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Abstract
We characterize a Fabry–Pérot microwave cavity designed for trapping atoms and molecules at
the antinode of a microwave field. The cavity is fed from a waveguide through a small coupling
hole. Focussing on the compact resonant modes of the cavity, we measure how the electric field
profile, the cavity quality factor, and the coupling efficiency, depend on the radius of the
coupling hole. We measure how the quality factor depends on the temperature of the mirrors in
the range from 77 to 293 K. The presence of the coupling hole slightly changes the profile of the
mode, leading to increased diffraction losses around the edges of the mirrors and a small
reduction in quality factor. We find the hole size that maximizes the intra-cavity electric field.
We develop an analytical theory of the aperture-coupled cavity that agrees well with our
measurements, with small deviations due to enhanced diffraction losses. We find excellent
agreement between our measurements and finite-difference time-domain simulations of the
cavity.

Keywords: cold molecules, microwave trapping, sympathetic cooling, microwave resonator

(Some figures may appear in colour only in the online journal)

1. Introduction

There is currently great interest in cooling a wide variety of
molecules to low temperatures and controlling both the
internal states and the external motion of these cold molecules
[1]. This interest is motivated by a diverse range of applica-
tions in physics and chemistry. These include precise mole-
cular spectroscopy to test new theories of physics [2–6],
investigating the physics of strongly-interacting many-body
quantum systems [7, 8], studying and controlling collisions
and reactions at low temperatures [9], and quantum infor-
mation processing [10, 11].

Molecules in weak-field seeking states can be trapped
using static electric or magnetic fields [12–14] but these
traps cannot hold ground-state molecules which are always
strong-field seeking. It is important to trap ground-state
molecules, particularly for sympathetic cooling and eva-
porative cooling schemes that rely on collisions to cool the
molecules. Unless they are in the ground state, inelastic
collisions will tend to throw the molecules out of the trap
[15]. An ac trap has been developed that confines high-field
seeking molecules by rotating a saddle-shaped potential
[16], as is done in an rf ion trap. However, these molecular
traps are shallow and collisions transfer molecules from
stable to unstable trajectories [15]. Optical dipole traps can
also confine ground-state molecules, but they too are shal-
low and they have small volumes. More suitable is a
microwave trap, as suggested in [17], where ground-state
molecules are confined near the maximum intensity of a
microwave field. Using a microwave cavity with realistic Q-
factor and input power, a trap depth of about 1 K is feasible
for a wide range of molecules. The cavity can have an open
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structure to provide good access to the molecules, the trap
has a large volume, and the confined molecules are stable
against collisions making the trap suitable for sympathetic or
evaporative cooling. Previous work has demonstrated the
trapping of Cs atoms in a closed microwave cavity [18–20].
Here, the force was due to the magnetic dipole interaction
with the microwave field when that field was tuned close to
resonance with the ground-state hyperfine interval of the
atom. The trap we aim for here is different, and more
general and versatile. It relies on the electric interaction
between the polarizability of an atom or molecule and a
microwave field which can be far detuned from any
resonance.

Here, we explore how to make a microwave trap using
a Fabry–Pérot resonator. The deepest trap requires a cavity
Q-factor as high as possible, a cavity mode as small as
possible, and high power coupled efficiently into the cavity.
Figure 1 shows the cavity we use. It has a separation of
L = 35.7 mm between two identical copper mirrors with
radius of curvature =R 73 mmm , diameter D = 90 mm, and
thickness at the centre =t 0.70 mm. Holes in the spacer
provide good access to the centre of the cavity. The cavity is
fed from a waveguide via a small hole in one mirror, radius

rh and thickness = + − −( )t t R R rm m h0
2 2 . The design

raises a number of questions. Is it possible to obtain efficient
coupling into the cavity this way, while maintaining a high
Q-factor? What is the optimum hole size? What are the
smallest transverse modes supported by the cavity, how does
this depend on the hole size, and how do these modes
compare with the ideal TEM00 modes? How high a Q can
be reached and how does this depend on mirror tempera-
ture? While there is a great deal of literature on microwave
resonators e.g. [21–24], we did not find any previous
comprehensive study of these questions. We answer them
using a combination of theory, measurement, and numerical
simulation.

