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ABSTRACT

Bayesian model selection provides a formal method of determining the level of support
for new parameters in a model. However, if there is not a specific enough underlying
physical motivation for the new parameters it can be hard to assign them meaningful
priors, an essential ingredient of Bayesian model selection. Here we look at methods
maximizing the prior so as to work out what is the maximum support the data could
give for the new parameters. If the maximum support is not high enough then one
can confidently conclude that the new parameters are unnecessary without needing to
worry that some other prior may make them significant. We discuss a computationally
efficient means of doing this which involves mapping p–values onto upper bounds of the
Bayes factor (or odds) for the new parameters. A p–value of 0.05 (1.96σ) corresponds
to odds less than or equal to 5:2 which is below the ‘weak’ support at best threshold.
A p–value of 0.0003 (3.6σ) corresponds to odds of less than or equal to 150:1 which is
the ‘strong’ support at best threshold. Applying this method we find that the odds on
the scalar spectral index being different from one are 49:1 at best. We also find that
the odds that there is primordial hemispherical asymmetry in the cosmic microwave
background are 9:1 at best.

1 INTRODUCTION

When there are several competing theoretical models,
Bayesian model selection provides a formal way of evalu-
ating their relative probabilities in light of the data and any
prior information available. A common scenario is where a
model is being extended by adding new parameters. Then
the relative probability of the model with the extra parame-
ters can be compared with that for the original model. This
provides a way of evaluating whether the new parameters are
supported by the data. Often the original model is “nested”
in the new model in that the new model reduces to the orig-
inal model for specific values of the new parameters. The
Bayesian framework automatically implements an Occam’s
razor effect as a penalization factor for less predictive models
– the best model is then the one that strikes the best balance
between goodness of fit and economy of parameters (Trotta
2007).

For nested models, the Occam’s razor effect is controlled
by the volume of parameter space enclosed by the prior
probability distributions for the new parameters. The rel-
ative probability of the new model can be made arbitrarily
small by increasing the broadness of the prior. Often this
is not problematical as prior ranges for the new parameters
can (and should) be motivated from the underlying theory.
For example, in estimating whether the scalar spectral in-
dex (n) of the primordial perturbations is equal to one (see
Sec. 4), the prior range of the index can be constrained to be
0.8 <∼ n <∼ 1.2 by assuming the perturbations were generated
by slow roll inflation. The sensitivity of the model selec-

tion result can also be easily investigated for other plausi-
ble, physically motivated choice of prior ranges (e.g., Trotta
(2007a,b)).

However, there are cases like the asymmetry seen in the
WMAP cosmic microwave background (CMB) temperature
data (see Sec. 5) where there is not a specific enough model
available to place meaningful limits on the prior ranges of the
new parameters. This hurdle arises frequently in cases when
the new parameters are a phenomenological description of
a new effect, only loosely tied to the underlying physics,
such as for example expansion coefficients of some series. In
these cases, an alternative is to choose the prior on the new
parameters in such a way as to maximise the probability of
the new model, given the data. If, even under this best case
scenario, the new model is not significantly more probable
than the old model, then one can confidently say that the
data does not support the addition of the new parameters,
regardless of the prior choice for the new parameters.

2 UPPER BOUNDS ON THE BAYES FACTOR

A model (M0) may be compared to a new model with extra
parameters (M1) using the Bayes factor (also known as the
odds)

B =
p(x|M1)

p(x|M0)
, (1)

where x is the data and the model likelihood p(x|Mi) (i =
0, 1) is given by
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p(x|Mi) =

∫
dθip(x|θi, Mi)p(θi|Mi) (2)

with θi denoting the parameters under model Mi. The Bayes
factor gives the change in the relative probability of the two
models brought about by the data x, i.e.

p(M1|x)

p(M0|x)
= B

P (M1)

P (M0)
, (3)

where P (Mi) (i = 0, 1) are the prior probabilities for the
two models and P (Mi|x) the posterior probabilities. The
level of support is usually categorized as either ‘inconclusive’
(| ln B| < 1), ‘weak’ (1 6 | ln B| 6 2.5), ‘moderate’ (2.5 6

| ln B| 6 5), or ‘strong’ (| lnB| > 5).
We denote the new parameters by θ and they are fixed

to be θ∗ under the simpler model (we restrict our consider-
ations to nested models). The Bayes factor is then, using a
generalized version of the Savage–Dickey density ratio (see
Trotta (2007) for details)

