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ABSTRACT 

In a conventional digital filter, the digital signals in the 

filter are shifted forward from one register to another at the pulse 

repetition (sampling) rate while the output sampres also appear at 

the rate of sampling. Also, all the filter coefficients remain un-

changed throughout the filtering process. However, if the shifting 

is continued several times during the pulse repetition interval so 

that the signals stored in the registers re-circulate in the internal 

paths of the filter during each sample interval, then the processing 

leads to multiple output signals. Furthermore, if the filter multi-

plication coefficients are also allowed to take on different values 

for different shift sequences, the filter will possess some useful 

properties. 

It is the object of this thesis to introduce such a "multi-rate" 

digital filter and to study its behaviour. The quantization errors 

for such a device are considered analytically. The investigation 

into these errors reveals many interesting properties of the multi-

rate digital filter which are confirmed by computer simulations. 

Under certain circumstances, these properties render the multi-rate 

filter more advantageous than the conventional digital filter. Possible 

engineering applications of such a filter are suggested. 
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CONVENTIONS AND SYMBOLS 

The following system of numbering and cross-references is used 

in this thesis: Each chapter is labelled with a Roman numeral and 

is sub-divided into sections. All sections, examples, figures and 

equations within a chapter are numbered consecutively starting from 

1. Hence "section V.3" refers to section 3 of chapter V,"fig (VII.9)" 

refers to figure 9 of chapter VII. Equations are generally referred 

to by their numbers; thus "substituting into (III.51)" means 

"substituting into the fifty-first equation of chapter III". At the 

end of the volume, there is a list of references. When such a refer-

ence is made, it is denoted by a number in the braces { }. Thus 

{31}, {42} refers to references 31 and 42 of the list. 

The following is a list of principal symbols appearing in the thesis. 

1. Boldface letters denote vectors and matrices, e.g. y, A, i 

2. Greek and italic type are used for scalar-valued variables, 

functions and operators, e.g. a, I(z), Etu(k)]. 

3. Capital letters are used to denote the z-transforms; e.g. H(z) 
is the z-transform of h(n). 

4. Capital script letters denote sets (spaces), e.g. 5? 

5. The operator of z-transform is denoted by Z (0 with the dot 

standing for an undesignated variable. 

6. Superscript asterisk denotes the complex conjugate of a number, 

e.g. X. 

-10- 



7. Superscript minus one denotes the reciprocal of a quantity, the 
- 1 

inverse of a matrix or a z-transformation e.g. z-1, A I  vi  

8. Superscript (T) denotes the transposed a matrix, e.g. BT  

9. A prime over a continuous function of a single variable generally 

denotes the derivative w.r.t. the variable, e.g. f'(t), ?a) 
denotes the nth derivative of f w.r.t. t. 

In particular, the following are some symbols and abbreviations 

with special meanings: 

a 	equals by definition 

implies 

4= 	is implied by 

4 	implies and implied by 

iff if and only if 

V 	for all 

is approximately equal to 

is equivalent to 

<.> matrix formed by taking the absolute values of each of its 

elements. 

absolute value 
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OA norm 

det 	determinant 

tr 	trace 

s.t. 	such that 

w.r.t. with respect to 

L.H.S. Left hand side 

R.H.S. Right hand side 

Q.E.D. quod erat demonstrandum 

.. 2,0 Kronecker delta 

6(t) 	delta function 

denotes the square root of -1; an integer 

0 	null matrix, zero vector 

identity matrix 

4, 	state-transition matrix. 



CHAPTER I 

INTRODUCTION - DIGITAL FILTERS 

I.1 	Introductory Remarks  

Digital filtering techniques have been in use for some 

time in sampled-data control systems {28}; {39},' {44},  1531,  

{60}. In the sampled-data control systems, the digital filter 

has been implemented with the use of a digital computer. The 

extension of digital filtering techniques to other areas has 

been limited to those where the use of a digital computer was 

practical. 

In recent years, digital filters have been used more and 

more for real time signal processing. By real time, it is 

implied that digital processing takes place fast enough so 

that the output of the digital filter is available for direct 

control or observation in a larger system. Digital filters 

are constructed using digital logic computers as their basic 

building blocks and the rapid advance in the development of 

solid state devices has made such digital filters practical. 

The development of large scale circuit integration (LSI) 

promises to make these systems even more economical. 

Digital filters have many advantages which recommend 

their application in place of passive or active filters. The 

most important advantage is the very accurate drift free operat- 

ion which is possible. This allows the realization of stable 

filters with very high Q's or with extremely long time constants. 

There is negligible drift with temperature or time, since the 

filter characteristics are as stable as the digital clock source, 

-13- 
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commonly a crystal-controlled oscillator, with stability 

greater than one part per million for large variation of time. 

Additional advantages lie in the ease with which the filter 

characteristic may be changed, making them particularly useful 

as time-varying filters with adaptive or frequency tracking 

requirements. With some digital filter types, a linear phase 

characteristic is readily obtained, resulting in improved 

transient response and constant delay characteristics. Filters 

for very low frequencies are easily constructed, with a large 

size reduction as compared to that of passive filters. Digital 

filters contain no reactive components. The elimination of the 

accuracy and drift problems associated with these components 

will be well appreciated by design engineers. 

Basically, a digital filter is comprised of three units, 

an analogue-to-digital (A/D) converter, a digital calculator, 

and a digital-to-analogue (D/A) converter (Fig.I.1a). 

Fig I.lb Typical Voltage Waveforms at 
Points A,B,C,D 
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The input and output signals of the digital filter are 

narrow amplitude-modulated pulses, one pulse per sampling 

period T. At the time t=nT, the continuous input signal is 

momentarily sampled, and the pulse u(nT) appears at the input 

to the digital filter. In the A/D converter, this pulse 

amplitude is converted into a digital word. This digital word 

is a coded sequence of binary digits (bits), which represents 

the amplitude u(nT). The length of the word, i.e., the number 

of bits it contains determines the accuracy of the represent-

ation. The digital calculations are performed with these words, 

and the calculator output word is inserted into a D/A converter 

to produce the output pulse y(nT) of the digital filter. A 

holding circuit follows the digital filter to convert the pulse 

stream to a continuous output signal as shown (fig. I.1b). 

Further analogue filtering may be desired to remove the signal 

components resulting from the step approximation which results. 

1.2 Digital Filter Operation  

The operation 'of a digital filter is defined by a difference 

equation. This equation defines the output pulse amplitude y(nT) 

as a function of the present input pulse u(nT) and any number of 

past input pulses and output pulses. The operations are perform-

ed in the digital calculator, with the words representing the 

required past input pulses and output pulses being stored in 

digital shift registers. The usual practice is to simplify the 

notation to u(n) and y(n), with the understanding that n refers 

to t = nT. This will be done in the remaining parts of this 

thesis. A general formula for the difference equation is 

y(n) = Eao(n-i) 
o 



H( z) = Y(z) 	Ea / (1.4) 
U(z) 
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If y(n) is a function of only the present and past input 

pulses, the filter is termed non-recursive. If the past out-

put pulses are included as well, then the filter is of the re-

cursive type. It is then clear that recursive filters have 
infinite-duration impulse responses while non-recursive filters 

have finite-duration impulse responses. An important difference 

between recursive and non-recursive digital filters exist in the 

range of M and N encountered in typical applications. Recursive 
filters usually meet the kinds of specifications arising in 

practice with at most 10 or 20 coefficients. Thus the computat-

ion required to produce each output, given a new input, is of 

the order of 10 to 20 multiplications and additions per sample 

point. In contrast, non-recursive filters, when used to realize 

complex-shaped frequency responses, may require several hundred 

coefficients. Here in this thesis, it is the recursive filters 

that are considered. 

Analysis of digital filter is carried out with the use of 

z-transform. The z-transform, X(z), of a function x(t) is 

defined as {29} 
co 

X(z) = 	[x(t)] =22x(n).z-n 	(I.2) 
n.o 

where z = esT and x(n) is obtained by sampling x(t). Hence taking 

the z-transform of eqn(I.1), one obtains 

Y(z) = U(z)l)iz-i  - Y(z)Ebiz-i 	(I,3) 

irzo 

From eqn(I.3), the z-transform transfer function is defined as 

1 	biz 
1.= f 
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The change of the variable z = e
sT 

constitutes a mapping of a 

portion of the s plane into the z plane. This is shown in fig 1.2. 

Since z is periodic with period T, a one-to-one s-to-z mapping is 

valid only for the strip in the s plane between +i s/2, Within this 

strip, the left half-plane maps into the unit circle (1zI = I). The 

right half-plane lies outside the unit circle, while the unit circle 

itself corresponds to the do3 -axis. 

LY 

.4/ 111K/V/ 
CigCLE t= 114.1.  

- PLANE 

.1.0 Re()) 

Fig 1.2 

1.3 Digital Filter Configurations  

Assume that a digital filter has been designed in the sense that 

the transfer function H(z) has been chosen. H(z) is a ratio of poly-

nomials in z-1, and is finite outside and on the circle Iz1=1 in the 

z- plane. From (/.4), H(z) might be written in some other forms, for 

example, 

	

H(z) = H
1
(z) + H

2(z)+ 
	(T.5) 

where H1
(z) and H2(z)' etc, are ratios of polynomials, or 

	

H(z) = H1(z) x H2  (z) x 
	(1.6) 

or some other forms{9}. 
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For analogue filters, the realization of a given system 

function is moderately difficult and received considerable 

attention. For digital filters however, the implementation 

of a difference equation to realize a given H(z) is almost 

trivial. A diagram to describe the time domain difference 

equation (I.1) is shown in fig. 1.3. The triangle labelled 

with a constant represents multipication of a variable by a 

constant and the rectangle with 2-1  inscribed represents a 

one-sample delay. The circle with a label of E is a summing 

point. 

If an intermediate variable w(n) is introduced such 

that eqn. (I.1) is replaced by a pair of equations, but with 

no additional computation, i.e. 

nw (n) = u(n) 	 biw  
1=1 

y(n) = 	aiw(n -i) 
(To 

(1.7) 

then a circuit with less memory requirement than that shown 

in fig. 1.3 is obtained (Fig.I.4). Both fig. 1.3 and fig. LA 

have the same overall transfer function, and are called the 
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direct forms. It is to be emphasized that the coefficients 

ai  and bi  in the transfer function are the same as those 

constants in the network. 

Fig 1.4 The Direct (Canonic) Form for N = M 

Despite the simplicity of the direcr forms that realize 

H(z), they are undesirable for high-order difference equations 

for reasons of numerical accuracy 001. But there are other 

forms. Suppose H(z) is expressed in the form of eqn. (1.5), 

then the output y(n) is the sum of the outputs of several 

smaller filters Hi(z), H2(z), ... Each of these can be realized 

in either of the direct forms. Thus such representation of 

H(z) leads to the configuration of fig 1.5. In the extreme, 

each of the terms in eqn. (1.5) would be a ratio of first- or 

second-order polynomials in z-1. The parallel form tends to 

be not nearly as sensitive to quantization effects as the 

direct forms {30}. 

If H(z) is expressed in the form of eqn (1.6), then 

H(z) = H (z) x 11(z) x . 1 	2 
x Hk(z) (Ii8) 

Since these transfer functions are multiplied, the filters are 

in cascade. Fig. 1.6 shows the realization of such a cascade 

ccInfiguraticn"Thecascadeforin'Tilitheacl
) being 



Lt 

y(e0 
Fig 1.7 A Non-Recursive Digital Filter 
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simple ratios of first- or second-order polynomials, is also 

preferable to the direct forms for numerical reasons. 

      

,y(,t) FYI) 

  

I
H2 I 1) 4.4....s. Hk(j) 

      

Fig 1.5 The Parallel Form 	Fig 1.6 The Cascade Form 

There are many other ways of realizing H(z). However, 

the direct, parallel and cascade forms are the most commonly 

used configurations. 

The above-mentioned realizations assumed that H(z) was 

a ratio of polynomials. These are recursive filters. For 

non-recursive filters, H(z) is a polynomial in z-/ rather 

than a ratio of polynomials since the output of a non-recursive 

filter depends only on the present and past inputs. To 

realize a non-recursive filter, both the direct forms degenerate 

to a tapped delay line with a weighted sum of signals at the 

equally spaced taps. (Fig. 1.7). This realization has also 

been called a transversal filter. 
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The parallel form has no particular meaning for a non-

recursive filter; while the cascade form, although possible, 

is not in common use because it is usually difficult to factor-

ize the high-order polynomials H(z), moreover, there is no 

particular advantage to realize non-recursive digital filters 

in the cascade form. 

1.4 Representation of Numbers in a Digital Filter  

A real number in a digital filter can be represented using 

a finite number of bits in either the fixed-point form or the 

floating point form {14}, {64}. The error introduced in such a 

representation is discussed here. Only binary arithmetic will 

be discussed. The fixed-point case is first considered. 

Suppose a number v which has been normalised so that Iv1.1 1 

has the binary expansion (2's comptenent representation) 

- v = -v0  + hF1 	
k v, 2 	v =1 or 0 (1.9) 

= 

To approximate v by a "word" of only Z bits rounding or truncat-

ing is used. In rounding, a 1 or 0 is first added to the Zth 

bit vZ-/ according to whether the (Z+1)th bit v is 1 or O. Then, 

only the first Z bits of the result are kept. In truncating, 

those bits beyond the most significant Z bits of the result are 

simply dropped. Since the error introduced by truncating is 

more serious than that introduced by rounding, truncating arith-

metic is seldom used. Although modification of the analysis for 

truncating arithmetic is rather straightforward in most cases, 

only rounding arithmetic will be considered. 

Let EV3/ be the Z-bit representation of the number v. It 

is then clear that 
- 

-2
Z 
 < v - [v] *2

-Z 
(1.10) 
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if rounding is used. An error of approximation c may be defined 

by 

[V]z  = v +e 	 (1.11) 

with -2-Z  4 c < 2
-Z
. The approximation of v by [viz  is identical 

to the quantization of the number v by a quantizer with uniform 

step size q = 2
-Z+1

, and the error c is referred to as the quanti-

zation noise {3}. 

When two Z-bit fixed-point numbers are added, their sum 

would still have Z bits, provided there is no overflow. There-

fore, if there is no overflow, fixed-point addition causes no 

error. On the other hand, the product of two 1-bit numbers may 

have more than Z-bits. Thus rounding is needed if Z bits are 

to be kept. Let the actual computed product of two numbers v/  

and v
2 

be denoted by [v
1
v]

Z' then from the above discussion, 

[v1v
2Z 

= v1v2  + c 	 (1.12) 

where the error c is bounded by -2 1 4 c < 2-Z  

A floating-point number is written in the form (sgn) 2a.b, 

where a is a binary integer called the exponent and b is a 

fraction between and 1 called the mantissa. The number of 

bits of the exponent determines the range of numbers that can be 

so represented, and the mantissa can usually take on the value 

0. To represent a number v in floating-point form with only an 

Z-bit mantissa, (it should be noted that for fixed-point numbers, 

is the entire wordlength, but for floating-point numbers Z is 

only the length of the mantissa), one first determines the small-

est integer exceeding log2  M, denoted by {log
2 
Iv1). The 

binary expansion of the fraction vglog21v11 is then rounded-off 

to Z bits. Let [v]1  denoted the Z-bit mantissa floating-point 

approximation of the number v; then it is clear that 

[V] = v(1 + e) 	 (1.13) 
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where the relative error c is bounded by -2 	c < 2-Z.  

Unlike the fixed-point case, both addition and multipli-

cation in floating-point can introduce roundoff error. Let 

iv1 + v211 and [v1v2 Z denote respectively, the actual computed 
sum and product of the two numbers vl  and v2, then 041,{64} 

[v1  + v 2] 	(v i+v 2) (1+c) 

tv
1 
v
2)1= (v1. v2) (1+6) 

(I. 14) 

where the relative errors c and 6 are bounded by -2-Z c < 2 , 

and -2 	6 < 2-Z. 

The roundoff error from a floating-point digital filter is 

usually (but not always) less than that from a fixed-point filter 

with the same total number of data digits because of the auto-

matic scaling provided by floating-point arithmetic {33}, {62}. 

However, since floating-point arithmetic is significantly more 

complex and costly to implement, most digital filters have bean, 
and will probably continue to be, constructed with fixed-point 

hardware. Hence, in this thesis, only fixed-point digital filters 

will be considered. Oppenheim {48} has proposed another interest-

ing mode of arithmetic for digital filter implementation, called 

block-floating-point, which provides a simplified form of auto-

matic scaling of the filter data. As would be expected, the 

performance of block-floating-point appears to lie somewhere 

between those of fixed-point and of floating-point. 

1.5 Quantization Effects in Digital Filters 

As discussed in the previous section, a number in the digital 

filter has to be rounded-off. There are three places at which 
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such rounding occurs. These three sources of "quantization error" 

are 

a) analogue to digital (A/D) conversion errors 

b) errors due to the finite representation of the digital filter 

coefficients 

c) quantization errors due to rounding off the result of multi-

plication of data with the filter coefficients. 

The first source of error, A/D conversion, is incurred when 

the input to the filter is quantized to a finite number of bits. 

This quantization creates an additive noise, which may be treated 

as random if the quantization is fine enough and if the signal 

varies sufficiently relative to the sampling rate and the number 

of quantization levels 01. 

The second source of error, finite representation of filter 

coefficients, is a deterministic effect. This effect is analogous 

to that encountered in continuous filters when the components call-

ed for by the design are not available. It can be taken into 

account by recomputing the poles and zeros of the filter with the 

quantized coefficients. The small changes in the filter coeffici,?nt,1 

due to finite number representation results in a corresponding 

change in the poles and zeros. Kaiser (301 has studied the 

sensitivity of the pole positions of an n
th order digital filter 

due to coefficient quantization. In his analysis, he concludes 

that for a direct filter realization, the sensitivity of the pole 

positions increases with the order n. This result has been 

corroborated in the work reported by Knowles and Olcayto (381. 

Gold and Radar (211 have studied the coefficient quantization 

problem for second-order digital filters. They conclude that a 

realization via a pair of coupled first-order sections is less 

sensitive to coefficient changes than a single second-order form. 

Mantey (461 has studied the coefficient quantization problem by 
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selecting a state variable representation for the digital filter. 

His results, as well as the results from the other workers mention-

ed before, indicate that a digital filter should be realized by a 

parallel or cascade connection of first or second order subfilters 

instead of a direct nth  order realization. (It is for this reason 

that this thesis mainly considers the second-order filter). 

The third source of error arises in the evaluation of the 

arithmetic products and their sum as indicated in eqn (1.1). For 

the non-recursive filter (by = 0, j = 1, 2, ..., M) the magnitude 

of the error incurred by using finite arithmetic can be quickly 

estimated by approximating the action quantizing with a noise 

source ( which can be considered random in most cases). For 

the recursive filter the calculation of the errors is more difficult 

as a result of the feedback inherent in the by terms. For one 

thing, while there is no absolute necessity to round the product 

in a non-recursive filter, the sums of products that are fed back 

in a recursive filter must be rounded, since after a multiplica-

tion of two quantities represented by Z1  and 7.2  respectively, the 

product contains 11  + Z2  bits. If it were fed back without round-

ing, the next stage would generate numbers requiring yet more bits. 

Again, each rounding operation adds a small noise term, which can 

be considered to be random in most cases, and these terms are 

passed through a digital filter consisting of part or all of the 

required digital filter (201, {22}, (361, (371, {38}, (421, (521. 

Obviously, in a cascade realization, the noise generated in the 

k
th 

stage cannot affect any of the earlier stages. A similar effect 

causes the noise in the direct (but not the direct canonic) 

realization to pass through those portions of the filter that 

realize the poles of H(z) and not through those portions that 

realize the zeros. 

A related effect also may occur in recursive filters as a 

result of round-off error when the round-off noise is highly 
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correlated with the signal or highly correlated with itself from 

iteration to iteration. This is called the dead-band-effect{5}, 

{22}, This is best illustrated by an example. Suppose the 

digital filter is described by 

y(n) = 0.99 y(n-1) + u(n) 	(I.15) 

but is implemented with products rounded to the nearest integer. 

Then with the input zero, the output would be expected to decay 

to zero. However, any output in the range -50 to 50 causes the error 

due to quantization to exactly balance the decay per iteration, 

so that the erroneous output is maintained, i.e. there exist a 

steady output. Higher order filters have more complicated effects; 

the output may go through the deadband and reach the other side, 

or steady-state oscillations (generally known as limit cycle 

oscillations), may occur. 

In considering quantization effects, it is not as necessary 

to compute the exact results of the effects, which may be difficult, 

as to estimate the bounds on them as a guide to avoiding the 

effects that cannot be tolerated. The theory developed in the 

literature so far has concentrated on rough estimates, such as 

upper bounds and mean square errors. 

1.6 Objectives and Outline of the Thesis  

So far it has been assumed that the digital signals in the 

filter are shifted forward from one register to another with the 

pulse repetition (sampling) frequency while the output samples 

also appear at the rate of sampling. It has also been assumed that 

all the filter coefficients remain unchanged throughout the filter-

ing process. However, if the shifting is continued several times 

during each pulse repetition interval so that the signals stored 

in the registers re-circulate in the internal paths of the filter 
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during each sampling interval, then this processing leads to multiple 

output signals {13}. Furthermore, if the filter coefficients are also 

allowed to take on different values for the different shift sequences, 

the filter will possess some interesting properties. 

It is the main object of this thesis to introduce such a "multi-

rate" digital filter and to investigate its properties. The quantiza-

tion errors for such a device are analysed. Because of the nature of 

the device, it has been found that the use of state-space method is 

very much more convenient in these analyses. The investigation of 

these errors reveals many interesting properties of the multirate di-

gital filter, and under particular circumstances, these properties may 

render the multirate filter more advantageous than the conventional 

digital filters. Engineering applications of the multirate digital fil-

ters may be possible if such advantageous properties are utilized. To 

the best knowledge of the author, this investigation is novel, and the 

results obtained are original unless otherwise stated. 

Chapter II gives a brief account of the state-space analysis which 

forms a basis for the mathematical analysis of the ensuing chapters. 

Chapter III develops a general mathematical model of the multirate 

digital filter from the point of view of state-space concept. From 

such a model, interesting properties of the ideal multirate digital 

filter are exposed. Several ideal multirate digital filters are de-

signed according to the model and their performances compared to an 

equivalent single-rate filter. Chapter. IV, V, VI and VII look into 

the quantization errors of the multirate digital filter. Each chapter 

begins with an introduction to the particular error discussed in the 

chapter and, where appropriate, a brief account of the usual methods 

used to solve the problem. Then the error associated with the multi-

rate digital filter is discussed and analysed. Where suitable,computer 

simulations of the multirate digital filter are performed so as to 
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verify the theoretical analyses. Although limit cycle oscillations 

in a digital filter are phenomena which arise from the non-linear 

rounding of multiplication products, the subject has been treated 

separately in chapter VII. This is because limit cycle oscillations 

are, by their very nature, generated by quantization error sequences 

which are highly correlated, while multiplication round-off errors 

are treated more or less being uncorrelated in chapter VI. 

The thesis concludes with an indication of those problems which 

remain unsolved and perhaps may be of interest for further research. 

Since the commencement of this project, a number of papers have 

appeared f21, {27} which consider similar problems to those of this 

thesis and some similar results have been obtained. However, the 

approaches taken by these authors to the consideration of these 

problems are quite different from those taken in this thesis. Unless 

otherwise stated, the results and conclusions presented here were 

obtained independently. In particular, the following are considered 

to be the more significant contributions: 

a) The mathematical modelling of a multirate digital filter with 

periodically varying coefficients and the investigation of the 

properties of its transfer functions. 

b) The consideration of the processing of A/D noise through a 

multirate digital filter. 

c) The consideration of the pole sensitivity of a multirate filter. 

d) The comparison of pole sensitivities between single-rate 

and multirate digital filters. 
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e) The comparison of multiplication round-off errors between 

single-rate and multirate digital filters. 

f) The discovery of the use of multirate digital filters to 

suppress limit-cycle oscillations for a deterministic input. 



Chapter II 

STATE-SPACE ANALYSIS OF DIGITAL FILTERS 

A knowledge of certain mathematical techniques is needed to 

analyse discrete-time systems. This chapter is devoted to a brief 

description of the state-space method which is used in most parts 

of this thesis. 

II.1 Introduction  

In general, the analysis and design of linear systems may be 

carried out by one of two major approaches. One approach relies 

on the use of Laplace and a-transforms, transfer functions, block 

diagrams or signal flow graphs. The other method, which has gained 

significant importance in system theory and engineering is the state 

variable technique. 

In a broad sense the state variable method has at least the 

following important advantages over the conventional transfer 

function method: 

a) The state variable formulation is natural and convenient for 

computer solutions. 

b) The state variable approach allows a unified representation 

of digital systems with various types of sampling schemes. 

c) The state variable method allows a unified representation of 

single variable and multivariable systems. 

d) The state variable method can be applied to certain types of 

nonlinear and time-varying systems. 

In the state variable method a continuous-data system is 

-30- 
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represented by a set of first-order differential equations. For 

a digital system with discrete-data components the state equations 

are first-order difference equations. 

11.2 Reciprocal Difference Operator Systems  

A discrete-time system can generally be described by a differ- 

ence equation. If a system is described by a difference equation 

of the form 

y(70417) + b1y(k+N-1) + 	+ bm_l y(k+1) + bm y(k) = aNu(k) 	(MI) 

it is called a reciprocal difference operator system. In contra-

distinction to this system is the difference operator system 

charaterized by the difference equation 

y(k) = aou(k4A) + a1u(10-1111) + 	+ c i _iu(k#1) + amu(k) 

If E[u(k)] denotes the unit shift operator of u(k), i.e. 

qt(k)] 	u(k#1) 

and defining the shifting operators 

f(E) = E
N 
 + b1

E
NA

+ ... + -1 b E + bN  
• 

g(E) = a E
hf 	 1 
+ a1Em  + ... + a44E + a o 	 m 

then (II.1) and (II.2) simplifies to 

f(E)[y(k)1 = aNu(k) 

y (k) = g (E) [u (lc)] 

Consider (II.1) and suppose a new set of variables (called state- 



(1/.10) y(k) =.I1 	0 	0 • • • 01 x
1 
 (k) 

x2  (k) 

x3(k) 
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variables) are chosen such that 

x
1 
 (k) = y(k) 

x2  (k)= x
1  (k+1) = y(k+1) 

x3(k) = x2(k+1) = y(k+2) 

xN(k) = xdk+1) = y(k+Iti-q) 

Rearranging the set of equations(II.7), one obtains 

(II.8) 

xm(k+1) = y(k+N) = -b,x1(k)-744x2(k)- ... -bix1(k)4a,u(k) 

or, in matrix form, (II.8) can be written as 

xi(k+1)-  0 	• • • 	 0 -x 1(k) + 0 u(k) 

x
2
(k+1) 0 	 • • • 	 0 x2  (k) 0 

• • • • (".9) 
• 

xidk+1) 0 	0 	0 	. . . 	1 x„_,(k) 0 

xN (k+1) 
_ 

-bN 	-bm_2 	. . . 	-b1  x,„ (k) all 

Eqn(II.9) is called the state equation of the system. For this 

choice, the output equation of the system is given by 

x
1
(k+1) = x2  (k)

x2  (k+1) = x
3(k) 

Equations (II.9) and (II.10), called the dynamic equations of 
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the system, can be written in a more compact form: 

x(k+1) = 

N (k) = 

where 	A = 

Ax(k) + 	B u(k) 

c x (k) 

0 

	

so. 	

0 

• • 	• 	 . 	• 

	

0 	0 	0 	. . . 	. 	1 

	

-b 	-b 	-b 	-b N 	 N-2 

	

[1 	0 	0 	• • • 	0] 

B= 0 
0 

0 
a 

(11.11) 

(11.12) 

As can be seen, the state vector is N-dimensional, and consequently, 

the state space over which x(k) ranges is R7 where $r denotes an 
N-dimensional linear space{24}{57}. Obviously, there are many 

other ways to choose the state vector x(k), however, since the 

order of the system is N, no matter how the state vector is defined 

the state space is still N-dimensional. Although it has been im-

plicitly understood that the coefficients bi  and ai  in (11.4) are 

constant, they need not be. They may be functions of time and the 

above development of the state equation is still valid. 

As previously remarked, the choice of a state vector is not 

unique. To illustrate this further, suppose that, instead of the 

state vector in (11.7), a vector x' is selected such that the state 

variables are 

xr1  (k) = y(k+N-1) 

x2(k) y(k#117-2) 

x' (k) = y (k) 
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In exactly the same way as shown above, the dynamic equation of 

the system are:- 

st (k#1) 
y(k) = C' 

where 	= 

x' (k) 	it'u(k) 
(k) 

	

-b2 	-b„ 
1 	0 	... 	0 

0 	1 	0 

• 00O 

B '  

0 

0 
0 
• 

(II.14) 

(II. 15) 
0 

0 	0 	... 	1 0 0 
cr = 	Io 	o 	: 

It is observed that the state vector 	x of (11.7) is related to 

the state vector in (II.13) through the matrix equation 

x= T xl 	 (II016) 

where T is the NxN non-singular matrix 

T = 0 	000 	0 	: 	1 (11.17) 

0 	: 1 	0 

0 	• . • 	 0 

1 	• 	0 	0 	0 

Substituting x= T x' 	into the state equation (ILI° for n , then 

20(k+.2) = T I A T x' (k) + f iBu(k) 	 (IX. 18) 
y(k) = C T x ' (70 

Comparing the matrices in (II.18) with those of (I1.14), it follows 

that 

=T AT 

B' = T / B 

C' = CT 
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What is established essentially is: There are numerous ways of 

associating a state vector with a system of order N. The different 

ways, however, amount to designating different variables to points 

in the space W. That is to say, the state variables are connected 

by a one-to-one linear mapping, i.e. 

x = T xl 	 (II.20) 

where T is an NxN non-singular constant matrix. 

II.3—GeneralTifferenee'OperetOr'SyStems  

The general system characterized by 

[f(E)] y(k) = [g (E)1 u(k) 	(II.21) 

will now be considered, where f(E) and g(E)are defined by (11.4). 

The order of f(E) is N and that of g(E) is M. For a physically 

realizable system, M < N. In terms of the z -transform transfer 

function 

. .9(z) 
H(z) 

	

	 (11.22) 
fTz) 

a physically realizable system may have a finite number of poles 

equal to or greater than the number of zeros. Hence it does not 

lose any generality if (II..21) is rewritten as 

y(10111)+b1y(10-N71)+ 	+b,,y(701)+4,y(k) 

= aou(k4N)q-a1u(k+10-1)+ 	+a,s(k+1)+czhu(k) (11.23) 

where g(z) and f(z) are assumed to be of the same order N. 

As in the case of reciprocal difference operator system, a 

set of state variables, x4(k), are chosen such that, 
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y (k) = xi (k) + a ou(k) 
x1  (k+1) = 2(k) + 1 u(k) 

(11.24) 

xN (k+1) 	-fin xi (k)-ftiox2(k)- 	-(31x„ (k) + aN u(k) 

where a o, a 1,...,an ,31,02,...,8m are to be determined. 

Taking a unit shift in the first equation of the set (11.24), 

y(k+1) 1(k+1) + a ou(k+1) 

Substituting for x1(k.01) gives 

y(k#1) = x2(k) + a 1u(k) + a 0  u(k+1) 	 (11.25) 

Again taking another unit shift, one obtains 

y(k+2) a x2(k+1) + a 1u(k+1) + a ou(k+2) 

and substituting for x2(70.1), one obtains 

y (k+2) = x3(k) + a 2u (k) + a 1u (k+1) + a ou(k+2) 	(11.26) 

Following this procedure, the following equations are established 

y(k+N-1) = x, (k) + a0_,u(k) +ec ..,u(k#1) + 	+ a ou(k+N-1) 
y (k+N) 	0, xi  (k)+§,,,x2  (k) +0  . .+01x,„ (k) } + a, u(k) 	(IL 27) 

+ a ,u(k+1) + 	+ a ou(k÷/1) 

Substituting (11.25,26,27) into (11.23) and comparing coefficients. 

one finds, 



a
o 

a / 
a
2 

• • 
• 

1 

b2 

b ), 

(11.28) 

(11.29) 

0 	... 	0 

0 	... 	0 

000 	0 

o . 1 

and 

_ 	_ 
ao  
a1  

a2 

a 

o = 13  / 

2 

= 1 	0 

b
1' 	

1 

Z 
	
b
1 • 

0 	• 

bri 

1 	0 

• 0 

o o 
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Hence putting these values back to eqn(II.24), the dynamic 

equations of the general difference operator system are 

x (k÷/) = A x (k) +B u (k) 	 (II.30) 
y (10 = c x (k) + DU 00 

where A = 0 1 0 409 0 • B = a 

0 0 1 0 az 

a • • • • • (II.31) 

0 0 0 see 

IA 14  4f44  aH- 

C = [ 1 	0 0 	... 	0] 	D = ao  

It is noted that the matrixikis the same as that of the reciprocal 

difference operator system described in section 11.2. 

