Surgical Checklist Implementation Project: The impact of variable WHO Checklist compliance on risk-adjusted clinical outcomes following national implementation. A longitudinal study

Erik K. Mayer PhD FRCS1, Nick Sevdalis PhD1, Shantanu Rout MRCS1, Jochem Caris MRCS1, Stephanie Russ PhD1, Jenny Mansell BSc MSc1, Rachel Davies BA (Hons), Petros Skapinakis MPH PhD 1, Charles Vincent PhD1, Thanos Athanasiou PhD FETCS1, Krishna Moorthy PhD FRCS1, Ara Darzi FACS FMedSci, FRS KBE1

1Department of Surgery & Cancer, Imperial College London, UK

Corresponding Author: Dr Erik Mayer PhD, FRCS; Clinical Senior Lecturer

Corresponding Address: Department of Surgery & Cancer

Imperial College London

e.mayer@imperial.ac.uk

Tel: +44 (0) 7984195642

Funding: This study was funded by the National Institute for Health Research, UK.

Running Title: Surgical Checklist Implementation Project
The WHO checklist was associated with reduced case-mix adjusted complications following surgery that was most significant when all three components of the checklist were completed. Full, as opposed to partial, checklist completion provides a health policy opportunity to improve checklist impact on surgical safety and quality of care.
Structured Abstract

Objective
To evaluate impact of WHO checklist compliance on risk-adjusted clinical outcomes, including the influence of checklist components (Sign-in, Time-out, Sign-out) on outcomes.

Summary Background Data
There remain unanswered questions surrounding surgical checklists as a quality and safety tool, such as the impact in cases of differing complexity and the extent of checklist implementation.

Methods
Data were collected from surgical admissions (6,714 patients) March 2010-June 2011 at five academic and community hospitals. The primary endpoint was any complication, including mortality, occurring prior to hospital discharge. Checklist usage was recorded as checklist completed in full/partly. Multilevel modeling was performed to investigate the association between complications/mortality and checklist completion.

Results
Significant variability in checklist usage was found: while at least one of the three components was completed in 96.7% of cases the entire checklist was only completed in 62.1% of cases. Checklist completion did not affect mortality reduction, but significantly lowered risk of post-operative complication (16.9% vs. 11.2%) and was largely noticed when all three components of the checklist had been completed (OR 0.57, 95% confidence interval 0.37-0.87, p<0.01). Calculated population attributable fractions (PAF) showed that 14% (95%
confidence interval 7%-21%) of the complications could be prevented if full completion of the checklist was implemented.

Conclusions

Checklist implementation was associated with reduced case-mix adjusted complications following surgery and was most significant when all three components of the checklist were completed. Full, as opposed to partial, checklist completion provides a health policy opportunity to improve checklist impact on surgical safety and quality of care.
Introduction

The World Health Organization (WHO) Surgical Safety Checklist was the main output of the WHO Global Patient Safety Challenge ‘Safe Surgery Saves Lives’. The checklist was initially tested across eight international pilot sites and demonstrated significant reductions in postoperative mortality and morbidity.\(^1\) Use of the checklist was mandated in January 2009 for the National Health Service (NHS) in England and Wales by the National Patient Safety Agency (NPSA),\(^2\) and hospitals were given 12 months to implement it. Subsequent studies across a number of healthcare systems have further demonstrated a role for checklists in improving quality and safety of surgical care.\(^{1,3,4}\)

