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We show that Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is a Markov chain
in its present form. We construct the Markov matrix of FCIQMC for a two determinant system and
hence compute the stationary distribution. These solutions are used to quantify the dependence of
the population dynamics on the parameters defining the Markov chain. Despite the simplicity of a
system with only two determinants, it still reveals a population control bias inherent to the FCIQMC
algorithm. We investigate the effect of simulation parameters on the population control bias for the
neon atom and suggest simulation setups to, in general, minimise the bias. We show a reweight-
ing scheme to remove the bias caused by population control commonly used in diffusion Monte
Carlo [Umrigar et al., J. Chem. Phys. 99, 2865 (1993)] is effective and recommend its use as a post
processing step. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4913644]

I. INTRODUCTION

A cheap and accurate computational description of the
ground state energy of a chemical system remains one of the
principal challenges in electronic structure theory, yet achiev-
ing both of these goals systematically remains beyond the
grasp of current approximations. Hierarchies of methods of
increasing sophistication have been developed in the quantum
chemistry community which systematically capture increas-
ing amounts of the electron-electron correlation energy at the
expense of additional computational cost. These methods start
from Hartree–Fock1 which scales modestly with the fourth
power of the number of electrons to Full Configuration Inter-
action (FCI) which captures the maximal amount of electron-
electron correlation in a finite basis set but scales factorially
with the number of electrons. Approximations (which are often
very accurate) such as density fitting can potentially reduce
the scaling of these methods.2 If FCI is used with a large
enough basis set or an extrapolation to the complete basis
set limit,3,4 energy differences can be obtained to chemical
accuracy (1 kcal/mol) providing direct comparison with exper-
iment. Unfortunately, the factorial scaling with the number of
electrons makes it unfeasible for studying anything but the
smallest of chemical systems.

Full Configuration Interaction Quantum Monte Carlo
(FCIQMC)5 marries FCI with a projector Monte Carlo para-
digm but crucially requires no a priori knowledge of the sign
structure of the wavefunction. FCIQMC has two principal
advantages over conventional FCI: the storage requirements
are greatly reduced due to a sparse stochastic representation
of the wavefunction,5 and it can be efficiently parallelised.6

The storage requirements for FCIQMC depend on the (system-
dependent) severity of the Fermion sign problem7 and are often
orders of magnitude less than conventional FCI calculations.
FCIQMC with the controllable initiator approximation8 has
allowed molecular systems with Hilbert spaces of 1029 Slater

determinants9 and the uniform electron gases with Hilbert
spaces containing up to 10108 determinants10 to be studied. The
FCIQMC methodology was subsequently extended to coupled
cluster,11 and we believe stochastic approaches are becoming
increasingly important to the quantum chemistry community
due to the need for scalable algorithms which are well-suited
to modern computer architectures.

Some questions still remain concerning the best way to
use Monte Carlo to solve the FCI equations. The FCIQMC
algorithm is not a black box, and a choice has to be made about
calculation parameters which control the stochastic sampling
and hence the systematic and stochastic errors inherent to the
simulation for a given amount of computational resources. In
this article, we investigate the behaviour of FCIQMC simula-
tions to understand the relationship between parameter choices
and errors by investigating the exact distribution obtained from
a Markov chain transition matrix.

Section II contains a brief recap of the FCIQMC method.
We show in Sec. III that FCIQMC is an example of Markov
Chain Monte Carlo (MCMC). We use these ideas to investi-
gate population control bias in the two determinant H2 system
and more realistic calculations on the neon atom in Sec. IV.
We draw conclusions and provide suggestions on simulation
strategies in Sec. V. Atomic units are used throughout. The
many-electron Hamiltonian and all energies have been shifted
to be relative to the absolute Hartree–Fock energies of the
appropriate system. Error bars signify one standard error, an
estimate of the standard deviation, either side of the mean
value.

