A 6-node co-rotational triangular elasto-plastic shell element
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Abstract A 6-node co-rotational triangular elasto-plastic shell element is developed. The local coordinate system of the element is defined by the vectors directing from one vertex to the other two vertices and their cross product. Based on such a co-rotational framework, the element rigid-body rotations are excluded in calculating the local nodal variables from the global nodal variables. The two smallest components of each nodal orientation vector are defined as rotational variables, resulting in the desired additive property for all nodal variables in a nonlinear incremental solution procedure. Different from other existing co-rotational finite element formulations, both the element tangent stiffness matrices in the local and in the global coordinate systems are symmetric owing to the commutativity of the nodal variables in calculating the second derivatives of the strain energy with respect to the local nodal variables and, through chain differentiation, with respect to the global nodal variables. For elasto-plastic analysis, the Maxwell-Huber- Hencky-von Mises yield criterion is employed together with the backward-Euler return-mapping method for the evaluation of the elasto-plastic stress state, where a consistent tangent modulus matrix is employed. To overcome locking problems, the assumed linear membrane strains and shear strains are obtained by using the line integration method proposed by MacNeal, and the assumed higher-order membrane strains are obtained by enforcing the stationarity of the mixed displacement-strain canonical functional, these assumed strains are then employed to replace the corresponding conforming strains. The reliability and convergence of the present 6-node triangular shell element formulation are verified through two elastic plate patch tests as well as two elastic and five elasto-plastic plate/shell problems undergoing large displacements and large rotations.
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1. Introduction

Shell structures are widely applied in engineering practice. As the shell thickness decreases, shell structures can behave differently depending on the geometry, loading and boundary conditions of the shell. The behavior of shell structures can be classified into three categories: membrane-dominated, bending-dominated, and mixed membrane and bending problems [1]. Standard general shell element formulations perform well for membrane-dominated shell problems, but suffer from locking in bending-dominated problems [2]. Quadrilateral elements have simpler coordinate systems than triangular elements, and are easier to overcome the locking phenomena. As a result, more research effort has been expended to develop quadrilateral shell finite elements, with more progress achieved for these formulations [1]. Up to now, many effective solution procedures have been proposed to eliminate the deficiencies of membrane and shear locking phenomena in quadrilateral shell elements, such as reduced or selective reduced-integration procedure and associated spurious zero energy mode filtering [3-7], the stabilization of projection matrices [8], mixed formulation procedure [9-11], the Mixed Interpolation of Tensorial Components (MITC) approach [12-13], etc. Some quadrilateral shell elements are close to optimal (an optimal shell element formulation should uniformly converge to the exact solution despite the shell geometry, asymptotic category and thickness, and be sufficiently robust, minimally sensitive to element distortion, independent of node numbering sequence, and have no spurious zero energy mode [1]). The locking phenomena in curved triangular shell elements are still, however, challenging problems [14]. Many procedures that are effective in eliminating the locking phenomena in quadrilateral shell elements do not work well for curved triangular shell elements. The main reason is that the strain distributions derived from displacement shape functions are often wildly different than expected. Barlow points [15-16], at which the strains derived from displacement shape functions are "correct" for all desired deformation modes and all permitted initial element shapes, can be found in a quadrilateral element, and they can be employed in calculating the element tangent stiffness matrix to eliminate locking phenomena. There exist no Barlow points, however, in a six-node curved triangular shell element, thus there is no set of integration points that provides zero membrane strain for all cases of pure bending about axes parallel to each of the three edges of a curved triangular element [17].

Reliable and computationally-efficient triangular shell elements have important applications, since they offer significant advantages in modeling arbitrary, complex shell geometries, and a triangular mesh is still the most robust and efficient option for mesh generation [14]. Furthermore, in many cases, triangular elements are always used in conjunction with quadrilateral elements in modeling complex engineering shell structures. Some solution procedures have been proposed to improve the performance of 6-node triangular shell elements. Izzuddin [18] presented bisector and zero-‘macro spin’ definitions of the local co-rotational system for triangular shell elements to ensure the invariance characteristic to the nodal ordering. Lee and Bathe [14] adopted the Mixed Interpolation of Tensorial Components (MITC) approach in curved triangular shell elements. Li and Vu-Quoc [19] extended this MITC approach to a 6-node co-rotational triangular shell element using vectorial rotational variables. These triangular elements did not achieve, however, the same level of accuracy displayed by the quadrilateral elements using the MITC approach [14,20]. da Veiga and co-workers [21] found that the MITC6 element [14] features some non-physical displacement modes with vanishing membrane strain energy for some specific combinations of mid-surface geometry and boundary conditions, thus they proposed a remedy based on a stabilized bilinear form. Campello et al. [22] presented a 6-node triangular shell element with a nonconforming linear rotation field and a compatible quadratic interpolation scheme for the displacements, which is insensitive to locking and mesh distortion, and which is free of spurious zero energy modes. Wenzel and Schoop [23] presented an ANS-type non-linear curved triangular shell element via a discrete Kirchhoff theory. Bucalem et al. [24] introduced the energy splitting idea to eliminate locking difficulties in triangular elements. Laulusa et al. [25] proposed a heterosis triangular element, T6H. In a radically different approach to evaluate the linear membrane strains in the 6-node triangular element (TRIA6), as well as the transverse shear strains in the 3-node triangular element (TRIA3) and 4-node quadrilateral element (QUAD4), MacNeal [17] assumed a strain field, and then related it to nodal displacements by line integration of the strain field along straight line segments between pairs of nodal points. This procedure produced the same result as exact integration; the undetermined strain coefficients could be evaluated in terms of displacements if the assumed strain distribution was continuous at all points on the surface of the element, and if the pairs of nodal points were judiciously selected. A uniformly optimal triangular shell element should be independent of node numbering sequence, free of membrane and shear locking, reliable and optimal for membrane and bending dominated shell problems, and has no spurious zero energy mode [14]. There does not exist to date, however, a uniformly optimal, and not even a close to optimal [26], co-rotational triangular shell element. Thus, developing an accurate and computationally efficient co-rotational triangular shell element continues to be a challenging undertaking.

In the present 6-node elasto-plastic triangular shell element formulation, the Reissner-Mindlin theory is employed, in which both the thickness deformation and the normal stress in the direction of the shell thickness are ignored, and an assumed strain method is used to alleviate the membrane and shear locking phenomena. Towards this end, i) the assumed linear membrane strains are obtained from the line integration of 9 member strains along the sides of the four sub-triangles of the 6-node triangular shell element [17]; ii) the assumed transverse shear strains are evaluated from the line integration of edge member transverse shear strains along 6 straight line segments between pairs of nodal points of the 6-node triangular shell element [17]; and iii) a mixed formulation [10-11] is used in evaluating the assumed higher-order membrane strains. For elasto-plastic modeling, we use the fibre approach [27-29], the Maxwell-Huber-Hencky-von-Mises yield criterion for isotropic hardening [30-34], and linear hardening assumption. To trace the yield surface, we use a backward-Euler return-mapping integration algorithm [30-31,35], and a consistent elasto-plastic tangent modulus matrix. To exclude the influence of element rigid-body rotations from the local displacement field, we introduce an advanced co-rotational framework to simplify the stress-strain constitutive relation. Compared to other existing co-rotational element formulations [31,36], the present 6-node triangular elasto-plastic shell element formulation has several important features: i) all nodal variables are additive in a nonlinear incremental solution procedure, making the update of the element matrices simple and efficient; ii) symmetric element tangent stiffness matrices are obtained in both the local and global coordinate systems, leading to computational efficiency and significant computer storage saving; and iii) the element tangent stiffness matrix is updated using the total values of the nodal variables in an incremental solution procedure, making it advantageous for solving dynamic problems [37-38]. The present 6-node triangular shell element demonstrates excellent convergence in solving elastic and elasto-plastic shell problems undergoing large displacements [20,39-50].

