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ABSTRACT

In a conventional digital filter, the digital signals in the
filter are shifted forward from one register to another at the pulse
repetition (sampling) rate while the output samplles also appear at
the rate of sampling. Also, all the filter coefficients remain un~
changed throughout the filtering process. However, if the shifting
is continued several times during the pulse repetition interval so
that the signals stored in the registers re-circulate in the internal
paths of the filter during each sample interval, then the processing
leads to multiple output signals. Furthermore, if the filter multi-
plication coefficients are also allowed to take on different values
for different shift sequences, the filter will possess some useful

properties.

It is the object of this thesis to introduce such a "multi-rate"
digital filter and to study its behaviour. The quantization errors
for such a device are considered analytically. The investigation
into these errors reveals many interesting properties of the multi-
rate digital filter which are confirmed by computer simulationms.
Under certain circumstances, these properties render the multi-rate
filter more advantageous than the conventional digital filter. Possible

engineering applications of such a filter are suggested.
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CONVENTIONS AND SYMBOLS

The following system of numbering and cross-references is used
in this thesis: Each chapter is labelled with a Roman numeral and
is sub-divided into sections. All sections, examples, figures and
equations ﬁithin a chapter are numbered consecutively starting from
1. Hence "section V.3" refers to section 3 of chapter V,"fig (VII.9)"
refers to figure 9 of chapter VII. Equations are generally referred
to by their numbers; thus "substituting into (III.51)" means
"substituting into the fifty-first equation of chapter III". At the
end of the volume, there is a list of references. When such a refer-
ence is made, it is denoted by a number in the braces { }. Thus
{31}, {42} refers to references 31 and 42 of the list.

The following is a list of principal symbols appearing in the thesis.
1. Boldface letters denote vectors and matrices, e.g. y, A, {

2. Greek and italic type are used for scalar-valued variables,

functions and operators, e.g. a, #z), Elu(k)]}.

3. Capital letters are used to denote the z-transforms; e.g. H(z)

is the z-transform of A(n).
4. Capital script letters denote sets (spaces), e.g. R

5. The operator of z-transform is denoted by 2 (.) with the dot

standing for an undesignated variable.

6. Superscript asterisk denotes the complex conjugate of a number,

e.g. A%,

_10_



8.

9.
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Superscript minus one denotes the reciprocal of a quantity, the

- - -1
inverse of a matrix or a z-transformation e.g. 2 lv‘A 1, g
Superscript (7 ) denotes the transposed a matrix, e.g. B'
A prime over a continuous function of a single variable generally
denotes the derivative w.r.t. the variable, e.g. f'(t), fn(t)

denotes the nth derivative of f w.r.t. ¢.

In particular, the following are some symbols and abbreviations

with special meanings:

>

=
& is implied by
&

equals by definition

implies

implies and implied by

iff if and only if

11l

for all

is approximately equal to

is equivalent to

{e> matrix formed by taking the absolute values of each of its

elements.

|.| absolute value



det

tr

w.r.t.
L.H.S.
R.H.S.

Q.E.D.

-12-

norm

determinant

trace

such that

with respect to

Left hand side

Right hand side

quod erat demonstrandum

Kronecker delta

delta function

denotes the square root of -1;

null matrix, zero vector

identity matrix

state-transition matrix.

an integer



CHAPTER 1

INTRODUCTION - DIGITAL FILTERS

Introductory Remarks

Digital filtering techniques have been in use for some

time in sampled-data control systems {28}, {39}, {44}, {53},

{60}, In the sampled-data control systems, the digital filter

has been implemented with the use of a digital computer. The
extension of digital filtering techniques to other areas has
been limited to those where the use of a digital computer was

practical.

In recent years, digital filters have been used more and
more for real time signal processing. By real time, it is
implied that digital processing takes place fast enough so
that the output of the digital filter is available for direct
control or observation in a larger system. Digital filters
are constructed using digital logic computers as their basic
building blocks and the rapid advance in the development of
solid state devices has made such digital filters practical.
The development of large scale circuit integration (LSI)

promises to make these systems even more economical.

Digital filters have many advantages which recommend
their application in place of passive or active filters. The
most important advantage is the very accurate drift free operat-
ion which is possible. This allows the realization of stable
filters with very high Q's or with extremely long time constants.
There is negligible drift with temperature or time, since the |

filter characteristics are as stable as the digital clock source,

-13-
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commonly a crystal-controlled oscillator, with stability

greater than one part per million for large variation of tima.

Additional advantages lie in the ease with which the filter

characteristic may be changed, making them particularly useful

as time-varying filters with adaptive or frequency tracking
requirements.

characteristic is readily obtained, resulting in improved

With some digital filter types, a linear phase

transient response and constant delay characteristics.

Filters

for very low frequencies are easily constructed, with a large
Digital

size reduction as compared to that of passive filters.

filters contain no reactive components.

The elimination of the

accuracy and drift problems associated with these components

will be well appreciated by design engineers.

Basically, a digital filter is comprised of three units,

an analogue-to-digital (A/D) converter, a digital calculator,

and a digital-to-analogue (D/A) converter (Fig.I.la).

HoLD

D

B e e -

[~ -~ == == - - —- -
A : DIGITAL
InpuT ’ : | A/D CALLULATOR D/A
T
L\ . _____C
DIGITAL FILTER
Fig I.la Digital Filter with Input Sampler
and Output Hold Circuit
v A 4 v
f
B ,’ c

Fig I.lb Typical Voltage Waveforms at
Points A,B,C,D

CUTPLT
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The input and output signals of the digital filter are
narrow amplitude-modulated pulses, one pulse per sampling
period 7. At the time #¢=nT, the continuous input signal is
momentarily sampled, and the pulse u(nT) appears at the input
to the digital filter. In the A/D converter, this pulse
amplitude is converted into a digital word. This digital word
is a coded sequence of binary digits (bits), which represents
the amplitude u(nT). The length of the word, i.e., the number
of bits it contains determines the accuracy of the represent-
ation. The digital calculations are performed with these words,
and the calculator output word is inserted into a D/A converter
to produce the output pulse y(nT) of the digital filter. A
holding circuit follows the digital filter to convert the pulse
stream to a continuous output signal as shown (fig. I.1b).
Further analogue filtering may be desired to remove the signal

components resulting from the step approximation which results.

I.2 Digital Filter Opeération

The operation of a digital filter is defined by a difference
equation. This equation defines the output pulse amplitude y(nT)
as a function of the present input pulse u(mT) and any number of
past input pulses and output pulses. The operations are perform-
ed in the digital calculator, with the words representing the
required past input pulses and cutput pulses being stored in
digital shift registers. The usual practice is to simplify the
notation to u(n) and y(n), with the understanding that n refers
to t = n7. This will be done in the remaining parts of this

thesis. A general formula for the difference equation is

N M
yn) = }:aéu(n-i) -3 b y(n~i) (I.1)
(=0

{ i=)
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If y(n) is a function of only the present and past input
pulses, the filter is termed non-recursive. If the past out-
put pulses are included as well, then the filter is of the re-—
cursive type. It is then clear that recursive fiiters have
infinite~duration impulse responses while non-recursive filters
have finite-duration impulse responses. An important difference
between recursive and non-recursive digital filters exist in the
range of M and N encountered in typical applications. Recursive
filters usually meet the kinds of specifications arising in
practice with at most 10 or 20 coefficients. Thus the computat-
ion required to produce each output, given a new input, is of
the order of 10 to 20 multiplications and additions per sample
point. In contrast, non-recursive filters, when used to realize
complex—-shaped frequency responses, may require several hundrad
coefficients. Here in this thesis, it is the recursive filters

that are considered.

Analysis of digital filter is carried out with the use of
z-transform. The z-transform, X(z), of a function z(%t) is
defined as {29}

x(z) = & [w(t)] =D zm).z™" (1.2)
n=o¢

where z = ¢°7 and x(n) is obtained by sampling x(¢t). Hence taking
the z-transform of eqn(I.1), one obtains

N . »
Y(z) = Uz)) a.z* =-Y(z)) bz " (1.3)

=1

From eqn(I.3), the z-transform transfer function is defined as

Y(z) _ Z:a-z'i (1.4)

= cx0 7,

U(z) -
1+ ibiz ¢

(=1

H(z) =




.3

_17_

The change of the variable =z = eST constitutes a mapping of a
portion of the s plane into the z plane. This is shown in fig I.2.
Since 2z is periodic with period T, a one-to-one &—to—z mapping is
valid only for the strip in the & plane between jjws/2° Within this
strip, the left half-plane maps into the unit circle (|z]| = I). The
right half-plane lies outside the unit circle, while the unit circle

itself corresponds to the juw —axis.

| jw S (3

e essetee st L suT
LW, 12 S-PLANE /\\7’3%:;5 f=e
UrsidE -0 Lg-u{/ 2 e

UNST CIRCLE UMT CIRCLE

= ] NPT Re(?)
. Z-PLANEN _‘,////
~dws 2 -
(AEitissnnssid

J

Fig I.2

‘Bigital Filter Configurations

Assume that a digital filter has been designed in the sense that
the transfer function H(2) has been chosen. H(z) is a ratio of poly-
nomials in z;l, and is finite outside and on the circle |z|=1 in the
2- plane. From (1.4), H(z) might be written in some other forms, for
example,

H(z) = Hz(z) + H2(2)+ oes (1.5

where Hl(z) and Ha(z), etc, are ratios of polynomials, or

H(z) = Hl(z) X Hz(z) S ' (1.6)

or some other forms{%}.
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For analogue filters, the realization of a given system
function is moderately difficult and received considerable
attention. For digital filters however, the implementation
of a difference equation to realize a given H(z) is almost
trivial. A diagram to describe the time domain difference
equation (I.1) is shown in fig. I.3. The triangle labelled
with a constant represents multipication of a variable by a
constant and the rectangle with z_l inscribed represents a

one-sample delay. The circle with a label of I is a summiung

point.
uin)
—e YUh)
i 1
ur-1) yin-1)
U(Nn-N+ Y(n=-mei)
B o]
Ufln -n) Yin-m)

If an intermediate variable w(n) is introduced such
that eqn. (I.1) is replaced by a pair of equations, but with

no additional computation, i.e.

w(n) u(n) - ZSbiw(n-i)

i aw(n—i)

. (=0

(.7

1}

y(n)

then a circuit with less memory requirement than that shown
in fig. I.3 is obtained (Fig.I.4). Both fig. I.3 and fig. I.&

have the same overall transfer function, and are called the
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direct forms. It is to be emphasized that the coefficients
a, and bi in the transfer function are the same as those
constants in the network.

({(u) /2\

VYV

Fig I.4 The Direct (Canonic) Form for N = M

Despite the simplicity of the direcr forms that realize
H(z), they are undesirable for high—order difference equations
for reasons of numerical accuracy {30}. But there are other
forms. Suppose H(z) 1s expressed in the form of eqn. (I.5),
then the output y(n) is the sum of the outputs of several
smaller filters Hl(z), Hz(z), ... Each of these can be realized
in either of the direct forms. Thus such representation of
H(z) leads to the configuration of fig I.5. In the extreme,
each of the terms in eqn. (I.5) would be a ratio of first- or
second-order polynomials in z_l. The parallel form tends to
be not nearly as sensitive to quantization effects as the

direct forms {30}.

If H(z) is expressed in the form of eqn (I.6), then

H(z) = Hl(z) x H(z) %X eus X Hk(z) (1.8)
2

Since these transfer functions are multiplied, the filters are
in cascade. Fig. I.6 shows the realization of such a cascade

configuration. The cascade form, with each of the Hi(Z) being



_20_

simple ratios of first- or second-order polynomials, is also

preferable to the direct forms for numerical reasons.

uf ) - HZ(j) g —-
h
g . Yin) — H'(i) - H?(j) ......;., Hk(;}_?
' ‘ Yung
> Hk(s)
Fig 1.5 The Parallel Form Fig I.6 The Cascade Forn

There are many other ways of realizing H(z). However,
the direct, parallel and cascade forms are the most commonly

used configurations.

The above-mentioned realizations assumed that H(z) was
a ratio of polynomials. These are recursive filters. For
non-recursive filters, H(z) is a polynomial in z—l rather
than a ratio of polynomials since the output of a non~recursive
filter depends only on the present and past inputs. To
realize a non-recursive filter, both the direct forms degenerate
to a tapped delay line with a weighted sum of signals at the
equally spaced taps. (Fig. I.7). This realization has also

been called a transversal filter.

umn)y 7—-4 ) 5-! -j

) )
Fig I.7 A Non-Recursive Digital Filter
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The parallel form has no particular meaning for a non-
recursive filter; while the cascade form, although possible,
is not in common use because it is usually difficult to factor-
ize the high-order polynomials H(3), moreover, there is no
particular advantage to realize non-recursive digital filters

in the cascade form.

‘Representation of Numbers 'in a Digital Filter

A real number in a digital filter can be represented using
a finite number of bits in either the fixed-point form or the
floating point form {14}, {64}. The error introduced in such a
representation is discussed here. Only binary arithmetic will

be discussed. The fixed-point case is first considered.

Suppose a number v which has been normalised so that |v|s 1

has the binary expansion (2's complement representation)

- ® % -
v = vo +k§’vk 2 vk—l or 0 (I.9)

To approximate v by a "word" of only 7 bits rounding or truncat-
ing is used. In rounding, a 1 or 0 is first added to the Zth
bit Vi7 according to whether the (Z+1)th bit vzis 1 or 0. Then,
only the first 7 bits of the result are kept. In truncating,
those bits beyond the most significant 7 bits of the result are
simply dropped. Since the error introduced by truncating is
more serious than that introduced by rounding, truncating arith-
metic is seldom used. Although modification of the analysis for
truncating arithmetic is rather straightforward in most cases,

only rounding arithmetic will be considered.

Let[v]z be the 7-bit representation of the number v. It

is then clear that
-1 -1

-2 <v - ], 52 (1.10)
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if rounding is used. An error of approximation € may be defined
by

[v]Z =V +g (I.11)

1

with -2 “ ¢ ¢ < Z—Z. The approximation of v by [v]Z is identical

to the quantization of the number v by a quantizer with uniform

-7+1

step size q = 2 , and the error e is referred to as the quanti-

zation noise {3}.

When two I-bit fixed-point numbers are added, their sum
would still have 7 bits, provided there is no overflow. There-
fore, if there is no overflow, fixed-point addition causes no
error. On the other hand, the product of two Z-bit numbers may
have more than Z-bits. Thus rounding is needed if 7 bits are
to be kept. Let the actual computed product of two numbers vl

and v, be denoted by [vlvz]z, then from the above discussion,

[vrol, = v, + e (I.12)

where the error € is bounded by -t €e < Z-Z

A floating-point number is written in the form (sgn) 2a.b,
where g is a binary integer called the exponent and b is a
fraction between } and 1 called the mantissa. The number of
bits of the exponent determines the range of numbers that can be
so represented, and the mantissa can usually take on the value
0. To represent a number v in floating-point form with only an
l~bit mantissa, (it should be noted that for fixed-point numbers,
1 is the entire wordlength, but for floating-point numbers 7 is

only the length of the mantissa), one first determines the small-
est integer exceeding log, l5], denoted by'{logz lvl}' The
binary expansion of the fraction v/{logzlvl} is then rounded-off

to 7 bits. Let [v]z denoted the Zfbit mantissa floating-point

approximation of the number v; then it is clear that

[v]; = v(1 + ¢ (I.13)
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where the relative error ¢ is bounded by -2_Z £e< 2_Z°

Unlike the fixed-point case, both addition and multipli-

cation in floating-point can introduce roundoff error. Let

'[vl + v2]Z and'[vlvz]Z denote respectively, the actual computed

sum and product of the two numbers v, and Vs then {14},{64}

1

) +v5ly= @40y (1) (1.14)
[v1 v2] 7= (07:0,) (1+8)

7
)

where the relative errors ¢ and & are bounded by -Z_Z f£e<2
and -27% ¢ 5 < 2°L,
The roundoff error from a floating-point digital filter is
usually (but not always) less than that from a fixed-point filter
with the same total number of data digits because of the auto-
matic scaling provided by floating-point arithmetic {33}, {62}.
However, since floating-point arithmetic is significantly more
complex and costly to implement, mdst digital filters have been,
and will probably continue to be, constructed with fixed-point
hardware. Hence, in this thesis, only fixed-point digital filters
will be considered. Oppenheim {48} has proposed another interest-
ing mode of arithmetic for digital filter implementation, called
block-floating-point, which provides a simplified form of auto-
matic scaling of the filter data. As would be expected, the
performance of block-floating-point appears to lie somewhere

between those of fixed-point and of floating-point.

‘Quantization Effects in'Digital Filters

As discussed in the previous section, a number in the digital

filter has to be rounded-off. There are three places at which



_24_
such rounding occurs. These three sources of "quantization error"
are

a) analogue to digital (A/D) conversion errors

b) errors due to the finite representation of the digital filter

coefficients

c) quantization errors due to rounding off the result of multi-

plication of data with the filter coefficients.

The first source of error, A/D conversion, is incurred when
the input to the filter is quantized to a finite number of bits.
This quantization creates an additive noise, which may be treated
as random if the quantization is fine enough and if the signal
varies sufficiently relative to the sampling rate and the number

of quantization levels {3}.

The second source of error, finite representation of filter
coefficients, is a deterministic effect. This effect is analogaus
to that encountered in continuous filters when the components call-
ed for by the design are not available. It can be taken into
account by recomputing the poles and zeros of the filter with the
quantized coefficients. The small changes in the filter coefficienta
due to finite number representation results in a corresponding
change in the poles and zeros. Kaiser {30} has studied the
sensitivity of the pole positions of an nth order digital filter
due to coefficient quantization. In his analysis, he concludes
that for a direct filter realization, the sensitivity of the pole
positions increases with the order n. This result has been
corroborated in the work reported by Knowles and Olcayto {38}.

Gold and Radar {21} have studied the coefficient quantization
problem for second-order digital filters. They conclude that a
realization via a pair of coupled first-order sections 1is less
sensitive to coefficient changes than a single second-order form.

Mantey {46} has studied the coefficient quantization problem by
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selecting a state variable representation for the digital filter.
His results, as well as the results from the other workers mention-
ed before, indicate that a digital filter should be realized by a
parallel or cascade connection of first or second order subfilters
instead of a direct nth order realization. (It is for this reason

that this thesis mainly considers the second-order filter).

The third source of error arises in the evaluation of the
arithmetic products and their sum as indicated in eqn (I.1). For
the non-recursive filter (bj =0, =1, 2, ..., M) the magnitude
of the error incurred by using finite arithmetic can be quickly
estimated by approximating the action quantizing with a noise
source ( which can be considered random in most cases). For
the recursive filter the calculation of the errors is more difficult
as a result of the feedback inherent in the bj terms. For one
thing, while there is no absolute necessity to round the product
in a non-recursive filter, the sums of products that are fed back
in a recursive filter must be rounded, since after a multiplica-
tion of two quantities represented by Zl and ZZ respectively, the
product contains Zl + ZZ bits. If it were fed back without round-
ing, the next stage would generate numbers requiring yet more bits.
Again, each rounding operation adds a small noise term, which can
be considered to be random in most cases, and these terms are
passed through a digital filter consisting of part or all of the
required digital filter {20}, {22}, {36}, {37}, {38}, {42}, {52}.
Obviously, in a cascade realization, the noise generated in the
kth stage cannot affect any of the earlier stages. A similar effect
causes the noise in the direct (but not the direct canonic)
realization to pass through those portions of the filter that

realize the poles of H(z) and not through those portions that

realize the zeros.

A related effect also may occur in recursive filters as a

result of round-off error when the round-off moise is highly
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correlated with the signal or highly correlated with itself from

iteration to iteration. This is called the dead—band—efféct{s},

{22}, This is best illustrated by an example. Suppose the

digital filter is described by

y(n) = 0,99 y(n=1) + u(n) (1.15)

but is implemented with products rounded to the nearest integer.

Then with the input zero, the output would be expected to decay

to zero. However, any output in the range -50 to 50 causes the error
due to quantization to exactly balance the decay per iteratiom,

so that the erroneous output is maintained, i.e. there exist a

steady output. Higher order filters have more complicated effects;
the output may go through the deadband and reach the other side,

or steady-state oscillations (generally known as limit eyele

oscillations), may occur.

In considering quantization effects, it is not as necessary
to compute the exact results of the effects, which may be difficult,
as to estimate the bounds on them as a guide to avoiding the
effects that cannot be tolerated. The theory developed in the
literature so far has concentrated on rough estimates, such as

upper bounds and mean square errors.

‘Objectives and Outline of the Thesis

So far it has been assumed that the digital signals in the
filter are shifted forward froﬁ one register to another with the
pulse repetition (sampling) frequency while the output samples
also appear at the rate of sampling. It has also been assumed that
all the filter coefficients remain unchanged throughout the filter-
ing process. However, if the shifting is continued several times
during each pulse repetition interval so that the signals stored
in the registers re-circulate in the internal paths of the filtex

-~
4
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during each sampling interval, then this processing leads to multiple
output signals {13}, Furthermore, if the filter coefficients are also
allowed to take on different values for the different shift sequences,

the filter will possess some interesting properties.

It is the main object of this thesis to introduce such a "multi-
rate" digital filter and to investigate its properties. The quantiza-
tion errors for such a device are analysed. Because of the nature of
the device, it has been found that the use of state-space method is
very much more convenient in these analyses. The investigation of
these errors reveals many interesting properties of the multirate di-
gital filter, and under particular circumstances, these properties may
render the multirate filter more advantageous than the conventional
digital filters. Engineering applications of the multirate digital fil-
ters may be possible if such advantageous properties are utilized. To
the best knowledge of the author, this investigation is novel, and the

results obtained are original unless otherwise stated.

Chapter II gives a brief account of the state-space analysis which
forms a basis for the mathematical analysis of the ensuing chapters.
Chapter III develops a general mathematical model of the multirate
digital filter from the point of view of state-space concept. From
such a model, interesting properties of the ideal multirate digitail
filter are exposed. Several ideal multirate digital filters are de-
signed according to the model and their performances compared o an
equivalent single-rate filter. Chapter IV, V, VI and VII look into
the quantization errors of the multirate digital filter. Each chapter
begins with an introduction to the particular error discussed in the
chapter and, where appropriate, a brief account of the usual methods
used to solve the problem. Then the error associated with the multi-
rate digital filter is discussed and analysed. Where suitable,computer

simulations of the multirate digital filter are performed so as to
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verify the theoretical analyses. Although limit cycle oscillations
in a digital filter are phenomena which arise from the non-linear
rounding of multiplication products, the subject has been treated
separately in chapter VII. This ig because limit cycle oscillations
are, by their very nature, generated by quantization error sequences
which are highly correlated, while multiplication round-off errors

are treated more or less being uncorrelated in chapter VI,

The thesis concludes with an indication of those problems which

remain unsolved and perhaps may be of interest for further research.

Since the commencement of this project, a number of papers have
appeared { 2}, {27} which consider similar problems to those of this
thesis and some similar results have been obtained. However, the
approaches taken by these authors to the consideration of these
problems are quite different from those taken in this thesis. Unless
otherwise stated, the results and conclusions presented here were
obtained independently. In particular, the following are considered

to be the more significant contributions:
a) The mathematical modelling of a multirate digital filter with
periodically varying coefficients and the investigation of the

properties of its transfer functions.

b) The consideration of the processing of A/D noise through a

multirate digital filter.

c¢) The consideration of the pole sensitivity of a multirate filter.

d) The comparison of pole sensitivities between single-rate

and multirate digital filters.
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The comparison of multiplication round-off errors between

single-rate and multirate digital filters.

The discovery of the use of multirate digital filters to

suppress limit-cycle oscillations for a deterministic input.



Chapter 11

STATE-SPACE ANALYSIS OF DIGITAL FILTERS

A knowledge of certain mathematical techniques is needed to
analyse discrete-time systems. This chapter is devoted to a brief
description of the state—space method which is used in most parts

of this thesis.

II.! Introduction

In general, the analysis and design of linear systems may be
carried out by one of two major approaches. One approach relies
on the use of Laplace and z-transforms, transfer functions, block
diagrams or signal flow graphs. The other method, which has gainad
significant importance in system theory and engineering is the state

variable technique.

In a broad sense the state variable method has at least the
following important advantages over the conventional transfer
function method:

a) The state variable formulation is natural and conveniént for
computer solutions.

b) The state variable approach allows a unified representation
of digital systems with various types of sampling schemes.

¢) The state variable method allows a unified representation of
single variable and multivariable systems.

d) The state variable method can be applied to certain types of
nonlinear and time-varying systems.

In the state variable method a continuous—data system is

-30-
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represented by a set of first-order differential equations. For

a digital system with discrete-data components the state equatioms

are first-order difference equations.

I1.2 Reciprocal Difference Operator Systems

A discrete-time system can generally be described by a differ-
ence equation. If a system is described by a difference equation

of the form
y(k#l) + boy(kli=1) + ... + B y(k+1) + b y(k) = a u(k) (I1.1)

it is called a reciprocal difference operator system. In contra-
distinction to this system is the difference operator system

charaterized by the difference equation
y(k) = aou(k+M) + alu(k+M—1) + oo +a ulk+l) + a u(k) (11.2)
If E[u(k)] denotes the unit shift operator of u(k), i.e.
Elu(k)] & wu(k+1) (11.3)

and defining the shifting operators

N N-)
f(E) =E+ bE '+ ... + B _E + b, (1109
g(E) = aoEM+ alEMd+ oo v, E +a, ’
then (II.1) and (II.2) simplifies to
FENy )] = au® (11.5)
y(k) = g(E)[u(k)] (II.6)

Consider (II.1) and suppose a new set of variables (called state-



variables) are chosen such that

xz(k) = y(k)
xz(k) = xl(k+1) =
xg(k) = xz(k+1) =

Rearranging the set of

xl(k+1) = xg(k)
xg(k+1) = xg(k)

y(k+1)
y(k+2)
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equations(II.7), one obtains

(1I1.7)

(11.8)

@y (k+1) = y(k#) = ~b @, (k)= zo(k)= ... =bx (k)+au(k)

or, in matrix form, (II.8) can be written as

-

'xz (k+1)] = A
xz(k+1) 0 0 .

3%4(k+1) 0 0

0

<z, ( k-l-'l)_ _‘bN -b.., b,

2 LI ]

0| -xl(kf
xz(k)

1 z, (k)
-bl x,(k)

u(k)

Eqn(II.9) is called the state equation of the system.

choice, the output equation of the system is given by

y(k) =.'|:l 0

0

Q] —xl(k;
xg(k)
xs(k)

x, (k)

(I1.9)

For this

(I1.i0)

Equations (II.9) and (II.10), called the dynamic equations of
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the system, can be written in a more compact form:

]

x(k+1) = Ax(k) + B u(k)

(II.11)
y(k) = € x(k)
where A=l0 1 0 .os 0 B=]0
0 0 1 o 0 9
SRR Hoan
=B, - Do -Q_z .o -bl a,
c=[1t o o ... 0]

As can be seen, the state vector is N-dimensional, and consequently,
the state space over which x (k) ranges is R where R denotes an
N-dimensional linear space{Z?%}{57}. Obviously, there are many
other ways to choose the state vector x(k), however, since the
order of the system is N, no matter how the state vector is defined
the state space is still N-dimensional. Although it has been im-
plicitly understood that the coefficients bi and a; in (II.4) are
constant, they need not be. They may be functions of time and the

above development of the state equation is still valid.

As previously remarked, the choice of a state vector is not
unique. To illustrate this further, suppose that, instead of the
state vector in (IL.7), a vector x' is selected such that the state

variables are

xl'(k) = y(k+N-1)
xy(k) = y(k+N-2)

. (II.13)
ac':(k) = y(k)
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In exactly the same way as shown above, the dynamic equation of

the system are:-

x'(k+1) = A" x"(k) + B'u(k)

(I1.14)
y(k) =c' x'(k)
where A' = [-b b, .o. =B B' ={a,]
1 0 ... 0
01 .. 0
e o  ocee o . (11,15)
|0 0 ... 10] LS |
c'=[0 ... 0 1]

It is observed that the state vector x of (II.7) is related to

the state vector in (II.13) through the matrix equation

xX = T x' (IIo 16)
where T is the NxN non-singular matrix
T = eoo 0 1 (I1.17)
e 0 e 0
l 00 0 O

Substituting x= T x' into the state equation (IL.11) for x , then

T AT x'(k) + TBulk)
cCT x'(k)

x'(k+1) =
y(k) =

(11.18)

Comparing the matrices in (II,18) with those of (II.14), it follows

that
A'=T'AT
B' =T'B (1L, 19)
cCt=cCTrT
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What is established essentially is: There are numerous ways of
associating a state vector with a system of order N. The different
ways, however, amount to designating different variables to points
in the space R'. That is to say, the state variables are comnectad

by a one-to-one linear mapping, i.e.
x =T x! (II.ZO)

where T is an ¥xV non—singular constant matrix.

II.3 ' General Diffeérence Operdtor Systeéms

The general system characterized by
[£(E)] y(k) = [g(E)] w(k) (11.21)

will now be comsidered, where f(E) and g(E)are defined by {(I1.4).
The order of f(E) is NV and that of g(E) is M. For a physically
realizable system, ¥ < V. 1In terms of the z-transform transfer
function

_g(z)
F(z)

a physically realizable system may have a finite number of poles

equal to or greater than the number of zeros., Hence it does not

lose any generality if (II.21) is rewritten as

Y(kH0)+b Y (kHI=1)+ (oo +B y (k+1)+B, y(k)
= a ulk+ll)+au(k+li-1)+ ... +q u(k+1)+qu(k) (I1,23)

where g(z) and f(2) are assumed to be of the same order N,

As in the case of reciprocal difference operator system, a

set of state variables, x; (k), are chosen such that,
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y(k) = :cl(k) +aou(k)
a:l(k+1) = a:z(k) + o ulk)
o (II1.2&)
z,(k+1) = 'Bna’1(k)_§-;x2(k)—"" —le,,(k) +a, ul(k)

where G s G gs0eefl, ,81,62,...,B~are to be determined.