2. Theory

We begin with a theoretical study of the cavity geometry of
figure 1. We use a coordinate system with origin at the centre
of the cavity, oriented with the cavity axis along z, the
waveguideʼs long dimension (length a) along x, and its short
dimension (length b) along y.

2.1. Modes

In the limit of a very small hole and sufficiently large mirrors,
the resonant modes of the cavity are the set of Hermite–
Gaussian modes [21, 22]. Since we wish to minimize the spot
size, we concentrate on the Gaussian modes with no trans-
verse excitation whose intensity distribution is simply

=
+

− +I
I

z z1
e , (1)( )x y w0

2
0
2

2 2 2 2

where = +w w z z10
2

0
2 is the spot size, λ π=w z0 0 is

the minimum spot size, and λ is the wavelength. The wave-
front has radius of curvature, = +R z z z0

2 . For the mode to
resonate, the wavefront at the mirror must match the mirror
curvature, and this determines the Rayleigh parameter

= −z L R L2 2 1m0 . For the parameters of our cavity, the
spot size at the cavity centre is =w 14.70 mm and the spot
size at the mirrors is =w 17.0m mm. The frequencies of the
modes are

⎜ ⎟⎛
⎝

⎞
⎠ν

π
= + −− ( )c

L
n L R

2

1
cos 1 . (2)n m

1

We focus on the mode with n = 3 which has a resonant
frequency near 14 GHz.

2.2. Quality factor

The quality factor of the cavity is

πν
β

=Q
L

c
2

2 1
, (3)n

where νn is the resonance frequency and β is the fraction of
power lost from the cavity in each round trip. At normal
incidence, the fractional power loss due to reflection by a
metal surface of resistivity ρ is β πν ϵ ρ= 4r n 0 . When these
resistive losses dominate over all other losses, the round-trip
loss is β β= 2 r . A convenient expression for the resistivity is
the Bloch–Grüneisen formula

⎜ ⎟⎛
⎝

⎞
⎠ ∫ρ ρ

Θ Θ
= +

−

Θ

( )
T

C

m

T z
z( )

e

e 1
d , (4)
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z
0

5

0

5

2

where m = 63.5 is the atomic mass of copper, Θ = 343.5 K is
the Debye temperature of copper, and = × −C 1.85 10 3

ΩmK−1 is a normalization constant chosen so that
ρ = × −(293 K) 1.68 10 8Ωm [25]. The quantity ρ0 is the
residual resistivity of the metal at 0 K and depends on the
concentration of impurities and defects in the metal. It is
common to describe a particular sample by its residual
resistivity ratio, ρ ρ=RRR (300 K) 0. For high purity copper,

Figure 1. Cavity used in the experiment. There are holes in the
spacer for optical access.
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RRR values of several hundred are typical, in which case ρ0
makes a negligible contribution to the resistivity over the
entire temperature range of interest here. At room tempera-
ture, we expect β = × −3.2 10r

4 and an associated Q-value of
32 500.

The diffraction loss due to spillover of the mode around

the edges of the mirrors is −e D w2 m
2 2

, for a perfect Gaussian
mode. For our parameters, this is only × −7.6 10 7, negligible
compared with the resistive loss.

2.3. Coupling via a small hole

Next we consider the coupling from the waveguide into the
cavity, via the hole. Our aim is to find the amplitude and
phase of the field reflected from the cavity, and their depen-
dence on frequency and hole size, to compare against our
measurements.

Where the waveguide meets the cavity the field is partly
reflected back into the waveguide and partly transmitted into
the cavity. To find expressions for the reflected and trans-
mitted fields, we draw on the previous analysis of Mongia
[26]. The coupling hole is much smaller than the wavelength
and can be modelled as an oscillating electric dipole per-
pendicular to the hole and an oscillating magnetic dipole in
the plane of the hole, as shown by Bethe [27]. These dipoles
are driven by the incident field. The waveguide propagates the
TE10 mode, which has no longitudinal component of electric
field, so the electric dipole is not excited. The magnetic dipole
is excited by the component of the incident magnetic field in
the x-direction. In Betheʼs theory, the effective magnetic
moment of the hole is α=m Hh M , where α = f rt hM