The outline of the paper is as follows. Section 2 presents the co-rotational framework defined for the 6-node triangular shell element and the element kinematics. Section 3 describes the local element response, the assumed strain procedure used to alleviate locking problems, and the consideration of elasto-plasticity within the element formulation. Section 4 presents the transformation matrix between the local and global systems, and the element formulation in the global coordinate system. In Section 5, several elastic patch tests and elasto-plastic plate/shell problems are solved to demonstrate the reliability and convergence of the proposed element formulation. Concluding remarks are given in Section 6.
2. Co-rotational framework and kinematics of the element

The main ideas of a co-rotational approach [31,51-53] can be summarized as follows: 1) define an element reference coordinate system that translates and rotates with the element overall rigid-body motion, but that does not change with the element deformation; 2) calculate the nodal variables expressed in this element reference coordinate system, thus exclude the element overall rigid-body motion in the computation of the local internal force vector and element tangent stiffness matrix, resulting in an element-independent formulation; 3) the geometric nonlinearity induced by the large element rigid-body motion is incorporated in the transformation matrix relating the local and global internal force vectors and tangent stiffness matrix. 

In developing the current curved triangular shell element formulation, the Reissner-Mindlin theory is adopted. The local and the global Cartesian coordinate systems, and the natural coordinate system are defined respectively as in Figure 1, where the direction of the local x-axis is coincident with the vector 
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Figure 1. Definition of the co-rotational framework and the natural coordinate system

(Note: The vectors t3 and r2 are associated with the local coordinate system o-x-y-z, whereas the vectors d3, p20, p2, v120, v12, v130, v13, ex0, ey0, ez0, ex, ey and ez are associated with the global coordinate system O-X-Y-Z.) 

In the undeformed configuration, the orientation vectors of the local axes are defined as follows
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The local coordinate system, rigidly connected to the triangular element, translates and rotates with the element rigid-body motion in the deformed configuration.
In the deformed configuration, the vectors 
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 are calculated as follows:

[image: image16.wmf]1

3

10

30

13

d

d

X

X

v

-

+

-

=

 ,                                        (3a)

[image: image17.wmf]1

2

10

20

12

d

d

X

X

v

-

+

-

=

 ,                                        (3b)

where 
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) is the displacement vector of Node i. The local coordinate system is defined as
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There are 30 degrees of freedom for each element in the local coordinate system. In addition to the three translational displacements, two components of the mid-surface normal vector at each node are defined as vectorial rotational variables. The vector of the local nodal variables is
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where 
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 in the local coordinate system, and are the two vectorial rotational variables of Node i.

There are 30 degrees of freedom in the global coordinate system. The nodal variable vector is
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where 
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where 
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The local nodal coordinates are calculated from those in the global coordinate system as follows
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where 
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The relationships between the local nodal variables and the global nodal variables are given by
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where the components of the vector 
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For the description of the geometry and of the displacement field in the 6-node triangular shell element, the interpolation functions used are
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In the initial configuration, the local coordinates
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 at any point on the element mid-surface are obtained as
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The same shape functions are used to interpolate the displacement and rotation fields, leading to an isoparametric formulation:
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where the components of vector 
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The initial mid-surface normal vector at each node of the curved triangular shell element is obtained by calculating the cross-product of the tangent lines along two natural coordinate axes, i.e.,


[image: image75.wmf](

)

i

i

Z

Y

X

Z

Y

X

i

h

x

h

h

h

x

x

x

,

0

0

0

0

0

0

0

ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

¶

¶

¶

¶

¶

¶

´

ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

¶

¶

¶

¶

¶

¶

=

p

,     
[image: image76.wmf]6

,

2

,

1

L

=

i

,                         (13)

where 
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To minimize the discontinuity between the slopes of adjacent elements at Node 
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, the mean value of the normal vectors from the surrounding elements is used
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where 
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denotes the summation over the number of elements having the same common Node i.

On the other hand, if the true mid-surface of the curved shell is not smooth along the inter-element edges, the normal vector of each shell element must be obtained independently, and three global rotation degrees of freedom would then be required for each node along the edges of slope discontinuity. In general, the two smallest components of one orientation vector and one smaller component of another orientation vector at a node can be selected as global rotational variables, and these vectors can be oriented to three global coordinate axes in the initial configuration or defined as those of the beam element presented in [54-55].
3. Local elasto-plastic element formulations
3.1 Local Response
The virtual work statement for the 6-node triangular shell element can be expressed as
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where V is the volume of the element, 
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 is the stress vector, 
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 is the material strain vector, which is the Green-Lagrange strain specialized for a shallow curved shell [31] in the present formulation. For the convenience of determining the assumed strains below, the material strain vector 
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, representing the linear and higher-order membrane strains, and the bending strains and out-of-plane shear strains, respectively. It follows that Eq. (15) can be rewritten as
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where, 
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The incremental forms of membrane strains, bending strains and out-of-plane shear strains can be obtained by the first-order Taylor expansion of Eqs. (17a-d).

The internal force vector in the local coordinate system is therefore obtained as
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where 
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; the details of these matrices are given in Appendix A.

By differentiating the internal force vector with respect to the local nodal variables, the local tangent stiffness matrix of the 6-node triangular shell element is determined as
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where
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 is the second derivative of the higher-order membrane strain vector 
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is a symmetric consistent tangent modulus matrix [31,56]. 
In the present elasto-plastic shell element, we adopt a condensed elastic constitutive relationship in combination with a yield surface based on the five stress components excluding the normal out-of-plane stress. This avoids the need for elasto-plastic condensation of the normal out-of-plane stress and achieves the same results with a relatively simple formulation based only on five stress and corresponding strain components. We adopt the Maxwell-Huber-Hencky-von Mises yield criterion together with an isotropic strain hardening. The Maxwell-Huber-Hencky-von Mises yield function is expressed as
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in which 
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is the initial value of uniaxial yield stress, H is the hardening parameter, and 
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 is the plastic strain multiplier.

In a nonlinear incremental solution procedure, the incremental material strains 
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 must be introduced so that the solution satisfies the flow rule and stays on the yield surface. The backward-Euler return-mapping procedure is then used due to its efficiency and the fact that it results in a symmetric consistent tangent modulus matrix [31]. To avoid the occurrence of “spurious unloading” during the iterations, the elasto-plastic stress state is obtained using the incremental material strains 
[image: image132.wmf]i

j

ε

D

 from the initial iteration to the jth iteration of the ith incremental loading step, and the incremental material strains
[image: image133.wmf]i

j

ε

D

is calculated by using the incremental displacements accumulated from the initial iteration to the jth iteration of the ith incremental loading step. The details of developing the consistent tangent modulus matrix and the elasto-plastic formulation can be found in [56].

