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The capabilities of the triple-deck theory of receptivity for subsonic compressible bound-
ary layers have been thoroughly investigated through comparisons with numerical sim-
ulations of the compressible Navier-Stokes equations. The analysis focused on the two
Tollmien-Schlichting wave linear receptivity problems arising due to the interaction be-
tween a low amplitude acoustic wave and a small isolated roughness element and the
low amplitude, time-periodic vibrations of a ribbon placed on the wall of a flat plate.
A parametric study was carried out to look at the effects of roughness element and vi-
brating ribbon longitudinal dimensions, Reynolds number, Mach number and Tollmien-
Schlichting wave frequency. The flat plate is considered isothermal, with a temperature
equal to the laminar adiabatic-wall temperature. Numerical simulations of the full and
the linearised compressible Navier-Stokes equations have been carried out using high-
order finite differences to obtain, respectively, the steady basic flows and the unsteady
disturbance fields for the different flow configurations analysed. The results show that
the asymptotic theory and the Navier-Stokes simulations are in good agreement. The ini-
tial Tollmien-Schlichting wave amplitudes and, in particular, the trends indicated by the
theory across the whole parameter space are in excellent agreement with the numerical
results. An important finding of the present study is that the behaviour of the theoretical
solutions obtained for Re →∞ holds at finite Reynolds numbers and the only conditions
needed for the theoretical predictions to be accurate are that the receptivity process be
linear and the free stream Mach number be subsonic.
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1. Introduction

In “quiet” disturbance environments, which are typical of flight conditions, the ini-
tial stages of laminar-turbulent transition are dominated by the evolution of instability
modes (primary instabilities, possibly followed by secondary instabilities), which grow ex-
ponentially due to linear processes. The nature of these instabilities depends greatly on
the state of the laminar boundary layer. In boundary layers developing over swept wings
with large sweep angles the transition process is dominated by the Cross-Flow instability.
The Tollmien-Schlichting (T-S) waves drive the boundary layer instability in the case of
small sweep angles, while Taylor-Görtler vortices are the dominant primary instability for
boundary layers developing over concave walls. Since the first pioneering experiments of
Reynolds (1883), the complexity and great variety of possible mechanisms involved in the
laminar-turbulent transition has inspired a great deal of work on this subject, despite
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which transition prediction still remains a formidable task. The main problem associ-
ated with current transition prediction methodologies is that they are largely based on
the concept of disturbance amplification, rather than on the disturbance amplitude, and
hence completely disregard the receptivity process, the importance of which was high-
lighted by numerous experiments (see Reshotko 1976; Kachanov 1994; Saric et al. 2002,
and references therein). Receptivity theory studies the process of interaction between
the boundary layer and “external perturbations”, such as acoustic waves, free-stream
turbulence and body surface vibrations. The objective of the receptivity analysis is, first,
to identify how the external perturbations can be converted into instability modes of
the boundary layer, the T-S waves, Cross-Flow vortices or Taylor-Görtler vortices, and,
second, to determine the initial amplitude of these modes.

The progress achieved in this field has been, to a large degree, thanks to the studies
based on the asymptotic analysis of the Navier-Stokes equations at large values of the
Reynolds number. When dealing with the process of generation of T-S waves in bound-
ary layers, this approach relies on the triple-deck theory, which is known to describe the
T-S waves in subsonic flows near the lower branch of the neutral stability curve (see Lin
1946; Smith 1979a,b). The first paper where the triple-deck theory was used to study the
receptivity of the boundary layer was published by Terent’ev (1981). He considered an
incompressible flow past a flat plate with the basic steady flow given by the Blasius solu-
tion. He assumed that a short section of the plate surface performs periodic vibrations in
the direction perpendicular to the wall. This formulation represents a simplified mathe-
matical model of the classical experiments performed by Schubauer & Skramstad (1948)
where the T-S waves were generated by a vibrating ribbon installed a small distance
above the plate surface. Terent’ev’s theory shows that, in the vicinity of the vibrating
part of the wall, the perturbation field is rather complex. However, further downstream
only one perturbation mode survives, the T-S wave. The amplitude of this wave depends
on the shape of the vibrating part of the wall.

It is known from numerous observations that the boundary layers are susceptible to
acoustic noise. Asymptotic theory of the generation of T-S waves by acoustic noise, was
developed by Ruban (1984) and Goldstein (1985). In these studies the importance of no-
tion of “double resonance” was highlighted as a fundamental principle of the receptivity
theory. In fluid flows, effective transformation of external disturbances into instability
modes of the boundary layer is only possible if, in addition to the frequency, the wave
number of the external perturbations is in tune with the natural internal oscillations of
the boundary layer. These conditions could be easily satisfied in the problem considered
by Terent’ev (1981), where the frequency and the length of the vibrating part of the wall
can be chosen independent of one another. When an acoustic wave impinges upon the
boundary layer, the pressure perturbations in the acoustic wave penetrate into the bound-
ary layer leading to the creation of a near-wall Stokes layer inside the boundary layer. If
the acoustic field has a wide enough spectrum, then the receptivity process will “extract”
from it a harmonic whose frequency is in tune with the frequency of the corresponding
T-S wave. Of course, under this condition the wavelength of the “chosen” acoustic wave
appears to be much longer than that of the T-S wave, meaning that the second resonance
condition, the tuning of the wavenumbers, is not satisfied. However, in practical appli-
cations, such as in the flow past an aircraft wing, the body surface in never absolutely
smooth. Hence, in addition to unsteady perturbations in the Stokes layer, one has to
consider steady perturbations produced by the wall roughnesses, which normally have a
short length scale. Ruban and Goldstein demonstrated that the interaction between the
two perturbation modes leads to the formation of T-S waves behind the roughness. Along
with acoustic waves, free-stream turbulence is also known to have a significant influence
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on the laminar-turbulent transition in the boundary layer. The asymptotic theory of the
receptivity of the boundary layer to the free-stream turbulence was developed by Duck
et al. (1996). They found that, unlike the acoustic waves, the vorticity waves do not carry
pressure perturbations, and therefore are unable to penetrate into the boundary layer.
However, the steady flow perturbations produced by a wall roughness are not confined to
the boundary layer but extend to the flow outside the boundary layer, where they come
into interaction with the vorticity wave. Duck et al. (1996) showed that this interaction
results in a T-S wave forming downstream of the roughness.

Recently, the generation of T-S waves in the boundary layer due to elastic vibrations of
the wing surface was analysed by Ruban et al. (2013). Their results show that the wing
surface vibrations can cause pressure perturbations in the flow outside the boundary
layer, which, in turn, induce a Stokes layer near the wing surface. Two physical mecha-
nisms were found to be able to induce an oscillatory motion of the Stokes layer. The first
one is the classical mechanism where the pressure gradient, being a periodic function of
time, forces the fluid to oscillate in the direction along the wing surface. This process
is similar to the one describe by Ruban (1984) and Goldstein (1985) in their study of
the boundary layer receptivity to acoustic waves. In the second mechanism the pressure
itself, not the pressure gradient, makes up the Stokes layer. In both cases, T-S waves are
generated when the Stokes layer encounters a wall roughness. These and other examples
(Denier et al. 1991; Wu 2001; Kerimbekov & Ruban 2005; Wu et al. 2011) show that the
asymptotic approach has proven to be invaluable in uncovering possible mechanism of
the boundary-layer receptivity. However, the accuracy, with which the asymptotic theory
predicts the initial amplitude of the instability modes forming in the boundary layer, has
been under question.