Taking a unit shift in the first equation of the set (II,24),
y(k+1) = :cl(k+1) +o ulk+1)
Substituting for z, (k+1) gives
y(k+1) = xy(k) + o (k) + o u(k+1) (11.25)
Again taking another unit shift, one obtains
y(k+2) = xz(k+1) +a1u(k+1) +aou(k+2)
and substituting for xz(k+1), one obtains
y(k+2) = xglk) +a (k) +a u(k+1) +o u(k+2) (IL,28)
Following this procedure, the following equations are established,

y(k#i-1) = @, (k) +a, u(k) +a ulk+l) + .00 +a u(k+i-1)
y(k#ll) = ={B, x (k)48 2o (k) +. .48, ()} +ay u(k) (I1.27)
+o ulk+l) + oo0 +a u(k+l)

Substituting (II.25,26,27) into (II.23) and comparing coefficients.

one finds,
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M _F _
fal=f1 0 0 ... 07 fa,]
a, bl' .0 eoe o
a, b, by 1 eee o, (11.28)
an) By By By eee 1] o,
and
Bl = 1 0 L N ) bl
82 0 . 1 LN ) b2 (11.29)
By 0 0 0 coo 1 b,‘4

Hence putting these values back to eqn(II.24), the dynamic

equations of the general difference operator system are

x(k+1) = A x(k) +Bu(k)

(11.30)
y(k) = Cx (k) +Du(k)
where A=[0 1 0 ... OT , B=_'-
0 1 P ¢ a,
. o - e . . (11.31)
0 0 0 ... 1 :
:bN -bN' .b"-,' so0 -b’- _au

C=[l 0 0 e 0] D=aqa

It is noted that the matrixAis the same as that of the reciprocal

difference operator system described in section II.Z2.

I11.4 'State~Transition Sigrnal Flow Graphs of Discrete Systéms

The state~ transition signal flow graph {1}, or state diagram

for short, may be used to portray relationships between state
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variables of a system, including initial states if necessary.
The state diagram of a discrete system includes elements which

parallel digital computer elements.

It is assumed that a digital computer can perform, at least,
the following basic computing operations:
a) Multiplying a machine variable by a positive or negative constant
coefficient,
b) Time delay, involving storing a variable for a certain length of
time before re-using it.

¢) Producing the sum of two or more machine variables.

The mathematical description of these basic digital computations

and their corresponding z—transform expressions are given by:-

Multiplication by a constant

xz(k) =q xl(k) (11.32)

Xz(z) =q Xj(z)-
Summing (k) (k) (k) )

x (k) =x (k) + x (k) - 2 (k

5 0 1 2 (11.33)

Xé(z) = Xb(z) + Xj(z) - Xé(z)
Storage and time delay

2y(k) = @, (k+1) 1

. +

Xé(z) = zXl(z) - le(O ) (1II.34)

or, Xl(z) = z"XZ(z) + x1(0+)' J

The state-diagram representation of the three transform equations
(I1.32) to (II.34) are obtained from the basic rules of signal flow

graphs and are shown in fig II.1
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x,(0%)
i
- a X,(;)
o = S (3)— X,
P % T X 54
1
a) Multiplication b) Time Delay ¢) Summation

. . %
Fig II.1 State~Diagram of
the Basic Elements
of a Discrete~time
System

Once the state diagram of the basic discrete operations are
established, the state-diagram representation of a discrete-data
system may be obtained. Hence, for the system described by (II.30)
and (II.31), the state diagram is as shown in fig II.2

!
A ‘f(a')

Fig II.2 State-Diagram for System
(1I1.30) & (II.31)

II.5 State Diagram of General Differerice Operator Systems by the

Decomposition of Transfer Functions

In section I.3, it has been shown that a digital filter
transfer function can be realized in many configurations. Here in
this section, the procedure of choosing different sets of state-

variables from the same transfer function, leading to different
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state- diagrams (and hence different configurations of the digital
filter transfer function) is described, The procedure of expressing
a transfer function by a state-diagram is termed the process of decom-

position, In general, the most commonly used ways of decomposition

are:=-

A) DIRECT DECOMPOSITION
Consider the transfer function of a general Nth order discrete
system

N N1
.Y(Z) _ .aoz -+ .alz + ceo .t .lCﬁ;'z -+ .aN (II,BS)

H(z) =

N ) N-1 .
Ulz) z+b1z+ +€_'z+b~

Multiply the numerator and the denominator of the RHS of (IL.35) by

z-NW(z), where W(z) is an auxiliary variable, then
- o N+ -N
—y(z) - a0+ alz + ...,+. an-'z"' CINZ .W(z) (II°36)
~Nel

H(z) =
Ulz) 1 +ba+ .o +ba +bZ" Wz)

Since W(z) is arbitrary, it can always be chosen such that the following

relations are true

-1 -N+!

(ab +aE + e z+ a3z') Wiz (11,37)
"'+ B 2" W(z) (11.38)

Y(z)
Ulz)

o 2R

+
( 1 +b12-| + 40 +

k4

Now, a quite arbitrary but convenient way of defining the state

variables xl’ Lgs cosy Ty 18 aS follows

xy(k+1) = w(k) Xy(a) = 2 1i(z)

-1
oi-,(k-ﬂ) = (k) X (z) =2 "Xylz) (11.39)
&, (kt1) = @ ,(k) X,(2) = 5 Xy(z)

In this way , the state variables will turn out to be the output of

the storages or time delays of the discrete system, Writing (I1.38)
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in the following way,

W(z) N+,

U(z) = (byz " + by, Bya 1) Wez)

i.e. W(z) = Ulz) = byX,(2) = by _,X,(3) =eeemb Xy(z)  (I1.40)

Also from (II.37) the output is given by a combination of the state

variables, hence

Y(z) = aow(z) + aZXh(z)+ ves + aNXI(Z) (11.41)

The state diagram (without initial conditions) portraying (II.40)
and (II.41) is shown in fig II.3

u%?f

Fig II.3 Direct Decomposition of a General Discrete

System

It can be seen that fig II.3 is merely a flow-graph representation

of fig I.4

Defining the state variables as the output of the delay units,
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the state equations are written direct from the state-diagram

(without initial conditions):-

'¢l(k+1)’ sfo 1 0 ... 0 'blfk)" + 0] ulk)

xz(k+1) o o 1 ... O x2(k) 0
. a [ - e eo 3 L] . (11042)
. 0 0 0 ees 1 . .

—

oy (k#1)| B b =B, ... =by |y (%) |

Also the output equation from the diagram is

y(k) = [(aN-aobN) (@-ab) ... (al-abbl)]'bl(kf + a u(k)
xq(k)
(1I1.43)
2, (k)

B) PARALLEL DECOMPOSITION

Another method of decomposition relies on the partial fraction
expansion of the transfer function into a sum of first- or second-
order terms. Second order terms are chosen when the denominator has
complex roots so that in practice, realization of complex multiplying
coefficients can be avoided. To each of these first- or second-order

terms, the direct decomposition is applied.

If the general transfer function shown in (II.35) is expanded

by partial fraction, then it can be written as

M
H(z) = E H.(z) (I1.44)
=1 .
where each of the terms Hi(z) is given either by
a *
Hy(z) = L (11.45)
2 + B.

1
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if it is of the first—-order, or by

N Try-L 2 Gz;' (11.46)
AR ————

ZZ"‘B’;Z‘FB“:

if the order of the term Hi(Z) is two, Applying the method of

Hi(Z) =

direct decomposition to (II.45) and (II.46), the state-diagrams for
the first— and second-order terms in the partial fraction expansion

are shown in fig II.4(a) and (b) respectively.

-t
, j v — %
v \,/ ! " h ek
'ﬂ- —FZ‘-
() (b)

Fig II.4(a) State Diagram of 1st Order Section for
Parallel Decomposition

(b) State Diagram of 2nd Order Section for
Parallel Decomposition

If the transfer function of the system has only simple real poles, all
H;(z) will be of the first order and hence the state matrix A is of

the form

A =[-8, 7] (II1.47)

which is a diagonal matrix. On the other hand, if all the poles of
H(z) are simple but in complex conjugates, then if complex multiplica-
tion are to be avoided, all Hé(z) are of the second order. The state

matrix Awill then be of the plock diagonal form:-
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A A, O (11.48)
O

where A; o 1
-8, B

However, if some of the poles of H(2z) are multiple, A is of the Jordan

»
]

canonic form {18} (see section II.7), i.e.

A =" i (11.49)
w1 O
Co=B 1
Lo TR
%
O T
! |
! LB

Whether the matrix A is diagonal, block diagonal or of the Jordan
canonic form, it will simplify the procedure of solving the state

equations(section II,7).

C) CASCADE DECOMPOSITION

Still another decomposition is obtained by cascading first—- or

second~order transfer functions to form higher order ones, i.e.
M
H(z) = Tl H.(2) (11.50)
HE
where each of H;(z) is given by

for lst order sections (11.51
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~45-

(2) =a,;zz + o2 o

or by Hi 2 for second order (IX,52)

2
22 + B.z2 + B .
B Bai sections

Again applying the direct decomposition process, the state—-diagrams
for (II.51) and (II.52) are shown in fig II.5(a) and (b) respectively,

da¢

_P':

ug) N ,

le)

Fig II.5 (a) State-Diagram of lst Order Section for Cascade
Decomposition

(b) State-Diagram of 2nd Order Section for Cascade
Decomposition

Solution of the Discrete State Equation

So far it has been demonstrated that the dynamic equations of a
discrete system can be obtained by direct inspection of the difference
equation or, more systematically, by decomposition of the system
transfer function. Here in this section, it is shown how the solution

of the state equation can be arrived at,

To begin, consider the free system

X(k+1) =AX(k) (11.53)
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and let ¥ = 0,1,..., one obtains successively,

%x (1) =A(0) x(0)

x(2) =a(1) x(1) = A1) A(0) x(0)
(I1.54)

S22 006820000000 SB0000RSNGORRSIOGRSITOSETNTS

X(k+1) =3 oa <¢)§ x(0)

i=o
(11.54) gives the free motion of the system, starting in the initial

state x(0). If the system is constant and the sampling interval is
constant, (¥I.53) has the solution

x(k) = Ak x(0) (11.55)

Now consider the forced system
x(k+1) = Ax(k) + B u(k) (11,56)

where A and B are constant matrices., Substituting ¥ = 0,1,... one

obtains

x (1)
x (2)

A x(0) + Bu(0)
Ax(1) + By(1)
A{AaX0) +Bu(0)} +Bu(1)

2000200 PP PO SPDP OSSO IOSINEIPIPOEOGTOOEPIOPPOEPBPIEOEO

x (k) = a8 x(0) + 3 A® B u(k—i~1)

- ak x(0) + _'z‘:"Ak-‘l’-ZB u(i) (11.57)
=0
%1 )
Eqn(II.57) suggests that the sequence B,AB, ... ,A B, may be defined
as a weighting sequence. Thus, if the weighting sequence is defined

by

W®) = A B

then,

k-1
x®) = aFxq) + E W (k=i=1)1(1) (I1.58)
{=0
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The right-hand side of eqn(II.58) represents the comvolution sum,
the analogue of the convolution integral in continuous—time systems,
. n . . .
The matrix A" go often encountered in state—space analysis of discrete-

time systems is referred to as the discrete-transition matriz.

I1.7 The Use of Similar Matrices and the Jordan Canonic Form in the Evaluation

of the State-Transition Matrix

A vector v in an N-dimensional space can be written uniquely in

terms of its basis vector w,, w,, ... ,W, as
N

=
and the number X; are called the co-ordinates of v in the w basis.

Suppose the basis vector are now changed tow¥, w¥, ... , w¥.

The w*-basis vector can be related to the w-basis by a linear equation,

i.e,
N
w‘? = E Yk‘l: wk 7:=l,2’...,]v (II.60)
k=1
Expressing v in terms of'wf s
N .
-(::I

On substituting (II.60) into (II.61),

v = NZ (i:ykix:)wk (I1.62)

i

Comparing (II.62) with (II.59),

N

== -« -
Xg Zkaxi k=1,2, 000, (11.63)

t=1
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or in matrix form, letting X be the co-ordinate vector of v in the
w-basis, and x* be the co—ordinate vector of v in the w#-basis,
X = x* (I1.64)

where I'= [Yij]is the matrix of the transformation of co-ordinates

which is non-singular.

Now, if the co-ordinate vector { is connected to the co-ordinate

vector X by

{ = Ax

in the w-basis, then, in the w¥*-basis,

p* = A% (I1.65)
But { =r ¢* (I1.66)
Hence r ¢¢=ar x* (I1.67)
i.e. t*=r'ar x* (I1.68)

Comparing (II.68) with (II.65), it can be seen that
A*=TAr (II.69)

Two matrices related in the form of (II.95) are said to be similar.
Similar matrices are very useful in the evaluation of functions of
a matrix and thus will be useful in the evaluation of the discrete

transition matrix.

Similar matrices have the following properties:

(i) det[A= AI] = det[Aa* - AI] where A*=rar

i.e. similar matrices have same eigenvalues,
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P e - -
roof rlica-2nr=rlar -2I= (a*-11)

Taking the determinant,
[det ¥] [det(A - A1)] [detr] = det(A* - AT)
hence, det( A - AI) = det( A* - AI) (11.70)

(ii) fa) =T ) T

Proof:-

w© N-1 .
. % ¢ *
£(a%)= E ki(A)'" = E aj(A)J as a result of the Cayley-
(=0 j=0 Hamilton theorem{18}

I sar - r [NZ_' aj(A*)j] r
=o'

N-i . \
= z : ; rayr
j=o
But, | A*j = T-'Aj r
‘I. rf(A*)r-'= (I,J.A = f(A) (II.?])
J=0

(iii) Let P = | v YV, ... V., i.e. a matrix with the eigenvectors
] 2 > g

of A as columns, then P is called an eigenvector matrix.

Now, if A has distinct eigenvalues, and if it has been chosen that the
original basis should be changed to a basis formed by the eigenvectors
of A , then, the similar matrix S with the eigenvectors as basis is
given by

1

S - PAP

where S is a diagonal matrix with the eigenvalues of A as its diag-

onal elements.
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Proof:—- Let A be an yx¥ matrix with eigenvalues A;, A, «.. A, and

eigenvectors v,, v,, ... ,V then

AV.= A'v'
Av = v
2 A) 2 jA[v' v2 caoe vN] - [v' v2 LR ] vN] Aa
. 2
AvN= ANvN O.o
AN
But ["l vz---"u]= P
B O]
A2
O "
-}
or PApP =8 (11.72)

(iv) f(s)

]
o]
n

= [£(A) 7 (11.73) -

L £ ()]

which is a one step process to find f(S).

Now,

£(s) = [£(n) U O —> eigenvalues of f (S) are

O e E(A), £(AD, +..) E(A)
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But £(S) = P f(A)P

i.e. £(S) is similar to f(A)

eigen-values of f(A) are also £(A,), £(A;), +a.y £(A,)

MULTIPLE EIGENVALUES -—— JORDAN CANONIC FORM

For any matrix A , let the charateristic equation be written as

~ N-1
gix) =a X +ar + ...+ 2k +a, (I1.74)
Defining, f(a,u) 4g) - gtw
AT
N N e
then FOL) =gy EE Ly g (AZB) , hg (11.75)
(A=) (A-u )
Replacing A by AI and y by A in eqn(II1.75), then
f(1,A) = (\1-a)"" {g(u) - g(A)} (11.76)
But g{A)=0 as a result of the Cayley=» Hamilton theorem, hence,
g(\I) = A\I-A). f(AI ,A) (I1.77)

Let f(AI,A) be written as w (A) where W (L) can be obtained from
eqn(II.75) by substituting A by AI and u by A.

Now, g (AI)

g(r).1

g)1 = A1-A ) (11.78)

If A, is an eigenvalue of the matrix A , then g(x) = 0. Hence,

g )T = [Ail - A], w(r) =0
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Thus the columns of lp(li) must be the eigenvectors of A. But since
to each eigenvalue_li, there is only one independent eigenvector, there-~
fore the eigenvectors of the columns of ﬂr(xi) are linearly dependent

on each other.

Suppose now the eigenvalue A has multiplicity m, then (A-Ai)m
must be a factor of g(A). Differentiating eqn(II.78) (m-1) times with

Yespect to A,

(X -A)w())
Qr-A)vw' Q) + w())

] n
Q
-
_~ >
- S Y
SN
-

(1I1.79)

AI - a) ¥y + e =

But since g(A) has the factor (A—Ai)m, then

(k-1

g ()\7:) =0 k= 1,2,000,m

Hence substituting A=A;in eqn(II.79), one obtains

(A - Ail)lF(Ai) = 0
(A - A0 w'(xi) =w(,)

(m-2),

(A -0 WO = ™)

Rearranging and modifying these equations

(A - Ailiw(xi)
(A - 2.D2¢0))

. (11.80)

]
Qo

- m (m-1
(A AiI) s Ui)
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The m equations given by (II.80) generate m vectors and are called gener-
a];iz'ed eigenvectors. These are obtained from qr()\i), ' O‘i)’ veey

v ,()‘i). It is sometimes possible to find independent generalized
eigenvectors without actually using all the m equations. Consider a
matrix having an eigenvalueof 1 with multiplicity 3. The three eigen-

values 1, 1, 1 can break in the following manner:-

{ @), M, )} = behaves as if they were distinct, the three lin-
early independent eigenvectors will be given by
any one of Wy (1), w'(1l) or ¥"(1)

{(1,1) , (1)} = 2 split together and one separately, the eigen-
vectors will be given by any two of W(1), y'(1),
and w'"(1)

{(Q, 1, 1)} = 3 split together, one eigenvector will be given
by each of w(l), y'(l) and yw'" (1)

Let v,, w,, ..., v, be the eigenvectors (generalized if multiple

eigenvalue), then
P = [v' vz TR ‘ v" ]

and J=plarp (II.81)

where J is called the Jordan canonic form of A.
When all eigenvalues of A are distinct, the form is diagonal — a

special case of the Jordan canonic form.

The form of J depends on how the eigenvalues split. If they split
separately, J is diagonal. Let A be a matrix having eigenvalues )‘1,
Aor Rar Ags Ags Ags Aps A Agy Ag, where A) breaks as {(4,,1),2)1,
Agbreaks as { ()‘3),()‘3)}, Ag breaks as { ()‘5,)‘5),()‘5)}, then the form of
J will be
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J = :1‘1"?
________ _ 1I.82
"'“f‘xz 17770 ] ( )
10 0 A,
TN
T A
I—-—-—&' ‘X--Z
L.--_...'"}‘—__"'l
) 25 !
1O _Asi _
- 178

The eigenvalues are boxed according to the way they break. In each box,
1 is placed above each A if there are more than one A in each box. The
boxes shown in the Jordan canonic form of A are sometimes referred to
as the Jordan boxes. If all the eigenvalues break together such as
those in the box containing Ay in (II.82), the box is sometimes referred

to as the:Jordan normal form.

FUNCTIONS OF THE JORDAN NORMAI FORM

The Jordan normal form can be written as

Jn'—' A1 O=)\I+
A1

[0 1
0 1

O

Consider the case when the order of J is say 3

I = AL +]0 1 0j=2I+ @
0 0 1
0 0 O
where Q@ =10 1 o
0 0o 1
0 0 0O

(I1.83)

(I1.84)
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But a = 0

and

Qk=0 for k>3

(It can be seen that if @ is of the order W, Qk= 0 for k = N).

Hence, for the above example when the order is 3, then by Taylor's

theorem,
£(J.) = fQ1+Q) )
=fFOJI+af'(n) + & o) v ... (1I.85)
2!
where o = 3f
a
B ko 2
ut Q = 0 for k=3
£() = I+ @ £1(3) + -4 F£100) (1I.86)
2!
i.e. ()= [£00) F100 2 00 (11.87)
0 i) i)
0 0 fix)

In general if the order of the Jordan normal form is n, then

_ o fn-'(x)-
£3) F£12) _2.!L..:f"(}\) s (T_'l—)—!‘ (11.88)

=2
I C VR SOV I

£(I,) =

. pTe=},
0 0 fix) -mL_%%-

0 0 0 ces flr),
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Thus if the Jordan canonic form of A is broken into Jordan boxes, i.e.

L0
J

1

3
(P
St

then £(J) O (1I.89)
1(3,)
| O . £(J )|

Hence, it can be seen that finding a function of a matrix in Jordan

form is a one step process. Using the properties of similar matrices,
the discrete transition matrix, &(k) =uAk, can be evaluated very

simply.

z-Transformation

In section I.2, it has been defined that the z—transform of a

function x(¢) is given by

o

X(z) =% [z(t)] =Z:a:(n).z_n (11.90)

n=90

The process of obtaining x(n)from X (z) is termed the inverse z trais-

formation. The inverse z transform of X (z) is denoted by

zl[}((z)] = inverse transform of X (z) = x(n) (11.91)

In general there are three ways of carrying the inverse z-transform

operation. These are shown as follows:-



a) SERIES EXPANSION

The values of x(k) for k=0, 1, 2, ... are obtained from X (z)

simply by expanding X (2) into a power series of z—l. Expanding (II1.90),
X(z) = 2(0) + (D)2 + z(2)2~2 + ... (11.92)

Clearly, the coefficients of z /% represents the values of x(t) at z(n) .
Therefore given X (2), it can be expanded into a power series of 3—1, and
x(k) for k =0, 1, 2, ... are obtained from the coefficients of the

power series.
b) PARTIAL FRACTION EXPANSION
To find the inverse z—transform of X (z) by partial fraction expan-

sion, the function X (z)/z should first be expanded into the following
form:

+ + + e (11.93)

and then the inverse z-transform of X (2) is given by

_ - Az Az A,z
ﬂm=zﬂkmﬂ=zl[yi+zj +ﬁ§+-u]
1 2 3

(1I1.94)
A;iz

2+q .
2

where each of the individual inversion B [ ]is looked up from the

z-transform table.

c) INVERSE FORMULA

. . . k-1 .
Multiplying both sides of (II1.90) by % and then performing a

closed-line integration on both sides of the equation,one obtains
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f X (z) K lay = Zx(n) f K1y, (11.95)

n=-0o

r r

where T', the integration path, is within the regions of convergence
of the infinite series of (II.90), hence enabling the summation and

integration to be interchanged. By Cauchy's theorem,

2ng for k=n
f 2K g = (11.96)

r 0 otherwise

Thus, substituting into (II,95)

x(k) = 2—:;.7' {X (z) zk_ldz (1I1.97)
r

Some important properties of the £ ~transforms are stated below
without proof. The details of the proofs are available in the liter-
ture. 29},{ 41},{ 44},{53},{ 60}.

(i) Z [af(k)] = aR2) (I1.98)
where ¢ is a constant and F(z) =% [f(k)]

(i) Z [£y(k) & fo()] = F(2) + Fy(z) (11.99)
(iii) Z[f(k=n)] = 27" Hz) (I1.100)
where n is a positive integer.
n-i
(v) Z [fen)]= 2" R2) —Zf(k)z"‘] (11.101)
K=o
(v) Lim f(k) = Lim F(z) (initial value theorem) (11.102)
k~+o 2o

if the limit exists.
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(vi) Lim f(k) = Lim (1- z_l) Hz) (final value theorem) (I1.103)
ko 2+

if €1 —z—l)ffz) does not have any pole which lies outside the

unit circle |z| = 1 in the z plane

t

IT.9 2z-Transform Solution of Discrete State Equations

The discrete dynamic equations

x (k1)
y (k)

Ax(k) + Bu(k)
Cx(k) + D u(k)

(1IT,104)

can be solved by means of z-transform method. Taking the Z-transform

on both sides of the state equation yields
zX(z) - zx(0) = AX(z) + BU(z) (11.105)

Solving for X(z) from (II1.105), one obtains

X(z) = (21 ~A) ! zx(0") + (z1 - AY 1 BU(z)  (1I.106)

which has an inverse transform,

-1 -1
x(k) =% [z1 - a)y YExdt) +Z | 21 -2y Bura)]
(II.107)

Comparing this result with that of (II.57), the following identities

are established:

-1
ak -7 [(z1 -a)"1z] (11.108)
and k-t -1

ZAR-L'"B u(i) = 2, [(zI - &) Buz))] (IT.109}

4L =0
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To prove (II.108), take the z-transform on both sides of the
equation, then premultiply both sides by (zI - A),

LHS: (z1 -a) Z[aF] = (zI—A);Akz—k
- (I-A)(TI + Azl +a% 2
=gzI (1I1.110)
-1 -1
RHS: (21 -A)Z{Z [(z1 -a) z]} =z1 (II.111)

Eqn(I1.109) is verified also by taking the g-transform on both sides of
the equation. Therefore,{40}

o k-l

Z [5:o a¥ "l guca)] 3,2, aK ey 27
4= k=0 =0 k-t . .
=i:z_kF‘LEAk_‘L-lBu(i) g ¢
K=o <=0

= iz'k”' ARy 11.112)

QO

Now the exponent of A cannot be negative, therefore

Q@ . . o0
§ :z—k-I-'L+1 Ak—'z,—l =Zz—k Ak -7 [Ak]
k=o K=0

and hence (II.112) can be written as

fo-t .
Z 1Y a eyl =2t Z[aM Bua

(z1-4a)"! BUz2) (I1.113)

where (II.108) has been made use of.

The matrix A¥ can be written as @ (k) and, as has been pointed out
in section(II.7), is called the discréte state-transition matrix.
Then the discrete state—transition equation of (II.104) becomes
k-1
x(k) = k) x(0") +Zq>(7<—11—1) Bu(:)  (I1.114)

{=o
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Substituting (II.114) into the output equation of (II1.104), one

obtains

k-1
y(k) = calk) x(0°) + cztb(k-i—l)nu(i) + Du(k)
=0 (I1.115)

1I.10 Transfer Functions and Impulse Sequences of Discrete-Data Systems

The z-transform of the dynamic equations of a discrete-data

system are, ignoring initial conditioms,

z2X(z)
Y(z)

AX(z) + Bllz) (I1.117)
CX(z) + DU(z) (I1.118)

From (II.117), it can be written that
X(z) = (2 -a) ' BU(z) (I1.11-)

and substituting into (II.118)

Y(z) = €(z1-A) YBUz) + DUlz) (11.12§)

from which the transfer function is defined:

H(z) = Y(z) = ¢ (21 - A)—lB +D (I1.121)
Ulz)

Here the input-output relationship is derived for a single-input,
single-output system. The generalization to multiple inputs and
multiple outputs is straightforward. The inverse z—-transform of

H(z) is then
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Z az] =Z Hezr-a7"B + 1]
= g(k)
= Co(k-]1)B+ D&L) (1I.122)

and g(k) is regarded as the impulse sequence of the linear process.

From (II.121), one obtains the following expression

C adj(A)B + det(z3I-A)D
det(zI -A)

H(z) = (11.123)

where adj(A) is the adjoint matrix of A and det(zI- A) is the
determinant of the matrix (zI - A). The charateristic equation of the

system is defined as:

det(zx-A) =0 (I1.124)
It can be seen that the roots of the characteristic equation are

the eigenvalues of the matrix A, i.e. the eigenvalues of the

matrix A are identical to the poles of the transfer function H(z).

Stability Consideration

a) FQUILIBRIUM

To study the motion of a sampled—-data system, consider the auto-

nomous system

x(kr1) = £ ( x(k)) (1I.125)

wherek =0, 1, 2, ...
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For k¥ = 0, it is defined that

x(1) 4 £'(x(0))

One more iteration leads to

x(2) = £(x(1)) =] £(x(0))] 2 2x(0)) (11.126)

The notation £2(x(0)) is not intended to indicate that the function

is squared. Extending the notation,

x (n) = 17(x(0)) (11.127)
represents the ''solution".

If a control vector wuis added to (II.125), then

x(k+1) = £(x(k), u(k)) (11.128)

To arrive at the equilibrium state of the process, let u(k) =0, a

constant vector. Any vector X which satisfies the equation

n
x, =1™(x_, o) (1I.129)
is called an equilibrium state.
b) STABILITY

Loosely speaking, a system is stable if small disturbances in
the system cause correspondingly small deviations in the equilibrium
state. If a system returns to its equilibrium state with increasing

time, then the system is asymtotically stable. The foregoing ideas

are generalized formally in the following definitions

(i) An equilibrium state X, of (II.128) is stable if, for amy e > O,
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there corresponds a § >0 such that, if

lx) - x|l < ¢ (11.130)

then
- x| < € (11.131)

where |x|= (x'x)i represents the norm of the column state vector .

(ii) The equilibrium state is asymptotically stable if it is stable and
if
Lim ||x(k) - X | =o (11.132)
k »e0 e

(iii) The equilibrium state is uniformly stable if 6§ is independent of

the initial time to.

(iv) If the solution is asymototically stable and if & can be arbit-
rarily large, the equilibrium state is stable in the large (globally

stable).

c) CONSTANT LINEAR SYSTEMS

Consider the free system represented by the following state equa-

tion:
- x(k+1) = Ax(k) x(to) =x(0) (II.133)

whose solution is given by

x (k) = A%x(0) (11.134)

For simplicity, assume A has no multiple eigenvalue, so that A is

similar to a diagonal matrix A such that

Flap= A (1I.135)



where A = I
e O

v}

"

]
—
o
N

and

Ay, Ags =0 AN and Vis Vps eees Yy are the respective eigenvalues and

eigenvectors of A. In other words, if the following change of variable

is made,

x(k) = PE(K) (11.136)

then substituting (II.136) into (II.133) and rearranging,

1

E(k+l) = P APEK) (11.137)

Equation(II.137) has the solution

t) = (P laryX g

plakp ¢ () (11.138)
It - is clear that (II1.133) is stable if and only if (II.138) is stable.

The stability of (II.138) is investigated by examining the #th power
of (II.135),

Plakp - AF (11.139)
If all IA,LI < 1. then the system is asymptotically stable; if one or

more IAI = 1, the system is stable; and if one or more I;\I > 0, the
' 7

system is unstable. The following theorems are stated without proof{32}

(1) The coustant system of (II.133) is stable if all eignvalues of the

transition matrix A satisfy the condition
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_Ixil <1 £=1, 2, «vcy, N (I1.140)

If IAiI # 1 for any £, then the condition of (II.140) is both

necessary and sufficient.

(ii) The zero state x(k+1) = O of the free system

x(k+1) = A x(k) (I1.141)

is globally stable iff every element of Ak tends uniformly to

zero as k - o,

II1.12 Résumé

The material in this chapter gave a brief account of the method
of state-space analysis, and demonstrates the versatility of the state-
space approach. The idea of state variables was first introduced; the
method of obtaining the state-equations from the difference equation
and that from the state-diagrams were described. Then the solution of
the state-equation both by the direct method and by using the z-trans-
form were shown, and finally, the relationship between state variables
and system functions, and the relationship between state variables

and stability were derived.

