1 

c2 
Y3 = c3  

Y4 = 19Y3 
0.1956(x1  - y3)2  

c4  = 0.04782(x1  - y3) + 	 + 0.6376)74  + 1.594y3 
x2  

c5  = 100x2  

C6 = xi  - y3  - y4  

C 4  
c7  = 0.950 - c5  

y5  = c6c7  

Y6 = xl - Y5 - Y4 - Y3 

C8  = (Y5 + Y4)0.995  
c8  

y7 =  
Y1 

C 8  

Y8 = 

 

3798 



cg = Y7 

0.0663y7 
0.3153 
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Y8 

 

96.82  
Y9 - 	+ 0.321Y1 cg 

ylo = 1.29y5 + 1.258374 + 2.29y3  + 1.71Y6 

Yll = 1.71x1 - 0.452y4  + 0.580y3 

12.3  
cl°  - 752.3 

cil = (1.75y2)(0.995x1) 

c1 2 = 0.995)710 + 1998 

cll.  

Y12 ' clOxl 
c12 

YI3 = c12 	1.75Y2 

Y14 = 3623 + 64.4x2 + 58.4x3 + 146,312  
Y9 + x5 

c13 = 0.995Yiu + 60.8x2 + 48x4 - 0.1121371 4 - 5095 

Yi3 
Y15 - c

13 
 

Y16 = 148,000 - 331,0003716 	403713 - 61Y15Y13 

c14 = 23243'10 - 28,740,000Y2 
ci4  

Y17 = 14,130,000 - 13283710 - 5313'11 	r -12 
Y13 Y13 

c15 

   

yi5  0.52 

c16 = 1.104 - 0.723715 

c17 = y9 + x5 

Constraints: 

62,212 

0.28 

> 

0 

0 

0 

0 

Y4 	0.72 

1.5x2  

21.0 - 3496 

_ 110.6 	- 

Y5  

- 	x3  

Y2 
---
c12 

yi  
c17 
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213.1 „.< yi<(  405.23 

17.505 y2 , 1053.6667 

	

11.275 .5 Y3 	35.03 

	

214.228 .5 374 	665.585 

7.458 y5 584.463 

	

0.961 

• 

y6 	265.916 

	

1.612 	y7 ,< 7.046 

0.146 yg 0.222 

	

107.99 

▪ 

yg 	273.366 

	

922.693 

• 

ylo 	1286.105 

	

926.832 .5 Yll 	1444.046 

18.766 -5 Y12  -5 537.141 

1072.163.: Y13 -5. 3247.039 

8961.448 Y14 26844.086 

	

0.063 .5, y15 	0.386 

71,084.33 Y16 140,000 

2,802,713 ; )717.5 12,146,108 

704.4148 xl 906.3855 

68.6 

• 

x2 

• 

288.88 

0 z x3 < 134.75 

	

193 	287.0966 

	

25.; x5 	84.1988 

Feasible starting point: 

x
(0) = [900 80 115 267 271T 

f[xm] = 0.939 

Results: 

x = [705.060 68.600 102.900 282.341 35.627]T  

f(x) = 1.905 

SLA solution: 

x 

f(x) 

= 

= 

[705.17, 

1.90516 

68.600, 102.90, 282.32, 37.584]T  



10 	 x. 
Minimize: 	f(x) 	

1 	1 
=Ex.c. + In 

i=1 
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Problem 8 

Source: J. Bracken and G.P. McCormick, "Selected Applications of 

Nonlinear Programming," John Wiley & Sons, Inc., New York, 

1968. 

No. of variables: 	10 

No. of constraints: 3 linear equality constraints 

10 bounds on independent variables 

Problem 8 is a problem in the chemical equilibrium at constant tem- 

perature and pressure. 