Boundary layer receptivity problems have also been extensively analysed experimen-
tally (see for example Kachanov et al. 1979; Saric & White 1998; Dietz 1999; Borodulin
et al. 2013) and numerically (see for example Fucciarelli et al. 2000; Wanderley & Corke
2001; Jones et al. 2010; Tempelmann et al. 2012). The main challenge of the experi-
mental investigations is the measurement of the receptivity coefficients, since the initial
amplitudes of the boundary layer instabilities may be orders of magnitude smaller than
the amplitude of the surrounding disturbance environment. On the other hand, the main
difficulty associated with numerical simulations is to accurately represent the free stream
disturbance environment, whereby care needs to be taken to correctly formulate the
boundary conditions needed to capture the effects of the different types of perturbations
(acoustic waves, entropy waves and vorticity waves) on the boundary layer receptivity.
Despite the numerous efforts, comparisons between the predictions of the asymptotic
theory of receptivity and the numerical and experimental results are very limited. Com-
parisons with experiments can be found for example in Goldstein & Hultgren (1987),
Kozlov & Ryzhov (1990) and Wu (2001), while detailed comparisons with the predic-
tions of the finite-Reynolds number Orr-Sommerfeld theory (Zhigulev & Fedorov 1987;
Choudhari & Street 1992; Crouch 1992) are reported in Choudhari & Street (1992).
However, the range of parameters over which the asymptotic theory has been compared
with high-fidelity Navier-Stokes numerical simulations and/or experiments is very lim-
ited, hence a detailed evaluation of the capabilities of the theory is currently missing.
In this paper we address this issue by comparing the asymptotic theory with numerical
simulations of the compressible Navier-Stokes equations, focusing on two important re-
ceptivity problems: the T-S wave generation by a vibrating ribbon placed on the wall of
a flat plate and that due to the interaction between a small isolated roughness element
and an acoustic wave travelling in the flow direction. The investigation is carried out
through a parametric study on the effects of roughness element/vibrator longitudinal di-
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mension, Reynolds number, Mach number and T-S wave frequency. In this work, special
care has been taken in the formulation of the boundary conditions used to obtain the
relevant disturbance fields (particularly for the numerical analysis of the receptivity due
to sound), which are critical for the accurate determination of the receptivity coefficients.
The numerical techniques used to obtain the disturbance fields are described in § 4.2.

The paper is organised as follows. In § 2 the receptivity problems are introduced along
with the theoretical preliminaries of the triple-deck study. The main steps of the triple-
deck analysis are given in § 3. All the details of the numerical study are given in § 4. In § 5
we provide comparisons between the numerical and the theoretical results, along with a
discussion of the main findings. The paper ends in § 6, where the main conclusions of the
study are drawn.

2. Problem formulation and triple-deck scalings

Consider the two-dimensional laminar boundary layer that forms on the surface of a
flat plate in a subsonic free stream. We shall analyse the two receptivity problems arising
from the interaction between an acoustic wave and an isolated two-dimensional roughness
element and from the time-periodic vibrations of a ribbon placed on the flat plate wall,
as schematically depicted in figure 1 (note that, for brevity, in the remainder of this
paper the roughness element and the vibrating ribbon will be referred to as “the wall
disturbance” whenever the subject of the discussion applies to both). The mechanisms
responsible for the generation of T-S waves in the above two scenarios are fully described
by the compressible Navier-Stokes equations, which, for a two-dimensional flow, may be
written as
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= 0, (2.1a)
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ρh =

ρT

γM2
. (2.1e)

Note that, for brevity, only the principal viscous terms are shown in the momentum and
energy equations. The equations are written in terms of the following non-dimensional
variables

x =
x∗ − x∗0
L∗

, y =
y∗

L∗
, u =

u∗

U∗∞
, v =

v∗

U∗∞
, ρ =

ρ∗

ρ∗∞
,

p =
p∗

ρ∗∞U
∗2
∞
, µ =

µ∗

µ∗∞
, t =

t∗U∗∞
L∗

, h =
h∗

U∗2∞
,

 (2.2)

where the reference length L∗ is the distance between the leading edge of the flat plate
and the centre of the wall disturbance, which is positioned at x∗ = x∗0. The x∗ coordinate
measures the distance along the flat plate wall starting from its leading edge and the y∗

coordinate indicates the distance to the wall of the plate. The streamwise and wall-normal
velocities are denoted respectively as u∗ and v∗, the fluid density as ρ∗, the pressure as
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Figure 1. Schematic reppresentation of the receptivity problem.

p∗, the dynamic viscosity as µ∗ and the enthalpy as h∗. Asterisks indicate dimensional
quantities. The dimensionless parameters for this problem are the Reynolds number Re,
the Mach number M and the Prandtl number Pr , which we consider to be constant and
equal to Pr = 0.72.

In the absence of any external perturbations the laminar basic flow over a smooth flat
plate is governed by the classical compressible boundary layer equations which, using
Illingworth’s transformation (see for example White 2005), may be written as

(CF ′′)′ + FF ′′ = 0, (2.3a)

(CG′)′ + PrFG′ = −(γ − 1)CPrM2F ′′2, (2.3b)

where F ′(η) = UB is the basic flow streamwise velocity, G(η) = hB is the basic flow
enthalpy and C(G) = µBρB is the Chapman-Rubesin parameter. Equations (2.3) are
obtained after introducing the similarity coordinates

ξ = µ∗∞ρ
∗
∞U

∗
∞L
∗(1 + x) and η =

(1 + x)−1/2

√
2

∫ Y

o

ρdY, (2.4)

where Y = Re1/2y is the usual boundary layer wall normal coordinate. In this work we
assume that the flat plate wall is adiabatic, so that the wall-temperature is constant and
equal to

Tw = 1 + Pr1/2 γ − 1

2
M2. (2.5)

Under this condition, equations (2.3) admit smooth self-similar solutions which may be
expanded in Taylor series around x = 0 (i.e. around the centre of the wall disturbance)
as

UB(x, Y ) = UB0(Y ) +O(x),

ρB(x, Y ) = ρB0(Y ) +O(x),

hB(x, Y ) = hB0(Y ) +O(x),

µB(x, Y ) = µB0(Y ) +O(x)

 as x→ 0 and Y = O(1). (2.6)

In addition, the near wall behaviour of the boundary layer flow near x = 0 can also be
recovered by noting that the leading order terms in (2.6) may in turn be Taylor expanded
near the wall, hence one can write

UB = λY + · · · ,
ρB = ρw + · · · ,
hB = hw + · · · ,
µB = µw + · · ·

 as x→ 0 and Y → 0, (2.7)
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Figure 2. Triple-deck formalism.

where

λ =
dUB0

dY
|w =

F ′′(0)√
2Tw

(2.8)

and F ′′(0) is obtained by solving (2.3) numerically. The values of F ′′(0) associated with
the numerical simulations carried out in this work are given in § 4.2 (table 1).

As anticipated in the introduction, the asymptotic theory of receptivity is based on the
triple-deck theory, which describes the T-S waves in subsonic flows near the lower branch
of the neutral stability curve (see Lin 1946; Smith 1979a,b). Therefore, following the
triple-deck formalism, the flow near the wall disturbance is divided into three regions in
the wall normal direction, as depicted in figure 2. Strictly speaking, the wall disturbance
should be contained within the lower-deck (region 1) in order for the triple-deck theory to
be valid. In addition, the frequency of the vibrating ribbon and the free stream acoustic
wave has to match the lower branch T-S wave frequency, which is an O(Re1/4) quantity
(Lin 1946). Therefore, the frequency of the imposed oscillations, the streamwise length
of the wall disturbance and the wall-normal size (h) of the wall disturbance (taken here
as the amplitude of the vibrations of the ribbon or the height of the roughness element)

are taken to be of O(Re1/4), O(Re−3/8) and O(Re−5/8), respectively.
Based on the above considerations the shape of the roughness element and the vibrating

ribbon may be expressed respectively as

yr = hF

(
x

Re−3/8

)
and yr = hF

(
x

Re−3/8

)
G

(
t

Re−1/4

)
, (2.9)

where h = εRe−5/8 with ε = O(1). In order to obtain an analytical description of the
receptivity of T-S waves by the interaction between an acoustic wave and a roughness el-
ement, the disturbances induced inside the boundary layer by the acoustic wave also need
to be analysed using asymptotic analysis. It can be shown that the acoustic wave leads
to the generation of a thin oscillating layer near the wall, the Stokes layer, the thickness
of which is of the same order of magnitude as that of the lower-deck, as schematically
depicted in figure 2.

The asymptotic theory of the generation of T-S waves by sound is due to Ruban (1984)
and Goldstein (1985), while the receptivity problem of a vibrating ribbon was first solved
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in the context of the triple-deck theory by Terent’ev (1981). The aim of this paper is
to provide a detailed assessment of the applicability of the above theories by comparing
their predictions with high-fidelity Navier-Stokes simulation results. Therefore, only the
relevant portions of the theoretical analyses are provided in the following for complete-
ness.