This chapter is comsidered basic to ensuing work, and accordingly,

much of the material will be used in many of the subsequent chapters.
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CHAPTER III

MATHEMAT ICAL MODELS AND DESIGN OF AN
IDEAL MULTIRATE DIGITAL FILTER

Introduction

In chapter I, the basic operation of a conventional digital
filter has been described. Here a generalized formula giving the
resulting transfer functions of a digital filter when the shift-
ing is continued N times during each pulse repetition interval,
where N is a positive integer, is derived. Several approaches
to the analysis are taken and compared. Some of the interesting
properties of the transfer function of such a "multirate" digital
filter are shown. Computer simulations are performed to show
that the multirate filters designed by using the formula derived

give the desired outputs,

Derivation of the Transfer Functions using Difference Equations

and the z-transform

The following derivation follows closely the method of
Fisdllbrant { 13}. To illustrate the analysis, the derivation
of the transfer functions for a second order digital filter is

shown below, N being taken to be two.

If a second order digital filter realized in the direct
canonic form is used in a double-rate (¥ = 2) fashion, the delay
of each register is T/2 while the input sampling period is T.

There are two separate output sequences, one sampled at t = nT

67~
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and is designated yltn), while the other, sampled at t = (n + %X)T,
is designated yz(n +%).

Consider fig III.l(a)where t = nT. The input sampler SI/P
is closed, hence the input signal u(n), in the form of a binary
word, comes in. At the output, the sampler 5, is closed while

82 is open. Hence, only the first output sequence, yl(n), exists.,

Uln)
N wpin)
S-"/P
-1 -1/
7/z = e 2
wyin-3)
j*ﬁ_ 2
Win-1)
utns+$ 20 N S,
" 2 W-.(ﬂ#,) /‘
Sy j
~'% T4 I, JE—

yz(ou-i-)

ji=e

22

Fig ITI.1 A Second Order Double-Rate Digital Filter in the Direct

Canonic Configuration (a) t=nT, (b) t=(n+¥)T
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Let @;qs Gpps oy ~814 and -8, be the multiplication co-
efficients at this instant ¢ = n7T and introducing two intermediate
variables wlfn) and %(n + %) to facilitate calculation, the

following equations can be written,

wl(n) = —Bllwz(n—%) - 812w1(""1) + un) (111.1)

y,(n) =a ,w,(n) +aw,(n%) +ayw,(n=1) (II1.2)

Fig III.!1(b) shows the double-rate filter at the instant
t = (n+ %)T. Since there is no input at this instant, u(n + %)
=.0. The output sampler S1 is open and S, is closed, hence only
., the output sequence yz(n + %) exists. Let @yg0 Rgpsr Bpgs “Boy
and =859 be the multiplication coefficients at ¢t = (n + %)7T,

again the following difference equations can be written,
= - ' - -1
Wy (n+s) B, W1 (n) = B, 0, (n=%) (111.3)
Yo(ntk) =a, ws(ntkh) +ayw.(n) +a,w,(n-%) (IIL.4)

Taking the z-transform of equation (III.3)

z%Wé(z) = _BZIWE(Z) - Bzzz%Wé(z)
-8
e 21
i.e. z2W2(z) = — WJ(Z) (111.5)
1 + 822 p<4

Taking the z-transform of eqn (III.1) and substituting eqn (III.5),

Wi(z) = -8, 2 —7 | W;(2) = B2 "W (2) + U(2)
l+8225
‘ 1+ Bppz -
i.e. Wl(z) = Ulz) (ITI.6)

= = =)
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From eqn (III.5) and (III.6)

2, (2) = { 2 2}{%2) (1I1.7)

1 +(Byp+8 -611621)3 + B12 B22 2
Taking the z-transform of eqn 8111 2), substituting eqn (III.6)

and (II1.7) and rearranging,
¥,(2)
U (z)

: o . U S -2
= 210+ (a10Bpp=011B21+812)2 _+128222 (117 g)

Hylz) = =
1 +(B12+B22-B11B21)2 ~ + B12B222

Taking the z-transform of eqn (III.4), substituting in eqns

(111.6) and (III.7) and rearranging, one obtains

X - _
Hz(z) =2 {j%z(Z) = Gzn§2]+dz|)+((12] 22 G2262|)3 (III.9)

1 +(B12+B22-B11821)2 T, 6126223

The extra zi in Yz(z)/QNz) simply means that the sequence
yz(n + %) is delayed by T/2. It is observed that both Hl(z)
and Hz(z) have the same poles and that they differ only in the

numerator polynomial.

Following similar procedures, the transfer functions of a
"triple-rate" (N = 3) second order filter realized in the direct

canonic form are found to be:-

Yi(z) _ oo + {otn CBanfan=Pasd = S0 B Paa = dis fBan b2, 0‘",52:/33:2.) (I11.10)

H== 0
z) | + (ﬁ“ PJIFJI - Fn!e;z -F’;c[gu 'Pan'ﬁn) 2-' + [gu !3:: 32 Z—]

s
H (7)) = 3 Y’(z)= (°‘2I‘°"1°ﬁ2l)+(°laoﬁx = oly; 3 +d ~ 2B 7!

U(2) I+ [F,. P,, F;. 'Pal‘agz-ﬁ,.!g,, - Fan !g” e . {512 Fa: Fsz z!

(I11.11)

2/3
H (z) = Z Y3(2)= (430Pn 85, = oo Paa — oty Pai +952) + (oty Bay paz"da: Bs.ﬂz,)z"

3
Utz) 1+ Fu (3:" le - PH f?’;: - an Pu ‘F3,F:;) 2!+ ‘511 {32: ﬁ;: v

(I1I1.12)
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The above method fails to give a generalized formula for the
transfer functions when ¥ is a general positive integer. Also if
the direct canonic configuration of fig III.1 is varied, for
instance, to a transposed configuration { 25} where the auxiliary
variables W, and wé may vary after being passed on through the
shift registers, then such an analysis will be awkwardly compli-

cated.

Derivation of Transfer Functions of a Multirate Digital Filter

using Discrete Convolution

A different approach from the above method has been taken
by Ragazzini and Franklin { 53} to give a generalized formula for
the transfer function of a multirate digital system. The follow—

ing analysis is a slight extenstion of their method.

First consider the system shown in fig III.3 where an input
U is sampled with a uniform period T and applied to the continuous
G. The output of G is sampled at an increased rate with period
T/ to form a sequence of output samples whose transform (which
will be defined shortly) is designated Y(ﬁv). The analysis first
requires the relationship between this output transform and the

input transform U(z).

W=z

Gi9 — s 2 Yiz,)

T/n

u(s)
T

Fig III.3 A Multirate System
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By the convolution theorem,

y(t) = E u(kT).g(t-kT) (I1I1.13)
k=0
However, the samples which appear at the output sampler are the

values of y(t) at the instants t = ;Z; or

y(% =;:u(k).g(-lzv — %) (TII.14)
=0

If the transform of this output is to be of use, it must obvious-
ly include all the samples in eqn (III.14); that is, the output
transform must be defined on samples separated by T/ rather than
the input sampling period T. To distinguish the transform
variables according to the separation between successive samples

which they represent, the variable 2z, will be used in the pulse

N
transform of samples separated by T/¥, and the variable 2 retain-
ed for sequences separated by I'. Hence the zN-transforﬁ of the
output in the system shown in fig III.3 is defined as
_ 7 -1
Y(zN) —E y(ﬁ) 2y
1=0

-] -]

- z :z :u(k).g(%- k).zN_z (ITI.15)

1=0 k=0

For a convergent series of eqn (III.15), summation with respect

to 7 and X can be interchanged, thus
o o

-1
= :E : L - %) .
Y(zN) u(k) g(N k) 2y (III.16)
k=0 1=0
In the second sum, it is always possible to find an integer J

such that j = (1 — kN), and the transform may then be written

in terms of j as follows:
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¥(z,) -Zu(k)Zg(%) a (FHHIV) (1I1.17)
k=0  g=0

The limitsin the second sum of eqn (III.17) are from j = 0 to
j = = rather than from j = -kVN since the realisable impulse
response g(t) is zero for negative values of the argument.

Separating out the powers of 2y then,

¥(zy) ;u(k) (zn”;) Z‘?ﬂﬁ) )
=0

J=0

U(z%) G (zy)

Uz).G (zN) (I11.18)

That the function U(zg) is in fact the z-transform of U(8) (based
on samples separated by T) with the variable z replaced by zg
has been made use of in (III.18). The transformG (zN) is the
ordinary pulse transfer function of the linear system, based on
a sample separation of T/N. The variable z, identifies the
period of the samples used in determiningG(zN).

Now that 'Y(ZN) has been obtained; suppose this series .Y(zN)
is passed through a sampler that is synchronized with the input
sampler, sampling with a period T (fig III.4), then one obtains

an output series .Y1 (z) which has samples separated by a period T.

Utz X, Yz, %5) Y, @), niw
?lcm G - .Y(RIN)I 7, G I T n
/i a  YalZ)y Yyine
T " J TV Closer AT t= (R g)T

l ,rS,. Yi(2), Y (ne %
A : . e . . T cLostd AT talne)T
Fg IIT.4 A Multirate Digital Filter with Multi-Output
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If a series of samplers Sl’ Sz, veeey SN are connected at the
output such that 5, closes at t = nT, S, closes at t = (n+ 1 AT,

closes at t = (n + N )T and all of them sampling w1th a

N
period T then there are N output sequences yl(n) yg(n-+ },--,
yN(n'+ 1) It is desired to derive the relationship between

the transform of these sequences, Y{(z) and Y(zN).

The output sequence y(k/N¥) has a sample separation of TN

and hence its transform can be defined as
0

-k -k
.Y(zN) =;oy(-ﬁ). 2y (I11.19)

Consider the Zth output sequence yi(n + & ;7 1) extracted from the
sequence Y (k/). The sample separation is T and its transform can

be defined as

AZ" i-1, —(ms
n=0
=1 =
-(=) ; -1, (1II.20)
These transforms of equations (III.19) and (III.20) are related,

since (III.20) contains only a portion of the samples of (III.I9).

By the inversion theorem described in section II.8(c)

k1 - I1I.21
y(-ﬁ) = me(zN) ZNk 1 dzN ( )
T
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Substituting (III.21) in (III.20) with k = nV + 7 =1

dz
_ _(( l) nN+i=] -n
Yi (z) = Z fY(zN). zZy —N— P

h=0

)
T

L}

-(%) : 1 dz
2 1~1 N
= — z, . Y(z — (I1L22)
2ng N 4 N) 1 - zxé 1 2y
r

The contour T on the erplane must be so chosen that it en-—
compasses all the poles of[ 1 ¥(z )/’z ] but excludes the poles
contributed by the factor{l/(l - z%z )} The reason for this
is that in the interchanging of summation and integration in
(I11.22), it is required that the infinite sum {E ’; ™}

be absolutely convergent. This is assured only 1f lz z 1]

is less than unity. Thus the factor (1 - zx 2 ) cannot be
zero in the region over which (III.22) is to be valid and the
poles introduced by this factor must lie outside the contour of

integration.

Substituting (III.18) into (III.22) and rearranging, it cam
be written that

=1

27 Y.(z)
H.z) o —2
v Ulz)
. zb'(;(z )
= g ”( L )4z, (111.23)
mJ N 1- 22

T
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Eqn (I1I.23) expresses the Zth transfer function relating the

ith output sequence yi(n + ) to the input u(n) in terms of

N
the pulse transfer function of a time-invariant system(?(zN)

which operates at a rate N times faster than that of the input.

It can be seen from (III.23) that the poles of Hi(z) and
G(zN) are related in a way that if-kl, Az, ceeny Am are the poles
of G(zN), then the poles of Hé(z) will be Al’ Az, ....,_Am where

A, = A, (I11.24)

IT1.4 Verification of the Derivation of H.(z) with a Second Order
Double~-Rate Filter

It can easily demonstrated that equation (III.23) gives
the same results as eqn(III.8) and (III.9) for a double-rate second
order digital filter. Consider the diagram in fig III.1. If

G0 T 990 T s %y T Gpp T Oy Gyp = Gpy = 0gs By = By = By

and 812 = 822 = 82, then

22

2 2
G(ZN) =(10 N + lelv + C!2 =.UO.ZNA+A(!12N.+ 0.2
ZN *+ Byzy + B, (zN - Al)(zN - Az)

(I11.25)

VBZFIE,

S
)
]
!
op N I o
i
oY)
o
|+ ]
&

where Al - +
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SubstitutingG(zN) into eqn (III.23), with N = 2,

( Yl (z) 1 aoz + o,
H, (z) = = . dz
1 Wz) 2%g (zN Al)(zN 2) <& zNz ;) N (11I.26)
T
z%.Y (z) _ 1 or i af 1 dz
Bo(z) =—2 " =5z P (B (z-A0\ az) 7 (I11.27)
2 Ulz) r

In evaluating the integrals of eqns (III.26) and (III.27), it

is possible to do so either by obtaining the residues at the poles
of (Z:-'/ZN). G (zN) which are contained inside T' or by obtaining
the poles of l/(l—zlfz") which lie outside T.

Evaluating the integral by obtaining the residues enclosed
by I' (III.26) becomes,

2 doAs+ oA, + Oy
H(Z) = d? + dOAl +d|Al+ d_’ + LEAF ] 172 —
! AAr AA-ADU-AZ) A (A=A (1-AZ ")

= Gt (doBy =i Btc)z +oif (II1. 28)

P+ (2p-phrz'+ g 27

Similarly, (III.27) becomes

do A + o A + 0, do As + ol Ay + g
(A-AC=ATZT') 7 (A=AD (- AZh

Hz(z) =

(of) oo ) + (el s =0 B2

I+ (2(3,-(9,’)2-;/3; z’

(I11.29)
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Equations (III.28) and (III.29) are the same as (III1.8) and
(III.9) if the multiplication coefficients of the digital filter

remain unchanged throughout the sampling period.

The derivation of Hé(Z) using discrete convolution described in
section III.3 is valid as long as G(bN) remains unchanged, i.e.
a time-invariant filter. However, if the coefficients of the
filter are allowed to taken on different values during the

sampling period, the analysis becomes very complicated.

ITI.5 State-Space Analysis of a Multi-Rate Digital Filter

The following analysis makes use of the state-space method

and is a modification of the method already published { 58}, { 65}:

Consider the flow of a multi-rate digital filter with
periodically varying coefficients realized in the direct form
(fig III.5). Such a filter has N shift sequences during each
sampling interval, while its coefficients are allowed to take
on different values every T/N seconds as described before, so
that aij and Blj are the coefficients at nT, azj and sz are
the coefficients at (n+ 1WN)T, and aij and Bij are the co-

efficients at (n+-%§l)T

ulo




-79-

o B talns )T

&
—s A—_—-;-y'
! Yy(nad)
-F:’ L I_/‘_—"YN
Yo

L y:
“Pus e T TR

Fig II1.5 Flow Graphs of a Second Order Multi-rate
Digital Filter at Different Instants

Let x, , x, be the state variables at these different

sampling instants as shown in the flow graphs.

At ¢ = nT, the dynamic equations of the filter are

[xl(na‘%)- 0 17 ()] +[o]utm
zytZ)| |8, -8, |z,n) 1

Ax(n) + Bu(n) : (1II.30)

yl(n) = I:(U,z - B, ) (@ = @ Bu)] [xl(nf" umu(n)
)

-’Cg(n

C, x(n) + Dlu(n) (1I11.31)
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h =
where A, [o 1 ], B, [o]
~8,, 811 1

C; = [(a),=uyg8,,) (a“—aloﬂu)]’nl = [y0]

L]

At t = (n+ 1/N)T, the equations are

S 2, _ 7 1, 1
X (n+ -ﬁ) = A?_X(nf--ﬁ) + Blu(m-ﬁ) = Azx(m-ﬁ) (I11.32)
1 2 1, _ 1
yz(nf--ﬁ) =C, x(m-ﬁ) + Dzu(m-ﬁ) = czx(m-ﬁ) (I11.33)
since un+ 1/) =0
7 =1

At any subsequent instant t = (n + 7 JT, where T = 2, 3, .ueu,

N, the dynamic equations of the multirate digital filter are

i, _ =1
X(nf--ﬁ) = A'zl x(m-——N ) (111.34)
=1, _ =1
where = = - -
A,=r0 1 ey [y B (agga ;)]

~Bio 7Big

y-1

and eventually, when t = (n + —N—)T, the equations are:-

= N-1 (I11.36)
X(n+1) ANx(m- N)

N1, Not
yN(mT) CN x (n+ N )

(I11.37)
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Equations (ITII.30), (II1.32), (III.34) and (III.36) express the
relations between the state variables at these instants within
the sampling period. Eliminating the intermediate state vari-

t 1) vhere i = 2, 3, vu.., N, then,

able vectors x (n + i

x(n1) = A oo A, (B x(n) + Blu(n)) (II1.38)

v Ay-1
z

Also, since the state equation at ¢t = (n + ;, 2)T can be

written as

1

-1 -2
X(Yﬂ'—N—) A’I:-l X(n"—n—,—)

a .. A, (A; %(n)+ Byu(n)) (I11.39)

1-1 Bi-2

hence, the Zth output equation is, from eqn (III.35)

=1, B )
Y ()= c A, Ay ... Ay (& 3(0)+ Bu(n))+ Douln)
(I11.40)
where [alo] for 7 =1
D; =
v [O] for 1 < < < v

Equations (ITI.38) and (III.40) represent the general dynamic
equations of the system. If the coefficients of the filter

remains unchanged throughout the sampling period such that

A'=A2=--. =AN=A=O 1
—8, B
and C' — q =« v s = CN = C =[(a2—0.082) (01—3081)]
then equations (III.38) and (III.40) become
x(n1) = A" xn) + A" B, utn) (II1.41)

i1 i-1 i-2 .
y,(m==) = ¢ A " X(n) +(c A" 8, +n7:) un) (111.42)
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To find the transfer functions of the multi-rate digital
filter from its dynamic equations, the z-transform of the
equations are taken. Thus the Zth transfer function of a multi-
rate filter with periodically varying coefficients is, by taking
the z-transform of eqns (III.38) and (III.40),

x(z)=(zI-ANAN_1...A NAN go0e ABY) Uz)
) (111.43)
and :;;7 Y.(z) = C.A A A, A, X(z)+C A A...ABU®D
Z 7 Tg=1 =2 ' T2 1 -1
+ D;Ul2) (ILI.44)
¢-' -
Thus H (z) = 2" Tuz Yitz) =(C AL A,..- A A)(ZI ANAN! -+ Ay) (ANAN-JU'A2B')
T Ulz) +C; “\-' . ,---A,B + D, (ILL.z5)

and for the time-invariant multi-rate filter, the Zth transform

function is simply,

A . S .
Hiz) = 2 Y2 ca"(zI-A'T'A7B + cAVB + D

Ulz) (III.46)

Remarks on the State-Space Analysis of Multi-rate Digital Filter

! -2

In eqn (III.46), there are two terms A and A .
These terms are interpreted in a way such that

(] . . .
A = I = identity matrix

and negative powers of the state matrix A is taken to be a null
matrix. Extending this interpretation to the case when the co-
efficients are allowed to take on different values during the
sampling period, the corresponding terms in eqn (III.45) are

defined as

]
—

I for ¢

]
N

A. A- ...AA = A, for ¢

A,.,.. .A’A' <Frn' i=N

N~{
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(O for 1 =1

n
3%

I for %

A[-?"'Az-‘.ﬁ'

=1

LAN#"'<A;Az for %

]
=

It has been pointed out in section IIX.3 that although the
discrete convolution approach gives a general formula for time-
invariant multi-rate digital filters, it fails when the coefficients
of the filters are allowed to take on different values during the
sampling period. The state-space analysis, in a way, generalizes
the difference equation approach and thus gives a general formula
for both the periodically varying and the time-~invariant multi-
rate filters, Besides this generalization, the use of state-space
method can be further justified by the fact that it also gives the
relationship between the input and output in both the frequency
and time domain and thus saving the process of transforming from

one domain to another.

IITX.7 Verification of the State—~Space Derivation of the Transfer

Functions by a Second Order Double-Rate Digital Filter

Equation (III.45) can easily be verified by a double-rate
(N = 2) filter. Substituting ¥ = 2 into eqn (IIIL.45),

H (z) = C 21~ A,A)'A,B, + D, (111.47)
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and, Hz(z) =G, 1(z I- AzAl) A.B + 0231 +D, (111.48)

Substituting the values of A,,A,;,B,, C,, C,, D,, D;, then

aA=T -8, -8,

thus,

-

(21 - “2“1)-1 AsB, = [’“’*322

2 -
-BZIzj {zc + (312"'322 311321)3"'312322}

Hence, equation (III.47) becomes

Hl(z) = [(GIZ-QIOBIZ) (a“-aloﬁn)].t" 822 ‘Z:“'(fam*ﬁ:-ﬂ”ﬁ”)z+ﬁ”ﬂ2,}
By 12

o %Z Z+ oo Bya =S4 Bay+ Ni3)Z +ha Bsa

za"'(Pu"'Pu Puqu)z*Pl:Pu (I11.49)
Similarly, [(a22 20622 (a21—a20 321)][‘0 1 :’
B2 7B

= I:_‘312("‘21_"‘20'321) (a,,7a, 48,2811 (g1, 085))

and substituting into eqn (III.48),

- (8ty, = 30 Pzﬂ 224' (cls, ﬂ,,-d“ 5;:)2
Hg(Z) B 22+ (Fu + Pay ‘Fn ﬂzn)z“ﬂﬂ Fu (111.50)
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Equations (II1.49) and (II1.50) can be seen to be identical to
eqns (III.8) and (III1.9)

Application of the State-Space Approach to Other Second Order

Configuration

The state-space method of analysis can be applied to any
other configurations. This is demonstrated by the following

example:-

Ex. III.1 Analysis of the Transposed Direct Canonic Configuration

Fig III.6 shows the transposed configuration of the
direct form{ 25}

din)

A d\ @ e ‘-—-—’y"(w)

|~ L meizts | S, WP
o Lot
* (nsS)
z

Fig II11.6 A Multirate Digital Filter in the Transposed Direct

Canonic Configuration
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Choosing the state-variables xland x, as indicated in fig III.6,

and employing the same technique as shown in section III.5, one
obtains the following equations:

1“**%’* 0 =By,] [z, )] + [(a -0y 8,,)| uln)

2
g i

PUce 1 =By |#p(n) (ay,7¢;48)7)
= 1 X(n) +C€7 uln) (I11.51)
x(ﬁf-l:-) - A x (271 (I1I.52)
N 1z - s
and x(m1) = A;x(m”_;l (III.53)

T
where Ai = [0 -81:2] = transposed of A,
1 =By

T
c, = [(a12 a10812)}= transposed of Cl
(an alosn)

A; and C; are both defined in section III.5. Solving equations
(I1I1.51) through (III.53) then,

x(ml) = A B AL {ATxm s um)  (rnse

.
and also x(n+1) = A-; A-:_' .. .A;{A:x(nH C, u""} (I11.55)

Again, employing the same technique as in section III.5, the

output equations are:-
T T
yz‘(n) = [0 1] [mz(n)] + o, uln) = B;x(n) + D uln)

xg(n) (III.56)

yimh) = B x (e 22 (III.57)
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T .
where B = (transposed of By ) = [0 1NN for 2 =1, 2, ciaayN

7

Substituting x(n + 1;1) from eqn (III.54) into eqn (III.57),

one obtains
- \u
yzi(mfﬁg-) =B A, A, A [Axm+ Cwnif+D (III.58)
Taking the z-transform of eqn (III.55) and (III.58) and rearrang-
ing, _
L L
R Yi(z)

Hl(z) AR * o r ¢ WA r ¥
e (B7A], A7, A&) (21 - £A,... &) (KA,,..4,C)

T T T T \d

+ B A, AE-;" - 8,6, + D,
(I11.59)

where T [am] for =1
D': -
[ 0] for 1< ig N

Equations (III.55) and (III.58) are the dynamic equations
of the transposed direct canonic configuration used as a multi-
rate filter. These equations are very similar to the dynamic
equations, eqn (III.38) and (III.40), all matrices A; are
replaced by their corresponding transposed matrices A}, also
B, is replaced by (3",r and C; by By, then the dynamic equations of

the transposed direct realization is obtained.

It is observéd that the tramsfer functioms, Hi(z), of the
direct form and. those, H,If(z), of the transposed form have the

same poles,'since
\ \
det (zI- A A, ;" A,) = det (21~ AR, ... A) (III.60)
However, except when 7 = 1, the numerators of Hi(Z) are not

equivalent to the corresponding mumerators in H,If(z) which are

independent of C:: for 1 < £ <N; rather Hé(z) is dependent on
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rﬁ which is a constant row vector for all values of . Thus, for
1< z2< N, Hé(z) of the transposed direct form is not equivalent
to Hi(Z) of the direct canonic form. Nevertheless, in the case
of a time-invariant filter where all C; remain the same through-
out the sampling period, Hé(z) of the transposed direct form
will be equivalent to Hi(Z) of the direct form for all values of

i‘.

There are many other second order configuratioms { 25}, but
the procedure of obtaining their dymamic equations and transfer
functions when such filters are used in a multirate fashion is
the same. Also, from the point of view of quantization noise,
the second order direct canonic form (or the transposed direct
form) is the most commonly used { 25}. Hence the other configura-

tions will be omitted in the discussions.

ITI.9 Some Properties of the Transfer Function Hﬂ(z)

In section III.5, it has been shown that the Zth transfer
function of a multi-rate digital filter in the direct canonic

form is given by:-

=l
H.(z) =(C;A_ A, - -A)(sI-A,) (A A ...AB)

+ C/A A ,-+AB +D; (I1I.61)

where for convenience, the matrix A, is written instead of AWEE}"A'

Here two interesting properties of this transfer function

are shown in the form of the following theorems:-

a) Poles of H.(z)
Lemma III.1 The poles of H.(z) are given by the equation
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{15} { 51}
det (zI- Am) =0 (111.62)

Proof:~ The proof of the lemma follows directly from eqn (IITI.61)

i.e.
H:2) =[(C; A, A,--- A,A), adj (zI- A,) (aA,,. A, n,)]/deuzl -4 )

+ C‘-A;_,A;---A,B. + D;

where adj(.) denotes the adjoint of a matrix.
Hence the poles of Hi(Z) are the roots of eqn (III.62)

Lemma IIX.2 The polynomial of the denominator of Hi(Z) is a

quadratic function in =z, i.e.

- = o2 -

det(2I Am) = g< + blz + b2 (I11.63)

such that b, = - 1r[a] (1T1.64)
and b, = det[A] (1I1.65)

where Tr(.) stands for the trace of a square matrix and det(.)

denotes the determinant of a square matrix.

Proof:~ Since

A= AA, ...AA,

and all A; are second order, then A,must be of the second order.
Thus, det (3I = A,) is a quadratic function in z.

Let the characteristic polynomial be represented by

f(z) = det(z1 - A) = 22 + byz + b, (I1I.66)

then

£(0) = det(-A) = b

2
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Hence b = det [Am] since detfa;] = det [-Ay]

for a second order matrix A,

Differentiating eqn (III1.66) with respect to 2z at z = 0, then

| = b,
92
2=0
Also A1 = 2 dec(ar - A)]
3z a3

2=0 2=0

= (g - Ay, + 2 = all)

- 2=0
= =Tr (Am)

Hence bz = -Tr (Am) QED

Theorem III.1 If the polynomial of the denominator of Hi (2)

is expressed in the form of eqn (III.63), then

o
[

N

, = Hgiz (II1.67)
4=1

Proof:~ From eqn (III.65) in lemma III.2,

by = det[A ] = dec[A A, --- A (I11.68)

Now, since the multiplication rule for the nth order determinants

of two square matrices P and @ are such that {15}

det(P).det(@) = det(®R)

T
where rij = E piquj
K=t

and pij’ qij and rij being the elements of P, @ and R respect-

ively, then the array of the elements in det (R) is thus
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identical with that in the matrix product (P.@). Hence, the
determinant of the product of two matrices equals the product of

their determinants.

Now, each matrix A; is of the form

Ai =l 0 1
“Bz2 "Bz
and det(A;)= Bi2 (I11.69)
therefore from eqn (III.68)
b2=det(A~ A, ...A)

N-{
= ]_Idet(AN_i)

4::0

= IT Bi2 QED

b) Zeros of Hi(Z)

Theorem III.2 For 1< Z< W, Hi(z) has. a zero at the origin

of the z-plane, i.e. the constant term in the numerator of

Hi(Z) vanishes.

Proof:~ Equations (III.61) can be written in the following

form

H.(z) = (C.A. A, . ... A A)'adj(zl - A.)
1 2 Tt -2 (A gt e AB)
27 det(z1 - A,) nBua 28

+ Cl: Al:'l A;_z s v AZ B' + DL' (III-70)

where A = AA,  ..-A, (I11.71)
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adj(.) denotes the adjoint of a matrix

Grouping terms and rearranging, eqn (III1.70) can be .written as:-

i (21 -A,, -
H'l:(z) = C‘:A‘-_'A‘:_’ "'AZ(A' ad (z ) 'Am Al 1 + IBBI
det(zI -A,)

=CA_A_, - AA {ad (zL-Ay . A_ +1} A},

- -2
©orhe det(z1 -A,)
(111.72)
Now, consider the term,
1 I-A
r=2djBl=3m), (II1.73)

det(2I - A,) ™

Recalling that

det(3I- A).T= adj(zl ~A).(31-4)

adj(zI - Am)zl - adj(sI - Am). A (I11.74)

Hence 2 (zI - A = : -A)) - -
’ adj (2 - A, =%adj(zI - A) - det(zI - A ).I
(I11.75)
Thus substituting the value of {adj (=1 -Am),A,,,} given by (IIIL.75),

the term in bracket in eqn (III.72) can be written as

gadj(zl - A) - det(zI -An).
det (31 - A,)
_ zadj(s1 - By
det (2l - A,)

+ I

(I1I.76)

Hence for 1< £ < N, the Zth transfer function of the multirate

filter is given by:-

_ 2adj(ZI—A) R -1
Hi(z) = (C;A_ A.,..-A,A)) ==+ A,

B, (I1I11.77)

Now, since every element of the matrix |z adj(zI - Am)} contains

terms involving 2z or z2, but no constant term, it may be concluded
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that, for 1< 7 < ¥, the numerators of Hi(z) are always free of

a constant term. QED
The above two theorems can be seen to be equally applicablé

to the transfer functions of a multirate digital filter realized

in the transposed configuration.

ITI.10 Design of Second Order Multirate Filters

Consider the case that a second order transfer function

given by
Flz) - aoz? + ajz + ag

(111.78)
22+ byz + by

is to be realized by a second order multirate digital filter.