B =
p(θ∗|M1)

p(θ∗|x, M1)
, (4)

where p(θ∗|x, M1) is the posterior distribution under M1,
evaluated at θ = θ∗. If p(θ|M1) is made sufficiently broad,
p(θ∗|x, M1) depends only on the likelihood. Thus, B can
be made arbitrarily small by making p(θ|M1) sufficiently
broad (since the prior must be normalized to unity proba-
bility content, a broader p(θ|M1) corresponds to a smaller
value of p(θ∗|M1)). This is not problematical if the physi-
cal model underlying M1 is specific enough to provide some
well–motivated prior bounds on θ. When this is not the case,
an upper bound can still be obtained on B by optimizing
over all priors and choosing p(θ|M1) to be a delta function
centered at the maximum likelihood value, θmax. This is the
choice that maximally favours M1, and the upper bound on
the odds is then

B̄ =
p(x|θmax, M1)

p(x|θ∗, M0)
, (5)

corresponding to the likelihood ratio between θmax and θ∗.
However, such a choice of prior fails to capture that M1 is
supposed to be a more complex model than M0. Since θ∗

represents the theoretically motivated simpler hypothesis,
it makes sense that the alternative hypothesis has a more
spread out prior distribution for θ. Furthermore, if there is
a priori no strong preference for either θ > θ∗ or θ < θ∗, then
it may be preferable to maximize over priors that are sym-
metric about θ∗ and unimodal (the latter requirement com-
ing again from a principle of indifference). Berger & Sellke
(1987) show that maximizing B over all such p(θ|M1) is the
same as maximizing over all p(θ|M1) that are uniform and
symmetric about θ∗. We give an explicit example of this
procedure in Eq. (11).

However, this optimization may be computationally
prohibitive as evaluating Eq. (4) usually requires numerical
evaluation of high dimensional integrals (Mukherjee et al.
2006; Feroz & Hobson 2007). An alternative way of obtain-
ing an upper bound on B, that does not rely on explic-
itly specifying a class of alternative priors for θ, is to use
Bayesian calibrated p–values (Sellke et al. 2001). First, fre-
quentist methods are used to obtain the p–value. To do this,
a test statistic (t) needs to be chosen, with the general prop-
erty that the larger the value the less well the data agree

p–value B̄ ln B̄ sigma category

0.05 2.5 0.9 2.0
0.04 2.9 1.0 2.1 ‘weak’ at best
0.01 8.0 2.1 2.6
0.006 12 2.5 2.7 ‘moderate’ at best
0.003 21 3.0 3.0
0.001 53 4.0 3.3
0.0003 150 5.0 3.6 ‘strong’ at best
6 × 10−7 43000 11 5.0

Table 1. Translation table (using Eq. (8)) between p–values and
the upper bounds on the odds (B̄) between the two models. The
‘sigma’ column is the corresponding number of standard devia-
tions away from the mean for a normal distribution. In the ‘cat-
egory’ column are the descriptions for the different categories of
support reachable for the corresponding p–value.

with M0. A common choice is the improvement in the max-
imum likelihood value when the additional parameters are
allowed to vary. However, if the likelihood is computation-
ally expensive to obtain, then other measures may be used.
The p–value is given by

℘ = p(t > tobs(x)|M0), (6)

where tobs(x) is the value of t estimated from the data. The
key property of p–values is that if M0 is correct, and t is a
continuos statistic, then the probability distribution of ℘ will
be uniform, p(℘|M0) = 1 for 0 6 ℘ 6 1. The final result will
not be sensitive to the precise choice of t. The only property
needed for t is that it should be a continuous statistic and
larger values of t should correspond to less agreement with
M0. It follows that p(℘|M1) will be monotonically decreasing
for 0 6 ℘ 6 1. Sellke et al. (2001) express the Bayes factor
in terms of the distribution of the p–values

B =
p(℘|M1)

p(℘|M0)
= p(℘|M1) . (7)

They look at a wide range of non-parameteric monotoni-
cally decreasing distributions for p(℘|M1) and under mild
regularity conditions, they find the upper bound

B 6 B̄ =
−1

e℘ ln ℘
(8)

for ℘ 6 e−1, where e is the exponential of one. Table 1
lists B̄ for some common thresholds of ℘ and ln B. Note
how the p–value of 0.05 (a 95% confidence level result) only
corresponds to an odds ratio upper bound of B̄ = 2.5 and
so does not quite reach the “weak” support threshold even
for an optimized prior. Also note that in order order for
the “strong” support threshold to be reachable, σ > 3.6 is
required.