11.4 State-Transition Signal Flov Graphs of Discrete Systems  

ea),  The state- transition signal flow graph 	or state diagram 

for short, may be used to portray relationships between state 
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variables of a system, including initial states if necessary. 

The state diagram of a discrete system includes elements which 

parallel digital computer elements. 

It is assumed that a digital computer can perform, at least, 

the following basic computing operations: 

a) Multiplying a machine variable by a positive or negative constant 

coefficient. 

b) Time delay, involving storing a variable for a certain length of 

time before re-using it. 

c) Producing the sum of two or more machine variables. 

The mathematical description of these basic digital computations 

and their corresponding z-transform expressions are given by:- 

Multiplication by a constant 

 

x2(k) = a x1  (k) 

X2(z) = a X1  (z) 

Summing 
x3  (k)= xo(k) + 

x (k) - x2(k) 

X3(z) = X0(z) + X1(z) - X2(z) 

Storage and time delay 

x2(k) = x1(k+1) 

j(II.34) X2(z) = zX1(z) - zx1  (0
4-
)  „. 

or, 	X1  (z) = z-/  X2(z) + x1(0' 1  

The state-diagram representation of the three transform equations 

(11.32) to (11.34) are obtained from the basic rules of signal flow 

graphs and are shown in fig 11.1 
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a) Multiplication 	b) Time Delay
I) 	

Summation 

Fig 11.1 	State-Diagram of 
the Basic Elements 
of a Discrete-time 
System 

Once the state diagram of the basic discrete operations are 

established, the state-diagram representation of a discrete-data 

system may be obtained. Hence, for the system described by (II.30) 

and (II.31), the state diagram is as shown in fig 11.2 

Fig 11.2 State-Diagram for System 

(II.30) & (11.31) 

11.5 State Diagram of General Difference Operator SyStett - by - the 

Decomposition of Transfer Functions  

In section 1.3, it has been shown that a digital filter 

transfer function can be realized in many configurations. Here in 

this section, the procedure of choosing different sets of state-

variables from the same transfer function, leading to different 
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state- diagrams (and hence different configurations of the digital 

filter transfer function) is described. The procedure of expressing 

a transfer function by a state-diagram is termed the process of decom-

position, In general, the most commonly used ways of decomposition 

are:- 

A) DIRECT DECOMPOSITION 

Consider the transfer function of a general Nth order discrete 

system 

11(z) = 

N 	N-I 

Y(z) 	-a°
z .4. a1z  + ....+ .a.-  z .+.a • NI (11,35) 

U(z) 4-
14. 	

+ b z + b 1 	N-1 

 

Multiply the numerator and the denominator of the RHS of (11.35) by 

z-NW(z), where W(z) is an auxiliary variable, then 
-N+I 

Y(z) 	ao4" a1z 	a N  i,z  .w(z) (11.36) 
H(z) = 

U(z) 	1 + biz i+ 9.. +bz
N.I 
 +bi" W(z) 

N-I 

Since W(z) is arbitrary, it can always be chosen such that the following 

relations are true 

- 
Y(z) = (aO +a1

1 	
... z 	+ 	+a+ ai") W(z) 

N- I 
z  

U(z) = ( 1 + b 	++ b i"41 + bN  e) W(z) 
1 	14-1 

(11.37) 

(11.38) 

Now, a quite arbitrary but convenient way of defining the state 

variables 
x1 

x
2' °''' xN 

is as follows 
,  

x
N
(k+1) = w(k) 	XN(z) = z lWr(z) 

x (kt1) = xN(k) 	
X (z) = z 1X217(z) 

N-I 	 N-I 	 (II. 39) 

° - 
x1(k+1) = x(k) 	X1(z) = z 

1 
 X2(z) 

In this way , the state variables will turn out to be the output of 

the storages or time delays of the discrete system. Writing (11.38) 
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in the following way, 

W(z) = U(z) - (bNz-N + -N+1+ -1) W(z)  bN  

i.e. 	W(z) = Ufz) - bNX1(z) - bN_1X2(z) -...-biXN(z) 	(11.40) 

Also from (11.37) the output is given by a combination of the state 

variables, hence 

Y(z) = aoW(z) + aiXN(z)+ 	+ aNX1(z) 

The state diagram (without initial conditions) portraying (II.40) 

and (11.41) is shown in fig 11.3 

Y(I) 

Fig 11.3 Direct Decomposition of a General Discrete 

System 

It can be seen that fig 11.3 is merely a flow-graph representation 

of fig 1.4 

Defining the state variables as the output of the delay units, 
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the state 

(without 

Also the 

equations 

initial 

x1  (k+1) 

x2  (k+1) 

• 

• 

. 

LxN(k+1)..  

output 

y (k) = 

conditions):- 

equation 

[(aN-a0bN) 

are written direct 

0 • 0 • 

0 	 • • • 	0 

O•0 	• 

0 	0 	0 	040 

GOO 	-b1- N4 

from the diagram 

(aN _;-aok_i) 	. . 

from 

is 

. 

x1(k) 
x2(k) 

• 
• • 
. 

xN (k)_ 

(al-aoh 

+ 

1)] 

the state-diagram 

0-  

0 

• 

cc 1 
x2 

N
(k) 

u(k) 

ad 
(k) 

- 

(11.42) 

aou(k) 

(11.43) 

B) PARALLEL DECOMPOSITION 

Another method of decomposition relies on the partial fraction 

expansion of the transfer function into a sum of first- or second-

order terns. Second order terms are chosen when the denominator has 

complex roots so that in practice, realization of complex multiplying 

coefficients can be avoided. To each of these firsE- or second-order 

terms, the direct decomposition is applied. 

If the general transfer function shown in (11.35) is expanded 

by partial fraction, then it can be written as 

11(z)=E1"z  ) 

where each of the terms Z(z) is given either by 
2 

i 

z +13 2 
. 

1-1.2  (z) = 

(11.44) 

(11.45) 
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if it is of the first-order, or by 

2 (z) = 
,z2-fkz+f31i  

aiZ,Z+ 
	

(11.46) 

if the order of the term Z(z) is two. Applying the method of 
2 

direct decomposition to (11.45) and (11.46), the state-diagrams for 

the first- and second-order terms in the partial fraction expansion 

are shown in fig II.4(a) and (b) respectively. 

	 Y(I) 

(a) (b) 

Fig II.4(a) State Diagram of 1st Order Section for 
Parallel Decomposition 

(b) State Diagram of 2nd Order Section for 
Parallel Decomposition 

If the transfer function of the system has only simple real poles, all 

H.(Z) will be of the first order and hence the state matrix A is of 
the form 

-132  

• 
• 

which is a diagonal matrix. On the other hand, if all the poles of 

H(z) are simple but in complex conjugates, then if complex multiplica-

tion are to be avoided, all R(z) are of the second order. The state 

matrix A will then be of the block diagonal form:- 

A . (11.47) 
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A = [Li  
A2 

0 

) 

A 

(11.48) 

where 	Ai= 0 	1 

However, if some of the poles of H(z) are multiple, A is of the Jordan 

canonic form {18} (see section 11.7), i.e. 

A = 	 (11.49) 

-.13 2  1 

- 132  I 

-32 

Whether the matrix Ais diagonal, block diagonal or of the Jordan 

canonic form, it will simplify the procedure of solving the state 

equations(section 11.7). 

C) CASCADE DECOMPOSITION 

Still another decomposition is obtained by cascading first- or 

second-order transfer functions to form higher order ones, i.e. 

H(z) = rj 11,; (z) 
	

(11.50) 

where each of H. (z) is given by 2 

H;  (z) = a"z+ a2' z+ Si  
for 1st order sections 	(11.51) 
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or by H.(z) = a°` z2 + a,c z 
+ ars:  

Z2  + 13,iz + f32L 
for second order (11.52) 

sections 

Again applying the direct decomposition process, the state-diagrams 

for (II.51) and (11.52) are shown in fig II.5(a) and (b) respectively, 

) Y l3 ) 

Fig 11.5 (a) State-Diagram of 1st Order Section for Cascade 
Decomposition 

(b) State-Diagram of 2nd Order Section for Cascade 
Decomposition 

11.6 Solution of the Discrete State Equation  

So far it has been demonstrated that the dynamic equations of a 

discrete system can be obtained by direct inspection of the difference 

equation or, more systematically, by decomposition of the system 

transfer function. Here in this section, it is shown how the solution 

of the state equation can be arrived at. 

To begin, consider the free system 

X ( k+1 ) =AX(k) 
	

(11.53) 
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and let k = 0,1,..., one obtains successively, 

X (1) =A (0) X.(0) 

X (2) = A(1) X(1) = A (1) A(0) X(0) 
(11.54) 

x(k+1) = III A (i) x(0) 
i=o 

(11.54) gives the free motion of the system, starting in the initial 
state x(0). If the system is constant and the sampling interval is 
constant, (11.53) has the solution 

x(k) = Ak x(0) 
	

(11.55) 

Now consider the forced system 

x(k+1) = A x(k) + B u(k) 	 (11.56) 

where A and B are constant matrices. Substituting k = 0,1, .. one 
obtains 

x(1) = A x(0) + Bit(0) 

x(2) = Ax(1) + Bu(1) 

= A 1 A X(0) +Bu(0)} +Bu(/) 

• 
x(k) = Ak  x(0) + tE A B 

Ak 	E.-f k—i-1 	, . 
21

• = A x(0) + 	A 	BU (  
czo 

(11.57) 

Eqn(II.57) suggests that the sequence B,AB, 	, A B, may be defined 
as a weighting sequence. Thus, if the weighting sequence is defined 
by 

W (n) = An  B 

then, k-i 

 

 

x(k) = AJ,c(0) + Ew (k—i —/)u(i) 

i.0 
(11.58) 
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The right-hand side of eqn(II.58) represents the convolution sum, 

the analogue of the convolution integral in continuous-time systems. 

The matrix An  so often encountered in state-space analysis of discrete-

time systems is referred to as the discrete-transition-matrix. 

11.7 The Use of Similar Matrices and the Jordan Canonic Form in the Evaluation 

of the State-Transition Matrix  

A vector v in an N-dimensional space can be written uniquely in 

	

terms of its basis vector wo  w2, 	ofrol  as 

v= 	
xi Ai 

	
(11.59) 

C = I 
and the number xi  are called the co-ordinates of v in the w basis. 

Suppose the basis vector are now changed tole,ve, 

Thew*-basis vector can be related to thew-basis by a linear equation, 

i.e. 

E= 	Yki Ivk 
k=1 

Expressing v in terms of wt , 
I 

ri 
v = :E: )e

/ 
 wi! 
s 

i.s 
On substituting (11.60) into (11.61), 

N 
V ykixi 

x=r 	i=p 

Comparing (11.62) with (11.59), 
N 

Xi =:EY7c.2X2! 1., 

i=1,2,...,N 	(11.60) 

(11.61) 

(11.62) 

k=1,2,...,N 	(11.63) 
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or in matrix form, letting X be the co-ordinate vector of v in the 
vw-basis, and ec be the co-ordinate vector of v in the vv*-basis, 

X = r x* 
	 (11.64) 

where r= [y..]is the matrix of the transformation of co-ordinates 
se 

which is non-singular. 

Now, if the co-ordinate vector 	is connected to the co-ordinate 
vector x by 

t = A x 
in the vy-basis, then, in the v7*-basis, 

t *  = A*  X*  

But 	 ( = r 

Hence 	 r e=Ar X *  

i.e. 	 * 	-1  =r Ar x* 

(11.65) 

(11.66) 

(11.67) 

(11.68) 

Comparing (11.68) with (11.65), it can be seen that 

AL*  = e r 	(11.69) 

Two matrices related in the form of (11.95) are said to be similar. 
Similar matrices are very useful in the evaluation of functions of 
a matrix and thus will be useful in the evaluation of the discrete 
transition matrix. 

Similar matrices have the following properties: 

(i) det[A- XI] = det[A*  - xi] 	where 	A* =rAr 
i.e. similar matrices have same eigenvalues. 
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Proof:- 	r-1 ( A - 71 1)1= r 1 A F -AI= (A* - JI I) 

Taking the determinant, 

[det f 1 ] [det(A - X I )1 [det r = det(A*  - XI) 

hence, 	det( A - a I ) = det( A*  - XI) 
	

(11.70) 

(ii) f(A )  = F cAn r-' 
Proof : - co 	 N-1 

f (e)= E k .U6 	Ea .(ik)3 as a result of the Cayley- 

i=0 	Hamilton theorem08) 

r f(e) 	= r [E  
1.0 

N-1 =E r (Air' 
.3.= 

But, 	A".  = 	r 
N- f 

r f (A*) 	= 	oc.., Al 	= f (A) 	 (II .71) 
j=o 

(iii) Let P = [vi 	v2  ... v;], i.e. a matrix with the eigenvectors 

of A as columns, then P is called an eigenvector matrix. 

Now, if A has distinct eigenvalues, and if it has been chosen that the 
original basis should be changed to a basis formed by the eigenvectors 

of A , then, the similar matrix S with the eigenvectors as basis is 

given by 

S = P 1A P 

where S is a diagonal matrix with the eigenvalues. of A as its diag-

onal elements. 



0 
• 

f01/42) 0 

0 • f(A) 
{

f (S) = 	f(A.) eigenvalues of f (8) are 

f(k), f( A  ), •••, f(AN) 
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Proof :- Let A be an NXN matrix with eigenvalues A r , A2 , 	 A,, and 

eigenvectors v, , v2  , 	 , V, then 

A v, 

AV2 = 
• 

A vN  = 

v2 
• • • 114] [ VI V2 • • • v„] [A, 

0 
But q [ V  V2 • • ‘714] P 

or 

A P = P A, 

X 2 

0 
.01 

P AP = s 

AN  

(11.72) 

N_, 
(iv) 	f (s) 	si 

4:=0 

X4." 

= ECtir  

=0 	 • AN 

= f ( A, ) 

f 

• 

O 	 f (x.) 

(11.73) 

which is a one step process to find f (S). 

Now, 
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But 	 f (S) = P f(A)P 

i.e. 	f ( S ) is similar to f (A ) 

. • . eigen-values of f (A) are also f (X, ) , f (X2 ), • • • f 	) 

MULTIPLE EIGENVALUES — JORDAN CANONIC FORM 

For any matrix A , let the charateristic equation be written as 

g(A) = aN Afr' + 	 + ao  

A 	 -  Defining, f(X,P) g(X) g(p)  
A - p 

(11.74) 

4  q - N 	,4 ,N 
f(A,P) -aN  ` 	" 	+ 	(A - 	) +...+ a1  (11.75) 

Replacing A by XI and p by A in eqn(II.75), then 

f (XI , A ) = (X -A )-1  {g (AI ) - g(A)} 	(11.76) 

But gtA) = 0 	as a result of the Cayley-b Hamilton theorem, hence, 

g(AI) = (XI - A ). f (XI , A) 	 (11.77) 

Let f (XI, A) be written as vir (X) where IF(X) can be obtained from 

eqn(II.75) by substituting A by Al and p by A. 

Now, 	g (XI) = g(X),I 

g(A) I = [Al - A .11.(x) 	 (11.78) 

If X. is an eigenvalue of the matrix A , then gW ag 0. Hence, 

g (Xi) I = [Xi  - A].  qr (Xi) = 0 

then 
(A-u) 	(A-u ) 
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Thus the columns of yr(Ai) must be the eigenvedtors of A. But since 

to each eigenvalue A., there is only one independent eigenvector, there-
- 2 

foretheeigenvectorsofthecolumnsofIr(a.)are linearly dependent 

on each other. 

Suppose now the eigenvalue Ai  has multiplicity m, then (X-ym  

must be a factor of g(a). Differentiating eqn(II.78) (71-1) times with 

respect to A, 

(XI - A) tr(X) = g(X) I 
(XI - A) w' (x) + g'' (a) = g ' (A) 

(11.79) 

(XI - A) ir-1)(X) 	(wt-1)11,"1"2)(X) = p-sh) 

But since g(a) has the factor (A-Xi)m, then 

U<-4) 
g (Ai ) = 0 	k= 1,2,...,m 

Hence substituting A= 	eqn(II.79), one obtains 

(A - As 4ra1).) = 0 

(A - .I) le (X .) =tr(X.) 

(A - AiI) trbti) = (n-1)NrIX2) 

Rearranging and modifying these equations 

Xi," (Ad 0 
( A -i)24,1* (X2) = 0 	

(11.80) 

(IL — x.i)m  grtx.) = 
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The m equations given by (1I.80) generate m vectors and are called gener-

alized eigenvectors. These are obtained from %r(Aj), V(xi), 
7" ,41(As) . . It is sometimes possible to find independent generalized 
eigenvectors without actually using all the m equations. Consider a 

matrix having an eigenvalueof 1 with multiplicity 3. The three eigen-

values 1, 1, 1 can break in the following manner:- 

f(1),(1),(1)).7.4 behaves as if they were distinct, the three lin-

early independent eigenvectors will be given by 

any one of 4,(1), Nr,(1) or 40(1) 

f (1,1) , (1)} 4 2 split together and one separately, the eigen- 
vectors will be given by any two of mr(1), 	(1), 

and Ae(1) 

f (1, 1, 1)1 =.7. 3 split together, one eigenvector will be given 

by each of qr(1), yr'(1) andwn(1) 

Let 15, v2, ..., 174  be the eigenvectors (generalized if multiple 

eigenvalue), then 

 

P = Evt 	v2  • • • 	17,,, 

and — 1 j.p A P 

 

where J is called the Jordan canonic form of A. 
When all eigenvalues of A are distinct, the form is diagonal — a 
special case of the Jordan canonic form. 

The form of J depends on how the eigenvalues split. If they split 

separately, J is diagonal. Let A be a matrix having eigenvalues Al, 
X2, X2, X2, X3, X3, X4, X5, X5, X5, where A2  breaks as t(1,X2,X2)), 

X3breaks as {(X3),(X3)}, A 5  breaks as f(A ,A5),(A5)}, then the form of 

J will be 



= XI + 0 1 (11.83) J n = 

0 

1 

• • 
• • 

0 x X 
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'Xl  
1 X 	1 	0 I 
02  . X2  1 
0 0 X2  

—P31_ 

• - X 	1 1 
1 0

s 
X 

(11.82) 

-x : _ _ 

The eigenvalues are boxed according to the way they break. In each box, 

1 is placed above each A if there are more than one A in each box. The 

boxes shown in the Jordan canonic form of A are sometimes referred to 

as the Jordan boxes. If all the eigenvalues break together such as 

those in the box containing A2  in (11.82), the box is sometimes referred 

to as the Jordan normal form. 

FUNCTIONS OF THE JORDAN NORMAL FORM 

The Jordan normal form can be written as 

Consider the case when the order of J is say 3 

jn  = XI + 	0 1 0 = AI + Q 

0 

[ 

0 1 

0 0 0 

(11.84) 

0 0 0 

where Q = 10 1 
0 0 1 
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But e 
0 1 

0 

[0 

0 0 

0 0 0 

and 

Qk = 0 	 for k > 3 

(It can be seen that if g is of the order N, Qk= 0 for k N). 

Hence, for the above example when the order is 3, then by Taylor's 

theorem, 

f( n)= f(Xj+g) 
2 

= f(x)I + Qf'(X) + E1_ rot ) + 000 	(11.85) 
2! 

where 	P(A) = 
ax 

But 	Qk  = 0 	for 	k 3 

f (t) = f(x)i+ Q p(x) + • 13— f"(x) 
2! 

f (Jn) = r f(a) 
0 
0 

f i (x) 
f(x) 
0 

4r  f"(x) 
2. 

f' (a) 
f(x) 

i.e. 

In general if the order of the Jordan normal form is n, then 

f' (X) 	:1.1•11(X) 	f (x)  
(11.88) 

	

1 	004 
f (Jn) 	f (A) 	2! 	(n 1)! 

0 	f(A) 	f' (a) 

o 	0 	f(),) 

• • 

••• 

••• 

   



• 
) m- 

(11.89) 
then 
	f (J)= 	f(J ) 

f(J2) 
• 
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Thus if the Jordan canonic form of A is broken into Jordan boxes, i.e. 

Hence, it can be seen that finding a function of a matrix in Jordan 

form is a one step process. Using the properties of similar matrices, 

the discrete transition matrix, .(k) =Ilk, can be evaluated very 

simply. 

11.8 z -Transformation  

In section 1.2, it has been defined that the z-transform of a 

function x(t) is given by 

OD 

X(z) =Z[X(t)] Trn).Z-n 	 (II.90) 

n=o 

The process of obtaining m(n)fromX(z) is termed the inverse z  trans- 

formation. The inverse z transform of X(z) is denoted by 

r„ (z)] = inverse transform of X(z) = x(n) 
	

(11.91) 

In general there are three ways of carrying the inverse z-transform 

operation.- These are shown as follows:- 
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a) SERIES EXPANSION 

The values of x(k) for k = 0, 1, 2, ... are obtained from X(z) 

simply by expanding)((z) into a power series of z_ 1. Expanding (II.90), 

X (z) = x(0) + x(1)z-1  + x(2)z-2 + 
	

(11.92) 

Clearly, the coefficients of z-n  represents the values of x(t) at x(n) . 

Therefore givenfaz), it can be expanded into a power series of z
-1, and 

x(k) for k = 0, 1, 2, ... are obtained from the coefficients of the 

power series. 

b) PARTIAL FRACTION EXPANSION 

To find the inverse z-transform of;r(z) by partial fraction expan-

sion, the function;C(z)/z should first be expanded into the following 

form: 

. '11C(z) 	A1 	A2 	A3 . 	+ 	+ 	+ ... 	(11.93) 
z Z-1421 z-fa2 Z+123 

and then the inverse z-transform of;r(z) is given by 

-1r- 	_1[ A1z 	A
2 4.
z 	A3z 

+ ... x(n) = Z 	)] Z a  4-7—a  + 7+7 r z+a 

	

1 	2 	3  
(11.94) 

where each of the individual inversion Z - is looked up from the 

z -transform table. 

	
- 	z  / A.z  [ A  

z+ai  

c) INVERSE FORMULA 

Multiplying both sides of (II.90) by Z
k-1 

 and then performing a 

closed-line integration on both sides of the equation,one obtains 



r 	
71= 0 

X(z) zk  ide .2:(n) 	-n- jczk /dz  
00 
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(11.95) 

where r, the integration path, is within the regions of convergence 
of the infinite series of (II.90), hence enabling the summation and 

integration to be interchanged. By Cauchy's theorem, 

214 
(j* zk -n dz = 

for kin 

otherwise 

(11.96) 

Thus, substituting into (11.95) 

x(k) - 2- 	j(f(z) z
k -1dz 7 

1 
(11.97) 

Some important properties of the 	are stated below 

without proof. The details of the proofs are available in the liter-

ture .{ 29},{ 41},f 441,f 53},{ 60}. 

(i) [af(k)] = agz) 	 (11.98) 

where a is a constant and F(z) _,Z [f(k)] 

(ii) [f1(k) t f2(k)] = F7  (z) ± F2(z) 

(iii)17,[f(k-n)] = z-nF(z) 

where n is a positive integer. 

(iv) Z [f(ki-n)]= zn  [F(z) -Ef(k)z-k  
k= 0 

(v) Lim f(k) = Lim F(z) 	(initial value theorem) 
k400 	zco 

if the limit exists. 
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(vi) Lim f(k) = Lim (1- z-1) F(z) 
	

(final value theorem) (II.103) 
2+1 

if (1 -z-2  )1(z) does not have any pole which lies outside the 

unit circle Izi = 1 in the z plane 

11.9 z-Transform Solution of Discrete State Equations  

The discrete dynamic equations 

x(k1-1) = As(k) + Bu(k) 	
(II.104) 

y(k) = C z(k) + D u(k) 

can be solved by means of 2-transform method. Taking the 2-transform 

on both sides of the state equation yields 

z X(z) - z x(04. ) = AX(z) + B U(z) 	(II.105) 

Solving for %(z) from (II.105), one obtains 

X(z) = (zI -A)
-1 z2c(0#) + (zI - A)-1 BU(z) 

	
(II.106) 

which has an inverse transform, 

r 
x (k) = 	[(zx - A)-1z]x(e) 	L (31 -il.)-11BU(.2)] 

(II.107) 

Comparing this result with that of (11.57), the following identities 

are established: 

and 

Ak = Z I  1.(zI -10-121 

k-i 	 -1 
u(i) = Z [(zI - A)-1BU(z)1 

4=0 
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To prove (II.108), take the z-transform on both sides of the 

equation, then premultiply both sides by (zi -A), 

LHS: 	(z I - A) Z[ 	= (z I - A)E cc'Akz-k  

i  = (zI - Ak)r + 	z-1  + 11,2z-2  + ...) 

= z I 	 (11 .110) 

RHS: 	(zI 	-A)-1z]} = zI 	(II.111) 

Eqn(II.109) is verified also by taking thez-transform on both sides of 

the equation. Therefore,{401 

co g-.4 

A
k-i-1 

Bu(i)] =La 	Ak-i-1  Bu(i) z-k 
ic=c, ,..0 	k_, 

-za v•°'z 4"-EAk-i-1- Bu ( i) z 
<=ok=0 

e°  Ez 	B U(z) 	(11.112) 
K.o 

Now the exponent of A cannot be negative, therefore 

00 	 0. 

Ez 	A _k+i+i 	 Ak = Z [ 

ic=0 	k=o 

and hence (II.112) can be written as 

Z [ E 
,

Bu  ro] 
	z-1 Z L  r ki A B U(z) 

i=o 

= (z I - A)-1  B U(z) 	 (II.113) 

where (II.108) has been made use of. 

The matrix Alt  can be written as •(k) and, as has been pointed out 

in section(II.7), is called the discrete state-transition matrix. 

Then the discrete state-transition equation of (II.104) becomes 
k-1 

x(k) = 	(k) x(e) +14Elp (k-i-1) Ft u(i) 	(11.114) 
4.7=0 
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Substituting (II.114) into the output equation of (II.104), one 

obtains 

k-f 
y(k) = c 41)(k) x(e) + cyjo(k-i-1)Ilu(i) + Du(k) 

(11.115) 

II.10 Transfer Functions and Impulse Sequences of Discrete-Data Systems  

The z-transform of the dynamic equations of a discrete-data 

system are, ignoring initial conditions, 

z X(z) = AX(z) + Bbrz) 

Y(z) = Cx(z) + DU(z) 

From (II.117), it can be written that 

(z) = (z I - J1)-1 J3 Li(z) 

and substituting into (II.118) 

Y(z) = C (z I - A)-1 B U(z) + DU(z) 

(II.117) 

(II.118) 

(II.11-) 

(II.12i) 

from which the transfer function is defined: 

H(z) = Y(z) = c (zI - A)-1B + D 	 (11.121) 
U(z) 

Here the input-output relationship is derived for a single-input, 

single-output system. The generalization to multiple inputs and 

multiple outputs is straightforward. The inverse z-transform of 

H(z) is then 
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Z1[11( z)] = Z-1[c (zi - A)-1B + 

= g(k) 

= Cq(k - 1)B + D 
	

(11.122) 

and g(k) is regarded as the impulse sequence of the linear process. 

From (II.121), one obtains the following expression 

H(z) = C adj(A)B + det(zI-A)D 	(11.123) 
det(zI -A) 

where adj(A) is the adjoint matrix of A and det(zI -A) is the 

determinant of the matrix (zI - A). The charateristic equation of the 

system is defined as: 

det(zI- A) = 0 	 (11.124) 

It can be seen that the roots of the characteristic equation are 

the eigenvalues of the matrix A, i.e. the eigenvalues of the 

matrix A are identical to the poles of the transfer function H(z). 

II.11 Stability Consideration  

a)EQUILIBRIUM 

To study the motion of a sampled-data system, consider the auto-

nomous system 

x(le-1) = f x (k)) 	 (11.125) 

where k = 0, 1, 2, ... 
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For k = 0, it is defined that 

x(1) A e( x(0)) 

One more iteration leads to 

x(2) = f(x(1)) = f[ f(x(0))] a f2(.(0)) 	(11.126) 

The notation f2(x(0)) is not intended to indicate that the function 

is squared. Extending the notation, 

(n) = f n  (x(0)) 
	

(11.127) 

represents the "solution". 

If a control vector Ilia added to (11.125), then 

= f (x(k), u(k)) 
	

(11.128) 

To arrive at the equilibrium state of the process, let u(k) =0, a 

constant vector. Any vector xe which satisfies the equation 

Xe = f n(" e, 	 (11.129) 

is called an equilibrium state. 

b) STABILITY 

Loosely speaking, a system is stable if small disturbances in 

the system cause correspondingly small deviations in the equilibrium 

state. If a system returns to its equilibrium state with increasing 

time, then the system is asymtotically stable. The foregoing ideas 

are generalized formally in the following definitions 

(i) An equilibrium state xe  of (11.128) is stable if, for any e > 0, 
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there corresponds a (5 >0 such that, if 

IIX (0) - xe li is 
	

(11.130) 

then 

IX(k)- Tel < e 
	

(II.131) 

where 114= (7601  represents the norm of the column state vector . 

(ii) The equilibrium state is asymptotically stable if it is stable and 

if 

Lim Ix(k) - 	0 	 (11.132) 
k+co ' 

(iii) The equilibrium state is uniformly stable if is is independent of 

the initial time t
o
. 

(iv) If the solution is asymototically stable and if a can be arbit-

rarily large, the equilibrium state is stable in the large (globally 

stable). 

c) CONSTANT LINEAR SYSTEMS 

Consider the free system represented by the following state equa-

tion: 

	

,c(k+1) = AX(k) 	,c(t0) = x(0) (11.133) 

whose solution is given by 

	

x(k) = Akx(0) 
	

(11.134) 

For simplicity, assume A has no multiple eigenvalue, so that A is 
similar to a diagonal matrix A such that 

1 P AP= A 	 (11.135) 
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where 	A = 	 1  

A 2 

and p  = [v v I 	2 

A 1,  A2, --- A 	and v
1,  v2,' 

 v
v 

are the respective eigenvalues and 

eigenvectors of A. In other words, if the following change of variable 

is made, 

x(k) = l't(k) 

then substituting (11.136) into (11.133) and rearranging, 

(k+1) = F 1111't(k) 

Equation(II.137) has the solution 

t (k) = ( P
1A P)k (0) 

(11.136) 

(11.137) 

1  Ak P t(0) 	 (11.138) 

It is clear that (11.133) is stable if and only if (11.138) is stable. 

The stability of (11.138) is investigated by examining the ftth power 

of (11.135), 

k P1 A p= A
k 

(11.139) 

If all lAil < 1. then the system is asymptotically stable; if one or 

more IX
i
I = 1, the system is stable; and if one or more lx .1 > 0, the 

1  
system is unstable. The following theorems are stated without prooff321 

(i) The constant system of (11.133) is stable if all eignvalues of the 

transition matrix A satisfy the condition 

A 
N 
v 
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lx.1 < 1 
= 

i = 1, 2, ..., N 	 (II.140) 

If IX.' 0 1 for any i., then the condition of (II.140) is both 
2 

necessary and sufficient. 

(ii) The zero state x(k+1) = 0 of the free system 

x(k+1) = A x(k) 	 (II.141) 

is globally stable iff every element ofIll
k tends uniformly to 

zero as k m. 

11.12 RAsum4 

The material in this chapter gave a brief account of the method 

of state-space analysis, and demonstrates the versatility of the state-

space approach. The idea of state variables was first introduced, the 

method of obtaining the state-equations from the difference equation 

and that from the state-diagrams were described. Then the solution of 

the state-equation both by the direct method and by using the z-trans-

form were shown, and finally, the relationship between state variables 

and system functions, and the relationship between state variables 

and stability were derived. 

This chapter is considered basic to ensuing work, and accordingly, 

much of the material will be used in many of the subsequent chapters. 