4

3
3 is the

magnetic polarizability of the hole and H is the magnetic field
at the hole. The factor ft accounts for the thickness, t, of the
hole and its value is calculated in [28, 29] to be

⎛
⎝⎜

⎞
⎠⎟

π
λ

λ λ= − − ( )f
A t

exp
2

1 , (5)t
m

c
c

2

where λ = r3.412c h and = +A t t r1.0064 0.0819m h for all
>t r0.2 h. For our t = 0.7 mm, this correction factor is 0.24

when rh = 1 mm and 0.54 when =r 2.5h mm.
To find an accurate result for mh, the driving field H

must include the fields produced in the waveguide and the
cavity by the hole, as well as the incident field [30–32], and
so we write

α= + −( )m H H H . (6)h i w cM

Here, Hi is the incident magnetic field that would be present
in the absence of the hole, Hw is the field induced in the
waveguide by the hole, and Hc is the field induced in the
cavity by the hole. All components are in the x-direction and
are evaluated at the centre of the hole. In the absence of the
hole, the incident field is a standing wave of the waveguideʼs
TE10 mode due to reflection from the conducting wall at the
end of the waveguide. We choose a coordinate system and
normalization of the field launched into the waveguide such
that =H 2i . Following section 4.13 of Collin [32], the field

induced in the waveguide by the hole is found to be

= −H
k m

ab

2i
, (7)w

g h

where kg is the wavevector in the waveguide and a and b are
the waveguide dimensions. Following section 7.9 of Collin
[32], the field induced in the cavity by the hole is

ν
ν ν

=
− + −[ ]

H
m H

Q
H

1 (1 i)
, (8)c

h n

n
n

2

2 2
0

where ν is the microwave frequency, νn is the frequency of the
resonant mode, Q0 is the cavity quality factor for this mode
(in the absence of the hole), and Hn is the field of the resonant
mode, normalized so that ∫ =H Vd 1n

2 . To evaluate this
volume integral, we approximate the wavefronts as plane
waves, and thus obtain

ν
ν ν π

=
−

− + −[ ]
H

m

Q w L1 (1 i)

4
. (9)c
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2
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0 m
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Using these results, we find the magnetic moment of the hole
to be

α
=

+ − ν
ν ν− + −( )

m
c

2

1 2i
, (10)h

c

Q

M

2
1 (1 i)n

1
2

2 2
0

where α π= ( )c w L4 m1 M
2 and α=c k abg2 M are dimension-

less constants. The field reflected by the cavity is the sum of
the field reflected in the absence of the hole and the field
produced in the waveguide by the hole. Using equations (7)
and (10), this reflected field is

= + = −
+ − ν

ν ν− + −( )

H H
c

c
1 1

4i

1 2i
. (11)r w

c

Q

2

2
1 (1 i)n

1
2

2 2
0

When characterizing the cavity experimentally, we
measure the cavity reflection coefficient  = H| |r

2, and the
phase θ = Harg( )r . From the above expression, and after a
great deal of excruciating algebra, we find the reflection
coefficient to be

 κν

ν ν δ κ ν
= = −

− + + +

( )
( ) ( )

H
Q

Q
1

4 2

(1 ) 2
,(12)r

n

n n

2
2

0
2

2 2 2
0

2

where κ = +Q c c c2 (1 4 )0 1 2 2
2 and δ = + κ ν( )1

c Q2 2
n

2 0
. In

deriving this result, we have made the approximation
ν ν ν ν ν− ≃ −( ) 2 ( )n n n

2 2 , and used the fact that ≫Q 10 . For
all the hole sizes used in the present work, ≪c 12

2 , and we
take

κ
α

π
≃ ≃Q c c

Q k

w Lab
2

8
. (13)

g

m
0 1 2

0 M
2

2

We see from equation (12) that the dependence of the
reflected intensity on the microwave frequency follows a
Lorentzian distribution. The resonance frequency is shifted to
a lower frequency than νn, by the amount δ. The first part of
this frequency shift depends only on the Q-factor and is the
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usual shift of an oscillatorʼs resonance due to damping, while
the second part depends on the size of the coupling hole and
is due to the perturbation of the mode by the hole. At the
reflection minimum where ν ν δ= −n , the fraction of incident
power coupled into the cavity is κ κ+4 (1 )2, which is unity
when κ = 1. This condition gives us the hole size for critical
coupling as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