Object function: 

where cl = -6.089 	c2 = -17.164 	c3 = -34.054 	c4 = -5.914 

	

c5 = -24.721 	c6 = -14.986 	cy = -24.100 	c8 = -10.708 

	

c9 = -26.662 	cio= -22.179 

Constraints: 

xi + 2x2  + 2x3 + x6 + xio - 2 = 0 

	

X4 + 2X5 + x6 + Xy 	= 0 

	

X3 + X7 + X8 + 2X9 	X10 - 1 = 

x. 	> 0 	i = 1,..., 10 
' 

Nonfeasible starting point: 

(0) 
X 	= 0.1 i = 1,..., 10 

f[x(°)] = -20.961 
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Results: 

NLP 
Flexible 
tolerance 

GCS GRG SUMT SLA 

f(x) -47.751 -47.736 -47.656 -47.761 -47.761 -47.761 

xi  0.0350 0.0128 0 0.0406 0.0407 0.0408 

x2 0.1142 0.1433 0.1695 0.1477 0.1477 0.1475 

x3 0.8306 0.8078 0.7536 0.7832 0.7832 0.7831 

x4  0.0012 0.0062 0 0.0014 0.0014 0.0014 

x5 0.4887 0.4790 0.5000 0.4853 0.4853 0.4857 

x6 0.0005 0.0033 0 0.0007 0.0007 0.0007 

xi  0.0209 0.0324 0 0.0274 0.0274 0.0264 

X8 0.0157 0.0281 0 0.0180 0.0180 0.0180 

x9 0.0289 0.0250 0.0464 0.0375 0.0373 0.0376 

x10 0.0751 0.0817 0.1536 0.0969 0.0969 0.0972 

Problem 9 

Source: J.M. Gauthier, IBM France (cited in Colville, IBM N.Y.Sci. 

Center Rept. 320-2949, June, 1968, p. 29). 

No. of variables: 	16 

No. of constraints: 8 linear equality constraints 

32 upper and lower bounds on the variables 

Object function: 

16 16 

Maximize: 
2 

f (X) = 	E 
1j 

 (X.
2 
 + 

1 	J 
+ 	(X + X. + 1) 

i=1 j=1 

Constraints: 

16 

b..x. = c. 
13 

j=1 

i = 1,..., 8 

0 .; xj  < 5 	j = 1,..., 16 

Note:Mea
13  
..,b..andc.1  are given in the accompanying table. ij  



Data for Probiom 9 

j 1 2 3 4 5 	' 6 7 8 9 10 11 12 13 14 15 16 

au 
a21 
a31  
a4j  
as., 
a61 
a71  
a gj 
ag; 
a 1 cv 
al if 

a121 
61  131 

a's; 

b u  
b 21  
b31  
b4i  
bu  
14./  
b7i  
b8;  
ci  

1 

• 

0.22 
-1.46 

1.29 
-1.10 

1.12 

2.5 

1 

0.20 

-0.89 
-1.06 

-1.72 

0.45 
1.1 

1 
1 

0.19 
-1.30 

0.95 

-0.33 

0.26 
-3.1 

1 

1 

0.25 
1.82 

-0.54 
-1.43 

0.31 
-1.10 
-3.5 

1 

0.15 
-1.15 
-1.16 

1.51 
1.62 

0.58 
1.3 

014) 
 

1 
1 

. 

0.11 

-0.96 
-1.78 

0.59 
1.24 

2.1 

016J 
 

1 
1 
1 
1 

1 

0.12 
0.80 

-0.41 
-0.33 

0.21 
1.12 

-1.03 
2.3 

1 

1 

I 

0.13 

-0.49 

-0.43 
-0.26 

0.10 
-1.5 

1 

1 

1.00 

-0.36 

1 
1 

1 

I 

1 

1.00 

1 

1 

1 

1.00 

1 

1 

1 

1.00 

1 

1 

I 

1.00 

1 

1 

1  
I  
1 

1.00 

1 

1 

I 

1  

1.00 

1 

1 

1 

I 

1.00 
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Infeasible starting point: 

(0) 
x. 
1 

= 	10 i 	= 	1,..., 	16 

f[x
(0)
] = 	-209,457 

Results: 

x = 	[0.040 0.792 	0.203 0.844 1.270 0.935 1.682 

0.155 1.568 	0.000 0.000 0.000 0.660 0.000 

0.674 0.0001T  

f(x) = 	-244.900 

SLA solution: as above. 