3. Triple-deck theory

The flow in the vicinity of a wall disturbance given by one of equations (2.9) may be
described by the triple-deck theory. In the lower deck, after introducing the usual scaled
coordinates

t̄ = Re1/4 µ
1/2
w

λ−3/2β−1/2
t, x̄ = Re3/8 µ

1/4
w ρ

1/2
w

λ−5/4β−3/4
x and ȳ = Re5/8 µ

−1/4
w ρ

1/2
w

λ−3/4β−1/4
y (3.1)

and substituting the following asymptotic expansions

u = Re−1/8 µ
1/4
w ρ

−1/2
w

λ−1/4β1/4
Ū + · · · , v = Re−3/8 µ

3/4
w ρ

−1/2
w

λ−3/4β−1/4
V̄ + · · · ,

p = p∞ + Re−1/4 µ
1/2
w

λ−1/2β1/2
P̄ + · · · ,

 (3.2)

into the Navier-Stokes equations (2.1), the governing equations can be written as

∂Ū

∂x̄
+
∂V̄

∂ȳ
= 0, (3.3a)

∂Ū

∂t̄
+ Ū

∂Ū

∂x̄
+ V̄

∂Ū

∂ȳ
= −∂P̄

∂x̄
+
∂2Ū

∂ȳ2
, (3.3b)

with the boundary conditions given by

Ū = Ūw, V̄ = V̄w at ȳ = ȳr, (3.4a)

Ū = ȳ + · · · as x̄→ −∞, (3.4b)

Ū = ȳ + Ā(t̄, x̄) + · · · as ȳ →∞. (3.4c)

Here β =
√

1−M2, Ā is the usual unknown displacement function and Ūw and V̄w
represent the motion of the flat plate wall (Ūw = V̄w = 0 in the case of a steady
roughness element). It is important to note that, since the local Mach number is small
near the wall, we have assumed that the flow is incompressible and hence have ne-
glected density, viscosity and enthalpy disturbances. Given the scaling introduced for
the time t and and the x-coordinate it is convenient to explicitly introduce the scaled

frequency ω̄ = Re−1/4µ
−1/2
w λ−3/2β−1/2ω and the scaled streamwise wavenumber ᾱ =

Re−3/8µ
−1/4
w ρ

−1/2
w λ−5/4β−3/4α for future reference.

3.1. Receptivity of T-S waves by sound

In the lower-deck coordinates (3.1) the shape of the roughness element may be written

as ȳr = εF̄ (x̄), where we have used F = µ
1/4
w ρ

−1/2
w λ−3/4β−1/4F̄ and, since here we are

interested in the linear case, we with put ε � 1. Let us now assume that there is a
plane acoustic wave travelling in the free stream in the flow direction. The acoustic wave
amplitude is chosen so that the streamwise pressure gradient induced by the wave is of
the same order of magnitude as that induced by the roughness element. It turns out that
this condition is fulfilled if the acoustic wave amplitude is an order O(Re−1/8) quantity;
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here we put a = δRe−1/8, with δ � 1. Such a wave induces a Stokes layer near the wall;
the interaction between the Stokes layer disturbances and the roughness element gives
rise to a T-S wave.

The disturbances introduced into the boundary layer in the vicinity of the roughness
element are due to: the roughness element itself, denoted as say u1; the oscillations of the
Stokes layer, say us, and the interactions between the previous two, say u2. Therefore,
after applying Prandtl’s transformations

t̄ = t̃, x̄ = x̃, ȳ = ỹ + εF̃ ,

Ū = Ũ , V̄ = Ṽ + εŨ F̃ ′, P̄ = P̃ ,

F̄ = F̃ ,

 (3.5)

which are used to simplify the wall boundary conditions, we look for lower-deck solutions
in the following form

Ũ = ỹ + δus(t̃, xs, ỹ) + εu1(x̃, ỹ) + εδu2(t̃, x̃, ỹ) + · · · , (3.6a)

Ṽ = Re−1/8δvs(t̃, xs, ỹ) + εv1(x̃, ỹ) + εδv2(t̃, x̃, ỹ) + · · · , (3.6b)

P̃ = Re1/8δps(t̃, xs) + εp1(x̃) + εδp2(t̃, x̃) + · · · , (3.6c)

where xs = Re1/4x and the Stokes layer terms (subscript s) are introduced to ensure that
the solution matches the Stokes layer solution for x̃ → −∞. By substituting the above
into equations (3.3)-(3.4) we obtain a steady problem describing the roughness-induced
disturbances u1 (by collecting terms with ε) and an unsteady problem describing the
disturbances arising from the interaction between the Stokes layer and the roughness
element (by collecting terms with εδ).

In Fourier space, û1 = (2π)−1/2
∫∞
−∞ u1e−iᾱx̃ dx̃, the steady problem has the solution

û1 = Γ(ζ; ᾱ)F̂ (ᾱ) and v̂1 = Θ(ζ; ᾱ)F̂ (ᾱ), where ζ = (iᾱ)1/3ỹ and

Γ(ζ; ᾱ) = − 3(iᾱ)1/3|ᾱ|
3Ai′(0)− |ᾱ|(iᾱ)1/3

∫ ζ

0

Ai(s) ds, (3.7a)

Θ(ζ; ᾱ) = −(iᾱ)2/3

∫ ζ

0

Γ(s; ᾱ) ds. (3.7b)

The unsteady problem admits time-harmonic solutions u2 = 1/2ǔ2 exp(iω̄t̃)+c.c. and,
by taking the Fourier transform û2 = (2π)−1/2

∫∞
−∞ ǔ2e−iᾱx̃ dx̃, can be expressed as

d3û2

dz3
− zdû2

dz
= F̂ (ᾱ)Φ(ỹ; ᾱ), (3.8a)

û2 = 0 for z = z0, (3.8b)

d2û2

dz2
= (iᾱ)1/3p̂2w for z = z0, (3.8c)

û2 =
p̂2w

|ᾱ|
for z =∞, (3.8d)

where z = z0 + (iᾱ)1/3ỹ, with z0 = (iω̄)/(iᾱ)2/3, and

Φ(ỹ; ᾱ) = (iᾱ)−1 d

dỹ

(
iαU◦s Γ + Θ

dU◦s
dỹ

)
, (3.9a)

U◦s =
1

2

µ
−1/4
w ρ

−1/2
w

λ1/4β−1/4

M

1 +M

[
1− e−(1+i)

√
ω̄/2ỹ

]
. (3.9b)
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Note that (3.9b) represents the Stokes layer disturbance us evaluated at the centre of the
roughness element. From equations (3.8) one can easily show that

p̂2w =

|ᾱ|Ai′(z0)F̂ (ᾱ)

∫ ∞
z0

η(z) dz

Ai′(z0)− (iᾱ)1/3|ᾱ|
∫ ∞
z0

Ai(z) dz

, (3.10)

where η(z) is the solution of the boundary-value problem η′′ − zη = Φ, with η′(z0) = 0
and η(∞) = 0, and Ai and Ai′ are, respectively, the Airy function and its first derivative.

Finally, the wall pressure disturbance induced by the interaction between the acous-
tic wave and the roughness element can be obtained after taking the inverse Fourier
transform, leading to

p̌2w = −
√

2πCrF̂ (ᾱ1)eiᾱ1x̃ for x̃→∞, (3.11)

where

Cr =

ᾱAi′(z0)

∫ ∞
z0

η(z) dz

4

3
(iᾱ)1/3

∫ ∞
z0

Ai(z) dz − 2

3
Ai(z0)

z0

ᾱ

[
z0 + i(iᾱ)4/3

]
∣∣∣∣∣∣∣∣
ᾱ1

(3.12)

is the receptivity coefficient. Here ᾱ1 and ω̄1 are, respectively, the wavenumber and
frequency of a lower branch T-S wave. The inverse Fourier transform was calculated
for ω̄ → ω̄1 = 2.29797, in which case all the poles of (3.10) are complex with positive
imaginary parts, except for the first one, ᾱ1 = −1.0005, which is real. Therefore, as
x̃ → ∞ the contribution of the complex poles to the wall-pressure becomes negligible
and the inverse Fourier transform may be easily calculated using the resiude of (3.10)
at ᾱ1. It is important to note that the expression at the denominator of equation (3.10)
gives the well known large Reynolds number version of the Orr-Sommerfeld equation for
a Blasius boundary layer, i.e.

Ai′(z0)− (iᾱ)1/3|ᾱ|
∫ ∞
z0

Ai(z) dz = 0, (3.13)

whose first root describes the T-S wave.