If a, # 0, then from the property shown in section
I11.8(b), eqn (III.78) can only be realized by using Hz(z) of
the multirate filter. However, if a, = 0, e.g. 1in a realiza-
tion of higher order digital filters by parallel alignment of
second order subfilters, then any of the Hi(Z) of the multi-
rate filter can be used to realize H=z). The choice Hi(Z) for
such a design is discussed below. The two cases of time-invariant
and periodically varying multirate filters are considered

separately.
a) Time Invariant Multirate Digital Filter

Consider that Mz) given by eqn(III.78) is to be realized
by a second order time invariant multirate filter. If only
complex poles are considered, then the poles of Fz), A and A*

can be written as

pe? ©

A

A:('

(I11.79)

n

re 90
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It has been shown in section III.3 that if a second order time

invariant filter working at single rate has poles given by A and
A*, then its poles when working with ¥ shift sequences within a
sampling period are ¥ and A*Y. Thus to realize Mz) by a time-

invariant filter,

AIV Je _ A

= re (III.80)

A = e 0y (III.81)

Let A = pel?® (III.82)

A% = pe ¢ (1I1.83)

then, o = /W (II1.84)
8 + 2nw

¢ =—F5 (111.85)

Hence for given values of r and 8, there are in general ¥

solutions for A, i.e.

_ AW g (es2in) N

A (I11.86)

where 2 =0, 1, 2, vevey (N = 1)
Hence for a given transfer function F(z), there are ¥ different
ways of realizing the poles of F(z) using a multirate digital

filter.

It can be shown { 68} (see also section V.6) that the
sensitivity of the resulting poles, A and A%, from using a multi-

rate filter is inversely proportional to |sin ¢|, i.e.

1

|sA| « TemT (II1.87)
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Hence in designing Ffz) with a multirate filter, it is better, as
far as pole sensitivity is concerned, to choose the pair of A and
A* having the largest value of lsin¢|. The following example will

illustrate this point.
Example III.2

It has been decided to use a time-invariant triple-rate

(¥ = 3) digital filter to realize a transfer function given by

22
Hz) =
22 - 0.9z + 0,81
22 (I11.88)
“ {2 - (0.45+j0.45V3) Rz - (0.45-70.45Y3)} :
Hence, A = reJe (111.89)
where » = 0.9 (I1I1.90)
8 =m/3 (III.91)
There are three choices of A,
A, = pe?®2
AS = peg¢3
where p = rl/N = (0-9)1/3 = 0,9655 (III.QZ)
¢, = %/3 = 20 deg.
— Tr —
¢, = ( §-+ 21)/3 = 140 deg (I11.93)
¢3 = (-3 + 47)/3 = 260 deg

These values of Ai are shown on the erplane in fig III.7 while
their respective complex conjugates are marked with an asterik.
The corresponding positions of A and A* on the z-plane are also

shown.
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Of these three available choices, |sin ¢3| has the largest value

and therefore A, and A% are chosen so that the resulting transfer

3 3
function will have the least pole sensitivity.

Jm( Zy)

UNIT CIRCLE

> Re (zn)

Fig III.7

Positions of the 3 Possible Pole Choices in the erPlane

Choosing A3 and Ag for the poles of the multirate filter, the

feedback multipliers of the multirate filters are given by:-

4
B, = =(a, + A)) = - (0.9 3cos 260° = 0.1677 (111.94)
B, = AA% = 0.9%3 = 0.9322 (111.95)

After determining the values of Bj’ the values of o are
considered. Since from eqns (III.1Q), (III.11l) and (III.12), a
triple-rate time~invariant filter has three different transfer

functions all having the same poles. Thus we can choose any of

the three to realize eqn (ITI.88). Rewriting eqns (III.10)
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through (III.12) for the case of time-invariant filters, we

have
\J
fag + (o (82— B,)-a 8,8, ~0,8,1s 77 + 0,322
4. (z) = 1 27 T2 ( )
1 - I11.96
3 — -
- 1 + (B,-38,8,)2 a Bgz 2 ;-
- - 2. =
Hy(z) = (a;-0gBy) + {agB3-a,8,8,+a,(87-8,) )2 (I11.97)
. 1+ (813.—38182)3-1 + Bgz-g J
...1 y
2.0 Y- 2_
3 3 -1 . _3.-2 '
1 + (B]-38,8,)z = + B3z

But considering that the numerator of Hz) in eqn (III.88) has
only one term 22, and reading through eqns (II1I.96), (IIL.97)
and (III.98), we find that Hs(z) is the only transfer function
we can use to realize Hz) such that @, =0 and a, = 0. The
reason for choosing ay and oy to be zero is that we can save

two multipliers in the implementation of the filter. TFor a

1
and a, to be zero, we have
2 -
. _ 2 _ - -
i.e. @, = 1/(B1 B,) 1.1061 (I11.99)

With all values of the multipliers calculated, the final
design of the triple-rate digital filter to realize eqn (III.90)
is shown in fig III.8

f‘ utn) @ d, Ay n)
- P yz(ru-%-)
SV 11 2 .
zP=ze? == y,(n+3) desired
_ output
<EE] closed at t=(neZyr
-5T
iﬁé_e‘?

/A

Fig III.8 Triple-Rate Filter to Realize Hz)
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The other two transfer functions HI(Z) and Hz(z) also exist
but they will have characteristics different from HS(Z) and
different from each other. It is not the concern here in this

example to make use of them.

b) Multirate Digital Filters with Periodically Varying

Coefficients

Consider the denominator of F2)given in eqn (III.78). It has
been shown in section III.8 (a) that

b= -Tr[ A, A, ... A, Al (I11.100)

b= ﬁ det[a,] = ﬁ Bso (III.101)
L= i=1

i.e., to realize the denominator of F#(z) using a multirate filter,

there are two equations but 2§ unknowns. Hence there are

2(N - 1) degrees of freedom in choosing Bil and Bi2' However

if the choice of Bil and BiZ are stipulated so that Bil and

BiZ have to be chosen together as a set, then there are (¥ - 1)

free choices of the Bil——-siz sets. Therefore, given b1 and

b2, (N - 1) sets of By and B, can be chosen and the remain-

ing Bil and BiZ set can be determined from equations (III.100)

and (III1.101).

Consider the numerator of F(z). For a direct canonic
realization of the multirate filters, after all the values of
Bﬂj have been determined, the numerator of Hi(z) is a function

of C; and D% only, where C; and D, are given by
c; = Ll mesgfsp)  (aggmoggByy)]

] (I1I.102
{alo for + = 1 )

0 for 1 <7 < w

D; =
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From the properties of Hi(Z) shown in section ITI.8(b) that the numer-
ator polynomial of Hi(Z) contains a constant term only when %=1,

then for 31(2), there are three linear equations and three unknowns,

i.e.

ay = ¢glayps ayq5 a;5)
1 = 9(aygs @y, ag,) (111.103)
a, = ¢,(ay55 o375 ap5)

where ¢0, by and ¢2 are linear functions. Thus %300 %11 and 0y, can

be determined.

However, for 1< 7 < N, since the constant term in the numer-
ator of Hf(Z) vanishes, there are only two equations but three unknowns

i.e.

a, = fala , .., 0. )
0 707407 it a2 (111.104)

ay = filaggs oz @)

where fo and fl are linear functions. Hence we have one degree of
freedom in the choice of aio’ o and LT i.e. we can choose any
value for one of the coefficients and solve (III.104) for the other
two. A convenient value to choose is zero, in which case, one of the
multipliers can be omitted. A further saving of one multiplier can
be achieved if the (N - 1) degree of freedom in the choice of the
denominator coefficients and the freedom in choosing one of the numer-
ator coefficients are both utilized. This is especially a useful way
of reducing the number of multiplications in a sampling period if a
multirate digital filter is used to realize a second order filter with
a zero at the origin (e.g. in the realization of higher order filters
by parallel alignment of second order subfilters). The following ex-

ample may help to illustrate this point.
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Example III.3

If a second order transfer function of the form

Hz) = (II1.105)
-1 -2
1+ blz + bzz

is to be realized by a single~rate digital filter, it needs
four multipliers, i.e. the circuit diagram would be as shown
in fig III.9

(D yin)

Y

W

Fig III.9 A Single-Rate Digital Filter

time- varying
It is shown here how, by using aAdouble-rate filter, the

number of multipliers can be reduced -~ - and at the same

time saving the use of one adder.

From section III.6, it is known that there are two trans-—

fer functions associated with a double-rate filter, viz.

-1 -2
[910 + (210B22-011B21+012)2 "+ 012B222 }

H (z) =
1 - -
[ 1 + (B12+B22-B11B21)2 Ts B12B22% 2]
(11I.106)

[(az1-a20821) + (021822-022821)2 "

2]

Hy(z) = (I11.107)

_ -1 -
[1 * (B p*Byp7B 1By e+ BBz
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Either of these two transfer functions can be used to realize

eqn (II1I.105).

First consider the case when Hl(z) of eqn (I11.106) is used:-
Comparing the coefficients of the numerators of HI(Z) and

F(z), it is evident that the following equations have to be

satisfied,
%0~ %
a12 =0 (I11.108)

Now if %1 is made equal to zero as well then

=
%0822 1 _ .

i.e.

Comparing the coefficients of the denominators of Hl(z) and
Hz), then

(I11.110)

and if a convenient value for Bll is chosen, say Bll = 1, then

21 = (812 + 822 - bl)/Bn

= ¢ aob1  ay _
g+~ D1/ ey, (II1.111)

Hence the equivalent double rate filter has the circuit diagram

as shown in fig III.10



uin) d’
(n)

CLOSED AT
t:n.'T

- = -0
ﬁ:7¢

Fig II1.10 A Double-Rate Digital Filter used in Place
of fig TII.9

On the other hand, if eqn (III.107) is used to realize z)
given by eqn (III.105) then again

- (III.112
B12B22 = Py (1I1.112)
_ _ I11.113
Big * Byy T By1Byy = by ( )

Now setting Uhy = O9p = 0
then Gy = Qg (III.114)
_ (IT1.115
%ny Bop =9 )

Thus 1t can be chosen that

Byy = ay/eyy = aj/a,
giving Bip = b2a0
a4

11° 621 can be determined

from eqn (III.113). Hence the equivalent double-rate filter,

Again choosing a convenient value for B

if H2(z) is used to realize F(z), has the following circuit
diagram (fig III.11)
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=103~

CLOSED AT
t =nT Z

-é“ I\ ]
e

-1 CLOSED AT

5 T

t=(n+3)T

Fig III.11 An Alternative Double-Rate Digital Filter used
in Place of Fig III.9

Comparing Fig III.9, III.10 and III,11, it can be seen that by making
use of the fact that the zeros of a double-rate filter are related to
its feedback multipliers, the number of multiplying coefficients can
be reduced to four if the filter is to realize its single-rate coun-

ter part having a zero at the original.

The use of multirate digital filters to realize equivalent sin-
gle rate transfer functions necessitates more multiplications in a
sampling period and thus faster multiplication rates. Hence, any
possibility of reducung the multiplication rate as has been demons-

trated by the above example would be most welcome.

Computer Simulation Results

In order to verify that the results obtained from the state-space

analysis of a multirate digital filter (section III.5) are correct,

a computer program has been written. The program first designs a multi-
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< START }

READ IN No. OF SHIFT

SEQUENCES WITHIN A
SANPLING PERIOD;

READ INPUT SEQUERCE

READ IN COEFFICIENTS
OF EQUIVALENT
SINGLE -RATE
TRANSFER FUNCTION

CALCULATE QUTPUT
OF THE SINGLE-RATE
FILTER

VARYING

READ IN THE (N-1)
SETS OF P“’ R
CACLULATE THE

REMAINING SET OF Pi]

CALCULATE THE
NUMERATOR COEF. O;;

PRINT
ouTy

;& Bi)

ARALYSE THE MULTI-
RATE DIGITAL FILTER
WITH GIVEN INPUT
SEQUENCE

PRINT OUTPUT
SEQUENCES OF BDTH
SINGLE- RATE ANO
NMULTHFRATE FILTER

S IT
TIME -INVARIANT OR
PERIODICALLY YARYING
DESIGN
?

Fle M. 12

TIME -

INYARIANT

CALCULATE THE POLE
POSITION OF THE GIVEN
PTF,™ AND ©

FIND THE POSSIBLE SETS
OF POLES, P AND @ OF
THE NULTI-RATE FILTER

IF USED 14 A
SINGLE-RATE FASHION

CHOOSE THE SET OF

P AND § WITH THE

LARGEST VALUE
oF Isin p1

CALCULATE g;;
ARD a3
PRINT OUT Oj & Fij

l

ANALYSE THE MULTI-
RATE DIGITAL FILTER
WITH GIVEN INPUT
SEQUENCE

PRINT QUTPUT
SEQUENCES OF BOTH
SINGLE -RATE AND
MULTI-RATE FILTER

\ END J
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rate second order digital filter in the same way as described in sec-
tion IIT.10 so that it gives the same performance as a given single-
rate second order filter. Then from a given input sequence, the pro-
gram evaluates and prints out the time domain output sequences of such
a multirate digital filter. The time domain output sequence of the
equivalent single rate digital filter is also calculated, thus enabling

a comparison between the two sequences.

A flow chart of the program is shown in fig III.12.

The following examples (ExIII.4 through III.7) are taken from
the computer simulation program. In each example, a single rate digi-
tal filter and its impulse respomse is first shown inpart (a). Then
a multirate digital filter is designed in the same way as described
in section III.10 so that the performance of its output sequence is
identical to that of the given single rate filter. The circuit dia-
gram of the multirate digital filter as designed and its <th impulse
response are shown in part (b) of each example. The designed values

of the multiplying coefficients are shown on the circuit diagram.

These examples verify that the formulae developed in section III.S5
are correct and that the output of a single rate digital filter is
identical to one of the outputs of a multirate filter if the coeffi-
cients of the multirate filter are designed according to the analysis

results.
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Fig I1I.13a SINGLE-RATE DIGITAL FILTER AND IMPULSE RESPONSE
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Fig III.13b EQUIVALENT DOUBLE-RATE TIME-INVARIANT DIGITAL
FILTER AND IMPULSE RESPONSE
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I11.12 Résumé

The basic action of a multi-rate digital filter has been
described. A mathematical model of such a device has been
established using state-space analysis and has been proved to
be much more versatile than the other two existing models not
only because it gives a general formula for both periodically
varying and time-invariant cases, but also that it can be
applied to other configurations other than the direct realiz-

ation without difficulties,

Based on this model of the ideal multi-rate digital
filter, some interesting properties of the device have been
found, and the design of such a multi-rate filter discussed.
Finally, the correctness of the model was verified by a
computer simulation program, and the results shown in the

examples.



Iv.1

CHAPTER IV

QUANTIZATION ERRORS CAUSED BY ANALOGUE-TO-DIGITAL
CONVERSION IN MULTIRATE DIGITAL FILTER

‘Introduction

As mentioned in chapter I, the input signal has te be gquantized
to a finite number of bits before entering a digital filter.
Whether or not the input is considered to be quantized depends on
the situation. If the input is inherently discrete, no errotr
exists. In a great many practical cases, however, the input
signals are inherently continuous, and the analogue-to-digital
conversion is necessary before digital processing can be performed.
Thus there is a basic source of error in this conversion., TFig IV.!
shows the action of a 15~level A~D converter, with constant level

differences Eb

A M) 4

—~Y Eq

N 3
A
/ \ Fig IV.1

Linear Quantization of

A\ Luf: Analogue Signals

=X

The analogue-to-digital converter in fig IV.l effectively
quantizes the signal. Such kind of quantization which approxirates

the signal by the nearest quantization level is called rounding,

~115~
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and is the only type considered here.

It is assumed that the rounding error e(n) associated with
the samples is uniformly distributed, the probability demsity

function being as shown in fig IV.2

$ Prle)

';:iq&-—dﬁ—iq& —
Fig IV. 2
If the signal fluctuation is such that many quantization
levels can be traversed from one sample to the next, it seems
reasonable to expect that the error e(n) at any sampling time
will be statistically uncorrelated to e(m), the error at any
other sampling time. It is easy to give contrary examples (for

instance, when the signal is constant); however, such signals

are of extremely narrow bandwidth, and in practice {3}, all signals

are likely to have very much richer frequency contents. There~
fore this assumption holds for nearly all signals likely to be

encountered in practice.

‘Variance of A/D Conversion Noise

Given quantization errors, each with probability density
function shown in fig IV.2, it is apparent that the effect is
that of noise superimposed on the original analogue signal. The
input can thus be expressed as

u'tn) = u(n) + e(n)
where u(n) can be thought of as a noiseless input and e(n) is

the added noise.
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Let Mo and 02 be the mean and variance respectively of the
A/D conversion noise. From fig IV.2, it can be seen that My = 0.

Hence, the variance is given by

[0

2 2
g, = —!(e - ue) .Pr(e) de
Ea’22
= e .1 de
E
-]Ealzr 3 %4
- e
F 3
° [ €efy
2 2
l1.e oe = Eo/l2 (av.2)

IV.3 Errors in the Output of 'a Single-Rate Digital Filter Caused

by A/D Conversion

The variance in the output signal, y(n), of a single-rate
digital filter may be computed by using linear-system noise theory
if all other errors in the filter are ignored. Since the signal ’
and noise are independent, one can proceed with the noise compu-
tation while ignoring the signal. Let the filter be defined by
the transfer function G(z) and weighting function g(n). Then
the output ye(n), when the input consists of the noise samples

e(n), can be expressed by the convolutional sum {22}

n n

Yo(n) = E g(i) e(n-z) = E gn—) e(z) (IV.3)
{=o0 =0

It has been assumed that the noise e(n) began at n = 0

and was zero before; also the output ye(n) was assumed to be

zero before being excited by the input.
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The autocorrelation function of ye(k) is defined as

M

. 1
¢yey£n) = Lim —— gzoye(k) ye(k+n)
- IV.4
= B[y, (k) y, (k+n)) (1v.4)

where E(.) denotes the expected value and ye(n) is assumed to be

ergodic. Substituting this in eqn (IV.3), one obtains

k fdn
é (n) = E[}g(ie(k=i)y g(j)e(km=j) ]
yeye =0 ,}'=°

=3 S gtig(s) Elelh-tdelin=3)]
=0 J=o0

[ foary .
=ZE(i)g(j) Ele(le(lin+i~)]  (IV.5)
T

4=0

where I = k—Z. However, e(l) is uncorrelated to e(l+n+i-j).
Hence
E[e?(1)] for n+i-j=0

Ele(l)e(lm+i-j)] =
0 otherwise

The variance of ye(k) is given by the autocorrelation function
~ when n = 0, thus,
g2 = ¢ {0)
ye Yo¥,

% k

= 2 : g(i)g(j) Ele(l)e(l+i-3)]

=z:;2 ('L:,;OE[eZ(Z)] (IV.6)

. . {zo .
since Z-j=0 for E[etl)ell+jfto exist

Hence the variance of the output ye(k) is given by

2

ye € fo
_'_f_igz(i) (IV.7)
1 -

a

1
Q
N
Q

ro
~~
.
—
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Notice that O;e in eqn (IV.7) is, in a sense, a time-dependent
result, since it is a function of k, the number of iterationms.
Since gz(i) must be positive, G;e must increase with k., This is
reasonable, since one could not expect a large variance in the
output immediately after the noise is applied. Physically, the
variance of the output builds up and reaches an asymptote. A
steady state is always reached if the filter is asymptotically
stable. Given that a steady state is reached, it is possible to
derive.{22}, from eqn (IV.7) another formula from which numerical

results are usually more easily computed, i.e.

g2(i) = -i_‘lr—j-fG(z)G(-;-) 2} dz (IV.8)
1=0
Comparing eqn (IV.7) and (IV.8), it is observed that the
right hand side of eqn (IV.8) offers an alternative formula for
computing the output-noise variance for the steady-state conditionm,
i.e., only when % goes to infinity. This expression is often

easier to apply to find out the variance of specific filters.

"State-Space Approach to Derive the Errors in the Output of a

Single-Rate Digital Filter Caused by A/D Conversion

Consider a digital filter represented by the following

dynamic equations:-

x (n+1) A x(n) +Bu(n) (IV.9)

C x(n) * pu(n)

y(n)

It has been shown in chapter II that the output y(n) of such a

digital filter is given by

-1

y(n) = CZ:K'MBu(i) + Du(n) (Iv.10)

=0
However, if the input to the filter is a random sequence e(7n)

caused by the quantization of the continuous signal u(t¢), then

the outpyt error ye(n) is given by
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y,(n)= CZA"J-'Be(i) + De(n) (IV.11)

{=0

Now the covariance matrix of a random vector v(n) is defined as

{41}~

cov [w(m)] £ Etvin) - E[wtm)]H Ttn) - B[ o'(n)]1)

(Iv.12)
where v denotes the transposed of the vector v. The above

definition of covariance matrix can be applied to the case of the

scalar quantity Y, (n) where y (n) is, from eqn (IV.11),

n-1
y;(n) = E e (2) B [A] PG T (D (IV.13)
7 =0
where obviously yTénE Y, (n)
and e¥(Z) = e(t)
pT =D

Applying the definition of covariance matrix to the scalar y (n),
Ye

then it can be written that

cov [y,m)] = E[{ye(n)—E[ye(n)]}{y;(n)—E[y;(n)](g' "

However, since e(7n) has zero mean, the output ye(n) has zero

mean, hence

u

cov ye(n)] E[ye(n)y;(n)]

n-i

e c A‘“'he(z:)we(n)}{i}*(j)ﬁ@)""'"c’-+e*(n)o*}]

(= J=0
n-t n-y
= [02 A 'Be(1)( )8 (& \H+e }:a “Be ()8 ()0}
+=0 J—° L o
+Hpen) ze(J)B @t T}*‘De (n)e'(n)D]
17 =0
n-{ n-¢ . - -
{czz A" 'BE[e(i)d(j)]BA) 'c"}-
= OJ—O

n-f . .
+{c A" B E[e(2)én]) _D*}

+{D'§:E eln)é(j)] B(AT)"J }
J=o

+ p2 E[e(n)eT(n)] (IV.15)
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But e(Z) is uncorrelated to e(j) unless © = j, i.e,

Eg/ 12 for i =J'
Ele(i)e(7)] =

otherwise,

Hence eqn (IV.15) can be simplified to

. n=i neiet Ez T neiet EZ
Ely (my,m)] =c) A B ]2 B (a) C+D2( )

A=0 12
i.e. the variance of ye(n) is given by
EZ o |

T n-C-t

2 - < o 2

O = 12 CE [A 'B B () c]+D (1V.16)
{zo

Although eqn (IV.16) can be evaluated readily using a digital

computer, it can be further simplified if the digital filter

has only a single input and a single output. For a single-input

single-output system,

n-i-t T Net-1

B@A) '€ =cA B (IV,17)

Thus eqn (IV.16) can be also be written in the following form

E2 n-t 2
2 =9 2: nei-t 2 1V, 18
(=0 2
Eqn (IV.18) yet offers another expression for evaluating o .

ye
Comparing eqn (IV.18) to eqn (IV.7), it can be seen that,

Z g2(¢) = (c A" )2+ D2 | (IV.19)

4t =0
The steady-state error for a digital filter due to A/D

conversion is thus

znl

Uée L'Lm _T—.;- A" “"B) + D?

steady
state

E? vV
= "o 1 G(z)G(z ') dz (1Iv.20)

12 2mg F]
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" Verification of the State Space Derivation of the Errors in the

Eqn (IV.19) offers an alternative way of evaluating igg(i),
and is generally more convenient to use. This is because”foor a
given configuration of the digital filter, the matrices A, B, C,
and D are easily determined whereas it is not always easy to find

g(Z), the impulse response of the filter.

To compute the expression given in eqn (IV.19), it is
generally much faster, especially if n is large, to determine
the eigenvalues and the eigenvector matrix of A first, i.e.

making use of the equation

An = pA }?"I . (Iv,21)
where A = A, O » A, and X being the eigenvalues of A
0 A

2

and P = [Rl RZ‘| » Rjand R, being the eigenvectors of A

corresponding to A and X,
Hence eqn (IV.19) can be written as

n-{
g%(z) = Bc PATC P B)2 + D2 (1v.22)
=0
A computer program has been written first to determine L5 and
P, and then to evaluate the expression in eqn (IV.22). Many
different sets of state matrices A, B, €, D, have been used to
compute eqn (IV.22) for large values of n, Comparing these
values with those obtained by evaluating the integral in eqm

(IV.8), it has been found that they are in perfect agreement,
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The following is an example verifying that the expression

in eqn (IV.19) is correct:-

Example IV.1

=

un)

> y'in)

Fig IV.3 A Digital Filter with an Input Quantizer

Fig IV.3 shows a digital filter where the input sequence u(n) is
quantized to ¥” (n). Find the steady state variance of the output
error caused by the quantization of the input signal by (a) the
state~space method (b) contour integrating over the z-plane if

the quantization step at the input is EO.

a) The state—space approach:—

Assuming that the filter is ideal, i.e. there is no round-
off error inside the filter apart from the quantization of the

input signal. The state matrices for the filter are:-

A =| 0 1 ? B

[}
(=]

-0.95 1.85 1

G
1

[-0.95 1.85] , D

]
—
—
—

The eigenvalues of A, as computed by the program, are

Jo
-76

Al
Ao

re

re
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where 5 =/ 0,95

8 = 18.37 deg

The eigenvector matrix of Ais given by

P =[0.9737-j0. 3234 O.9737+j0.323l;]
1 1

and the inverse of the eigenvector matrix is

~f .
P =[Jl.546198| 0.5-,71.505086]
-71.5461981  0.5+71.505086

The value of the expression in eqn (IV.19) is then evaluated fecr

n = 250 where (|A1|)n is negligible. The result is

2 n-!
2 _ oy -t
‘ves =) CPA'r B+ D2 = 102.63158E2

ey

im0 S

{1v.23)
b) By contour integration over the z-plane:-

The transfer function of the filter is

52
- 1.85z + 0,95

22

G(z) = =y = - s
2 ( z—reJe ) (z—zr'e_"7 e)

_|) _

Hence Gz

1/r2
v —
(z- %-ege)(z— ;-eJe)

v0.95
18.37 deg

where, as given above,

]
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Thus, we have

Q
N
n

E 2/12
o -1, dz
e _—ZTJ,.__ i G(z)G(z ) _?.

76

(z—reJe)(z—re—Je)(z¥ %eJ

E§/12 f z/pn?
= cnemesenet——y———
ng

) (a= =2
2
EZ/12 3 O . |

2 (pe Ay (079,70 go_ 1,78 1,48 _,,~79

re(- ) -e ") L (re' - 22 V7)) (e re U)

. 1412 Eg/lz
i.e. 026 =
¥ 1-r2 | p%2r2c0520+1

Substituting the values of r and 6, then

E2
2 o)
o e 102.6315789 x =

which agrees completely with the results shown in eqn (IV.23),

using the state-space formula,

" Errors in the Output of a Multirate Digital Filter Caused by

‘A/D Conversion

When the quantization noise is passed through a multirate
digital filter whose coefficients vary periodically, one would
expect the variance of the output error to be weighted by the

respective weighting sequence, i.e.
EZ n

2 __o© z : 2 -1 N
oye 3 hi(k+ 5 ) (v, 245
K=o

dz
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However, to show this relationship rigorously using lincar-

system noise theory in the case of a multirate digital fil?er would
be rather complicated since the weighting sequence ki(n + k-g—i)
is varying periodically. Elaborate theories have been developed
for solving problems of linear time-varying system {19}{43}{50}
"{721{73}. However, in this case, the state-space approach
illustrated in section IV.4 shows great simplicity and renders the

problem readily solvable.

A multirate digital filter realized in the direct confi-
guration with periodically varying coefficients can, as shown in

section III.5, be represented by the following dynamic equations

X(n+l) = A, _X(n) + B,u(n)

y’[:(n'/' :-L-;Vl- )= Cmix(n) + l?‘i_u(n) (IV.?.S)

where

m N

A = A An-l K] A.z A,
Bm = AN A“" cs e Al Bl

C,,M'= C‘; A-

-1

A(-z s e A1 A,

In view of the similarity between eqas (IV.25) and (IV,9),
the state space approach can be applied to a multirate digictal
filter in exactly the same way as illustrated in section IV.4,
Thus the variance of the errors in the {th output sequence of u
multirate digital filter caused by A/D conversion of the input

is given by
2 n-t 2

E
2 =9 2 : nokel (1V.26)
fo} y = eememean . 2
yel 12 3 (Cm. A, Bm) + Dm.s

k=0
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Eqn (IV.26) is very similar to eqn (IV.18). Hence the ith

weighting sequence, hi(k + & 5 1 ), of the multirate digital

filter has the following relatiomship,

w

i
E hg(k+?—;,1- = E (C.A. 'B)? + D2 (Iv.27)
k=0

K=o

and for n + =, in view of eqn (IV.20), the following expression

can be written,

ne-f
217 Z 12 2 :E:: eem oo .
n -+ o §-9
E2 = . E?
2 -9 2 =1, _ 0 1 1,dz
Yyei = T2 2 :hi(k+ 7 = T3 [an ngi(z)Hi(z z

k=0 (IV.29)

If the Zth transfer function, H;(z), of a multirate digital
filter is designed to give the same performance as a single-rate
filter, G(2), the variance of the output error in both filters

due to A/D conversion at the input should be equal, i.e.

2 = 2
Uyei Gye (Iv.30)
This is apparent when eqn (IV.29) is compared with eqn (IV.20).
Intuitively, this should be obvious since the quantized input
can be represented by the ideal input sequence plus a sequence of

added noise, i.e.

u'tm) = un) + e(n) (Iv,. 31

If such a sequence is passed through two systems having the
same performance, the outputs of the two systems should be identigal,

and therefore the output errors should be the same, i.e.

y'(n) =y + ye(n) (1v,32)
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where y(n) corresponds to the output of the system due to u(n) and
ye(n) to the output due to e(n).

Accuracy of the Statistical Estimation of the Output Errors

“‘due to A/D Conversion

A program has been written to test the accuracy of the
statistical estimation of the output errors due to A/D conversion,
The simulation has been carried out for both the single-rate and
multi-rate filters. Fig IV.4 shows a flow chart of the simu-
lation program. An example is given later to show that the

statistical estimation of the output error is reasonably accurate.