Problem 10 

Source: D.A. Paviani, Ph.D. dissertation, The University of Texas, 

Austin, Tex., 1969. 

No. of variables: 	24 

No. of constraints: 	12 nonlinear equality constraints 

2 linear equality constraints 

6 nonlinear inequality constraints 

24 bounds on independent variables 

This problem represents the minimization of the cost of blending multi- 

component mixtures. 

Object function: 

24 

Minimize: f(x) = 	a.x. 

i=1 

Note: See accompanying tables for the ai's, bi's, 	1 e.s. 
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Constraints: 

C.X. 1 1 
24 

 

12 

    

b(i+12) 	b. 	
40b. 

 
j+13 3  

0 	i = 1,.., 12 

24 

T13(x)=Ex.---1 = 0 
1 

i=1 

12 	24 E  
- + h 4114(X) =  

i=1 i=13 1 

- 1.671 = 0 1 

  

where 	h 	= 	(0.7302) 

. -[x(i+3) + x (1+15) > 

0 

x. 1 

(530) 	
14.7 

 

24 

40 

0 	
i = 

i = 

i = 

i 	= 	1,..., 

1,2,3 

4,5,6 

1,..., 

24 

24 

x. 	+ 	e. 
1 

+ :x(i+12)] 

24 

+ e. 
1 

j =1 

Infeasible starting point: 

	

x(C1) 	= 	0.04 

	

f[x(°)] 	= 	0.14696 
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Results: 

f(x) 

x 
1 

x 
2 

x 
3 

x*
4  

x 
5 

x*
6  

x 
7 

x* 8 

x 
9 

x
0  1 

x
1  1 

x 2  1 

x 3  1 

x* 
14 

x 5  1 

x*
6  1 

x* 
17 

x 8  1 

x
9  1 

x*
2C 

x*
1  .1 

x* 22 

x 3  2 

x
4  z 

Flexible 
tolerance 

NLP SUMT SLA 

0.05700 

7.804E-03 

1.121E-01 

1.136E-01 

0 

0 

0 

6.609E-02 

0 

0 

0 

1.914E-02 

6.009E-03 

5.008E-02 

1.844E-01 

2.693E-01 

0 

0 

0 

1.704E-01 

0 

0 

0 

8.453E-04 

1.980E-04 

0.09670 

9.537E-07 

0 

4.215E-03 

1.039E-04 

0 

0 

2.072E-01 

5.979E-01 

1.298E-01 

3.350E-02 

1.711E-02 

8.427E-03 

4.657E-10 

0 

0 

0 

0 

0 

2.868E-04 

1.193E-03 

8.332E-05 

1.239E-04 

2.070E-05 

1.829E-05 

0.07494 

9.109E-03 

3.739E-02 

8.961E-02 

1.137E-02 

4.155E-03 

4.184E-03 

5.980E-02 

1.554E-02 

1.399E-02 

8.780E-03 

1.231E-02 

1.153E-02 

7.570E-02 

7.997E-02 

2.797E-01 

1.168E-02 

2.347E-02 

6.368E-03 

2.028E-01 

7.451E-03 

4.547E-03 

1.010E-02 

1.220E-03 

1.810E-03 

0.051728 

0 

0 

2.7895E-01 

0 

0 

0 

0 

0 

0 

0 

0 

4.1771E-02 

0 

0 

6.7785E-01 

0 

0 

0 

0 

0 

0 

0 

0 

1.4215E-03 
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Data for Test Problem 10 