π
=κ=r

w La

Q k f

9

256
. (14)h

m

g t

1
2 2

0
2

1 6

We have included the thickness correction factor ft in this
expression. It depends on rh but the dependence is quite weak
and so the correct values of both ft and

κ=rh
1 are easily found in

just a few iterations. For our cavity parameters, we predict
=κ=r 2.35h

1 mm. When the Q-factor is high, it is equal to the
frequency of the resonance divided by its full width at half
maximum. Using this relation, we see from equation (12) that
the Q-factor in the presence of the hole (known as the loaded
Q-factor) is κ= +Q Q (1 )L 0 , which is equal to Q 20 when
the cavity is critically coupled.

From the argument of Hr in equation (11) we find the
phase of the reflected field to be

⎛

⎝
⎜⎜⎜

⎡⎣ ⎤⎦ ⎞

⎠
⎟⎟⎟θ

ν ν δ δ δ

ν ν δ κ ν
=

− − + − ′ − ′

− + + −
−

( )
( )

( ) ( )

c

Q
tan

4

1 2
, (15)

n

n n

1
2

2 2

2 2 2
0

2

where δ κν′ = c Q(8 )n 2 0 . In deriving this expression, we have
once again set ν ν ν ν ν− ≃ −( ) 2 ( )n n n

2 2 and have used the fact
that ≫Q 10 and ≪c 12

2 .

3. Methods

3.1. Experiment

The mirrors drawn in figure 1 were machined from 99.99%
pure oxygen-free copper. After machining and polishing, they
were immersed in a 1M solution of ammonium persulfate for
one minute to etch away oxides and impurities, and passivate
the surface [33]. A standard WG18 rectangular waveguide is
bolted into an inset machined into the back of one mirror.
This delivers the microwave power which is coupled into the
cavity via the circular coupling aperture in the centre of the
mirror. The coupling hole was machined using a wire eroder
to avoid mechanical deformations of the mirror. The hole
radius was varied from 1 to 4 mm, and was measured with
5 μm precision. A coordinate measuring machine was used to
measure the radius of curvature of the mirrors and the
thickness of the coupling hole. The rms surface roughness of
the mirrors was measured using an optical surface profiler,
and was typically 1 μm, about twice the skin depth at 14 GHz.

For each hole size, the intensity and phase of the field
reflected from the cavity was measured as a function of fre-
quency using a vector network analyzer (VNA, Anritsu
37247C) scanned between 13.85 and 14 GHz. From this data

the resonance frequency, transmission and quality factor were
determined.

The field profile of the mode in the cavity was measured
using a bead-pull technique similar to that used by Battaglia
et al [34]. A dielectric bead, small compared with the
microwave wavelength, is pulled through the cavity causing a
small perturbation. The fractional shift in the resonance fre-
quency is δν ν ζ= I In 0, where I is the intensity at the posi-
tion of the bead, I0 is the intensity at the cavity centre, and ζ is
a proportionality constant that depends on the geometry of the
cavity and on the volume and dielectric constant of the bead,
but not on its position. We used a PTFE bead of diameter
1.59 mm, with a 0.4 mm diameter hole drilled through, glued
onto a 0.15 mm diameter nylon thread. We locked the
microwave source onto the cavity resonance and pulled the
bead through the cavity while monitoring the control voltage
of the feedback loop. This control voltage gives the frequency
shift due to the bead, and hence I I0.

To test how the quality factor depends on temperature,
the mirrors were attached to cooling blocks and the apparatus
was housed in a vacuum chamber pumped to a pressure below
10−2 mbar. Liquid nitrogen circulating through the blocks
cools the mirrors to 77 K, and a thermocouple attached to the
back of one mirror measures the temperature.