3.2 Strategies for overcoming locking problems
Eqs. (18) and (19) represent the conforming element formulation for the 6-node triangular shell element in the local coordinate system. In solving thin shell problems, membrane and shear locking phenomena could lead to deterioration in the computational efficiency and accuracy of the conforming element. Therefore, to improve the performance of the triangular shell element, the linear and higher-order membrane strains, and out-of-plane shear strains are replaced respectively with corresponding assumed strains [9-11,17]; accordingly, the modified element formulation is given as follows
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where 
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where the distribution of linear and higher-order membrane strains are assumed to be
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and the transverse shear strains are assumed to be
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with 
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Figure 2. Member strains and edge member transverse shear strains for present shell element

The assumed linear membrane strains and shear strains are obtained by using the line integration approach proposed by MacNeal [17]. For the present 6-node triangular shell element, its four sub-triangular facets (Figure 2a,b) are assumed to be flat. The member strains (namely, the edge member membrane strains in the direction of each side of these facets) corresponding to the linear membrane strains are related to the displacements at two neighboring nodes by line integration, and are evaluated by
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where the ordered triplets 
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Considering Eq. (26), and the relationships of the member strains and the linear membrane strains 
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the member strains 
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(k=A,B,…,I) (see Figure 2a) can be evaluated in terms of the assumed linear membrane strain coefficients:
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where 
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Table 1 The natural coordinates of Points A-I

	k
	A
	B
	C
	D
	E
	F
	G
	H
	I

	
[image: image177.wmf]k

x


	0.25
	0.75
	0.75
	0.25
	0.0
	0.0
	0.25
	0.5
	0.25

	
[image: image178.wmf]k

h


	0.0
	0.0
	0.25
	0.75
	0.75
	0.25
	0.25
	0.25
	0.5


According to Eqs. (26) and (37a,b), the assumed linear membrane strains can be obtained as
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Similarly, the edge member transverse shear strains 
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where 
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Considering Eq. (31), and the relationship of the edge member transverse shear strain and the transverse shear strain 
[image: image193.wmf]ë

û

T

yz

xz

g

g

=

γ

at Point k (k=A,B,…,F):


[image: image194.wmf]yz

k

xz

k

k

s

c

g

g

g

+

=

 ,                                       (41)

the edge member transverse shear strain 
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 can be expressed in terms of the assumed shear strain coefficients as
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According to Eqs. (31) and (42a,b), the assumed shear strains can be given as
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By enforcing the stationarity condition on the mixed displacement-strain canonical functional [9-11]:
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and considering the independence of the variations 
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Noting that  is effectively determined by MacNeal’s method, as implied by Eq. (37a), only the coefficient corresponding to the higher-order membrane strain is obtained from the stationarity of the mixed displacement-strain canonical functional as follows
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where,
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It can be shown that the result in Eq. (46) corresponds to fixing the first-order membrane and shear strains in the mixed displacement-strain canonical functional, such that 
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The incremental form of the assumed material strains is given by
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where 
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 accumulated from the initial iteration to the current iteration of the present incremental loading step in a nonlinear incremental solution procedure. 

After introducing the assumed strains, the resulting local element tangent stiffness matrix remains symmetric.

4. Transformation of local to global response

The global nodal forces 
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of the curved triangular shell element can be obtained as a transformation of the local nodal forces according to
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where
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 transformation matrix consisting of the first derivatives of the local variables with respect to the global nodal variables, and can be readily determined from Eqs. (9a,c).

For convenience, the local nodal variables and the global nodal variables are rewritten below
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where 
[image: image236.wmf]ë

û

y

k

x

k

k

r

r

,

,

T

=

θ

 represents the two local vectorial rotational variables at Node 
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 denotes the two global vectorial rotational components. Accordingly, the transformation matrix is given as follows:
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with the details of the sub-matrices of 
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 presented in Appendix B.

The element tangent stiffness matrix 
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 in the global coordinate system can now be obtained as follows
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with
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where the various second derivatives in (54) are given in Appendix B. Considering (53) and (54), and the symmetry of the local tangent stiffness matrix kT, it is clear that the global tangent stiffness matrix is also symmetric.

5. Numerical examples

In the newly developed 6-node co-rotational triangular shell element (abbreviated to “MH6T” element in the following examples), assumed linear membrane strains and shear strains obtained by using the line integration approach proposed by MacNeal [17] and assumed higher-order membrane strains obtained by enforcing the stationarity of the mixed displacement-strain canonical functional [9-11] are employed to alleviate membrane and shear locking problems. To demonstrate the reliability and convergence of the MH6T element in solving elastic, and elasto-plastic plate/shell problems with large displacements and large rotations, two elastic plate patch tests as well as two elastic and five elasto-plastic plate/shell problems are analyzed using this element, where comparisons are made against the results obtained by other researchers [39-50]. With regard to numerical integration over the thickness, 2 Gauss points are adopted for the two patch tests (Example 5.1) and the two elastic plate/shell problems (Examples 5.2-5.3), Gaussian integration rule and Lobatto integration rule with 5, 6, 8 and 16 integration points [57-58] are employed respectively in Example 5.4, and 6 Gauss points are adopted for Examples 5.5-5.8 in accordance with the corresponding references considering these examples. Meanwhile, 3 Gauss points are adopted in numerical integration over the element domain for all examples. To show the MH6T element’s spatial isotropy (i.e. the element stiffness matrices are independent of nodal ordering [1]), two alternative nodal ordering schemes are considered for Examples 5.2-5.8, where triangular elements used for a quadrilateral patch are employed with different nodal numbering as illustrated in Figure 3.
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(a) Scheme 1                                    (b) Scheme 2

Figure 3. Two nodal numbering schemes

Different elastic constants are employed in the following examples; for clarity, the transformation between different constants is presented below:

Young’s modulus: 
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where E represents the Young’s (elastic) modulus,  is Poisson’s ratio,
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 denotes Lame’s constant, and G is the shear modulus.
5.1 Patch tests
Several patch tests for the membrane behavior and the transverse out-of-plane bending behavior of plate and shell elements were suggested by MacNeal and Harder [39]. For these patch tests, consider a rectangular plate with a length 
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. Here, ten MH6T elements are employed (Figure 4).
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Figure 4. Patch tests for in-plane membrane/out-of-plane bending plates 

In the membrane patch test, the displacements 
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at the boundary nodes of the rectangular plate (Figure 4) are prescribed by
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. If this patch test is solved as a linear problem, the displacements at any point of the plate can also be calculated from above equations. The theoretical solution of this plate is a constant in-plane membrane stress field given by
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The linear solutions from the MH6T element are presented in Table 2 and Table 3. 
Table 2. Displacements at four internal nodes of the plate
	Node number i
	MH6T element
	Theoretical results
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	1
	.50000E-04
	.40000E-04
	.00000E-00
	.50000E-04
	.40000E-04

	2
	.19500E-03
	.12000E-03
	.00000E-00
	.19500E-03
	.12000E-03

	3
	.20000E-03
	.16000E-03
	.00000E-00
	.20000E-03
	.16000E-03

	4
	.12000E-03
	.12000E-03
	.00000E-00
	.12000E-03
	.12000E-03


Table 3. Stresses at the integration points of the inner element top surface
	Integration points
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To construct a constant stress state of the plate under out-of-plane bending, the displacements 
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For a linear problem, the theoretical solution for the stresses at the top and bottom surfaces of the plate is


[image: image278.wmf]667

.