3.2. The vibrating ribbon problem

The shape of the vibrating ribbon may be written using lower-deck coordinates as ȳv =
εF̄ (x̄)G(t̄). In this case, we look for solutions to (3.3)-(3.4) in the following form

Ū = ȳ + εu1 + · · · , V̄ = εv1 + · · · , P̄ = εp1 + · · · . (3.14)

In order to model the presence of a vibrating ribbon we use slip velocities at ȳ = 0. These
are obtained by expanding the near wall flow in Taylor series and retaining the dominant
terms; we obtain u1 = −F̄ (x̄)G(t̄) and v1 = F̄ (x̄)G′(t̄) at ȳ = 0.

Since the vibrating ribbon introduces time-harmonic oscillations into the system, the
problem admits time-harmonic solutions u1 = 1/2ǔ1 exp(iω̄t̄)+c.c.. It can then be shown
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that, in Fourier space, equations (3.3)-(3.4) reduce to

d3û1

dz3
− zdû1

dz
= 0, (3.15a)

û1 = −F̂ (ᾱ) for z = z0, (3.15b)

d2û1

dz2
= (iᾱ)1/3p̂1w for z = z0, (3.15c)

û1 =
p̂1w

|ᾱ|
for z =∞. (3.15d)

From the above equations one can easily find that

p̂1w = − |ᾱ|Ai′(z0)F̂ (ᾱ)

Ai′(z0)− (iᾱ)1/3|ᾱ|
∫ ∞
z0

Ai(z) dz

. (3.16)

The wall pressure disturbance introduced by the vibrating ribbon is finally obtained by
taking the inverse Fourier transform, leading to

p̌1w =
√

2πCvF̂ (ᾱ1)eiᾱ1x̄ for x̄→∞, (3.17)

where

Cv =
ᾱAi′(z0)

4

3
(iᾱ)1/3

∫ ∞
z0

Ai(z) dz − 2

3
Ai(z0)

z0

ᾱ

[
z0 + i(iᾱ)4/3

]
∣∣∣∣∣∣∣∣
ᾱ1

(3.18)

is the receptivity coefficient.

4. Details of the numerical study

4.1. The governing equations and their numerical treatment

The receptivity problems discussed theoretically in the previous sections may also be
analysed numerically by directly solving the compressible Navier-Stokes equations. In
this work a generic flow variable ψ is decomposed into a steady part ψ̄ and an unsteady
part ψ′. The steady part of the flow is calculated using the SBLI code, developed at the
University of Southampton, which solves the full compressible Navier-Stokes equations
written in dimensionless form as

∂ρ̄

∂t
+
∂ρ̄ūj
∂xj

= 0, (4.1a)

∂ρ̄ūi
∂t

+
∂ρ̄ūiūj
∂xj

+
∂p̄

∂xi
=
∂τ̄ij
∂xj

, (4.1b)

∂ρ̄Ē

∂t
+
∂
(
ρ̄Ē + p̄

)
ūi

∂xi
= − ∂q̄i

∂xi
+
∂ūiτ̄ij
∂xj

. (4.1c)

These are advanced in time until convergence starting from a suitable initial condition.
The components τ̄ij of the viscous stress tensor are defined as

τ̄ij =
µ̄

Re

(
∂ūj
∂xi

+
∂ūi
∂xj
− 2

3

∂ūk
∂xk

δij

)
, (4.2)
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where δij is the usual Kronecker delta function. The total energy per unit mass is defined
as

Ē =
T̄

γ(γ − 1)M2
+

1

2
ūiūi (4.3)

and the dynamic viscosity is calculated from the temperature field using the Sutherland’s
law µ̄ = T̄ 3/2(1 +S∗/T ∗∞)/(T̄ +S∗/T ∗∞), where S∗ = 110.4 K is the Sutherland constant
for air and T ∗∞ = 273.15 K. The pressure p̄ and the heat fluxes q̄i are calculated from the
equation of state and Fourier’s law of heat conduction, given respectively by

p̄ =
ρ̄T̄

γM2
and q̄i = − µ̄

(γ − 1)M2PrRe

∂T̄

∂xi
. (4.4)

Having calculated the basic flow, the same equations may in principle be solved to
obtain the unsteady part of the flow. However, since in this work the unsteady perturba-
tions are considered to be small, it was convenient to linearise the equations about the
steady flow and adapt the SBLI code to solve the linearised compressible Navier-Stokes
equations, written in the following form

∂ρ′

∂t
+
∂ρ̄u′i
∂xi

+
∂ρ′ūi
∂xi

= 0 (4.5a)

∂u′i
∂t

+

(
ρ′

ρ̄
ūj + u′j

)
∂ūi
∂xj

+ ūj
∂u′i
∂xj

+
1

ρ̄

∂p′

∂xi
=

1

ρ̄

∂τ ′ij
∂xj

(4.5b)

∂T ′

∂t
+ ūi

∂T ′

∂xi
+

(
ρ′

ρ̄
ūi + u′i

)
∂T̄

∂xi
+ B

(
p̄
∂u′i
∂xi

+ p′
∂ūi
∂xi

)
= −B ∂q

′
i

∂xi
+ BD′, (4.5c)

where B = γ(γ − 1)M2/ρ̄. The unsteady pressure p′ and the linearised heat fluxes q′i are
given by the linearised versions of equations (4.4) and may be written respectively as

p′ =
1

γM2

(
ρ̄T ′ + ρ′T̄

)
and q′i = − 1

(γ − 1)M2PrRe

(
µ̄
∂T ′

∂xi
+ µ′

∂T̄

∂xi

)
, (4.6)

while the components τ ′ij of the linear viscous stress tensor appearing in (4.5b) and the
linear viscous dissipation term D′ appearing in (4.5c) are given respectively by

τ ′ij =
1

Re

{
µ̄

(
∂u′i
∂xj

+
∂u′j
∂xi
− 2

3

∂u′k
∂xk

δij

)
+ µ′

(
∂ūi
∂xj

+
∂ūj
∂xi
− 2

3

∂ūk
∂xk

δij

)}
(4.7)

and

D′ =
∂ūi
∂xj

τ ′ij +
∂u′i
∂xj

τ̄ij . (4.8)

Note that, since here we are interested in the two-dimensional problem, the summation
indexes i, j and k take values 1 and 2 and we put (x1, x2) = (x, y) and (u1, u2) = (u, v).

Both the full and the linearised compressible Navier-Stokes equations are solved nu-
merically for generalised curvilinear coordinates using high order finite-differences. The
spatial discretisation is treated using a standard fourth-order central difference scheme
to calculate derivatives at internal points, while close to boundaries a stable boundary
treatment by Carpenter et al. (1999) is applied, giving overall fourth-order accuracy.
Time integration is based on a third-order compact Runge-Kutta method (Wray 1990).
The full nonlinear code employs an entropy splitting approach developed by Sandham
et al. (2002), whereby the inviscid flux derivatives are split into conservative and non-
conservative parts. The entropy splitting scheme, together with a Laplacian formulation
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Useful part of the computational domain

Roughness element/vibrating ribbon

Buffer zone

Sponge region

Boundary layer edge

Acoustic wave

Tollmien-Schlichting wave

x
y

Flat plate

Figure 3. Schematic representation of the numerical treatment, showing the buffer zone and
the sponge region in grey, which are place respectively upstream and downstream of the useful
par of the computational domain.

of the heat transfer and viscous dissipation terms in the momentum (4.1b) and energy
(4.1c) equations (which prevents the odd-even decoupling typical of central differences,
see Sandham et al. 2002), helps improve the stability of the low dissipative spatial discreti-
sation scheme used. The linearised code retains the Laplacian formulation for the heat
transfer term in the momentum (4.5b) and energy (4.5c) equations and for the viscous
dissipation term in the momentum equation. The SBLI code has multi-block capabilities
and is made parallel (both intra- and inter-block) using the Message Passing Interface
(MPI) library. The code has been extensively validated (see for example De Tullio 2013;
De Tullio & Sandham 2010; De Tullio et al. 2013).