II. FCIQMC

We briefly review the FCIQMC method, which is dis-
cussed in more detail in (e.g.) Refs. 5 and 7. The imaginary-
time Schrödinger equation is

0021-9606/2015/142(10)/104101/6/$30.00 142, 104101-1 © 2015 AIP Publishing LLC
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∂ |Ψ⟩
∂τ
= −(Ĥ − S)|Ψ⟩, (1)

where S is an energy offset, which we shall discuss in the
context of FCIQMC later, introduced to control normalisation.
The general solution to Eq. (1) is |Ψ(τ)⟩ = e−τ(Ĥ−S)|Ψ(τ = 0)⟩,
which in the long-time limit tends to the lowest eigen-
state with which the initial wavefunction has a non-zero
overlap.

We begin with the Configuration Interaction (CI) ansatz
where the wavefunction is a linear combination of Slater deter-
minants: |ψ⟩ = i Ci |Di⟩. It is convenient (though not neces-
sary12) to represent the coefficients by a discrete set of signed
particles which we shall call psips following Anderson.13

Booth et al.5 showed that a finite-difference approximation to
Eq. (1) could be sampled by allowing a psip on one determinant
to create a new psip on another determinant (“spawn”) or on
the same determinant (“death”) with probability proportional
to the connecting Hamiltonian matrix element. Pairs of psips
with opposite signs on the same determinant are removed
(“annihilated”) at the end of each timestep. After a sufficient
number of such steps, the psip vector becomes a stochastic
representation of the eigenvector. The finite difference approx-
imation introduces no timestep errors if the timestep, δτ,
satisfies δτ < 2(Emax − E0)−1, where Emax (E0) is the highest
(lowest) eigenvalue of the Hamiltonian;7 a property FCIQMC
shares with Green’s function quantum Monte Carlo.14

Following an equilibration phase, the shift is periodi-
cally updated every A steps to control the psip population
using5

S(τ + Aδτ) = S(τ) − γ

Aδτ
log

N(τ + Aδτ)
N(τ) , (2)

where γ is a damping factor and N(τ) is the total number of
psips at time τ. Repeated substitution of Eq. (2) into itself
yields

S(τ + Aδτ) = S(0) − ξ log
N(τ + Aδτ)

Ns
, (3)

where S(0) is the initial value of the shift (in this work, the
Hartree–Fock energy), Ns is the population at the end of the
equilibration phase, and ξ = γ/(Aδτ) is usually fixed during
a simulation. Eq. (3) implies that FCIQMC is an example
of MCMC, the implications of which we shall discuss in
Sec. III.

The correlation energy can also be found by

EProj =
⟨D0|Ĥe−Ĥτ |D0⟩
⟨D0|e−Ĥτ |D0⟩

=


i,0 H0ini

n0
, (4)

where the trial state, |D0⟩, is typically the Hartree–Fock deter-
minant. The variance of the projected estimator is generally
smaller than that of the shift and can be reduced further by a
multi-determinant trial function.12

Both estimators are serially correlated as the state of the
simulation at one timestep is heavily dependent on the state at
the previous timestep. We use an automated iterative blocking
algorithm15–18 to accurately estimate the stochastic error in all
FCIQMC calculations presented in this paper.

III. STOCHASTIC MATRICES AND FCIQMC

A. General Markov chain Monte Carlo theory

A stochastic process is a discrete time Markov chain if the
probability of transitioning from one state to another (in one
discrete timestep) depends only upon the current state.19,20 The
probability of a given set of psips, {ni}, producing another set
of psips, {n′i}, at the next timestep depends only on {ni} and the
value of the shift, which depends upon the total number of psips
at a given shift update. We can therefore describe FCIQMC as
a Markov chain taking one step every A timesteps. In order to
simplify the mathematical details, we shall henceforth assume
that the simulation takes one timestep between shift updates
(i.e., A = 1).

We shall denote the Markov states of the simulation using
indices α, β . . . and Slater determinants using indices i, j, . . . .
The stochastic matrix, Γ, consists of elements Γα,β which
gives the probability that the system transitions from state α
to state β in one step in the Markov chain and is in general not
symmetric.