In general, for large sample size and under mild regular-
ity conditions, the p–value for the addition of one or more
new parameters can be estimated by finding the maximum
likelihood with the new parameters fixed (L∗

max), and when
the new parameters are allowed to vary (Lmax). Then the
quantity

∆χ2
eff ≡ −2 ln(L∗

max/Lmax) (9)

has a Chi squared distribution with the number of degrees
of freedom equal to the number of new parameters (Wilks
1938). It is important to note that for this to be valid none
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of the new parameters can have their fixed values on the
boundary of the parameter space (see e.g. Protassov et al.
(2002) for an astronomy-oriented example where this con-
dition does not hold). The p–value can then be estimated
by

℘ =

∫
∞

y=∆χ2

eff

χ2
ν(y) dy = 1 − Γ(ν/2, ∆χ2

eff/2)

Γ(ν/2)
(10)

where χ2
ν is the Chi squared distribution with ν degrees of

freedom, and ν is the number of new parameters. Eq. (10)
is simply the asymptotic probability of obtaining a ∆χ2 as
large or larger then what has actually been observed, ∆χ2

eff ,
assuming the null hypothesis is true. If the above procedure
cannot be applied (for instance because the new parameters
lie at a boundary of the parameter space), then the p–value
can still be obtained by Monte Carlo simulations.

A very different approach to estimating the Bayes factor
without having to specify a prior is the Bayesian Informa-
tion Criteria (BIC) (Schwarz 1978; Magueijo & Sorkin 2007;
Liddle 2007). The BIC assumes a prior for the new parame-
ters which is equivalent to a single data point (Raftery 1995).
Therefore, it will in general give lower values for B. The BIC
is complementary to the upper bound for B presented here
in that it provides a default weak rather than default strong
prior.

3 AN ILLUSTRATIVE EXAMPLE

Consider the case where under M0, x ∼ N (µ0, σ) for fixed µ0

(the null hypothesis), while under the alternative M1, x ∼
N (µ, σ) and N data samples are available (with σ known).
If the prior on µ is taken to be symmetric about µ = µ0 and
unimodal, then (Berger & Sellke 1987)

B̄ =
φ(K + t) + φ(K − t)

2φ(t)
(11)

where t ≡
√

N |x̄− µ0|/σ, φ(y) ≡ e−y2/2, and K is found by
solving

K[φ(K + t) + φ(K − t)] =

∫ K−t

−(K+t)

φ(y) dy . (12)

Alternatively, the p–value is given by

℘ = 1 −
∫ tobs

y=−tobs

φ(y) dy . (13)

This can be converted to a upper bound on the Bayes factor
using Eq. (8). The results for the two methods are virtually
identical and can be read off Table 1 where t is the number
of sigma.

Sellke et al. (2001) present an interesting simulation
study of this model. Consider the case described above, and
let us generate data from a random sequence of null hypoth-
esis (M0) and alternatives (M1), with µ0 = 0, σ = 1 and
µ ∼ N (0, 1). Suppose that the proportion of nulls and alter-
natives is equal. We then compute the p–value using Eq. (13)
and we select all the tests that give ℘ ∈ [α − ǫ, α + ǫ], for
a certain value of α and ǫ ≪ α. Among such results, which
rejected the null hypothesis at the 1−α level, we then deter-
mine the proportion that actually came from the null, i.e.

p–value sigma fraction of true nulls lower bound

0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018

Table 2. Proportion of wrongly rejected nulls among all results
reporting a certain p–value (simulation results). This illustrates
that the p–value is not equal to the fraction of wrongly rejected
true nulls, which can be considerably worse. This effect does not
depend on the assumption of Gaussianity nor on the sample size.
The right most column gives a lower bound on the fraction of
true nulls derived using Eqs. (8) and (14).

the percentage of wrongly rejected nulls. We assume that
either M1 or M0 is true. This allows us to use

P (M0|x) =
1

1 + B
. (14)

The results are shown in Table 2. We notice that among
all the “significant” effects at the 2σ level about 50% are
wrong, and in general when there is only a single alternative
at least 29% of the 2σ level results will be wrong.