While surgical checklists have been shown to have a role in improving safety a number of questions remain, in particular the impact of checklists in cases of differing complexity and the extent of checklist implementation. Most studies of the WHO checklist have not been properly risk-adjusted and some have argued that while checklists have their main impact in complex cases they may be less critical or useful in more routine operations. Understanding the contributory effect of the checklist independent of case-mix is therefore important. Using the SURgical PAtient Safety System (SURPASS) checklist, de Vries et al. implied that patient physical status, measured using the American Society of Anesthesiologists physical status classification (ASA), had little effect on the reduction in complications and mortality seen as a result of the SURPASS checklist use.\(^5\) The accuracy of ASA to accurately predict risk of postoperative complications and mortality is, however, debated because of its subjectivity.\(^6\) A more recent study, however, found that mortality and complication rates, adjusted for confounders that included a comorbidity score, were not statistically significantly altered after the introduction of surgical safety checklists across surgical hospitals in Ontario, Canada.\(^7\)
Studies of the WHO checklist have generally assumed that it is either used or not used, treating it much as a drug that is either given or not given. In reality observational studies have shown that teams that adopt the checklist are highly variable in the way they use it and often do not complete all the required stages. We do not at the moment know how variable usage is in routine practice (outside formal trials) or to what extent incomplete use of the checklist impacts on patient care. An early study of the implementation of the WHO checklist during the international pilot evaluation suggested challenges and variation in its implementation. A recent study that included a control group found no impact of the WHO checklist on safety culture in the operating room. It is possible that a checklist can be seen as ‘rite of passage’ and provides a false sense of security to the operating room team, but no improvement in safety. A study is therefore required to evaluate the effectiveness of the WHO checklist as it is implemented in the operative setting – a recommendation made explicitly by the NPSA, following the implementation of the WHO checklist across England and Wales.

The primary objective of this study was to evaluate the implementation of the WHO checklist within England and Wales on risk-adjusted clinical outcomes, including the influence of the individual checklist components to determine whether an association exists between the degree of checklist completion and clinical outcomes.

Methods

Study design and Participants

Use of the checklist was mandated nationally before this study commenced – hence it was not possible to conduct a randomized controlled study, or a pre/post-implementation study. A longitudinal research design was therefore chosen, which accepted variability of checklist use
across hospitals and operating room teams.

Between March 2010 and June 2011 data were collected at five NHS hospitals, including two academic teaching centers and three community hospitals, under the supervision of the study team of Imperial College London, UK. To ensure, as much as possible, that the study findings would be representative of the NHS more widely, the selected hospitals represented a strategic spread of geography and institution size (large teaching vs. smaller community hospitals, as defined by the NPSA). At each of the hospitals a local study lead was identified (senior clinician) and a full-time researcher recruited to collect and manage local data. The researchers were existing team members at their respective hospitals thereby reducing the impact of any Hawthorne effect.

Inclusion criteria were any admitted patient who underwent a general surgical, urological or orthopedic operation, either electively or as an emergency, under general or regional anesthesia. These three specialties were chosen as they represent the highest volume surgical specialties in England and Wales and provided a broad case-mix of patients, including age, gender, co-morbidities, and operation complexity, reflective of common practice. Patients under 16 years old, vascular surgical or multiple traumas were excluded due to the different physiological and operative scoring criteria for these populations.

Before/after analysis of implementation of the checklist, as performed by Haynes et al., demonstrated a 4% overall reduction in the incidence of post-operative complications (11% to 7%). As we did not use a before/after study design, similar sample size power calculations could not be performed. Assuming, however, that we would observe at least a 4% reduction in post-operative complication rate (11% to 7%) with a 3 to 1 rate of checklist compliance to
non-compliance, 2809 patients would be needed to show a statistically significant difference at the 5% level for 90% power (2112 patients in checklist compliant group vs. 697 patients in non-checklist compliant group).

The project was reviewed by the UK’s National Research Ethics Service (NRES) and was formally approved as a quality improvement study (September 28th 2009).

Data collection and variables
Each local researcher performed data collection after a period of formal study-orientated training. Training included an introductory workshop for all researchers, in which the study aims and objectives and data collection methodology were communicated and demonstrated. In addition, local visits were made by the primary study team to each site for at least two consecutive days in the first week of data collection to help orientate local researchers to the data collection procedure and to ensure a standardized data collection approach. The primary study team re-attended the local sites to directly observe local researchers and maintain quality control. Weekly conference calls were held across the entire data collection period between the primary study and local teams to share progress and trouble-shoot any issues.

Pre and intra-operative patient data was collected by the anesthesiologist or their team (including anesthesia resident in charge or anesthesia nurse/assistant) in the operating room. This included compliance with checklist usage, i.e. whether it was completed or not and including completion of the three components of the checklist (Sign-in, Time-out, Sign-out). Data collection was facilitated by the local researcher, which resulted in a 0% missing value for checklist component completion. Compliance did not consider the degree to which each component was completed, i.e. a component was considered completed irrespective of how
many of the sub-items were addressed. Post-operative outcome data was collected from the hospital’s patient administration system which is populated by clinical coders using data extracted from case notes; clinical coders are trained to a national standard. This was supplemented by information directly taken from patient’s electronic discharge summaries and case notes if there were any discrepancies. Post-discharge outcome data was not recorded. Data were collected on a bespoke datasheet that covered the pre-, intra- and postoperative data variables. Data was subsequently transferred into a modified version of the commercially available software package CRAB (CRAB Clinical Informatics Ltd., UK) for analysis.