4.2. Flow configurations, computational domains and boundary conditions

A schematic representation of the numerical technique used for the receptivity studies
is given in figure 3. The numerical simulations are performed on a computational do-
main with the inflow boundary starting downstream of the flat plate leading edge. In
the case of the nonlinear Navier-Stokes simulations, the domain inflow is initialised with
a compressible laminar similarity solution obtained after numerically solving (2.3) and
a pressure extrapolation boundary condition is then applied, whereby the inflow con-
servative variables are calculated by linearly extrapolating the pressure from within the
domain. Wave reflections from the domain external boundaries are controlled through
the use of characteristic boundary conditions (originally derived by Thomson 1987, 1990)
at the top and outflow boundaries. In addition, a sponge region is introduced near the
outflow boundary, where at the end of each time-step the conservative variables vector
q is updated as qnew = qold − σ∆t/2 [1 + cos (πξ/Lsp)] {qold − qref}, where ∆t is the
simulation time-step, σ = 0.05 is a damping factor, ξ is the streamwise coordinate mea-
sured from the start of the sponge, Lsp is the streamwise extent of the sponge and qref is
given by the similarity solution vector used for the flow initialisation. The characteristic
conditions and the sponge region are used in the nonlinear Navier-Stokes simulations
to minimize transients to steady state. No-slip and isothermal boundary conditions are
applied at the wall, where the wall-temperature is given by equation (2.5).

The linearised Navier-Stokes equations are solved using characteristic boundary con-
ditions for the top and outflow boundaries in all cases and also for the inflow boundary
for the cases involving a vibrating ribbon. The walls are considered no-slip and isother-
mal. For the study of the receptivity due to sound, an accurate formulation of the inflow
boundary conditions is of critical importance. In this case a prescribed time-varying in-
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flow boundary condition is used, whereby the acoustic waves are introduced using the
complex vector ψ of eigenfunctions of the downstream travelling acoustic modes, which
is obtained from parallel compressible linear stability computations (see Balakumar &
Malik 1992). The boundary condition reads q0 = ψ exp(i2πft) + c.c., where f is a di-
mensionless frequency. It is important to note that, since the inflow condition used for
the nonlinear Navier-Stokes simulations is not a solution of the full Navier-Stokes equa-
tions, a small region is present near the domain inflow where the basic flow undergoes
a slight adjustment. The coupling between the unsteady acoustic disturbances imposed
at the inflow and the adjustment of the basic flow leads to the excitation of a small T-S
wave immediately downstream of the inflow boundary, which in turn affects the acous-
tic receptivity process at the roughness location. Therefore, in order to obtain a clean
disturbance field, this small region is removed from the basic flow used in the linearised
Navier-Stokes simulations and a buffer region is introduced near the inflow boundary
where any residual numerical oscillations induced due to the introduction of the acoustic
mode eigenfunctions are eliminated by a combination of filtering and grid stretching. As
will be shown in § 5.1, this technique leads to a disturbance field given only by an acoustic
wave travelling in the flow direction and the induced Stokes layer.

The vibrating ribbon receptivity study is carried out using the laminar boundary layer
over the smooth flat plate as the basic flow and the vibrating ribbon is modelled in
the linearised Navier-Stokes simulations by appropriate slip velocities at the flat plate
wall. Similarly to the approach used for the derivation of the theoretical result, the slip
velocities, which are needed in order to satisfy the no-slip condition at the surface of the
vibrating ribbon, are calculated by Taylor expanding the boundary layer flow around
y = 0. After retaining only the principal terms in the Taylor expansion we obtain

u′w = −∂ū
∂y
F (x)G(t), v′w = F (x)

dG(t)

dt
, (4.9)

where G(t) = cos(2πft). The linearised Navier-Stokes simulations employ a sponge region
(with qref = 0) near the outflow boundary to absorb the downstream travelling waves
(acoustic and T-S waves). The buffer region is used in all cases, as it also damps the
upstream travelling acoustic waves which may be scattered by the roughness or the
vibrating ribbon. Of course, the results obtained in the buffer and sponge regions are
discarded and only the results obtained in the remaining useful part of the computational
domain will be considered in the analysis.

The roughness element and the vibrating ribbon are assumed to have the same Gaus-
sian shape given by

F (x) = exp

[
− x2

2 (∆/6)
2

]
, (4.10)

where ∆ is used as a dimensionless measure of the width of the Gaussian; it gives ap-
proximately the full Gaussian width at one percent of its maximum. The flow over the
roughness element was calculated by solving the nonlinear Navier-Stokes equations using
a body-fitted computational grid. A roughness height of h∗/δ∗in = 10−3 was considered
in all cases, where δ∗in is the displacement thickness evaluated at the start of the useful
part of the computational domain. Note that, since the unsteady flows are calculated by
solving the linearised Navier-Stokes equations, the amplitudes of the vibrations of the
ribbon and the acoustic waves are not relevant for the analysis.

The main part of the numerical study focuses on the assessment of the asymptotic the-
ories for the prediction of the linear receptivity of lower branch T-S waves. To this end,
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Case M T ∗w/T
∗
∞ F ′′(0) Re Reδ∗in ∆∗/δ∗in ∆/λTS f = f∗µ∗∞/ρ

∗
∞U

∗
∞

M0.2A1 0.2 1.007 0.4700 35.1× 106 10000 100.0 1.0 1.860× 10−7

M0.2A2 0.2 1.007 0.4700 35.1× 106 10000 50.0 0.50 1.860× 10−7

M0.2A3 0.2 1.007 0.4700 35.1× 106 10000 75.0 0.75 1.860× 10−7

M0.2A4 0.2 1.007 0.4700 35.1× 106 10000 125.0 1.25 1.860× 10−7

M0.2A5 0.2 1.007 0.4700 35.1× 106 10000 150.0 1.50 1.860× 10−7

M0.2B 0.2 1.007 0.4700 8.4× 106 4750 80.0 1.0 5.747× 10−7

M0.2C 0.2 1.007 0.4700 4.8× 106 3500 73.25 1.0 9.143× 10−7

M0.2D 0.2 1.007 0.4700 2.6× 106 2500 66.71 1.0 1.512× 10−6

M0.2E 0.2 1.007 0.4700 1.0× 106 1500 58.27 1.0 3.065× 10−6

M0.2F 0.2 1.007 0.4700 0.5× 106 965 55.97 1.0 5.637× 10−6

M0.2G 0.2 1.007 0.4700 0.1× 106 325 40.85 1.0 2.991× 10−5

M0.4A 0.4 1.027 0.4713 35.1× 106 10280 103.3 1.0 5.536× 10−7

M0.4B 0.4 1.027 0.4713 8.4× 106 4877 82.71 1.0 1.780× 10−7

M0.6A 0.6 1.061 0.4735 35.1× 106 10740 110.2 1.0 5.149× 10−7

M0.6B 0.6 1.061 0.4735 8.4× 106 5088 87.95 1.0 1.653× 10−7

M0.8A 0.8 1.108 0.4766 35.1× 106 11370 122.0 1.0 4.649× 10−7

M0.8B 0.8 1.108 0.4766 8.4× 106 5377 96.52 1.0 1.482× 10−7

Table 1. Details of the numerical simulations performed. Each case shows the numerical simu-
lation parameters used for both the acoustic wave and vibrating ribbon receptivity studies. Note
that here ∆∗ is the dimensional version of ∆ and λTS is the dimensionless T-S wave wavelength
and f∗ is dimensional frequency measured in cycles per second.

a parametric study is carried out, where the modifications introduced by the variations
of the roughness element or vibrating ribbon longitudinal dimension ∆, the Reynolds
number and the Mach number are analysed and compared with the theoretical predic-
tions. Details of the numerical simulations carried out are given in table 1. It should be
noted that each of the cases shown in the table refers to both the acoustic wave and
vibrating ribbon receptivity studies. For the acoustic wave receptivity study two nonlin-
ear Navier-Stokes and two linearised Navier-Stokes simulations are performed for each
case to obtain, respectively, the basic flows and the unsteady fields for the cases with
and without roughness element. On the other hand, for the vibrating ribbon receptivity
study only one nonlinear and one linearised Navier-Stokes simulations are required per
case. The frequency of the unsteady perturbations introduced in each case corresponds
to the frequency of a T-S wave on the lower branch of the neutral stability curve at
x = 0 and are given in table 1. Additional numerical simulations have been performed to
investigate the effects of T-S wave frequency and roughness height, the details of which
are reported in §5.3.

When normalised by δ∗in, the size of the computational domains used is the same in
all cases. The streamwise and wall-normal extents of the useful computational domain
portion are L∗x/δ

∗
in × L∗y/δ∗in = 550 × 160 and the number of grid-points in the x and

y directions are Nx × Ny = 501 × 415. Note that normalisation by L∗ may be easily
recovered by making use of the Reynolds numbers Re (based on L∗) and Reδ∗in (based
on δ∗in) given in table 1. The numerical grid employed to obtain the results presented
in the following has constant grid spacing in the streamwise direction and is stretched
in the wall-normal direction according to y = Ly sinh (byη) /by, where 0 6 η 6 1 and
by = 5.342 is the stretching factor; it was chosen after a grid convergence study which
showed negligible variations of the receptivity and subsequent linear growth of the T-S
waves when using a grid with double the number of points in each direction.
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Figure 4. Boundary layer response due to the interaction of an acoustic wave with an iso-
lated roughness element for case M0.2A1. The plot shows contours of instantaneous pressure
disturbance p2.