CHAPTER III 

MATHEMATICAL MODELS AND DESIGN OF AN 

IDEAL MULTIRATE DIGITAL FILTER 

III.1 Introduction  

In chapter I, the basic operation of a conventional digital 

filter has been described. Here a generalized formula giving the 

resulting transfer functions of a digital filter when the shift-

ing is continued N times during each pulse repetition interval, 

where N is a positive integer, is derived. Several approaches 

to the analysis are taken and compared. Some of the interesting 

properties of the transfer function of such a "multirate" digital 

filter are shown. Computer simulations are performed to show 

that the multirate filters designed by using the formula derived 

give the desired outputs. 

111.2 Derivation of the Transfer Functions using Difference Equations  

and the z-transform  

The following derivation follows closely the method of 

Fjallbrant {13}. To illustrate the analysis, the derivation 

of the transfer functions for a second order digital filter is 

shown below, N being taken to be two. 

If a second order digital filter realized in the direct 

canonic form is used in a double-rate (N = 2) fashion, the delay 

of each register is T/2 while the input sampling period is T. 

There are two separate output sequences, one sampled at t = nT 
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and is designated y1(n), while the other, Sampled at t = 

is designated y2(n +). 

Consider fig III.1(a)where t = nT. The input sampler S//p  

is closed, hence the input signal u(n), in the form of a binary 

word, comes in. At the output, the sampler S1  is closed while 

S
2 is open. Hence, only the first output sequence, y1(n), exists. 

yf  (%) 

Fig 111.1 A Second Order Double-Rate Digital Filter in the Direct 

Canonic Configuration (a) t=nT, (b) t=(n+)T 
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Let a
10' 

a
11' a12,  -511 

and  -8
12 

be the multiplication co-

efficients at this instant t = nT and introducing two intermediate 

variables w1(n) and ps i) to facilitate calculation, the 

following equations can be written, 

w
1 
 (n) = -511w2  (n-2) - 12w1(n-1) + u(n) 

Y1(n)  =a 
10w1(n) +a  11w2  (n4)+ a 12w/  (n-1) (III. 2) 

Fig III.1(b) shows the double-rate filter at the instant 

t = 6,2+ VT. Since there is no input at this instant, u(n 2) 

0. The output sampler Si  is open and S2  is closed, hence only 

the output sequence y2(n 	exists. Let a20, a21, a22, 
 B 

zz' --21 
and -822 be the multiplication coefficients at t = (n kg)T, 

again the following difference equations can be written, 

W2(n4) = -021 .L 
O,(n) - 522  w.,(n 

y2 (n+15)  = a  20w2 (14)  + a  21w/ (n) 	22w2  (n-2) 

Taking the z-transform of equation (III.3) 

z2  W2(z) = -521 W1(z) 	‘32272(z) 

-021 
i.e. 	z2W2(z) - 	-1  W

1(z) 	(III.5) 
1 + 022  z 

Taking the z-transform of eqn (III.1) and substituting eqn (III.5), 

i.e. 

W1(z) = 

W1(z)_ 

-1 	-821 -/ 
012z 	w/(z)  U(z)  

U(z) 	(111.6) 

-811z 	W1(z) 
1+822z 

1 + 822z
1  

_1 
a 

1 	012+822-011-21,z  
-2 

- 
a 
 12.mz 
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From eqn (III.5) and (III.6) 

-021  zIfFiz  (z) - i 	 -2 11(z) (III.7) 
% -1 	„ 	n  

1  +012+022-011021)z 	+ P12 P22 Z 
Taking the z-transform of eqn (III.2), substituting eqn (III.6) 

and (III.7) and rearranging, 

	

() 	., 	, 	, -/ 	-2 / 	
- al_0+%a101,22-011021+a12)z +a 12a222 	(III.8) 

	

11/(z)  = 17-ru 	, / + ,., „ 	 2 
1  T(012+a22-01021)z 	T 012P22z 

Taking the z-transform of eqn (III.4), substituting in eqns 

(III.6) and (III.7) and rearranging, one obtains 

H
2
(z) = z Yzt

t  z, 	(-a20021.1121)+(a21022-a22021)z  
11(z) 	, -1 	„ , 	-2 

+012+022-811021)z 	+ 1312022z 
(111.9) 

The extra zl  in Y
2
(z)/11(z) simply means that the sequence 

y262 t V is delayed by 2'/2. It is observed that both H1(z) 

and H
2
(z) have the same poles and that they differ only in the 

numerator polynomial. 

Following similar procedures, the transfer functions of a 

"triple-rate" (N = 3) second order filter realized in the direct 

canonic form are found to be:- 

.14,(z),- '6 (z) 	du, 4- I .11,(13.43A. -flu) - *110P)I P32 C4111321 1 	c1,24,18 12 
(111.10) 

U (z) (Ali 132,133, - 	132i P12 P311322) z 1  + PI 2 72 1812 Z-2  

1/3  A Z 	(Z)  iC421 -0124204 (040 13.2; 	ei.21 p..152. 4 0113 P2I Pai - 062  r ;,2  14 	_ 
(111.11) 2 

4  -2 1.1 (z/ 	1 4-  ( r?„ 	.-1811P12.- PI, 	- 331 (312) Z-1  4  (1131%21'32 Z 

2/3V (2) 	 0 
H (z) z 	 

U 	 — C43 42 ° 1331  C(3° 1332 -  okai )321 + 01 32 )+ r 	g s.013Ir-22 1-32- 432 B3I fj." 1  3 U (2) 	+ ( N, 	- 	(332 - e21 PIS 	 + 	(32, f33., 2 2  
(III.12) 
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The above method fails to give a generalized formula for the 

transfer functions when N is a general positive integer. Also if 

the direct canonic configuration of fig III.1 is varied, for 

instance, to a transposed configuration {25} where the auxiliary 

variables w
1 
and w

2 
may vary after being passed on through the 

shift registers, then such an analysis will be awkwardly compli-

cated. 

111.3 Derivation of Transfer Functions of a Multirate Digital Filter  

using Discrete Convolution  

A different approach from the above method has been taken 

by Ragazzini and Franklin {53} to give a generalized formula for 

the transfer function of a multirate digital system. The follow-

ing analysis is a slight extenstion of their method. 

First consider the system shown in fig 111.3 where an input 

U is sampled with a uniform period T and applied to the continuous 

G. The output of G is sampled at an increased rate with period 

TAT to form a sequence of output samples whose transform (which 

will be defined shortly) is designated VV. The analysis first 

requires the relationship between this output transform and the 

input transform U(a). 

Ws) 	1.1(z) 

4-r G (s) 

  

 

T/iv 

Fig 111.3 A Multirate system 
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By the convolution theorem, 
co 

y(t) =1E:u(kT).g(t-kT) 	(111.13) 

k=0 
However, the samples which appear at the output sampler are the 

ZT 
values of y(t) at the instants t = 	or 

1' 
y(N) u(k).0Ki  - k) (111.14) 

    

If the transform of this output is to be of use, it must obvious-

ly include all the samples in eqn (III.14); that is, the output 

transform must be defined on samples separated by TIN rather than 

the input sampling period T. To distinguish the transform 

variables according to the separation between successive samples 

which they represent, the variable zN, will be used in the pulse 

transform of samples separated by TO, and the variable z retain-

ed for sequences separated by T. Hence the zN-transfori of the 

output in the system shown in fig 111.3 is defined as 

Z - 
Y(zN) 	 y(Tlf) zN Z  

Z=0 

=EEu(K).g(i - k).zA771 	(III.15) 

Z=0 k=0 

For a convergent series of eqn (111.15), summation with respect 

to Z and k can be interchanged, thus 
co 	co 

Y(zN) =2:i(k)10117 - 	zB1 	(III.16) 

k=0 	Z=0 

In the second sum, it is always possible to find an integer j 

such that j = (1 - kN), and the transform may then be written 

in terms of j as follows: 
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Y(zN) =1:u(k)Egir) z.
);(j+kN) 	

(III.17) 

k=0 	j=0 

The limits in the second sum of eqn (III.17) are from i = 0 to 

j = = rather than from j = -kN since the realisable impulse 

response g(t) is zero for negative values of the argument. 

Separating out the powers of zN, then, 

Y(z 	u(k) (17 ) zN 
kkk=0 	j=0 

= 11(zN).G (zN )  

	

= Ulz) .G (zN) 	 (III.18) 

That the function U(zN) is in fact the z-transform of U(s) 
(based 

on samples separated by T) with the variable z replaced by z
N 

has been made use of in (III.18). The transformG(zN
) is the 

ordinary pulse transfer function of the linear system, based on 

a sample separation of Thy. The variable zN 
identifies the 

period of the samples used in determining G (zN). 

Now that Y(zN) has been obtained; suppose this series Y(zN) 
is passed through a sampler that is synchronized with the input 

sampler, sampling with a period T (fig 111.4), then one obtains 

an output series Yi(z) which has samples separated by a period T. 

U(z) 1 	._....),.. Y(zN) 	'43) 	yi  (2), y, ( it) 

■i(n,") 

	
G 	 YOC/14140.r cl7iir r AT TINT 

T 	 TA 	 , .._-_a___21' (2) y01,+*) 
. T CI03P AT tm (1.**)T ; 

1_44, NV:), ys  ot+ V) 41---• T CLOUD AT t s x (4%.110T 
Efg 111.4 A Multirate Digital Filter with Multi-Output 
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If a series of samplers S1, S2, ...., SN  are connected at the 

output such that SI  closes at t = nT, S2  closes at t = 62+ 1i1V9T, 

S
N closes at t = (n + N 1 -----)T, and all of them sampling with a 

1 period T, then there are N output sequences y (n) y (n - 1 	' 2 	# N) j • • , N - 1 It is desired to derive the relationship between 

thetransformathesesequences,ri(z) and Y(2,47). 

The output sequence y(k/N) has a sample separation of T/N 

and hence its transform can be defined as 
CO 

Y(zN 
(III.19) 

- / 
Consider the ith output sequence yi(n - 

i 
 717--) extracted from the 

sequence Y(k/V). The sample separation is T and its transform can 

be defined as 

i-2 
.17.(z)-ENo.  71-4 z 	N 

n=c) 

-(-=-1) 	i-/ -n 
= z 	Ei(n -1r4 a 

ri = o 

(III.20) 

These transforms of equations (III.19) and (III.20) are related, 

since (III.20) contains only a portion of the samples of (III.19). 

By the inversion theorem described in section II.8(c) 

k 	1 
2we y(--N

) - --,r(f.r(zN  ) N
-1 dzN 

(111.21) 
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Substituting (III.21) in (III.20) with k = nN + i - I 

I 6° 	• dz 
i(z) = z-(7r1:4;51..)(Y(zN). zN 	z 

n  

h=o 

	

14  en 	N N 

	

Y(z )(Eznm 	z "  z .̀.̀  N  v 
h.o 	

N z N 

	

111‘ 1 	= 	dz 

r 

z-61) 	i- 1 	1 	dzN = 	zN  . 	
1 

Y(zN1(-777177.72-;) z  
N 271v  

r 

(III 22) 

The contour r on the zN-plane must be so chosen that it en-
compasses all the poles of[zik4  Y(zN)// zN] but excludes the poles 

N  
contributed by the factor11/(1 - z z-1)1, The reason for this 

is that in the interchanging of summation and integration in 
-n  

(111.22), it is required that the infinite sum 1Zo zN  z 

be absolutely convergent. This is assured only if 'IN  z- 11 

is less than unity. Thus the factor (1 - zN
N z- 1) cannot be 

zero in the region over which (111.22) is to be valid and the 

poles introduced by this factor must lie outside the contour of 

integration. 

Substituting (III.18) into (111.22) and rearranging, it can 

be written that 

11.(z) 
U(z) 

(111.23) 
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Eqn (111.23) expresses the ith transfer function relating the 
/ 

ith output sequence yi(n + 
i 
 N  ) to the input u(n) in terms of 

the pulse transfer function of a time-invariant system G (zA7) 

which operates at a rate N times faster than that of the input. 

It can be seen from (111.23) that the poles of Hi(z) and 

G(zN) are related in a way that if 
X1, 

 X2, ...., Xm  are the poles 

of G (zN), then the poles of i(z) will be A l, A2, ...., Am  where 

(111.24) 

111.4 11erificationatheDerivationof17.(z) with a Second Order 

Double-Rate Filter 

It can easily demonstrated that equation (111.23) gives 

the same results as eqn(III.8) and (III.9) for a double-rate second 

order digital filter. Consider the diagram in fig III.1. If 

a10 = a20 = a0' all = a21 = al' a12 = a22 = a2, 511 = 521 = 51 
and 

512 = 522 = 52' then 

G (zN) _:.a0z2T7.+.aizN  .a2  

Z2  + z  
N 	1 N 	2 

aozN alzN a2  
(111.25) 

(zN - A1)(zN - A2) 

where A - el 	'6'+402 
1 	T- 

2 

A2 	- 51 1 - 	+482  
2 	2 
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Substituting G (21N) into eqn (111.23), with N =1 2, 

1(z)  
H1(z) =  

U(z)z) = 1 
	aozN a1zN a2 	1  

2 	
dz -27rre 	zN(zN-A1)  (zNA2)  1- z -1 	N 	(II1.26) Nz r 

a z2  + a z +  a2 (z) 	1 	o N 	1 N 	( 1  
- 	-) H(z) = 	2 	 (z 12—r7rd 	N Al ))(z -A  2 1- zNz 

dz N 
2 	U(z)  

(111.27) 

In evaluating the integrals of eqns (111.26) and (111.27), it 

is possible to do so either by obtaining the residues at the poles 

of (zN 	G (z N ) which are contained inside r or by obtaining 

the poles of I/(I- z-,2.,z-t ) which lie outside r. 

Evaluating the integral by obtaining the residues enclosed 

by r (111.26) becomes, 

H (z) 	 Ot, 	4- d i  A, 	 010  A.: 4 d i  A., 4  as  
A, A2 	A,(11,-A,)(1- Af C') 	A2  (A, -A, 	 ) 

do .4 cto (32  - 	+ d2 ) 	+ 012 =". 2 -2 +(2 	2  A-'13‘ )2 	z 
(III. 2 8) 

Similarly, (111.27) becomes 

" 
(z)  = do A,2 +d/ A, a2 	deA, ci f  A 2 + °I2  

2 	(Al -q12 )( ( - 	Z.') 	(A2-A1 )( I- A;za) 

	

(di °lop, 	(011(3.2 -01,poz- I  
1+ (2[32-13,2)z-+K Z' 

(111.29) 
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Equations (111.28) and (111.29) are the same as (111.8) and 

(II1.9) if the multiplication coefficients of the digital filter 

remain unchanged throughout the sampling period. 

The derivation of H.(z) using discrete convolution described in 

section 111.3 is valid as long as G (zN) remains unchanged, i.e. 

a time-invariant filter. However, if the coefficients of the 

filter are allowed to taken on different values during the 

sampling period, the analysis becomes very complicated. 

111.5 State-Space Analysis of a Multi-Rate Digital Filter 

The following analysis makes use of the state-space method 

and is a modification of the method already published {58}, {65}: 

Consider the flow of a multi-rate digital filter with 

periodically varying coefficients realized in the direct form 

(fig 111.5). Such a filter has N shift sequences during each 

sampling interval, while its coefficients are allowed to take 

on different values every T/717 seconds as described before, so 

that alj  and sii  are the coefficients at nT, 	and 82j  are 

the coefficients at (n t 140T, and a. and stiff  are the co-

efficients at En+ i.-1)T 

410 

i= 71,T 

Fta Ilf.5 (a) 
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Fig 111.5 Flow Graphs of a Second Order Multi-rate 

Digital Filter at Different Instants 

Let x, , x2  be the state variables at these different 

sampling instants as shown in the flow graphs. 

At t = nT, the dynamic equations of the filter are 

/ 

Ex
/  (n+1 = [ 0 1  xi  (n) 1 + [D  u(n)

1  

	

x2(nY -S2
-611] 52(n)  -1 	1 

	

= A
1  x(n) + B1u(n) 
	

(III.30) 

111(n) = 13'312 - am  Om ) 	(au - a10 (311 	x/(n) a,u(n) 

x2  (n) 

x (n) + Diu(n) 	(1I1.31) 



:= A. . 	0 	1 sCi  = [(ai2 ajoai2) (aii-ajoaii)] 

[ 

where 

-13i2 -3i1 

N-1 x(n+1) = AN 	N 
(The.—) 
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where A1 	 , = 0 1 B1 = 

  

-1312 -a11 

 

    

    

C1 = {(a12-(110 812) 
	

-a10 811) ] 	= &4 101  

At t = (n 1/N)T, the equations are 

2 	• 	, x 	y) = A2  X (no --N-) + Blufrtf-T) = A2X 7-7/ 

	

, 1 	, 1 	, 1 y 	= C2 X rt1'.4 + D u(rbL--) = C ni--) 

	

2 N 	 2 	2 N 

since u(n + 1/N) = o 

At any subsequent instant t = 	i 	/ + 	-1T, where i = 2, 3, ...., 
N, the dynamic equations of the multirate digital filter are 

i/ X (IV—) = A x(rti.) N (111.34) 

y
i N 
	 (111.35) 

- and eventually, when t = 	N 1 + N  )T, the equations are:- 
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Equations (III.30), (111.32), (111.34) and (111.36) express the 

relations between the state variables at these instants within 

the sampling period. Eliminating the intermediate state vari- 

able vectors/0/.1- 	- /) where i = 2, 3, ...., N, then, 

x(nf - i) = AN AN-1 	A2  (A
1 
x(n) 	B1u(n)) (111.38) 

Also, since the state equation at t = 	
i 2 N  )T can be 

written as 

Ai-1 X(n-i-2) 

= Ai-1A2-2 ... A2  (A1  %(n) + B1u(n)) (111.39) 

hence, the ith output equation is, from eqn (111.35) 

Y.(n1. N 	C. Ai-1 	... A2  (A1  n(n) + Biu (n))+ Diu (n) 

(111.40) 
where 	

{[-a10] 

[0] 	

for i = 1 

D'• 

Equations (111.38) and (III.40) represent the general dynamic 

equations of the system. If the coefficients of the filter 

remains unchanged throughout the sampling period such that 

A l = Az 	- • • = 	= A ={ 0 	1 

and 	C I  = C2  = • 	= c = C =[(a2-a082) (ary l )] 
then equations (111.38) and (III.40) become 

X(W-1) = AN  X(n) + 	B1  u(n) 	(III.41) 

ZNZ J - 	Ai-/ x(n) 	A2-2 	. _ ) 

	

B1 	u(n) (111.42) 

for 1 < i < N 
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To find the transfer functions of the multi-rate digital 

filter from its dynamic equations, the z-transform of the 

equations are taken. Thus the ith transfer function of a multi-

rate filter with periodically varying  coefficients is, by taking  

the z-transform of eqns (111.38) and (III.40), 

(z) = Cz I - A
N AN-1 . . . 	 U(z) 

(111.43) 
id 
z" Yi(z) = 	... A2  Aire 	Ite..i ikai  • A2B;  Utz) 

	

D; (z U(z) 	III.44)  

Thus A.(z) -  	A:4 	. . A At) (2 I — Am.(  . . A I  (AA.I. • A2  ) 
U(z) + C4: 	- • - 	B, + Dz 

and for the time-invariant multi-rate filter, the ith transform 

function is simply, 

zi (z) 
Hi(Z) = 	= C 	( z I — AN  ) ir B + C A -̀'2  B + 

(111.46) U(z) 

111.6 Remarks on the State-Space Analysis of Multi-rate Digital Filter 

In eqn (111.46), there are two terms A 	and Ar 2  • 

These terms are interpreted in a way such that 

A°  = I = identity matrix 

and negative powers of the state matrix A is taken to be a null 

matrix. Extending  this interpretation to the case when the co- 

efficients are allowed to take on different values during  the 

sampling  period, the corresponding  terms in eqn (111.45) are 

defined as 

A4.•••1 
A4.--I. • - A2 A l = 	

I 

Am_IA,_, ...A2A1 	for i= N 

and 

for Z= 1 

for I. = 2 
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A. 	A. 	• - • 

for i - l 

for i = 2 

• - A3 A2 for i = N 

It has been pointed out in section 111.3 that although the 

discrete convolution approach gives a general formula for time-

invariant multi-rate digital filters, it fails when the coefficients 

of the filters are allowed to take on different values during tha 

sampling period. The state-space analysis, in a way, generalizes 

the difference equation approach and thus gives a general formula 

for both the periodically varying and the time-invariant multi-

rate filters. Besides this generalization, the use of state-space 

method can be further justified by the fact that it also gives the 

relationship between the input and output in both the frequency 

and time domain and thus saving the process of transforming from 

one domain to another. 

111.7 Verification of the State-Space Derivation of the Transfer 

Functions by a Second Order Double-Rate Digital Filter 

Equation (111.45) can easily be verified by a double-rate 

(N = 2) filter. Substituting N = 2 into eqn (111.45), 

li (2) = C 121 - A2 AiflA2 BI + D 1 	1 	 8 (111.47) 



[ (a! - A
2  A. ) A2711 2+022  

-0 z {Z2  + (512+522-511521)2+812522} 21 
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and, 	H2(z) = C
2

4A
1
(z I- A2A1) Ap1 

 + CA.  + D2 	(111.48) 

Substituting the values of Al)A2,Ba, CI, C2 DI , D2 , then 

AA . _ g r 5
12 	B11 

18121321 W11821-132 

thus, 

Hence, equation (111.47) becomes 

  

H1  (z)=  [-( a12-a10812) (a11-a10811)  z+ 22 

—B212  

iz2-.-(r3,24A2-plip„,)z-pat1,1 

   

do, z+ (dm A22 -  eau p21+ C142 )Z +C112 A's 

,4,2 + 4312  ÷ (3,2  p„ p2dz 4' iliap22 (111.49) 

Similarly, C2  A1° f
(a22-a2022) (a21-a20 821)1 0  

11 1 

-f312 -J 

= 512(a21 a20521) (a22-a2032/-811(a21-a&21)1  

and substituting into eqn (111.48), 

(1121 0130 p21 ) z2+ (c+2, /32.-.1231321)z 

2(z) - 22  + (13,2  +1322 -sHig21)2 4' PI (122 (111.50) 
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Equations (111.49) and (III.50) can be seen to be identical to 

eqns (III.8) and (II1.9) 

111.8 Application of the State-Space Approach to Other Second Order 

Configuration 

The state-space method of analysis can be applied to any 

other configurations. This is demonstrated by the following 

example:- 

Ex. III.1 Analysis of the Transposed Direct Canonic Configuration 

Fig 111.6 shows the transposed configuration of the 

direct form{ 25} 

Fig 111.6 A Multirate Digital Filter in the Transposed Direct 

Canonic Configuration 
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Choosing the state-variables x1
and x

2 
as indicated in fig 111.6, 

and employing the same technique as shown in section 111.5, one 

obtains the following equations: 

x1(n4) = 0 7812  x1  (n)+ (a12-x10812)  u(n)  

2 ll x2(ni- TIF) 	x(n) 	(all x10511) 

	

A1 x(n) + C T  u(n) 
	

(III.51) 

74(24)../17.116/,'LiP i 

and 	x(n4.1) = A
N 

 x (n1.111 N1) 

where 	AI = 0 -822  = transposed of A 

1 -Oil  

[ 

Ci = (a12 a10812)  

a $ 

11 10 11) = transposed of C1 
 

(a11 

Aland Cz are both defined in section 111.5. Solving equations 

.(III.51) through (111.53) then, 

x(70-- = 	• • A; 1AT x in) + <um' } 	(111.54) 

and also 	x (n1-1) = AN  AN.1  . . AT2{AT,x(n) 	amt'} 	(111.55) 

Again, employing the same technique as in section 111.5, the 

output equations are:- 

y R  (n) 	[o 1] [x
1 
 (n)] + a10 1  

u(n) = Brx(n) + d
1u(n) 

x2  (n) (111.56) 

i-/ 
= Bi 74(r0.i-/) -7F- (111.57) 
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where Eli  = (transposed of B1 ) = f0 	n for i = 1, 2, . . N 

Substituting x(n 	; 	 from from eqn (111.54) into eqn (111.57), 

one obtains 

_T  TT 
yi(n# —Tr) — E14: 	. Ar2  Arismo + 	utrt)}4- 	(111.58) 

Taking the z-transform of eqn (111.55) and (111.58) and rearrang-

ing, 

H2 (z) - 
zm
ia!  

 Y'. (z) 
	- (BT4, 	ATAT,) (xi - 	(AA (T . Ai i• • 	a )  

t(z )  
+ B.4 A.0  AT  , ... A=CT + D4  

4 4-11 

(111.59) 

where fa 101   
= 

for = 1 

[ 0 ] 	for 1 < i4 N 

Equations (111.55) and (111.58) are the dynamic equations 

of the transposed direct canonic configuration used as a multi-

rate filter. These equations are very similar to the dynamic 

equations, eqn (111.38) and (III.40), all matrices Aq are 

replaced by their corresponding transposed matrices AI:, also 

Ell  is replaced by CT and Ci by B1, then the dynamic equations of 

the transposed direct realization is obtained. 

It is observgd that the transfer functions, Hi(z), of the 

direct form .and, those, Hi(z), of the transposed form have the 

same poles, since 

det (2I - AN  Am _;  • . AO = det (2 I — 	. • Air,) 	(III . 60) 

However, except when i = 1, the 

equivalent to the corresponding 

independent of CT for 1 < i<A7; 

numerators of H
i
(z) are not 

numerators in Hi(z) which are 

rather I/4(z) is dependent on 
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Bi  which is a constant row vector for all values of i. Thus, for 

1 < i < N, H!(z) of the transposed direct form is not equivalent 

to H.(z) of the direct canonic form. Nevertheless, in the case 

of a time-invariant filter where all CI, remain the same through-

out the sampling period, H,i(z) of the transposed direct form 

will be equivalent to Hi(z) of the direct form for all values of 

Z. 

There are many other second order configurations (251, but 

the procedure of obtaining their dynamic equations and transfer 

functions when such filters are used in a multirate fashion is 

the same. Also, from the point of view of quantization noise, 

the second order direct canonic form (or the transposed direct 

form) is the most commonly used (25). Hence the other configura-

tions will be omitted in the discussions. 

111.9 Some Properties of the Transfer Function Hi(z) 

In section 111.5, it has been shown that the ith transfer 

function of a multi-rate digital filter in the direct canonic 

form is given by:- 

1 
Hi  (z) = 	. • - 	(z-  I - A,,) (A 	A2131) 

+ ce 	. • . 11/2 Bi  +► (111.61) 

where for convenience, the matrix Akm is written instead of A A ..-A h-t 

Here two interesting properties of this transfer function 

are shown in the form of the following theorems:- 

a) Poles of H.(z) 

Lemma 111.1 	The poles of Hi(z) are given by the equation 



det(zI -Am) = z2  + biz + b2 

such that 	b1  = - Tr [Am] 

and 	b2  = det [Am] 
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{ 15} { 51} 

de t (zI - Am) = 0 	 (111.62) 

Proof:- The proof of the lemma follows directly from eqn (III.61) 

i.e. 
Hi  l2) = 	A)), adj (z I - Am) (Amik,_,...A2 B #cl et ( z - Am) 

+ 	+ Di  

where adj(.) denotes the adjoint of a matrix. 

Hence the poles of Hi(z) are the roots of eqn (111.62) 

Lemma 111.2 The polynomial of the denominator of Hi(z) is a 

quadratic function in z, i.e. 

where Tr(.) stands for the trace of a square matrix and det(.) 
denotes the determinant of a square matrix. 

Proof:- Since 

Am  = 

and all Ai are second order, then Am  must be of the second order. 

Thus, det (zI -AO is a quadratic function in z. 

Let the characteristic polynomial be represented by 

f(z) = det(zI - A ) = z2  + b z + b2 
	(111.66) 

then 

f(0) = det(-Am) = b2  
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Hence 	b2 = det [Ain] 
	

since det[Anj = det 
for a second order matrix Am  

Differentiating eqn (111.66) with respect to z at z = 0, then 

az 
	b1  

z=0 

Also = 2-Idet(zI - Am)] 
az 	3z 

z=0 z=0 

 

= (z - a22  + z - a11) 

= -Tr (Am) 
b1 = -Tr(%) 

  

Hence 

z=0 

QED 

Theorem 111.1 If the polynomial of the denominator of Hi(z) 

is expressed in the form of eqn (111.63), then 

b2  = 17k. 2 	s2 	 (111.67) 

Proof:- From eqn (111.65) in lemma 111.2, 

b2  = det [A] = detAN_i ... A1] 
	

(111.68) 

Now, since the multiplication rule for the nth order determinants 

of two square matrices P and Q are such that {15} 

det(P).det(Q) = det(R) 

where 	rij  =Epikqki  

tc= r 

and pij, qij  and rid being the elements of P, Q and R respect-

ively, then the array of the elements in det (R) is thus 



-13i/] 

and det(A0= ai2  

therefore from eqn (111.68) 

0 	1 A. =  

(111.69) 
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identical with that in the matrix product (P.Q). Hence, the 

determinant of the product of two matrices equals the product of 

their determinants. 

Now, each matrix Ai is of the form 

b2=det(AN AN-I . . . A ) 

N-1 
= Tidet (Am_i ) 

i=0 

= 
I 

r37.2 
	

QED 

b) 	Zeros of 11 (z) 

Theorem111.2Forl<i<N,M(z) has, a zero at the origin 

of the z-plane, i.e. the constant term in the numerator of 

H.(z) vanishes. 

Proof:- Equations (III.61) can be written in the following 

form 

(z) = (Ci 	... A2  ) adj(zI A-)  (A,4 A"... A2131 ) 
det I - Am) 

+ 	Az_i lk_2  • • • A, B1  + Di 
	

(111.70) 

(I11.71) N  where A„, = AAN_I 
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adj(.) denotes the adjoint of a matrix 

and Di  = 0 

Grouping terms and rearranging, eqn (III.70) can be written as:- 

	

H ) = 	
AL 2 A  ad j ( zi - AW 

 .A„,  -1 + I)B, 
det(zI 

	

IN 	A. 	• • AA -A,) A 
det(zI -A,,) 

m + I 

(111.72) 

Now, consider the term, 

_ adj(zI -A,). A  

det(zI - AL,0 	m  

Recalling that 

(111.73) 

det (z I - Am) . I = adj (zI - Am) (z I - Am) 

= adj(zI - Am)z I - adj(zI - Am). Am  (111.74) 

Hence, 	adj(zI -Am).Am  =Zadj(zI - 	- det(zI -Am),I 

(111.75) 

Thus substituting the value of adj(zI 	given by (111.75), 

the term in bracket in eqn (111.72) can be written as 

r + (z I 	 - det(zI - Am).  + I 
det(zI - A„) 

_ z adj (zI - Am) 

det(zI - A,,,) 
(111.76) 

Hence for 14 i< N, the ith transfer function of the multirate 

filter is given by:- 

.i1 ,i  Hi(z) = (C. A. A. . .. A2 
 Ai zadj(zI -Am) 	

za ) 	 (III.77) C L-I L-2  
det (Z I - Am) 

Now, since every element of the matrix lz.adj(zI - Am)} contains 

terms involving z or z2, but no constant term, it may be concluded 
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that, for 1 < i< N, the numerators of Hi(z) are always free of 

a constant term. 	QED 

The above two theorems can be seen to be equally applicable 

to the transfer functions of a multirate digital filter realized 

in the transposed configuration. 

III.10 Design of Second Order Multirate Filters  

Consider the case that a second order transfer function 

given by 

F(Z) = a°22 	a1z 	a2 
	

(111.78) 
z2+ biz + b2 

is to be realized by a second order multirate digital filter. 

If a
2 	

0, then from the property shown in section 

III.8(b), eqn (111.78) can only be realized by using H1(z) of 

the multirate filter. However, if a2 
= 0, e.g. in a realiza-

tion of higher order digital filters by parallel alignment of 

second order subfilters, then any of the Hi(z) of the multi-

ratefiltercanbeusedtorealizegz).Thechoicelli(z) for 

such a design is discussed below. The two cases of time-invariant 

and periodically varying multirate filters are considered 

separately. 

a) Time Invariant Multirate Digital Filter 

Consider that F(z) given by eqn(III.78) is to be realized 

by a second order time invariant multirate filter. If only 

complex poles are considered, then the poles of l(z), A and. A* 

can be written as 

A = rej e  
* _ 	 je  
A - re 

(111.79) 
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It has been shown in section 111.3 that if a second order time 

invariant filter working at single rate has poles given by X and 

X*, then its poles when working with N shift sequences within a 

sampling period are X
N 

and X*
N
. Thus to realize gz) by a time-

invariant filter, 

Let 

N 
= re

je 
 =A 

X*2/7  = re-je= A 

X = pei° 

= pe-j4)  

then, 
P = r

1IN 

0 + 2wir  
N 

Hence for given values of r and 0, there are in general rly 

solutions for A, i.e. 