i a. 
1 

b. 
1 

c. 
1 

d. 
1 

e. 
1 

1 0.0693 44.094 123.7 31.244 0.1 

2 0.0577 58.12 31.7 36.12 0.3 

3 0.05 58.12 45.7 34.784 0.4 

4 0.20 137.4 14.7 92.7 0.3 

5 0.26 120.9 84.7 82.7 0.6 

6 0.55 170.9 27.7 91.6 0.3 

7 0.06 62.501 49.7 56.708 

8 0.10 84.94 7.1 82.7 

9 0.12 133.425 2.1 80.8 

10 0.18 82.507 17.7 64.517 

11 0.10 46.07 0.85 49.4 

12 0.09 60.097 0.64 49.1 

13 0.0693 44.094 

14 0.0577 58.12 

15 0.05 58.12 

16 0.20 137.4 

17 0.26 120.9 

18 0.55 170.9 

19 0.06 62.501 

20 0.10 84.94 

21 0.12 133.425 

22 0.18 82.507 

23 0.10 46.07 

24 0.09 60.097 
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APPENDIX 2 - THE SLA OPTIMIZATION PACKAGE 

A FORTRAN listing is given of the five routines the user must modify 

in order to use the SLA package. 	Comment cards indicate what the user 

must add to the routine in order to specify his own problem. 	For conven- 

ience the process is broken down into eleven steps. 	Each step is accom- 

p.anied by notes which explain what to do. 	In some cases advice on suit- 

able parameter values to use is given. 	The listing shows how problem 11 

of Appendix 1 should be prepared for solution using analytical derivatives. 

If numerical derivatives are required step 5 should set IDERIV = 0 and 

DELX(I) = 1.0E-07 for 1-1,2. 	Steps 10 and 11 are then unncessary. 

In total the user must add 25 cards to complete the specification of 

problem 11. 	These cards are marked with X's in the last six columns. 



PROGRAM ' SLA(fi\IPUT=514,OUTPUT=514,TAPE5=INPUT,TAPE6=OUTPUT) 
C 
C 
C 	PROGRAM. SLA (SUCCESSIVE LINEAR APPROXIMATIONS) 
C 	MACHINE. CDC 6000 SERIES 
C 	AUTHOR . A.D.POWE 
C 	DATE 	AUTUMN 1974 

C 
C 

C 	
************************************************ 
* THIS PROGRAM SOLVES THE GENERAL NON-LINEAR * 

C 	 * PROGRAMMING PROBLEM. 
C 	 * 	 * 
C 	* MINIMIZE 	U(X(I)) 	(I=1,N) 
C 	* SUBJECT TO PHI(I).GE.0.0 	(I=1,NCONS) 

PSI(I).EO.O.O 	(I=14NEQUS) 
C 	 * 	 * 
C 	 * FULL INSTRUCTIONS FOR THE USE OF THIS CODE 	* 
C 	* ARE GIVEN ON THE COMMENT CARDS.THE USER MUST * 
C 	* INSERT CARDS IN THE DECK TO DESCRIBE HIS 
C * PARTICULAR PROBLEM 

************************************************ 
C 
C STEP 1***DIMENSION WORKING ARRAYS. 
C 
C 	NO. OF INDEPENDENT VARIABLES IS 	N 
C 	NO. OF INEQUALITY CONSTRAINTS rs NCONS 
C 	 NO. OF FOUALITY CONSTRAINTS IS 	NEOUS.  
C 
C 	- LET M=NCONS+NEQUS+N 
C 	 ID1=M-1- 1 
C,A02=NCONS+2*N4-1 



C 	THERE ARE 22 ARRAYS TO BE DIMENSIONED.IF 
N IS LESS THAN OR EQUAL TO 45 IGNORE (1) 

C 	BELOW AS THESE ARRAYS ARE ALREADY DIMENSIONED. 
C 
C 	(I)DIMENSION AS (N) THE ARRAYS... 
C 	WORK1,WORK19,JELLY,DELX,XX.X.XINCoTESTo 