Post-operative outcome measures, complications and mortality, were defined according to the American College of Surgeons’ National Surgical Quality Improvement Program (ACS NSQIP) guidelines [available from: http://site.acsnsqip.org/]. The primary endpoint was any complication, including mortality, occurring prior to hospital discharge.

Physiological and operative derived variables were also entered into the CRAB software to generate the P-POSSUM (Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity) score for general surgery and urology cases and the orthopedic POSSUM for the orthopedic cases. The CRAB software, using calculations based on POSSUM algorithms, provided the predicted postoperative complication and mortality risk stratification for case-mix adjustment. A list of measured physiological, operative and outcome patient data is available in the Appendix.

Statistical Analysis

Multilevel logistic regression modeling was performed to investigate the association between the dependent variables ‘complication’ and ‘mortality’ and the independent variable ‘checklist
completion’ which was grouped into four categories (1: not completed; 2: one component completed; 3: two components completed; 4: all three components completed) using two related models. As it was reasonable to make the hypothesis that different surgeons may have different rates of complications, there were two main sources of variation at different levels of the data hierarchy, individual patients and their characteristics (level 1) and surgeons (level 2). Two-level logistic regression modeling with the “xtlogit” command in STATA (level 1: patients, level 2: attending surgeon) was therefore used. Due to the small number of hospitals (n=5) a three-level regression model was not appropriate but hospital was included, as a covariate, in the model. Model one simply accounted for the hierarchical structure of the data (patients nested within surgeons) and did not adjust for case-mix. Model two additionally adjusted for case-mix (gender, age, POSSUM risk prediction for complication or mortality as appropriate, elective or emergency procedure and surgical specialty). Odds ratios with 95% confidence intervals are presented for the association between checklist completion and complications/mortality using the ‘not completed’ checklist band as the reference group.

In order to check whether there was an interaction between checklist completion and POSSUM derived complication risk we included an interaction term in the final model. To facilitate interpretation for these interaction tests two new binary variables were derived, one grouping patients into low complication risk vs. not low (<20% risk) and the other into high risk vs. not high (>50% risk). Interaction was tested using the likelihood ratio test in STATA.

Statistical analyses were performed using STATA, release 10, 2007. Adjusted population-attributable risk fraction (PAF) and 95% confidence intervals were calculated from regression models using the “aflogit” command. Statistical significance was set at p<0.05.
Results

Patient demographic information

6,714 patients were included with elective cases making up 83% of the sample (Table 1). General surgery, Orthopedics and Urology contributed 40%, 44% and 16% of cases, respectively. Over half (56%) of patients were of a favorable case-mix with less than a 20% risk of complication; 12.2% had a predicted complication risk of over 50%.

Compliance with checklist

There was significant variability across cases in checklist completion and although in 96.7% of cases at least one component of the checklist was completed, in only 62.1% of cases were all three components completed (Table 2). When only one component of the checklist was completed this was usually ‘Sign-in’ (64.4%) or ‘Time-out’ (34.4%). When two components of the checklist were completed this was typically a combination of ‘Sign-in’ and ‘Time-out’ (93.1%). ‘Sign-out’ was only completed in 64.3% of cases. There was a strong and statistically significant correlation between completion of the three components.

Checklist compliance and postoperative mortality and morbidity

Not completing the checklist was associated with significantly greater risk of complication after surgery (16.9% vs. 11.2%). Completing all three components of the checklist was associated with lower risk of complications (9.7%, std. residual -3.1) compared with partial checklist completion (Table 2). Overall mortality rate was 0.9% with a trend towards a higher mortality rate (1.4%) when the checklist was not completed.
Multilevel logistic regression analysis