We can infer some properties of the eigenvectors and
eigenvalues of the stochastic matrix as Γ is non-negative and

β Γαβ = 1 as a FCIQMC calculation must transition from one
state to another or remain in the same state. From this, there
must exist one or more left eigenvectors, γα, satisfying

α

γαΓαβ = γβ, (5)

where γα gives the probability that the Markov chain will
be in state α if the chain is in equilibrium. The Perron–
Frobenius theorem proves that the Γ must have one or more
such Perron–Frobenius eigenvectors with a unit eigenvalue and
all other eigenvalues must be smaller. The Perron–Frobenius
eigenvector is unique, and the chain will converge towards this
distribution if (i) all the states are aperiodic, i.e., ΓNαβ > 0 for
all values of large N ; (ii) every state can be reached from every
other state. For function f (α) defined for all possible Markov
states, its expectation value is

µ f = ⟨ f t⟩t =

α

f (α)γα. (6)

The Perron–Frobenius eigenvector specifies the distribution of
an ensemble of independent Markov chains taking a single
step, and by computing it, we may find expectation values of
interest in this system.

B. The FCIQMC Markov chain

A state α in FCIQMC is represented by the signed number
of psips on each determinant (na,nb, . . .),

α B (n(α)
a ,n(α)

b
, . . .). (7)

The shift S is not an independent variable as it is simply a
function of the total number of psips. The FCIQMC chain is
in an absorbing state (i.e., the probability of leaving the state
is zero) when there are no psips on any of the determinants, as
all events which change the psip population require an existing
non-zero population. As the shift is initially held at a constant
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FIG. 1. The energy estimators as a function of 1/⟨N ⟩ for H2 (STO-3G basis, internuclear separation 0.7122 Å). The exact means were calculated from the
means of the stationary distributions. Only states with up to 150 psips on each determinant were included in the transition matrix calculations. The FCIQMC
estimates were calculated from a single chain and the error estimated by blocking.15 The bias in both estimates of the correlation energy decays with the inverse
of the average number of psips. Linear fits were performed with numpy.24 Errors were weighted in the fits for the FCIQMC data using the sum of the variance
of 1/⟨N ⟩ and variance of the energy estimator. The state with the smallest 1/⟨N ⟩ was removed from the fit as the energy is too large to fit a linear slope. This is
caused by the stochastic matrix being truncated at the state with 150 psips on both determinants; states after this truncation have become important at this point.

value during the equilibration phase, the Markov chain changes
after the shift is allowed to vary.

The estimators of interest in FCIQMC are the shift and the
numerator and denominator of the projected energy. Defining
N(α) = i |nα

i |,
S(α) = S(τ = 0) − ξ log

N(α)
Ns

, (8)

ENumer(α) =

i,0

H0in
(α)
i , (9)

NDenom(α) = n(α)
0 . (10)

The projected energy can hence be evaluated using ⟨EProj⟩
= ⟨ENumer⟩/⟨NDenom⟩.

Computing the stochastic matrix for an arbitrarily large
system of determinants is computationally infeasible as the
space scales as the power of the number of determinants, so we
restrict ourselves to the simplest possible (interesting) system:
two determinants, a and b. In this case the change on one
determinant is independent of the change on the other, the
elements of the stochastic matrix element are given by

Γα,β = pcna,n′apcnb,n′b, (11)

where pcna,n′a is the probability that the population on a
changes from na to n′a (Appendix).

We have constructed Γα,β for some simple systems
and determined (by direct21 or iterative22 diagonalisation)
the stationary distributions γα corresponding to the Perron-
Frobenius eigenvector. The supplemental material23 contains
further examples of using the stationary distribution to
examine the behaviour of the ensemble of FCIQMC states.