RMAXo0ScIoXSTRT,STFP. 
C 

(2)DIMENSION AS (IDI) THE ARRAYS... 
C 	 WORKRoWORKDoWORKF.WORKF. 
C 
C 	(3)DIMENSION OTHER ARRAYS AS... 
C 	WORKA(I7IvID1),WORKC(ID2),WORKI(MoN).WORK2(M),  

PH/(NCONS),PSI(NEOUS) 
C 
C 	*NOTE* IF NCONS=0 DIMENSION PHI AS I. 
C 	 '*NOTE* IF NFOUS=0 DIMENSION PSI AS I. 
C 	*NOTE* ALL THE ARRAYS. SHOULD BF DIMENSIONED 

C 

	

	 RY PUTTING THEM IN BLANK COMMON. 
COMMON 
I WORKS(4S) 	• WOPKIP(49) • JELLY(45) 4  DELX(45) 
YX(A) 	• X(A5) 	I XINC(49) 	• TEST(45) 

3 DMAX(4) 	• OSCI(45) 	• XSTRT(45) 	1STEP(45)   9 

4WORKA(6P46P)9WORKR(6P)OWORKC(9I)4 WORKW62)9WORKE(62)4 WORKF(62)4  

5WORK1(61 ,45),WORK2(6P)oPHI(90),PSI(20) 
COMMON /RAGS/ 

PACKED 	FACINC IDERIV o IPROB 	• TINY 	o ISTEP 	9 

2 	IFUNC 	• IFFE 	ICONS 	• IECE 	1 LFAIL 	l'ICUBOP 

3 	ZINC 	• IDOWN 	• IUP 	• NBOT 	NTOP 	• IPCNT 



COMMON /OPTI/ KO 
COMMON /WHAT/ ITHR,NNNN 
RFAL LOWER 
COMMON /ROUND/ UPPER(60).LOWER(60) 
DATA FACRED.FACINc•IFUNC.IEFEtICONS.IECE.LFAIL.IDOWN,IUP. - 

IIPCNT.ITHR*NSMAX,ICUOP /0.2,260,8*0.90999.5000,1/ 
'C 
C STEP 2***SET UPPER AND LOWER BOUNDS ON ALL VARIABLES 
C 
C 	*NOTE* BOUNDS MUST BE SET FOR ALL VARIABLES IN ARRAYS 

UPPER(I).LOWER(I),I=1.N 
*NOTE* IF THERE ARE NO BOUNDS ON A. VARIABLE SET UPPER.  

AND LOWER JUST SUFFICIENT NOT TO CONSTRAIN IT. 
C 	 DO NOT USE ENORMOUSLY LARGE OR SMALL VALUES: 
C 

DATA UPPER '/2*100.0 / 
DATA LOWER /p*-100.0 / 

C 
C STEP 3***SET PRINCIPAL. PARAMETERS (N,NCONSoNEOUS) 
C 

XXXXXX 
XXXXXX 

N=2 	 XXXXXX 

NCONS=1 	 XXXXXX 

-NEOUS=1 	 XXXXXX 

C 
C STEP 4***SET STARTING POINT CONVERGENCE CRITERIA AND STEP LENGTH 
C 

*NOTE* SET STARTING VECTOR IN XSTRT(I),I=1.N 
C 	*ADVICE* A FEASIBLE STARTING POINT IS ALWAYS PREFERABLE 
C 	*NOTE* SET CONY. CRITERIA (ABSOLUTE_) FOR EACH . 