0

±

=

=

y

x

s

s

,   
[image: image279.wmf]200

.

0

±

=

xy

t

.

In the present triangular shell element formulation, vectorial rotational variables are defined. These can be calculated from the prescribed rotations,
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The linear solution results from the MH6T element agree exactly with the theoretical values (see Table 4 and Table 5).

Table 4. Displacements at four internal nodes of the plate
	Node Number i
	MH6T element
	Theoretical results
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	1
	.00000E+00
	.00000E+00
	.14000E-05
	.14000E-05

	2
	.00000E+00
	.00000E+00
	.19350E-04
	.19350E-04

	3
	.00000E+00
	.00000E+00
	.22400E-04
	.22400E-04

	4
	.00000E+00
	.00000E+00
	.96000E-05
	.96000E-05


Table 5. Stresses at the integration points of the inner element top surface
	Integration points
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	.00000
	.00000

	2
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	.00000
	.00000
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5.2. Lateral buckling of an L-shaped plate strip
A flat L-shaped plate strip is fully clamped along one edge and subjected to an in-plane point load at the free end (Figure 5). It has a Young’s modulus E=71,240N/mm2 and a Poisson’s ratio μ=0.31. The plate has a geometry of L=240mm, b=30mm, and h=0.6mm.
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Figure 5. A clamped L-shaped plate strip subject to an in-plane point load at free end
To investigate the lateral stability of the L-shaped plate, a very small perturbation load is imposed on the free edge in the out-of-plane direction to trigger the post-critical lateral deflections (see Figure 5). The out-of-plane lateral deflection at the free end of the L-shaped plate calculated by using 15×2 (where, ‘15’ represents quadrilateral elements, ‘×2’ means that each quadrilateral element is subdivided into 2 triangular ones further) and 64×2 MH6T element meshes are presented in Figure 6, where the two previously noted nodal numbering schemes are adopted as alternatives to shed light on the spatial isotropy of the present triangular element, with “-R” indicating that the results are from the second nodal numbering schemes. To verify the reliability of the MH6T element, the results from 68×2 six-node triangular shell elements [22] and 68 four-node EAS elements [40] are also depicted in this figure.
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Figure 6. Out-of-plane lateral deflection at the free end of the L-shaped plate
The deformed shape of the L-shaped plate under the load level of F=2.5N is presented in Figure 7, where a 15×2 MH6T element mesh is used. It’s shown that large displacements and large rotations occur during the lateral buckling stage of the plate.

[image: image294.wmf]
Figure 7. Deformed shape of the L-shaped plate under the load level of F=2.5N

5.3. Clamped annular plate strip subject to transverse uniformly-distributed end load
An annular plate strip has a geometry of the internal radius r=6m, the external radius R=10m, and the thickness h=0.03m. Its elastic modulus and Poisson’s ratio are E=2.1(108KN/m2 and (=0.0, respectively. The plate is laid horizontally, and clamped at one end and uniformly loaded on the other end. The load is in downward direction along the free edge (see Figure 8), q=6KN/m.
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Figure 8. Clamped annular plate under uniformly distributed line load
The load-deflection curves at Points A and B of the plate calculated respectively by using 4×32×2 (where, ‘4×32’ represents quadrilateral meshes, ‘×2’ means that each quadrilateral mesh is subdivided into 2 triangular ones further) and 8×64×2 MH6T elements are presented in Figure 9. For comparison purpose, the results from Campello et al [22] and Buechter & Ramm [41] are also depicted in this figure. The solutions obtained from 4×32×2 and 8×64×2 MH6T elements compare favourably with those from Campello et al [22], employing 8(64 6-node triangular shell elements, and Buechter & Ramm [41], employing 2×16 bi-cubic quadrilateral shell elements.
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Figure 9. Load-deflection curves at Points A and B of the clamped annular plate
To evaluate the convergence of the solutions obtained with the MH6T element using respectively 2×16×2, 4×32×2 and 8×64×2 meshes, the deflections at Points A and B of the clamped annular plate under end loading q=6KN/m and their relative errors to the results from 8×64×2 MH6T elements are presented in Table 6. Two node numbering schemes are adopted to show the spatial isotropy of the present triangular element.
Table 6. Deflections at Point A and B of the clamped annular plate under end load q=6KN/m

	Element orientation
	Deflection at Point A
	Deflection at Point B

	
	2×16×2
	4×32×2
	8×64×2
	2×16×2
	4×32×2
	8×64×2

	MH6T
	-14.0166
	-15.6872
	-15.8137
	-10.8069
	-12.1812
	-12.2856

	
	11.36%
	0.80%
	--
	12.04%
	0.85%
	--

	MH6T-R
	-14.0149
	-15.6869
	-15.8136
	-10.8055
	-12.1810
	-12.2856

	
	11.37%
	0.80%
	--
	12.05%
	0.85%
	--


The deformed shape of the clamped annular plate under end load q=6KN/m obtained using 4×32×2 MH6T elements is presented in Figure 10, where large displacements and rotations are evident.
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Figure 10. Deformed shape of the clamped annular plate under end load q=6KN/m

5.4 Elasto-plastic bending of cantilever beams
Four cantilever beams having the same length of 10.0 and width of 1.0 but different length/thickness ratios of L/h=1000, 100, 10 and 10/3, respectively, are considered. The material properties include a shear modulus 
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. The cantilever beams are subjected to two concentrated loads at their free ends (Figure 11); plastic zones occur along these beams when the end loads are sufficiently large. 
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Figure 11. Cantilever beam subject to two end loads

Three different uniform meshes of 1×20×2, 2×40×2 and 4×80×2 MH6T elements along the length are used respectively to model these cantilever beams. The load-deflection curves at the free ends of these beams obtained by using 5 Gauss integration points through the thickness of the beams are presented in Figures 12a-d. It can be seen that the numerical results from 1×20×2, 2×40×2 and 4×80×2 MH6T elements agree well with those from Eberlein & Wriggers [42] using 20 five-parameter quadrilateral 4-node elements or 30 six-parameter quadrilateral 4-node elements. In addition, the results from the present formulation also agree well with those from Dvorkin et al. [43] for the cantilever with L/h=100 as depicted in Figure 12c and those from Tan & Vu-Quoc [44] for the cantilever with L/h=10, 100 and 1000 as depicted in Figure 12b-d. 
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Figure 12. Load-deflection curves at the free ends of cantilevers
Considering that these cantilever beams subject to two end loads involve plastic bending deformation, Gaussian integration rule (with no integration points lying on the top and bottom surfaces of the shell) and Lobatto integration rule (with two of the integration points lying on the top and bottom surfaces of the shell) are adopted for numerical integration over the shell thickness to demonstrate the adequacy of these two integration schemes, where 5,6,8 and 16 integration points [57-58] are employed in each case. The solution calculated respectively from 1×20×2, 2×40×2 and 4×80×2 MH6T elements and their relative errors to the results calculated from 4×80×2 MH6T elements are presented in Table 7. The two previously noted nodal numbering schemes are adopted with 5 Gauss points over the thickness to confirm the spatial isotropy of the present triangular element.
Table 7. Deflections at the free ends of cantilevers under end load F