IV. POPULATION CONTROL BIAS

In order to achieve a finite population in a simulation,
we must resort to population control by introducing a shift

which itself is dependent upon the current total population.
However, this process introduces a feedback into the prop-
agator and hence a systematic bias.25 Random fluctuations
causing the population to increase (i.e., the psip distribution
enters a low energy region of phase space) or decrease (higher
energy region of phase space) are moderated by a correspond-
ing decrease or increase in the shift. Both actions lead to an
increase in the time-averaged energy estimators.

In DMC, this bias is known25,26 to scale as ⟨N⟩−1, though
we know of no previous investigations of population control
bias in FCIQMC. We suspect that the effect has most likely
been obscured by the stochastic error in all previous FCIQMC
studies. With the aid of exact energy estimators from the tran-
sition matrix, we are now able to investigate the magnitude of
any bias present. We feel it is important to understand where
population control bias is likely to cause a problem if a small
stochastic error is desired. In addition to the energy estimators
from the transition matrix, we shall also investigate them from
single chains via blocking analyses of single FCIQMC calcu-
lations to compare both methods and use them to quantify the
factors controlling population control bias.

A. H2 in a STO-3G basis set

For different values of Ns, transition matrix and single
chain calculations were performed on H2 in a STO-3G basis at
the equilibrium geometry of 0.7122 Å,27 and the energy esti-
mators evaluated. Fig. 1 shows the bias of the projected energy
and shift estimators decreases with 1/⟨N⟩. Though the single-
chain calculations have relatively large stochastic errors, a
similar bias in the energy and decay is also notable, and there is
good agreement between the single chain and transition matrix
results. The fits for the transition matrix calculations, however,
do not exactly intercept the y-axis at the correlation energy.
The worst extrapolation is for the projected energy, which
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FIG. 2. The energy estimators calculation from the means of the stationary distribution as a function of 1/⟨N ⟩ for H2 (STO-3G basis, internuclear separation
rHH= r0 and 2r0, where r0= 0.7122 Å) for different values of ξ, the shift damping parameter. Only states with up to 150 psips on each determinant were
included in the transition matrix calculations. The bias in the projected energy can be reduced by decreasing ξ, whereas the bias in the shift remains the same.
Fits with 1/⟨N ⟩ were performed with numpy.24 Again we remove the state with the smallest 1/⟨N ⟩ for ξ = 0.03 for rHH= r0.

disagrees by 2.3 ± 0.5 µEh. It is difficult to tell if this is caused
by a loss of numerical precision, truncation in the transition
matrix calculations, or if there are higher order effects with
small ⟨N⟩.

The prefactor in the 1/N scaling of the bias in the projected
energy is affected by ξ, and damping less hard, i.e., decreasing
ξ, reduces the prefactor (Fig. 2). Population control bias also
appears to be made worse in strongly correlated systems. Fig. 2
shows population control bias as a function of ξ for both H2 in a
STO-3G basis set at bond lengths of 0.7122 Å and 1.4244 Å.28

We may explain this by reviewing DMC, where, in the limit of
a perfect trial function, there are no branching processes and
thus no population control bias. Equivalently in FCIQMC, if
there is no spawning there can be no population control bias.
Although true only in the limit in which the Hilbert space is the
set of eigenvectors of the Hamiltonian, this indicates that in the
weakly correlated limit, there will be less population control
bias, exactly as we observe.

B. The neon atom in a cc-pVDZ basis

Population control bias is also potentially a significant
source of a systematic error in systems which are large enough
not to be trivially soluble (rendering transition matrix calcu-
lations computationally infeasible). We now turn to the neon
atom in a cc-pVDZ basis29,30 which has a Hilbert space of
50 000 determinants. This is small enough such that it is
straightforward to compute the FCI energy via iterative diago-
nalisation but large enough such that most determinants have
a small contribution to the wavefunction. It was necessary to
oversample the Hilbert space in H2 (i.e., more psips than the
number of determinants), whereas FCIQMC calculations in
this neon system are stable with a significant undersampling of
the space. We shall investigate the effect of population control
bias in this regime.