= r
1IN ej(0+2i7OIN 
	

(111.86) 

where i = 0, 1, 2, ...., (N - 1) 

Hence for a given transfer function gz), there are N different 

ways of realizing the poles of F(z) using a multirate digital 

filter. 

It can be shown {68) (see also section V.6) that the 

sensitivity of the resulting poles, A and A*, from using a multi-

rate filter is inversely proportional to 'sin cpl, i.e. 

I 6 AI ce — 1 
sink 

(111.87) 
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Hence in designing F"z) with a multirate filter, it is better, as 

far as pole sensitivity is concerned, to choose the pair of A and 

X* having the largest value of IsintI. The following example will 

illustrate this point. 

Example 111.2 

It has been decided to use a time-invariant triple-rate 

(N = 3) digital filter to realize a transfer function given by 

z2  

z2  - 0.9z + 0.81 

z2 	(111.88) fa - (0.45+j0.45i3)1[z - (0.45-j0.45i3)1 

Hence, A = re' 8 	 (111.89) 

where r = 0.9 	 (III.90) 

6 = 71/3 	 (III.91) 

There are three choices of A, 

Al  = pe"1 

A. = pe(PI)3 

where p = r1' = (0.9)
1/3 

= 0.9655 
= 	= 20 deg. 

cp2  = ( 	+ 270/3 = 140 deg 

4
3  = ( 3 + 47)/3 = 260 deg 

These values of A. are shown on the zN-plane in fig 111.7 while 

their respective complex conjugates are marked with an asterik. 

The corresponding positions of A and A* on the z-plane are also 

shown. 

Era) - 

X2 = pei(P2 
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Of these three available choices, 'sin 431 has the largest value 

and therefore A
3 
and A*

3 
 are chosen so that the resulting transfer 

function will have the least pole sensitivity. 

Fig 111.7 

Positions of the 3 Possible Pole Choices in the zN
-Plane 

Choosing A3  and Al for the poles of the multirate filter, the 

feedback multipliers of the multirate filters are given by:- 

1 	
A 

= -(A3 + A3) = - (0.9)
1/3cos 260

0 
 = 0.1677 	(111.94) 

02  = 33 A
* 
= (0.9)

2/3 = 0.9322 
	

(111.95) 

After determining the values of 0., the values of a. are 

considered. Since from eqns (III.10), (III.11) and (III.12), a 

triple-rate time-invariant filter has three different transfer 

functions all having the same poles. Thus we can choose any of 

the three to realize eqn (111.88). Rewriting eqns (III.10) 
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through (III.12) for the case of time-invariant filters, we 

have 

H1(z) = 
 ao + fal(01- 82)-a08 82-a2Eyz 	+ a2$2z 

3 	-1 	3 -2 -1 

	9 -1 

(111.96) 
1 + (01-313102)z 	+ 132Z 

] [ 

H
2
(z) =  (al-a0131)  + laDai-a1 131$24-a2(0i-02)1z-1 	(111.97) 

But considering that the numerator of Ira) in eqn (111.88) has 

only one term z
2
, and reading through eqns (111.96), (111.97) 

and (111.98), we find that H3(z) is the only transfer function 

we can use to realize b(a) such that a
1 

= 0 and a
2 
= 0. The 

reason for choosing al  and a2  to be zero is that we can save 

two multipliers in the implementation of the filter. For al  

and a
2 
to be zero, we have 

ac(1 
2 
	a2)  = 1  

i.e. 	ao  = 1/(81
2 
  - 82) = - 1.1061 
	

(111.99) 

With all values of the multipliers calculated, the final 

design of the triple-rate digital filter to realize eqn (I11.90) 

is shown in fig 111.8 

3 	/ 3 2 
1 + (S1-38162)z 	+ $2z 

H3(z) 
ao(81-2)-a18 1+a2 (alai-a28 102)z-1  

(111.96) 
1 + (0?-36 1a2)2-1  + alz-2  

	,!•__.x(n) 

f3 1t,+ -3) desired 
output 

closed at t.(11.4:1)T 

            

            

            

            

            

       

            

            

            

            

            

            

            

      

-ST 
Z 	e 3-  

 

            

            

            

Fig 111.8 Triple-Rate Filter to Realize Era) 
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The other two transfer functions H1(z) and H2(z) also exist 

but they will have characteristics different from H3(z) and 

different from each other. It is not the concern here in this 

example to make use of them. 

b) Multirate Digital Filters with Periodically Varying 

Coefficients 

Consider the denominator of F(z) given in eqn (111.78). It has 

been shown in section 111.8 (a) that 

i.e. to realize the denominator of F(z) using a multirate filter, 

there are two equations but 2N unknowns. Hence there are 

2(N - 1) degrees of freedom in choosing $ii  and $i2. However 

if the choice of ail  and $i2  are stipulated so that $il  and 

$
i2 

have to be chosen together as a set, then there are (N - 1) 

free choices of the $ 	ail sets. Therefore, given b1 and 

b2, (N - 1) sets of B
il 

and ai2 can be chosen and the remain-

ing ail  and $i2  set can be determined from equations (III.100) 

and (III.101). 

Consider the numerator of F(z). For a direct canonic 

realization of the multirate filters, after all the values of 

aii  have been determined, the numerator of Hi(z) is a function 

of lc.
2 
 and D only, where C. and D. are given by 

Ci = kai2 -"Ctioai2) 
	

(ailajoail)] 

for 4: = 1 
	 (III.102) 

for 1 < 	N 
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From the properties of Hi(z) shown in section III.8(b) that the numer-

ator polynomial of Hi(z) contains a constant term only when i= 1, 

then for H1(z), there are three linear equations and three unknowns, 

i.e. 

a0 = '1)0(a10, all' a12)  

a1 = 

a2 = 

1(a102  

(1)
2
(a
10' 

a11,  

a11' 

a12)  

a12)  

(III.103) 

where 00'  0I  and 02 are linear functions. Thus a10'  all  and a12 can 

be determined. 

However, for l< i < N, since the constant term in the numer-

ator of 11.
2
(z) vanishes, there are only two equations but three unknowns 

i.e. 

a0  = f (a , ail, a. ) 0 	0 io 21 22 

al  = fl(aio, ail, ai2) 
(II1.104) 

where f
0 
 and f

1 
 are linear functions. Hence we have one degree of 

freedom in the choice of a.
sOs  

, a. 	
s 

l and a. 
2
, i.e. we can choose any 

value for one of the coefficients and solve (III.104) for the other 

two. A convenient value to choose is zero, in which case, one of the 

multipliers can be omitted. A further saving of one multiplier can 

be achieved if the (N - 1) degree of freedom in the choice of the 

denominator coefficients and the freedom in choosing one of the numer-

ator coefficients are both utilized. This is especially a useful way 

of reducing the number of multiplications in a sampling period if a 

multirate digital filter is used to realize a second order filter with 

a zero at the origin (e.g. in the realization of higher order filters 

by parallel alignment of second order subfilters). The following ex-

ample may help to illustrate this point. 
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Example 111.3 

If a second order transfer function of the form 

gz) - 
	ao + a1z-1 	

(III.105) 

1 + b
1
z
-1 

+ b
2
z
-2 

is to be realized by a single-rate digital filter, it needs 

four multipliers, i.e. the circuit diagram would be as shown 

in fig 111.9 

tA ) ycn) 

Fig 111.9 A Single-Rate Digital Filter 

time- varying 
It is shown here how, by using a

A
double-rate filter, the 

number of multipliers can be reduced - 	and at the same 

time saving the use of one adder. 

From section 111.6, it is known that there are two trans-

fer functions associated with a double-rate filter, viz. 

[a10 	(a10022-(111021-m12)z- 1+ a12$22z-21 
H
1 
 (z) - 

I 1 	(812-H322-811821)z- 1 	012822z-21 

(III.106) 

[(a21-a20021) 	(a21022-a22021)z-1i 
H
2
(z) r 	  (III.107) 

Ll 	012+022-01021)z- 1 	1312022z-21 



-101- 

Either of these two transfer functions can be used to realize 

eqn (III.105). 

First consider the case when H1(z) of eqn (III.106) is used:-

Comparing the coefficients of the numerators of H1(z) and 

I(z), it is evident that the following equations have to be 

satisfied, 

a
10 

= a
o 

a
12 

= 0 
	

(III.108) 

Now if all is made equal to zero as well then 

i.e. 
a 

	a 
10022 	1 
022 = a1

/a
o 

(I1I.109) 

Comparing the coefficients of the denominators of H1(z) and 

gz), then 

0 b2  aoh2 
12 = 

 

022 a1 
(III.110) 

and if a convenient value for 011 is chosen, say 011 
= 1, then 

-  021 = (B12 	622 	b1)//311 

, aobi 4  al _ b  
al 	ao 	b1) 	

/ 811 
(III.111) 

Hence the equivalent double rate filter has the circuit diagram 

as shown in fig II1.10 



) 

Fig III.10 A Double-Rate Digital Filter used in Place 
of fig 111.9 

On the other hand, if eqn (I1I.107) is used to realize Erz) 

given by eqn (III.105) then again 

51222 
= b2 

812 	822 - 1121 = b1 

Now setting 2() = a22 = 

then a21 = ao 

a
2122 = a1 

(III.112) 

(III.113) 

(III.114) 

(III.115) 

Thus it can be chosen that 

822 = a1/a21 = a1lao 

giving 612 = 
bna 0 
a1 

Again choosing a convenient value for 511, 82/  can be determined 

from eqn (III.113). Hence the equivalent double-rate filter, 

if H2(z) is used to realize E(z), has the following circuit 

diagram (fig 1II.11) 
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!,LOBED 4T 

Fig III.11 An Alternative Double-Rate Digital Filter used 
in Place of Fig 111.9 

Comparing Fig 111.9, III.10 and III.11, it can be seen that by making 

use of the fact that the zeros of a double-rate filter are related to 

its feedback multipliers, the number of multiplying coefficients can 

be reduced to four if the filter is to realize its single-rate coun-

ter part having a zero at the original. 

The use of multirate digital filters to realize equivalent sin-

gle rate transfer functions necessitates more multiplications in a 

sampling period and thus faster multiplication rates. Hence, any 

possibility of reducung the multiplication rate as has been demons-

trated by the above example would be most welcome. 

III.11 Computer Simulation Results 

In order to verify that the results obtained from the state-space 

analysis of a multirate digital filter (section 111.5) are correct, 

a computer program has been written. The program first designs a multi- 
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rate second order digital filter in the same way as described in sec-

tion III.10 so that it gives the same performance as a given single-

rate second order filter. Then from a given input sequence, the pro-

gram evaluates and prints out the time domain output sequences of such 

a multirate digital filter. The time domain output sequence of the 

equivalent single rate digital filter is also calculated, thus enabling 

a comparison between the two sequences. 

A flow chart of the program is shown in fig 111.12. 

The following examples (ExIII.4 through 111.7) are taken from 

the computer simulation program. In each example, a single rate digi-

tal filter and its impulse response is first showninpart (a). Then 

a multirate digital filter is designed in the same way as described 

in section III.10 so that the performance of its output sequence is 

identical to that of the given single rate filter. The circuit dia-

gram of the multirate digital filter as designed and its Zth impulse 

response are shown in part (b) of each example. The designed values 

of the multiplying coefficients are shown on the circuit diagram. 

These examples verify that the formulae developed in section 111.5 

are correct and that the output of a single rate digital filter is 

identical to one of the outputs of a multirate filter if the coeffi-

cients of the multirate filter are designed according to the analysis 

results. 
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111.12 Resume  

The basic action of a multi-rate digital filter has been 

described. A mathematical model of such a device has been 

established using state-space analysis and has been proved to 

be much more versatile than the other two existing models not 

only because it gives a general formula for both periodically 

varying and time-invariant cases, but also that it can be 

applied to other configurations other than the direct realiz-

ation without difficulties. 

Based on this model of the ideal multi-rate digital 

filter, some interesting properties of the device have been 

found, and the design of such a multi-rate filter discussed. 

Finally, the correctness of the model was verified by a 

computer simulation program, and the results shown in the 

examples. 



CHAPTER IV 

QUANTIZATION ERRORS CAUSED BY ANALOGUE-TO-DIGITAL 

CONVERSION IN MULTIRATE DIGITAL FILTER 

IV.1 Introduction  

As mentioned in chapter I, the input signal has to be quantized 

to a finite number of bits before entering a digital filter. 

Whether or not the input is considered to be quantized depends on 

the situation. If the input is inherently discrete, no error 

exists. In a great many practical cases, however, the input 

signals are inherently continuous, and the analogue-to-digital 

conversion is necessary before digital processing can be performed. 

Thus there is a basic source of error in this conversion. Fig IV.1 

shows the action of a 15-level A-D converter, with constant level 

differences E
o 

 

Fig IV.1 

Linear Quantization of 

Analogue Signals 

 

The analogue-to-digital converter in fig IV.1 effectively 

quantizes the signal. Such kind of quantization which approxirates 

the signal by the nearest quantization level is called rounding, 
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and is the only type considered here. 

It is assumed that the rounding error e(n) associated with 

the samples is uniformly distributed, the probability density 

function being as shown in fig IV.2 

       

      

	D.e 

      

  

Eeiz  • • E,,h 

  

Fi3 Pf.2 

If the signal fluctuation is such that many quantization 

levels can be traversed from one sample to the next, it seems 

reasonable to expect that the error e(n) at any sampling time 

will be statistically uncorrelated to e(m), the error at any 

other sampling time. It is easy to give contrary examples (for 

instance, when the signal is constant); however, such signals 

are of extremely narrow bandwidth, and in practice {3}, all signals 

are likely to have very much richer frequency contents. There-

fore this assumption holds for nearly all signals likely to be 

encountered in practice. 

IV.2 Variance of A/D COnVerdidid Noise  

Given quantization errors, each with probability density 

function shown in fig IV.2, it is apparent that the effect is 

that of noise superimposed on the original analogue signal. The 

input can thus be expressed as 

u'(n) = u(n) + e(n) 

where u(n) can be thought of as a noiseless input and e(n) is 

the added noise. 
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Let p
e 
and a be the mean and variance respectively of the 

A/D conversion noise. From fig IV.2, it can be seen that pe  = O. 

Hence, the variance is given by 
CO 

a2  = 4)((e - p
e
)
2
.Pr(e) de 

E./2 
= 	e2.1 de 

f E'0 -soh 	E0/2  

_ 1 1 el 
Ea  [ 3 

-E./2  

i.e. a
2 
= E2/12 

e o (IV.2) 

IV.3 Errors in the Output of a Single-Rate Digital Filter Caused  

by A/D Conversion  

The variance in the output signal, y(n), of a single-rate 

digital filter may be computed by using linear-system noise theory 

if all other errors in the filter are ignored. Since the signal 

and noise are independent, one can proceed with the noise compu-

tation while ignoring the signal. Let the filter be defined by 

the transfer function G(z) and weighting function g(n). Then 

the output ye(n), when the input consists of the noise samples 

e(n), can be expressed by the convolutional sum {22} 

ye  (n) 	(i) e(n-i) = Eg(n-i) e(i) 	(IV.3) 

4: = 0 	 =o 
It has been assumed that the noise e(n) began at n = 0 

and was zero before; also the output ye(n) was assumed to be 

zero before being excited by the input. 



0 	(n) = Lim M+1 YeYe 	M+0. 
ye  (k)ye

(k+n) 
1 

12 

k 

aye 
= a2 Zg2(i) 

t 

0 E 
= 	 g

2(i) 
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The autocorrelation function of ye(k) is defined as 

M 

=-e (k) ye  (k+71)] 
	

(IV.4) 

where E(.) denotes the expected value and ye(n) is assumed to be 
ergodic. Substituting this in eqn (IV.3), one obtains 

0 	(n) = E[22g(i)e(k-iEg(i)e(k+n-j) ] 
YeYe 	 j=0 

k«It. 
= E g (i)g (i) E [e (k-i) e (k+n-i )] 
4=0 .1.0 

k 	&'# 

EE (i)g(j) E Le (Z) e (1 +fl+i-j)] 	(IV.5) 

b=0 J.=0 

where Z = k-i. However, e(Z) is uncorrelated to e(1-014-i-j). 
Hence 

E[e(1)e(l+n4-1-j)] = 
	E[e2(1)] 	for n+i-j=0 

0 	otherwise 

The variance of ye(k) is given by the autocorrelation function 
when n = 0, thus, 

a2ye 	0 	(0) 
YeYe 

= 	 g(i)g(j) E[e(1)e(l+i-j)] 

g 2 (i) E[e2(Z)] 
4-0 

since i-j=0 for Lea)eq+4-Ato exist 

Hence the variance of the output Ye(k)  is given by 

(IV.7) 

(IV.6) 

L=0 
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Notice that a
ye 

in eqn (IV.7) is, in a sense, a time-dependent 

result, since it is a function of k, the number of iterations. 

Since g2(i) must be positive, aye 
must increase with k. This is 

reasonable, since one could not expect a large variance in the 

output immediately after the noise is applied. Physically, the 

variance of the output builds up and reaches an asymptote. A 

steady state is always reached if the filter is asymptotically 

stable. Given that a steady state is reached, it is possible to 

derive {22}, from eqn (IV.7) another formula from which numerical 

results are usually more easily computed, i.e. 

re g2(i) = 2 	 G(z)G(-1-) z-1  dz 	(IV.8) 
70 

2=0 

Comparing eqn (IV.7) and (IV.8), it is observed that the 

right hand side of eqn (IV.8) offers an alternative formula for 

computing the output-noise variance for the steady-state condition, 

i.e., only when k goes to infinity. This expression is often 

easier to apply to find out the variance of specific filters. 

IV.4 State-Space Approach to Derive the Errors in the Output - of a  

Single-Rate'DigitalTilter'Caugedliy'A/D'Coliversion  

Consider a digital filter represented by the following 

dynamic equations:- 

x(n+1) = A x(n) +Bu(n) 

y(n) = C x(n) 	Du(n) 

It has been shown in chapter II that the output y(n) of such a 

digital filter is given by 

- 1 

y(n) = C 
	

A Bu(i) + Du(n) 
	

(IV.10) 

.0 
However, if the input to the filter is a random sequence e(n) 

caused by the quantization of the continuous signal u(t), then 

the output error ye(n) is given by 
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ye(n)= C 2 A Be(i) + De(n) 	 (IV.II) 

Now the covariance matrix of a random vector v(n) is defined as 

{41}:- 

cov [v(n)] 	Er(v(n) - E[v(n)]1(Vr(1) - E[17(n)11) 

(TV.12) 
where Vrdenotes the transposed of the vector v. The above 

definition of covariance matrix can be applied to the case of the 

scalar quantity y (n) where y'(n) is, from eqn (IV.11), e 	7,1-1  
n-C-1 

ye  T  (n) = 	e'T  (i) 	[A",r] 	c 
T 
 + 	(n)D 

T  =0 
where obviously 	ye (n) 

and 	e (i) E e(i) 
DT  D 

(IV.13) 

Applying the definition of covariance matrix to the scalar ye(n), 

then it can be written that 

cov [Ye(n)] = E({ye (n)-E[ye (n)]}{yTe (n)-E[y Te(n)]g ( .14) 
However, since e(n) has zero mean, the output ye(n) has zero 

mean, hence 

cov [ye  (n)] = E [ye  (n) ye (n)] 
n-f 

= E CE/Clie (i)+De (n) 	 C T  (j )11 a 5' CT Rn)Blir 
e.=0 	3=0  

= 
 EB

n-1 n-4 	. 	 n-4 

C 2 1,11:-'Be (i) eT  ( j ) BT  UV ..i  - 1  cl - I - IC lia: . ' - iBe(i)er(n)611 
z..0 pro 	 c=0 .., 

-11De(n)el(j) lir  (Ifiri 1  Cil ÷ De (n)eT(n)D1 
i=0 

n-4 

E[e(i)eT(i)] 
4=0 J.0 

t" IB 
i=o 

+ 	E[e(n)er(j)1CATi-C1 

.1" 

+ D2  E[e(n);(n)] (IV.I5) 



E 	
2 

(C 	 II) 	Dd 
E2  

a2 = 
0 

ye 	12 

n -I 

!=0 

(IV.18) 
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But e(i) is uncorrelated to e(j) unless i = jj  i.e. 

 

r

0

c2)1 12 	for £ = 

E[e(i)e(i)] = 
 otherwise, 

  

Hence eqn (IV.15) can be simplified to 

E2  It-i 	..:_t 	0  

E[ye(n)y:(n )] = C1:11 B •••-•-- 

4.o 	
12 Er (1)  e+ D2  ° 

T n-i-I 

12 

E2  

i.e. the variance of ye(n) is given by 

	

E2 	"-I 	,. , 
a2 = 	o 	cE[i........ 	T T n-i-t T 

A B B  ) C ] + D2  ye 	12 

 

(IV.16) 

 

Although eqn (IV.16) can be evaluated readily using a digital 

computer, it can be further simplified if the digital filter 

has only a single input and a single output. for a single-input 

single-output system, 

B-r ) 	T 
C = C A!""  B (IV.17) 

Thus eqn (IV.16) can be also be written in the following form 

Eqn (IV.18) yet offers another expression for evaluating a
ye 
. 

Comparing eqn (IV.18) to eqn (IV.7), it can be seen that, 

N4E:g2(i) It A 4+ D2  
4 =0 	 L=0 

(IV. 19) 

The steady-state error for a digital filter due to A/D 

conversion is thus 

E2  n-1  

ael
= Lim -1771:(CAL" -̀ + D2  

n40,  
steady 
state 

= 4',2O 	1 iG(z)G(z-1) dz 	(IV.20) 
12 7727 	z 



-122- 

IV.5 Verification of the State Space Derivation of the Errors in the 

Output of 'a Sin le-Rate Di ital Filter Caused .b A/D Conversion 

m 	 . 
Eqn (IV.19) offers an alternative way of evaluating Eg

2  (1), 
and is generally more convenient to use. This is because for a 

given configuration of the digital filter, the matrices A, B, C, 

and D are easily determined whereas it is not always easy to find 

g(i), the impulse response of the filter. 

To compute the expression given in eqn (IV.19), it is 

generally much faster, especially if n is large, to determine 

the eigenvalues and the eigenvector matrix of A first, i.e. 

making use of the equation 

A = p  A  p-1 	 (IV.21) 

where 

and P 

A = [x 
1 

0 

= [ R1  

0 

X 

Itj 

'1 
and X2 being the eigenvalues of A 

, itiand /912  being the eigenvectors of A 

corresponding to A i  and A2  

Hence eqn (IV.19) can be written as 

2 

C P ith-" B) + D2  (Iv. 22) 
i=0 

A computer program has been written first to determine Atand 

P, and then to evaluate the expression in eqn (IV.22) Many 

different sets of state matrices A, B, C, D, have been used to 

compute eqn (IV.22) for large values of n. Comparing these 

values with those obtained by evaluating the integral in aqn 

(IV.8), it has been found that they are in perfect agreement. 



A 1 0 	1 	9 	 = [01, 

-0.95 1.85] 	1 
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The following is an example verifying that the expression 

in eqn (IV.19) is correct:- 

Example IV. I1 

Fig IV.3 A Digital Filter with an Input Quantizer 

Fig IV.3 shows a digital filter where the input sequence u(n) is 

quantized to u'(n). Find the steady state variance of the output 

error caused by the quantization of the input signal by (a) the 

state-space method (b) contour integrating over the z-plane if 

the quantization step at the input is E0. 

a) The state-space approach:- 

Assuming that the filter is ideal, i.e. there is no round-

off error inside the filter apart from the quantization of the 

input signal. The state matrices for the filter are:- 

C = [-0.95 	1.85] , 	13 = [1] 

The eigenvalues of A, as computed by the program, are 

X' = reie  

a2= re-a° 
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where r =47.75T 
6 = 18.37 deg 

The eigenvector matrix ofikis given by 

]P T.9737-j0.3234 0.9737+j0.3234 

and the inverse of the eigenvector matrix is 

[ 

ICI  = j1.5461981 

-j1.5461981 

0.5-j1.505086] 

0.5+j1.505086 

The value of the expression in eqn (IV.19) is then evaluated fcr 

n = 250 where (IA11)71  • Is negligible. The result is 

E2 	-1  0.2 = 	z 	n-i.- I 
P B 	+ D2  

"t ye 	C PA 12 

 

= 102.63158E 
n=250 0 

(1V.23) 
b) By contour integration over the 2-plane:- 

The transfer function of the filter is 

z2 	22  
2' - 1.85z + 0.95 	( z-rea8)(a-re-a6) 

Hence G(2
-1
) - 

1/r2  
je 	de (a— — e )(z- e ) 

G (z) 

where, as given above, r ATiff 
0 = 18.37 deg 



2112 	-1 dz 02 = o 	
C(z)G(z ) 

ye 	270 

E/12 	z/r2  
dz 27g (z -reees) (z-re 8  

e - )(z - - 
1
e-
:743 

 )(z- -e 	) r 
E2/12 

r2 	1 	oe -oe 	je 1 - -je 	1  ae 	 oe 

0 	1 	1 _ 	 + 	 
( r CP- -.) (e -e 	) (re - e 	) 	2,-.e -re 	) r 	r 

i.e. 02 =(141"2  
ye 	

1 -r2 	r4L-2r2cos28+1 

E2/12 
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Thus, we have 

Substituting the values of r and 8, then 

E2  
vi  = 102.6315789 x 
ye 	12 

which agrees completely with the results shown in eqn (IV,23), 

using the state-space formula. 

Errors in the Output of 'a Multirate Tigital -Filtr*C4u8eLim_ 

A/D Conversion  

When the quantization noise is passed through a multirate 

digital filter whose coefficients vary periodically, one would 

expect the variance of the output error to be weighted by the 

respective weighting sequence, i.e. 
E2  

02  = 
12 	s 

E h?lk+ 	 (IV.24) 
ye  

k = o 
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However, to show this relationship rigorously using litear- 

system noise theory in the case of a multirate digital filter would 
- be rather complicated since the weighting sequence yn 17- 1 ) 

is varying periodically. Elaborate theories have been developed 

for solving problems of linear time-varying system {19}{43}{50} 

{72}{73}. However, in this case, the state-space approach 

illustrated in section IV.4 shows great simplicity and renders the 

problem readily solvable. 

A multirate digital filter realized in the direct confi-

guration with periodically varying coefficients can, as shown in 

section 111.5, be represented by the following dynAmic equations 

X(n+1) = A„, X (n) + 	(n) 

	

yi (n+ 1N-1  )= c i x(n) + Riu(n) 
	

(1V.25) 

where 

A,.. = A„ 	A, A, 

A, AN 	Bi 

= 	Ai_, ... A, Al  

DTMt = 	A 	„ A, B, + 

In view of the similarity between eqns (1V.25) and (IV.9), 

the state space approach can be applied to a multirate digital 

filter in exactly the same way as illustrated in section IV.4, 

Thus the variance of the errors in the ith output sequence of a 

multirate digital filter caused by A/D conversion of the input 

is given by 

E2 t  
G2 = yei 	1°2 1E( m; Antn-k-1B,. )

2 	
D2  

(1V.26) 



—1-.i.. 	H .s(z)11 .s614 dz  ano 	z z 
=Lim  EC„„A„, 	DL,  (IV .28) 

2 

n 	co k.0 

n-k I 	2  
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Eqn (IV.26) is very similar to eqn (IV.18). Hence the ith 

weighting sequence, hi(k 111-), of the multirate digital 

filter has the following relationship, 

- 

Eh?(k+ 17-1) 
o lc 

n -h -1 
. (C -A 	BO 2  + D2  m (IV.27) 

and for n =, in view of eqn (IV.20), the following expression 

can be written, 

a2 	. 
yel 

= 
o 

 
c 

E2 E2 . _o i H (z)H.(2 )
!1-1 i 	2 z z 

(IV.29) 

0 Eh?(k+ i-/ )  
12 	2  12 1773 

lc .0 

If the ith transfer function, B(z), of a multirate digital 

filter is designed to give the same performance as a single-rate 

filter, G(z), the variance of the output error in both filters 

due to A/D conversion at the input should be equal, i.e. 

22 
aye. 

= a
ye 	

(IV.30) 

This is apparent when eqn (IV.29) is compared with eqn (IV.20). 

Intuitively, this should be obvious since the quantized input 

can be represented by the ideal input sequence plus a sequence of 

added noise, i.e. 

u' (n) = u(n) + e(n) 	(IV.31) 

If such a sequence is passed through two systems having the 

same performance, the outputs of the two systems should be identical, 

and therefore the output errors should be the same, i.e. 

y' (n) = y (n) + ye  (n) 	(117.32) 
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where y(n) corresponds to the output of the system due to u(n) and 

ye  (n)to the output due to an). 

IV.7 Accuracy of the Statistical Estimation of the*Output'Ertors  

due to A/D'Conversion  

A program has been written to test the accuracy of the 

statistical estimation of the output errors due to A/D conversion. 

The simulation has been carried out for both the single-rate and 

multi-rate filters. Fig IV.4 shows a flow chart of the simu-

lation program. An example is given later to show that the 

statistical estimation of the output error is reasonably accurate. 

 

START ) 

            

                 

                    

           

THE QUANITZED IN-
PUT IS PASSED THROUGH 
A SINGLE-RATE FILTER 

     

                

                

 

GENERATE A PSEUDO 
RANDOM INPUT 
SEQUENCE 

        

THE STEADY-STATE 
OUTPUT ERROR 
VARIANCE OF THE 
MULTIRATE FILTER 
EVALUATED 

 

                

                

                    

                    

                    

                    

         

THE STEADY-STATE OUT-
PUT ERROR VARIANCE OF 
THE SINGLE-RATE FILTER 
VALUATED  

     

              

              

 

THE INPUT SEQUENCE 
IS ROUNDED OFF AND 
THEERROR IS EVAL-
UATED 

        

      

THE STATISTICAL 
ESTIMATION OF 
BOTH THE SINGLE-
RATE AND MULTI-
RATE FILTER 
COMPUTED 

 

               

                    

                    

         

THE IDEAL INPUT IS 
PASSED THROUGH A 
MULTI-RATE FILTER 

      

               

               

 

THE IDEAL INPUT IS 
PASSED THROUGH A 
SINGLE-RATE FILTER 

          

             

             

             

                  

                  

                  

                  

                  

              

( END  ) 

 

               

               

     

THE QUANTIZED INPUT 
IS PASSED THROUGH 
THE MULTI-RATE FILTER 

   

               

Fig IV.4 Flow-Chart of the Simulation Program 



Example IV.2 
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Q 
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-(17 7 

(a) Single-rate Filter 
	

(b) Equivalent Double- 
Fig IV.5 	rate Filter 

Fig IV.5 (a) shows a single-rate digital filter which has 

a transfer function given by 

G(z) 
Z2  - 1.85z + 0.95  

Fig IV.5 (b) shows a time-invariant double-rate digital 

filter the coefficients of which are designed such that the 

second output sequence, y2(n i), is identical to the output 

y(n) of the single-rate filter. 

Now a "pseudo-random" sequence u(n), having 350 samples, 

is quantized to 2 places after decimal and then passed into 

both the single-rate and double-rate filters separately. The 

output of both filters are observed and are found to be identical 

as expected, i.e. 	y'(n) = y'(n+2) 

Now the same "pseudo-random" input sequence without being 

quantized is passed through either the single-rate or the 

double-rate filter and the output sequence y(n) recorded. The 

difference between the last 150 samples of both y(n) and 

24'(n + i) are taken and the variance (which represents with 

sufficient accuracy the steady state error variance) calculated. 

Let ye(n) represents the difference between y2(n4) and 

y(n). Then the variance of ye(n) when steady state is reached 

is, from the above simulation experiment, found to be 

z2  



-130- 

,o 
a2 
ye 	= 7777 	2 

1 	
(i÷;5) - y(i)] 2-  

steady 	204 

state = 0.000792 
 

(IV.33) 

The factor (150-1) is taken although there are 150 sample. This 

is because an unbiased estimate {35}{60 is desired. 