3.2. Simulation

We used a commercial finite-difference time-domain package
(CST microwave studio) to solve Maxwellʼs equations for the
cavity geometry shown in figure 1. In these simulations the
spacer was omitted so that the cavity sides are completely
open. The material properties of the waveguide and cavity
were set to those of 99.99% purity oxygen free copper at
room temperature. The cavity was excited via a waveguide
port placed at the end of a length of WG18 rectangular
waveguide. The frequency-dependent amplitude and phase of
the reflected field at this port were determined for a number of
different coupling aperture sizes using the built-in frequency
domain solver. The structure was placed on a tetrahedral mesh
with 10−9 accuracy and adaptive tetrahedral mesh refinement.
The cavity resonances were first found using a broad fre-
quency sweep, and the lowest-order Gaussian mode with
n = 3 (TEM003) was identified. Then, at this resonance fre-
quency, the electric field magnitude was found everywhere
inside the structure.

4. Results

4.1. Field profile

Figure 2 shows the simulated field profile in the xz, yz and xy-
planes for the TEM003 mode and for two different hole sizes,
rh = 2.0 and 3.9 mm. The profile in the xy-plane is particularly
revealing. It shows that the mode resembles a Gaussian mode,
but with an extra ring in the wings. For rh = 2.0 mm the
intensity in these wings is small, about −35 dB relative to the
peak intensity, but this increases as the hole size increases,
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reaching −20 dB for rh = 3.9 mm. To make a high-Q cavity
we must minimize the spillover at the edges of the mirrors.
For the ideal Gaussian mode in our cavity geometry, this
diffraction loss is less than 10−6—negligible compared to the
absorption loss in the mirrors. The simulation shows that the
actual power at the mirror edges is far larger, and we will see
in section 4.2 that this reduces the Q-factor below the
expected value, especially for larger holes. We also see from
figure 2 that, while the cavity is axially symmetric, the mode
is not. As shown in [35], the Fabry–Pérot cavity has pairs of
degenerate, axially asymmetric modes with orthogonal
polarizations. The equal superposition of these modes has the
expected axial symmetry. The rectangular waveguide excites
only one of the degenerate modes, breaking the symmetry.

Figure 3 shows the intensity profiles along x and y,
measured at the centre of the cavity using the bead-pull
method, and compares this to the simulated intensity profile
and to the ideal Gaussian beam profile for this cavity. We
first focus on the upper graphs where the hole size is
rh = 2.0 mm. In the x-direction, parallel to the waveguideʼs
long dimension, the simulation predicts an intensity profile
very similar to the ideal Gaussian profile all the way out to
y = 30 mm, while in the y-direction the simulated profile is
10% wider than the ideal Gaussian mode. At larger dis-
tances from the centre we see the extra ring of intensity

discussed above. The experimental data follows closely the
prediction of the simulation out to r = 20 mm, but beyond
this distance the measured intensity is up to 100 times
higher than predicted. This discrepancy is probably due to
cross-coupling into another near-degenerate cavity mode, as
discussed in more detail in section 4.2. Turning now to the
larger hole size, rh = 3.9 mm, the simulation predicts a
slightly larger mode, particularly in the y-direction where it
is 14% wider than the ideal Gaussian mode. The measured
intensity distribution is slightly wider again, 20% wider than
the ideal Gaussian. For this hole size we could only measure
a few points in the wings of the distribution, but for these
few points we find good agreement with the prediction of
the simulation. The fact that the width of the cavity mode is
only a little larger than in the ideal case is important for the
goal of trapping atoms and molecules in the microwave
field, since the electric field at the cavity centre is inversely
proportional to this width.

4.2. Quality factor and coupling efficiency

Figure 4 shows how the power and phase of the field reflected
from the cavity depend on the microwave frequency. Here the
hole radius is 2.50 mm and the temperature is 293 K. We fit
the reflected power and phase data to the models described by

Figure 2. Cross sections of the simulated TEM003 mode in the xz, yz and xy-planes. Upper: =r 2.0h mm. Lower: =r 3.9h mm. The contours
are spaced by −5 dB. The circle of diameter 9 cm in the xy-planes indicates the edge of the cavity mirrors.
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equations (12) and (15) respectively. The models fit the data
well and from the fits we obtain an unloaded Q-factor of

=Q 23 1500 and a coupling coefficient of κ = 0.959. Note
that Q0 represents the quality factor that would be observed
for κ = 0, but since it is a function of diffractive losses it also
depends on the hole size.