	Element type 

and meshes
	wA (L/h=10/3)

F=7000
	wA (L/h=10)

F=700
	wA (L/h=100)

F=8
	wA (L/h=1000)

F=0.03

	MH6T

(5 Gaussian points)
	1×20×2
	0.8706(-1.87%)
	1.1202(0.57%)
	5.1164(3.38%)
	5.8722(0.59%)

	
	2×40×2
	0.8793(-0.89%)
	1.1032(-0.95%)
	4.9694(0.41%)
	5.8394(0.03%)

	
	4×80×2
	0.8872(--)
	1.1138 (--)
	4.9489(--)
	5.8376(--)

	MH6T-R

(5 Gaussian points)
	1×20×2
	0.8706(-1.87%)
	1.1220(0.74%)
	5.1160(3.37%)
	5.8854(0.81%)

	
	2×40×2
	0.8793(-0.89%)
	1.1031(-0.96%)
	4.9698(0.42%)
	5.8396(0.02%)

	
	4×80×2
	0.8872(--)
	1.1138(--)
	4.9490(--)
	5.8382(--)

	MH6T

(5 Lobatto points
	1×20×2
	1.0084(-1.56%)
	1.3937(0.85%)
	5.3146(3.56%)
	5.8722 (0.59%)

	
	2×40×2
	1.0165(-0.77%)
	1.3734(0.62%)
	5.1480(0.31%)
	5.8298(-0.13%)

	
	4×80×2
	1.0244(--)
	1.3820(--)
	5.1320(--)
	5.8376(--)

	MH6T

(6 Lobatto points)
	1×20×2
	0.5903(-3.55%)
	0.5608(-4.22%)
	4.4361(2.79%)
	5.8722(0.59%)

	
	2×40×2
	0.6022(-1.60%)
	0.5749(-1.81%)
	4.3345(0.44%)
	5.8276(-0.17%)

	
	4×80×2
	0.6120(--)
	0.5855(--)
	4.3156(--)
	5.8376(--)

	MH6T

(6 Gaussian points)
	1×20×2
	0.6226(-3.31%)
	0.6222(-3.51%)
	4.5399(2.47%)
	5.8722(0.59%)

	
	2×40×2
	0.6341(-1.52%)
	0.6345(-1.60%)
	4.4508(0.46%)
	5.8276(-0.17%)

	
	4×80×2
	0.6439(--)
	0.6448(--)
	4.4306(--)
	5.8376(--)

	MH6T

(8 Lobatto points)
	1×20×2
	0.6390(-3.28%)
	0.6558(-3.12%)
	4.5937(2.28%)
	5.8722(0.59%)

	
	2×40×2
	0.6509(-1.48%)
	0.6668(-1.49%)
	4.5127(0.47%)
	5.8276(-0.17%)

	
	4×80×2
	0.6607(--)
	0.6769(--)
	4.4915(--)
	5.8376(--)

	MH6T

(8 Gaussian  points)
	1×20×2
	0.6517(-3.19%)
	0.6819(-2.79%)
	4.6328(2.17%)
	5.8722(0.59%)

	
	2×40×2
	0.6634(-1.46%)
	0.6918(-1.38%)
	4.5564(0.49%)
	5.8276(-0.17%)

	
	4×80×2
	0.6732(--)
	0.7015(--)
	4.5343(--)
	5.8376(--)

	MH6T

(16 Lobatto points)
	1×20×2
	0.6786(-2.95%)
	0.7388(-2.30%)
	4.7118(2.38%)
	5.8722(0.59%)

	
	2×40×2
	0.6892(-1.43%)
	0.7472(-1.19%)
	4.6171(0.33%)
	5.8276(-0.17%-)

	
	4×80×2
	0.6992(--)
	0.7562(--)
	4.6021(--)
	5.8376(--)

	MH6T

(16 Gaussian points)
	1×20×2
	0.6801(-2.88%)
	0.7425(-2.17%)
	4.7146(2.42%)
	5.8722(0.59%)

	
	2×40×2
	0.6906(-1.38%)
	0.7496(-1.24%)
	4.6151(0.26%)
	5.8276(-0.17%

	
	4×80×2
	0.7003(--)
	0.7590(--)
	4.6032(--)
	5.8376(--)


5.5 A square plate subjected to constant pressure load
A square plate is simply supported along its four edges and subjected to a deformation-dependent pressure load q=f×p0 on one side (Figure 13), where p0=10-2 N/mm2. This plate has side length of 2L=508mm and thickness h=2.54 mm, with material properties including Young’s modulus E=6.9×104 N/mm2, Poisson’s ratio μ=0.3, initial yield stress fy=248 N/mm2 , and hardening parameter H=0.0. 

[image: image307.png]



Figure 13. A simply-supported square plate

Owing to symmetry, only a quarter of the plate (the colored zone in Figure 13) is analyzed using respectively 16×16×2, 24×24×2, 32×32×2 and 48×48×2 MH6T elements. The load-deflection curves at the central point of the plate are presented in Figure 14. For comparison, the results from Eberlein & Wriggers [42] using 15×15 five- or six-parameter quadrilateral 4-node elements with refined mesh toward the outer corner, Betsch & Stein [45] using 24×24 quadrilateral 4-node shell elements with regular mesh, Valente et al.[46] using more refined mesh of 1375 S4E6P5 elements and 24×24 S4E6P5 elements with regular mesh are also depicted in this figure. 
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Figure 14. Load-deflection curves at the central point of the plate

To evaluate the convergence of the MH6T element, the deflections at the central point of the plate under the pressure of 0.6 N/mm2 calculated from 16×16×2, 24×24×2, 32×32×2 and 48×48×2 MH6T elements are presented in Table 8. The two previously noted nodal numbering schemes are adopted to demonstrate the spatial isotropy of the present triangular element.
Table 8. Deflection at the central point of the plate under q=0.6N/mm2
	Element orientation
	Element meshes and the deflection at Point A