This result of ale)  shown in eqn (IV033) is compared 

steady 
state 

with the statistical estimation of the output error due to the 

A/D conversion:- 

The estimated error can be evaluated in two ways, firstly by 

contour integral as shown in example IV.I, and secondly by 

evaluating the state-space expression for a double-rate (or its 

equivalent single-rate) digital filter as shown in eqn (IV.26) 

a) Contour Integral Approach 

As shown in example IV.I, the estimated output error due to 

A/D conversion has a variance given by 

E2  
a2  = 102.6315789 x ye 	12 

where in this case Eo = 0..01. Hence we have 

01)2.  = 102.6315789 x (012 	- 0.000855 (IV.34) 

b) Evaluating the State-Space Expression 

From eqn (IV.26) the estimated error in the output is 

2 a • = yes 

 2 

12 

where n = 350 i = 2 

Eo 	n I 

(C„,z 	E;,„ 
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and for this time-invariant double-rate filter 

An, = [0 	2 

-0.9747 1.9492 

13"4  = r° 	[0]  
L-0.9747 1.9492i 1 

	

[-(0.9747x0.513) 	(1.9492x0.51310 	1 

-0.9747 1.9492 

	

D,f= [-(0.9747x0.513) 	(1.9492x0.513) [0] 

1 

Evaluating  the expression with these values, it has been found 

that E2 

a
2 = 102.63156 	 
ye 12 

= 0.000855 	 (IV.35) 

which agrees perfectly with the result evaluated by contour 

integration shown in eqn (IV.34) as has been expected. 

Comparing the statistically estimated result (eqn (IV.35)) with 

that obtained from computer simulation (eqn (IV.33)), it could 

be seen that they are in reasonable agreement. The possible 

source of this small discrepancy is that the variance of the in-

put error due to A/D conversion is equal to E2/12 only if an 

infinite number of samples are taken. 

IV.8 	It:6'811mA 

The error caused by the analogue-to-digital conversion of 

the signal before entering the digital filter has been introduced 
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and its properties discussed. The error in the output of a 

single-rate digital filter due to such A/D conversion is first 

analysed by linear system noise theory, and then analysed, from 

a different point of view, using the state-space method. The 

validity of the state-space approach has been verified by actually 

evaluating the expression and comparing it with the result 

obtained by contour integration. 

The main advantage of the state-space approach is that it 

can be applied to the case of periodically varying multirate 

digital filter without any further elaboration or modification 

of the theory. Although the result obtained for the error in 

the output of a multi-rate digital filter caused by AJD conversion 

using state-space approach is merely a confirmation of what is 

expected, the method demonstrates the usefulness of state-space 

analysis. 

Finally, the statistically estimated output errors due to 

A/D conversion in both single-rate and multirate filters have 

been compared to those obtained from computer simulations of 

such filters. While the output errors of both single-rate and 

double-rate filters are identical if the filters are designed to 

give same outputs, the estimated output error and the experimental 

output error are in close agreement. 



CHAPTER V 

POLE SENSITIVITY OF A MULTIRATE DIGITAL FILTER 

TO THE QUANTIZATION OF THE COEFFICIENTS 

V.1 	Introduction - Effectg of Coefficient  Inaccurac 

As a result of the finite word length used in a digital 

filter, each coefficient is replaced by its Z-bit representation. 

That is, if fixed-point arithmetic is used, the coefficient ak  

is replaced by rakiz  which equals (ak  + Aak)I with Aak  bounded in 
- Z absolute value by 2 Z. Similarly, each bk  is replaced by Cbk  ]z  

which is (bk  + Ab )0 Therefore, the filter characteristics are 

changed. This problem can be approached in a number of ways. 

Firstly, one can simply compute the frequency response of the 

actual filter with b-bit rounded coefficients, that is, by using 

the actual transfer function 

[21J1.2-k  
[H(z)] i  - 	k" 

1+2 [borz-k  
k 

(V.1) 

The result can then be compared with the ideal response for the 

original design, For a certain bandstop filter, calculations 

{38} show that in addition to a greatly increased transition-

region width between stop and passbands, the minimuL inband 

rejection deteriorates from 75 dB to less than 50 dB when the 

wordlength is reduced from 40 bits to 12 bits. 

Secondly, if a single number as a measure of the change is 

desired, an integrated'squared deviation of the frequency response 
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may be used such as 

H(z) 4
11(z)1 2 	(V.2) 1 

2ro 	
4111 dz 

  
where H(z) is the ideal transfer function and [H(z)]1  is the 

transfer function where each coefficient is replaced by its 1-bit 

approximation. By regarding the filter coefficient errors tak  

and Abk  as independent random variables, the statistical average 

of the integrated squared frequency response error as defined by 

eqn (V.2) has been calculated {38}. However, since the error 

in each coefficient is fixed throughout the operation of the 

filter, the validity of the assumption of random coefficient error 

can be doubted when the order of the filter is low. 

Finally, one can also calculate the movements of the poles and 

zeros of the transfer function due to coefficient rounding and 

then apply network sensitivity theory to study the changes in the 

filter response {30{46}. From these movements, the change in the 

overall filter response can be studied. This approach has been 

adopted here in this chapter because of its simplicity and because 

of the deterministic nature of coefficient round-off errors. 

The infinitesimal pole sensitivity is first discussed from 

the point of view of state space. A comparison of the pole sensitiv-

ities of both the time-invariant and periodically varying multi-

rate filter is then made. The idea of "sensitivity ellipse" is 

then introduced which is established as a criterion for comparing 

pole sensitivities of second order single rate and time-invariant 

multirate digital filters. The theoretical analyses are then 

verified by computer simulations. 
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V.2 State Space Representation and Infinitesimal Eigenvalue Sensitivity  

The dynamic equations of a digital filter, as shown in 

chapter II, are given by:- 

X (n#1) = A g (n) 	B u (n) 	
(V.3) 

y(n) = I;x(1) 	tou(n) 

and the transfer function of the filter is 

H(z) = C (z I- )15 1B 	D 

- &Adj(zi...,A) 
det(zi -A) B + D  (1.4) 

Hence the poles of the transfer function are given by the roots of 

the characteristic equation 

det(zi - A) = 0 	 (V.5) 

that is, the poles of the transfer function are the eigenvalues 

of the state matrix A. Thus the pole sensitivity of H(z) is 

simply the sensitivity of the eigenvalues of A. 

Eigenvalue sensitivity is defined as the expected change 

in the location of an eigenvalue of A for a change in a parameter 

of A. Due to the rounding of the coefficients in a digital 

filter, the parameter ofAvaries. An infinitesimal approximation 

to this sensitivity, valid for small parameter inaccuracies, is 

given by 
AX
k 

a?,
k 

AAij aAij 

(V.6) 

where Aij  is a parameter of A and Xk is the k
th 

eigenvalue of A 

satisfying the characteristic equation 

f(X, Aii) = det(AI - A) = 0 
	(V.7) 
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This characteristic eqUation can be written in other forms such as 

f (a) = -{f 	- xid  = aM 	bX 	 (v.8) 

where of course, Xk  and blare functions of A. 
sd 

For any form of the state matrix A, the infinitesimal sensitiv-

ity of the kth eigenvalue to a parameter Aid  of A is given by 

6Xk
- 

bfAMij 
7777 /..0  of/ax X=X 

Using  equation (V.8), this becomes 
Obi  

axk 	.4.(74-77.Xk L.r 	SO  
sd 	ft (Ak - Am) 

Ivifk 

which is an estimate of the change in the kth eigenvalue due to 

a diangein il7,e—°  The movement of the kth eigenvalue is thus 

   

Ai 
v bb 

1 xm
—Z 	— 

[I

n..., ail 	• k 
1---! 	

. 
 -4----• Mi  . 0 7(1k - Am) 

 

    

   

(V.11) 

   

    

j=i 	+++tk 

It should be noted that aVaAjj = 0 if A
ij 

is unity or zero 

because these parameters can be realized exactly with digital 

hardware. 

(V.9) 

(7.1o) 

If the digital filter is realized in -the direct configuration, 

the state matrix A will be of the companion form, i.e. 
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0 
	

0 	0-  

0 	0 	1 	000 

• • • 

0 	0 	0 	... 	1 

-44-, 
and the characteristic equation is then, 

A . (1.12) 

f(A) = det(AI - A) . 	+ 1,10-1 	+ bm_IA + bm  =0 (V.!3) 

If the digital filter has real coefficients, then the parameter 

of A are real, because the parameters of A are simply the co-

efficients of the digital filter. Since our attention is focused 

on second order digital filters realized in the direct configuration, 

a consideration on the eigenvalue sensitivity of the second order 

companion matrix form will be sufficient. 

V.3 Tlgenvalue Sensitivit f a Multirate Di itaiFiltdrvith 
Perindiddlly'Varying'CoeffiCients  

It has been shown in chapter III that if a second order digital 

filter realized in the direct configuration has N shift sequences 

during each sampling interval while its coefficients are allowed 

to take on different values every T/N seconds, so that ctii  and 

ali  are the coefficients at nT, d 2„1. and am  are the coefficients 
i / 

at (n 

	

	2.0  1/N) T and U.. and S.. are the coefficients at (n -----)T. 1.0  N 
then its state equation is given by, 

where 	Ai = 0 	1 ] 

— oz, 
i.e. its state matrix Amis given by 

r

-x

i(n#111= 	. . . A2  

2(714-1) 

Am= AN. A N_, . 	Af  

rxi  (n) + Bt u (n)\ 	(V.14) 

Lx2(n)..1 

Bi  = 1-0] 

[1 

(V.15) 



-138- 

It is the aim of this section to find the sensitivity of the 

eigenvalues of xn, and to find the condition under which such 

eigenvalue sensitivity is minimum. However since a completely 

general approach is rather complicated, it seems sensible to start 

with the case of a double-rate digital filter, i.e. when N = 2. 

Consider a double-rate digital filter. If such a filter is 

used to realize a fixed second order single-rate filter whose Mate 

matrix is As, where 

As  = { 0 	1 	 (V.16) 
-b

2 
-b
1 

then the eigenvalues of As  and (%.2 111) are identical, i.e. 

02, Fi z2+b/z+b2 	(V.17) Z2 	(1312 + 822 - 811 821)z 	1312  

Equating the coefficients in eqn (V.17), one obtains 

	

12 + 22 - 11821 = 1 
	(V.18) 

	

8
1222= b2 
	(V.19) 

Equations (V.18) and (V.19) represent the constraints on the 

choices of .0,11' . .812' a21 and  6220 If only complex eigenvalues of 

As  are considered and if A and A*  are the eigenvalues of As, then 

A = reje  

A* = re je 
	

(V.20) 

where r = 	= 471T--  2 	12 22 
(V.21) 

0 = tan-1  {
2  - b2/(-b/  )1 

= tan-1  yif 10,2022-(6a-N322-ell  021) 2,/(A l k-p,-0.") I 	(V.22) 

and for complex poles bi  < 4b2  and b2  is positive. 
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Now for small changes of the coefficients B.., 
5121  521 and 

522,  

2 	2 

=LE(a a 
	

As a r  ) 
.• 	

• 	.. 7.3 7.,e7  j=1 

2 2 

(V.23)  

AO = 
: 	es i) 	• Aa * si 

i =1 j=1 
(V.24)  

Since 511' 512' 521 and  522 can take on any values provided the 
constraints of eqn (V.18) and (V.19) are satisfied, the general 

values of Asij  will not be known; thus Aaij  can be regarded as 
random variables with zero mean and bounded by ± E0/2 where F.0  

is the quantization step for the coefficients. Assuming the 

quantization steps are equal for all coefficients, then the 

variance of AB 	is given by (section IV.2) 

2 Eo 
var(ABii) - 12 	 (V.25) 

Now, the value aribp.is independent of the random variable 
4.1 

ABij, and AB 	are independent of each other, thus the variance 

of Ar is given by 

varT) = var Or 	A B..) .. 
	
Sid (id

2] 
as 

 to  

5. 	2  
= 	 4,(n 

0
) • var(AS..) 6$.. 

i,f 	7- 

2 
Eo  z(a  r  2 

12 asii  
(V.26) 

Similarly, E(  0Eo  
var0e) = 12 	a 0. 

si 
(V.27) 



then 

0 

a r rc  0 

b r 
aov  

r 
= IVO:2 /1312 

12 

a r = ii0,7275:27 1322  
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It is desired to find the condition under which Var (dr) 

and Var (AG) are at their relative minima. To do this it seems 

convenient to look at the two quantities separately. 

a) Consideration of Var (Ar):- 

Now since 

r = 43-1;172 

Hence the variance of 621 is given by 

2 , 	4 ( 1322   

	

012
Var(Ari = 48 	1312 	1322 

(V.28) 

To find the condition for minimum Var (A.r), the stationary points 

are first found. 

a r
var(Ar)3 = 

Eci 

a Oli 	48 ru 

	1 ) 	(V.29) 
+ 

a2 	
(31M mi2 

Equating a  Evar(Ar)] 	to be zero for stationary points, then a
s 

°IR = °22 
	 (V.30) 

(The case when 0
12 

= -0
22 

can be ignored since for complex 

eigenvalues of AS., 
012.022 

>0). The same condition that 0 12 = 
0
22 

for stationary points can be arrived at if Var (6r) is 

differentiated with respect to 022. 

To test whether the stationary points are relative minima, 

the second derivatives are calculated {34}:- 



2 
[var(Ar)] an2 	48 822 

0 

[var (Ar)] 
o2 

8,2  b 

 

1 

(V.31) 

2 

hiA4 [17ar(ATA/ 
PA2 

( 1 	I 
\ 48/ 	812 + 0 2 1-12 	P22 

( 48 fq2  f3 2  
Eci 	_ 	1 . 0  

2 	 IP/ 2:: 132 a 
1 1- [Tzar r)] • 	

2 
 [var b 	 bit 

_ Lifiu 	11 
0i20;2  

012=022 
(V.32) 
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a  2 
1 2  

(2022 
[var(ar) J 	0

) 

(2812) 

B2 

012 

—4 	I 

At 812 = 822 

P12 

Hence further investigation is needed to understand the nature 

of the stationary points. To carry out the investigation, a 

,transformation of axis on the 012--822 
plane is performed. 

Let the axes of reference on the 812-822  plane be trans-

formed to the lines 

812 = 822 

612 =-622 

(V.33) 

and let these two lines of new reference axes be denoted by 812  

022. Then, the following equations can be written (fig V.1), 
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A2  = 121; cos T - 13212  sin 7 

P22  - (Yu sin I + )922  cos I 
} 

(V. 34) 

Fig. V.1 	Rotation of Reference Axes on the (3 12 —B22 Plane 

Now y = 4 ' 	sin y = cosy = 1//2 

Hence substituting eqn (V.34) into (V.28), one obtains 

(32  C2} var (dr) - 	:2+  
24 	0:: _ p' 2  22  

and differentiating with respect to 512  and 522  

var(Ari 
a P.:2 

var(pr) 
6 13;2  

(1;22  - P::). 2 13112 

( P:22  

F 2 	2  13  :2 (3; 22  _°  

12 	4122  — 
8'2)2 

 
E  2  r 	2 p:22  t3/22  

t2 	( P:22  — (3'2 22 )2  

(11.35) 

- ( [3:22  + f322 ) 2 (3+2 ) 
—  fg2 )2  22 
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Equating both equations (V.36) and (V.37) to zero for stationary 

points, then 

132f22 = ° 

i.e. 512  = 0 or 522  = 0. But for 512  = 0, then Var (Ar) < 0 

which contradicts the definition of variance, hence it can be 

concluded that stationary points occur only when 522  = 0. 

To study the nature of these stationary points, the second 

derivatives of Var (Ar) with respect to 512  and 522  are found i.e. 

,t!) var (ar) i 	_2.2  I  41; P22 ( 	- (31122 )2  -  SC'  (12 	) 

13:22 	I 	
12 	

P.:22 
lu 

13.2  = 0 	 0' = 0  2 

0 	 (V.35) 

	

C2 va r(t. 	r)1 	_ E: 	2 f3:22 	— 	 )2  + 8 t3,1: P;22  t3:22 	)  
•2 	I I 2 

	

(322 	
(3:2  2 

- 
f32,22 )4 

p21r0 

E:  2 
12 

(V, 39) 7 0 

Eqns (V.36) and (V.38) show that the gradient of Var (Ar) at 

22 = 0 is constantly zero, i.e. the value of Var (Ar) is a 

constant along the line 5 2  = 0. However eqns (V.37) and (V.39) 

show that at $22 = 0 the value of Var (Ar) is at its minimum 

with respect to the change of 522. 
 In fact the shape of the 

function Var (Ar) is of the form as shown in fig (V.2) 



22 

It can be seen from the above argument and from fig (V.2) 

that Var (AO is at its relative minimum when 012 
= 822. Thus 

for a double-rate digital filter, in general, the change in the 

moduli of the resultant poles is a minimum when 
812 = 22.  

b) Consideration of Var (AO:- 

Eqn (V.22) gives the expression for e in terms of 811 ,  12' 
021 and  022' i.e. 

8 = tan 1  V40.2022  (0,21-  0.-  8 s02/ (kk- 8,- 82,) 
(V.40) 

Differentiating with respect to O..211,  we have 

2 
ae)  

= 02,
2  
 / {40,0, (8„+022-0"82,)2] 

(V.41a) 

(
2 	, 

an = 02/ 1 40,2 /322-(B12+1322 00,02) 
\41 " 



Hence substituting eqns (V.41) into eqn (V.27), we have 

var (AA) = 12 
E02 

[ 

110i22022113+4q132W+Ois(012-021+0,1 021) 2+8! e.812 +82.2+8II 821 )2  

40X140.02,— (0,241322-8.021) 2] 

v a r(A0) a= —Tr 
2b2r4b2  - b31 

But from eqns(V.44) and (V.45), 
(

q 	2b28Z + 2b202 + OW, 
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2 
ae 1 . (8o2-1322+011 0.02  

.1 

(V.41b) 
"1  

2 
(36) 

aq2 

142 

. 	1 

4130 0220,2+02101,0202  

(H; 	13  2+022+ I1 021 )2  

482 40,022-(0,2+0,,-00m)2  

(V.42) 

However, it is known that Var (Ar) is a minimum for 812 = 822, 

if this condition is kept in the consideration of Var (AO, then 

eqn (V.42) can be written as:- 

v a r(A8) 	
E02 	28 202i + 20!01  21  + f3f3.2i 

(V.43 ) 
12 

2e[  4q - (202  - sA)21 

Applying the constraints of eqns (V.18) and (V.19), such that 

then, 

28, - 006 = b1  

I3?2  = b2 

(V.44)  

(V.45)  

(V.46) 

$1.62, = ±2VF2  - b1  

i.e. 	= VO, 	(V.47) 

where K =±26-2 - bi  (V.48) 
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Hence eqn (V.4f) simplifies to, 

E20 	2b
2 II OA. 
(82+ er) + K2  

1 

12 2b2 (4b2  -b2  ) 2 2 1 

(V.49) 

Differentiating with respect to OH  and equating to zero for 

stationary points, we have 

d var(A0) _ E2 o 	2 K2, 
- --/ = 0 

i.e. for stationary points, 

	

8" = ±)/k 	 (V.50) 

and since 
S11is 

 real, the negative sign before 2Vb2 in eqn (V.48) 

can be ignored. Substituting eqn (V.50) into eqn (V.47), we have 

the final condition for stationary points in Var (A6) as 

5,= 	= 	= ±1/2747:7; 	(V.51) 

It should be noticed that the value (2"
2 
- b1) > 0 for complex 

poles. Evaluating the second derivative to investigate the 

nature of the stationary points, it is found that 

E2  
d2  var(A6)  = 0 . 	2 	(1  + 3K2 . Ec2) 	8  

	

12 	 > 0 
i I 	2 b1 

d 02 	(4b -b2) ‘ 	8' j 	12 2 1 	(4b - 2) 

var(Ae) 

(V.52) 

Thus the stationary points at
11 = B21 

are relative minima of 

Var (AO). In fact, the shape of the curve when Var (A6) is 

plotted against B is shown in fig (V.3), 

dOm 	
12 (4b2-b1 ) 	1311 

f3,=fJli 
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Pli'P'2,427F2 l'f 
If-31• 

Fig V.3 The Points of Minimum Values of var(A0) with Respect 

to $11  

From the above considerations, it can be concluded that, in 

general, for a double-rate second order digital filter, a time-

invariant realization has the least sensitive poles. However, the 

above considerations are based on the fact that A$
ij 

are unknown 

random variables bounded by - 0/2. If it can be chosen that two 

of the A0
ij 

are zero, the resultant double-rate filter with period-

ically varying coefficients may have less sensitive poles than the 

time-invariant filter. 

A complete and rigorous generalisation of the above theory 

is complicated and difficult (see 01)). However, judging from 

the similarity in the expressions of T and 0 for N > 2, a reason-

able conjecture can be made that a general multi-rate digital 

filter would have the least pole sensitivity if it is time-

invariant. Furthermore, extensive computer simulation seems to 

confirm such a conjecture. The following section consists of 

some of the examples extracted from the simulation. 
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V.4 Comparison of Pole Sensitivities between Time-Invariant and  

Periodically Varying Multi-rate Digital Filters  

The considerations in the previous section indicate that the 

eigenvalue sensitivity of a general multi-rate digital filter is 

least when the filter is time-invariant. A computer program is 

written to simulate the time-invariant and periodically varying 

multi-rate filters so that the effects of quantization of the filter 

coefficients can be observed and compared. 

According to a given transfer function, the program first 

designs two multi-rate digital filters (both having the same rate, 

i.e. equal N), one having fixed coefficients and the other having 

periodically varying coefficients. Both filters are designed to 

give the same performance as required by the given transfer 

function. Then the coefficients of these filters so designed are 

rounded-off to the same finite accuracy. The outputs of these 

filters with quantized coefficients are then plotted on the same 

diagram with the outputs of the ideal filters. The discrepancies 

between the outputs of the filter with quantized coefficients and 

that of the ideal filters are examined. 

It has been observed that, in general, the discrepancy is 

larger in the case of periodically varying multi-rate filter than 

in the case of time-invariant multi-rate filter. However, if, 

in particular, the coefficients of the periodically varying filter 

are designed such that some of its coefficients present no 

quantization error, then, in that case, the discrepancy between 

the outputs of the periodically varying multi-rate filter and 

that of the ideal filter may be lower. 
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The following are a few examples taken from the simulation. 

These results, in general, support the analysis developed in 

section V.3. 

Example V.1 

To design two triple-rate digital filters, one with fixed 

coefficients the other with periodically varying coefficients, so 

that each will have an ideal L.P. characteristic according to ;.he 

following transfer function 

G(z) = 
0.27996  

1 - 1.83551792
-1 

+ 0.8464z
-2 

(V.53) 

Each of these two triple-rate filters are to have coefficients 

rounded off to two places after decimal, (decimal arithmetic is 

used throughout), and their performances compared. 

The triple-rate filter designs are shown in the following 

diagrams (fig V.4(a) and (b)). ao, - 01  and -02  are the ideal 

coefficientg while taol, [-el] and [-821 are the coefficients 

rounded-off to two places after decimal. Similarly, am, 411' 

-b12,  b21, -b22, -b31,  -b32  and p30], [-b1110  [4121' [4'211' 
[-b221, [-b311, [-b32] are respectively the ideal and quantized 
coefficients of the triple-rate digital filter with periodically 

varying coefficients. The third output sequence (i.e. y(n + 2/)) 

of each of the triple-rate filter is used to realize eqn (V.53) 

because, as mentioned in section III.10, less multipliers are 

used. 
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(a) Time-Invariant Triple-Rate 
	

(b) Triple-Rate Digital Filter 

Digital Filter 	with Periodically Varying 

Coefficients 

Fig V.4 

The design gives the following values for the coefficients. 

Time invariant filter:- 

m
o = - 3.7226802 E40 

= - 3.72 

51  = 	0.93312654 	[61] = 	0.93 

82 = 0.94592902 	[82] = 0.95 

Periodically varying filter:- 

a
30 

= 0.5573384 	[a
30
] = 0.56 

PI O = 0.85 b = 0.8532 

b12 
= 0.885 [b

12 
= 0.89 

b21 = 1.4531 . 
[b21]  = 

1.45 
 

b22 = 
0.9255 [b22] = 0.93 

b31  = 1.0568345 [b
31
] = 1.06 

b32  = 1.0333703 [b32] = 1.03 
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It should be noted that in designing the triple-rate filter with 

periodically varying coefficients, two of the sets of coefficients 

(i.e. b 	b
i2

) have to be specified. Here in this example, b11' 

b12,  b21 
and  b

22 
are specified and chosen more or less randomly 

within reasonable limits (not having tremendous differences bet-

ween values). 

The output sequences of these filters are shown in fig(V.5(a) 

and (b)). On these diagrams, the ideal filter response is plotted 

in juxtaposition with the response of the filter with quantized 

coefficients. It can be seen from these diagrams that the time-

invariant triple-rate filter deviates less from the ideal response 

than the periodically varying triple-rate filter, and hence 

confirming the analysis in section V.3 that a time-invariant multi-

rate digital filter is, in general, less in pole sensitivity than 

a periodically varying filter. 

Fig V.5(a) Impulse Response of a Triple-Rate Digital LP Filter 

with Fixed Coefficients 
a as as a 
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Fig V.5(b) Impulse Response of a Triple-Rate Digital LP Filter 

with Periodically Varying Coefficients 
a a 

al ra 	ca a 	a a 	 a 
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al 0 

0 0 al 
a 0 al at 
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Example V.2 

As in example V.1, two triple-rate digital filters are 

designed; but, this time, to give a HP characteristic according 

to the following transfer function, 

0.27996  
G(z) - 1 + 1.8355179z-C- + 0.8464z-2  

(V.54) 

Again both cases of time-invariant and periodically varying 

triple-rate filters are considered, each coefficient being rounded-

off to two places after decimal. 
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The design gives the following values for the coefficients. 

Tine-invariant filter:- 

a
o 

= 3.6239862 	Exol = 3.62 

0 =-1.0115241 	[01
I -1.01 

0
2 
= 0.94592902 	[0

2
] = 0.95 

Periodically varying filter:- 

a
30 

= 0.014449962 	E230I = 0.01 

b11 = 0.832 

b
12 

= 0.885 

b
21 

= 1.4531 

b
22 

= 0.9255 

b
31 

=14.04433 

b
32 

= 1.0333703 

p5,0 . 0.83 

[b  12] =
0.89 

 

[b21] 
 = 	1.45 

[b22]  = 0.93 

[b31] =14.04 

[b.
32
] = 1.03 

Again the impulse response of the filters are plotted (figV.6(a), 

(b)). This time, the periodically varying triple-rate filter 

deviates very much from the ideal response. This prbbably is due 

to the fact that some of its coefficients are so vastly different. 

Again this example confirms the result of the analysis in section 

V.3. 
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Example V.3. 

To design two double-rate digital filters so that both would 

give the following H.P transfer function 

0.8235  
G(2) = 	0. 	

(V.55) 1 + 1.78 z-1 + 0.80I2z-2  

Again one of the double-rate filters has fixed coefficients while 

the other has periodically varying coefficients. h i, and b12  

are chosen more or less randomly in designing the periodically 

varying double-rate digital filter. The second output sequences 

of both double-rate filters (i.e. y(n + 11)) are used to realize 

eqn (V.55). 

The following values for the coefficients are obtained from 

the design of the filters:- 

Time-invariant double-rate filter:- 

a
o 

= 8.1556562 Ex 01 = 8.16 

1 = 
-0.10097287 [81  =-0.10 

82 = 
0.89509776 182] = 0.90 

Double-rate filter with periodically varying coefficients:- 

a 
20 = 

-1.0290287 

8 11 = 0.0254 

812 = 0.8048 

021  = 0.800269 25 

P22  = 0.99552684 

Eij -1.03 

[01) = 0.03 

[01  = 0.80  

[0211= 0.80 

EE1) = 1.00 

The impulse responses are plotted in fig (V.7). Again the time-

invariant filter shows smaller deviation from the ideal output. 
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Example V.4 

As in the previous example, two double-rate digital filters 

are designed to give the HP transfer function given by eqn (V.55). 

But this time the coefficients of the periodically varying double-

rate filters are so specified that two of the coefficients 811  and 

12 
present no error after quantization. Again, the performances 

of both the time-invariant and periodically varying double-rate 

filters are compared. 

The following values for the coefficients are obtained. 

Time-invariant filter:- 

	

a 
o 
= 8.1556562 	= 8.16 

	

0 = -0.10097287 	1 = -0.10.  

	

82  = 0.89509776 	[02 = 0.90 

Double-rate filter with periodically varying coefficients:- 

a 
20 

= -1.1490698 Es 20] = 
• 
-1.15 

11 811  = 
13. 0.03 8111  = 

0.03 
 

8
12 

= 0.80 [012] = 
0.80 

821 = 0.7166667 [821] = 
0.72 

8
22 

= 1.0015 D22] = 1.00 

As can be seen, "11 = "12 
= 0. The impulse responses are 

shown in fig V.4. This time the deviation from the ideal output 

is smaller in the case of the periodically varying double-rate 

filter. The reason is, quite obviously, that two of the coefficients 

a and 
11 	

812 are exactly realized and thus reduced two sources of 

error. 
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The above axamples all support the result of the analysis 

given in section V.3. From these examples, it can be seen that 

in general, the poles of a multi-rate digital filter is least 

sensitive to coefficient quantization errors when the filter is 

time-invariant, its sensitivity can still be further reduced if 

careful choices are made such that some of its coefficients give 

no quantization error. Hence, the general rule seems to be: the 

coefficients should be chosen so that one set of coefficients is 

as nearly equal as possible to the other sets, but at the same 

time full use should be made of the freedom in choosing these 

sets of coefficients so that the maximum number of coefficients are 

specified to be exactly realizable by the filter hardware. 

V.5. 	Sensitivity Ellipse - a Criterion for Measuring Pole Sensitivities 

This section and the next contain the development of some 

results already published {68}. The object of this section is to 

examine the effect of quantization of the coefficients on both the 

single-rate and multi-rate digital filters. Since, in general, the 

pole sensitivity of a periodically varying multi-rate filter is un-

known and is, as shown in section V.3., greater than that of the 

corresponding time-invariant multi-rate filter, attention has been 

focused on the time-invariant case. Examination of the effect of co-

efficient quantization on both the single-rate and the time-

invariant multi-rate filter leads to the concept of "sensitivity 

ellipse" {46} {68} which is used as a criterion for measuring 

pole sensitivity of digital filters. The cases of the single-rate 

and the time-invariant multi-rate filters are considered separately:- 

a) Sensitivity Ellipse of a Single-rate Digital Filter 

Consider the second order transfer function 
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ao + a1 	2z-1 .+ a a-2 ' H(z-1) = 
1 + b1 z'' 	b2z-2  

(V.56)  

and let such a second order system be represented by the follow-

ing dynamic equations:- 

xs(n4.1) = As  xs(n) 	Bsu(n) 

y s(n) = Cs  xs(n) + rbu(n) 
(V.57)  

where, if the transfer function is realized in the direct form 

A s  =1-  0 	1 ] 	

138=I  [0] 1.:b —b 	1 2 1  
(V.58)  

Cs  = [(a2-a0b2) 	—a0b1)],2)8  = ao 

Let A and A* be the complex eigenvalues of At
s
, then one obtains 

the following relationships, 

A = reje  

A
* 

= reje  
(V.59)  

where 	r = 	 (V.60) 

tan e 	2 b1 
	

(V.61) 

For small changes of b i  and b2, the change of the pole position 

is given by 

DA  A 	, aA J1 	• iaD + --I— 	• av ab 	1 aD 	2 (V.62)  

However, from eqn (V.59), 

'@A /2L 
i
a
r
y 	 8A 3O 

77, 
.
"rT irr

\  

ie ar 	ae . 7m- -1. ore (V.63)  
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and similarly, 

3A 	j0 Dr
1rr 	3 

. je 36 
Tb- = e . 	+ re . 	(V.64) 17. 
2 	°112 	2 

Now, writing eqns (V.60) and (V.61) in the following way 

f(r,e,bi,b2) = r - 	= 0 

= tan 0 + 	1  = 0 

fr fe 
gr 	ge 

(V.65)  

(V.66)  

= 0 

14b - 

fbl 	fe 

gb1 	ge 

g(r,e,b1,b2) 
b1  

then, 

ab 	a(bI'0) 	 9)  

/ 

De 	aq,g) 	D(f,g) _  cose  
--72= — a(r,b2) 3(r,0) 2r2sin 6 

b1) D(r,O) 2rsin6 
ae _ 	

a(r 	= 
a(f,g)  i a0 0,g)  

a b2J 0) D(r,O) Zr 
ar 	3 (f,g)  ila(f;g) 	1 

(V.67)  

Substituting these equations of (V.67) into (V.63) and (V.64), 

then one obtains 

DA - 4 cos 0, 
w1 u sin 61  (V.68)  

3A _ . 	1  
12r sin 0 

Thus the change of the pole due to small changes of b i  and b2  is 

given by 

(V.69)  

• (cos 0. Ab + 
Ab AA = -la/  1- 02 sing 	1 r (V.70) 
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For complex conjugate poles 

1 (cose . Ab
1 	r 
+ 	) A(A*) = (AA)* =- 61kj - 7 • 2 	` 2 sin 0  

(V.71) 

If a condition is imposed on the movement of the poles such 

that for small changes of bl  and b2, each pole would not move out 

of a small circle of radius a, then 

IAAI <!.. a 
	 (V.72) 

and from eqn (V.70), this condition can be rewritten as 

1(1+cot20)(Abl)2+2(7 cos----: - 	
1 

 (Ab2)(Ab2)+ 	(Ab2) 5 a2  
4rsin e 	4r2sin20 	` 	(V.73) 

Taking the equality sign, it can be seen that the equation of the 

condition represents a general conic on the (Ab
1 
 )--(Ab

2
) plane. 