5. Numerical results and comparisons with theory

5.1. Lower branch T-S wave receptivity by sound

The T-S wave receptivity by sound is analysed numerically by subjecting the laminar
basic flow over the roughness element to the inflow disturbances described in § 4.2. Here,
for consistency with the terminology used for the derivation of the theoretical result, the
solution obtained for any flow variable, say the u-velocity, is decomposed as

u = UB + us + u1 + u2, (5.1)

where UB represents the boundary layer flow over a smooth flat plate, us is the unsteady
disturbance introduced by the acoustic wave, u1 is the steady disturbance introduced by
the roughness element and u2 is the disturbance generated by the interaction between
us and u1. The last term includes the evolution of the T-S waves and is obtained as the
difference between the linearised Navier-Stokes results obtained for the cases with and
without roughness element.

An example of the pressure disturbance p2 induced in the boundary layer by the
interaction between the acoustic wave and the roughness element at M = 0.2 is shown
in figure 4. It can be seen that the interaction provides the frequency and wavenumber
resonance conditions required for the excitation of a T-S wave in the boundary layer
downstream of the roughness element. The acoustic wave/roughness element interaction
also leads to the scattering of an additional acoustic wave. At M = 0.2 the amplitude
of this wave is small, hence is not visible in figure 4, but it grows as the Mach number
increases.

Before attempting a comparison between the numerical and theoretical results a veri-
fication of the numerical solutions obtained is in order. In particular, it is important to
verify that the disturbances imposed at the inflow boundary introduce “clean” acoustic
waves (and the induced Stokes layer) in the useful part of the computational domain (i.e.
any residual numerical disturbances triggered at the inflow of the computational domain
are successfully dissipated within the buffer region) and that the disturbances generated
by the acoustic wave/roughness element interaction are well captured by the numerical
scheme. Figure 5(a) shows the us-disturbance amplitude profile (normalised with the am-
plitude of the pressure perturbations in the free stream) obtained at x = 0 in the case of a
smooth flat plate for the different Mach numbers considered. The Navier-Stokes solutions
are in excellent agreement with the acoustic mode eigenfunctions obtained from linear
stability theory, indicating that the disturbances introduced in the numerical simulations
are a close representation of the disturbances induced by a plane acoustic wave travel-



16 Nicola De Tullio, Anatoly I. Ruban

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

|us|/a

y∗
/δ

∗ in

(a)

M = 0.2

M = 0.4 M = 0.6

M = 0.8

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

|u2|/maxy(|u2|)

y∗
/δ

∗ in

 

 

(b)

Navier-Stokes

LST

Figure 5. Comparing the linearised Navier-Stokes results with linear stability calculations. (a)
Disturbances induced in the boundary layer by the acoustic wave in the absence of a roughness
element for cases M0.2A1, M0.4A, M0.6A and M0.8A. (b) The u-velocity amplitude function
at x = 340 of the T-S wave generated by the interaction between the acoustic wave and the
roughness element for case M0.2A1.

ling in the flow direction. Figure 5(b) gives a comparison between the u2-disturbance
amplitude profile obtained for case M0.2A1 at x = 340 and the corresponding T-S wave
eigenfunction obtained from LST at the same x-position. The excellent agreement indi-
cates that the interaction between the acoustic waves and the roughness element leads
to the excitation of a T-S wave (in addition to other stable waves) which is well captured
in the numerical solution.

The comparisons between the asymptotic theory and the Navier-Stokes simulations are
performed here for the wall-pressure disturbance p2w induced by the interaction between
the acoustic wave and the roughness element. The amplitude distribution of p2w along
the streamwise direction is extracted by projecting the numerical results into Fourier
space at each x-position using the following discrete Fourier transform formula

Apw(x) =
2

N

∣∣∣∣∣∣
N∑
j=1

p̃w(x, tj)e
−i

2π(j−1)
N

∣∣∣∣∣∣ , (5.2)

where i is the complex unity and N is the total number of samples taken over one period
of the disturbance signal. Notice that only one frequency is excited in each of the cases
analysed, hence there is only one non-zero Fourier coefficient. The normalisation factor
2/N is necessary to recover the disturbance amplitude in the physical space; it gives unit
Fourier coefficients for a disturbance signal given by sinusoidal waves. The results are
shown in figures 6(a) and 6(b) (black lines) for the different Reynolds numbers and Mach
numbers considered, respectively. The figures also show the T-S wave growth predicted
using local spatial LST by calculating the growth rate −αi at different x-positions and
integrating in the streamwise direction. It can be seen that, after an initial beating,
the wall-pressure disturbance signal grows monotonically in the downstream direction
following the predicted T-S wave behaviour. Note that the numerical simulations were
designed to excite a T-S wave on the lower branch of the neutral stability curve at the
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Figure 6. Streamwise variation of the amplitude wall-pressure perturbation obtained in the
presence of a roughness element: (a) cases M0.2A1, M0.2B, M0.2C, M0.2D and M0.2E; (b)
cases M0.2A1, M0.4A, M0.6A and M0.8A.

centre of the roughness element. In fact, based on LST, the growth rate is zero at x = 0
and increases further downstream as the wave enters the unstable region of the boundary
layer.

In this work we are interested in the initial amplitude of the T-S wave generated by the
interaction. In the vicinity of the roughness, the perturbation field is rather complicated.
However, downstream of the roughness only one perturbation mode survives, the T-
S wave. Our task is to find the initial amplitude of this wave, which is recovered by
making use of the LST result; the amplitude growth predicted by LST is scaled to
match the Navier-Stokes solution downstream of the initial beating, in a region where
the disturbance signal is dominated by the T-S wave, say x = xp. The amplitude A0 of
the wave at the centre of the roughness element is then simply given by the scaled LST
result at x = 0, shown by the grey-filled circles (red online) in figure 6. It is calculated as

A0 =
Apw(xp)

exp

[∫ xp

0

−αi(x) dx

] . (5.3)

The initial T-S wave amplitudes extracted from the Navier-Stokes solutions for the
different flow conditions considered are compared with the theoretical predictions in
figure 7. Since the problem is linear, the T-S wave amplitude A0 is normalised by the
acoustic wave amplitude a and the roughness height h. In order to compare the numerical
results with theory we first note that the theoretical results presented in § 3.1 imply that

p2w = εδRe−1/4 µ
1/2
w

λ−1/2β1/2

{
1

2
p̌2weiω̄t̃ + c.c.

}
, (5.4a)

p̌2w = −
√

2πCrF̂ (ᾱ1)eiᾱ1x̃, (5.4b)

where the receptivity coefficient Cr is given by (3.12) and, based on equation (4.10), we
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Figure 7. Comparisons between the asymptotic theory and the Navier-Stokes simulations for
the acoustic wave receptivity study, showing the variation of initial T-S wave amplitude as a
function of: (a) ∆/λTS for Re = 35.1 × 106 and M = 0.2 (numerical cases M0.2A1, M0.2A2,
M0.2A3, M0.2A4 and M0.2A5); (b) Re for M = 0.2 and ∆/λTS = 1 (numerical cases M0.2B,
M0.2C, M0.2D, M0.2E, M0.2F and M0.2G); (c) M for ∆/λTS = 1 and Re = 35.1 × 106 and
Re = 8.4 × 106 (numerical cases M0.2A1, M0.2B, M0.4A, M0.4B, M0.6A, M0.6B, M0.8A and
M0.8B)

may write

F̂ (ᾱ1) =
µ
−1/4
w ρ

1/2
w

λ−3/4β−1/4

2π

6ᾱ1

∆

λTS
exp

[
−π

2

18

(
∆

λTS

)2
]
, (5.5)

where λTS is the dimensionless T-S wave wavelength. Finally, the initial T-S wave am-
plitude predicted by the asymptotic theory is given by

A0

ah
= Re5/8︸ ︷︷ ︸

ε/h

Re1/8︸ ︷︷ ︸
δ/a

Re−1/4 µ
1/2
w

λ−1/2β1/2
|p̌2w|. (5.6)