	
	16×16×2
	24×24×2
	32×32×2
	48×48×2

	MH6T
	97.5773
	98.4075
	98.7276
	98.8358

	
	-1.27%
	-0.43%
	-0.11%
	--

	MH6T-R
	97.4328
	98.4366
	98.7365
	98.9048

	
	-1.49%
	-0.47%
	-0.17%
	--


In numerical analysis, the deformation-dependent pressure load is first decomposed in the directions of the three global coordinate axes by multiplying the value of the pressure with the mid-surface normal vector at each integration point on the mid-surface of the plate, the loads at the integration points are then transformed into equivalent nodal loads. The mid-surface normal vectors at integration points are updated at each iteration of every incremental step. It is noted that the geometric stiffness matrix corresponding to a pressure load is ignored to avoid the occurrence of an asymmetric element tangent stiffness matrix within the co-rotational framework. Nevertheless, this has not compromised the convergence of the iterative solution procedure for the considered problem.
The deformed shape of the plate obtained using 16×16×2 MH6T elements is presented in Figure 15, which clearly demonstrates large displacements and large rotations. It is noted that Figure 15 is drawn using the nodal coordinates in the deformed configuration of only the 3 corner nodes of the 6-node triangular shell element, which leads to the jagged configuration along the diagonal line of the square plate. With the inclusion of all 6 nodes, the deformed configuration would be smooth.
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Figure 15. Deformed shape of the plate under constant pressure of 0.6 N/mm2
5.6. Pinched hemispherical shell
A hemispherical shell is loaded by two inward and two outward forces at the quarter points of its open edge (Figure 16), with a radius of 10 and thickness of 0.5. The material parameters are E=10.0, μ=0.2, fy=0.2 and H=9.0, respectively.
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Figure 16. Hemispherical shell subject to pinched forces

Owing to symmetry, only a quarter of this hemispherical shell is analyzed (see the colored zone of Figure 16), using a mesh composed of three subdomains, with each subdomain discretized with either (a) 3×3×2, or (b) 6×6×2, or (c) 12×12×2 MH6T elements. The load-displacement curves at the pinching points A and B are depicted in Figure 17, where it can be observed that the results obtained with three subdomains of 3×3×2 MH6T elements are already accurate compared with the even more accurate results using three subdomains of 6×6×2 MH6T elements or 12×12×2 MH6T elements. These results also agree well with those from Bestch & Stein using 16×16 quadrilateral 4-node elements [45] and Eberlein & Wriggers [42] using 12×12 quadrilateral 4-node elements. 
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Figure 17. Load-deflection curves at Pinching points A and B of hemispherical shell
To illustrate the convergence characteristics of the MH6T element, the deflections at the pinched points A and B of the hemispherical shell under F=0.03 are presented in Table 9. The two nodal numbering schemes are again adopted to demonstrate the spatial isotropy of the present triangular element.
Table 9. Deflection at the pinched point A and B under F=0.03

	Element type
	Meshes and deflection at Point A
	Meshes and deflection at Point B

	
	3×3×2
	6×6×2
	12×12×2
	3×3×2
	6×6×2
	12×12×2

	MH6T
	-3.89261
	-3.83132
	-3.81306
	7.98568
	7.99921
	7.94258

	
	2.09%
	0.48%
	--
	0.54%
	0.71%
	--

	MH6T-R
	-3.89342
	-3.82779
	-3.80845
	7.96978
	7.98641
	7.92890

	
	2.23%
	0.51%
	--
	0.52%
	0.73%
	--


The deformed shape of the complete hemispherical shell is presented in Figure 18.
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Figure 18. Deformed shape of a pinched hemispherical shell
5.7 Shallow cylindrical shell
Consider a cylindrical shell shown in Figure 19 with a radius R=7600mm, thickness h=76mm, half-length L=7600mm, and half-subtending angle β=400. The material properties are E=2.1×104N/mm2, μ=0.0, fy=4.2N/mm2 and H=0.0, respectively. The displacements along the X and Z directions at the two curved edges (Figure 19) are restrained. The cylindrical shell is subjected to a uniformly distributed gravity load of q=4.0×10-3N/mm2 acting in the negative Z direction.

[image: image313.png]



Figure 19. A shallow cylindrical shell

Owing to symmetry, a quarter of the cylindrical shell is analyzed respectively using three different meshes with (a) 16×16×2, (b) 24×24×2 and (c) 32×32×2 MH6T elements. The two nodal numbering schemes are again adopted to demonstrate the spatial isotropy of the present triangular element. The computed load-displacement curves at the mid-point A of one of the two straight edges are presented in Figure 20. For comparison purpose, the results from Brank et al [47] using 32×32 and 50×50 4-node shell elements, Roehi & Ramm [48] using 12×12 8-node five-parameter shell elements, and Dujc & Brank [49] using 32×32 4-node geometrically-exact shell elements are also reported in this figure. 
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Figure 20. Load-displacement curves at Point A of the cylindrical shell
The deformed shapes of the cylindrical shell corresponding to the end (1439.727mm,0.513×4×10-3N/mm2) of the load-displacement curves obtained by using 24×24×2 MH6T elements is depicted in Figure 21.
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Figure 21. Deformed shapes of the cylindrical shell

5.8 Pinched cylinder
Consider a cylinder supported by two rigid diaphragms at its two ends, where only the displacement along the longitudinal axis is allowed (see Figure 22), with length 2L=600, radius R=300, and thickness h=3. The material properties are E=3000, μ=0.3, fy=24.3 and H=300. The cylinder is subjected to a pair of pinching concentrated loads (Figure 22). 
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Figure 22. A pinched cylinder with two end diaphragms

Again, owing to symmetry, only one-eighth of the cylinder (the colored zone of Figure 22) is analyzed with four different uniform meshes: (a) 16×16×2, (b) 24×24×2, (c) 32×32×2 and (d) 48×48×2 MH6T elements. The load-displacement curves at one pinched point are presented in Figure 23, For comparison purpose, the results from Valente et al.[46], Miehe [50] and Eberlein & Wriggers [42] are also depicted in this figure.
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Figure 23. Load-displacement curves at one pinched point of the cylinder
To evaluate the convergence of the MH6T element, the deflections at the pinched point of the cylinder under F=2500 are presented in Table 10. The two previously noted nodal numbering schemes are again adopted to demonstrate the spatial isotropy of the present triangular element, where the results are also presented in the same table.
Table 10. Deflection at the pinched point of the cylinder
	Element type
	Meshes and deflection at the loading point

	
	16×16×2
	24×24×2
	32×32×2
	48×48×2

	MH6T
	244.9742
	246.4805
	247.3333
	247.3645

	
	-0.97%
	-0.36%
	-0.01%
	--

	MH6T-R
	244.6053
	246.7414
	247.8352
	248.0212

	
	-1.38%
	-0.52%
	-0.07%
	--


The deformed shape of the overall cylinder obtained using 16×16×2 MH6T elements at a load level F=2500 is depicted in Figure 24, showing clear large displacements and large nodal rotations; plastic deformation occurs even at a very low loading level.
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Figure 24. Deformed shape of the pinched cylinder

6. Closure

We formulate a 6-node co-rotational triangular shell element formulation for elasto-plastic shells undergoing large displacements and large rotations. To overcome locking problems, we use the line integration method of MacNeal [17] to determine the assumed linear membrane strains and assumed out-of-plane shear strains. In addition, we employ a mixed formulation [10-11] to evaluate the assumed higher-order membrane strains. We demonstrate the reliability and convergence of the present shell formulation through a number of example problems, which include linear elastic patch tests, two elastic and five elasto-plastic plate/shell problems involving large displacements and large rotations. We also use two node numbering schemes to confirm the spatial isotropy of the present triangular element.
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APPENDIX A: Various derivatives of strains with respect to local nodal variables

The first derivatives of linear membrane strains with respect to local nodal variables:
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The first derivatives of assumed linear membrane strains with respect to local nodal variables:
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where, the ordered triplets 
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The first derivatives of higher-order membrane strains with respect to local nodal variables:

  
[image: image332.wmf][

]

0

B

0

B

B

H

6

H

1

H

m

m

m

L

=

 ,                                    (A-4a)

[image: image333.wmf]ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

+

¶

+

¶

+

¶

¶

+

¶

¶

+

¶

=

y

i

x

i

y

i

x

i

mi

N

x

z

w

N

y

z

w

N

y

z

w

N

x

z

w

,

,

,

,

H

)

(

)

(

0

0

)

(

0

0

)

(

0

0

B

 ,  i=1,2,…,6.               (A-4b)
The first derivatives of assumed higher-order membrane strains with respect to local nodal variables:
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The first derivatives of shear strains with respect to local nodal variables:
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The first derivatives of assumed shear strains with respect to local nodal variables:
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In Eqs.(A-7d, A-7e),
[image: image343.wmf](

)

2

:

1

0

ij

a

 and 
[image: image344.wmf](

)

2

:

1

i

r

 represent respectively the first two terms of vectors of 
[image: image345.wmf]0

ij

a

 and 
[image: image346.wmf]i

r

. The three pairs 
[image: image347.wmf])

1

(

i

r

 and 
[image: image348.wmf]x

i

r

,

, 
[image: image349.wmf])

2

(

i

r

 and 
[image: image350.wmf]y

i

r

,

, 
[image: image351.wmf])

3

(

i

r

 and 
[image: image352.wmf]z

i

r

,

 each represent the same variable, which helps to simplify the noted equations. The ordered quadruplets 
[image: image353.wmf])

,

,

,

(

l

j

i

k

 in Eqs. (A-7a~e) are given by (A,1,4,1), (B,4,2,2), (C,2,5,2), (D,5,3,3), (E,3,6,3), and (F,6,1,1).
The first derivatives of bending strains with respect to local nodal variables:
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The second derivatives of higher-order membrane strains with respect to local nodal variables:


[image: image356.wmf]x

j

y

i

y

j

x

i

j

i

m

y

j

y

i

j

i

m

x

j

x

i

j

i

m

N

N

N

N

N

N

N

N

,

,

,

,

2

5

,

2

5

,

3

T

L

H

,

,

2

5

,

2

5

,

2

T

L

H

,

,

2

5

,

2

5

,

1

T

L

H

+

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

-

-

-

-

-

-

u

B

u

B

u

B

  ,  i,j=1,2,…,6,                    (A-9)
where, three subscripts outside the parentheses in the left side of (A-9) represent the position of the component at the three dimensional matrix. The values of other unmentioned components of the three dimensional matrix are equal to zero.

The second derivatives of assumed higher-order membrane strains with respect to local nodal variables:
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The second derivatives of assumed shear strains with respect to local nodal variables:
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where, the ordered triplets 
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 in Eqs. (A-11a~g) are given by (A,1,4), (B,4,2), (C,2,5), (D,5,3), (E,3,6) and (F,6,1). The values of other unmentioned components of the three dimensional matrix are equal to zero.

APPENDIX B: Sub-matrices of transformation matrix T and its first derivatives with respect to global nodal variables

Sub-matrices of transformation matrix T:
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In Eqs. (B4-B5), 
[image: image372.wmf]I

d

v

-

=

¶

¶

T

12

l

, 
[image: image373.wmf]1

=

l

; 
[image: image374.wmf]I

d

v

=

¶

¶

T

12

l

, 
[image: image375.wmf]2

=

l

; 
[image: image376.wmf]0

T

12

=

¶

¶

l

d

v

, 
[image: image377.wmf]=

l

3,4,5 or 6; 
[image: image378.wmf]I

d

v

-

=

¶

¶

T

13

l

, 
[image: image379.wmf]1

=

l

; 
[image: image380.wmf]I

d

v

=

¶

¶

T

12

l

, 
[image: image381.wmf]3

=

l

; 
[image: image382.wmf]0

T

13

=

¶

¶

l

d

v

, 
[image: image383.wmf]=

l

 2,4,5 or 6.


[image: image384.wmf]ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

k

k

k

k

k

k

m

k

Z

k

n

k

Z

k

m

k

Y

k

n

k

Y

k

m

k

X

k

n

k

X

k

gk

k

p

p

p

p

p

p

p

p

p

p

p

p

,

,

,

,

,

,

,

,

,

,

,

,

T

n

p

 ,                                     (B7)

where, 
[image: image385.wmf]X

k

p

,

,
[image: image386.wmf]Y

k

p

,

,
[image: image387.wmf]Z

k

p

,

 are three components of the mid-surface normal vector 
[image: image388.wmf]i

p

in the global coordinate axes 
[image: image389.wmf]Z

Y,

X,

 directions; 
[image: image390.wmf]k

k

m

k

n

k

p

p

,

,

,

 are two vectorial rotational variables of Node 
[image: image391.wmf]i

, they are the two smallest components among 
[image: image392.wmf]X

k

p

,

,
[image: image393.wmf]Y

k

p

,

,
[image: image394.wmf]Z

k

p

,

; 
[image: image395.wmf]1

,

,

,

,

=

¶

¶

=

¶

¶

k

k

k

k

m

k

m

k

n

k

n

k

p

p

p

p

; 
[image: image396.wmf]0

,

,

,

,

=

¶

¶

=

¶

¶

k

k

k

k

n

k

m

k

m

k

n

k

p

p

p

p

; 
[image: image397.wmf]k

k

k

k

l

k

n

k

n

k

l

k

p

p

p

p

,

,

,

,

-

=

¶

¶

 and 
[image: image398.wmf]k

k

k

k

l

k

m

k

m

k

l

k

p

p

p

p

,

,

,

,

-

=

¶

¶

, 
[image: image399.wmf]k

k

k

m

n

l

¹

¹

, 
[image: image400.wmf]{

}

Z

Y

X

m

n

l

k

k

k

,

,

,

,

Î

.


[image: image401.wmf]ú

ú

û

ù

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

=

¶

¶

¶

0

0

T

6

T

2

T

1

T

2

T

T

2

d

d

t

d

d

t

u

d

t

j

i

j

i

G

j

i

L

 ,                                (B8)


[image: image402.wmf]ú

ú

û

ù

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

¶

T

6

T

2

T

6

T

2

T

1

T

2

T

1

T

2

T

T

2

g

j

i

j

i

g

j

i

j

i

G

j

i

n

d

θ

d

d

θ

n

d

θ

d

d

θ

u

d

θ

L

 ,                  (B9)


[image: image403.wmf]ú

ú

û

ù

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

¶

T

6

T

2

T

6

T

2

T

T

2

T

1

T

2

T

T

2

g

gj

i

gj

i

gk

gj

i

gj

i

G

gj

i

n

n

θ

d

n

θ

n

n

θ

d

n

θ

u

n

θ

L

 ,               (B10)


[image: image404.wmf](

)

I

d

R

I

d

R

v

d

d

d

R

d

d

t

ij

k

ik

j

i

i

k

j

k

j

i

d

d

T

T

0

T

T

2

T

T

2

¶

¶

+

¶

¶

+

+

¶

¶

¶

=

¶

¶

¶



[image: image405.wmf](

)