To test the nature of the conic, the quantity 

If(l+cot20) 	1 	cos 0)
2 

VTRTEDT 
is examined(6) 

Vow, 1 	( cos0 	1 
1(1+cot20)4r2sin20 wigr7F 16r'sina0 

> 0 (V.74) 

then, equation (V.73) is an ellipse on the (Abl) — (Ab2) plane. 

Thus, if (diol) and (db2) are both within the ellipse, then A(and 

A*) will not move out of the small circle of radius a. This 

ellipse which stipulates the magnitude of Abi  and Ab2  for a 

restricted movement of A is designated the "pole sensitivity 

ellipse" of a second order digital filter. 

b) Sensitivity Ellipse of Time-invariant Multirate Digital Filter 

As shown in chapter III, if a second order digital filter realized 

in the direct form (fig V.9) is used in a multi-rate fashion, 

then its dynamic equation will be 

x (ni-1) = ANx (n) + 
m 	m  

i-1 	1.2 	 (V.75) 
ymi  int 	- 	x,in) + (C A B + Di) u (n) 
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where N is the number of shift of signal in the filter within 
one sampling period, 

a for =1 
C = [(a, -a. 2  ) (a , -a,, 6,)] ,Di-  00  

for 1 < ti  N 

Fig V.9 A Time-Invariant Multi-Rate Digital Filter 

Let A and A* be the complex eigenvalues of A, then 

A = pej(1) 

X*  = pe-iS 
(V.76) 

where 	p = 	 (V.77) 

tamp =81 
	

(V.78) 

If this multi-rate digital filter is to realize the second-order 

transfer function shown in eqn (V.56), then the eigenvalues of 

AN  are identical to those of A , i.e. 

A = A
N 	

(V.79) 

A*  = (X*)N  

A= 0 11 , 	B =[01 

-B2 1 1. 	--F3o1 
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It is desired to see the effect of quantization of 01  and 82  on 

the change of A and A*. Now, for small changes of 81  and 82, then 

A AA = 2■1- 	A131 	T2 ' 662 
af31 

= 
	 - 	3X 

+ 3X 	381
. A0 1 	as2

.A8 
 

= NAN-1 221/4- .A" 	DX 
+ 

	

961
0 
 1 	af32

.A8 
 2] 

(V.80)  

The terms inside the bracket of eqn (V.80) is similar to RHS of 

eqn (V.80), thus, the same procedure in evaluating thece quantities 

can be followed. Using the same method as in the case of the 

single-rate filter, one can write, 
2 

AA = NX" -I  

t'=1 

where the values of the various partial differentials can be 

evaluated by rewriting eqns (V.77) and (V078) and calculating their 

respective Jacobians. 

Hence one obtains, 

AA = Np"-f e j(N-1)(1)  [- 	+ 4  1 	
(V.82) 

2 P1 	'12sincl)
(coscp.A3 + 42.2-)] 1 

e-i(N-14L- 4.  6431 -- j.--L--(cos.A81+ AL)] AA*= Np"-I 	 (V.83) 
2sinO 

Again imposing a constraint to the movement of the pole A, such 

that it does not move out of a circle of radius a, then 

	

IAA' < a 
	

(V.34) 

i.e. 

1 	2; 

	

N2  p
2(N-1) 1 	 coscb  

--(1+cot20(63 )2  + 2 	. 2  )(A8 )(Aa2, 	2  . 2,  0  

	

4 	1 	4psin 1, 	1 	4p sin y 

(V.85) 

313 	i 
jcb Bp 	• j4) e 	+ ape 	sz  (V.81)  
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which, in view of its similarity to eqn (V.73) represents the equation 

of an ellipse on the (Ay - (632) plane. Again, if A81  and A02  

are both within the ellipse, then A and A* will not move out of the 

circle of radius c 

Example V.5. 

This example illustrates the idea of the "sensitivity ellipse" 

of a digital filter:- 

A second order digital filter is to be designed such that it 

has the following transfer function 

G'z
-1
) 	 (V.86) 

+ 1.62z-1
1 	

-2 
+ 0.7252 

 

It is desired that the movements of the poles due to the quantiza-

tion of the coefficients be confined to a circle of radius a = 0.01 

on the z-plane. If the transfer function is realized as 

a) a single-rate digital filter 

b) a double-rate time-invariant filter 

c) a triple-rate time-invariant filter, 

find the equations and plot the graphs of the ellipses of the three 

filters, such that if the coefficient quantization errors lie in-

side the ellipse, the above condition is not violated. 

a) 	If the transfer function of eqn (V.85) is realized as a single- 

rate filter, then the coefficients of the filter are simply the 

coefficients of the transfer function. The radius and the angle 

of the complex poles are given by:- 

r= Vb2 = 0°851469 

8 = 162.0445 deg 
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2.63026(1b1)2  - 5.07808(Ab1
)(1b

2
) + 3.62845(Ab2

)2  = 0.0001 (7.87) 

b) If the transfer function is realized as a double-rate time-

invariant filter, then the feedback multipliers of the filter are 

given by:- 

8
2 
= 17-  

0 = I 20 - b 
1 - 2 1 

Hence 
p = ri  = 0.922751 

= 0/2 = 81.02225 deg 

and the equation of the ellipse on the (A0 1) - (0132) plane id, from 

eqn (V.85), 

0.25624 001)2  + .0866674(A02)(632) + 0.300938(a(32)2  = 0.00002936 

(V.88) 

c) Similar to a double-rate filter, a triple-rate filter has the 

following parameters, 

P = r
1/3 = 0.947814 

271.  - 
3 
 0 

cf) = 	= 65.98526 deg 

and the equation of the ellipse is, 

0.299626081)
2 
+ 0.257208(A01)(A02) + 0.333529002)2  = 0.0000137/ 

(Mc) 

All the three ellipses of eqns (V.87), (V.88) and (V.89) are 

plotted in fig V.10. 
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b2 	F12 

.018 
-- SINGLE-RATE 	-016 

DOUBLE-RATE 	.014 
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V.6 	Single-rate and Time Invariant Multi-rate Diigtal.FLisz,a=  
a Comparison of Pole Sensitivities 

The previous section introduces the concept of "sensitivity 

ellipse". Here in this section, the concept is utilized to conpare 

the pole sensitivities of the single-rate and the multi-race 

time-invariant filters. 
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d 6.4  

Lb i 	p i.9  V. 11 

Fig V.11 shows the sensitivity ellipse of a second order siugie-
rate digital filter on the Abi  Ab2  plane. Associated with the 

ellipse are the arbitrary probability density functions Pr(abi) 

and Pr(Ab
2
) 

For any value of Ab i, the probability that Abi  will fall 

within d(Ab l) is Pr(Abi). d(Abi). But for this value of Abl, the 

extreme values of Ab
2 

are bounded by the ellipse in order that the 

movements of the poles are confined within a circle of radius cf. 

If these bounded values are denoted by (Ab2)‘ and (Ab2)" respect-

ively, then the probability that Ab2  will fall within this strip 

of the ellipse is fp
r(Ab2).d(Ab2). 

Cs14 

titbif 

Now, Ab
1 
and Ab

2 
are independent of each other, so the total 

probability that Ab i  and Ab2  will fall within the ellipse is sin ply 

the product of the individual probabilities, i.e. 

f(POs  = fr(Abl).Pr(pb2).d(Abi)d(pb2) 	(V.90) 

where .(Ficis the region enclosed by the ellipse. 
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Similarly, if As, and A02  are the errors in the coefficients in 

a multi-rate time-invariant digital filter, then the total probability 

that AB1 and AB2 will fall within the sensitivity ellipse of the multi-

rate filter is 

(Pr)m  = 1J(Pr(A01).Pr(A$2). d(Afid(A62) 	(V.90) 

3tm 
By comparing the probabilities (POs  and (Pr)m, the condition 

under which one filter is less sensitive to coefficient quantiza-

tion than the other can be found. 

The comparison depends considerably on the probability density 

functions Pr(Ab
1
) and Pr(Ab2)

, and similarly depends on Pr(A01) 

and Pr(A0
2). For a digital multiplier, if the word is rounded to 

an accuracy of E0, it can be assumed that, in general, the round-off 
Eo error is distributed evenly between -and, i.e. if both b l  

and b
2 
(or, in the case of time-invariant multirate filter , 

and 0
2) are rounded off to the same accuracy E04 

 their probability 

density functions will be as shown in fig V.12 

b2 
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Now, if the radius, a, of the circle to which the movements 

of the poles are confined is specified arbitrarily small, then the 

sensitivity ellipses of both the single-rate and multi-rate filters 

will lie within the probability density functions of dial  and Ab2  

(or A$
1 
and Aa

2 
for multirate filters). In other words, the ellipses 

will lie within the square of area 	centred at the origin of the 

Ab1— Ab
2 
(or A$

1
-- AO) plane. Hence for the single-rate digital 

filter, the total probability that abi  and Ab2  will fall within 

the ellipse is, from eqn (V.89), given by 

cpos 7)(ii 
• E d(Abi)d(Ab2) 
o o 

'4 

1 
. (area of the single-rate sensitivity ellipse) 

E2 	 (V.91) 

Similarly, for the multi-rate digital filter, the total probability 

that AO
1 
 and A$

2 
will fall within its sensitivity ellipse is given 

by 

(Pr) = 1 	if d(A01)d(A02) 
m  E3 

j 
 

1 = 
2
.(area of the multi-rate sensitivity ellipse) 

E0  (V.92) 

Hence, from eqn (V.91) and (V.92), the comparison of the probabilities 

(Pr)
s 
and (Pr)

m 
becomes the comparison between the areas of the 

respective sensitivity ellipses. 

Now, for a general conic equation represented by 

Axe + 2E4 + By2  = C 	(V.93) 

to be an ellipse on the x - y plane, then. {8} 

AB - H2  > 0 
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and the area of the ellipse is 

Area =  7r0 	 (V.94) 
aU7:77 

Comparing equation (V.73) to equation (V.93), the area of the 

single-rate sensitivity ellipse is given by 

(Area)s = ne 
/

1 (l+cot26) _ 	cos26  

4.  4r2sin20 	16r2sin46 

= 4na2risin61 
	

(V.95) 

Similarly, the area of the multi-rate sensitivity ellipse is g3_-f:n 

by 

47m2isimpl  (Areal m 
N
2 

p
2N-2 (V.96)  

The poles of the multi-rate filter will be less sensitive to 

coefficient quantization error if (area)m > (area)s, 
i.e. if 

> 	r 'sine! 
N2 p2N-2 (V.97)  

or, 
king)! 

N2 p3(N-1) 	> (V.98) 

where the fact that r = p
N 

and 6 = N(1) has been used. 

The corresponding values of r and e in eqn (V.98) for N 

and N = 3 have been plotted in fig (V.13 a and b). The shaded 

area on the z-plane represents the region in which the poles 

a second-order time-invariant multirate digital filter are less 

sensitive to coefficient quantization errors than those of a 

single-rate filter. 
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From the inequality of (V.97), it can be seen that the larger 

is the value of Isin01, the larger would be the area in which the 

multi-rate time-invariant filter is less sensitive to coefficient 

quantization error than the single-rate filter. But, as has been 

shown in section III.10, there are, in general, N different ways 

of chosing A, i.e. 

A = pelt')  = rl 
417 

e  N 
+ 2 47 ) 
 N 	(V.99) 

where i = 0, 1, 2, 00., N-1 

Hence, in designing a second order time-invariant digital filter 

to perform the function of a single-rate filter, it is best, in 

general, to chose from the N different solutions, the eigenvalue 

A which has the largest value of 'sin 

V.7 	Computer Simulation Results Comparing the Pole-Sensitivity of 

Single-rate Filters to that of Time-Invariant Multi-rate Filtert 

The analysis in the last section shows that if the specified 

second order transfer function has its poles situated inside 

certain regions on the z-plane, it is generally more advantage-

ous to realize the transfer function as a multi-rate digital 

filter. These regions are given by the inequality of (V.98) and 

are plotted in fig V.13 a) and b) for N = 2 and N = 3. 

A computer program has been written to simulate both the 

second order single-rate filter and the second order time-invariant 

multi-rate filters so that the effects of quantization of the 

filter coefficients in both cases can be observed and compared. 

According to a given transfer function, the computer program locates 

the position of the poles. It designs a single-rate digital 

filter according to the given transfer function. Then the 
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program examines the position of the poles on the z-plane and 

tests if it falls into one of the regions given by the inequality 

of (V.98) from which the number of shift sequences (N) within one 

sampling period is determined. Then, the multi-rate digital 

filter is designed by the same method as given in section 111.10 

so that it gives the same performance as specified by the transfer 

function. Again, the eigenvalue with the largest value of 'sin 4)1 

is chosen for the design. Then the coefficients of these filters 

(both single- and multi-rate) so designed are rounded-off to the same 

finite accuracy. The responses of these filters with quantized 

coefficients are then plotted on the same diagram together with the 

responses of the ideal filters. The discrepancies between the 

ideal responses and the responses of the filters with quantized 

coefficients are examined. 

The following are some examples extracted from the simulation:- 

Example V.6 

Design a single-rate and a multi-rate digital filter such 

that both filters have the following transfer function 

z
-1
)= 	

0.8235  

1 - 1.78z
-1 

+ 0.803125z
-2 

Each coefficient of these filters is rounded-off to an accuracy 

of two places after the decimal. Their performances are compared. 
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The single-rate digital filter so designed has the following 

coefficients:- 

ao = 0.8235 	
rounded-off to 	0.82 

b
1 

= -1
°
78 
	rounded-off to - 1.78 

b
2 
= 0.803125 rounded-off to 

	0.80 

It is found that the poles of the transfer function are 

A = 0.89 ± j0.105 

and are within the region in which a triple-rate time-invariant 

filter is less sensitive to quantization errors. The desired 

triple-rate filter has the following coefficients. 

a
o 

= - 6.6913456 	rounded-off to 	-6.69 

01 = 	
0.89802869 	rounded-off to 	0090 

02 = 0.92952494 rounded-off to 
	0.93 

The step responses of these filters are shown in fig V.14 (a) 

and (b). It could be seen that the triple-rate filter gives a 

much closer response to the ideal performance than the single-

rate filter. 
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Example V.7 

Design a single-rate and a multi-rate digital filter mach that 

both filters have the following transfer function 

zrz-1)=. 	
0.8235  

1 + 1.78z-1  + 0.803125z
-2  

Each coefficient of the filters is to be rounded-off to an accuracy 

of two places after the decimal. Their performances are to be compered. 

The single-rate filter so designed has the following coefficients 

ao = 0.8235 rounded-off to 0.82 

b
1 
= 1.78 	rounded-off to 1.78 

b
2 = 0.803125 rounded-off to 0.80 

The poles of the transfer function are 

A = - 0.89 2: j 0.105 

These poles are found to be in the region where both the double-

rate or the triple-rate filter will be less sensitive than the 

single-rate filter to coefficient quantization errors. Hence either 

N = 2 or N = 3 will be a better design than N = 1. A triple-rate 

time-invariant filter is chosen, and has the following coefficients 

a
o = 6.3954292 rounded-off to 6.40 

S1 = - 1.0287316 	rounded-off to - 1.03 

02 = 0.9295494 rounded-off to 0.93 

The step responses of these filters are shown in fig V.15 (a) and 

(b). Again it can be seen that the triple-rate filter has a 

response much closerto the ideal performance than the single-rate 

filter. 
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Example V.8 

Design a single-rate and a multi-rate (time-invariant) digital 

filter such that both filters have the following transfer function 

z
-1

) - 	
0.8235  

1+1.782-1+0.8041z-2 

The coefficients of the filters are rounded-off to two places after 

the decimal and their performances compared. 

The single-rate filter has the following coefficients:- 

a
o = 0.8235 

	
rounded-off to 0.82 

b
1 
 = 1.78 
	

rounded-off to 
	

1.78 

b2 = 0.8041 
	

rounded-off to 0.80 

It is found that the poles of the transfer functions are 

A 	- 0.89 ± j 0.12 

The poles are situated just outside the region where the triple-

rate filter will be less sensitive, but are situated well within 

the region in which the double-rate filter is less sensitive to 

coefficient quantization errors than the single-rate filter. So 

a time-invariant double-rate filter is chosen. It has the follow-

ing coefficients. 

a o ma 	7.7810954 	rounded-off to 7.78 

0 2 	- 0.10583343 rounded-off to -0.11 

02 la 	
0.89560036 rounded-off to 0,90 

The step responses of these filters are shown in fig V.16 (a) and 

(b). Again it can be seen that the double-rate filter has a 

response closer to the ideal one than the single-rate filter. 
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All the above examples confirm the theory put forward in 

section V.6, that if the poles lie inside the cross-hatched regions 

shown in fig V.13 (a) and (b), a double-rate or a triple-rate 

tine-invariant filter will be less sensitive to coefficient 

quantization errors. However, as can be seen from the examples 

above, as the poles move closer to the boundaries of the cross-

hatched regions, the differences between the performance of the 

quantized multi-rate filters and that of the quantized single-

rate filters becomes less and less. Thus, the validity of the 

analysis in section V.6 is verified. 

V.8 	Resumg 

A deterministic approach has been chosen to analyse the effect 

of coefficient quantization on the movements of the poles. Using 

this approach, it has been shown that in general, the pole move-

ment of a multi-rate digital filter with periodically varying co-

efficients is more sensitive to coefficient quantization errors 

than that of a time-invariant multi-rate filter. 

Examination of the effects of coefficient quantization errors 

leads to the concept of "sensitivity ellipse" which has been used 

as a criterion to compare the pole sensitivities of the single-

rate and the time invariant multi-rate digital filters. The in-

equality of (V.97) states the condition under which the pole 

movement of a time-invariant digital filter is less sensitive than 

that of a single-rate digital filter. The validity of this 

condition has been confirmed by extensive computer simulations. 

In the design of a digital filter, the errors introduced by 

quantization of multiplying coefficients remains a considerable 

problem. The performance of the conventional single-rate digital 
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filter is especially sensitive to the errors of coefficient quantiza-

tion when its poles are in the vacinity of the real axis on the 

z-plane. With the introduction of the multi-rate digital filter, 

such sensitivity would be grossly reduced. 



CHAPTER VI 

MULTIPLICATION ROUND-OFF ERRORS IN A 

MULTI-RATE DIGITAL FILTER 

VI.1 Introduction 

This chapter is devoted to the most intricate manifestation of 

quantization errors, namely, errors caused by rounding off the com-

putations used in the execution of the actual digital filter program. 

As mentioned in Chapter I, it is not necessary to compute the exact 

results of the effects of rounding off the multiplication products. 

In this chapter, two of the existing methods estimating the effects of 

rounding off the multiplication products are described. 

The first f701 employs the state-space method and estimates the 

upper bound of the multiplication round-off errors. However, multi- 

plication round-off errors would be intrinsically statistical if the 
the variation of its 

input signal to the digital filter is sufficiently rich in frequency 

contents, and the evaluation of an upper bound would then seem pess-

imistic. The second makes use of the spectral density of the round-

off error and estimates the mean square error introduced by rounding 

off the multiplication products. 

Since the analysis of multi-rate digital filters is much faci-

litated using the state-space approach, the two methods are combined 

(66} so that a statistical estimation of the effect of multiplication 

round-off errors is achieved using the state-space method. Such an 

estimation is applied to the case of multi-rate filters. 

-183- 
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VI.2 Estimation of the Upper Bound for Multiplication Round-Off Errors in  

Digital Filters  

The following method is due to Yakowitz and Parker {70}. 	In their 

paper, an upper bound is developed for the multiplication round-off 

errors in the state-variables of a digital filter. Here is an outline 

of their method. 

Let an ideal filter be represented by the following dynamic equa-

tions:- 

x(nt-/) = A x(n) + Bu(n) 
(VI.1) 

Y(n) = Cx(n) + Du(n) 

where 	x(n) = state variable vector at t = nT 

u(n) = input vector at t=nT 

y(n) = output vector at t=nT 

AL, B, C,D are constant matrices for a time-invariant digital filter. 

Let the rounded product be denoted by ME  where E0  is the quan-
tization step; also let the erroneous values arising from these rounded 

values be denoted by dashes. Hence the actual filter with round-off 

errors can be represented by 

x'(M- 1) = EA x/(n):40  + [Bu(n)] Eo  

(n) = [C xl  (n)] E, + [D u(n)] 0 	E 0  

It can be assumed that x'(0) = x(0). 

(VI.2) 
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Define an error vector e(n) such that 

e(n) -.4  A xi (n) - [A lc' (n)]E  + Bu(n) - [B u(n)1E, 0 	0  

(VI.3) 

Also let ilx(n) be the vector denoting the errors in the state variables 

at t = nT, then 

Ax(n*/) glx(n+/) - x'(n÷/) 

= Az(n) + Bu(n) - [Axi(n)]E, - [B u(n)4 0  	0  

= A{ x (n) - 	(n)} + e(n) 	(VI.4) 

i.e. 	llx(n+/) = Jk&x(n) + e(n) 	 (VI.5) 

where e(n) is defined in equation(VI.3) 

Similarly, for the output equation, 

y (n) = C x(n) + D u(n) 	 (VI.6) 

and the actual output vector y'(n) with round-off errors is 

y' (n) =[C 	 (01E0  + [D u(n)] E,0 	(VI.7) 

Again, an error vector c(n) can be defined s.t. 

c(n) = C x' (n) - [C x' (n)]E  + D u (n) - 	u(n)-60  

(VI.8) 

and therefore, 

y(n) = C Ax(n) + t (n) 	 (VI .9) 



-186- 

The solution of the equations (VI.5) and (VI.9) are, from sectionll.6 

given by 

I 

x(n) = 	e(i) 	 (VI .10) 

and 	Ay(n) = C EAn-"-i e(i) + s(n) 	 (VI.11) 
ti_ 0 

Now, let us examine the bounds of the error vector e(n) and t(n). 

Firstly, let ‹.> denotes the matrix (or vector) determined by taking 

the magnitude of each element. We shall write <10< <B> if (i) the 

magnitude of each element of A is less than the magnitude of the corres-
ponding element of II, or if (ii) the magnitude of at least one of the 

elements of A are less than the magnitude of the corresponding elements 
of B while the rest of the elements of A and B are equal in magnitude 
correspondingly. Thus, 

and 

-1 01)<(-22 2 1 4 31) 

(1 	 3 

2 1 2 

Vt. 

  2 

Extending the above definition further, <A> <B> is written if 
either of the above condition (i) and (ii) holds or if <A> = <B> , 
where the equality sign has the same meaning as is generally used in 
matrix equality. 

Let pAj  be the number of non-zero and non-unity elements in the 

jth row of A , and v
Bj be the number of non-zero and non-unity elements 

in the jth row of B. Hence, if the quantization step is Eo, the jth 

element of e(n) is bounded by 

I e .(n) I <=(u 	+ vBe  .)E0  /2 Aj  (VI.12) 



Ke (n) > 	e = 
PA1 

vB1 
E0/2 

PA2 
4" V

132 

11 + 115/ 

(VI.13) 
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With the above definition in mind, the error vector for the state var-

iables is bounded in magnitude by, 

where M is the order of the filter. Similarly if 	and vpi  are the 

number of non-zero and non-unity elements in the jth row of C and D 

respectively, then the error vector for the output is bounded in mag-

nitude by, 

<t(n)> 
ClV 

+ - vra E0/2 
(VI.14) 

11
C2 

4- 
vD2 

• 
• 

p
CK 

• 

vDK 

where K is the number of elements in the output vector. 

Having assessed the bounds of <e(n)> and <e(n)> , the bounds for 

<Ax(n)> and <607(n)> can be estimated. Thus, from (VI.10), 

(n) > = < 	
An-i-1 

e(s)› 
4Z0 

<A 	> <e(i)> 
a; =I 

E<An-i-/ > 6  

Schwarz Inequality 

(VI.15) 

— 4 

The lower limit of the summation in the inequality of (VI.15) has 

been changed from 0 to 1 since e(0) = O. (VI.15) can be rewritten as 
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follows 	
CO 

<Ax(n)> 1=E<Ak> g 	 (VI.16) 

Ic=0  

The inequality of (VI.16) expresses an upper bound for the error in 

the state-variable vector due to the quantization of multiplication pro-

ducts. However, the summing of the infinite series in(VI.16) is awkward 

anda closed form for the expression is desirable. 

In general, a closed form for the bound shown in the inequality of 

(VI.16) can be obtained in either of the following ways:-  

(a) By the Schwarz Inequality, 

<Ak >  < <A>k 	 (VI.17) 

Thus, (VI.16) can be written as 
CD 

x(n)> E<Aic> 
k=0 

6E <A >< e 
k=o 

If <A >is stable, i.e. if 

Lim < A >k = 0 	 (VI.19) 
k+co 

then, a closed form of (VI.18) can be obtained. Now, 

E < A >k  = I + <A> + <A>2  + 	+ <A>T71 	(VI.20) 

1(..43 
Premultiplying both sides of (VI.20) by (I - <A>) and simplifying, one 

obtains, 

I - <A>) E<A>k = I — <A>77* 	 (VI.21) 

itzo 
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Hence, 

E<A >k  =1Ch  ( 141(1 - 	= 	- 	›) "1  

M 

(VI.22) 

and thus the bound for the state-variable error vector in (VI.16) is 

reduced to, 
co 

<LI z(n)> =E<A› k ^ 
e 	( I - <A>) -1 
	

(V1.23) 

koo 
Substituting this closed form expression in (VI.9), the output error 

is bounded in magnitude by 

<Ay (n) > <C>03r(n)> + t  (n) 

=<c>( I - 00)-1 
 it 	

„ 
e 
	

(VI.24) 

where i is defined in (VI.14). 

(b) The second method to express the bound of (VI.16) in a closed 

form involves the use of the Jordan canonic form of the matrix A 

(section 11.7). Let P be the generalized eigenvector matrix of A 

and J be the Jordan canonic form of A, then 

CO 	 00 

14E; Ak  
k=o 

Hence we can write, 
co 

145.2 > 
k=o 

pZ 4k) p-1 

k.co 

co 

6_ DP > <Jk) <1)1)  
k=c, 
. )iv't < jk>yp  > 

14.1 

(VI.25) 

(VI.26) 

It should be noted that 0
*
> = 0> 	since J is block diaganal, i.e. 
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3 
=Ji  JZ  o 

c) • • JThi 

(V1.27) 

where J1, J2, 	Jm  are the Jordan blocks constituting J. If Ai  

is the eigenvalue of the ith Jordan block 	and Ai  has multiplicity 

Z, then, from section 11.7, 

f(0.>) =Th > = 	I 	
a-11 

f'(IAI) r(1111)/2: 	ft (211A1)/(1-1):_ 
10.0 	o 	f(IAI) r(IA1) 	(IA1)/(Z-2): 

O o 	f(IAI) 	... itTIA1)/(1-3): 

O 0 	0 

O 00 

O 00 	
f(IAI) 

  

(VI.28) 

ForastablefilrerlAil<1 and 
00 

f(lAI)1 	= (1 - 

A=Ai  1(=° A=A. 
2 . 

(VI.29) 

Hence, (VI.28) can be written as 

f(<•11:>) =E<J1:: > = 
IC=0 

• 

0 

(1-1Ai l)-2  
(1-1Ai l)-1+1  

• • • 

0 	... 	(1 -iAil)-1  

(VI.30) 
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and thus for the Jordan canonic form of A, 

f(<J>) =E<Jk> = f(“1>) 

k.o 	f(<J2>) 	CD 
(VI.31) 

0 
• 

f(< Jm> 

   

where Jl, Jr2, 	jm  are the m Jordan blocks of A having Al, A2,..., Am  

as their respective eigenvalues. Substituting (VI.31) into (VI.26), 

the bound for the state-variable error vector becomes, 

Ox(n)> 6  t<Ak> 
use 
<P>E<Jk  > <F1  > 

1c=o 

= <P> W.I. >) <P-1> 6 (VI.32) 

Eqn(VI.32) represents another closed form expression for the bound 

to the state-variable error vector due to multiplication round-off. 

Again, substituting this expression into (VI.9), the output error is 

bounded in magnitude by 

Oy(n)> 6  <C> <Ax(n)> + t(72) 

<C> <P> f(< J>) <11> g (VI.33) 

The two pairs of inequalities (VI.23), (VI.24) and (VI.32), (VI.33) 

represent valid closed forms of the bounds on the state-variable error 

vector and the output error vector when the filter is stable. (VI.23) 

and (VI.24) further necessitate that 00 is stable, i.e. Lim  <10k. 0. 
k400 

Whichever is the tighter bound depends on the form of A as the next 
section will show. 
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VI.3 Remarks on the Evaluation of the Upper Error Bound Using State-Space 

Approach  

The previous section has shown that the bound for the state-varia-

ble error vector is given by 

x (72)> i2<Ak  > e 	 (V1.34) 

Two closed forms to evaluate this bound have been developed. Here, the 

choice of these two forms is discussed:- 

It has been mentioned in the previous section that the bound of 

(VI.23) is not valid unless E<A>k  is convergent. The following 
example may serve to substantiate this statement. 

Example VI.1 

Let 	A 1 0 1 ] 
-0.8 1.4 

then the eigenvalues of A are given by 

Al = 0.7 ± j0.5568 
2 

i.e. 	IA! = 0.8 

Hence A is stable, and thus Ecolk  > is convergent. 

However, 

<A> = [0 	1 

0.8 1.4 

and the eigenvalues of <A> are, 

Now, 

Al = 0.7 
2 

Lim < A>k  = P 

± 1.10198 

(1.802) k  

0 

0 

(0.402)1 

P t  -----m- oD 

cg. 
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which means that <A>is not stable any more, and the bound given by 

(VI.23) is thus not valid. 

Now, if <AL> is stable, then the bound (VI.23) is valid. Consider 

the case when A 1  0, i.e. each element of A is real and positive, then, 

k>  <A> k 

But, 	<A k>  .<p jk p-1 > < <p><jk> <p-1> 

therefore < > - (P> <J.  <P I> 
k 

co 	• 
E<A5<P > DJ k> < 
.k=o 	k=o 

Thus for a convergent series, 

— <A>)-1  <P>ci — <J>)-1  <P 1> 

and (VI.23) is a tighter bound than (VI.32) for Ai. 0. 

(VI.35) 

(VI.36) 

(VI.37) 

(VI.38) 

(VI.39) 

On the other hand, consider the case when A 4  0, i.e. each 
element of A is real and negative. Let 

A = - <A> 	 (vI.40) 

then, 	< Ak >. <(_i)k <A>k> 	< A> 	
(VI.41) 

Hence, follwing the previous argument 

(I — 01)0-1  = 4  <P > (I - <JXII  <P i > 	for A 0 	(VI.42) 

From the inequalities of (VI.39) and (VI.42), it can be seen that 

for A 	0, the closed form of (VI.23) is a tighter bound than that 

of (VI.32). Similarly, for A 	0, the closed form of the output error 

vector shown in (VI.24) is tighter than that shown in (VI.33). The 

following example may help to illustrate this point. (It should be 
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noted that if <A> is stable, (I - <A> )-1 	0 since this is the 
limit of the sum of an infinite series of positive matrices). 