Checklist completion was significantly associated with a reduced likelihood of complications in both models one and two (test for linear trend: OR=0.82 95% confidence interval 0.73 to 0.92, p<0.01 and OR=0.79 95% confidence interval 0.70 to 0.89, p<0.01 for model one and model two, respectively). This reduction was largely noticed when all three components of the checklist had been completed compared to 'not completed' (OR 0.57, 95% confidence interval 0.37 to 0.87, p<0.01, for case-mix adjusted model two). (Table 3) There was a significant interaction between checklist completion and high complication risk (p=0.009) but not for low risk (p=0.23). Patients with both a high complication risk and full completion of the checklist were only slightly more likely to have complications compared to those with low risk and no checklist completion (odds ratio in the interaction model: 1.71, 95% confidence interval 1.01 to 2.89, p=0.044). By contrast, the odds ratios for one or two components of the checklist completed were 4.26 (p=0.007) and 4.13 (p<0.001), respectively (full details of the interaction models are available upon request).

Checklist completion was not associated with a reduction in mortality (test for linear trend: OR=1.12, 95% confidence interval 0.68 to 1.82, p=0.67 in the case-mix adjusted model). (Table 3)

The explained variance at the attending surgeon level, for complications, was small (4.54% of the variation in complications was explained at this level) but significant, p<0.01. For mortality only 1.25% of the variation was explained at the attending surgeon level and was not statistically significant, p=0.26.
Population Attributable Fraction (PAF)

In order to estimate the proportional reduction in rates of complication that would occur if exposure to a protective factor were increased to an alternative ideal exposure scenario (e.g. complete vs. incomplete filling-in of the surgical checklist) we calculated PAFs for complete filling-in of the checklist (i.e. all three components vs. incomplete filling-in [<3 components]) after running an unconditional logistic regression model. The results (Table 3) show that 14% (95% confidence interval 7% to 21%) of the complications could be prevented if full completion of the checklist was implemented in the surgical population, assuming that there is no residual confounding. No corresponding PAF for mortality was calculated, as there was no significant association between mortality and checklist completion.

Discussion

When all three components of the Checklist were completed, compared with not completing the Checklist, patients had a reduced odds (by 43%) of experiencing a complication; a similar association was not seen for mortality. The effect of checklist completion was more important in those with a high POSSUM derived complication risk, with a less obvious effect in patients with a low complication risk. Routinely completing all three components of the WHO checklist, which is actually mandatory in the operating room in England and Wales, could have an important public health impact and could potentially prevent 14% of the complications in surgical patients (although due to the assumptions of this calculation this could be smaller in real practice). This provides evidence for the benefits of the checklist and supports the argument that checklists have more impact in complex cases and may be less critical in more routine operations; this overcomes a limitation of the pilot evaluation study of the WHO checklist that was unable to account for case-mix.¹
A novelty of this study is that it considered whether the WHO checklist was completed in full or in part. We obtained a reduction in complications as the checklist completion increased (from one, to two to three components compared with not completing the checklist at all) with the association only becoming statistically significant for all three components completed. (Table 3) This trend of risk reduction with increasing checklist completeness is an important finding. It shows that the WHO checklist should not be treated as a ‘tick-box’ exercise; largely seen as ‘completed’ by the operating room team when only one/two components of it have been completed. ‘Sign-out’ appeared to play a critical role in the checklist’s impact on outcome with a 4% reduction in observed complication rate when the checklist was fully completed compared with only two components completed, which were invariably the ‘Sign-in’ and ‘Time-out’ (93.1% of occasions). (Table 2) ‘Sign-out’ was not completed in over a third of cases. We are not aware of any study exploring reasons for this – however, from this study and anecdotal experience, the timing of the ‘Sign-out’ tends to conflict with work pressures – including the anesthesiologist’s pressure to reverse anesthesia and take the patient to recovery, and the surgeon’s/nurses’ pressure to prepare for the next case. ‘Sign-out’ is thus seen as a luxury and not done.