& &

Yy

GENERATE A PSEUDO T D T il |THE STEADY-STATE
RANDOM INPUT A SINGLE-RATE FILTER | [OUTPUT ERROR
SEQUENCE VARIANCE OF THE
{ MULTIRATE FILTER
1 EVALUATED
THE STEADY-STATE OUT-
THE INPUT SEQUENCE|  [PUT ERROR VARIANCE OF I
IS ROUNDED OFF AND|  [THE SINGLE-RATE FILTER| |[THE SIATISTICAL
THEERROR IS EVAL- | ~ [EVALuATED ~ - ESTIMATION OF
UATED BOTH THE SINGLE-
T RATE AND MULTI-
THE IDEAL INPUT 1S RATE FILTER
T TDEAL TPUT I3 PASSED THROUGH A COMPUTED

PASSED THROUGH A | MULTI-RATE FILTER
SINGLE-RATE FILTER I

THE QUANTIZED INPUT
IS PASSED THROUGH
THE MULTI-RATE FILTER

&

Fig IV,4 Flow-Chart of the Simulation Program

 §

END
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Example IV.2 ' ‘ 0513

Ll'(u/

—

-—q‘y'th'ﬁ-)
Uin) f

-0-§7%7

(a) Single-rate Filter (b) Equivalent Double-
Fig IV.5 rate Filter

Fig IV.5 (a) shows a single-rate digital filter which has
a transfer function given by
22
22 - 1.85z + 0.95
Fig IV.5 (b) shows a time-invariant double-rate digital

G(z) =

filter the coefficients of which are designed such that the
second output sequence, y2(n + %), is identical to the output

y(n) of the single-rate filter.

Now a "pseudo-random” sequence u#(n), having 350 samples,
is quantized to 2 places after decimal and then passed into
both the single—rate and double-rate filters separately. The
output of both filters are observed and are found to be identical

as expected, i.e. y'(n) = y'(n+s)

Now the same '"pseudo-random” input sequence without being
quantized is passed through either the single-rate or the
double-rate filter and the output sequence Yy (n) recorded. The
difference between the last 150 samples of both y(n) and
yé(n + %) are taken and the variance (which represents with

sufficient accuracy the steady state error variance) calculated,

Let ye(n) represents the difference between yé(n+%) and
y(n). Then the variance of ye(n) when steady state is reached

is, from the above simulation experiment, found to be
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50
2 - ! i . ]2
o = (1+5) - y(z)
ye (150-1) . [92 y(i)]
steady L=zod
state = 0.000792 (1Iv.33)

The factor (150-1) is taken although there are 150 sample. This

is because an unbiased estimate {35}{61} is desired.

This result of 02
ye
steady
state

with the statistical estimation of the output error due to the

shown in eqn (IV.33) is compared

A/D conversion:-

The estimated error can be evaluated in two ways, firstly by
contour integral as shown in example IV.1, and secondly by
evaluating the state-—space expression for a double-rate (or its

equivalent single-rate) digital filter as shown in eqn (IV.26)

a) Contour Integral Approach

As shown in example IV.1!, the estimated output error due tc
A/D conversion has a variance given by
E2
0
12

g2 = 102.6315789 x
Yye

where in this case Eo = 0,01, Hence we have

(0.01)?

0fe = 102.6315789 x =

= 0.000855 (IV.34)

b) Evaluating the State-Space Expression
From eqn (IV.26) the estimated error in the output is

o n-i
2 _ nek-i [y
Uyerl:_ T Ch\i An BW\ + Dml.'
k=0

where n = 350 { = 5
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and for this time-invariant double-rate filter

A.=T0 ] 2
-0.9747 1.9494

B, = [.o 1 0
-0.9747 1.9492| |1

C..= [-(0.9747%0.513)  (1.9492x0.513)]| 1
~0.9747 1.9492

D= [-(0.9747x0.513)  (1.9492x0.513)] [o]
I

Evaluating the expression with these values, it has been found

that 2
2 . . E,
g° = 102.63156
ye 12
= 0.000855 (1V. 35)

which agrees perfectly with the result evaluated by contour

integration shown in eqn (IV.34) as has been expected,

Comparing the statistically estimated result (eqn (IV.35)) with
that obtained from computer simulation (eqn (IV.33)), it could
be seen that they are in reasonable agreement., The possible
source of this small discrepancy is that the variance of the in~
put error due to A/D conversion is equal to Eﬁ/lz only if an

infinite number of samples are taken,

‘RE8sumé

The error caused by the analogue-to-digital conversion of

the signal before entering the digital filter has been introduced
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and its properties digcussed. The error in the output of a
single-rate digital filter due to such A/D conversion is first
analysed by linear system noise theory, and then analysed, from

a different point of view, using the state-space method, The
validity of the state—space approach has been verified by actually
evaluating the expression and comparing it with the result

obtained by contour integration,

The main advantage of the state-space approach is that it
can be applied to the case of periodically varying multirate
digital filter without any further eiaboration or modification
of the theory. Although the result obtained for the error in
the output of a multi-rate digital filter caused by A/D conversion
using state-space approach is merely a confirmation of what is
expected, the method demonstrates the usefulness of state-space

analysis,

Finally, the statistically estimated output errors due to
A/D conversion in both single-rate and multirate filters have
been compared to those obtained from computer simulations of
such filters. While the output errors of both single-rate and
double-rate filters are identical if the filters are designed ¢
give same outputs, the estimated output error and the experimental

output error are in close agreement,



CHAPTER V

POLE SENSITIVITY OF A MULTIRATE DIGITAL FILTER
TO THE QUANTIZATION OF THE COEFFICIENTS

As a result of the finite word length used in a digital
filter, each coefficient is replaced by its Z-bit representation,
That is, if fixed-point arithmetic is used, the coefficient a,
is replaced by {bk]z which equals (ak + Aak),with Aak bounded in
absolute value by 2 °. Similarly, each bk is replaced by [}k ]Z
which is (bk + Abk)o Therefore, the filter characteristics are

changed. This problem can be approached in a number of ways.

Firstly, one can simply compute the frequency response of tha
actual filter with Z~bit rounded coefficients, that is, by using

the actual transfer function

& -k
kzw la,];.2

- -k
l+%;[bdz.z

The result can then be compared with the ideal response for the

V.1

EH(z)]Z =

original design, For a certain bandstop filter, calculations

{38} show that in addition to a greatly increased transition-

region width between stop and passbands, the minimum inband
rejection deteriorates from.75 dB to less than 50 dB when the

wordlength is reduced from 40 bits ta 12 bits,

Secondly, if a single number as a measure of the change is

desired, an integrated squared deviation of the frequency response

-133-
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may be used such as

1 24
-z—m-—flﬂ(z) -[ac2)], | ;- (vV.2)

where H(z) is the ideal transfer function and [H(z)]Z is the
transfer function where each coefficient is replaced by its I-bit
approximation., By regarding the filter coefficient errors Aak

and Abk as independent random variables, the statistical average
of the integrated squared frequency response error as defined by
eqn (V.2) has been calculated {38}. However, since the error

in each coefficient is fixed throughout the operation of the
filter, the validity of the assumption of random coefficient error

can be doubted when the order of the filter is low,

Finally, one can also calculate the movements of the poles and
zeros of the transfer function due to coefficient rounding and
then apply network sensitivity theory to study the changes in the
filter response {30}{46}. From these movements, the change in the
overall filter response can be studied. This approach has been
adopted here in this chapter because of its simplicity and because

of the deterministic nature of coefficient round-off errors.

The infinitesimal pole sensitivity is first discussed from
the point of view of state space. A comparison of the pole sensitiv~
ities of both the time—invariant and periodically varying multi-
rate filter is then made. The idea of "senmsitivity ellipse" is
then introduced which is established as a criterion for comparing
pole sensitivities of second order single rate and time-invariant
multirate digital filters. The theoretical amnalyses are then

verified by computer simulations.
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V.2 State Space Representation and Infinitesimal Eigenvalue Sensitivity

The dynamic equations of a digital filter, as shown in

chapter II, are given by:-

X(n+1) = Ax(n) + Bu(n) v.3)

y(n) = €xX(n) + Duln)
and the transfer function of the filter is

C (z I-A')'IB + D

- oAdj(zx-A)
CmB + D (V.4)

Hence the poles of the transfer function are given by the roots of

H(z)

the characteristic equation

det(zx - A) =0 v.5)

that is, the poles of the transfer function are the eigenvalues
of the state matrix A, Thus the pole sensitivity of H(z) is

simply the sensitivity of the eigenvalues of A.

Eigenvalue sensitivity is defined as the expected change
in the location of an eigenvalue of A for a change in a parameter
of A. Due to the rounding of the coefficients in a digital
filter, the parameter of Avaries. An infinitesimal approximation

to this sensitivity, valid for small parameter inaccuracies, is

given by
AX A
k k
_— = (v.6)
M., 94..
J J

vhere A'.J. is a parameter of A and A is the rth eigenvalue of A

satisfying the characteristic equation

FQs 4;5) = detOI = A) =0 v.7)
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This characteristic equation can be written in other forms such as

1]

M M
o =Tl a-a = s 3p, eats (V.8
= (=1

where of course, A, and b,are functions of 4.,
- "k A i

For any form of the state matrix A, the infinitesimal sensitiv—

ity of the kP eigenvalue to a parameter Aij of Ais given by

A df/0A . .,
“Ik = LJ (v.9)

J of/ax A=A

k
Using equation (V.8), this becomes
M
2: °by w1
A L] *

axk } Py 3 23 K (V. 10)
o4. . M *

1d T[- ()\k -

m=/
LEY
which is an estimate of the change in the kth eigenvalue due to

a change in A i° The movement of the Kth eigenvalue is thus

M
bez AM"Z
M aA o4 17 k
=1 g=i ]_I-
= mtk

It should be noted that aA/’aA =0 if A is unity or zero

because these parameters can be reallzed exactly with digital

hardware,

If the digital filter is realized in“the direct configurationm,

the state matrix A will be of the companion form, i.e.
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Blj are the coefficients at nT, o
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A=f0 1 0o ... 0] (vV.12)

0 0 0 .o 1
-b, -h,., -} -}

| M-2 e (P

and the characteristic equation is then,

FOO =det(ar-a) =", bZAM—Z * oo+ b A+ D, =0 (V.13)
If the digital filter has real coefficients, then the parametex
of A are real, because the parameters of A are simply the co~
efficients of the digital filter., Since our attention is focused
on second order digital filters realized in the direct configuratior,
a consideration on the eigenvalue sensitivity of the second ordex

companion matrix form will be sufficient.

‘Eigenvalue Sensitivity of a Multirate Digital Filter with

Periodicdlly Vdrying 'Coefficients

It has been shown in chapter III that if a second order digital
filter realized in the direct configuration has N shift sequences
during each sampling interval while its coefficients are allowed

to take on different values every 7/N seconds, so that d]j and

. and B,. are the coefficients

27 27 -1

and Bij are the coefficients at (n + ——=~=}T,
N

at (m + 1/N) T and dij

then its state equation is given by,

l—xl(rﬁl)J= A,.A, .. .4A, [a, "xl(n) + Bu(n) (V.14)
_xz(nf-l) Zqo(n)

where A 0 1 B, = [0
-p(z —551 [l]

i.e. its state matrix Anis given by

Am= AN. AN—' - a0 A’ (V- 15)
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It is the aim of this section to find the sensitivity of the
eigenvalues of A,,, and to find the condition under which such
eigenvalue sensitivity is minimum., However since a completely
general approach is rather complicated, it seems sensible to start

with the case of a double-rate digital filter, i.e. when N = 2,

Consider a double-rate digital filter. If such a filter is
used to realize a fixed second order single-rate filter whose cstate

matrix isAS, where

As=[0 l] (V.16)
by b,

then the eigenvalues of A and (A, A)) are identical, i.e.

2
2%+ (By, + Byy = B By )2 + B, B, = z2+b z+b,  (V.17)

Equating the coefficients in eqn (V.17), one obtains

B b

12 % Bog T BygBp; 7 By (v.18)

812 822= b2 (Vv.19)
Equations (V.18) and (V.19) represent the constraints on the
choices °fj311’5312’ 32] and 8220 If only complex eigenvalues of

A, are considered and if A and N are the eigenvalues of Ay, then

A = reae
1t = pai® (v.20)
where r = /E; = ¢812822 (v.21)

6 = tan | { /l‘_b;'_b?/('bz)}

-1
tan {./48,2822-(8,2»»32,—8,,e,,)z (BA-BaB} (5 50y

and for complex poles b% < 4b2 and b2 is positive,
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Now for small changes of the coefficients 81], 812, 82] and

Bogs

2 2
z ::E : dr
Ar = —_—— - AB.. (v.23)

=1 g=1
, 2 2
2 : E : 90
AB = —_— . . .
1 =1 g=1 J
Since Bll’ 812, 821 and 822 can take on any values provided the

constraints of eqn (V.18) and (V.19) are satisfied, the general
values of Asij will not be known; thus Asij can+be regarded as
random variables with zero mean and bounded by - EE/Z where EO
is the quantization step for the coefficients. Assuming the
quantization steps are equal for all coefficients, then the

variance of Asij is given by (section IV.2)

N

Ep

var(ABij) == (v.25)

N

Now, the value aryégjis independent of the random variable

AB .., and Asij are independent of each other, thus the variance

or
var —_— . A B..
(12/: *%ig "'7)

2
- z : or \
= ) (6 ) var(ABiJ.)

Bzg

2
E, dr \? (V.26)
12 aBij

<yJ

14
of Ar is given by

varQr )

Similarly,
2

E A A 2
var(80) = —2 E (—3—89) (V.27)
g

)
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It is desired to find the condition under which Var @»)
and Var (As) arz at their relative minima., To do this it seems

convenient to look at the two quantities separately,

a) Consideration of Var (An):-

Now since

r = VB, By

dr or :
then Y-l 0 3%, = VB2 /Bya

-] or fromre—

OB: =0 -68—; = §VBy /Baa
Hence the variance of Ar is given by

2 B B
Var (an) = 20 (822 + B'Z) (v.28)
12 22

To find the condition for minimum Var (Ar), the stationary points

are first found.

2 E5 (B (v.29)
=—|var(Ar)| = +
381 1= < 62 8,

Equating f%—[var(Ar)] to be zero for stationary points, then
12

Bi2a = By (V.30)

(The case when 812 = -822 can be ignored since for complex

eigenvalues of Ag, B >0). The same condition that 812 =

]2'822
822 for stationary points can be arrived at if Var (Ar) is

differentiated with respect to 822.

To test whether the stationary points are relative minima
]

the second derivatives are talculated {34}';
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32 E? )
= beron) - (57
287, 812
2 2
0 E; f28
= [var(®r)] = —o—-[ 222 » (v.31)
aB%z 48 822
d?2 -5 1 1
s [var(yr)] = —¢ +
aBlzb Bn [ 4% B%z B%Z
/
At Biy = By

32 . ‘F $ az
{—ﬁ_é_b - OR, v r(Ar)] P,,=P,_, {b—F—;[var @an)] . aP’:IVar(Ar)]}

= (fé)z {( ; + 1 )2 - 4By Baa ] | lz:Pn
B12 32 B?zsgz
) '_4 _ 4
(5 5

B
B12=Bs2o
]= 0 (V.32)
2

Hence further investigation is needed to understand the nature
of the stationary points. To carry out the investigation, a

.transformation of axis on the 812—- 822 plane is performed.

Let the axes of reference on the 812—- 822 plane be trans-

formed to the lines

Br2 = Byy
(v.33)

Bi2 =—B22

and let these two lines of new reference axes be denoted by 81’2

352. Then, the following equations can be written (fig V.1),
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Pl; cosY - B,s8in?

(V.3%)

B = By, SInT + p;z cos T
P v
9_'\ E;) Q\"’
N i
AN /' .):/W
X \. ’.'// t Qe

\'\ ’.'%\" / X+

. S : '!

N4

NP
] o

e B
70N
7 N\
7/ \,
/ N\
/ N,
. \.
/’/ N
Fig. V.1 Rotation of Reference Axes on the 812“822 Plane
Now y = —%—, sin y = cosy = 1/v2

Hence substituting eqn (V.34) into (V.28), one obtains

2 ‘2 .2
var(Ar) = %{M}
B~ B,

and differentiating with respect to 8;2 and 852

> varwan _ E Xm.’:-a;h.za‘.z - B+ B 20,
2 f, 24 AT A
_ & { - 28, B/ }
B LS
o varem _ i { 2P, B, }
o B, 2ol - gy

}

(v.35)

(V.36)

(V.37



-143-

Equating both ecuations (V.36) and (V.37) to zero for stationary
points, then

B.P, = O

i.e. sz = 0 or 852 = 0. But for 8;2 = 0, then Var (Ar) < 0
which contradicts the definition of variance, hence it can be

concluded that stationary points occur only when 852 = 0.

To study the nature of these stationary points, the second

derivatives of Var (Ar) with respect to 8;2 and 852 are found i.e.

> vmm! B2 [ nfy B tpr-AY) -8B, B, (A8,
2 B | ' (8, - BY"
-éziz=0 3;1-:0
= 0 | | : (v.33)
__Q_E_TL(_A_I')} = _E_"z. 2 &::2 (pu'zz - Pu ) + 8 6 Q;Z(B - &) }
- ‘2 ‘2 \4
A CPa - B )
p!lso 5‘:2= Q
- E. 'i-z’ > 0 (V. 39)
12 B':

Eqns (V.36) and (V.38) show that the gradient of Var (Ar) at
852 = 0 is constantly zero, i.e. the value of Var (Ar) is a
constant along the line 852 = 0. However eqns (V.37) and (V.39)
show that at 852 = o the value of Var (Ar) is at its minimum

with respect to the change of g7,. In fact the shape of the

function Var (Ar) is of the form as shown in fig (V.2)
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var(az
b

It can be seen from the above argument and from fig (V.2)
that Var (Ar) is at its relative minimum when Big = 822. Thus
for a double-rate digital filter, in general, the change in the

moduli of the resultant poles is a minimum when 812 = 822.
b) Consideration of Var (A8):-

Eqn (V.22) gives the expression for 6 in terms of Bll’ 812,

32] and 322, i.e.
8 = tan {/48.2822- (B,,*+ 8,- 8, B,,)z/ (8,8,- B.- B,,)}
(v.40)
Differentiating with respect to Bij’ we have
96
(381) = 822' / {“Buan (B,,"‘B” Bnle) }
(V.41a)

( )— 62/ |48, 8, (8,:+8,.7Bu B) 2}
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ze_)z N R L

& 481% 48, 8,,~(B,*B,,~B, B,,)z
90 2 1 <-812+822+Bn 824)2
aBz 48222 4B|2821-<B:2+Bn-8u le)z

(V.41b)

2

Hence substituting eqns (V.41) into eqn (V.27), we have

B, )?

H 24

E2 [4p28282+4R28282+82,(B,=B,,%6, 8, ) 2+B2 (-8, +B, +B

var (A0) = TV

48282 (48,8, (8,+8,8,8,)?]

' (V.42)
However, it is known that Var (Ar) is a minimum for 812 = 822,
if this condition is kept in the consideration of Var (A§), then
eqn (V.42) can be written as:-

2 2a2 2p2 2p2
var(Ag) = Eo ZBlan + 28,,8“ + BB,

12

(v.43)

2 2 - - 2
ZBU [48" (281: Bh 823) ]
Applying the constraints of eqns (V.18) and (V.19), such that

28!2 = BBz = bl - (V.44)
BZ = b2 (V.45)
then,
E2  [2b,p2 + 2b,pZ + p2p2
vare) = —3 el gn _rz (V.46)

2by[tp, - 2]
But from eqns(V.44) and (V.45),

B B

h 24

iZ»’EZ - b1

i.e. B, = /B, (V.47)

where K =t2/by - by | (V.48)
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Hence eqn (V.4¢) simplifies to,

2
2 2, K 2
B, | 2b,(Bi+ 32) + K (V.49)
12 _1.2
2b2(4b2 b1 )

var(ag) =

Differentiating with respect to BII and equating to zero for
stationary points, we have

E2
d var(48) _ "o 2 6 -5 =0
AT

i.e. for stationary points,

B, = VK (V.50)

and since Biy is real, the negative sign before 2/52 in eqn (V.48)
can be ignored. Substituting eqn (V.50) into eqn (V.47), we have
the final condition for stationary points in Var (A8) as

By = By = VK = £V2/5, - b, (v.51)

It should be noticed that the value (2#32 - b1) > 0 for complex

poles. Evaluating the second derivative to investigate the

nature of the stationary points, it is found that

2 |
a2 var@ae) | _ Eo 2 (1 . 3}<2>',= £2
d 8} H (4b2_b%) B,

8

>0
12 _132
(4b2 bJ)

B=+K B+lK

(v.52)
= 82l are relative minima of
In fact, the shape of the curve when Var (A8) is
plotted against B11 is shown in fig (V.3),

Thus the stationary points at B
Var (A8).
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AVOr(49)

1
[
1
]
1
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Pﬂ’Pzn’ I‘J [5, - b Pui%,-‘ﬁﬁ

Fig V.3 The Points of Minimum Values of var(A8) with Respect
to By

From the above considerations, it can be concluded that, in
general, for a double-rate second order digital filter, a time-
invariant realization has the least sensitive poles. However, the
above considerations are based on the fact that ABij are unknown
random variables bounded by z Eb/Z. If it can be chosen that two
of the Asij are zero, the resultant double-rate filter with period-
ically varying coefficients may have less sensitive poles than the

time-invariant filter.

A complete and rigorous generalisation of the above theory
is complicated‘and difficult (see {11}). However, judging from
the similarity in the expressions of v and 6 for ¥ > 2, a reason-
able conjecture can be made that a géneral multi-rate digital
filter would have the least pole sensitivity if it is time-
invariant. TFurthermore, extensive computer simulation seems to
confirm such a conjecture. The following section consists of

some of the examples extracted from the simulation.
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V.4 Comparison of ole Sensitivities between Time-Invariant and

Periodically Varying Multi-rate Digital Filters

The considerations in the previous section indicate that the
eigenvalue sensitivity of a general multi-rate digital filter is
least when the filter is time-invariant. A computer program is
written to simulate the time-invariant and periodically varying
multi-rate filters so that the effects of quantization of the filter

coefficients can be observed and compared.

According to a given transfer function, the program first
designs two multi-rate digital filters (both having the same rate,
i.e. equal N), one having fixed coefficients and the other having
periodically varying coefficients. Both filters are designed to
give the same performance as required by the given transfer
function. Then the coefficients of these filters so designed are
rounded-off to the same finite accuracy. The outputs of these
filters with quantized coefficients are then plotted on the same
diagram with the outputs of the ideal filters. The discrepancies
between the outputs of the filter with quantized coefficients and

that of the ideal filters are examined.

It has been observed that, in general, the discrepancy is
larger in the case of periodically varying multi-rate filter than
in the case of time-invariant multi-rate filter. However, if,
in particular, the coefficients of the periodically varying filter
are designed Such that some of its coefficients present no
quantization error, then, in that case, the discrepancy between
the outputs of the periodically varying multi-rate filter and

that of the ideal filter may be lower.
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The following are a few examples taken from the simulation.
These results, in general, support the analysis developed in

section V.3.
Example V.1

To design two triple-rate digital filters, one with fixed
coefficients the other with periodically varying coefficients, so
that each will have an ideal L.P. characteristic according to :the
following transfer function

0.27996 (V.53)

1 - 1.8355179z ~ + 0.8464z

Each of these two triple-rate filters are to have coefficients
rounded off to two places after decimal, (decimal arithmetic is

used throughout), and their performances compared.

The triple-rate filter designs are shown in the following
diagrams (fig V.4(a) and (b)). a s B; and -8, are the ideal
coefficients while [a]) [_Bl] and [-Bé] are the coefficients
rounded-off to two places after decimal. Similarly, Az ps _bll’
bigs “Bgys hogs by hgy and [agils [Pyl [Dyp]s [Byys
|}bzé], [;bsz]’ [—bsz] are respectively the ideal and quantized
coefficients of the triple-rate digital filter with periodically
varying coefficients. The third output sequence (i.e. y(n+ 2/3))
of each of the triple-rate filter is used to realize eqm (V.53)
because, as mentioned in section III.10, less multipliers are

used.
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5 —>—
CLOSK AT CLosk AT

t=nT t=nT

(a) Time-Tavariant Triple=-Rate
Digital Filter

Fig V.4

'{5;3

(b) Triple-Rate Digital Filter
with Periodically Varying

Coefficients

The design gives the following values for the coefficients.

Time invariant filter:-

@, == 3.7226802
By = 0.93312654
By = 0.94592902

Periodically varying filter:-

= 0.5573384
= 0.8532

= 0,885
1.4531

= 0.9255

= 1,0568345
= 1.0333703

11
12
21
22
31
32

A2l AR LS LR S LR s R |
I

ool = - 3.72
[31] = 0.93
[8,] = 0.95

[ayo] = 0.56

[6,,] =0.85
[6,,] = 0.89
[b,,] = 1.45

[6,,] =0.93
[p4,] = 1.06
[65,] = 1.03
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It should be noted that in designing the triple-rate filter with
periodically varying coefficients, two of the sets of coefficients
(i.e. bil’ biZ) have to be specified. Here.in this example, b]],
b12’ b21 and b22 are specified and chosen more or less randomly
within reasonable limits (not having tremendous differences bet-

ween values).

The output sequences of these filters are shown in fig(V.5(a)
and (b)). On these diagrams, the ideal filter response is plotted
in juxtaposition with the response of the filter with quantized
coefficients. It can be seen from these diagrams that the time-
invariant triple-rate filter deviates less from the ideal response
than the periodically varying triple-rate filter, and hence
confirming the analysis in section V.3 that a time-invariant multi-
rate digital filter is, in general, less in pole sensitivity than

a periodically varying filter.

F1g V. S(a) Impulse Response of a Triple-Rate Dlgltal LP F11ter
with Fixed Coefficients
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Fig V.5(b) Impulse Response of a Triple-Rate Digital LP Filter
with Periodically Varying Coefficients
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Example V.2

As in example V.1, two triple-rate digital filters are
designeds but, this time, to give a HP characteristic according

to the following transfer function,

_ 0.27996
G(a) = T TE3551795 " + 0.848%5" (v.54)

Again both cases of time-invariant and periodically varying

triple-rate filters are considered, each coefficient being rounded-

off to two places after decimal.
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The design gives the following values for the coefficients,

Time-invariant filter:-

@ = 3.6239862 [ ] =3.62
(o] (o]

B, =-1.0115241 [8,] =-1.01
B, = 0.94592902 [8,] = 0.95

Periodically varying filter:-

@y = 0.014449962 [ag,] = 0.01
b, = 0.832 b,,] =o0.83
b, =0.885 [6,,] = 0.89
b, = 1.4531 [6,,] = 1.45
by, = 0.9255 [5,,] = 0.93
by, =14.04433 [b4,] =14.04
b, = 1.0333703 [b32] = 1,03

Again the impulse response of the filters are plotted (figV.6(a),
(b)). This time, the periodically varying triple-rate filter
deviates very much from the ideal response. This probably is due
to the fact that some of its coefficients are so vastly different.
Again this example confirms the result of the analysis in section
v.3.
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Example V,3,

To design two double-rate digital filters so that both would

give the following H.P transfer function

0.8235
(2] = T3 T7E a7+ 080T T (V.39

Again one of the double-rate filters has fixed coefficients while

the other has periodically varying coefficients. b, and b12

11
are chosen more or less randomly in designing the periodically

varying double-rate digital filter. The second output sequences
of both double-rate filters (i.e. y(n + %)) are used to realize

eqn (V.55).

The following values for the coefficients are obtained from

the design of the filters:-

Time-invariant double-rate filter:-

o = 8,1556562 Exol = 8.16
B, = =0.10097287 [51] ==0.10
B, = 0.89509776 [52] = 0.90

Double-rate filter with periodically varying coefficients:-

o, = —1.0290287 ke, =-1.03
By, = 0.0254 [8,J = 0.03
B, = 0.8048 [Bu]= 0.80
&, = 0.80026925 (8,4 = o0.80
B, = 0.99552684 [azg = 1,00

The impulse responses are plotted in fig (V.7). Again the time-

invariant filter shows smaller deviation from the ideal output.
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Example V.4

As in the previous example, two double-rate digital filters
are designed to give the HP transfer function given by eqn (V.55).
But this time the coefficients of the periodically varying double-
rate filters are so specified that two of the coefficients Bl] and

B
12 .
of both the time—invariant and periodically varying double-rate

present no error after quantization, Again, the performances
filters are compared.

The following values for the coefficients are obtained.

Time-invariant filter:-

¢ = 8,1556562 [t ] = 8.16
o (o]

B, = -0.10097287 [e,] =-0.10
B, = 0.89509776 (8,] = 0.90

Double-rate filter with periodically varying coefficients:-—

@, = —1.1490698 o) = 1015
B,y = 0.03 [8,,] = o.03
B, = 0.80 [8,,] = 0.80
By, = 0.7166667 [8,,] = 0.72
B,, = 1.0015 [322] = 1.00

As can be seen, AB]l = AB]2 = 0,

shown in fig V.4,

This time the deviation from the ideal output

The impulse responses are

is smaller in the case of the periodically varying double-rate
filter. The reason is, quite obviously, that two of the coefficients
Bl] and By are exactly realized and thus reduced two sources of

error,
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The above axamples all support the result of the analysis
given in section V.3. From these examples, it can be seen that
in general, the poles of a multi-rate digital filter is least
sensitive to coefficient quantization errors when the filter is
time-invariant, its sensitivity can still be further reduced if
careful choices are made such that some of its coefficients give
no quantization error. Hence, the general rule seems to be: the
coefficients should be chosen so that one set of coefficients is
as nearly equal as possible to the other sets, but at the same
time full use should be made of the freedom in choosing these
sets of coefficients so that the maximum number of coefficients are

specified to be exactly realizable by the filter hardware.