Figure 5 shows how the measured reflection coefficient
and the quality factor depend on the aperture radius. For very
small holes, where the cavity is weakly coupled, the Q-factor
is =Q 30 0000 and almost all the power is reflected from the
cavity. As the hole size increases the loaded Q-factor
decreases and the reflected power reaches a minimum of less

Figure 3. The transverse profile of the mode at the waist, measured using the bead-pull method and simulated with FDTD methods. The
profiles parallel to both short and long dimensions of the waveguide are shown for coupling apertures with radius 2.0 and 3.9 mm.

Figure 4. (a) Fractional reflected power and (b) relative phase as a function of microwave frequency, showing the TEM003 resonance. Points:
data. Lines: fits to equations (12) and (15).
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than 1% at rh = 2.55 mm where the cavity is critically cou-
pled. As the hole size increases further the reflected power
increases again while the Q-factor continues to decrease. At
critical coupling, we might expect the measured Q-factor to
be half of that which we measure with very small hole sizes,
but we actually measure it to be a little over a third. This is
because the electric field profile changes its shape as the hole
size changes, bringing additional diffraction losses for larger
hole sizes as discussed above.

Figure 5 also shows the predictions of the analytical
theory described in section 2, and of the numerical simula-
tions. Across the whole range of hole sizes, the numerical
model predicts a smaller Q-factor than the analytical one. This
difference is because there is more intensity in the wings of
the mode than in the ideal Gaussian mode (see section 4.1),
and so the diffraction loss around the edges of the mirrors is
greater. The fractional discrepancy increases with increasing
hole size because the intensity in the wings is larger when the
hole is larger. The measured Q agrees well with the numerical
simulation for most hole sizes, except when rh is between 1.6
and 2.0 mm where the measured Q is up to 20% smaller than
calculated. We suggest an explanation for this below. The
analytical theory of section 2 predicts a lower reflected power
than the numerical simulation when the cavity is under-cou-
pled, and a higher reflected power when it is over-coupled. It
also gives a smaller hole size for critical coupling. The
reflected power measurements agree well with the numerical
simulation up to critical coupling, and, importantly, they
agree on the hole size required for critical coupling. For larger
rh, there are large differences between the measured reflected
power and both calculations. Once again, these differences
are due to the increased diffraction loss. To verify this, we
repeated the FDTD simulation with a copper ring, inner
diameter 86 mm, added as a spacer to close off the cavity.
With this addition, we find that the simulation result closely
matches that of the analytical theory for both the Q-factor and

the reflected power over the entire range of rh. This shows
that diffraction losses are responsible for the differences we
observe when the cavity is open. In the experiment, we used a
spacer between the two mirrors, with large gaps in the spacer
to provide access into the cavity. This decreases the diffrac-
tion losses but does not eliminate them which explains why
the measured reflected power of the over-coupled cavity lies
half way between the analytical theory and the simulation of
the open cavity.

The electric field at the centre of the cavity is

⎛
⎝⎜

⎞
⎠⎟


π νϵ

=
−

E
P Q

w L

4 (1 )
, (16)peak

0 0

2
0 0

2

1 2

where P0 is the forward power in the waveguide. For a
microwave trap, we wish to maximize this electric field. Note
that it is the unloaded quality factor, Q0, that appears in
equation (16). In the ideal case, Q0 does not depend on the
hole size, but in reality its value decreases slightly as the hole
size increases because of the increased diffraction loss. The
quantity we measure is the loaded quality factor, QL, but we
can determine Q0 using κ= +Q Q (1 )L0 with κ found from
the measurement of  and the relation

 κ κ− = +(1 ) 4 (1 )2 (see section 2). Figure 6 shows the
electric field at the cavity centre determined from
equation (16) using the measured values for Q0,  and w0,
and assuming =P 1.50 kW, a realistic value for a KU band
klystron amplifier. The maximum field is obtained at critical
coupling, where it reaches =E 39peak kV cm−1. The hole size
that gives the largest electric field is slightly larger than pre-
dicted by the analytical model because the increased dif-
fraction losses increase the hole size needed for critical
coupling, as shown in figure 5. Although the optimum hole
size predicted by equation (14) gives a slightly under-coupled
cavity, that choice of hole size (2.35 mm) would still give a
peak electric field of about 35 kV cm−1.