The root of this striking disagreement with a common
misinterpretation of the p–value (namely, that the p–value
gives the fraction of wrongly rejected nulls in the long run) is
twofold. While the p–value gives the probability of obtain-
ing data that are as extreme or more extreme than what
has actually been observed assuming the null hypothesis is

true, one is not allowed to interpret this as the probabil-
ity of the null hypothesis to be true, which is actually the
quantity one is interested in assessing. The latter step re-
quires using Bayes theorem and is therefore not defined for
a frequentist. Also, quantifying how rare the observed data
are under the null is not meaningful unless we can compare
this number with their rareness under an alternative hy-
pothesis. Both these points are discussed in greater detail in
Berger & Sellke (1987); Sellke et al. (2001); Berger (2003).

4 SCALAR SPECTRAL INDEX

Here we evaluate the upper bounds on the Bayes factor for
the scalar spectral index (n) using WMAP combined with
other data, comparing a Harrison–Zeldovich model (n = 1)
to a model where n can assume other values. For this prob-
lem, there are well motivated priors. If the primordial per-
turbations are from slow roll inflation, then

n = 1 + 2η − 6ǫ (15)

where η and ǫ are the slow roll parameters and need to
be much less than one. For most models ǫ ≪ η and so a
reasonable prior bound is

0.8 <∼n <∼ 1.2 , (16)

which can be implemented by taking a Gaussian prior of the
form

p(ns|M1) = N (µ = 1.0, σ = 0.2). (17)

However, if the inflation potential (V ) is of the form

V = V0 − 1

2
m2φ2 (18)
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data ∆χ2
eff p–value lnB ln B̄ B

WMAP 6 0.014 – 1.8 6
(Spergel et al. 2007)

WMAPext+SDSS 8 0.005 2.0 2.7 15
+2df+No SZ
(Parkinson et al. 2006)

WMAPext+HST 8 0.004 2.7 2.8 16
(Kunz et al. 2006)

WMAPext+HST+SDSS 11 0.001 2.9 3.9 49
(Trotta 2007)

Table 3. The odds against a Harrison–Zeldovich spectrum. The
p–values where estimated from ∆χ2

eff
using Eq. (10). The upper

bounds on the Bayes factor were estimated using Eq. (8). Where
ln B is available it was calculated with the prior of Eq. (17).

(where φ is the inflaton, and V0 and m are constants)
then inflation can occur with η ∼ 1 (Linde 2001;
Boubekeur & Lyth 2005) and so a larger range of n may
be considered for the prior.

As there is such a broad range for the the prior on n,
it is useful to evaluate what is the upper bound on the odds
for a non–Harrison–Zeldovich spectrum, n 6= 1. In Table 3
we list a number of different studies of the variation of the
spectral index for a range of data. Where the Bayes factor
has been worked out it can be seen that our estimate of
the upper bound is always more than the evaluated version.
Also, for the case with the greatest amount of data there is
quite a large discrepancy between the upper bound and the
evaluated odds. This makes sense as the same prior for n
was used (Eq. (17)) but now the data is more constraining
and so the maximizing prior is narrower. Using the most
constraining data combination (WMAPext+HST+SDSS)
the upper limits on the odds against n = 1 is 49:1.
However, the odds against Harrison–Zeldovich could be
weakened by various systematic effects in data analysis
choices, e.g. inclusion of gravitational lensing, beam mod-
elling, not including Sunyaev-Zeldovich (SZ) marginaliza-
tion, and point-source subtraction (Peiris & Easther 2006;
Lewis 2006; Parkinson et al. 2006; Eriksen et al. 2007;
Huffenberger et al. 2006; Spergel et al. 2007).