Example V1.2 

Let 	A = [0 	1 

0.16 0.6 

then, 

	

(I - <A>) -1  =11.667 	4.1667] 

	

[0.667 	4.1667 

Now the eigenvalues of A are given by 

Al = 
2 

Hence 	

J 	= 

-0.2 

 0.8 

[
-0.2 

0 

0 

0.8 

P = 1 1 	] 

-0.2 0.8 

P 1 = [0.8 
0.2 

-11 
1 

	

<F>(I - <J>)-1 <fri>= [2 	6.251 > (I- <A> )-1 

	

1 	4.25 

Unfortunately, no clear-cut conclusion of the type shown in (VI.39) 

and (VI.42) can be drawn when A is neither positive nor negative, i.e. 

when some elements of A are positive while some are negative. Since 

we are mainly interested in 2nd order filters in the direct canonic form.  

attention is focused on such a configuration. For a second order filter 

realized in the direct canonic form, the state matrix A is of the form 

(VI.43) 
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and if Al and A2 are the two distinct eigenvalues (may be complex) of A, 
then the Jordan canonic form of A is 

J = Al  0 

0 	A2 

and its eigenvector matrix Pis given by 

P = r i 

Al A2 

(VI.44) 

(V1.45) 

For such a configuration, the maximun error vector is given by 

= [0] E0  = [11E0  
2 

2 	1 

(VI.46) 

where E
o is the quantization step. This is because there are two non-

zero and non-unity member in the second row of A. 

When A is neither positive nor negative, even if <A> is stable 
so that a closed form (I - <A>)-1 can be obtained for the bound, there 

is, in general, no definite conclusion that can be drawn for the compar-

ison of the two closed forms. It has been found that sometimes one 

closed form is tighter, sometimes the other is tighter, while in some 

cases the two forms are not comparable (i.e. some elements of the 

matrix obtained from one closed form are smaller than those of the 

other closed form, whereas the other elements are larger), as the 

following examples  show. 

Example V1.3 
0.2 

If 	A . ro 	1, then 	A l= 
2  1-0.8 

L0.16 -0.6 

Thus, (I - <10)-1  = [1.667 	4.16671 , 

0.667 4.1667J 



and 	<P> (I - <J>)-1< P 1> 
4.25 
6.25]  
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hence, 	<l z(n)) 	( I - <A> )-1. = f 4.1667 

4.1667 

from(VI.23) 

On the other hand, 

P = [11 ] 
0.2 	-0.8 

0 

-0.8 

which means, from (VI.32) 

	

<6,x (n)) 	(p> (1 - <J>)-1 <P-1). e .= I 6.251E0  
1.4.25 j 

Hence, the closed form of (I - <A> )-1 is tighter in this case. 

Example 0.5 

	

If A = 0 	1 	, 	then 	A l  = 
-0.15 0.8 	 2 	0.3  

In this case <A> is stable, thus both closed forms are valid. 
Now, 

	

( I - <A> 1 = 4 	20 1  

	

C 3 	20 

<ax(n)> 	- <A»-1 = 120 Eo  

On the other hand, 
P = 

[0
1 
.5 10.3] 

20 
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[(3.50 

, J 
 = 0 	0.3 

<P) (I <J>)-1  <I l> 	= [6.5725 	17.145 
4 	10 

(Ax(n)> 	<P>(I - (J))-1  <P 1> e = L.7.145]  E0  
0 

Hence the bound obtained from the closed form of <P> (I - <J>)-1  <P1  
is tighter. 

Example VI.5 
If 	A =[ 0 	1 	, 	then A l  = 0.025 ± j0.9484 

-0.9 	0.05 	
2 

and A is stable since IAA = 0.9 
<A> is also stable in this case since both its eigenvalues are less than 
unity. Now, 

(I - 00)-1= [19 20 
18 20 

i.e. 	Ox(n)> 	(I - (A))-1.  ". = 20 1 E0  

L20 j 
On the other hand, 

P= 1 J = 

	

[A, 	0 

	

10 	Al [
1 
Al 	A2 

{ <p> (I - <J))-1  <171> = 19.494 	20.548 

18.493 19.494 

i.e. 	<Ax(n)> 	<P> (I - <a))-1  <F1> a = 20.548 Eo  

19.494 
In this case, the bound obtained from the closed form of (I - <A) )-1 
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is not comparable to that obtained from <P)'(I - <J>)-1 	1 <P > . 

In general, there is no rule as to whichever closed form should 

be used. Yakowitz and Parker 001 have developed expressions for the 

bounds of multiplication round-off errors in the state-variables for 

a second order filter realized in the direct canonic configuration. 

However, in their development of those expressions, there is no direct 

application of either of the two closed forms discussed above. In-

stead, the bound was evaluated direct from (VI.16) as follows:- 

From (VI.16) 
CD 

<A3c(n)> E<Alc> 

=E0 Jk 1 
P roiE0  

fc o 

1 A
2 
 -1 OD 

	

tc.0 I A2-A1 	
Al 	A2  0 	A2  [A l 	1] [1 

E0 	4(A: - 

	

17.77-7. 	(Ak"" - P.1) 2 1 	2 	1 

Eo 

A-1  

- ni l[ 1] 

k-/-i 
A A2 	

1 

(VI.47) 

(VI.48) 

1A2  

Now, 

1A2  - Ai l 	1A 
 nil 

-Ai l 

)2:4 

k., 

1  
A 2 	- 	l  l 

kgi l=0 

so that (VI.47) becomes 
x- 

<Ax(n)> . Elt 
kr-o I  

Ak2-i-1  Ail  
i .0  

1 	1  

[ 

(VI.49) 

1 
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When Al  and A
2 

are both real and with the same sign, i.e. 

b2  > 4b
2 

> 0, it follows that 

 QD  

ElEAr1-1; Aid =2111111:EIA21k  

X=1 4=0 	io 0 	St= 0 

= 1/( 1  1A11)( 1  1A21) 
= 1/(1 - 1b11 + b2 ) 	(VI.50) 

Hence, for this case, 

Eo 	[1] (VI.51) 
(1 - lb1 + b2) 

1 

When Al  and A2  are real with opposite signs (52 < 0), then let 

Al  = 1A1 1 and A2  = -1A21 where 1A21 > 1A1 1, then, 

Co 	cc) • m 

=2(-1)1:1A21 1ElAil 

k=, (:=0 ic=0 C=o 

= 1/(1 + 1A21)(1 	1A11) 

= 1/(1 - 1b1 1 + b2) 	(VI.52) 

and the bound for the state-variable vector is again 

Eo (VI.53) 

[111 
(1 - 1b1 1 + b2) 

For complex poles, A2  = At , i.e. 1A1 1 = 1A21 =b2, then 

A=I Cyo 	 k=0 	k=0 	
(VI.54) 

co 

thus, Ox(n)> < 
E0 n 

(VI.55) 



2 
— 1)) 

[1 

46i

] 

2 	E0 	1 

(1 — Vb2) 
(VI.56) 
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However, for complex poles, the bound can be further lowered as 

follows. Let Al 
	

je = rej  , A2  = re 	. From (V1.49), it follows 
that 

Eo 	co 

<Ax(n)> 	
1 
1 	
A2  — All 	

rkl (eike_ e—ike)  1 

*=, 

- IA2 - All 

2E6 	 ie 
kel 1 r sin  

k f 
[1] 

1 

<  2E0  r 

IA2 - A1 1 (1 - r) 
[11 
1] 

This way of evaluation is in general superior to either of 

the two closed forms developed in the previous section since the 

limit is not imposed on the evaluation until the end and thus 

saving the estimation of the limits in the intermediate stages. 

VI.4 Statistical Estimation of the Multiplication RoundOff Errors 

in a.Digital Filter {36} 

the variation of its 
If the input signal is sufficiently rich infrequency con-

tent, the multiplication round-off errors can reasonably be as- 

sumed to be random. The probability density function of the 

rounding error is then uniformly distributed (see section IV.1 

and fig IV.2); moreover, the error e(n) at any sampling time 

will be statistically uncorrelated to e(m), the error at any 

other sampling instant. Under such conditions, the evaluation of 

an upper bound seems pessimistic. Amore realistic approach is 
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thus to estimate the round-off error statistically. 

Since the multiplication roundoff errors occur for each iter-

ation of the difference equation, the effect is that of a set of 

random noise samples superimposed on the signal; in this sense, it 

is similar to A/D conversion noise. However, the precise location 

at which this noise is injected in the digital filter depends on 

the particular configuration of the filter. Since we are mainly 

interested in second order filters realized in the direct canonic 

form, the analysis here focuses its attention on such filters(fig 

VI.1) 

(yin) + tly(u)) 

Fig VIA A Second Order Digital Filter with 

Multiplication Quantization 

Fig VI.1 represents a second order digital filter realized in 

the direct canonic form. Each of the multipliers is followed by 

a quantizer which is effectively a noise generator. The effect of 

these noise generators can be combined to form two noise sources, 

one at the input adder and the other at the output adder (fig VI.2) 

where the noise source at the input Eb(n) is the sum of the noise 

sources from the feedback multipliers and the noise source at the 

output adder Ea(n) is the sum of the noise sources from the feed-

forward multipliers. Since these two noise sources are both inde- 

pendent of each other, their effects can be considered separately. 



v. 0 

y + D y(x) 
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Fig VI.2 Equivalent Noise Model 

Let Ayks) be the output of the filter due to the effect of 

the noise source Ea(n). Now since Ea(n) is the sum of three in-

dependent noise sources each with variance E2/12, where Ea  is the 

quantization step, then the variance of Ea(n) is given by 

A 

02
Ea 

= E0.e  2  ap)  = 3E2112 
	

(VI.57) 

Since the effect of this noise is merely adding a noise to the 

output, the variance of tya(n) is given by, 

a
tqa 
2 	= 3E3/12 	 (V1.58) 

Now, let Ayb(n) be the output of the filter due to the effect 

of the noise source E (n) at the input. Since this noise source 

is a combination of two independent noise sources each of variance 
2 

Eo/12, then the variance of this combined noise source is simply 

2Eo/12. The effect of this noise source is similar to that des-

cribed in section IV.3. Thus the variance of 
Yeb(n) is given by 

a2AYb = 24/12:E:g2(i) 
	

(VI.59) 

4.= 0 

where g(i) is the impulse response of the filter. Given that a 
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steady state is reached, the variance of Ayb(n) is given by 

OD 

6,2, 
bi 
= 24/1222g2(i) 
b 4  i..,..0 

= 2E2/12 
7 
1 	G ( z )(3 (2i) z-1  dz 
7".re 

r 

 

(VI.60) 

 

Hence the variance of the total noise in the output due to 

multiplication round-off error is given by 

a2  = 
E0  2 
— --wiG(z)G(z

-1)z -1 dz + 3 	(VI.61) 
AY 12 2Tra 

1  

The same principle can be applied to digital filters with 

various configurations. It is obvious that different configurations 

will give rise to different values of multiplication quantization 

errors. Extension of this basic principle of analysis to other 

configurations can be found in other works of reference {1},(22), 

{ 36}. 

VI.5 State-Space Approach to the Statistical Estimation of Multiplication 

Errors in a Digital Filter {66} 

As mentioned in the previous section, a statistical estimation 

of the multiplication round-off error is more realistic than the 

evaluation of an upper bound, thus the view taken here is again 

statistical. However, since the state-space method is generally 

very much more convenient to use in the analysis of multi-rate 

digital filters, the statistical estimation of multiplication errors 

here employs the state-space method. 

Following the argument in section VI.2, the error in the state-

variable vector is given by 
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Az(n) E A 	e(i) 
	

(VI.62) 

and that the error in the output vector is given by 

It, - I 

Ay (n) = c E 	4:_ , 
A 	e(i) + c(n) 

c=0 

The variance of the error at each step of quantization is 

given by 

a2 = E2/12 	 (VI.64) 

where Eo is the quantization step. Hence, the variance of the 

vector e is given by 
2 = 	 = 

de e2 PAl"B1 E2 0 
11A2"B2 	12 

!uAM+VBM J  
where M is the order of the filter. 

and the variance of c is 

,2 - 7- _ 	 R2 "C1„—D1 -0 
p
C2

+vD2 	12 

• : 

IICK-1-v DK 

provided that all the roundoff errors are uncorrelated. 

(VI.66) 

Following the definition of covariance matrix as mentioned 

in chapter IV, the covariance matrix for the state variable 

error vector is given by, 

cov[A x (n)] = E A m-i- 1 .cOv{e(i)] 
	

(VI.67) 

(VI.63) 

(VI.65) 

But the covariance matrix, cov[e(i)], of the quantization error 
vector is given by, 



2 
Eo 

cov[]e(i) = — 
12 

(11Al+ vB1) 

(11A2+  vB2' 0 

(Ppm+ vim) 

(VI.68) 
i.e. 

0 

-205- 

cov[e(i)] = E(e1) 	E(e1e2) 	Ele1ev)-  

E(e2e1) E(e22) 	E(e2.54) 

• • • 

E(i4e1) E(94e2) 	E(q) 

e1 	(e)
sincee.and e•  are 

ae2. 
	uncorrelated when 

CD 	• a;v1 	
i j 

where E(.) denotes the expected value. 

Hence substituting the expression of cov[e(0] into the 

covariance matrix of the quantization error vector, one obtains 

2 

covPix(n)] = --- 	A 
E0  :E] 	— 

(11A1+%)131)  
( An - 

12 
i.0 

(11A2+.9132)  

(VI.69) 

0 	(ilgevE0_ 

The solution of (VI.69) is more easily facilitated by premulti-

plying (VI.69) by Aland post-multiplying by Air; and after subtrac-

tion, one obtains, 



(11A14-VB1)  
(11
A2

-1-vB2)  

O (uAti +v3,1 )., 

-(1Al-1-vB1) 

(PA21-vB2)  

 

 

E2  0 
= 12 
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cov[6E(n)] - A.cov[6i(n)] .111.  

For a stable filter, in the steady state, A --* 0 . Then (VI.70) 

(VI.70) can be further simplified to 

E02  
COV [ L z(n)] - A. cov [Ax(n)j.lir 11 +1.) ) 12 ( Al Bl 

(uA2+vB2)  

(Lt ti+vB,4)_ 

(V1.71) 

The solution of (/1.71) involves the solution of M' linear equa-

tions, which yields the values of the A42  elements of covP,17.(n)]. 
The diagonal elements of cov1, 31(n)] are the variance of Ax.(n) 
in the steady state. 

After solving for coviAx(n)] , we can proceed on to solve for 
the variance of the output, i.e. 

cov[Ay(n)] = C. cov[Ax(n)] .CT-1-v 	2 
Cl D11  E0 (V1.72) 

PC24" D2 	
12 

u 4-v 
CK DK 

0 
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V1.6 Application of the State-Space Statistical Estimation to a 

Second Order Filter Realized in the Direct Canonic Form 

For a second order digital filter realized in the direct 

canonic form, the state matrix is given by 

and 

A = 0 	1 

-b2 -b1  

B = [0] 

1 

(VI.73) 

(VI.74) 

Hence, from (V1.68), the covariance matrix of the error vector is 

cov e (i)1 = 12 0 0 0 

0 2 

2 
_ 2,0  [0, 	0] 

12 
0 1 

(111.75) 

Sucstituting the expression of (V1.75) in (VI.71), in the steady 

state, then, 

T 	2E 2  cov[ x(n)] - A.covPar(n)] .A - 	- 0 
12 	

0 	(V1.76) 

	

0 	1 
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which gives fouz linear equations in terms of the four unknown ele-

ments of col4Ns(n)]. Now let these elements be represented by 

cov[Ax(n)] = 
V11 	V12 

V
21 

V
22 

Multiplying out the expression on the LHS of (VI.76) and simplifying, 

the following four equations are obtained 

	

V11 - v22 
= 0 	(VI.77) 

	

V
12 

+ b
2
V
21 

+ b
1
v
22 

= 0 	(VI.78) 

	

= 0 	(v1.79) 
b2v12 + V21 + b1v22 

2 	E 2  
-b2V - b1b2V12 - b1b2v12 + (1-bOv = 

2
_2_ 11 	 i 22 	

(VI.80) 
12 

Equation(VI.77) gives 

v 	= v 	 (VI.81) 
11 	22 

Also, from equations (VI.78) and (VI,79), one obtains 

V
12 

= V
21 
	 (VI.82) 

Substituting (VI.81) and (VI.82) into (VI.79) and (VI.80) and sol-

ving, one obtains 

2E2  (1 + b2) 	0 V = V = 
11 	22 	(1-b

2
)(1-b2

1  +2b 2 2 
+b2  ) 	

12 

-b1  	2Eg 
.0
12 

= V
21 

- 

1 
(1-b

2
)(1-b2 +2b

22 
+b2  ) 	12 

(VI.83) 



2E2 2 7"1  ( n-i-1 
CA 

2 
3E2  0 (VI.88) 

12 
0 

12 

then (VI.86) can be rewritten as 

a 
Ay 
2 
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i.e. the variance of the error in the state-variables x1 and x2 are 

given by 

2 	2 (1 + b2) 	2E0 2 
(VI.84) aAxi = AX2 

= V
11 
 = 	 

	

(1-b2)(1-b2+2b2  +b2) 	12  

After solving for the elements of cov[A,t(n)], the variance of the 

steady-state error in the output is given by, from (VI.72) 

3Ea 
a2 = [(a2  -a0  82  ) 	(a1-a001)]. V11  V12  a2

-a002)  
12 Ay  

V21 
V
2 

(a1-a0$1) 

(VI.85) 

If only the variance of the output error is desired, a similar 

method to that shown in section IV.4 can be employed direct to (VI.63) 

Hence, 

n-f 
2 aAy = DAn-1:—/ cov [e(i)] (Ax-i-1)  .C1  + cov[t(n)] 

<=0 
2E n  X—N n-1 	

2 d
r +  

—2.3C A 	0 0 (An 12 
c=0 	 0 1 

3E2  

212 CAn
4 	-i-1 0 n-1-1

5
r(7 

+ 	
0 

- 	
[ 12 (VI.86) ]  

Now since 

[0 i] 	ir = 	 (VI.87) 

Cs 0 1 
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As mentioned in section IV.5, (VI.88) can be more conveniently eva-

luated, especially when n is large, by determining the eigenvalues 

and eigenvectors of AL, i.e. by making use of the equation 

	

An _ PAn Fri 	 (VI.89) 

Thus, if Al  and A2  are the two eigenvalues of Al, then (VI.88) is 
reduced to 

2 
a2 ELE c p  
Ay 	12 

rn-i-/ 0 	al) 4.  3Ert  

0 	
An -i -/ 

P 	12 

,t _ f  

A word of caution must be added here that in counting the num-

ber of non-zero and non-unity elements in the matrix C, the matrix 
C is of the form 

	

C = [(a2-a0b2) 	(21-a0b1)] 	(VI.91) 

If a
1 
 = a

2 
= 0, then the number of non-zero or non-unity elements in 

C is zero. This is rather obvious from the diagram of a second order 

filter realized in the direct canonic form. 

Consider the second order filter shown in fig VI.3 

(VI.90) 

 

y( 

 

 

Fig VI.3 
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The noise source immediately after the multiplication with (-b1) 

and (-b2) has been taken into account in calculating ;1(n4-1) since 

the state equation is given by 

x 	= Ax(n) + B u(n) 	 (VI.92) 

Assuming no further error is introduced in the input summer EI, 

the only subsequent multiplication error on x(n) is from the multi-

plication with ao. Thus the noise introduced by the parts (-a0b2) 

and (-a
o
b1) 

in the elements of C has been taken into account in the 

consideration of Ax(n)and Ax2(n). 

VI.7 Multiplication Round-Off Errors in a Multirate Digital Filter  

Consider a time-invariant multirate digital filter in which the 

product after each multiplication has to be rounded-off to an accu-

racy E0  (fig VI.4) 

Fig VI.4 A Time-Invariant Multirate Digital Filter 
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For an ideal filter the following sets of dynamic equations can be 

be written:-  

X(n!--
N

) = AX(n) + Bu(n) ; 

N) 
= Ax(ni.—N ) 

• 

y1(n) = C:m(n) + Du(n) 

1 	1 y2(n+17) = c x(n+-5) 

(V1.93) 

x(n#1) = Alx(w.N1) ; 	N-1 = C x(72+ N N1 I 

However, for a non-ideal filter shown in fig VI.4, the dynamic equa-

tions becomes:- 

,:!(n+P = [IL,!!(n)]E0+ [au(n)]E0; 	yl(n) = boze(n)40  + DX4.(1)40; 

2 	r 	 / 	r 	/ 
(ITY = IL M! ( 14I) E0 	; YYnf"/Td =  LCxi(rri-/YJE

o
; 
(V1.94) 

• 
• 
• 

N-1 	N-1 	N-1 
(n#1) = [A xf  (nf-T-) 	; 	yyn#—A-7  )= [ c (n+--ri  )] E  ; 

E0  

where A = ; 	B = [0] ; 1] [0 

a2 	-a 

c = [(a2-a002) 	011-a00];D a0 

and  [.]E, again as in section V1.2 denotes the quantization of a mul-JE0  
tiplication product to an accuracy of E0  

Defining"-  the error vectors in the following way:- 
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e(n) = AX' (n) - [Ax'(,2)]E0 + Bu (n) - [Bu(n)]
Eo

; 

e(714-1) =Itati (n*1-) 	[A3e(1242-)1 N 	N 	 N E0  

• 
• 

e(n#117N1)  =Atx'(147:2) - Dklein4-5- N E 11] 	' o  
(VI . 9 5) 

(n) = C x'(n) - [c3e (n)]E0  + Du(n) - [Du (n 1] E0 ; 

E 	= C Xr 	- 	(n42-  )] 
0 ; N E 

E(71+  N- ) 	 5 (ni 1 ) ] 
N 	 N 	32eyN 

E 
 . 
0  

Then the error in the state vectors and the output vectors are, 

	

Ax(ni--N ) = (n+N )  - 
	 Ay 1(n) = y1(n) - y1(n) 

=itAx(n) + e (n) ; 	 =CAx(n) + (n); 

2 	1 	1 	1 

	

A .7an-i--) =AAx (n+-) + e (n+-) • 	Ly2  (n) = (Ux (724717) + c (n+717) ; N 	N 	N ' 
. 	 . 	(VI . 9 6) 
. 	 . 
. 	 . 

/ix (ni-  1) =A Alc(T/Y-1) + e(n42.." A 11 / 4  -C" 
x.(n 4:2 ) + c(n#N-1) • 

	

N 	N 	N' 	 N 	N 

Hence, n1444-4 

x  (7041-) rEAN/H•i)-k-1 
- t1(k4711 

e
2(k/N) 

(VI.9 7) 



2 	2 
d e [Al ]El 

12 

UA2 

(VI.101) 
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(nN+i-1-k-1) 	i-1 and 	
117 	

C 	A 	el(k/N + e(n+-114 
x=0 

e 2 (k/N) 	(VI.98) 

For k = nN, the variance of the vector e is given by 

2 	2, , 	
" 	

p2 d
e 

= e (n, = uAlB1 	—0 
12 

A2
+V
B2 

and the variance of e is, 

, 
a
2 
= e(nI = Cl 

+v
D1 j E0 

12 

(VI.99) 

(VI.100) 

For other values of k, the variance of e and e are respectively given 

by, 

2 

CIE = 	tO 

12 

(VI.102) 

However, for a direct canonic configuration, vBi  = vB2  = 0, and 

uCl = 1 C1 	v  D1' • 
thus the variance of e and e are simply given by 

equations (VI.101) and (VI.102). Hence, from (VI.67), the covariance 

matrix of Aoc(n)is given by, 

cov[4x(n+N)] = cov Ce (01 . 

=0 
2E ,21D 	

roirP W1941-k-Ijr  (VI.103) 
= 12 LJAmo 	I  
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and the variance of the ith output error is 

2 hN+i--2 
0.2 . 2E2  E  (nN÷i-1)-k-1 pi co 	ki I AnN#1:-1-k-i fr  CT  + 1-1 i  • Ell Ayi 	0 	C A 	 Cl 12 

	

12 	Li] k . 0 
(V1.104) 

i = 0, 1, 2, ... N . p
Cl 

= number of non-zero and non-unity mul-

tipliers in the feed-forward paths of the digital filter. 

If the multirate digital filter is periodically varying, i.e. if 

Ali, Ili, Ci  and D are the matrices of its dynamic equations at t.--(n-y, 

a slightly more complicated expression for the multiplication round-

off error can be derived. Following a similar argument as in the case 

of a time-invariant filter, the errors in the state vector are 

LIN:(71.41-) = 	 e(n) 

x(n47) = A, ax(n47)+ e (n4) 
• 

• 

• 

LiIt(n+/) =A Awr/n.41) 	N-1 , 
N   

(VI.105) 

The solution of(VI.105) is given by 
r. 	 i-2 

av Ai ( n4--) 	(AN...  

	

N 	N. A 
 2 

A 
1
)n 	

2 
ik.  2-1 	Ak4.2)  e(j4d (3(j+74/4  

(VI.106) 

and hence the error in the ith output is 

	

"cd ys 	N = c A (n4) + e (n 	 (VI.107) 

The covariance matrix of the errors in the state variable vector is 
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given by 

i 1 cov[Ax(n+0 = 2Eo E A„,.• • A2  A, [o 1]). 
12 	o J= 	k= o 

n-i 
• ( A i  Ai_ 1. Akj (Alf  . . . A2A, + []0 [o 1] 

(VI.108) 

and substituting this into the variance of the ith output error 

2 2 
Ga 
 .= C cov lc (n+-- ) j• CZ 	iu,i' 

E
0 

12
.  ,s (VI.109) 

where Arci  = number of non-zero and non-unity multipliers in the feed-

forward paths. 

VI.8 Comparison of Multiplication Round-Off Errors between Single-Rate 

and Multirate Time-Invariant Digital Filters  

If a second order multirate digital filter is periodically varying, 

i.e.A.,11.,C
i 
 and Dare the matrices at t = (n4-7-1) where = 

then there are (hi- 1) degrees of freedom in the choice of the coeffi-

cients 041  and p.s. Hence it would be difficult to compare the multipli-

cation errors of such a filter with its equivalent single-rate filter. 

Here in this section, attention is focused on the time-invariant multi-

rate digital filter and its single-rate counterpart. 

Consider a single-rate filter, from (VI.84), the steady state var-

iance of the errors in the state variables x1  and x2  are 

a2 	I b2 	2E2 	
(VI.110) Az 	 2 	12 

3 	(1 - b2) (1 	b
2  
i 	2b2 	b2) 

1 
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Now, if the complex poles of this second order filter are given by 

A = re-1'
±4e 
	 (VI.111) 

then (VI.110) becomes 

a2 = 	
2 

(1 + r2) 	.2E0  
dx, 
° 	(1 - r2) (1 - 2r2cos20 + 2,4) 	12 

(VI.112) 

Most digital filters contains poles very close to the unit circle. 

This is certainly true for the design of highly selective filters. For 

these cases (VI.112) can be greatly simplified. 

Let r = 1 - c and ignoring terms with quadratic and higher expo-
nents in E, eqn(VI.112) becomes 

2 
a2 = 40

„
0  • 	 

A.Ts 	12 	fi - (1_0 
1 + (1-02  

 

1{1 + (1-e)4  - 2(1-02cos201 

	

= 2E0 	 (1 - e)  

	

12 	2c(1 - 20(1 - cos20) 

	

= 24 	(1 - 	 (VI.113) 

	

12 	4e(1 - 2c)sin20 

Now, (1 - 2e) = (1 - c)2, thus again ignoring the terms with quadratic 

exponents in c, (VI.113) can be reduced to 

a2 	1.-60 	1  

des 
a 

	

12 	4e(1 - c) sin20 

1 	 (VI.114) 

12 	4e sin20 



a2 	, 2E0
2  

1 

6Fm 12 4.T771  
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Now, consider a multirate time-invariant second order filter with 

state matrix given by 

A [ 0 	1 

Let the complex eigenvalues of A.be given by 

A = 
	

(VI.115) 

If the time-invariant multirate filter is to give the same performance 

as the single-rate digital filter, from section III.10, 

r pN  

0 = N. 

(VI.116) 

Following similar developments of argument as in the case of single 

rate filters, the steady state variance of the error in the state var-

iables x1  and x2 of the multirate filter is given by 

2 
a 
AXm  

= 
2E02,  • 1 4' 02 

(VI.117) 

12 (1 - 02)(1 - $i + 282  + 02) 

p2 

12 (1 p2) (1 - 2p2cos2$ + p 4) 

Again, for highly selective filters, let r = p
N 

= (1 - e) and ignoring 

terms with quadratic and higher powers of e, (VI.117) can be simplified 

to 

-02 
-8 

 

. 2E02  

12 • 7177,17,27. 
N 

(VI.118) 



02  
Axm 	N sin20  

aLs (sing 21) 
N 

(VI.119) 
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Al/ 
Hence the ratio a2  a2 

s 
 can be written as Am 

Eqn(VI.119) expresses the ratio of the variance of the state variable 

errors in the multirate time-invariant digital filter to that in the 

single-rate filter. For a given N, if the filter is highly selective, 

it is easy to compute from eqn (VI.119) the value of 0 for which the 

ratio a2  /ads  1 1, i.e. the position of the poles for which the dxm  
multiplication round-off errors in a time-invariant multirate digital 

filter is lower than that in a single-rate filter. 

The graphsof equation (VI.119) for 	double-rate (N = 2), tri- 

ple-rate (N = 3) and quadriple-rate (N = 4) time invariant digital fil-

ters are shown in figs (VI.5), (VI.6) and (VI.7) respectively. From 

these graphs, if the pole angle e of the desired digital filter falls 

in the region where the state variable noise ratio awn/a2A 
 is be- 

 xe 
low the line of unity, one would expect the performance of the time-

invariant multirate digital filter to be better than its equivalent 

single-rate filter. 
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POLE ANGLE ti  STATE VARIABLE NOISE RATIO 
FOR A OUADRIPLE -RATE FILTER (N = 4 ) 

FIG. V1.7 
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VI.9 Resume 

The multiplication round-off errors in a digital filter have been 

considered. In general, there are two ways of tackling the problem, 

viz, the evaluation of the upper bound of the errors and the evaluation 

of a statistical bound. Both methods have been discussed. The statis-

tical approach is, in general, more realistic due to the fact that the 

input to the filter is commonly stochastic. A method to evaluate the 

statistical estimation of the multiplication has been derived using the 

state-space method since the state-space method can be readily applied 

to periodically varying multirate digital filters. Using this state-

space method, expressions have been derived for the statistical bound 

of the multiplication round-off errors in both the time-invariant and 

periodically varying multirate digital filters. 

Finally, a comparison of the multiplication errors in a time-invar-

iant multirate filter and that in a single-rate filter has been performed. 

A simple expression has been derived giving the ratio of the error var-

iances in the two cases. Such an expression is based on the assumption 

that the desired filters are highly selective. From such an expression 

of the ratio, the pole position in which a time-invariant filter is more 

desirable than its equivalent single-rate filter can be determined. 



CHAPTER VII 

LIMIT CYCLE OSCILLATIONS IN A MULTI-RATE 

DIGITAL FILTER 

VII.] Introduction  

In the previous chapter, the multiplication round-off errors 

in a second order digital filter have been discussed. It has been 

assumed that the input signal to the filter is stochastic so that 

the error in the output can be treated statistically. However, 

if the input to the filter is deterministic, say an impulse or 

a step function, then, since the round-off errors in the state-

variables would be highly correlated, the problem has to be 

treated differently. 

If the input to a stable and ideal digital filter is set to 

zero, the output will decay asymtotically to zero. However, 

when rounding of intermediate products is performed in the filter 

implementation, it is possible that the output may sustain a non-

zero level or oscillate indefinitely about zero. Similarly, fora 

constant nonzero input, the ideal filter output should asymto-

tically approach a steady-state level determined by the filter 

transfer function. Due to rounding, however, the output may 

oscillate or it may maintain a constant level different from the 

ideal output. When these phenomena occur, the filter is said 

to exhibit a limit cycle. The range of output values that occur 

for a particular limit cycle about the desired response is some-

times called a deadband. 

Limit cycle oscillations remain an undesirable property of 

the digital filter for most engineering applications. To suppress 

-223- 
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these oscillations, it has been proposed {5), that a small random 

noise should be added to the input of the filter; this is called 

dithering. However, although this method breaks up the regular 

pattern of the limit cycle oscillation (LCO), it introduces a new 

random error and sometimes may not be very effective. Here in 

this chapter, the properties of LCO in a digital filter are 

briefly discussed, and it is demonstrated that LCO may be complete-

ly absent in some cases of a multi-rate digital filter. Thus 

this type of multi-rate digital filters will be more suitable for 

engineering applications where LCO is an embarrassing problem. 

VII.2 Classification and Existence of Limit Cycle Oscillations  

Limit cycle oscillations in a digital filter are caused by 

the non-linear feedback within the filter. Their existence is 

not affected by the presence of the zeros of the filter transfer 

function. Hence it will be sufficient to study the second-order 

digital filter with the transfer function 

H(z) - 1 

1 + b
1
z
-1 
 + b

2
z
-2 

The transfer function can be implemented in the form as 

shown in fig VII. ] 

Fig VII.1 

Second Order Digital 

Filter with Single 

Precision Adder 

Xlk) 

The filter in fig VII.1 can be represented by the following 

state equation: 
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2 
x' (41) 	L—b —b Lx' (k)1 	 1 
2 	2 / 2 

where 1
(k) and e2(k) are the errors introduced by quantizing 

the multiplication products at t = kT. 