Correlating quality of a checklist completion and outcomes has been previously assessed. Using the SURPASS checklist, it was shown that the rate of complications, in patients for whom the extent of checklist completion was above the median, was halved. A single institution retrospective study design has demonstrated the benefit, in reducing in-hospital 30-day mortality, of completing the 22 questions in full as opposed to in-part, although the ‘partly completed group’ was very heterogeneous with anywhere between 1 and 21 questions completed. The definition of compliance used in this study did not consider the degree with which each component was completed, i.e. a component (for example Time-out), was
considered completed irrespective of how many of the sub-items were addressed. This does introduce an aspect of bias particularly considering the self-reported nature of data collection. For a subset of cases we evaluated how the checklist was being done via direct observation. Although direct observation also has problems (including potentially altering the behavior of operating room teams), there was an overall coverage of checklist items above 60% - this included a completion of 64% of Time-out items, and 68% of Sign out items (evaluation of Sign-in items was not completed for logistical reasons). There were no instances where just one or two checklist items were completed, which thus provides some confidence that the checklist completion data in this study are reasonably accurately collected. It is also possible that better functioning teams are likely to use the checklist more effectively and therefore checklist performance may be acting as a proxy for better teamwork. This study was not designed to assess the link between team functionality and the quality of checklist completion. In order to understand this, and to determine how useful the independent checklist effect is, it would be important to objectively measure the compliance with completion of each sub-item for each of the three checklist components. If possible, such an analysis should attempt to determine a more qualitative aspect of exactly how a checklist is being done (e.g. in a dismissive vs. in an engaging manner) and whether the effectiveness of the checklist is determined partly by how well it is being implemented. The quality of leadership in the operating room and how this translates into a well-delivered checklist should be part of such an investigation, which would likely include observational and qualitative elements. What is not possible to ascertain from our existing analysis (indeed from the analyses reported in the checklist studies we are aware of) is how much checklist completion was a proxy for pre-existing safety attitudes within the operating room team. A recent study found that introducing the checklist did not improve safety attitudes – a possible reason for this is that the checklist introduction started from teams/specialties positively disposed
towards the checklist. Further research should therefore clarify the link between safety
culture, team functionality, checklist usage and outcomes.

A strength of this study was the incorporation of a ‘checklist completion’ variable with
subsequent calculation of a PAF. Performance management in healthcare commonly uses
compliance against a standard (targets) as the measurable outcome, but tends to neglect the
quality of compliance and the potential public health implications. PAF is the proportional
reduction in morbidity or mortality that would occur if exposure to a risk factor were reduced
to an alternative ideal exposure scenario (i.e. fully complete vs. incomplete checklist
completion). In this study, 14% of the complications could have been avoided if all three
components of the checklist had been universally completed. This assumes that the model
explained all variation and that 100% of the effect was due to the checklist alone and not due
to other missing confounders. As this cannot be said with certainty, this 14% figure represents
a crude indication of the potential public health importance of the checklist. In reality, the
contribution of the checklist could be expected to be lower. Although within this study alone
a relatively small number of complications would be prevented by full checklist completion,
extrapolated to a national or global scale would have significant implications for patient
morbidity with consequent resource and financial savings. It has been hypothesized that
appropriate use of the SURPASS checklist could have intercepted a third of surgical
malpractice medicolegal claims.14

The study had limitations. It is not possible, with certainty, to confirm or refute the absence of
an association between checklist completion and reduction in mortality because of a statistical
power issue secondary to the low mortality rate (14157 patients needed to show a statistically
significant difference at the 5% level for 90% power). Although over 60% of patients
underwent operations classified as major or complex major and just under a fifth were performed as an emergency, the predicted mortality risk for the majority of patients was under 5% (93% of patients). The low observed mortality rate, about 1%, was very similar to previous studies that have reported an association between checklist use and mortality although not all adjusted for patient comorbidities.1,5,12 These previous studies, however, did use a before/after study design, which would have provided the necessary statistical power in the presence of low mortality rates. Our study was intentionally designed as a longitudinal study, to coincide with the ongoing national implementation of the WHO checklist and to be distinct from a controlled trial environment. The uncertainty over checklist compliance rates, therefore, had to be accepted a priori.