Figure 5. (a) Fractional reflected power and (b) quality factor as a
function of the coupling aperture radius. Results are shown for the
analytical model, numerical model, and actual cavity.

Figure 6. The peak electric field at the waist of the Gaussian beam in
the microwave cavity. Results are shown for the analytical model,
numerical model, and actual cavity.
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We return now to the Q-factor of the cavity for hole sizes
between 1.6 and 2.0 mm, where there is a discrepancy
between measurement and simulation (see figure 5(b)). We
suggest that this discrepancy is due to cross-coupling with a
near-degenerate cavity mode of much lower Q. Figure 7
shows the simulated spectrum of reflected power for a hole
size of 2.0 mm, showing the narrow TEM003 resonance, and
an additional higher-order mode which has a Q-factor of 185.
The insets show the intensity distributions for these two
modes. The higher-order mode has much of its intensity near
the mirror edges, which is why the Q is low. We see this
mode in the measured spectra, and have roughly confirmed
this intensity distribution using the bead-pull method. As
discussed in the context of equation (12), the cavity reso-
nances are shifted from νn by the amount

⎛
⎝⎜

⎞
⎠⎟δ

α
π

ν= +
Q w L

1

2

2
. (17)

m
n

0

M
2

This expression was found for the Gaussian mode, but the
same expression will also apply to the higher-order modes
except that wm will be replaced by a quantity characterizing
the transverse extent of those modes. Recalling that αM is
proportional to rh

3, and noting that the Gaussian mode has a
much smaller wm than the higher-order mode, we see that the
frequency of the Gaussian mode will shift far more rapidly
with increasing hole size than the high-order mode. We see
this in our simulations—the high-Q TEM003 mode shifts by
about 15MHz as the hole size increases from 1.0 to 3.0 mm,
whereas the low-Q higher-order mode seen in figure 7 shifts
by less than 1MHz over this same range of hole sizes. As a
result, the high-Q mode becomes degenerate with the low-Q
mode for some particular hole size, which in the simulation is
between 1 and 2 mm. This corresponds approximately to the
range of hole sizes where the measured Q-factor deviates
from the expected value, so we attribute the lowered Q to

cross-coupling between the two modes. This also explains the
excess intensity measured in the wings of the profile for a
2.0 mm hole size (see figure 3)—a small fraction of the power
is coupled into the low-Q mode which has high intensity near
the mirror edges. Mode coupling of this kind can be brought
about by minor misalignments or imperfections in the cavity
geometry and so can be missed by the numerical simulation.

4.3. Temperature dependence of the quality factor

We have seen that the cavity quality factor is close to the limit
set by the surface resistivity of the mirrors. Cooling the
mirrors should lower the resistivity, ρ, and so increase the
quality factor.

Figure 8 shows our measurements of the quality factor as
a function of temperature. The Q-factor was measured as the
cavity warmed up from 77 K to room temperature. We used a
mirror with a small hole to give a transmission of about 3%,
so that the hole contributes negligibly to the total round-trip
loss and the intensity in the wings of the mode remains small.
We fit the data to equation (3), with β β β= +2 r other and the
temperature-dependent resistivity given by equation (4).
There are two free parameters in this fit, ρ0 which is the
residual resistivity and βother which accounts for all non-
resistive losses. The solid line in figure 8 shows the best fit
which gives ρ = × −2.1(3) 100

9Ωm and

β = × −8.8(7) 10other
5.