If the linear part of eqn (VII.2) is stable, then the state 

vectorek)is bounded, i.e. x'(k) will actually either enter a 

limit cycle, or enter the origin of the "pseudo phase plane". 

(The pseudo phase plane f49} is the plane with xi  and x2  as the 

coordinates) 

Now, a limit cycle is defined as a finite sequence of state 

vectors that satisfy a difference equation, i.e. 

W(1), x'(2), 	, 3.0(p)} is a limit cycle 

r4(76,.1) 	= r 0 	1 	 xil+ [ 0 {e (k)+e (k))  (VII.2) 

iff 

3'(k+1) = 4)(x1 (k),k) 
and 	x' (k+p) 	(k) 	V k 

The positive integer p is called the period of the limit cycle. 

If the limit cycle is a constant state vector, then it is called 

a limit point. If the limit cycle consists of only two alter-

nating state vectors, i.e. 

111'
2 

--(x1 (1), x'(2)} 	
(VII.4) 

and 
	X(1) —40(2) 

then it is called an alternate limit point. Any other type of 

limit cycle that exists in the system of (VII.2) is called a 

second order limit cycle. 

The existence conditions for limit cycles in eqn (VII.2) 
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are now considered. It is now shown that if lb21 > 0.5, then 
all solutions of eqn (VII.2) (except the trivial solution) are 

limit cycles. This existence condition was first observed by 

Jackson 1261, but the rigorous proof of it was first produced 

by Parker and Hess 091. The following proof is another way of 

formulating the argument:- 

Suppose that the state vector does enter the origin of the 

pseudo phase plane. Let 3r.'(%) be the last vector before the 

system enters the origin, then 

r

2

i(n0.11 [0] =[ 0 1 rirni] + 101.  
fe(n)-fe2(n)) (VII.5) x'00-1) 	0 	-b2 -b1 	0 	1 

However, e2(n) = 0 since xl(n) = 0. Thus, we have 

-b2x4(n) + el(n) = 0 	 (VII.6) 

i.e. 

-E0/2 < be4(n) < E012 	(VII.7) 

where Eo.rounding step size. But le/(n)1 E0, thus the in-

equality of (VII.7) implies that 

1b
2
1 < 0.5 	 (VII.8) 

if equation (VII.5) is possible. It follows that the zero state 

cannot be reached if 1b2
1 > 0.5, i.e. limit cycles always exist 

in a second order digital filter with complex poles if 

< r < 1.0 

where r is the magnitude of the complex pole. 

It has been observed {z5} that if 1b21 < 0.5, then the limit 
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cycles that can exist in the digital filter will be either limit 

points or alternate limit points. Also if 1b21 < 0.5 and if 
1 [1:2]E0  and[1I] E0  enter the origin of the pseudo plane, then there 

exists no limit point or alternate limit point, i.e. there is no 

LCO. 

VII.3 Bounds on the Amplitude of LCO  

Various authors have derived upper bounds for the amplitudes 

of LCO that occur in a second order digital filter. The output 

of the system shown in eqn (VII.I) can be written as 

y(n) = u(n) - [bly(n-1)40  - [b2y(n-2)]
E0 
	(VII.9) 

where Eo again denotes the quantization step. 

Jackson {26} estimated a bound on the magnitude of limit 

cycles for roundoff by equating (VII.9) to the output of an 

equivalent linear digital filter with b2  = 1 (the condition for 

an oscillatory response), and using the following equation 

[b2y(n-2)], = boy(n-2) ± {0.5±d(n-2)}E0 	(VII.10) 
'o 

where S(n) is any number between zero and unity. The resulting 

estimate for the magnitude of the limit cycle is given by 

102)1 5 0.5E0/(1-b2) 	VII.11 

Doubt is reserved on such a bound since it is independent of b1. 

In fact, it has been found that the bound is too low for certain 

cases {49}. Experimental results by Parker and Hess {49} have 

indicated that the following bound seems to be a safer approx-

imation than (VII.11) 

ly(n)I < 1.5E0/(1 -b2) 	(VII.12) 
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Sandberg and Kaiser {56} have arrived at the following 

formulae for the r.m.s. value, a, of limit cycles in a second 

order section 
b 	

Hell 
2  

a = (1 -b2)
-1 
 (1 - 

for b2  > 0 and 1b11 = 4b2/(1 b2) 

a = (1 - lbil + b2)-' li ed 

b2  5 0 , b2  > 0 and Ibi l 14b2/(1 + b2) 

k 

where 04 A 771— I:e2(n)] KA-1 
11=0 

(VII.13) 

(VII.14) 

(k + 1) being the period of the limit cycle, and e(n) is the 

roundoff error at t = nT when limit cycle is reached, i.e. 

y'(n) = -b1y t(n-1) - b2y'(n-2) + e(n) 	(VII.15) 

For a general approach to the upper bound of LCO, the 

method by Yakowitz and Parker{70} described in section VI.2 and VI.3 

is just as good as any other method. The advantage of this approach 

is that it also yields a bound on quantization errors during the 

transient period. Limit cycles, which are steady-state conditions, 

are included in this bound. As a recapitulation the bounds are 

written below: 

For a filter with real poles, the bound of the state vector is 

1 
Ax(n) < (1-Ib/ 1+b2)

- 1 [1] Fo 	
(VII.16) 

 

and that for a filter with complex poles is 
(14-$/b2)E0  

2/5-2 E0  
	T—Toi 1i(vII.17) 40C (71) < 	 

	

= (1-422)V4h241 	(1- b2)/i- TB- 
2 

It is interesting to compare the expressions of (VII.16) 

and (VII.17) with those of (VII.13) and (VII.14). The bound 

of (VII.16) is identical to that of (VII.14) for real poles. The 

bound of (VII.17), which holds for all n, including transients 
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and the limit cycle condition, is greater by a factor of 

+ 145-2)/1/2 than that of (VII.13). This factor varies from 

unity to 1/2 when b2  = 1 

VII.4 LCO in a Multi-rate Digital Filter - Computer Simulation 

As discussed in the previous chapter, the multiplication 

roundoff error in a time-invariant multirate digital filter can 

sometimes be less than the corresponding single-rate filter. 

Since limit cycles are multiplication roundoff errors in the 

steady state, one would expect that the bounds of the LCO in 

a time-invariant multirate filter be lower than those in the 

corresponding single-rate filter if the condition that (VI.119) 

< i is satisfied. 

It is not the object of this chapter to develop a bound 

for the LCO in a multi-rate digital filter (since the bound for 

multiplication roundoff errors with zero input equally applies 

to LCO), but rather to demonstrate by computer simulations that 

a single-rate digital filter suffering from LCO can, in general, 

be replaced by a periodically varying multi-rate digital filter 

free from limit cycles provided that the periodically varying 

coefficients are suitably chosen. This section describes the 

computer simulations of such a filter and the process by which 

a suitable multirate filter with zero LCO can be found {69}:- 

In a digital filter, LCO is caused only by the poles of the 

transfer function. The presence of the zeros does not affect the 

existence of LCO. Therefore it would be sufficient to consider 

an all-pole filter with a transfer function of the form 

X(z) - 	1  

z2  + b1z + b2 



Fig VII.2 

A Double-Rate 

Digital Filter 
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In order to simplify the problem, attention has been focused on 

realizing eqn (VII.18) by double-rate (N = 2) digital filters 

with periodically varying coefficients. The use of higher rate 

(N > 2) filters has been ignored since it is sufficient to 

demonstrate the principle using a double-rate filter. 

Consider a double-rate filter (fig VII.2). 

There are two transfer functions (see Chapter III), i.e. 

and 

H
1 
 (z) = 

a
10
z2+(a

10
a
22
-a
1121

+a
12
)z+a

12
0
22 

z2+(812+022-011 821)z+612822 

(VII.19) 

H
2
(z) 

	(-a
20

8
21
+a

21
)z2+(a

21 022
-a
2221

)z  

z2+(312+022-011 821 )z.1-(312822 

	(VII .20) 

Either of these two transfer functions can be used to realize 

the all-pole filter of eqn (VII.18). However, if the double-

rate filter is to be implemented with hardware, it will be more 

economical to use eqn (VII.20) since, in this case, both a 21  

and a 22 can be made equal to zero, thus saving two multipliers. 

This is the reason why H2(z) has been used in all the simulaticns. 

Now, using eqn (VII.20) to realize H(z) in eqn (VII.18), one 

obtains the following equations: 

012+022
0
II
0
2I 

= b (VII.21) 

13 121322 = b
2 

(VII .22) 

a  20 =  -1/021 (ViI .2 3) 
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It means that we can choose any set of values for 811  and 812  

and determine the values of 821  and 822 from eqns (VII.20 and 

(VII.22), or vice versa. If On  and 812  are chosen and, if for 

each chosen set of 0
11 
 and 812, a unit impulse input is injected, 

it has been found from the computer simulations of a double-rate 

filter that some of these sets of On  and 812  give no LCO in 

the output. On the other hand, if 821  and 822  are chosen and 

varied, there are again sets of 821  and 822  that give no LCO. 

Thus if the set 0
11 

and 812 is chosen and varied by one quanti-

zation step each time over the "triangle of stability" (251 

(fig VII.3), and each time analysed with a unit impulse input, then 

all the values of $
11 
 and 812 that give no LCO can be found. 

Again, if 821  and 822  are varied and analysed in the same way, 

then all the values of 821  and 822 giving no LCO can be recorded. 

Note that even if $
11 
 and 812 lie outside the triangle, the 

resultant transfer function of eqn (VII.20) is not necessarily 

unstable. Values of $
11 
 and 812 that lie outside the triangle 

are taken care of if 8
21 
 and 822 are the chosen coefficients 

and if their values are sufficiently small. 

Fig VII.3 "Triangle of Stability" 

Similarly, values of 821  and 822  lying outside the tri-

angle are taken care of if 811 and 812  are chosen and are 
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sufficiently small. The flow—diagram of the computer simulation 

program is shown in fig VII.4. 

/
READ II COEFFICIENTS 
OP SIMILE RATE FILTER 

/ READ IN QUANTIZATION 
STEP E. 

SET I' I 

SIT I re2 

FLOWCHART FOR THE SEARCH OF ZERO LCO POINTS ON 
THE e, - fa  PLANE 

X17.3006.1092 
FIG:ZIL 4 
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VII.5 Results and Observations from the Computer Simulations 

Many all-pole second order filter simulations have been 

performed, and the process of searching forBij  which give no 

LCO repeated. The following general observations have been obtained:- 

(1) It has been observed that the suppression of LCOoccurs not 

only when all the state variables xi  and x2  (fig VII.2) are zero, 

i.e. 

r

xi

(n)] = [01 

2(n) 	0 

for sufficiently large n, but also that when not all the state 

variables vanish yet the LCO in the output can be zero. 

(2) For zero state variables, it is observed that 

1f3i2 1 < 0.5 
	

(VII.25) 

This is similar to the conclusion drawn in section VII.2 for a 

single-rate digital filter. 

(3) For zero LCO in the output but non-zero state variables, 

a 
20 < 0.5 
	

(VII.26) 

(4) The points on the SI. 	S
12  plane giving zero state-variables '  

correspond approximately in position to those on the 521-- 22 
plane. These points on both planes are approximately symmetrical 

about the Sit axis. 

(5) Both the zero-state-variable points and the non-zero-state 

variable points that give no LCO do not seem to bear any simple 

relationship to each other. 

(VII.24) 
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(6) A change in the input, say, from a unit impulse to a step 

function, or even a change in the input magnitude may change the 

position of the zero LCO points on the 81,1-- 
Sit 

 plane. 

(7) For a different given single-rate filter, generally, a 

different set of zero LCO point is to be found on the 01:1-- 6i2  

plane. However, these different sets of zero-LCO points apparently 

bear no simple relationship to each other. 

(8) If the quantization errors in the coefficients are severe, 

then even if we start with a double-rate filter with no LCO, the 

resultant filter may possess LCO in its output. 

The following is an example showing the process of searching 

for the equivalent double-rate filters with zero-LCO:- 

Example VII.1 

It is desired to have a digital filter the transfer function 

of which is given by 
1 

H(z) l-1.4z
-1

+0.82
-2 
	(VII.27) 

The quantization step is 0001. 

Using the simulation program, search for the equivalent double-

rate filters which offer no LCO in the output. 

It can be seen that the coefficients of the periodically 

varying double-rate filter must satisfy the following equations:- 

12 + 822  - 811821 
12822 
a 20  

= 

= 

- 	1.4 
0.8 

- 1/$21 21 

(VII.28) 
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The information of these coefficients, aa, bi  and b2a  and the 

quantization error E0  = 0.01 is fed into the computer. Fig.VII.5 

shows the print out of the contour map on part of the triangle of 

stability on the 
S11

B12  plane. 
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Due to the difficulty in reproducing the computer print-out 

of the 'hole plane, the map of the "stability triangles" on the 

a11-- 12and a2— a22  planes are redrawn in fig VII.6(a) and (by, 1  
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As can be observed from the maps, there are thousands of equivalent 

double-rate digital filters with periodically varying coefficients 

that possess no LCO in its impulse response. Fig VII.7 shows the 

response of such a filter. Together on the graph is the original 

single-rate digital filter. It can be seen that LCO is complete-

ly absent in the output of the double-rate filter. The coeffi-

cients of the single-rate filter and the zero-LCO double-rate 

filter are printed on the diagram. 

IMPULSE RESPONSES OF A DIGITAL FILTER 
AND ITS EQUIVALENT ZERO-LCO DOUBLE RATE FILTER 

Obviously among these thousands of equivalent double-rate 

filters which give the same impulse response as the given single- 

rate filter and yet there is no LCO in the output, some must be 

more preferred than others as far as realization is concerned. 

Firstly, the periodically varying coefficients should be of the 
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same order. Looking through the list of all the possible double-

rate filters, one finds some of the filters have vast differences 

between its coefficients, for example 

a20  = - 0.003 

011 = - 
0.20 

0
12 

= - 0.01 

	

0
21 

= 	393.05 

0
22 

= - 80.00 

Comparing the values of these coefficients to those of the filter 

chosen in the previous example (fig VII.7), i.e. 

a20 = 0.4 

	

811 
= 	1.44 

	

012 = 	
0.46 

021 = - 2.5 

	

22 
= 	1.74 

although both double-rate filters give no LCO in their impulse 

responses, the latter is certainly preferred from the point of 

view of fixed-point hardware implementation, and from the point 

of view of sensitivity. (Section V.3, figs V.2 and V.3). 

Secondly, although $11  and 812  are in increments of one quant-

ization step, i.e. there is no quantization error in these co-

efficients, the values of 821' 022 
and  a

20 
calculated from eqns 

(VII.21) (VII.22) (VII.23) may have to be rounded off. If the 

round-off errors of these coefficients are severe, the result- 

ant filter may have LCO in the output again. The following 

example may help to illustrate this point. 
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Example VII.2 

The transfer function 

H ( z) 	- 
1-1.4 z +0.8z

-2 

can be realized by the following double-rate filter which gives 

no LCO in its impulse response. 

1 
	 (VII.29) 

Fig VII.8 

A Double-Rate Filter that 

Gives No LCO in its Impulse 
Response 

where a
10 

= 0 

a
20 

= - 0.0276431 
011 

21 

= 

= 

- 0.03 

36.1754 

0
12 

22 

= 

= 

- 0.38 

- 2.10526 

The impulse response of this filter is shown by the full line in 

fig VII.9. However, the coefficients a20, 021 
and  0

22 
have to 

be rounded-off to two places of decimal if they were to be implement-

ed. Thus the final filter would have the following coefficients 

a10  = 0 	a = 

a
20 

= - 0.03
21 

= 

— 0.03 

36.18 

012 
6
22 

= 

= 

- 0.38 

- 	2.11 

and the impulse response of this filter is shown by the broken 

line in fig VII.9. It can be seen that LCO exists in this filter 

if the coefficients are quantized. 

It is observed that, in general, if the coefficients of the 

double-rate digital filter are not greatly different in their 

values, the suppression of LCO in the impulse response is not 

so easily disturbed by the quantization of the coefficients. 
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It has been mentioned before that a double-rate filter that 

suppresses LCO for a unit impulse input may not suppress LCO for 

a step input. The following example illustrates this point. 

Example V11.3 

The double-rate filter shown in fig VII.8 will realize the 

transfer function 

H(z) = 	11 	-2 

	

1- 1.4 z 1 	2 
0.8 z 

and yet gives no LCO in the impulse response if the following 

values are chosen for the periodically varying coefficients:- 

a
10 

= 0 
11  

= - 0.92 012 = 
0.18 

a
20 

= 0.1527 021 = 
- 6.548 

22 
= 4.444 

The impulse response of the filter is shown in fig VII.10(a) 

and can be seen, there is no LCO in the output. However, if 

the input is a step function, the response (fig VII.10(b)) will 

have LCO. 

VII.6 Comparison of the two methods of Suppressing LCO 

It has been mentioned in the beginning of this chapter that 

in trying to break up LCO in a digital filter, a small random 

noise, usually of the magnitude of the least significant digit, 

is added to the input of the filter. This section describes a 

computer program which simulate such a method when applied to 

a single-rate filter. The resultant output is compared with that 

obtained by an equivalent double-rate filter giving no LCO. 
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The program performs the following:- 

1) A unit impulse is injected into an ideal single-rate 

filter and the output is recorded. 

2) A unit impulse is injected into a single-rate digital filt:er 

with multiplication round-off errors; the output (up to a 

steady state) is recorded. 

3) A unit impulse with added noise (the magnitude of which is 

confined to-the least significant digit) is passed into tie 

non-ideal single-rate filter, and after a while, the added 

noise is stopped. The response of the filter is recorded, 

4) A unit impulse is injected into a non-ideal double--rate filter 

designed to give the same performance as the single--rate 

filter but without LCO. Again the response is reco7;ded. 

It has been observed that, in general, the added nise 

the input breaks up the regular pattern of the limit cycle. 

oscillations that would have existed in the impulse ;':asponse o.7=. 

a single-rate digital filter with multiplication round-of. 

However, this met hod of dithering 	. usuall- 

to additional noise in the response of the filter. Alo 

added noise is stopped, LCO (which is generally differeu 

magnitude to the LCO when there is no added noise in .:he input) 

will start again. The following example may help' 	t'171.5, 

Example VII.4 

A single-rate digital filter having the transf= fIlAction 

H(z) = 
1 

1 - 1.42
-1 	

0.8z 
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is implemented with multiplication round-off errors. If a unit 

impulse is passed into the filter, LCO would occur in the output. 

Suppression of such LCO is carried out by dithering. Compare the 

output of the single-rate filter when dithering is applied to the 

output of the double-rate filter designed to give no LCO. 

The double-rate filter which has the same transfer function 

as H(z) but gilfres no LCO has been chosen to have the following 

coefficients 

a10 = 0 11 = 1.44 a12 = 0.46 

a20 = 
0.4 a

21 = - 2.5 $22 = 
1.74 

The steady state responses of the three cases are shown in fig 

VII.11. It can be seen that LCO can be totally suppressed in 

the case of the double-rate filter while the dithering method 

can only break up the regular pattern. LCO starts again in 

the single-rate filter immediately after the dithering stops. 

Hence it can be concluded that the method of using double-

rate filters to suppress LCO is very much more effective than the 

method of dithering. 

VII.7 Resume 

The nature of steady state limit cycle oscillations in a 

digital filter was briefly described. The conditions for the 

existence of LCO were stated and the bound discussed. 

It has been suggested that a small random noise should be 

added to the input to break up the LCO in a digital filter. 

However, it has been found that a multi-rate digital filter (here, 



SINGLE RATE FILTER 

i
t 

% i 
1 	 ....... ,.. 	• 

I 	/ \ 
••••11••1••••1A. 	 ••••9•/.•• • 
\ 	1 	

\ •I•ar•s••••,•Air• •• 

`.....1 	• 

• ••• • • • 1 • • • • pe.:.:.&•■■•••310 ra 

.." 	DITHERING 
STOPS HERE 

—•03 

.03 

.02 

•01 

0 

—.01 

—•02 S8
31

1I
3 

3
H

1
 J

O
 31

V
1S

-A
0

V
3

IS
 SINGLE-RATE FILTER 

''''.. ..... - WITH DITHERING INPUT 

	 DOUBLE-RATE FILTER 

-n 

II 



-248- 

a double-rate filter has been solely considered) would suppress 

LCO completely. In general, it has been found that for a given 

transfer function, there are many equivalent double-rata filters 

that suppress LCO. The filter should be chosen such that the 

values of the coefficients should not differ too greatly, nor 

should the quantization of the coefficients be large enough to 

affect the suppression of LCO. 

If a proper choice of such double-rate dilters have been made 

it has been found that this method of suppressing LCO is very 

much more effective than the dithering method. 



CHAPTER VIII 

CONCLUSIONS 

VIII.1 General Summary 

The main object of this thesis is to investigate the princi-

pal properties of multirate digital filters. Due to the nature 

of the device, more especially in the case of multirate filters 

with periodically varying coefficients, it has been found that 

the analysis is considerably facilitated by the use of state-space 

methods. 

After an introduction to digital filters in general, and a 

brief account of the state-space method of analysis, a mathema-

tical model of the multirate digital filter is developed. The 

method of developing this model has been shown to be more versa-

tile than those using conventional methods since it could be 

applied to time-varying or time-invariant filters, and to filters 

of different configurations without any modification of the method. 

Using this model, some interesting properties of the transfer func-

tions of the multirate filter can be derived. The realization of 

an equivalent multirate filter from an original single-rate filter 

is straightforward and almost trivial. But since there exist var-

ious possible designs, the choice has been discussed from the point 

of view of economy and performance. 

Quantization errors are the main factors affecting the per-

formance of a digital filter. It is on the basis of these errors 

that the multirate filter is compared to its equivalent single-rate 

filter. A rigorous mathematical analysis has shown that the A/D 
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conversion errors are identical in both the single-rate and its 

equivalent multirate filters. Simulation results also support 

this analysis. However, the errors due to the quantization of 

coefficients and rounding of multiplication products are different 

in the two devices. 

Mathematical analysis, confirmed by computer simulations,shows 

that in general, the poles of a second order multirate filter are 

least sensitive to the quantization of coefficients when the filter 

is time-invariant. The pole sensitivity of a time-invariant multi-

rate filter is compared to that of a single-rate filter based on 

a novel criterion — the sensitivity ellipse, and it is found 

that in some regions where the single-rate filter performance is 

vulnerable to coefficient quantization, its equivalent multirate 

filter can be used giving rise to a much less sensitive realization. 

Again, the superior performance of the multirate filter in these 

regions has been confirmed by computer simulations. 

The effect of the rounding of multiplication products can be 

treated in two ways. If the input signal is stochastic, it is 

generally more realistic to evaluate the error statistically. Using 

state-space methods, the statistical estimation of the errors due 

to multiplication roundoff have been evaluated in both single-rate 

and multirate filters, and it has been found that in some regions) 

the multirate filter is superior to its single-rate counterpart. 

On the other hand, if the input is deterministic, the multiplication 

roundoff error usually leads to a steady-state limit cycle oscil-

lation which is detrimental to most engineering applications of 

digital filters. However, using an equivalent multirate digital 

filter with periodically varying coefficients, such oscillations 

can generally be suppressed completely. This method of suppressing 

LCO in a digital filter by using its equivalent multirate realiza-

tion has been confirmed to be successful and shown to be more ef- 
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fective than the existing method of dithering. 

With these properties, the advantages of applying multirate 

digital filters are apparent. When an ordinary single-rate fil-

ter is found too sensitive to the quantization of coeeficients, or 

when it is found to yield too high a noise due to multiplication 

roundoff errors, a multirate digital filter, which has a much 

greater degree of freedom in the choice of its coefficients, can 

be considered as an alternative, and it can be assured to give a 

more satisfactory performance if the conditions given in Chapters 

V and VI are fulfilled. Perhaps the greatest use of multirate 

filters lies in that they can suppress limit cycle oscillations 

completely provided that the coefficients are properly chosen. 

Since the conventional single-rate filters that are likely to be 

encountered will almost certainly give LCO in the output for a 

deterministic input, the use of the equivalent multirate filter 

would be most welcome if LCO give an undesirable effect. 

Finally, since the poles and zeros of a multirate digital 

filter are interrelated, it can be applied to the construction 

of variable filters the characteristics of which are controlled 

by one single multiplier. 	This idea was first put forth by 

Fjallbrant and has been explained in detail {13}. 

VIII.2 Some Open Questions and Suggestions for Further Research 

Although many properties of the multirate digital filters 

have been revealed through analyses and simulations, the research 

work is far from being complete. There remain many question yet 

unanswered and some may be interesting and challenging enough to 

stimulate further research: 
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(1) In dealing with the effects of quantizing the multipliers in 

Chapter V, only the pole sensitivities of the filters were consi-

dered. But what would be the effects of the zeros of the transfer 

function? The non-linear and complicated relationship between the 

zeros and the multipliers of a multirate filter (see section 111.5) 

renders the problem very difficult, if at all fruitful, for analy-

sis. But perhaps with the aid of computer simulations, one may be 

able to estimate the movements of the zeros caused by the multi-

plier quantizations. If the relative movements of the poles and 

the zeros are known, it should be helpful to estimate the change 

in the sharpness of the cut-off and in the translation of the re-

sonant frequency. 

(2) The comparison in Chapter VI of the statistical errors due to 

multiplication quantization in a multirate and in a single-rate 

filter was based on the assumption that the filters are highly se-

lective, i.e. the poles are very closed to the unit circle. Clear-

ly, if this is not the case, the analysis would be different. Can 

a clear-cut comparison be possible if the poles are not so closed 

to the unit circle such that c2  cannot be ignored? 

(3) The problem of limit cycle oscillations in a multirate digital 

filter leaves many unanswered questions and perhaps even opens a 

wide field of research. Chapter VII has only demonstrated that 

LCO can be totally suppressed by periodically varying multirate fil-

ters for one type of deterministic input of a paricular magnitude, 

viz. a unit impulse. It has been found that the set of double-rate 

filters which suppresses LCO for a unit impulse is different from 

the set that suppresses LCO fora unit step. What is the relationship 

between the two sets, or indeed, between the different sets for 

different types of deterministic inputs? 

On the other hand, if a set of double-rate filters give no LCO 
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for a particular deterministic input, is there any relationship 

between these filters within the set? 

For a unit impulse, a set of double-rate filters would sup-

press LCO. But if the magnitude of the impulse changes, most 

members of the set would still suppress LCO, but for a few of 

them, LCO would arise again. What is the reason for this? Would 

the same happen if the input is some deterministic signal other 

than the unit impulse? 

What would happen if the number of shift sequences within a 

sampling period is greater than two, i.e. N > 2? Would the same 

observations that are discovered in the double-rate filter still 

hold? Are there any advantages over the double-rate filter if 

N > 2 as far as suppression of LCO is concerned? 

In general, if a single-rate filter exhibits LCO for a parti-

cular input, its equivalent time-invariant multirate filter would 

exhibit LCO as well. Is there any relationship between these os-

cillations, say, in their amplitudes, frequencies or harmonic con-

tents? 

(4) Throughout the whole thesis, attention has been focused on 

second order filters realized in the direct canonic form. Recently, 

many other configurations have been suggested by research workers 

in the field of digital filtering (94(12). In section 111.8, it 

has been shown that the same technique of developing a mathematical 

model can be applied to filters of other configurations. But can 

the same advantages in pole sensitivity, multiplication quantization 

errors and suppression of LCO offered by the second order direct 

canonic form be found in other configurations? 
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(5) It has been tacitly assumed throughout the whole thesis that 

the number of shift sequences, N, in a sampling period is a positive 

integer. If the view is widened, and if N is taken to be a fraction 

or even an irrational number, what would the properties of such 

a "multirate" filter be? 

The above questions suggest a few fields for further research; 

some, like the first two, are short-term and specific, while the 

others are of longer terms and more general. Until these questions 

are answered, the work on multirate digital filters is still far 

from complete, by which time, I am sure, other questions will arise 

and the frontier of research on the subject will be pushed still 

further. 

Digital filters are not yet widely used in industry at the 

present moment, the main reason probably being the cost of the de-

vice. With the rapid advances in integrated circuit technology, 

it appears that in the not too distant future digital filters will 

be economically possible for implementation. However, while it is 

certainly true that a lot of significant work has been done in the 

area of digital filtering, it is my opinion that the field is still 

very much in an embryonic state in the sense that several basic 

questions have remained yet unanswered, and new areas, of which the 

present work may be regarded as but one of numerous, yet unexplored. 

Nevertheless, with so much research effort being exerted in this 

important field, each contributing some new ideas and discoveries 

in the vast realm of knowledge upon which the progress of science 

is based, our knowledge in this area will soon be much more sophis-

ticated and refined. 
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VIII.3 CODA — On the Value of Scientific Research  

Newton once remarked, "Hypothesis, whether metaphysical or 

physical, whether of occult qualities or mechanical, has no place 
in experimental philosophy". This is certainly a very high stan-

dard. But is it the least that every man must break through to 

avoid mediocrity? Should the value of scientific research be 

merely measured by how big a step of progress the work has carried 

forward? Lao Tse, who flourished some twenty-two centuries before 

Newton, put forth a far more convincing and encouraging philosophy, 

..., a mountain is built of individual grains, a journey of a 
thousand miles is made up of small steps, ..., so regard not your 
house too empty and your room too poor"t. Should this be a more 

suitable outlook? I wonder. 

Furthermore, in estimating the value of scientific research, 

it is my opinion that too much importance has been attached to the 

acquisition of power by using the new knowledge — power of an in-

dividual over another, power of one group over another, power of 

one nation over another. But scientific research is not itself 

at fault. Knowledge is good and ignorance is evil; to this prin-

ciple the lover of the world can admit no exception. Nor is it 

power in and for itself that is the source of danger. What is dan-

gerous is power wielded for the sake of power, not power wielded 

for the sake of genuine good. Power is not one of the ends of 

life, but merely a means to other ends, and until men remember the 

ends that power should subserve, science will not do what it might 

to minister to "the good life". Science may bestow joys and beau- 

ties of life upon more people than could otherwise enjoy them. If 

so, its power will be wisely used. But when it takes out of life 

±Author's own translation 
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the moments to which life owes its value, science will not deserve 

admiration, however cleverly and however elaborately it leads men 

along the road to despair. The sphere of values lies outside sci-

ence except in so far as science consists in the pursuit of knowledge. 

Science as the pursuit of power must not obtrude upon the sphere of 

values, and scientific technique, if it is to enrich human life, 

must not outweigh the ends which it should serve. The new powers 

that science has given to man can only be utilized safely by those 

who, whether through the study of history or through their own ex-

perience of life, have acquired some reverence of human feelings 

and some tenderness towards the emotions that give colour to the 

daily existence of men and women. This to me, is a subtle and of-

ten elusive state of aesthetical and spiritual values that are em-

bedded in the studies and professionsof science, and it is in this 

spirit that this research project has been performed and that future 

works are hoped to be carried out. 

In conclusion, I would like to re-echo by quoting Bertrand 

Russell {55}: 

"Knowledge and feeling are equally essential ingredients both in the 

life of the individual and in that of the community. Knowledge, if 

it is wide and intimate, brings with it a realization of distant 

times and places, an awareness that the individual is not omni-potent 

or all-important and a perspective in which values are seen more 

clearly than by those to whom a distant view is impossible. Even 

more important than knowledge is the life of the emotions. A world 

without delight and without affection is a world destitute of value. 

These things the scientific manipulator must remember, and if he 

does his manipulation may be wholly beneficial. All that is needed 

is that men should not be so intoxicated by new power as to forget 

the truths that were familiar to every previous generation. Not 

aZZ wisdom is new, nor is all folly out of date. 
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Man has been disciplined hitherto by his subjection to nature. 

Having emancipated himself from this subjection, he is showing 

something of the defects of slave-turned-master. A new moral 

outlook is called for in which submission to the powers of nature 

is replaced by respect for what is best in man. It is where this 

respect is lacking that scientific technique is dangerous. So 

long as it is present, science, having delivered man from bondage 

of nature, can proceed to deliver him from bondage to the slavish 

part of himself. The dangers exist, but they are not inevitable, 

and hope for the future is at least as rational as fear." 
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