Changing the population control parameters affects both
estimators of the correlation energy in the same way as H2.

Fig. 3(a) shows the projected energy decaying towards the
FCI energy as ξ decreases until the estimator of the energy
becomes within error bars. Fig. 3(b) shows the bias in the
projected energy decaying as 1/⟨N⟩. This intercepts the y-
axis at −0.192 106 6(12) Eh which is within errors of the FCI
energy of −0.192 105 578 Eh; suggesting, we converge to the
exact ground state as expected. The population control bias
is however significant and with about 10 000 psips is about
20 µEh.

As population control bias is clearly a problem, we sought
to find a simple indicator of its magnitude in a calculation. An
investigation into the relationship between the variance of the
shift and the magnitude of the population control bias did not
yield any simple relationship. With hindsight, a consideration
of the causal relationship between the two makes it likely that
not only the extent but also the speed of variation of the shift
is important. As such values are considerably more difficult to
calculate, we will leave investigation of this connection to a
future publication.

Instead, we have adopted a method used in DMC. The
population bias can be both quantified and reduced by a
reweighting technique based upon the history of the shift.25

The contribution at a given time, τ, to the numerator and
denominator of the projected energy is weighted by taking into
account the shift of the preceding W iterations. For Sm, denot-
ing the shift m iterations previously, the weight is given by

w(τ,W ) =
W
m=1

e−δτ(Sm−⟨S⟩). (12)

The reweighting is implemented as a post-processing step
on the output of a calculation. The population control bias
is effectively removed for sufficiently large W at the cost of
increasing the stochastic error and, as can be seen in Fig. 4, the
residual bias is of the order of the stochastic error bars.31

The value of W (≈ 250) required for this procedure to
converge is of the order of the serial correlation length. We
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FIG. 3. Projected energy estimates from FCIQMC calculations on the Ne atom (cc-pVDZ basis set) as a function of (left) the shift damping parameter, ξ,
(calculation details: δτ = 0.005, 20 000 000 iterations where ⟨N ⟩ has the value 10 000) and (right) as a function of 1/⟨N ⟩, where N is the number of psips
(A= 10, ξ = 20, δτ = 0.005, 200 000 000 iterations or 72 h on 12 cores whichever was shorter). Linear fits were performed with numpy.24

note that it is not possible to apply this method to the Markov
chain approach as the dependence of expectation values on
calculation history makes the process non-Markovian.

V. DISCUSSION

To summarise: we have demonstrated that FCIQMC is
an example of Markov chain Monte Carlo and computed the
stochastic matrix for a two determinant system. Even though
a two determinant system is the simplest non-trivial system,
it still contains some of the inherent features of FCIQMC
including population control bias. A two determinant system
cannot have a sign problem unless the timestep is greater than
the critical point. It would be interesting to extend these ideas

FIG. 4. Reweighted projected energy estimate from FCIQMC calculations
on the Ne atom (cc-pVDZ basis set) for different ⟨N ⟩ as a function of
W , the number of iterations reweighted over. Four independent FCIQMC
calculations were performed for each ⟨N ⟩, and each point shows the mean
of the reweighted ⟨Eproj⟩ for the four runs.

to investigate the sign problem using a three determinant sys-
tem, though the stochastic matrix may be inaccessible due to
its scaling with the size of the Hilbert space.

Recently, Petruzielo et al. proposed to use floating point
numbers to represent the population of psips on a determi-
nant.12 This adaption results in an uncountably infinite state
space of the Markov chain. They also proposed to partition the
determinant space into deterministic and stochastic subspaces,
where the action of the Hamiltonian in the deterministic sub-
spaces is applied exactly using sparse matrix multiplication,
and the action in the stochastic subspaces is sampled in the
same way as in FCIQMC. Using floating point numbers as
walker weights as well as a multideterminantal trial function
significantly reduces the prefactor of the 1/⟨N⟩ scaling in
population control bias.