INDEPENDENT VARIABLE IN TEST(I)11=1.N 

C 	*ADVICE* VERY TIGHT CONVERGENCE IS COSTLY IN COMPUTER • 
TIME.TRY 0.0001 ON EACH VARIABLE 

*NOTE* SET INITIAL STEP LENGTH FOR EACH VARIABLE 
C 	 IN STFP(I),I=1,N 
C 	*ADVICE* CHOOSE STEP LENGTH AS 10 TO 50 PER CENT OF 
C 	 EXPECTED VARIABLE CHANGE 



^(1 27 I=1.N 	 XXXXXX.  
STFP(I)=0.9 	 XXXXXX' 
1- ST(T)=0.0001 	 XXXXXX 

27 CONTINUE 	 XXXXXX 
XsTPT(I)=0.9 	 XXXXXX 
XsTpT(2)=0.9 	 XXXXXX 

C 
C STEP 9**#CHOOSE ANALYTICAL OP NUMERICAL DERIVATIVES 
C 
C *NOTE* IF IDFRIV SET TO f THEN ANALYTICAL DERIVATIVES 
C 	 FOR ROTH OBJECT FUNCTION AND CONSTRAINTS MUST 
C 	 pE PROVIDED IN SUBROUTINE GRAD ' 
C 	*NOTE* IF IDFRIV SET TO 0 THEN NUMERICAL DERIVATIVES ' 
C 	 USED.VALUES OF DELTA-X FOR USE IN A DIFFERENCE 

FORMULA MUST RE SET IN DELX(I)+I=I,N 
C 	 *ADVICE* NumFRICAL DFRIVATIVES INVOLVE LESS 
C 	 PRORLEr1 PREPARATION 
C 	*ADVICE* DFLTA-X=1.0E-07 IS USUALLY O.K. 
C 

InERIV=1 	 XXXXXX 
C 
C STEP 6***SET PRINT 'CONTROL PARAMETERS 
C 
C 	*NOTE* SET IPRINT=DESIRED PRINT FREQUENCY 
C 	*NOTE* SET ISTFP=T IF STEP LENGTHS TO BE PRINTED 
C 	 OTHERWISE SET ISTEP=0 
C 	*NOTE* SET NROT AND NTOP.THIS CAUSES EVERY' ITERATION 
C 	 FROM NROT TO NTOP (INCLUSIVE) TO BE PRINTED 
C 

/pRINT=9 	 XXXXXX 
ICTER=1 	 XXXXXX 
NROT=0 	 XXXXXX 
NTOP=30. 	 XXXXXX 



''ALL UPFAL(XSTRT-.U) 
MoITF(6,30) U 

30 FORMAT(//* U= *.F20.14//) 
IF(NCONS.EO.0) CO TO 40 
CALL CONST(XSTRT,NCONS,PHI) 
WPITF(6,32) 	(RHI(I).+1=1+NCONS), 

32 FORMAT(//* INFOUALITY CONSTRAINTS....* /(5E15.7)) 
40 Ir(NFOUS.F0.0) GO TO F0 

CALL FQUAL(XSTRT,PSI,NFOUS) 
WaITF(6.77) (PSI(1)+I=IINFOUS) 

37 FORMAT(//* EQUALITY CONSTRAINTS....*/(5E15.7)) 
SO CONTINUF 

CALL SECON1-,(TIMI) 
CALL APPROX(N,RMAX,OSCI,NCONS,NEQUS.XSTRT,DELX,STEP,TF_ST+M+NSMAX+ 
INCTOP,IPRINT,IDATA,X.U,PHI+PSI+WORKI,WORK2,WORKp.WORK19,WORKA,  
2WORK9.WORKC+WORKD.WORKE+WORKF,JELLY.XX,XINC) 
CALL SFCOND(TIM2) 
TTM1=TIM2-TIM1 
wm/TF(642) TIY1 

2 FOPMAT(//* CALCULATION TIME IS*IF7.3,*- SECONDS*//) 
WpITE(641) IFUNC.IEFF4ICONS.IFCE 

3 FORMAT(//* IFUNC =*, I5/* IEFE =#,I5,/* ICONS =*. 19/* IECE =*. 
1I//) 
71mITF(6.4) IDOWN,IUP,LFAIL.IPCNT 

4 FORMAT(//* NO. OF•CUIC REDUCTIONS  
I 	* NO. OF STEP INCREMENTS 
2 	•*- NO. OF ROOT FAILURES 	=*.I4/ 
3 	* NO. OF PATTERN MOVES 	=*444//) 
IE(NCONS.EQ.0) GO TO 41 
CALL CONST(X.NCONS4PHI) 
WmITF(6.32) (PHI(I),I=I+NCONS) 