Sensitivity Ellipse - a Criterion for Measuring Pole Sensitivities

This section and the next contain the development of some
results already published {68}. The object of this section is to
examine the effect of quantization of the coefficients on both the
single-rate and multi-rate digital filters. Since, in general, the
pole sensitivity of a periodically varying multi-rate filter is un-
known and is, as shown in section V,3., greater than that of the
corresponding time-invariant multi-rate filter, attention has been
focused on the time-invariant case. Examination of the effect of co-
efficient quantization on both the single-rate and the time-
invariant multi-rate filter leads to the concept of "sensitivity
ellipse”" {46} {68} which is used as a criterion for measuring
pole sensitivity of digital filters. The cases of the single-rate

and the time-invariant multi-rate filters are considered separately:-
a) Sensitivity Ellipse of a Single-rate Digital Filter

Consider the second order transfer function
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a. +a,3 " 4.
o) 1 ag3

-] - 2
1 + blz + bzz

H(z-z) =

(V.56)

and let such a second order system be represented by the follow-—

ing dynamic equations:-—

x(n+l) = Agx(n) + Byu(n)
ys(rz) = Cyx,(n) + Dyuln)

(v.57)

where, if the transfer function is realized in the direct form

AS [0 1 ] ’ BB = [O]
~by by ! (V.58)

[(az—aobz) (al-aobl)] , DB= a

Cs

Let A and A* be the complex eigenvalues of A , then one obtains
B .

the following relationships,

Je
A = re
s (V.59)
A* = re 79
where r = /Tz (v.60)
tan 6 (V.61)

1
1
1L
Eel
s
Zl
N

For small changes of b] and bz, the change of the pole position

is given by

aA |

. 3\

However, from eqn (V.59),

(ar .7; \
=(e‘76' %1) (‘7“‘76 b ) (v.63)
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and siﬁilarly,

3 _ eje_ar
3b, 3b,

2

jreJe.ae (V.64)

by

Now, writing eqns (V.60) and (V.61) in the following way

f(r,e,bl,bz) =p-vb, =0 (V.65)
1
g(r,e,bz,bz) = tan 6 + —B; ¢4b2-55 = (V.66)
then,
o a(f.g) [ 3 Isz 7o
8, ~ 3(b,,6)f 3(r,6) == l9p; Gelf|fp Fo| = O
gr ge

Substituting these equations of (V.67) into (V.63) and (V.64),

then one obtains

A . cos 6
=L = - 11§ ——=
351

A _ 1

EBé Ior sin 0

sin 6

(v.68)

(v.69)

(V.67)

Thus the change of the pole due to small changes of b] and b2 is

given by

= - 1 . Ab,
AA iAbl * I3 5im0 (cos 6 Ab1+ pr )

(v.70)
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For complex co:ijugate poles

-J ———l——a (cosb6 . Ab1+ Abz ) v.71)

Ab,
2 2 sin

A(A*) = (AA)* =-
If a condition is imposed on the movement of the poles such

that for small changes of bl and b2’ each pole would not move out

of a small circle of radius o, then

and from eqn (V.70), this condition can be rewritten as
cosf
} (1+cot28) (Ab,) 242 [{———) (ab,) (8b,) + ——(Ab ) <
" \upsin2e) 1 2 4p2ginZe  ° (v.73)
Taking the equality sign, it can be seen that the equation of the
condition represents a general conic on the (Abl)-—-(Abz) plane.

To test the nature of the conic, the quantity

2
) 1 _ cos 6>
{{ (1+cot<8) “Zr?sinto (l;rsin’ 8 }

is examined{ 6}

“DW, 1 cosf ‘{_ 1 > 0 (V.74)

2 —-— Ed
} (1+cot 6’4?’51n2 5 ~ \4rsin?6/ 16r sin @

then, equation (V.73) is an ellipse on the (Abl)-— (Abz) plane,
Thus, if (Ab]) and (Abz) are both within the ellipse, then A(and
A*) will not move out of the small circle of radius o, This
ellipse which stipulates the magnitude of Ab] and Ab2 for a
restricted movement of A is designated the "pole sensitivity

ellipse" of a second order digital filter.
b) Sensitivity Ellipse of Time-invariant Multirate Digital Filter

As shown in chapter III, if a second order digital filter realized
in the direct form (fig V.9) is used in a multi-rate fashion,

then its dynamic equation will be

x (m1) =A'x (n) + A Buln)
m m

. ) . (V.75)
y (L l)= c A& x (n) + (CA“B +D_L.)u(n)

mi N
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vhere N is the number of shift of signal in the filter within

one sampling period,
A=0 1] , B =F]
‘_-Bz -8, 1 .
- f =
C = L(az -0, Bz ) (a'-—ao Bl)] ’D‘(:= { go or ¢+ =]

T3
iw
=
.
1

“\gu Xpaq o

Fig V.9 A Time-Invariant Multi-Rate Digital Filter

et Yo ()

ey ne )

l—/—bth(TH-N-',

N~

Let A and A* be the complex eigenvalues of A, then

I I
A= pe”” (V.76)

A = pe'J¢
where p = /E; v.77)
tang = %% 48o-87 (V.78)

If this multi-rate digital filter is to realize the second-order
transfer function shown in eqn (V.56), then the eigenvalues of

A" are identical to those of A , i.e.
s

v
A= (V.79)

A® (A*)N
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It is desired to see the effect of quantization of 8, and B8, on

the change of A and A%, Now, for small changes of Bl and Bz, then

AA

n

.
>
o)

—
4

N 981 ﬁz
= N—‘ él L] ﬂ .
X [ 28, ARy + 38, ABZ] (v.80)

The terms inside the bracket of eqn (V.80) is similar to RES o:
eqn (V.80), thus, the same procedure in evaluating thece quantities
can be followed. Using the same method as in the case of the

single-rate filter, one can write,

2
AR = g [Z‘”’ 36" joed? %gl} (v.81)

{=1
where the values of the various partial differentials can be

evaluated by rewriting eqns (V.77) and (V.78) and calculating thair

respective Jacobians.

Hence one obtains,

an = mpt! o (B1)6 [_ (v.82)

—

AB (cos¢ ABy+ 46, )]

1+st

»f

-t =F(N- 1 -
M*= ! e J (N 1)¢[_ o ABy "7251n¢(c°8¢'A81+ égag] (V.83)

Again imposing a constraint to the movement of the pole A, such

that it does not move out of a circle of radius g, then

lan] <o (V.84)

2 ,2(0-1) 1
N (1+cot2¢)(ABl)2 <%—EIEQE)(AB )(ABZ) [pzézgzm(égz;

< o? (V.85)
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which, in view of its similarity to eqn (V.73) represents the equation
of an ellipse on the (ABI) - (ABZ) plane. Again, if AB, and AB,
are both within the ellipse, then A and A* will not move out of the

circle of radius ¢
Example V.5.

This example illustrates the idea of the "sensitivity ellipse"

of a digital filter:~-

A second order digital filter is to be designed such that it

has the following transfer function

1

-1, .
Gl(z ~) =: I

(v.86)

1+ 1.622 0 + 0.725272
It is desired that the movements of the poles due to the quantiza-

tion of the coefficients be confined to a cirele of radius o = 0.01
on the 2-plane. If the transfer function is realized as

a) a single-rate digital filter

b) a double~rate time~invariant filter

c¢) a triple-rate time-invariant filter,

find the equations and plot the graphs of the ellipses of the three
filters, such that if the coefficient quantization errors lie in-

side the ellipse, the above condition is not vialated.

a) If the transfer function of eqn (V.85) is realized as a single-
rate filter, then the coefficients of the filter are simply the
coefficients of the transfer function. The radius and the angle

of the complex poles are given by:-

s
1

= /bz = 0,851469
162.0445 deg

@
It
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2.63026(Ab1)2 - 5.87808(Ab1)(Ab2) + 3.62845(Ab2)2 = 0.0001 (V.87)

b) If the transfer function is realized as a double-rate time—

invariant filter, then the feedback multipliers of the filter are

given by:-

62 = v b2

Bl = + 4 262 - 51
Hence

» = 0,922751
0/2 = 81.02225 deg

and the equation of the ellipse on the (AB]) - (ABZ) plane ig, from
eqn (V.85),

0.25624(A8,)2 + .0866674(AB,) (AB,) + 0.300938(48,)% = 0.00002936
(v.88)

¢) Similar to a double-rate filter, a triple-rate filter has the

following parameters,

p = r1/3 = 0.947814

b = 2 3 ® - 65.98526 deg

and the equation of the ellipse is,

2
0.299626(AB,)" + 0.257208(AB,) (AB,) + 0.333529(AB,)? = 0.00001377
(v.89)

All the three ellipses of eqns (V.87), (V.88) and (V.89) are
plotted in fig V.10,



b
aby J8B2
016~
«——— - SINGLE-RATE 016 ~
L4 o
DOUBLE-RATE +014- e s
P s
e===—a TRIPLE-RATE -0124 / Vs

R T

0:020 001 w20 AFy

/ / -+012-
’ /' 014
(-

—-.016-
—-018+

Fie [, 10

V.6 Single-rate and Time Invariant Multi-rate Digital Filters =—-

a Comparison of Pole Sensitivities

The previous section introduces the concept of "sensitivity
ellipse'. Here in this section, the concept is utilized to compare
the pole sensitivities of the single-rate and the multi-rate

time—-invariant filters.,
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-~ Ab,

aby ':‘-_9 V.1l

Fig V.11 shows the sensitivity ellipse of a second order single~
rate digital filter on the Ab] - Ab2 plane. Associated with the

ellipse are the arbitrary probability density functions Pr(abl)
and Pr(Abz)

For any value of Abl’ the probability that Abl will fall
within d(Abl) is Pr(l\bl)u d(Abl), But for this valuz of Abi’ the
extreme values of Abz are bounded by the ellipse in order that the
movements of the poles are confined within a circle of radius o,
If these bounded values are denoted by (Ab Yt and (A0 )" respect-

ively, then the probability that Ab will fall w1th1n this strip
tahyy”

[Pr(Abz).d(Abz).
(85)

Now, Abl and Ab2 are independent of each other, so the total
probability that Ab] and Ab2 will fall within the ellipse is simply

the product of the individual probabilities, i.e.

of the ellipse is

(Br) f/Pr(Abl) Pr(ad,).d(ab,)d(ap,)  (V.90}

where R is the region enclosed by the ellipse.
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Similarly, if AB, and ABZ are the errors in the coefficients in
a multi-rate time-invariant digital filter, then the total probability
that AB] and AB2 will fall within the sensitivity ellipse of the multi-

rate filter is

(r)_ = ffPr(ABl).Pr(ABZ). d(ag,)d(aB,)  (V.90)

By comparing the probabilities (Pr)S and (Pr)m, the condition
under which one filter is less semsitive to coefficient quantiza-

tion than the other can be found.

The comparison depends considerably on the probability density
functions Pr(Abl)-and Pr(Abz), and similarly depends on Pr(ABl)
and Pr(AB ). For a digital multiplier, if the word is rounded to
an accuracy QfE 1t can be assumed that, 1n general, the round-off
error is d1str1buted evenly between -'f and 7-, i.e. if both b
and b2 (or, in the case of time-invariant multirate filter, Bl
and 82) are rounded off to the same accuracy E,, their probability

density functions will be as shown in fig V.12

Pr

- ADb

F,:g V. |2
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A}

Now, if the radius, o, of the circle to which the movements
of the poles are confined is specified arbitrarily small, then the
sensitivity ellipses of both the single-rate and multi-rate filters
will lie within the probability density functions of Abl and Ab2
(or AB1 and A82 for multirate filters). In other words, the ellipses
will lie within the square of area Eg centred at the origin of the
Ab]- Ab2 (or 48,— ASZ) plane. Hence for the single-rate digital
filter, the total probability that Ab1 and Ab2 will fall wis&in
the ellipse is, from eqn (V.89), given by o

1 1
(Pr)s -f/Eo' Eo d(Abl)d(Abz)

= -l; . (area of the single-rate sensitivity ellipse)
Eo (v.91)
Similarly, for the multi-rate digital filter, the total probability

that 48, and A82 will fall within its sensitivity ellipse is given

by
ry_ = L f f d(a8,)d(48,)
£5
*n
L
2

-(area of the multi-rate sensitivity ellipse)
(V.92)

Eo

Hence, from eqn (V.91) and (V.92), the comparison of the probabilities
(Pr)8 and (Pr)m becomes the comparison between the areas of the

respective sensitivity ellipses.

Now, for a general conic equation represented by

Ax? + 2Hxy + By? = C (v.93)

to be an ellipse on the x - y plane, then {6}

4B - B2 > 0
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and the area of the ellipse is

Area - .___lq_._ (V.94)
VAB ~ H?
Comparing equation (V.73) to equation (V.93), the area of the

single-rate sensitivity ellipse is given by

2 2
'MA/ (l+cot 6) cos<8
25in2 16r2sinte

4mor|sind | (v.95)

(Area)s

Similarly, the area of the multi-rate sensitivity ellipse is giwen
by

_ 4ro?|sin .
(Ar'ea)m = —;V—Z-Jpﬁl- (V.96)

The poles of the multi-rate filter will be less sensitive to

coefficient quantization error if Gzrea)m > (area)s, i.e. if

sin¢

= pZN-Z > r Isinel (v.97)

or,

|sinms| (v.98)

=
N
© |un
W] R
2}
?-6-
—
v

pN and 6 = N¢ has been used.

where the fact that r

The corresponding values of r and & in eqn (V.98) for ¥ = %
and ¥ = 3 have been plotted in fig (V.13 a and b). The shaded
area on the z-plane represents the region in which the poles cf
a second-order time-invariant multirate digital filter are less
sensitive to coefficient quantization errors than those of a

single-rate filter,
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From the inequality of (V.97), it can be seen that the larger
is the value of |sin¢|, the larger would be the area in which the
multi-rate time-invariant filter is less sensitive to coefficient
quantization error than the single-rate filter. But, as has been
shown in section III.10, there are, in general, N different ways

of chosing A, i.e.

’ +s0  2(W
X = peJ¢ = rl/w eJ‘F”'-W—) (V.99)

where 2 = 0, 1, 2, .o, V=1
Hence, in designing a second order time-invariant digital filter
to perform the function of a single-rate filter, it is best, in

general, to chose from the N different solutions, the eigenvalue

A which has the largest value of |sin ¢].

Computer Simulation Results Comparing the Pole~Sensitivity of

Single~rate Filters to that of Time-~Invariant Multi-rate Filters

The analysis in the last section shows that if the specified
second order transfer function has its poles situated inside
certain regions on the z-plane, it is generally more advantage-
ous to realize the transfer function as a multi-rate digital
filter. These regions are given by the inequality of (V.98) and
are plotted in fig V.13 a) and b) for N = 2 and N = 3.

A computer program has been written to simulate both the
second order single-rate filter and the second order time—invariant
multi~rate filters so that the effects of quantization of the
filter coefficients in both cases can be observed and compared,
According to a given transfer function, the computer program locates
the position of the poles. It designs a single-rate digital

filter according to the given transfer function. Then the
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program examines the position of the poles on the 2-plane and

tests if it falls into one of the regions given by the inequality
of (V.98) from which the number of shift sequences (#) within one
sampling period is determined. Then, the multi-rate digital

filter is designed by the same method as given in section III, 10

so that it gives the same performance as specified by the transfer
function. Again, the eigenvalue with the largest value of |sin ¢|
is chosen for the design. Then the coefficients of these filters
(both single- and multi-rate) so designed are rounded-off to the same
finite accuracy. The responses of these filters with quantized
coefficients are then plotted on the same diagram together with the
responses of the ideal filters, The discrepancies between the
ideal responses and the responses of the filters with quantized

coefficients are examined,

The following are some examples extracted from the simulation:-

Example V.6

Design a single-rate and a multi-rate digital filter such

that both filters have the following transfer function

0.8235
1-1.782"1 + 0.8031252~

-1
Mz )= 2

Each coefficient of these filters is rounded-off to an accuracy

of two places after the decimal. Their performances are compared,



-175-

The single-rate digital filter so designed has the following

coefficients:~
ao = 0.8235 rounded—-off to 0,82
bl =~-1,78 rounded-off to - 1,78
b2 = 0,803125 rounded-off to 0.80

It is found that the poles of the transfer function are
A =0.89 + 70.105
and are within the region in which a triple-rate time-invariant

filter is less sensitive to quantization errors. The desired

triple-rate filter has the following coefficients.

uo = - 6,6913456 rounded—-off to -6,69
B] = 0.89802869 rounded-off to 0.90
82 = 0.92952494  rounded-off to 0.93

The step responses of these filters are shown in fig V.!4 (a)
and (b). It could be seen that the triple-rate filter gives a
much closer response to the ideal performance than the single-

rate filter.
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Example V.7

Design a single-rate and a multi-~rate digital filtex such that
both filters have the following transfer function
0.8235

1+1.78% ) + 0.8031255 >
Each coefficient of the filters is to be rounded-off to an accuracy

Efz—1)=

of two places after the decimal, Their performances are to be comparszd,

The single-rate filter so designed has the following coefficiants

Q
I

= 0,8235 rounded—off to 0.82
= 1,78 rounded—off to 1.78
= 0.,803125 rounded-off to 0.80

oo
| |

The poles of the transfer function are
A=-0.8 =7 0.105

These poles are found to be in the region where both the double-
rate or the triple-rate filter will be less semsitive than tha
single-rate filter to coefficient quantization errors. Hence either
N =2o0r N =3will be a better design than ¥ = 1. A triple-rate

time-invariant filter is chosen, and has the following coefficients

ag = 6.3954292 rounded-off to 6.40
B] = - 1,0287316 rounded-off to - 1,03
82 = 0,9295494 rounded-off to 0.93

The step responses of these filters are shown in fig V.15 (a) and
(b). Again it can be seen that the triple-rate filter has a
response much closerto the ideal performance than the single-rate

filter,
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Example V.8

Design a single-rate and a multi-rate (time-invariant) digital

filter such that both filters have the following transfer function
ETz-l) _ 9i8235 -
1+1.78z ~+0.8041z
The coefficients of the filters are rounded-off to two places after

the decimal and their performances compared.

The single~rate filter has the following coefficients:-

Q
[

0.8235 rounded-off to 0.82
b, = 1,78 rounded-off to 1.78
0.8041 rounded-off to 0.80

o
]

It is found that the poles of the transfer functions are

A=-0.8 250,12

The poles are situated just outside the region where the triple-
rate filter will be less sensitive, but are situated well within
the region in which the double-rate filter is less sensitive to
coefficient quantization errors than the single-rate filter. So

a time-invariant double-rate filter is chosen. It has the follew-

ing coefficients.

a, = 7.7810954 rounded-off to 7.78
Bl a - 0,10583343 rounded-off to -0,1!
82 = 0,89560036 rounded-off to 0,90

The stap responses of these filters are shown in fig V.16 (a) and
(b). Again it can be seen that the double-rate filter has a

response cloger to the ideal one than the single-rate filter.,
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All the above examples confirm the theory put forward in
section V.6, that if the poles lie inside the cross—hatched regions
shown in fig V.13 (a) and (b), a double-rate or a triple-rate
time-invariant filter will be less sensitive to coefficient
quantization errors, However, as can be seen from the examples
above, as the poles move closer to the boundaries of the cross-
hatched regions, the differences between the performance of the
quantized multi-rate filters and that of the quantized single-
rate filters becomes less and less. Thus, the validity of the

analysis in section V.6 is verified,

- -»
Resume

A deterministic approach has been chosen to analyse the effect
of coefficient quantization on the movements of the poles. Using
this approach, it has been shown that in general, the pole move-
ment of a multi-rate digital filter with periodically varying co-
efficients is more semsitive to coefficient quantization errors

than that of a time-invariant multi-rate filter.

Examination of the effects of coefficient quantization errors
leads to the concept of "sensitivity ellipse" which has been used
as a criterion to compare the pole sensitivities of the single-
rate and the time invariant multi-rate digital filters. The in-
equality of (V.97) states the condition under which the pole
movement of a time-invariant digital filter is less sensitive than
that of a single-rate digital filter. The validity of this

condition has been confirmed by extensive computer simulations.,

In the design of a digital filter, the errors introduced by
quantization of multiplying coefficients remains a considerable

problem. The performance of the conventional single-rate digital
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filter is especially sensitive to the errors of coefficient quantiza-
tion when its poles are in the vacinity of the real axis on tha
2-plane. With the introduction of the multi-rate digital filter,

such sensitivity would be grossly reduced,



CHAPTER VI

MULTIPLICATION ROUND-OFF ERRORS IN A
MULTI-RATE DIGITAL FILTER

VI.1 Introduction

This chapter is devoted to the most intricate manifestation of
quantization errors, namely, errors caused by rounding off the com-
putations used in the execution of the actual digital filter program.
As mentioned in Chapter I, it is not necessary to compute the exact
results of the effects of rounding off the multiplication products.

In this chapter, two of the existing methods estimating the effects of

rounding off the multiplication products are described.

The first {70} employs the state-space method and estimates the
upper bound of the multiplication round-off errors. However, multi-
plication round-off errors would be intrinsically statistical if the
: . . . .. . the variation of its
input signal to the digital filter is sufficiently rich 1nAfrequency
contents, and the evaluation of an upper bound would then seem pess-
imistic. The second makes use of the spectral density of the round-
off error and estimates the mean square error introduced by rounding

off the multiplication products.

Since the analysis of multi-rate digital filters is much faci-
litated using the state-space approach, the two methods are combined
{66} so that a statistical estimation of the effect of multiplication
round-off errors is achieved using the state-space method. Such an

estimation is applied to the case of multi-rate filters.

-183~
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VI.2 Estimation of the Upper Bound for Multiplication Round~0ff Errors in

Digital Filters

The following method is due to Yakowitz and Parker {70}. In their
paper, an upper bound is developed for the multiplication round-off
errors in the state-variables of a digital filter. Here is an outline

of their method.

Let an ideal filter be represented by the following dynamic equa-

tions:-
x(nt1) = Ax(n) + Bu(n)
(VI.1)
'¥(n) = €Cx(n) + Duln)
where x (n) = state variable vector at ¢ = nT
u(n) = input vector at #=nT
¥(n) = output vector at t=nT

A,B, C,D are constant matrices for a time-invariant digital filter.

Let the rounded product be denoted by [']E where E, is the quan-
tization step; also let the erroneous values argsing from these rounded
values be denoted by dashes. Hence the actual filter with round-off

errors can be represented by

x'(mt1) = [ax'(n)], + [Bum)],
o o
(VI.2)

¥ (n)

, i
[c x' (n)] B, * [Du(n)] 5,

It can be assumed that x'(0) = x(0).



~185-

Define an error vector e(n) such that

é ' - ' -
o (n) A x'(n) [A x (n)]Eo + Bu(®) [B u(n)]Eo
(Vi.3)

Also let Ax(n) be the vector denoting the errors in the state variables

at £t = n?7, then

Axn+1) Sx(rl) - x' (1)

Ax(n) + Bu(n) - [Ax'(n)]E - [Bu(ﬂ)]E
o o

A{x(n) - x'(n)} + e(n) (Vi.4)

i.e. Ax(nt+1) AAx(n) + e(n) (VI.5)

where e(n) is defined in equation(VI.3)

Similarly, for the output equation,

y(n) =¢c x(n) + D u(n) (VI.6)

and the actual output vector y'(n) with round-off errors is

y'(n) = [c x' (n)]Eo + [D u(n)]Eo (VI.7)

Again, an error vector e¢(n) can be defined s.t.

e = cx'(n) - [cxX(m], +Dul) - [Du(n)]Eo
(2]
(VI.8)

and therefore,

Ayn) = cAx(n) + e(n) (VI.9)
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The solution of the equations (VI.5) and (VI.9) are, from sectionlI.é

given by
Ax(n) = ZAn-i_le('l:) (VI.10)
and Ay(n) = C ZAn_i_le(i) + t(n) (VI.11)
¢=0 .

Now, let us examine the bounds of the error véctor e(n) and t(n).
Firstly, let {.) denotes the matrix (or vector) determined by taking
the magnitude of each element. We shall write {AD< (B> if (i) the
magnitude of each element of A is less than the magnitude of the corres-
ponding element of B, or if (ii) the magnitude of at least one of the
elements of A are less than the magnitude of the corresponding elements
of B while the rest of the elements of A and B are equal in magnitude

correspondingly. Thus,
-1 d\</f2 2]
2 1/ \l& 3
and 1 1N\N<A1 3
2 1 2 2

Extending the above definition further, {a) e {B) is written if
either of the above condition (i) and (ii) holds or if {A> =<{B),
where the equality sign has the same meaning as is generally used in

matrix equality.

Let Mag be the number of non-zero and non-unity .elements in the

Jth row of A, and ij be the number of non-zero and non-unity elements
in the Jth row of B. Hence, if the quantization step is Eo’ the Jth

element of e(y) is bounded by

Iej(n)l S (p,. o+ vy B, /2 (VI.12)

AJ
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With the above definition in mind, the error vector for the state var-

iables is bounded in magnitude by,

~

e(n)) S e =

a1 + Vg1 EO/Z (VI.13)
a2 * Vp2
UJM + \)w-

where ¥ is the order of the filter. Similarly if Mo and vy are the
number of non-zero and non-unity elements in the jth row of C and D

respectively, then the error vector for the output is bounded in mag-
nitude by,

[N -
Cem> = & =[uy + Vo | Eo/2 (VI.14)
Ye2 *t Vp2
Ve T Yk

where X is the number of elements in the output vector.

Having assessed the bounds of <{e(n)> and {e(n))> , the bounds for
/
{Ax(n)> and (Ay(n)) can be estimated. Thus, from (VI.10),

w4

bxm)d> =< ZA"‘H o(4)D

=

n

w

(An-z-l > {e(iW Schwarz Inequality
c=z1

Z<An-'i-1 S 5 (VI.15)

=t

nh

The lower limit of the summation in the inequality of (VI.15) has

been changed from O to 1 since e(0) = 0, (VI.15) can be rewritten as
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follows o

(Ax(m)D <-2<Ak> 8 | (VI.16)
K=0
The inequality of (VI.16) expresses an upper bound for the error in
the state-variable vector due to the quantization of multiplication pro-
ducts. However, the summing of the infinite series in(VI.16) is awkward

anda closed form for the expression is desirable.

In general, a closed form for the bound shown in the inequality of

(VI.16) can be obtained in either of the following ways:-

(a) By the Schwarz Inequality,

¢aky < <ayk (VI.17)

Thus, (VI.16) can be written as

o

(Ax(m)) = §<Ak> 5

£ Z (A ¥ g (VI.18)

k=o

If (A )is stable, i.e. if

Lim <A = o (VI.19)

Tereo

then, a closed form of (VI.18) can be obtained. Now,

m .
E (aY =14 CAD +¢ad2 + ... +(A) (VI.20)
ksO

Premultiplying both sides of (VI.20) by (I - {(A)) and simplifying, ome

obtains,

(1 - (A))Z{A)k - 1 - ¢ay™? (VI.21)
K=o
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Hence,

Z(A)k =Lim (lﬂ@)-l(l-(ﬁsms = (I - (A))-l (VI.22)
K=o

m-eo

and thus the bound for the state-variable error vector in (VI.16) is

reduced to,
[-+]

A x(n) =Z<A>k“6 = (1 - <a» s (VI.23)

k=0
Substituting this closed form expression in (VI.9), the output error

is bounded in magnitude by

Ay () > S4ED{Ax(M)D> + e (n)

=<Ked( 1 - <A>)--1 e + % (VI.24)

where ¢ is defined in (VI.14).

(b) The second method to express the bound of (VI.16) in a closed
form involves the use of the Jordan canonic form of the matrix A
(section II.7). Let P be the generalized eigenvector matrix of A

and J be the Jordan canonic form of A, then

Z Ak = p( .17‘) pl (VI.25)
k=0 K=o )

Hence we can write,

i cak> éi<1=> >
k=0

k=o ©

- (p)(Z( Jk>)<p"> (VI.26)

K=o

It should be noted that (J*) = <J)k since J is block diaganal, i.e.



where Jl’ Jé,

ceny Jﬁ are the Jordan blocks
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(v1.27)

constituting J. If A

is the eigenvalue of the {th Jordan block J. and Ai has multiplicity

1, then, from section II.7,

£(<3>) =i<.l:§> -

keo

- (Z-H.
FAAD  rda dabrzr . F dabhsa-n ]

0 FAdah  r£rdab
0 0 Fah

0 0 0

For a stable filter, IAiI <1 and

f(lm] -S>
A=Ai =0

kKl _ o4 L -1
IA|| = a - {aD

A=Ai

Hence, (VI.28) can be written as

Nk -
03> =H kS -

a-|ap™ a-fap7 ...
0 (l-lﬁil)_l ‘oo
| o 0

([~2)
f‘z_EIAI)/(Z-Z)!
oo £ UMD (E-3)

b
A=4;
(VI.28)
(VI.29)
-
a-fa 7t
7
(1- [Aib-z-rl
a-1a;h7t

(VI.30)
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and thus for the Jordan canonic form of A,

90 k _ -
1(<32) = ) (I = [1(KI D) (VI.31)
% O

£(<3,2)

O 'f(< I

J2, sees I, are the m Jordan blocks of A having Ays Az" ..,Am

where Jl ,

as their respective eigenvalues. Substituting (VI.31) into (VI.26),

the bound for the state-variable error vector becomes,

{ax(n) ) éi(Ak é
K=o ©
$ <P k> (Fly
= 7<P>k;’°((J>) <Fly g (VI1.32)

Eqn(VI.32) represents another closed form expression for the bound
to the state-variable error vector due to multiplication round-off.
Again, substituting this expression into (VI.9), the output error is

bounded in magnitude by

A

Aym)) =LCHAx(m)) + =(n)

(ORI IDICKPD & + 1 (VI.33)

i~

The two pairs of inequalities (VI.23), (VI.24) and (VI.32), (VI.33)
represent valid closed forms of the bounds on the state-variable error
vector and the output error vector when the filter is stable. (VI.23)

and (VI.24) further necessitate that (A ) is stable, i.e. Iy (A>k= 0.
Koo
Whichever is the tighter bound depends on the form of A as the next

section will show.
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VI.3 Remarks on the Evaluation of the Upper Error Bournd Using State-Space
Approach

The previous section has shown that the bound for the state-varia-

ble error vector is given by

ALx(n))> §Z<Ak> é (VI.34)

Two closed forms to evaluate this bound have been developed. Here, the

choice of these two forms is discussed:-

It has been mentioned in the previous section that the bound of

(VI.23) is not valid unless Z(A)k is convergent. The following
k=0
example may serve to substantiate this statement.

Example VI.1l

Let A =10 1 ,
-0.8 1.4

then the eigenvalues of A are given by

Ay = 0.7 * j0O.5568
2

i.e. |A] = 0.8

- 24
Hence A is stable, and thus Z(Ak> is convergent.

K=o
(A = [o 1 ]
0.8 1.4

and the eigenvalues of <A) are,

However,

A; = 0.7 + 1.10198
2

Now, Lim (A)k =P (1.802)k 0 P ————
koo

o (0.400)%



~-193~

which means that ¢{A) is not stable any more, and the bound given by
(VI.23) is thus not valid. .

Now, if (A ) is stable, then the bound (VI.23) is valid. Consider

the case when A 2 0, i.e. each element of A is real and positive, then,

<Ak>-= cayk R - (VI.35)
But, aky-¢e ok Pl > S (DGR (D (w136
therefore <A>" £ (P> <JK> (P.v'> : (VI.37)
= i(ﬁ < <P>i:<J ;‘> CFD . (v.38)
= P
Thus for : convergent series,
a-cantieda- o taeED (VI.39)

and (VI.23) is a tighter bound than (VI.32) for A 2 o,

On the other hand, consider the case when A £ 0, i.e. each

element of A is real and negative. Let V '

A= -¢ad> . (VIL.40)
then,  <a>= 1% YD = (adk (VI.41)

Hence, follwing the previous argument

nn

(1 - <A>)'1 = (p> (1 - (J))-1 <P"> forA= 0 (VI.42)

From the inequalitijes of (VI.39) and (VI.42), it can be seen that
for A % 0, the closed form of (VI.23) is a tighter bound than that
of (VI.32). Similarly, for A $ 0, the closed form of the output error
vector shown in (VI.24) is tighter than that shown in (VI.33). The
following example may help to illustrate this point. (It should be
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noted that if {A)is stable, (I - (A))_l 2 0 since this is the

limit of the sum of an infinite series of positive matrices).