A further limitation of the study was to only include in-hospital outcomes, although we did not limit this to 30-day outcomes as has been done previously. It is plausible, therefore, that the complication rate has been underestimated and in particular readmission data were not captured. Similarly a relatively low proportion of emergency cases may have, in turn, caused an underestimation of the influence of the checklist on complication risk particularly if emergency patients were from a higher-risk/more complex surgical group. Although there was clear association between improved outcomes and the degree of checklist completion, there was a strong correlation between having completed one component of the WHO checklist, e.g. Sign-in, and having completed another one. This is termed ‘multicollinearity’ and therefore to overcome this, ‘checklist completion’ was derived as a categorical variable with four mutually exclusive categories. It was not possible to investigate multicollinearity further as the ‘Sign-out’ and ‘Time-out’ were the only checklist components completed in three and 93 cases, respectively. Furthermore, when two of the checklist components were completed invariably this was the ‘Sign-in’ and ‘Time-out’ in combination. It is plausible that
the method of self-report data collection was subject to bias; direct observation by the local researcher of a subset of cases demonstrated that the completion rate for time-out was 97.5% (93.3% for not observed) and sign-out was 60.8% (64.8% for not observed). The close match between these figures supports the fact that any bias associated with self-reported data was relatively little.

Clinically, this study implies that checklists are only deceptively ‘simple’ patient safety interventions in the operating room. Unlike a drug, a checklist will only ever be as effective as the personnel implementing it. From the perspective of evaluating the impact of checklists on care, therefore, we will always face the confounder of the quality of teamworking in operating rooms where a checklist is implemented as intended, or not (or it is not implemented at all). We would hypothesize that a well-running team, where the communications between the physician and nurse members are open and regular, has a better chance of implementing a checklist as one of many checks they carry out routinely within their operating room.

Compliance with interventions like a checklist can thus be a surrogate of an underlying positive team culture and mutually supportive team behaviors in the operating room. A key study by Neily et al supports this point: substantial reduction in post-operative mortality and morbidity was demonstrated following operating room team training – which included use of checklists but also team briefings/debriefings, and offered coaching interviews. Checklists are thus only the tip of an iceberg in the operating room – the unseen part of the iceberg reflects how well operating room personnel work as a team.

From a health policy perspective, the full potential that checklists could bring has not yet been realized, beyond knowing that they generally have a positive impact. As with any novel safety improvement tool, there is initially a focus on the crude impact at implementation and
mandating often leads to high reported rates of compliance. Over time, the need arises to understand why and how the effect has been brought about to facilitate true behavioral change (i.e. avoid ‘ticking the box’ behaviors) to really benefit patients. In the future it is plausible that checklists that span the entire patient pathway will evolve further. A better understanding of the relationship between checklists, and of the domains within a single checklist, will not only facilitate use on a day-to-day basis in perioperative care but also guide further checklist development and well-designed integration into care processes.
References

Appendix

Physiological and operative derived variables to generate the P-POSSUM (Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity) score for general surgery and urology cases and the orthopedic POSSUM for the orthopedic cases.

Physiological

- **Age**
 - Age < 60 years
 - Age 61-70
 - Age > 71
- **Cardiac signs; CXR**
 - No signs of cardiac failure and the patient is not taking cardiac drugs
 - Patient is on diuretics, digoxin, anti-anginal or anti-hypertensive medication, but not anti-coagulants
 - Patient is taking anti-coagulants (excluding prophylactic heparin therapy) or the patient has peripheral oedema or the chest Xray shows borderline cardiomegaly
 - Presence of an elevated jugular venous pressure or cardiomegaly on a chest Xray or pulmonary oedema
- **Respiratory signs; CXR**
 - No respiratory symptoms and the chest Xray is normal or has not been performed
 - Patient is short of breath on exertion (but is able to tolerate one flight of stairs) or chest Xray shows signs of mild COAD (chronic obstructive airways disease)
- Patient’s exercise tolerance is limited to one flight of stairs or chest X-ray shows moderate COAD
- Patient is short of breath at rest or has a respiratory rate in excess of thirty breaths per minute or is in need of mechanical ventilation or chest X-ray shows fibrosis or consolidation

- **Systolic blood pressure**
 - 110 - 130 mm Hg
 - 131 - 170 or 100 - 109
 - > 171 or 90 - 99
 - < 89

- **Pulse**
 - 50 - 80 beats per minute
 - 81 - 100 or 40 – 49
 - 101 – 120
 - > 121 or < 39

- **Glasgow coma score**
 - 15
 - 12 – 14
 - 9 – 11
 - < 8

- **Urea**
 - < 7.5 mmol/litre
 - 1.6 - 10
 - 10.1 – 15
 - > 15.1
• Sodium
 o > 136 mmol / litre
 o 131 – 135
 o 126 – 130
 o < 125