5 ASYMMETRY IN THE CMB

In the recent WMAP 3–yr release the isotropy of the CMB
fluctuations was tested using a dipolar modulating function
(Spergel et al. 2007)

∆T (n̂) = ∆Tiso(n̂)(1 + An̂ · d̂) (19)

where ∆T is the CMB temperature fluctuations in direction
n̂, ∆Tiso are the underlying isotropically distributed temper-
ature fluctuations, A is the amplitude of the isotropy break-
ing, and d̂ is the direction of isotropy breaking. The isotropy
of the fluctuations can then be tested by evaluating whether
A = 0. The problem with using the Bayes ratio in this case
is that there is no good underlying model which produces
this type of isotropy breaking. An attempt was made by
Donoghue et al. (2007) to allow an initial gradient in the
inflaton field but they found that the modulation dropped

data ∆χ2
eff p–value lnB ln B̄ B

WMAP (7◦) 3 0.4 – – –
(Spergel et al. 2007)

WMAP (7◦)+Cmarg 9 0.03 – 1.3 4
(Gordon 2007)

WMAP (3.6◦)+Cmarg 11 0.01 1.8 2.16 9
(Eriksen et al. 2007)

Table 4. The odds for dipolar modulation, A 6= 0. The res-
olution of the data used is also indicated. The Cmarg refers to
marginalisation over a non-modulated monopole and dipole. ln B̄

was evaluated using Eq. (8).

sharply with scale. However, the required modulation should
probably extend all the way to scales associated with the
harmonic ℓ = 40 (Hansen et al. 2004). Also, Inoue & Silk
(2006) postulated that Poisson distributed voids may be re-
sponsible for the asymmetry. But, a generating mechanism
for the voids and a detailed likelihood analysis are presently
lacking.

Therefore at present there is not a concrete enough the-
ory to place meaningful prior limits on A. However, we
can still work out the upper limit on the Bayes factor.
The p–values can be evaluated from Eq. (10). Although
A = 0 is on the boundary of the parameter space, the prob-
lem can be reparameterized in Cartesian coordinates where
A = w2

x + w2
y + w2

z and wi is a linear modulation weight for
spatial dimension i. Then the wi = 0 point, for all i, will not
be on the edge of the parameter space and so Eq. (10) can
be used.

The results are shown in Table 4. Simulations had been
done for the last row’s p–value (Eriksen et al. 2007) and
were in excellent agreement with the result from Eq. (10).
Eriksen et al. (2007) did compute the Bayes factor, taking
as the prior 0 6 A 6 0.3 but did not give a justification for
that prior except that it contained all the non-negligible like-
lihood. This is unproblematic for parameter estimation, but
is ambiguous for working out the Bayes factor. For exam-
ple if the prior range for A was extended to be 0 6 A 6 0.6
then the Bayes factor would decrease by 2 but the parameter
estimates would be unaffected.

6 CONCLUSIONS

Bayesian model selection provides a powerful way of evalu-
ating whether new parameters are needed in a model. There
are however cases where the prior for the new parameter
can be uncertain, or physically difficult to motivate. Here
we have looked at priors which maximize the Bayes factor
for the new parameters. This puts the reduced model under
the most strain possible and so tells the user what the best
case scenario is for the new parameters. We have pointed
out a common misinterpretation of the meaning of p–values,
which often results in an overestimation of the true signifi-
cance of rejection tests for null hypotheses.

Using Bayesian calibrated p–values we have evaluated
upper bounds on the Bayes factor for the spectral index.
We have found that the best the current data can do is
provide moderate support (odds 6 49 : 1) for n 6= 1. We
also looked at the maximum Bayes factor for a modulation
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in the WMAP CMB temperature data. We found that the
current data can at best provide weak support (odds 6 9 : 1)
for a departure from isotropy.

The comparison between p–values and Bayes factors
suggests a threshold of ℘ = 3× 10−4 or σ = 3.6 is needed if
the odds of 150:1 (“strong” support at best) are to be ob-
tained. It is difficult to detect systematics which are smaller
than the statistical noise and so systematic effects in the
data analysis typically lead to a shift of order a sigma. It
follows that the “particle physics discovery threshold” of 5σ
may be required in order to obtain odds of at best 150:1.
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