Figure 7(a) shows the initial T-S wave amplitude as a function of roughness longitudinal
dimension (∆) to T-S wavelength (λTS) ratio for Re = 35.1 × 106 and M = 0.2. The
numerical results are in excellent agreement with the theory, which in turn shows that, for
fixed Re, M and Tw, the T-S wave receptivity is only a function of the roughness element
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Fourier coefficient corresponding to the T-S wave wavenumber, rather than being directly
affected by the shape of the roughness element. It is easily shown that, theoretically, the
maximum receptivity is obtained for ∆/λTS = 3/π, which is in good agreement with
the numerical results. Figure 7(b) gives the variation of initial T-S wave amplitude as a
function of Reynolds number, for M = 0.2 and ∆/λTS = 1. Both the theory (see 5.6) and

the Navier-Stokes simulations show that A0/(ah) ∝ Re1/2. It is interesting to note that
the behaviour predicted by the asymptotic theory for large values of the Reynolds number
seems to be maintained also at low Reynolds numbers. In fact, the relative error between
theory and Navier-Stokes simulations remains approximately constant and roughly equal
to 7% of the theoretical result across the whole Reynolds number range considered.
Figure 7(c) shows that the agreement remains good as the Mach number is increased,
albeit the relative error increases slightly with Mach number to reach a maximum of
about 13.5% at M = 0.8. The asymptotic theory indicates that, when Re and ∆/λTS
are fixed, A0/(ah) ∝M/(1 +M)λ(M), which is in good qualitative agreement with the
Navier-Stokes results both for Re = 8.4× 106 and Re = 35.1× 106. Note that the factor
M/(1 + M) comes from equation (3.9b); therefore, since in our case λ decreases with
increasing Mach number, the enhanced receptivity observed in figure 7(c) for increasing
M is due to the fact that the amplitude of the near wall u-velocity disturbances induced
by the acoustic wave increases with Mach number.

It is important to note that, in all the results presented here, there is a substantial
discrepancy between the theoretically predicted lower branch T-S wavelength λTS =

Re−3/8µ
−1/4
w ρ

−1/2
w λ−5/4β−3/42π/ᾱ1 and that obtained from LST. As an example, con-

sider the cases shown in figure 7(a). In this case the asymptotic theory gives λTS = 0.0378
while from LST λTS = 0.0285, and hence there is a relative error of about 24.6%, which
increases with decreasing Reynolds number. Plotting the data in figure 7(a) against ∆,
instead of ∆/λTS , would result in a disagreement, between the theory and the numerical
results, regarding the position (in ∆) of the maximum T-S wave amplitude. This dis-
crepancy, and the associated error in T-S wave amplitude, are eliminated by interpreting
the theoretical results in terms of the parameter ∆/λTS . One can then obtain λTS using
LST and recover the ∆/λTS needed to calculate the Fourier transform of the roughness
shape, which in our case is given by equation (5.5).

5.2. Lower branch T-S wave receptivity due to a vibrating ribbon

The numerical analysis of the vibrating ribbon receptivity problem is carried out by
subjecting the laminar boundary layer flow to wall disturbances given by (4.9). Again,
in order to be consistent with the nomenclature used for the derivation of the theoretical
results, the flow is decomposed as

u = UB + u1, (5.7)

where, as usual, UB is the laminar boundary layer flow and u1 denotes the disturbance
field. An example of the disturbances introduced in the flow due to the vibrations of the
ribbon placed at the wall is given in figure 8 through instantaneous contours of p1, showing
that the vibrating ribbon leads to the excitation of a T-S wave propagating in the flow
direction. The T-S wave amplitude function, extracted from the Navier-Stokes results
at x = 340, is compared in figure 9(a) with the corresponding T-S wave eigenfunction
obtained by LST, showing a virtually perfect match. As for the acoustic wave receptivity
study, the amplitude of the wall-pressure disturbances is calculated by making use of
the discrete Fourier transform formula (5.2) and the initial T-S wave amplitude A0 is
obtained by combining the Navier-Stokes result with the T-S wave growth predicted by
LST. Figure 9(b) shows the results obtained for cases M0.2A1, M0.2B and M0.2E. The
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Figure 8. Boundary layer response due to the vibrations of a ribbon positioned at the flat
plate wall for case M0.2A1. The plot show contours of instantaneous pressure disturbance p1.
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Figure 9. Comparing the linearised Navier-Stokes results with LST. (a) The u-velocity ampli-
tude function at x = 340 of the T-S wave generated by the vibrating ribbon for case M0.2A1.
(b) Streamwise variation of the amplitude of the wall-pressure perturbation induced by the
vibrating ribbon for cases M0.2A1, M0.2B and M0.2E.

first thing to note is that, in addition to the T-S wave, the vibrating ribbon also excites
an acoustic wave, as can be inferred from the non-zero wall-pressure amplitude upstream
of the vibrating ribbon. In addition, the superposition of the acoustic wave with the
T-S wave leads to a periodic beating of the wall-pressure amplitude downstream of the
vibrating ribbon. As a consequence, in order to extract the T-S wave amplitude A0 from
the Navier-Stokes results, the amplitude growth predicted by LST is scaled to match,
at x∗/δ∗in = 200, the curve obtained by averaging between the maximum and minimum
amplitude envelopes. The amplitudes extracted using this procedure are denoted by grey-
filled circles (red online) in figure 9(b). Now, recall that the asymptotic theory gives

p1w = εRe−1/4 µ
1/2
w

λ−1/2β1/2

{
1

2
p̌1weiωt + c.c.

}
, (5.8a)

p̌1w = −
√

2πCvF̂ (ᾱ1)eiᾱ1x̄, (5.8b)
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Figure 10. Comparisons between the asymptotic theory and the Navier-Stokes simulations for
the acoustic wave receptivity study, showing the variation of initial T-S wave amplitude as a
function of: (a) ∆/λTS for Re = 35.1 × 106 and M = 0.2 (numerical cases M0.2A1, M0.2A2,
M0.2A3, M0.2A4 and M0.2A5); (b) Re for M = 0.2 and ∆/λTS = 1 (numerical cases M0.2B,
M0.2C, M0.2D, M0.2E, M0.2F and M0.2G); (c) M for ∆/λTS = 1 and Re = 35.1 × 106

(numerical cases M0.2A1, M0.4A, M0.6A and M0.8A)

where Cv and F̂ (ᾱ1) are given by (3.18) and (5.5), respectively. Therefore we may write

A0

h
= Re5/8︸ ︷︷ ︸

ε/h

Re−1/4 µ
1/2
w

λ−1/2β1/2
|p̌1w|. (5.9)

Comparisons between the theoretical and numerical results are shown in figure 10.
Figure 10(a) gives the T-S wave amplitude variation as a function of ∆/λTS for fixed
Reynolds number, Mach number and wall-temperature. It can be seen that, again, the
T-S wave receptivity is only a function of the roughness shape Fourier coefficient corre-
sponding to the wavenumber of the T-S wave and the maximum receptivity is obtained
for ∆/λTS = 3/π. The relative error between the theory and the Navier-Stokes simula-
tions is about 23% of the theoretical result in all cases. Figure 10(b) shows the T-S wave
amplitude variation as a function of Reynolds number. The asymptotic theory indicates
that the initial T-S wave amplitude is proportional to Re3/8 (see 5.9). The agreement be-
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Figure 11. Comparisons between the asymptotic theory and the Navier-Stokes simulations,
showing the variation of initial T-S wave amplitude as a function of frequency. The grey areas
delimit the range of unstable frequencies as predicted by LST. (a) Acoustic wave receptivity,
(b) vibrating ribbon receptivity.

tween theory and numerical simulations is good, with the 23% relative error being nearly
constant over the whole Reynolds number range considered. The T-S wave amplitude
variation as a function of Mach number is shown in figure 10(c). It is important to note
that, for fixed Re and ∆/λTS , the theory shows that

A0

h
∝ µ

1/4
w (M)ρ

1/2
w (M)

λ−5/4(M)β1/4(M)
, (5.10)

where the Mach number dependence for ρw and µw appears because we take the wall-
temperature to be specified according to (2.5). Therefore, the theoretical result presents
a singularity at M = 1 (i.e. β = 0), and hence numerical simulations and theory quickly
depart from each other as M → 1. Interestingly, however, the results also show that the
different T-S wave amplitudes obtained numerically for different Mach numbers follow
closely the behaviour predicted by (5.10) after neglecting the contribution from β to the
wall-pressure disturbance associated with the T-S wave, as shown by the dashed line in
figure 10(c).