• Potassium
 o 3.5 - 5.0 mmol / litre
 o 3.2 to 3.4 or 5.1 - 5.3
 o 2.9 - 3.1 or 5.4 - 5.9
 o < 2.8 or > 6.0

• Hemoglobin
 o 13 - 16 g/100 ml
 o 11.5 - 12.9 or 16.1 - 17.0
 o 10.0 - 11.4 or 17.1 - 18.0
 o < 9.9 or > 18.1

• White cell count
 o < 3 x 10¹² cells
 o 4.0 - 10.0 or 3.1 - 4.0
 o 10.1 - 20.0 or < 3.0
 o > 20.1

• Electrocardiogram (ECG)
 o ECG is normal or has not been performed
 o ECG shows controlled atrial fibrillation (rate 60 -90 beats per minute)
 o Rate of fibrillation is greater than 90 or there is any other arrhythmia or there are changes in the T wave or the ST segment
If the patient has suffered a Myocardial Infarct, this will probably show on an ECG and lead to a score of 8.

Operative

- Type of operation
 - Minor procedures, including such procedures as all day case surgery, hernia repair, scrotal surgery, varicose vein surgery, excision of breast lump, node biopsy, minor amputation and cystoscopy. Also included in this group are eyelid and minor ENT surgery.
 - Intermediate surgery, including cholecystectomy (conventional or laparoscopic), mastectomy, thyroidectomy, appendectomy via a RIF incision, transurethral resection of bladder tumour or prostrate, intraocular surgery and reconstructive ENT surgery.
 - Major surgery, covering such procedures as any laparotomy, any bowel resection (conventional or laparoscopic) except those listed below, exploration of the common bile duct (either conventional or laparoscopic), peripheral arterial reconstruction or embolectomy, major amputation and block dissection of the neck.
 - Major+ surgery, covering such procedures as aortic reconstruction, total cystectomy or radical prostatectomy, pancreatic resection, biliary reconstruction, liver resection, oesophagectomy, total gastrectomy, abdomino-perineal resection of rectum and major head and neck surgery.

- Number of operations performed in the preceding thirty days
 - Only one operation has been performed.
 - A second operation performed within 30 days (e.g. mastectomy following an excision biopsy on a previous occasion, or a re-look laparotomy).
- More than 2 operations are performed within 30 days.

- Blood Loss
 - Less than 100 ml
 - Between 101 and 500 ml
 - Between 501 and 999 ml
 - 1 litre or more

- Peritoneal soiling (for general surgery procedures)
 - Not applicable on many occasions
 - Minor serous soiling or < 250 ml of blood
 - Presence of local pus
 - Free bowel contents, generalized pus or > 250 ml of blood

- For Orthopedic procedures
 - No contamination
 - Incised wound e.g. stab
 - Minor contamination necrotized tissue
 - Gross contamination necrotized tissue

- Malignancy
 - Absence of malignancy
 - No evidence of metastatic spread
 - Evidence of nodal metastases
 - Evidence of distant metastases

- Timing of operation
 - Elective surgery. This includes patients admitted as an emergency who subsequently undergo surgery more than 24 hours after admission.
o Surgery performed following resuscitation but within 24 hours after admission
 OR an immediate procedure performed on a patient who does not require
 resuscitation.

o Immediate surgery is required, or surgery occurred synchronously with
 resuscitation

Post-operative outcome measures (as defined according to the American College of Surgeons'
National Surgical Quality Improvement Program (ACS NSQIP) guidelines [available from:
http://site.acsnsqip.org/]

- Wound disruption
- Pneumonia
- Unplanned intubation for respiratory/cardiac failure
- Deep vein thrombosis
- Pulmonary embolism
- On ventilator over 48 hours in case of elective operations
- Acute renal failure
- Stroke/Cerebrovascular accident
- Coma > 24 Hours
- Peripheral nerve injury
- Cardiac arrest with cardiopulmonary resuscitation
- Myocardial infarction
- Bleeding Requiring > four units PRBC/Whole blood transfusions within first 72 hours
 after surgery
- Graft/Prosthesis/Flap failure
• Anastomotic failure

• Surgical site infections (superficial incisional /deep incisional /organ Space)

• Systemic sepsis

• Return to the operating room within 30 Days

• Death on day of operation

• Post-operative in-hospital mortality