41 IP-(NFOUS.F0.0) STOP 
CALL FQUAL(X,PSI,NFQUS) 
Wo/TF(6.37) 4RSI(1)+I=1oNFOUS/ • 
END 	 1-1 

■4) 



'aiRROUTINE URFALfX•U) 
C 

C 	 * SURROUTINF UPFAL • aF 

* THIS ROUTINE DEFINES THE OBJECT FUNCTION. 
C 	* IT MUST ALWAYS AF COMPLETED. 	.* 
C 	 ************************************************ 
C 

COMMON /RAGS/ 
1 	FACRFD , FACINC • IDERIV , IPROB 	• TI,NY 	1 ISTEP 	. 
2 	IFUNC 	. IEEE 	4 ICONS 	• IECE 	. LFAIL 	9 ICUBOP 4 

3 	- 1INC 	• IDOWN 	• IUP 	. NBOT 	, NTOP 	, IPCNT 
DIMENSION X(1)  

C 
C STEP 
C 
C 
C 
C 

7***DEFINE OBJECT FUNCTION 

*NOTE* sET U7.(09JECT FUNCTION) 
*NOTE* MAXIMUM(U) IS EQUIVALENT TO MINIMUM(—U) 

u.—c100.0*(x(2)—x(1)*x(1))**2+(1.o—x(1))**2). 	 XXXXXX 

C 
c 	 *NOTE* IFUNC COUNTS NO. OF TIMES UREAL IS CALLED 
C 

IFUNC=IFUNC+1 
R=-TURN. 
END 



SUBROUTINE cONST ( 9NCONS•PHI ) ' 
• C 
C 	************************************************ 
C 	* SURROuTINE* CONST 	 * 
C 	* THIS ROUTINE DEFINES THE INEQUALITY 	*. 
C 	* CONSTRAINTS AND MUST ALWAYS RE COMPLETED 	* 
C- 	* UNLESS NcONS=O. 	 * 
C 	************************************************ 
C 

COMMON /RAGS/ 
1 	FACRED • FAcINC • IDERIV 9 IPROB • TINY • ISTEP • 
2 	IFUNC • IFFE • ICONS • IECE • LFAIL • ICUBOP • 
71 	TINC • /DOWN • IUP • NBOT • NTOP • IPCNT 
DIMENSION X(I) 
DIMENSION PHI(I) 

C STEP 8***DFFINE 'NIP-QUALITY CONSTRAINTS•IF ANY 
C 
C 	*NOTE* CONSTRAINTS ARE INPUT IN A FORM SUCH THAT 
C 	 • PHI(I) IS G.E. 0.0 WHEN CONSTRAINT IS SATISFIED 
C 	 - 

PHI(1)'=EXP(-1.0-X(1))-X(2) 	 XXXXXX,  
C 
C 	*NOTE* ICONS COUNTS THE NO. OF CONSTRAINT EVALUATIONS C  

/cONS=ICONS+NCONS 
F-2TUPN 
END 



c;UBROUT/NE EQUAL(OPSI,NEOUS) 
C 
C 	 ************************************************ 
C 	* SUAPOUTINF EQUAL 
C 	* THIS ROUTINE DFFINFS THE EQUALITY 

*.CONSTRAINTS AND MUST BE COMPLETED UNLESS 
C 	* NFQUS=O. 