0o 1 ]
. 0.16 0.6
then,

(1-<¢ad L= [1.667 4.166'7]

Example VI.2
Let A

0.667  4.1667

Now the eigenvalues of A are given by

_002
A =
2 0.8
Hence J =[-0.2 0 ]
e 0.8

'lul
sy
n
—
o O
(SR
|
P
—

@ (1- <) FD

6.25| > (1- <A> )t
1 4,25

L]
3

Unfortunately, no clear-cut conclusion of the type shown in (VI.39)
and (VI.42) can be drawn when A is neither positive nor negative, i.e,
when some elements of A are positive while some are negative. Since
we are mainly interested in 2nd order filters in the direct canonic form,

attention is focused on such a configuration. For a second order filter

realized in the direct canonic form, the state matrix A is of the form

A =[o 1 (VI.43)
~b, -b |
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and if Al and A, are the two distinct eigenvalues (may be complex) of A,

then the Jordan canonic form of A is

J = Al 0] (VI.44)
IS
and its eigenvector matrix P is given by
P =71 1 (VI.45)
o

For such a configuration, the maximun error vector is given by

=|olE (VI.46)

where Eo is the quantization step. This is because there are two non-

zero and non-unity member in the second row of A,

When A is neither positive nor negative, even if ({AD is stable
so that a closed form (I - <A>)_:l can be obtained for the bound, there
is, in general, no definite conclusion that can be drawn for the compar-—
ison of the two closed forms. It has been found that sometimes one
closed form is tighter, sometimes the other is tighter, while in some
cases the two forms are not comparable (i.e. some elements of the
matrix obtained from one closed form are smaller than those of the
other closed form, whereas the other elements are larger), as the

following exampleg show.

Example VI.3
If A = [0 1 ] , then A= :
2
0.16 -0.6 ~0.8

0.2

Thus, (I - <A>) } =[1.667 4.1667] ,
0.667 4.1667
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(o]

hence, Ax(n)> 8 (1-<¢a>)" L &= [4.16671 E from(VI.23)
4.1667

On the other hand,

P=[1 1 ,

0 -0.8-

and (P> (I- <3 el =12 6.25]
1 4,25
which means, from (VI.32)

Axmy £ B (1- <) e 5 = [6.25] E,
4,25

Hence, the closed form of (I - <A) )_:l is tighter in this case.

3 0.5
003

In this case <A)> is stable, thus both closed forms are valid.

Example VI.4

IfA=[0 1 ], then A,
-0.15 0.8 2

Now,

(1- <am ! = [4 207
3 20]

=) <axm> fa -<ants - 'zo] E
L 20

On the other hand,

P = [1 1 ]
005 0.3
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J = [0.5 0 ] ,
0 0.3
<{P> I - <J>)'1<P'1> =[6.5725 17.145]
4 10

= {axt)) £ (PHA- aHE 6 - E7.145] E
0

Hence the bound obtained from the closed form of <P) (I - <J>)-1<P_1>
is tighter.

Example VI.S5

If A=[0 1 , them Ay = 0.025 % j0.9484
-0.9  0.05 2
and A is stable since |A] = 0.9

{A> is also stable in this case since both its eigenvalues are less than

unity. Now,

(I - <a>)l= [19 20
18 20

A

i.e. <Ax(n)>

(1 - <A1+ = [20 E,
20

On the other hand,
P=[1 1]» J=[, 0]
A, A, o 4,

PY (1 - <aNTFY =[19.404 20.548
18.493  19.494

19.494
In this case, the bound obtained from the closed form of (1 - <ad)”

fe.  <Ax(mD £ @I - <IN T EYD 5 - [20.548] E_

1
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is not comparable to that obtained from {PD(I - (J))_l (P—l) .

In general, there is no rule as to which ever closed form should
be used. Yakowitz and Parker {70} have developed expressions for the
bounds of multiplication round-off errors in the state-variables for
a second order filter realized in the direct canonic configuration.
Hovever, in their development of those expressions, there is no direct
application of either of the two closed forms discussed above. In-

stead, the bound was evaluated direct from (VI.16) as follows:-—

From (VI.16)

axm> & ) <A 4
Z(P PPN
K=0
ey 7 [ 1 [A’l‘ olf 4, —1] [o]
ZIA-A] YU VY | R i | CY VRS B B
- A )
= T———-——l— k+l k"l
keo
__ o Mz'“ i (VI.47)
|A2'A1' 1
k=1
Now, 2 2 )
|a, - A7) = |A, - & IZ Z A It 2 (VI.48)
K=t W=
so that (VI.47) becomes
= k-2-1
(Ax(n))SZ‘ZA =T (V1.49)

k=0
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When A, and A2 are both real and with the same sign, i.e.
b% > 4b, > 0, it follows that

}§:|}E:ﬁk ~1-1 z

k
ZIMI’“ZIMI

‘,(— &- {= 0
= 1/ - |A1|>(1 - [a2)
= 1/ - |py| + by (VI.50)
Hence, for this case,
E

{axm)) & 0 1] (vI.51)
(1 - |5,] + by
1

When A, and A, are real with opposite signs (b_< 0), then let
A = |A1| and A2 = —|A2| where |A2| > |A1|, then,

IZAk-Z—t 7 - Z(_l)tlAzltzlAI |k
(&) k=o

=9 c=0
/@ + [aha - oD
1/ - |by| + b,) (VI.52)

and the bound for the state-variable vector is again

{ax(n)) £ Fo 1 (VI.53)
a - |b1| + by) .

For complex poles, Ay = A? , 1.e. |A1| =_|A2| = /5;, then
k-l—z
Z(/bp E(/b2> =(1 - /o) 2
k=t k=c (VI.54)

thus, ABx () “?___235_37'[1] (VI.55)

2
1
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However, for complex poles, the bound can be further lowered as

follows. Let Al = reJe y Ay = re_Je . From (V1.49), it follows

that
Eo

(ax(m) & A, - A, Zrk
*

(ejke- e Ikey I 1

1
ZE 1o
= IAZ - Ay E rk|sin ke| 1
' k=1 1
< 2E, r 1
IAZ - All (1 - P) [
1
- 2/by E, 1
1 - /bz) m (VI.56)
1

This way of evaluation is in general superior to either of
the two closed forms developed in the previous section since the
limit is not imposed on the evaluation until the end and thus

saving the estimation of the limits in the intermediate stages.

VI.4 Statistical Estimation of the Multiplication RoundOff Errors
in a Digital Filter { 36}

the varigtion of its
If the input signal is sufficiently rich inAfrequency con-

tent, the multiplication round-off errors can reasonably be as-
sumed to be random. The probability density function of the
rounding error is then uniformly distributed (see section IV.1
and fig IV.2); moreover, the error e¢(n) at any sampling time

will be statistically uncorrelated to e(n), the error at any
other sampling instant. Under such conditions, the evaluation of

an upper bound seems pessimistic. A more realistic approach is
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thus to estimate the round-off error statistically.

Since the multiplication roundoff errors occur for each iter-
ation of the difference equation, the effect is that of a set of
random noise samples superimposed on the signal; in this sense, it
is similar to A/D conversion noise. However, the ﬁrecise location
at which this noise is injected in the digital filter depends on
the particular configuration of the filter. Since we are mainly
interested in second order filters realized in the direct canonic
form, the analysis here focuses its attention on such filters(fig

VI.1)

(yin)+ Byony)

L (n) fZ\

\

Fig VI.1 A Second Order Digital Filter with

Multiplication Quantization

Fig VI.1 represents a second order digital filter realized in
the direct canonic form. Each of the multipliers is followed by
a quantizer which is effectively a noise generator. The effect of
these noise generators can be combined to form two noise sources,
one at the input adder and the other at the output adder (fig VI.2)
where the noise source at the input Eb(n) is the sum of the noise
sources from the feedback multipliers and the noise source at the
output adder E,(n) is the sum of the noise sources from the feed-

forward multipliers. Since these two noise sources are both inde-

pendent of each other, their effects can be considered separately.
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v
E v =E € n)

e

Yy + Aym)

Fig VI.2 Equivalent Noise Model

Let Ay&n) be the output of the filter due to the effect of
the noise source Ea(n). Now since Ea(n) is the sum of three in-
dependent noise sources each with variance Eﬁ/lz, where E, is the

quantization step, then the variance of E,(n) is given by
a
2 = z : 2 = 352
g oeaén) 3E0/12 (VI.57)
l.‘=0
Since the effect of this noise is merely adding a noise to the
output, the variance of Aya(n) is given by,

2 - 2
o = 3E5/12 (VI.58)
dyq 0

Now, let Ayb(n) be the output of the filter due to the effect
of the noise source Eb(n) at the input. Since this noise source
is a combination of two independent noise sources each of variance
33/12, then the variance of this combined noise source is simply
2E§/12. The effect of this noise source is similar to that des-

cribed in section IV.3. Thus the variance of yeb(n) is given by

v

= 2 204

ogyb = 230/122 :g (<) (VI.59)
{=zo

where g(¢) is the impulse response of the filter. Given that a
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steady state is reached, the variance of Ayb(n) is given by

2 - 2 272
%y, ZE'O/IZZg (Z)

{=0

= 2F2 1 1,.-1 (VI.60)
2E5/12 Z_Tra’fG ()G (F)z =~ da
T

Hence the variance of the total noise in the output due to

multiplication round-off error is given by

E - -
ozy = -1-% Z—:J,fG(z)G (z 1)3 Taz + 3 (VI.61)
T

The same principle can be applied to digital filters with
various configurations. It is obvious that different configurations
will give rise to different values of multiplication quantization
errors. Extension of this basic principle of analysis to other

configurations can be found in other works of reference {1},{ 22},
{36}.

State-Space Approach to the Statistical Estimation of Multiplication

Errors in a Digital Filter { 66}

As mentioned in the previous section, a statistical estimation
of the multiplication round-off error is more realistic than the
evaluation of an upper bound, thus the view taken here is again
statistical. However, since the state-space method is generally
very much more convenient to use in the analysis of multi-rate

digital filters, the statistical estimation of multiplication errors

here employs the state-space method.

Following the argument in section VI.2, the error in the state-

variable vector is given by
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n-{ .
Ax(n) = Z A" e(d) (VI.62)

Cs o

and that the error in the output vector is given by

Ay =e I8 o) + e (VI.63)

The variance of the error at each step of quantization is

given by

g2 = E’g/lZ (VI.64)

where Eo is the quantization step. Hence, the variance of the

vector e is given by

"22™p2 | 12
HaMVBM

where M is the order of the filter.

and the variance of ¢ is

2 - -z = 2
s, £ He1tVp1 . Eﬂ (VI.66)

MoatVpa | B
Mek ok

provided that all the roundoff errors are uncorrelated.

Following the definition of covariance matrix as mentioned
in chapter IV, the covariance matrix for the state variable

error vector is given by,
n-i Cel . T
cov[Ax(n)] =Z A" .cdv[e(i)].(An-“') (V1.67)
C=0

But the covariance matrix, cov[ﬁe(i)], of the quantization error

vector is given by,
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covle ()] = -E'(eg) Elejey) ... E‘(ezeM)-
2
E(ezel) E(ez) oo E(e2%u)
2
_E’(eMel) E‘(eMe2) E’(eM) |
= [g2 ]
Uel (:) since ei and ej are
022. uncorrelated when
. - _L o
. 7
i <:> oéw T
i.e. E’2 _ —
cov[e(i)] = T%- (ug* vBl) (::) (VI.58)
(Hp2* Vp2)

O (u;M+ Vay) |

where EF(.) denotes the expected value.

Hence substituting the expression of cov[e(¢)] into the

covariance matrix of the quantization error vector, one obtains

2
Ep < n-i-t [ ] n--i\T
cov[Ax(n)] = -1—Z-ZA ' (pq+Vg1) (a7
t=e (up9+Vpo)
. (VI.69)
<::> (UAM+vEW)_

The solution of (VI.69) is more eéasily facilitated by premulti-
plying (VI.69) by A and post-multiplying by EF; and after subtrac-

tion, one obtains,
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cov[az(n)] - A.cov [Ax(n)] A

Rl

For a stable filter, in the steady state,

(uAl

+\)Bl) O 7 -4
(uyp*vp,)
O (“A\lh’B\d)-x

(VI.70) can be further simplified to

coV[Ax(n)] —A.cov[Ax(n)].Iir =

n
A — 9,

(upq+vgy)

Gipgtvpy

O

b

[(nyq +V5p) O A
(Uyp*vpo)
- (g *Vpg )

(VI.70)

Then {(VI.70)

yel

(g *vpy ).
(VI.71)

The solution of (VI.71) involves the solution of #° linear equa-

tions, which yields the values of the M’ elements of cov[Axz(n)].

The diagonal elements of cov[AXCn)] are the variance of Axi(n)

in the steady state.

After solving for cov[Ax(n)] , We can proceed on to solve for

the variance of the output, i.e.

cov[Ay(n)] = C. cov[Ax(n)] .C

-

VAV
c1

v
p1{ Ep

v
Hc2+Vp2

.
.
.

+v
Mok Vpk

12

(V1.72)
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VI.6 Application of the State-Space Statistical Estimation to a

Second Order Filter Realized in the Direct Canonic Form

For a second order digital filter realized in the direct

canonic form, the state matrix is given by

A=[]0 1 (Vi.73)
by by
and
B=[o (VI.74)
1

Hence, from (VI.68), the covariance matrix of the error vector is

cov[e ()] f—g-[o 0]

o 2]
2 -
_2, Jo o (VI.75)
12
o 1

Sucstituting the expression of (VI.75) in (VI.71), in the steady

state, then,

2F,
12

:

covdx()] - A cov{dz(n)]. A 0 0 (VI.76)
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which gives fouxr linear equations in terms of the four unknown ele-

ments of cov[Ax(n)] . Now let these elements be represented by

cov[Ax(n):l = v, Y2

Multiplying out the expression on the LHS of (VI.76) and simplifying,

the following four equations are obtained

Vi ~ Vyy =0 (VI.77)
Y, + b2021 + bluz2 =0 (VI.78)
=0 (VI.79)
byvyp + vy *+ byvy,
-b2 - byb - byb + (1-b%) = Efgi (VI.80)
21 1P2V12 192V12 VY, = T .
Equation(VI;77) gives
vV = VI.81
11 22 ( )
Also, from equations (VI.78) and (VI,79), one obtains
Vi, = Yy, (VI.82)

Substituting (VI.81) and (VI.82) into (VI.79) and (VI.80)} and sol~

ving, one obtains

v =7 - (1 + by) 2E52)
T2 (qp y-b a2k b2 ) 12
122 (VI.83)
_ _ -b, 2Ef
Y12 "% T

2 2
(l—bz)(l-b1 +2b2+b2 ) 12
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i.e. the variance of the error in the state-variables x, and x, are
given by
2 (1 + by) 22

o' =v =
Axy Axo 11 _ _1.2 2
(1 bz)(l b1+2b2+b2) 12

(VI.84)

After solving for the elements of covDAxKn)], the variance of the

steady-state error in the output is given by, from (VI.72)

3gh
Uiy = [(U-z"u.oez) (U-l-aoBl)] .[v“ vlj[(az-aosz)] + =
(

v v

21 Y “1_“081)

(VI1.85)

If only the variance of the output error is desired, a similar

method to that shown in section IV.4 can be employed direct to (VI.63)

Hence,
N, i1 -17
Uiy =9 ¢ca¥ " cov[e(i)] @ty ¢ o+ cov[z(n)]
=0
282 NN n—i-1 n=i-la o . 3E>
== z CcCA 0 o]@ Y .c + —T%—
t=0 0 1
72 . gt v 3E
= -?Tg— ca" oo 1] @t e + 5 (VI.86)
tx O 1
Now since
b 1] @*?y¢ =-ca™ ™ [o] (V1.87)
1

then (VI.86) can be rewritten as

2 n-of n-i-1 [0\ ..2
2 2E 3E
= 220 | ' 220 .
°Ay 12 (CA . ) + 12 (vI.88)

(=0
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As mentioned in section IV.5, (VI.88) can be more conveniently eva-
luated, especially when n is large, by determining the eigenvalues

and eigenvectors of A, i.e. by making use of the equation
A" = pA" Bl (VI.89)

Thus, if Al and A, are the two eigenvalues of A, then (VI.88) is

reduced to

2
2 — n=-i-1 N . 3E
2 2F A 0 -1 [oj\ + =20~
-
GAy —0—12 CP ) 12
¢=0 0 An-‘L"l 1
(VI.90)

A word of caution must be added here that in counting the num—
ber of non—-zero and non-unity elements in the matrix C, the matrix

C is of the form

¢ = [(a,ab) (a-azb)] (V1.91)

If a =a,= 0, then the number of non-zero or non-unity elements in
C is zero. This is rather obvious from the diagram of a second order

filter realized in the direct canonic form.

Consider the second order filter shown in fig VI.3

KE,L x{n)j|> @ yiny

z Fig VI.3

t(n)

\ A

!
o
M
3
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The noise source immediately after the multiplication with (-bl)
and (-b2) has been taken into account in calculating X(m*1) since

the state equation is given by
x(m+1) = Ax(n) + Buln) (VI.92)

Assuming mno further error 1is introduced in the input summer Zis
the only subsequent multiplication error on x(n) is from the multi-
plication with a,. Thus the noise introduced by.the parts (-aobz)
and (-aobl) in the elements of C has been taken into account in the
consideration of Axl(n)and sz(n).

Multiplication Round-Off Errors in a Multirate Digital Filter

Consider a time-invariant multirate digital filter in which the
product after each multiplication has to be rounded-off to an accu-
racy £, (fig V1.4)

Fig VI.4 A Time~Invariant Multirate Digital Filter
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For an ideal filter the following sets of dynamic equations can be

be written:-

X(nf-%) = Ax(n) +Bun) ; yl(n) = Cx(n) + Duln) ;
2 1 1 1
x(nf--ﬁ-) = Ax(ntz) H yg(n-lw) = C x(n+ﬁ) ;
: . (VI.93)
- N=1 . -1, _ N-1 .
x(nt1) = Ax(m-T s yy(mt—~) = Cx(mt—=) ;

However, for a non-ideal filter shown in fig VI.4, the dynamic equa-

tions becomes:~

1
x'(ni-ﬁ) ‘= [A’f'(n)]Eo+ @u(n)]Eo; ypn) = [cx'(n)]Eo + [Du(n)]Eo;
2 1 1 1
x'(m3) = [Ax WW)]Eo s yg(ntg)= [Cx’(n"ﬁ)]Eo;
(VI.94)
x' (n+1) = [Ax'(m-N—l;}-)] ; yI(,(n‘f*I-V-I;—]F [Cx'(n*jl;,-l-)]E ;
EO (o]
where A= 10 1 : B = [0] H
B, B 1
C= [<02-0082) (21-00B1)] ;D = og

and []E’ again as in section VI.2 denotes the quantization of a mul-
0

tiplication product to an accuracy of Eb

Defining™ the error vectors in the following way:-
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e(n) =AX'(n) - [Ax'(n)]Eo + Bu(n) [Bu(n)]E ;

1
o(ni) =ax (i) = (ax (nd)] o

e(rH-N—;V-l-) =Ax'(n+ﬁl;—1) - [aw (mﬂ,‘vl)] ,

(VI1.95)

efn) =Cx'(n) - [cx'(n)]Eo + Du(n) [Du(n)]E H
)

1, _ 1 1 .
E(ﬂ*‘ﬁ) “CX'(T’#“-ﬁ) - [CX'(YH‘W)]EO’

N=1) e w1y _ Taw pali-1
€ (n+—— Cx(mT) [Cx(mw)]Eo

ws

N

Then the error in the state vectors and the output vectors are,

Ax(m%) = x(n+%) - x'(n+-117) by,(m) =y ) = yq(n)

=AAX(n) + e(n) ; =CAx(n) + e(n);

AX(r2) =BAx (L) + e(nih) ;  Myy(n) =COx(nez) + e(m+d) ;

(V1.96)

Ax(n+1) =AAx(n+£V-I-71—) + e(n+N—;,1-); Ay y(n) =CA"(”+‘N1_T1) * E(""'I%]');

Hence, AN+L-1
ax L) CZA(nN’L”-k—Z e, (k/N) (V1.97)
k=0

N

e, (k/N)
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. nN+C=2 . o
and  ayywih) mc ) AMHEIR g e eonigh)
X=0

ez(k/N) (VI.98)

For k = nN, the variance of the vector e is given by

2 2 a 2
L e (n) = Ma1*Ve1 ...Eﬁ‘ (V1.99)
12
22%Vgp2
and the variance of ¢ 1is,
=z 2
o = €m) = [u..+v_.] E | (VI.100)
€ Cl D1 1z

For other values of k, the variance of e and € are respectively given

by,

2 _ 2
‘¢, Waq 59_ (VI,101)
12
Ma2
2 ’
o = [ig1] é (VI.102)
12
However, for a direct canonic configuration, Va1 " Vp2 " 0, and

uél = Mg * Vpps thus the variance of e and € are simply given by
equations (VI.101) and (VI.102). Hence, from (VI.67), the covariance
matrix of Ax(n)is given by,

AN+L=1

. . . -
cov[a x(ni%) ] = Z A(nN-I-L) k-1 . cov[e (n)] . {A(nIVM,)-k-I}
NN+L-}

k=0
nii i —k~1 nN+L=k=-1-T
=_2%f A [0][0 1 1 (vi.103)
1

k=o
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and the variance of the Zth output error is

2t (mNi-1) k=1 nN+E—-1-k=1 1" B
2 = L/ TRE =L T ¢ Ly
.~ %0 ) ca o] 1l{a C ¥ ¥y
1 1 1
k-.-o
(VI.104)

£1=0,1, 2, vo. N . uél = number'of non-zero and non-unity mul-

tipliers in the feed-forward paths of the digital filter.

If the multirate digital filter is periodically varying, i.e. if

A, B; G and Di are the matrices of its dynamic equations at t=(n+%),

a slightly more complicated expression for the multiplication round-
off error can be derived. Following a similar argument as in the case

of a time-invariant filter, the errorsin the state vector are

Ax(n»‘%) = A, Ax(n) + e(n)
2 -1 1
x(n+=) = A Ax(n+=)4 e (nis)
AXTy 2 L N (VI.105)
Ax(n+1) = A, Ax(rAl) 4 o (nilld)

The solution of (VI.105) is given by

n 1~2

: —~ N sk . =1

A x(n+%) = 2 :(AN... A,a)" z @B, 5 e By oG + o)
3=° k=o (VI.106)

and hence the error in the 7Zth output is
=1, _ 7 1-1
Ay, (n+==) =c, Bx(nig)  + e (=) (VI.107)

The covariance matrix of the errors in the state variable vector is
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given by
. n . -2
covldxteib] = 281D (4 ..o a aF? D aca, . (0] [0 1)),
12} =0 k=0 1
U n-g
(A AL, Ay,) (A ...AA) + [o] [o 1]
1

(V1.108)

and substituting this into the variance of the Zth output error
2 2

7~1 T ’ E
= . s R .o 0

where /{éi = number of non-zero and non-unity multipliers in the feed-

forward paths.

VI.8 Comparison of Multiplication Round-Off Errors between Single-Rate

and Multirate Time-Invariant Digital Filters

If a second order multirate digital filter ig periodically varying,
i.e. Ai’ Bi’ Ci and Diare the matrices at t = (n+77\’7-) where = 0,1, ..,8-1:
then there are (N - 1) degrees of freedom in the choice of the coeffi-
cients B;, and g, . Hence it would be difficult to compare the multipli-
cation errors of such a filter with its equivalent single-rate filter.
Here in this section, attention is focused on the time-invariant multi-

rate digital filter and its single-rate counterpart.

Consider a single-rate filter, from (VI.84), the steady state var-

iance of the errors in the state variables x, and x, are

)

2 1+ bs plags

g = . (VI.110)
2 2 12
(1 -b,)(1 - b3 + 2b, + b))

Dxg
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Now, if the complex poles of this second order filter are given by

A = peV8 (VI.111)

then (VI.110) becomes

2
2 (1 + r2) . 2Eg

O'Ax = >
8 (1 - 121 - 2r%c0s28 + p¥) L

(VI.112)

Most digital filters contains poles very close to the unit circle.
This is certainly true for the design of highly selective filters. TFor

these cases (VI.112) can be greatly simplified.

Let » = 1 - € and ignoring terms with quadratic and higher expo-

nents in €, eqn(VI.112) becomes

2 =25 . 1+ (1-¢)2
&g 12 {1 - (1-e)2H1 + (1-e)"* - 2(1-€)2cos26}

2E% 1 - ¢)

12 2€(1 - 2e)(1 - cos26)

1
o

282 1 - ¢ (VI.113)

12 4e(l - 2¢)sin2e

Now, (1 - 2€) = (1 - €)2, thus again ignoring the terms with quadratic

exponents in g, (VI.113) can be reduced to

o2 = 2E5 . 1
Axg 12  4e(l - €) sin2®

2
« 2Ep 1 (VI.118)
12 4e sin2s
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Now, consider a multirate time-invariant second order filter with

state matrix given by

Let the complex eigenvalues of A be given by

A = peidt (VI.115)

If the time-invariant multirate filter is to give the same performance

as the single-rate digital filter, from section III.10,

I’-pN
(VI.116)

8 = No

Following similar developments of argument as in the case of single
rate filters, the steady state variance of the error inm the state var-

iables z, and £, of the multirate filter is given by

2 = 2892 | 1+ B,
Az 12 (1 - B,)(1 - g2 + 28, + BY)
_ 285 1 + p2

. VI.117
12 (1 - p2)(1 - 2p2cos2¢ + p") ¢ )

Again, for highly selective filters, let r = pN = (1 - €) and ignoring

terms with quadratic and higher powers of €, (VI.117) can be simplified

to
2 4 E gin“8
'm 1 ¥ sin T
253 v
= 2B (VI.118)

12 4e.sin? &
¥
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Hence the ratio o2 can be written as

2
chs
Aem N _sinZe

2
Opzs (s in2 S )
N

Eqn(VI.119) expresses the ratio of the variance of the state variable

(VI.119)

errors in the multirate time-invariant digital filter to that in the
single-rate filter., For a given N, if the filter is highly selecctive,
it 1is easy to compute from eqn (VI.119) the value of 6 for which the
» 2 2 E . ¢, ‘1"1"
ratio o //chs = 1, i.e. the position of the poles for which the
multiplication round-off errors in a time-invariant multirate digital

filter is lower than that in a single-rate filter.

The graphsof equation (VI.119) for double-rate (¥ = 2}, tri-
ple-rage (N = 3) and quadriple-rate (¥ = 4) time invariant digital fil-
ters are shown in figs (VI.5), (VI.6) and (VI.7) respectively. From

these graphs, if the pole angle 6 of the desired digital filter falls
2 2

O noem / oAxs

low the line of unity, one would expect the performance of the time~

in the region where the state variable noise ratio is be-

invariant multirate digital filter to be better than its equivalent

single-rate filter.
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VI.9 Resunfe

The multiplication round~off errors in a digital filter have been
considered. In general, there are two ways of tackling the problem,
viz, the evaluation of the upper bound of the errors and the evaluation
of a statistical bound. Both methods have been discussed. The statis-
tical approach is, in general, more realistic due to the fact that the
input to the filter is commonly stochastic. A method to evaluate the
statistical estimation of the multiplication has been derived using the
state~space method since the state-spatemethod can be readily applied
to periodically varying multirate digital filters. Using this state-
space method, expressions have been derived for the statistical bound
of the multiplication round-off errors in both the time-invariant and

periodically varying multirate digital filters.

Finally, a comparison of the multiplication errors in a time-invar-
iant multirate filter and that in a single~rate filter has been performed.
A simple expression has been derived giving the ratio of the error var-
iances in the two cases. Such an expression is based on the assumption
that the desired filters are highly selective. From such an expression
of the ratio, the pole position in which a time-invariant filter is more

desirable than its equivalent single-rate filter can be determined.
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CHAPTER VII

LIMIT CYCLE OSCILLATIONS IN A MULTI-RATE
DIGITAL FILTER

Introduction

In the previous chapter, the multiplication round-off errors
in a second order digital filter have been discussed. It has been
assumed that the input signal to the filter is stochastic so that
the error in the output can be treated statistically., However,
if the input to the filter is deterministic, say an impulse or
a step function, then, since the round-off errors in the state-
variables would be highly correlated, the problem has to be
treated differently.

If the input to a stable and ideal digital filter is set to
zero, the output will decay asymtotically to zero. However,
when rounding of intermediate products is performed in the filter
implementation, it is possible that the output may sustain a non-
zero level or oscillate indefinitely about zero. Similarly, fora
constant nonzero input, the ideal filter output should asymto-
tically approach a steady-state level determined by the filter
transfer function. Due to rounding, however, the output may
oscillate or it may maintain a constant level different from the
ideal output. When these phenomena occur, the filter is said
to exhibit a limit cycle., The range of output values that occur
for a particular limit cycle about the desired response is some-

times called a deadband.

Limit cycle oscillations remain an undesirable property of

the digital filter for most engineering applications. To suppress

=223~
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these oscillations, it has been proposed {5}, that a small random
noise should be added to the input of the filter; this is called
dithering, However, although this method breaks up the regular
pattern of the limit cycle oscillation (LCO), it introduces a new
random error and sometimes may not be very effective. Here in

this chapter, the properties of LCO in a digital filter are

briefly discussed, and it is demonstrated that LCO may be complete-
ly absent in some cases of a multi-rate digital filter. Thus

this type of multi~rate digital filters will be more suitable for

engineering applications where LCO is an embarrassing problam.

Classification and Existence of Limit Cycle Oscillations

Limit cycle oscillations in a digital filter are caused by
the non~linear feedback within the filter. Their existence is
not affected by the presence of the zeros of the filter transfer
function. Hence it will be sufficient to study the second-order

digital filter with the transfer function

1 (VII.1)

H(z) = — -~
1 + blz ! 2

+ bzz

The transfer function can be implemented in the form as
shown in fig VII.|I

5

Fig VII.!