I

d

e

d

e

d

e

I

d

e

d

e

d

e

v

d

d

d

e

d

d

e

d

d

e

ij

k

z

k

y

k

x

ik

j

T

z

j

y

j

x

i

i

k

j

z

k

j

y

k

j

x

d

d

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

+

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

+

+

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

T

T

T

T

T

T

T

T

T

T

T

0

T

T

T

2

T

T

T

2

T

T

T

2

 ,                 (B11)


[image: image406.wmf]i

k

j

y

k

j

x

i

k

j

h

k

j

i

p

d

d

e

d

d

e

p

d

d

R

d

d

θ

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

=

¶

¶

¶

=

¶

¶

¶

T

T

T

2

T

T

T

2

T

T

2

T

T

2

 ,                            (B12)


[image: image407.wmf]T

T

T

T

T

T

T

T

T

2

gk

i

ik

j

y

j

x

gk

i

ik

j

h

gk

j

i

n

p

d

e

d

e

n

p

d

R

n

d

θ

¶

¶

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

=

¶

¶

¶

¶

=

¶

¶

¶

d

d

 ,                         (B13)


[image: image408.wmf]T

T

2

T

T

2

gk

gj

i

ik

ij

h

gk

gj

i

n

n

p

R

n

n

θ

¶

¶

¶

=

¶

¶

¶

d

d

 ,                                     (B14)


[image: image409.wmf]ú

ú

û

ù

ê

ê

ë

é

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

Ä

+

¶

¶

Ä

¶

¶

+

¶

¶

Ä

¶

¶

-

=

¶

¶

¶

T

12

T

T

12

12

T

12

12

T

12

T

12

12

T

12

3

12

T

T

2

1

k

j

j

k

k

j

k

j

x

d

v

d

v

v

d

v

v

d

v

d

v

v

d

v

v

d

d

e



[image: image410.wmf]T

12

12

T

12

12

5

12

12

3

k

j

d

v

v

d

v

v

v

v

¶

¶

Ä

¶

¶

Ä

+

 ,                               (B15)


[image: image411.wmf](

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

¶

¶

+

¶

¶

´

¶

¶

ú

ú

û

ù

ê

ê

ë

é

´

´

Ä

´

-

´

=

¶

¶

¶

T

13

T

12

T

13

T

12

3

13

12

13

12

13

12

13

12

T

T

2

j

k

k

j

k

j

z

d

v

d

v

d

v

d

v

v

v

v

v

v

v

v

v

I

d

d

e



[image: image412.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

´

´

Ä

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

-

T

13

12

13

T

12

3

13

12

13

12

T

13

12

13

T

12

k

k

j

j

d

v

v

v

d

v

v

v

v

v

d

v

v

v

d

v



[image: image413.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

Ä

´

´

-

T

13

12

13

T

12

T

T

13

12

13

T

12

3

13

12

13

12

k

k

j

j

d

v

v

v

d

v

d

v

v

v

d

v

v

v

v

v



[image: image414.wmf](

)

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

´

´

Ä

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

-

T

13

12

13

T

12

3

13

12

13

12

T

13

12

13

T

12

j

j

k

k

d

v

v

v

d

v

v

v

v

v

d

v

v

v

d

v



[image: image415.wmf](

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

´

Ä

÷

÷

ø

ö

ç

ç

è

æ

¶

¶

´

+

´

¶

¶

´

´

Ä

´

+

k

k

j

j

d

v

v

v

d

v

v

v

d

v

v

v

d

v

v

v

v

v

v

v

13

12

13

12

13

12

13

12

13

12

5

13

12

13

12

13

12

3

,  (B16)


[image: image416.wmf]T

T

T

T

T

T

2

T

T

2

T

T

2

j

x

k

z

k

x

j

z

k

j

x

z

x

k

j

z

k

j

y

d

e

d

e

d

e

d

e

d

d

e

e

e

d

d

e

d

d

e

¶

¶

´

¶

¶

+

¶

¶

´

¶

¶

+

¶

¶

¶

´

+

´

¶

¶

¶

=

¶

¶

¶

 ,       (B17)


[image: image417.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

2

,

2

,

,

2

,

,

2

2

,

2

2

T

2

i

i

i

i

i

i

m

i

i

n

i

m

i

i

m

i

n

i

i

n

i

i

gi

i

p

p

p

p

p

p

p

p

p

p

n

p

 ,                        (B18)


[image: image418.wmf]ï

ï

ï

ï

þ

ï

ï

ï

ï

ý

ü

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

¶

¶

¶

¶

¶

¶

=

¶

¶

2

,

,

2

2

,

,

2

2

,

,

2

2

,

2

i

i

i

i

n

i

Z

i

n

i

Y

i

n

i

X

i

n

i

i

p

p

p

p

p

p

p

p

,  
[image: image419.wmf]ï

ï

ï

ï

þ

ï

ï

ï

ï

ý

ü

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

¶

¶

¶

¶

¶

¶

=

¶

¶

2

,

,

2

2

,

,

2

2

,

,

2

2

,

2

i

i

i

i

m

i

Z

i

m

i

Y

i

m

i

X

i

m

i

i

p

p

p

p

p

p

p

p

,  
[image: image420.wmf]ï

ï

ï

ï

þ

ï

ï

ï

ï

ý

ü

ï

ï

ï

ï

î

ï

ï

ï

ï

í

ì

¶

¶

¶

¶

¶

¶

¶

¶

¶

=

¶

¶

¶

i

i

i

i

i

i

i

i

m

i

n

i

Z

i

m

i

n

i

Y

i

m

i

n

i

X

i

m

i

n

i

i

p

p

p

p

p

p

p

p

p

p

p

,

,

,

2

,

,

,

2

,

,

,

2

,

,

2

p

 ,   (B19a,b,c)


[image: image421.wmf]3

,

2

,

,

2

,

,

2

1

i

i

i

i

i

l

i

n

i

l

i

n

i

l

i

p

p

p

p

p

-

-

=

¶

¶

, 
[image: image422.wmf]3

,

2

,

,

2

,

,

2

1

i

i

i

i

i

l

i

m

i

l

i

m

i

l

i

p

p

p

p

p

-

-

=

¶

¶

, 
[image: image423.wmf]3

,

,

,

,

,

,

2

i

i

i

i

i

i

l

i

m

i

n

i

m

i

n

i

l

i

p

p

p

p

p

p

-

=

¶

¶

¶

,  (B20a,b,c)

where, 
[image: image424.wmf]i

l

i

p

,

is the biggest component of Vector 
[image: image425.wmf]i

p

 in the global coordinate axes 
[image: image426.wmf]Z

Y,

X,

 directions; the second derivatives of other two components with respect to the vectorial rotational variables are equal to zero. 


[image: image427.wmf]2

,

2

,

1

,

1

i

i

i

m

i

n

i

l

i

p

p

s

p

-

-

=

 ,   
[image: image428.wmf]6

,

,

2

,

1

L

=

i

,                        (B21)


[image: image429.wmf]1

s

 is equal to 1 or –1. In an incremental solution procedure, it has the same sign as 
[image: image430.wmf]i

l

i

p

,

of the last incremental step, and its value will be updated after each incremental loading step.
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