It is common to describe a particular sample by its
residual resistivity ratio, ρ ρ=RRR (300 K) 0. For high pur-
ity copper, RRR values of several hundred are typical,
whereas our fitted value of ρ0 corresponds to =RRR 8.1.
This is characteristic of a residual surface resistance that is
much higher than that of the bulk material, which can be
caused by a thin oxide layer on the surface, or by surface
roughness, which for our mirrors was typically 1 μm. In a
previous study [24, 36], this level of roughness was found to
increase the room temperature resistivity by about 30%, twice
as much as we find here from our fit. We attribute βother
entirely to diffraction losses around the edges of the mirrors.
We already noted in section 4.2 that, even at room tempera-
ture and for a small hole, the measured Q is smaller than

Figure 7. Simulated cavity spectrum near 14 GHz for a hole size of
=r 2.0h mm, showing the TEM003 mode, and a higher-order mode

whose Q-factor is much lower. The cavity length is slightly different
to that used in the experiment, so that the modes can be clearly
resolved. The insets show the intensity distributions of these two
modes using the same logarithmic scale as in figure 2.

Figure 8. Quality factor of the cavity versus temperature. The solid
line is a fit to the model discussed in the text.
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predicted by our simple model but is very close to the value
found from the simulation. We found in the simulation that
this extra loss vanishes when the cavity is closed, confirming
that it is due to diffraction loss. We find that this diffraction
loss, together with the temperature-dependent resistive loss
and the residual surface resistance describes our data well
over the whole temperature range.

5. Discussion

The depth of a microwave trap depends on the ac polariz-
ability of the atom or molecule, and on the strength of the
microwave electric field which we would like to make as high
as possible. For example, a field of 30 kV cm−1 at 14.5 GHz
gives a trap depth of 0.44 mK for ground-state Li atoms and
400 mK for ground-state CaF molecules. To produce such
large fields requires a build-up cavity with high Q-factor,
small mode size, and efficient coupling into the cavity. At the
high power required, it is most convenient to couple micro-
wave power directly from a waveguide into a cavity, and here
we have shown that this can be done efficiently using a single
coupling hole. In the presence of this hole, the intensity in the
wings of the distribution increases well above the ideal
Gaussian case. Nevertheless, the full width at half maximum
of the intensity distribution at critical coupling is only 11%
wider than in the ideal case. The increased intensity in the
wings increases diffraction losses and so reduces the Q-factor.
In our simulations where the sides of the cavity are com-
pletely open, the Q-factor is reduced from the ideal case by
about 30% when the cavity is critically coupled. In our
experiments, the sides were partly closed by a spacer between
the mirrors, and our measured Q-factor at critical coupling is
about 15% less than the ideal case. The transmission of the
hole increases with increasing radius and decreases with
increasing thickness. To avoid excessive diffraction loss it is
best to reach critical coupling with the smallest possible hole
size, and so the hole should be kept as thin as possible. We
have presented a formula for the required hole size for critical
coupling, equation (14). In practice, we found the hole needed
to be 8% larger due to the extra diffraction loss. For certain
hole sizes we observed a significant decrease of the Q-factor
which we attribute to cross-coupling into a higher-order low-
Q mode. Such cross-coupling can be avoided by a suitable
choice of cavity length.

We were able to increase the quality factor of the cavity
from 28 000 to 51 000 by cooling the mirrors to liquid
nitrogen temperature. This increase was limited in part by
surface resistance due to surface roughness, and in part by
diffraction losses. For best performance, the rms surface
roughness should be kept well below the skin depth, which
for room temperature copper at 14.5 GHz is 0.5 μm. When
cooled to 77 K, contraction of the cavity shifts the resonance
to higher frequency by ∼40 MHz. The length is set so that,
once cooled, the resonance frequency lies close to the centre
of the amplifierʼs central amplification band. Because the
losses are reduced at lower temperature, the hole size required
for critical coupling changes from =r 2.5 mmh at room

temperature to =r 2.25 mmh at 77 K. This means that the
cavity must be undercoupled at room temperature if it is to be
critically coupled at 77 K.

Based on the present work, we have built a microwave
trap for ground state atoms and molecules. It is designed to
handle 1.5 kW of input power at 14.5 GHz while remaining at
a temperature of 77 K. In this case the electric field at the
centre of the cavity will exceed 50 kV cm−1. For such large
fields electric breakdown around the edges of the hole can be
a problem. So far, we have coupled 700W into the cavity,
limited by the cooling power, and did not observe any elec-
trical breakdown.
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