The population control algorithm in DMC, as recom-
mended in Ref. 25, is slightly different from that used in
FCIQMC: the shift is updated from the “best current estimate”
of the energy rather than from the previous value of the
shift. Using this population control algorithm would render
FCIQMC non-Markovian. Nonetheless, we could use the sto-
chastic matrix technique presented here to calculate the proba-
bility distribution of the shift in the limit of convergence of the
projected energy. It would be interesting to investigate if this
is a better method of population control for FCIQMC.

Using the population control approach given in Ref. 5
(i.e., using Eq. (3) with γ set in the region 0.01 to 0.05) may
introduce population control bias, due to the factor of 1

δτ
, if the

timestep needed to converge a calculation needs to be small.
This means population control bias is likely to be more of a
problem for calculations which require smaller timesteps, such
as strongly correlated systems, or calculations using coupled
cluster Monte Carlo.11

We also note that converging FCIQMC calculations to
µEh accuracy has previously been attempted.32 In this regime,
the population control bias could potentially become similar in
magnitude to the stochastic error.
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We recommend that one reweights the projected energy
estimator, as suggested in Ref. 25, as it does not involve mul-
tiple expensive runs. If a large enough population is used, the
resultant estimate of the energy would be unbiased albeit with
a larger stochastic error (though this has appeared negligibly
larger in our tests). Alternatively, one should use a large pop-
ulation of psips and set ξ to be as small as possible, such that
the number of psips does not drop below the system-dependent
critical population. Doubling the number of psips in a simu-
lation increases the equilibration time and possibly also the
memory requirements. It is also important to perform enough
steps to get an accurate estimate of the error. In choosing an
appropriate value of ξ, there is a compromise to be made; it is
tempting to increase ξ because it reduces the fluctuations in the
total number of psips and, for larger systems, this can reduce
the maximum amount of memory used during the calculation.
However, too large a ξ will cause population control bias to
become significant.

In conclusion, we caution users of FCIQMC and related
methods to be aware that population control can introduce a
significant bias in calculated energies. We recommend that
post-processing reweighting is used to quantify its magnitude
and the psip population and damping parameters be modified
as suggested in this paper if needed.

ACKNOWLEDGMENTS

The authors thank C. J. Umrigar for several enlightening
discussions, facilitated by the unique setting of The Towler
Institute. Calculations were performed using the Imperial Col-
lege High Performance Computing Service33 and figures were
plotted using matplotlib.34 J.S.S. acknowledges the research
environment provided by the Thomas Young Centre under
Grant No. TYC-101. W.A.V. is grateful to EPSRC for a
studentship and AJWT thanks Imperial College for a Junior
Research Fellowship and the Royal Society for a University
Research Fellowship.

APPENDIX: TRANSITION PROBABILITIES FOR A TWO
DETERMINANT SYSTEM

Consider two determinants, a and b, with states α and β
representing two states with a given signed number of psips on
each determinant,

α = (na,nb),
β = (n′a,n′b).

(A1)

Each psip independently attempts to spawn and die every
timestep. The probability that n psips succeed out of N at-
tempts is given by the probability mass function of the binomial
distribution, B(n,N,p) = ( N

n

)
pn(1 − p)N−n, where p is the

probability of one psip spawning or dying independently and
can be obtained from the FCIQMC algorithm.5 The change on
determinant a is35

n′a − na = −sgn(Hba)sgn(nb)nsa

− sgn(Haa − S)sgn(na)nda, (A2)

where nsa (nda) is the number of psips spawning onto (dying
on) a. As the spawning and death events on each determinant
are independent, the probability pcna,n′a that the number of
psips on a changes from na to n′a via any possible combination
of spawning and death is given by

pcna,n′a =

nsa

B(nsa,nb,Ps(a|b))B(nda,na,Pd(a)), (A3)

where Ps(a|b) is the probability for spawning to a from b and
Pd(a) is the probability of death of a.
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