Second Order Digital

’

Filter with Single

£(1) 3 Precision Adder

l“{@‘;—-<:£}———1¥ﬁk)

The filter in fig VII.1 can be represented by the following

state equation:
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1 (k+1) = [0 ! ] [xi(’”] * [0]{e1(k)+e2(k)} (VI1.2)
) (k1) b, ~b,| Lzjer) I

where el(k) and ez(k) are the errors introduced by quantizing
the multiplication productsat t = kT,

If the linear part of eqn (VII.2) is stable, then the state
vectorx{k)is bounded, i.e. X(k) will actually either enter a
limit cycle, or enter the origin of the "pseudo phase plane'.

(The pseudo phase plane {49} is the plane with x, and x, as the

coordinates)

Now, a limit cycle is defined as a finite sequence of state

vectors that satisfy a difference equation, i.e.

¥ o= {x'(1), x'(2), ... , x'(P)} is a limit cycle

r
iff
X(k+1) = o{x"'(k),k} (VII.3)
and x' (k+p) = x' (k) vV ok

The positive integer p is called the period of the limit cycle,
If the limit cycle is a constant state vector, then it is called
a limit point, If the limit cycle consists of only two alter-
nating state vectors, i.e,
W, ={x'(1), x'(2)}

(VIX.4)
and x'(1) =x'(2)
then it is called an alternate limit point. Any other type of
limit cycle that exists in the system of (VII.2) is called a

second order limit cycle.

The existence conditions for limit cycles in eqn (VII,2)
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are now considered. It is now shown that if |b2| > 0.5, then
all solutions of eqn (VII.2) (except the trivial solution) are
limit cycles, This existence condition was first observed by
Jackson {26}, but the rigorous proof of it was first produced
by Parker and Hess {46}. The following proof is another way of
formulating the argument:-

Suppose that the state vector does enter the origin of the

pseudo phase plane. Let X(n) be the last vector before the

system enters the origin, then

xz'(n'-l)= 0 1 xz'(n) + [0
xé(n+1) 0 ‘bz 'bz 0 1

[}
(=]

. {ez (n)+e2(n)} (V11.5)

However, ez(n) = 0 since m’z(n) = 0, Thus, we have
-bzmz’(n) + ez(n) =0 (VII.6)
i.e.
| —E'-O/Z < bzxz'(n) < E'o/2 (Vii.7)

where E'o=rounding step size, But |.'xfi(n)| A E'o, thus the in-
equality of (VII.7) implies that

byl < 0.5 | (VIL.8)

if equation (VII.5) is possible. It follows that the zero state
cannot be reached if |b2| > 0.5, i.e. limit cycles always exist

in a second order digital filter with complex poles if

/; <r <1.0

where r is the magnitude of the complex pole.

It has been observed 25} that if |b2| < 0,5, then the limit
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cycles that can exist in the digital filter will be either limit
points or alternate limit points., Also if |b2| < 0.5 and if

EJ Eo andLn] Eb enter the origin of the pseudo plane, then there
exists no limit point or alternate limit point, i.e. there is no
LCO.

Bounds on the Amplitude of LCO

Various authors have derived upper bounds for the amplitudes
of LCO that occur in a second order digital filter. The output

of the system shown in eqn (VII.1) can be written as

ym) = uln) - [bly(n—l)]EO - [bzy(n—Z)]E,o (VII.9)

where Eo again denotes the quantization step.

Jackson {26} estimated a bound on the magnitude of limit
cycles for roundoff by equating (VII.9) to the output of an
equivalent linear digital filter with b2 = 1 (the condition for

an oscillatory response), and using the following equation

[byy (n—2)] £, = boy(n=2) * {0.5£6(n-2)}E, (VII.10)

where §(n) is any nunber between zero and unity. The resulting

estimate for the magnitude of the limit cycle is given by

lytm)] < 0.5E /(1-by) VII.11

Doubt is reserved on such a bound since it is independent of bl.
In fact, it has been found that the bound is too low for certain
cases {49}. Experimental results by Parker and Hess {49} have
indicated that the following bound seems to be a safer approx-

imation than (VII.I11)

lytn)| ¢ 1.5E,/(1-b) (VII.12)
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Sandberg and Kaiser {56} have arrived at the following
formulae for the r.m.s. value, o, of limit cycles in a second

order section

1 b7 -
o = (1-by)" (1 'Z'b;) el (VII.13)
for b, > 0 and |b,| 5 4b,/(1 + b,)
o = (1= |b,] + 57" el (VII.14)
b, £ 04 b, >0 and |b1| 2 4b,/(1 + b,)

*
- Z 3
where ”e" A l.I%T eZ(n)] ,
n=a

(k + 1) being the period of the limit cycle, and e(n) is the

roundoff error at t = nT when limit cycle is reached, i.e.
y'(n) = -bzy'(n-l) - b2y7n~2) + e(n) (VII.15)

For a general approach to the upper bound of LCO, the
method by Yakowitz and Parker{70} described in section VI.2 and VI.3
is just as good as any other method. The advantage of this approach
is that it also yields a bound on quantization errors during the
transient period. Limit cycles, which are steady-state conditionms,
are included in this bound. As a recapitulation the bounds are

written below:

For a filter with real poles, the bound of the state vector is

1
-1
AX (n) < (1-[b1|+b2) H F (VII.16)
and that for a filter with complex poles is

"l (]+‘/b2)Ea
2/bg Eo /——3 [ ](vn.n?)
/‘)747‘—772 ) (1- by)

AX ( n') <

It is interesting to compare the expressions of (VII.16)
and (VII.17) with those of (VII.13) and (VII.14). The bound
of (VII.16) is identical to that of (VII.14) for real poles. The
bound of (VII.17), which holds for all », including transients
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and the limit cycle condition, is greater by a factor of
(1 + VE;)/V? than that of (VII,13), This factor varies from
unity to v2 when b2 =1

LCO in a Multi-rate Digital Filter - Computer Simulation

As discussed in the previous chapter, the multiplication
roundoff error in a time-invariant multirate digital filter can
sometimes be less than the corresponding single-rate filter.
Since limit cycles are multiplication roundoff errors in the
steady state, one would expect that the bounds of the LCO in
a time-invariant multirate filter be lower than those in the
corresponding single-rate filter if the condition that (VI.119)

< 1 is satisfied.

It is not the object of this chapter to develop a bound

for the LCO in a multi-rate digital filter (since the bound for
multiplication roundoff errors with zero input equally applies
to LCO), but rather to demonstrate by computer simulations that
a single-rate digital filter suffering from LCO can, in general,
be replaced by a periodically varying multi-rate digital filter
free from limit cycles provided that the periodically varying
coefficients are suitably chosen. This section describes the
computer simulations of such a filter and the process by which

a suitable multirate filter with zero LCO can be found {69}:-

In a digital filter, LCO is caused only by the poles of the
transfer function. The presence of the zeros does not affect the
existence of LCO, Therefore it would be sufficient to comsider

an all-pole filter with a transfer function of the form

H(z) = 1 (VIT.13)
22 + blz + b2
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In order to simplify the problem, attention has been focused on
realizing eqn (VII.18) by double-rate (N = 2) digital filters
with periodically varying coefficients. The use of higher rate
(N > 2) filters has been ignored since it is sufficient to

demonstrate the principle using a double-rate filter.

Consider a double-rate filter (fig VII.2).

s Y00

‘I"/’——*’ Y in)

Fig VII.2
A Double-Rate
Digital Filter

There are two transfer functions (see Chapter III), i.e.

2
o, 224(0, Bon=C, B, +0, )3+a. B
10 10722 “117°21 712 12722 (VIL.19)

Hl(z) = >
25+(B ,+By9=B 18010248 580y
and
- 2 _
(ma,y0Bq +ay )37+ (ay By 9=y, By )2

HZ(Z) = > (VII.20)

2%+ (B )+By57B1 1820381282,

Either of these two transfer functions can be used to realize

the all-pole filter of eqn (VII.18), However, if the double-
rate filter is to be implemented with hardware, it will Be more
economical to use eqn (VII.20) since, in this case, both LPY
andcx22 can be made equal to zero, thus saving two multipliers.
This is the reason why Hg(z) has been used in all the simulaticns.
Now, using eqn (VII.20) to realize H(z) in eqn (VII.18), ome

obtains the following equations:

B12%B2 78118y T By (VII.21)
B12822 = b, (VII.22)
@ 90= ~1/8, (Vi1.23)
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It means that we can choose any set of values for 81] and BIZ
and determine the values of 82] and 822 from eqns (VII.21) and
(VI11.22), or vice versa. If Bll and 812 are chosen and, if for
each chosen set of Bll and 812, a unit impulse input is injected,
it has been found from the computer simulations of a double-rate
filter that some of these sets of Bll and 812 give no LCO in

the output, On the other hand, if 82] and 622 are chosen and
varied, there are again sets of 82] and 822 that give no LCO,

Thus if the set B,., and B1o is chosen and varied by one quanti-

zation step each :;me over the "triangle of stability' {25}

(fig VII.3), and each time analysed with a unit impulse input, then
all the values of Bll and 812 that give no LCO can be found.

Again, if 82] and 822 are varied and analysed in the same way,

then all the values of 82] and 822 giving no LCO can be recorded,
Note that even if Bll and 612 lie outside the triangle, the
resultant transfer function of eqn (VII.20) is not necessarily
unstable, Values of Bll and 612 that lie outside the triangle

are taken care of if 82] and 822 are the chosen coefficients

and if their values are sufficiently small.
B

1.0

t -

-2-0 -1.0 ° I.0 2.0 '

Fig VII.3 '"Triangle of Stability"

Similarly, values of 821 and 822 lying outside the tri-

angle are taken care of if B ., and 8,, are chosen and are
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sufficiently small, The flow-diagram of the computer simulation
program is shown in fig VII.4.
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VII.5 Resgults and Observations from the Computer Simulations

Many all-pole second order filter simulations have been
performed, and the process of searching for B.. which give no
LCO repeated. The following general observat1ons have been obtalned -

(1) It has been observed that the suppression of LCOoccurs not
only when all the state variables xq and z, (fig VII.2) are zero,

z,(n) ] = [O] (VII.24)
xz(n) 0 .

for sufficiently large 1, but also that when not all the state

i.e.

variables vanish yet the LCO in the output can be zero.

(2) For zero state variables, it is observed that

|8;,]1 < 0.5 ' (VIL.25)

This is similar to the conclusion drawn in section VII.2 for a

single-rate digital filter.

(3) For zero LCO in the output but non-zero state variables,

%20 < 0.5 (VII.26)

(4) The points on the 8 812 plane giving zero state-variables

1
correspond approximately in position to those on the 821- 822
plane, These points on both planes are approximately symmetricali

about the Biz axis,

(5) Both the zero-state-variable points and the non—-zero-state

variable points that give no LCO do not seem to bear any simple

relationship to each other.
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(6) A change in the input, say, from a unit impulse to a step
function, or even a change in the input magnitude may change the

position of the zero LCO points on the Bil-— Bi2 plane,

(7) For a different given single-rate filter, generally, a
different set of zero LCO point is to be found on the Bil—— Biz
plane. However, these different sets of zero-LCO points apparently

bear no simple relationship to each other,

(8) If the quantization errors in the coefficients are severe,
then even if we start with a double-rate filter with no LCO, the

resultant filter may possess LCO in its qutput.

The following is an example showing the process of searching

for the equivalent double-rate filters with zero-LCO:-
Example VII, 1

It is desired to have a digital filter the transfer function

of which is given by
1

H(z) = (V11,27)

1 2

1-1.4z ~+0.8z
The quantization step is 0.01.
Using the simulation program, search for the equivalent double-

rate filters which offer no LCO in the output.

It can be seen that the coefficients of the periodically

varying double~rate filter must satisfy the following equations:-

Blag * Byg = ByyByy = = 1.4
BioByy = 0.8 (VII.28)
a9 = = /8y,
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The information of these coefficients, Qs b1 and bz, and the
quantization error Eo = 0,01 is fed into the computer, Fig.VII.5

shows the print out of the contour map on part of the triangle of

stability on the B“—' 812 plane.
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Due to the difficulty in reproducing the

computer print-out

of the vhole plane, the map of the "stability triangles" on the

By Blzand Bs By planes are redrawmn in fig VII.6(a) and (b),
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As can be observed from the maps, there are thousands of equivalent
double-rate digital filters with periodically varying coefficients
that possess no LCO in its impulse response. Fig VII.7 shows the
response of such a filter. Together on the graph is the ori%inal
single-rate digital filter. It can be seen that LCO is complete-
ly absent in the output of the double-rate filter. The coeffi-
cients of the single-rate filter and the zero-LCO double-rate

filter are printed on the diagram.

SINGLE-RATE
eomm——— DOUBLE-RATE

T = NORMALIZED SAMPLING PERIQD

NOLCO IN THE
OUTPUT OF THE
DOUBLE-RATE FILTER

10T \IsT Ner”
LCO IN SINGLE-RATE

FILTER STARTS

Gg=lay=a220,bj=~1-4,b2=0-8
2202 0-400097 rounded to 04,
Biy=1-44, B1220-46,

B3y=~2-4994 reunded to -2:5
FIG VII1.7 B22=1:73913 rounded to 1-74

IMPULSE RESPONSES OF A DIGITAL FILTER
AND ITS EQUIVALENT ZERO-LCO DOUBLE RATE FILTER

Obviously among these thousands of equivalent double-rate

filters which give the same impulse response as the given single-
rate filter and yet there is no LCO in the output, some must be
more preferred than others as far as realization is concerned.

Firstly, the periodically varying coefficients should be of the
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same order. Looking through the list of all the possible double-
rate filters, one finds some of the filters have vast differences

between its coefficients, for example

azo = - 0.003
Byg =~ 0.20
-812 = - 0.01
821 = 393.05
822 = - 80.00

Comparing the values of these coefficients to those of the filter

chosen in the previous example (fig VII.7), i.e.

@50 = 0.4
Bll 1.44
812 0.46
By = ~ 2.5
Bop = 1.74

although both double-rate filters give no LCO in their impulse
responses, the latter is certainly preferred from the point of
view of fixed-point hardware implementation, and from the point

of view of sensitivity. (Section V.3, figs V.2 and V.3).

Secondly, although Bll and 812 are in increments of one quant-~
ization step, i.e. there is no quantization error in these co-
efficients, the values of 821, 822 and %50 calculated from equs
(VII.21) (VII.22) (VII.23) may have to be rounded off. If the

round-off errors of these coefficients are severe, the result—

ant filter may have LCO in the output again. The following
example may help to illustrate this point.
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Example VII,.2

The transfer function
1 (VII1,29)
1-1.4 340.82" 2

can be realized by the following double-rate filter which gives

H(z) =

no LCO in its impulse response.

d’!o
t, A y(n+3)
7--/‘2 dso t= (ne)T
-
| Fig VII.8
A Double-Rate Filter that
Gives No LE€O in its Impulse
Response
where %10 = 0 Bll = - 0.03 812 = - 0.38
= - 0,0276431 = 36,1754 B, = — 2,10526

%0 Ba 22

The impulse response of this filter is shown by the full line in
fig VII.9. However, the coefficients CPT 821 and 822 have to
be rounded—-off to two places of decimal if they were to be implement-

ed. Thus the final filter would have the following coefficients

- 0.38
- 2,11

=" 0.03 812

821 36.18 822

@9 = 0 B

azo = - 0,03

and the impulse response of this filter is shown by the broken
line in fig VII.9. It can be seen that LCO exists in this filter

if the coefficients are quantized.

It is observed that, in general, if the coefficients of the
double~rate digital filter are not greatly different in their
values, the suppression of LCO in the impulse response is not

so easily disturbed by the quantization of the coefficients.
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IMPULSE RESPONSE OF ORIGINALLY
DESIGNED DOUBLE-RATE FILTER
IMPULSE RESPONSE OF THE DESIGNED
DOUBLE-RATE FILTER BUT WITH
COEFFICIENTS QUANTIZED

NO LCO IN THE

ORIGINALLY DESIGNED |

DOUBLE RATE FILTER R
=
I

- 1
m\\ - 222750 o e Juz=g T
7 30T 50T TIME

L—»LCO STARTS IN

THE DOUBLE-RATE
FILTER WHICH HAS
COEFFICIENTS QUANTIZED

FIG ¥II 8
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It has been mentioned before that a double-rate filter that
suppresses LCO for a unit impulse input may not suppress LCO for

a step input. The following example illustrates this point.

Example VII.3

The double-rate filter shown in fig VII.8 will realize the

transfer function

H(z) = 1

1-1.4 5

1 2

+ 0.8z

and yet gives no LCO in the impulse response if the following

values are chosen for the periodically varying coefficients:-

=0 B]1 = - 0.92 B,, = 0.18

12
22 4,444

%10

%o = 0.1527 82] = - 6.548 B

The impulse response of the filter is shown in fig VII.10(a)
and can be seen, there is no LCO in the output. However, if
the input is a step function, the response (fig VII.10(b)) will
have LCO.

Comparison of the two methods of Suppressing LCO

It has been mentioned in the beginning of this chapter that
in trying to break up LCO in a digital filter, a small random

noise, usually of the magnitude of the least significant digit,

is added to the input of the filter. This section describes a
computer program which simulate such a method when applied to
a single-rate filter., The resultant output is compared with that

obtained by an equivalent double-rate filter giving no LCO.
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The program performs the following:-

A unit impulse is injected into an ideal single-rata digital

filter and the output is recorded.

with multiplication round~off errors; the output {up tc =2
steady state) is recorded.

A unit impulse with added noise (the wagnitude of which is
confined to the least significant digit) is passed ianto the
non-ideal single~rate filter, and after a while, the added

noise is stopped. The response of the filter is racorded.

2

r
~

A unit impulse is injected into 2 non—ideal double-rate filte:

{

designed to give the same performance as the singla-vake
filter but without LCO. Again the response is rzcovded

the input breaks up the regular pattern of the iimit cycle

oscillations that would have existed in thz impulses mzs3oonse oFf

However, this met hod of dithering . usually gives viga
to additional noise in the response of the filzer, Alzso i thisg
added noise is stopped, LCO (which is generaliy differanz n

magnitude to the LCO when there is no added noisz in :hz Inpug)

will start again. The following example may help fo shov this,

Example VII.4

A single-rate digital filter having the transZzy fuacticn

1

H(z) = ) iy
1 - 1.42 + 0.8z ~
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is implemented with multiplication round-off errors. If a unit

impulse is passed into the filter, LCO would occur in the output.
Suppression of such LCO is carried out by dithering. Compare the
output of the single~rate filter when dithering is applied to the

output of the double-rate filter designed to give no LCO.

The double~rate filter which has the same transfer function

as H(z) but gives no LCO has been chosen to have the following

coefficients
% Bll = 1.44 812 = 0.46
Gy = 0.4 821 = - 2,5 622 = 1,74

The steady state responses of the three cases are shown in fig
VII.11, It can be seen that LCO can be totally suppressed in
the case of the double-rate filter while the dithering method
can only break up the regular pattern. LCO starts again in

the single~rate filter immediately after the dithering stopet.

Hence it can be concluded that the method of using double-
rate filters to suppress LCO is very much more effective than the

method of dithering.

Résumé

The nature of steady state limit cycle oscillations in a
digital filter was briefly described. The conditions for the

existence of LCO were stated and the bound discussed.

It has been suggested that a small random noise should be
added to the input to break up the LCO in a digital filter.

However, it has been found that a multi-rate digital filter (here,
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a double-rate filter has been solely considered) would supprzss
LCO completely. In general, it has been found that for a given
transfer function, there are many equivalent double-rate filters
that suppress LCO. The filter should be chosen such that the
values of the coefficients should not differ too greatly, nor
should the quantization of the coefficients be large enough to

affect the suppression of LCO.

If a proper choice of such double-rate dilters have bzen made
it has been found that this method of suppressing LCO is very

much more effective than the dithering method.



CHAPTER VIII

CONCLUSIONS

VIII.1 General Summary

The main object of this thesis is to investigate the princi-
pal properties of multirate digital filters. Due to the nature
of the device, more especially in the case of multirate filters
with periodically varying coefficients, it has been found that
the analysis is considerably facilitated by the use of state-space

methods.

After an introduction to digital filtersin general, and a
brief account of the state-space method of analysis, a mathema-
tical model of the multirate digital filter is developed. The
method of developing this model has been shown to be more versa-
tile than those using conventional methods since it could be
applied to time-varying or time-invariant filters, and to filters
of different configurations without any modification of the method.
Using this model, some interesting properties of the tramnsfer func-
tions of the multirate filter can be derived. The realization of
an equivalent multirate filter from an original single-rate filter
is straightforward and almost trivial. But since there exist var-
ious possible designs, the choice has been discussed from the point

of view of economy and performance.

Quantization errors are the main factors affecting the per-
formance of a digital filter. It is on the basis of these errors
that the multirate filter is compared to its equivalent single-rate

filter. A rigorous mathematical analysis has shown that the A/D

=249~
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conversion errors are identical in both the single-rate and its
equivalent multirate filters. Simulation results also support
this analysis. However, the errors due to the quantization of
coefficients and rounding of multiplication products are different

in the two devices.

Mathematical analysis, confirmed by computer simulations,shows
that in general, the poles of a second order multirate filter are
least sensitive to the quantization of coefficients when the filter
is time-invariant. The pole sensitivity of a time-invariant multi-
rate filter is compared to that of a single-rate filter based on
a novel criterion — the sensitivity ellipse, and it is found
that in some regions where the single-rate filter performance is
vulnerable to coefficient quantization, its equivalent multirate
filter can be used giving rise to a much less sensitive realization.
Again, the superior performance of the multirate filter in these

regions has been confirmed by computer simulations.

The effect of the rounding of multiplication products can be
treated in two ways. If the input signal is stochastic, it is
generally more realistic to evaluate the error statistically. Using
state-space methods, the statistical estimation of the errors due
to multiplication roundoff have been evaluated in both single-rate
and multirate filters, and it has been found that in some regions,
the multirate filter is superior to its single-rate counterpart.

On the other hand, if the input is deterministic, the multiplication
roundoff error usually leads to a steady-state limit cycle oscil-
lation which is detrimental to most engineering applications of
digital filters. However, using an equivalent multirate digital
filter with periodically varying coefficients, such oscillations

can generally be suppressed completely. This method of suppressing
LCO in a digital filter by using its equivalent multirate realiza-

tion has been confirmed to be successful and shown to be more ef-
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fective than the existing method of dithering.

With these properties, the advantages of applying multirate
digital filters are apparent. When an ordinary single-rate fil-
ter is found too sensitive to the quantization of coeeficients, or
when it is found to yield too high a noise due to multiplication
roundoff errors, a multirate digital filter, which has a much
greater degree of freedom in the choice of its coefficients, can
be considered as an alternative, and it can be assured to give a
more satisfactory performance if the conditions given in Chapters
V and VI are fulfilled. Perhaps the greatest use of multirate
filters lies in that they can suppress limit cycle oscillations
completely provided that the coefficients are properly chosen.
Since the conventional single-rate filters that are likely to be
encountered will almost certainly give LCO in the output for a
deterministic input, the use of the equivalent multirate filter

would be most welcome if LCO give an undesirable effect.

Finally, since the poles and zeros of a multirate digital
filter are interrelated, it can be applied to the construction
of variable filters the characteristics of which are controlled
by one single multiplier. This idea was first put forth by

Fjdllbrant and has been explained in detail {13}.

Some Open Questions and Suggestions for Further Research

Although many properties of the multirate digital filters
have been revealed through analyses and simulations, the research
work is far from being complete. There remain many question yet
unanswered and some may be interesting and challenging enough to

stimulate further research:
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(1) 1In dealing with the effects of quantizing the multipliers in
Chapter V, only the pole sensitivities of the filters were consi-
dered. But what would be the effects of the zeros of the transfer
function? The non-linear and complicated relationship between the
zeros and the multipliers of a multirate filter (see section III.5)
renders the problem very difficult, if at all fruitful, for amaly-
sis. But perhaps with the aid of computer simulations, one may be
able to estimate the movements of the zeros caused by the multi-
plier quantizations. If the relative movements of the poles and
the zeros are known, it should be helpful to estimate the change
in the sharpness of the cut-off and in the translation of the re-

sonant frequency.

(2) The comparison in Chapter VI of the statistical errors due to
multiplication quantization in a multirate and in a single-rate
filter was based on the assumption that the filters are highly se-
lective, i.e. the poles are very closed to the unit circle. Clear-
ly, if this is not the case, the analysis would be different. Can
a clear-cut comparison be possible if the poles are not so closed

to the unit circle such that €? cannot be ignored?

(3) The problem of limit cycle oscillations in a multirate digital
filter leaves many unanswered questions and perhaps even opens a
wide field of research. Chapter VII has only demonstrated that

LCO can be totally suppressed by periodically varying multirate fil-
ters for one type of deterministic input of a paricular magnitude,
viz. a unit impulse. It has been found that the set of double-rate
filters which suppresses LCO for a unit impulse is different from
the set that suppresses LCO for a unit step.What is the relationship
between the two sets, or indeed, between the different sets for

different types of deterministic inputs?

On the other hand, if a set of double-rate filters give no LCO
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for a particular deterministic input, is there any relatiomship

between these filters within the set?

For a unit impulse, a set of double-rate filters would sup-
press LCO. But if the magnitude of the impulse changes, most
members of the set would still suppress LCO, but for a few of
them, LCO would arise again. What is the reason for this? Would
the same happen if the input is some deterministic signal other

than the unit impulse?

What would happen if the number of shift sequences within a
sampling period is greater than two, i.e. ¥ > 2? Would the same
observations that are discovered in the double-rate filter still
hold? Are there any advantages over the double-rate filter if

N > 2 as far as suppression of LCO is concerned?

In general, if a single-rate filter exhibits LCO for a parti-
cular input, its equivalent time-invariant multirate filter would
exhibit LCO as well. 1Is there any relationship between these os~
cillations, say, in their amplitudes, frequencies or harmonic con-

tents?

(4) Throughout the whole thesis, attention has been focused on
second order filters realized in the direct canonic form. Recently,
many other configurations have been suggested by research workers

in the field of digital filtering {9},{12}. In section IIL.8, it

has been shown that the same technique of developing a mathematical
model can be applied to filters of other configurations. But can
the same advantages in pole sensitivity, multiplication quantization
errors and suppression of LCO offered by the second order direct

canonic form be found in other configurations?
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(5) It has been tacitly assumed throughout the whole thesis that
the number of shift sequences, N, in a sampling period is a positive
integer. If the view is widened, and if N is taken to be a fraction
or even an irrational number, what would the properties of such

a "multirate" filter be?

The above questions suggest a few fields for further research;
some, like the first two, are short-term and specific, while the
others are of longer terms and more general. Until these questions
are answered, the work on multirate digital filters is still far
from complete, by which time, I am sure, other questions will arise
and the frontier of research on the subject will be pushed still

further.

Digital filters are not yet widely used in industry at the
present moment, the main reason probably being the cost of the de~
vice. With the rapid advances in integrated circuit technology,
it appears that in the not too distant future digital filters will
be economically possible for implementation. However, while it is
certainly true that a lot of significant work has been done in the
area of digital filtering, it is my opinion that the field is still
very much in an embryonic state in the sense that several basic
questions have remained yet unanswered, and new areas, of which the
present work may be regarded as but one of numerous, yet unexplored.
Nevertheless, with so much research effort being exerted in this
important field, each contributing some new ideas and discoveries
in the vast realm of knowledge upon which the progress of science
is based, our knowledge in this area will soon be much more sophis-

ticated and refined.
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VIII.3 CODA — On the Value of Scientific Research

Newton once remarked, "Hypothesis, whether metaphysical or
physical, whether of occult qualities or mechanical, has no place
in experimental philosophy". This is certainly a very high stan-
dard. But is it the least that every man must break through to
avoid mediocrity? Should the value of scientific research be
merely measured by how big a step of progress the work has carried
forward? Lao Tse, who flourished some twenty-two centuries before
Newton, put forth a far more convincing and encouraging philosophy,
"..., a mountain is built of individual grains, a jourmey of a
thousand miles is made up of small steps, ..., S0 regard not your
house too empty and your room too poor"+. Should this be a more

suitable outlook? I wonder.

Furthermore, in estimating the value of scientific research,
it is my opinion that too much importance has been attached to the
acquisition of power by using the new knowledge — power of an in-—
dividual over another, power of one group over another, power of
one nation over another. But scientific research is not itself
at fault. Knowledge is good and ignorance is evil; to this prin-
ciple the lover of the world can admit no exception. Nor is it
power in and for itself that is the source of danger. What is dan-
gerous is power wielded for the sake of power, not power wielded
for the sake of genuine good. Power is not one of the ends of
life, but merely a means to other ends, and until men remember the
ends that power should subserve, science will not do what it might

to minister to '"the good life". Science may bestow joys and beau-

ties of life upon more people than could otherwise enjoy them. If

-

so, its power will be wisely used. But when it takes out of life

tAuthor's own translation
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the moments to which life owes its value, science will not deserve
admiration, however cleverly and however elaborately it leads men
along the road to despair. The sphere of values lies outside sci-
ence except in so far as science consists in the pursuit of knowledge.
Science as the pursuit of power must not obtrude upon the sphere of
values, and scientific technique, if it is to enrich human life,
must not outweigh the ends which it should serve. The new powers
that science has given to man can only be utilized safely by those
who, whether through the study of history or through their own ex-
perience of life, have acquired some reverence of human feelings

and some tenderness towards the emotions that give colour to the
daily existence of men and women., This to me, is a subtle and of-
ten elusive state of aesthetical and spiritual values that are em-
bedded in the studies and professionmsof science, and it is in this
spirit that this research project has been performed and that future

works are hoped to be carried out.

In conclusion, I would like to re-echo by quoting Bertrand
Russell { 55}:

"Knowledge and feeling are equally essential ingredients both in the
life of the individual and in that of the conmunity. Knowledge, *f
i1t 18 wide and intimate, brings with it a realization of distant
times and places, an awareness that the individual is not omni-potent
or all-important and a perspective in which values are seen mora
elearly than by those to whom a distant view is impossible. Even
more tmportant than knowledge is the life of the emotions. A world
without delight and without affection is a world destitute of value.
These things the secientific manipulator must remember, and if he
does his manipulation may be wholly beneficial. ALl that is needed
18 that men should not be so intoxicated by new power as to forgev
the truths that were familiar to every previous generation. Not

all wisdom is new, nor is all folly out of date.
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Man has been disciplined hitherto by his subjection to nature.
Having emancipated himself from this subjection, he is showing
something of the defects of slave-turned-master. A new moral
outlook s called for in which submission to the powers of nature
18 replaced by respect for what is best in man. It is where this
respect 18 lacking that scientific technique ts dangerous. So
long as it 1s present, seience, having delivered man from bondage
of nature, can proceed to deliver him from bondage to the slavish
part of himself. The dangers exist, but they are not inevitable,

and hope for the future <s at least as rational as fear."
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