************************************************. 
C 

COMMON /RAGS/ 
I 	FACPED 9 	FACINC 9 IDERIV . IPROB 1 TINY 	, •9 ISTEP 9 
2 . 	IFUNC 9 	IFFE 9 ICONS 1 IECE q LFAIL • ICUBOP 9 
3 	IINC 

DIMENSION 
9 	!DOWN • IUR 9 

X(1) 
 NBOT 9 NTOP , IPCNT 

DIMENSION PSI(1) 
C 
C STEP 9***DEFINE EQUALITY CONSTRAINTS,IF ANY 
C 
C 	*NOTE* CONSTRAINTS ARE INPUT IN A FORM SUCH THAT 

PSI(I)=0.0 WHEN CONSTRAINT IS SATISFIED • 
C 

PSI(1)=X(2)—X(1)*X(1) 	 XXXXXX 
C • 
C 
	*NOTE* LICONS COUNTS THE NO. OF CONSTRAINT EVALUATIONS 
C 

IcONS=ICONS+NEOUS 
RrrTUPN 
EmD 



5FIROUTINF GPAO(DELX,X.ICALLoNoCDERW9NCONS.NEOUSorDIM) 

************************************************ 
C 	 * SURROUTINE GRAD 	 *. 
C 	 * THIS ROUTINE DEFINES THE FIRST PARTIAL 
C 	* DERIVATIVES OF ROTH ORJECT FUNCTION AND 
C 	* CONSTRAINTS.IT IS ONLY COMPLETED IF IDERIV=1.* 

C 
************************************************ 

COMMON /RAGS/' 
1 	FACRED • FACINC o IDERIV 

• 

IPROB 	• TINY 	• ISTEP 	• 
2 	IFUNC 	o IFFE 	• ICONS 	

• 

IECE 	• LFAIL 	• ICUBOP 1 
IINC 	• IDOWN 	• TUP. 	• NF3OT 	o NTOP 	IPCNT 

DIMENSION CDEPIVIIDIMoN),DELX(1) 
DIMENSION X(1) 

C 
C STEP 10***DEFINF PALATIAL DERIVATIVES OF OBJECT FUNCTION 
C 
C 	.*NOTE* SET THE FIRST PARTIAL.DERIVATIVE OF THE 
C 	 OBJECT FN..W.R.T. X(J) INTO DELX(J),J=IoN 
C 

DFLx(1).—(400.o*x(1)*(x(1)*x(1)—x(2)14-2.0*(x(1) —1.0)) . 

DP-Lx(2)=—(200.o*(x(2)—x(1)*xc1») 

C 
C 
	*NOTE* IEEE COUNTS NO. OF EFFECTIVE FUNCTION EVALUATIONS 

IFFF=IEFF+N 
C 
r 	 *NOTE* IF NO CONSTRAINTS THEN RETURN 
C 

IE(NCONS+NEOUS.E0.0) RETURN 
C 
C 	 *NOTE* INITIALIZE CDERIV SO THAT ONLY NON—ZERO 
C 	 ELEMENTS NEED BE ENTERRED 

DO 36 I=1.IDIM 
DO 16 J=1.N 

36 COFRIV(IoJ)=0.0 

XXXXXX 
XXXXXX 

C 



C STEn 11***DEFINE PARTIAL DERIVATIVES OF CONSTRAINTS 

C 	*NOTE* F,ET INTO CDERIV(I•J) THE FIRST PARTIAL DERIV. 
OF CONSTRAINT.  I W.R.T. X(J) 

C 	*NOTE* INEQUALITIES MUST BE ENTERED BEFORE EQUALITIES 

C 
.cnEPIv(1,1)=-ExPt-1.o-x(1)) 	 XXXXXX 

cnERtv(1.2)=-1.o 	 XXXXXX 

cnEPI02.1)=-2.o*x(1) 	 XXXXXX 

COERIV(212)=1.0 	 XXXXXX 

C 
C 
	*NOTE* IECE COUNTS NO. OF EFFECTINE FN. EVALUATINNS 

C 
IFCE=IECE+(NCONS+NEOUS)*N 
PP.TURN 
END 