5.3. Effects of disturbance frequency and roughness height

In the previous two sections we have shown that the predictions of the asymptotic theories
developed by Ruban (1984), Goldstein (1985) and Terent’ev (1981) compare well with
Navier-Stokes results for cases regarding the linear receptivity of lower branch T-S waves.
The analysis was restricted to these cases because, strictly speaking, triple-deck theory
only describes T-S waves near the lower branch of the neutral stability curve (Smith
1979a,b). In this section, the analysis will be extended by looking at how the theoretical
predictions compare with Navier-Stokes results as the frequency is increased within the
unstable T-S wave range. In addition, we will estimate the critical roughness height for
which the T-S wave receptivity by sound/roughness interaction first becomes nonlinear,
and hence can no longer be predicted by a linear theory.

Figures 11(a) and 11(b) show a comparison of the T-S wave amplitude variation as a
function of frequency, at M = 0.2 and Re = 1×106, for the acoustic and vibrating ribbon
receptivity cases, respectively. The figures report two sets of results: the dashed blue lines
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Figure 12. Comparisons between the asymptotic theory and the Navier-Stokes simulations for
the acoustic wave receptivity study, showing the variation of initial T-S wave amplitude as a
function of roughness height.

and the blue circles are for wall disturbances with width ∆ equal to the wavelength of the
excited T-S wave; the continuous red lines and the red dots are for wall disturbances with
∆ equal to the lower branch T-S wavelength. It can be seen that, in all cases, the variation
of T-S amplitude as a function of frequency is captured accurately by the asymptotic
theory. Interestingly, the agreement between the theoretical predictions and the Navier-
Stokes results remains good for frequencies well above the lower branch frequency. This
is especially true for the acoustic wave/roughness cases, while the agreement deteriorates
slightly as the frequency increases for the vibrating ribbon receptivity cases. Note that,
according to LST, the upper branch of the neutral curve is located at ω/ωLB ≈ 3.1, where
ωLB is the lower branch frequency, for the flow parameters considered. The calculation
of the unstable T-S wave amplitudes predicted by the asymptotic theories is carried out
by solving equation (3.13) for a chosen real frequency ω̄ to obtain the associated complex
ᾱ and z, which are then used in equations (3.11) and (3.17) to obtain the T-S wave
amplitudes. Note that the results in figure 11 are plotted against ω/ωLB in order to
minimise errors originating from the calculation of the lower branch frequency. In fact,
similarly to what was found for λTS in § 5.1, there is a substantial discrepancy between

the theoretically predicted ωLB = Re1/4µ
1/2
w λ3/2β1/2ω̄1 and that obtained from LST.

Finally, the variation of T-S wave amplitude as a function of roughness height h for
cases M0.2E and M0.2A1 is compared with the linear asymptotic theory result in fig-
ure 12. The plot shows numerical results for two different Reynolds numbers, namely
Re = 1.0× 106 (case M0.2E) and Re = 35.1× 106 (case M0.2A1). Note that, having nor-

malised A0 using Re1/2, the theoretical result becomes independent of Reynolds number.
The figure clearly shows that for h/δ99 < 0.06, where δ99 is the boundary layer thickness
at the centre of the roughness element, the numerical results follow closely the linear be-
haviour predicted by the asymptotic theory. On the other hand, the discrepancy between
theoretical and numerical results increases rather quickly starting from h/δ99 ≈ 0.06, in-
dicating that nonlinear effects start becoming important for h ≈ 0.06δ99 (or h ≈ 0.17δ∗).
This result is in very good agreement with that reported by Choudhari & Street (1992)
and Crouch (1992) when comparing their finite-Reynolds number Orr-Sommerfeld recep-
tivity theory results with the experiments of Saric et al. (1991), which were carried out
for a Reynolds number of Re = 3.39 × 105. Interestingly, these results suggest that the
critical value of h/δ99, needed for nonlinear receptivity, is little affected by the Reynolds
number.
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6. Conclusions

The receptivity of Tollmien-Schlichting waves in subsonic boundary layers has been in-
vestigated using triple-deck theory and numerical simulations of the compressible Navier-
Stokes equations. The investigation focused on the two receptivity problems arising due
to the interaction between an acoustic wave and a small isolated roughness element placed
on the wall of a flat plate and due to the time-periodic vibrations of a ribbon placed on
the wall of an otherwise smooth flat plate. A parametric study looking at the effects
of roughness element and vibrating ribbon longitudinal dimensions, Reynolds number,
and Mach number was performed in order to thoroughly investigate the accuracy of the
asymptotic theory for the prediction of lower branch T-S wave receptivity in subsonic
boundary layers.

The results show that the theoretical predictions are in good agreement with the
Navier-Stokes results. For both the receptivity problems analysed, the amplitude A0

of the excited T-S wave was found to be dependent on the Fourier transform of the
wall disturbance (i.e. the roughness element or the vibrating ribbon) rather than being
directly affected by its shape. In particular, only the Fourier coefficient corresponding to
the T-S wave wavenumber is responsible for the receptivity process. In the case of the
T-S wave receptivity due to sound, both the theoretical and numerical results indicate
that the T-S wave amplitude increases with Reynolds number proportionally to Re1/2.
In this case the agreement between theory and Navier-Stokes simulations is excellent.
Despite the theoretical results being derived for large values of the Reynolds number, the
numerical simulations show that the theory performs well for Reynolds numbers down to
at least Re = 1.0× 105; the relative error between theory and numerical simulations was
found to be about 7% of the theoretical result for Reynolds numbers between 1.0× 106

and 35.1 × 106 at M = 0.2. As the Mach number increases, the T-S wave receptivity
is enhanced mainly due to the higher near wall u-velocity disturbances induced by the
acooustic wave at higher free stream Mach numbers. The asymptotic theory suggests
that the T-S wave amplitude increases according to A0/(ah) ∝M/(1 +M)λ(M), which
agrees qualitatively with the numerical results obtained for both Re = 8.4 × 106 and
Re = 35.1×106. However, the relative error increases slightly for increasing Mach number,
reaching a maximum of about 13.5% at M = 0.8.

The results obtained for the vibrating ribbon receptivity problem indicate that the
amplitude of the excited T-S wave is proportional to Re3/8. In this case the relative er-
ror between theory and Navier-Stokes simulations is about 23% of the theoretical result
and remains nearly constant for Reynolds numbers between 1.0× 106 and 35.1× 106 at
M = 0.2. The agreement between theory and Navier-Stokes simulations remains good
also in this case, especially considering that the theoretical results were derived by keep-
ing only the leading order terms in the asymptotic expansions. When looking at how the
receptivity varies with Mach number it was found that, while the numerical simulations
show that the T-S wave amplitude decreases as the Mach number increases, the theo-
retically predicted wall-pressure presents a singularity for M = 1 and, as a consequence,
numerical and theoretical results quickly depart from each other as M → 1. The singu-
larity appears in the form of the factor β−1/4 and originates in the upper-deck. Despite
this singularity, it was found that the amplitude variation with Mach number extracted
from the numerical results follows closely that obtained from the theoretical result after
neglecting the contribution from β to the pressure disturbance at the wall, so that the

T-S wave amplitude varies as A0/h ∝ µ1/4
w (M)ρ

1/2
w (M)λ5/4(M).

Additional numerical simulations indicate that the asymptotic theory can also be used
to predict the receptivity of unstable T-S waves with good accuracy. In addition, in
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agreement with the findings of Choudhari & Street (1992) and Crouch (1992), we show
that the receptivity process due to the acoustic wave/roughness interaction is linear
provided the height of the roughness element is smaller than about 6% of the local
boundary layer thickness.

The theoretical triple-deck results are obtained under several assumptions regarding
the order of magnitude of the size, amplitude and frequency of the external disturbances.
These assumptions are needed in order to arrive at the asymptotic solutions for large
values of the Reynolds number. However, the numerical results presented in this work
show that the behaviour of the solutions obtained for Re → ∞ holds also for finite
Reynolds numbers and, in practise, the only conditions to be met in order for the theory
to give reliable predictions are that the amplitude of the disturbances considered (acoustic
wave, roughness element and vibrating ribbon for the cases analysed here) be small
enough for the receptivity process to be linear and that the free stream Mach number be
subsonic. As such, it appears clear that the asymptotic theory of receptivity represents
a good candidate for providing the amplitude information missing in current laminar-
turbulent transition prediction methods.
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