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Abstract: A key question in ecology and evolution is the relative role of natural selection and 
neutral evolution in producing biogeographic patterns. Here we quantify the role of neutral 
processes by simulating division, mutation and death of 100k individual marine bacteria cells 
with full 1 Mbp genomes in a global surface ocean circulation model. The model is run for up to 
100k years and output is analyzed using BLAST alignment and metagenomics fragment 
recruitment. Simulations show the production and maintenance of biogeographic patterns, 
characterized by distinct provinces subject to mixing and periodic takeovers by neighbors 
(coalescence), after which neutral evolution re-establishes the province and the patterns 
reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between 
North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents 
can disperse them. This approach can also be used to explore environmental selection. 

 

Main Text:  
 
An important ongoing endeavor in ecology and evolution is to understand the mechanisms 
underlying the geographic distribution patterns of organisms. Natural selection by contemporary 
environmental factors acting on adaptive mutations or a persistent seed bank of species is one 
mechanism that can create such patterns. Neutral evolution (selectively neutral mutations and 
genetic drift) coupled with dispersal limitation or isolation is another mechanism (1-6). These 
processes are not mutually exclusive and, for microbes in the global surface ocean, molecular 
observations (e.g., shotgun sequencing, (7)) provide support for the role of both mechanisms (8-
11).  
 
Here we ask: How does neutral evolution influence the biogeographic distribution of surface 
ocean microbes? To what extent does dispersion allow for different operational taxonomic units 
(OTUs) to develop and persist? Are there emerging spatial patterns (e.g., provinces, (12)) and 
how do these change in time?  
 
Several approaches are available to quantify the contribution of the various processes in 
generating and maintaining biogeographic patterns among ocean microbes (2). A common 
empirical approach involves correlating observations (e.g., microbial composition) with 
environmental variables, subtracting out this environment effect and then correlating with 



geographic distance. In the ocean, hydrodynamic models coupled with tracers, either Eulerian 
concentration or Lagrangian particles, can be used as a measure of “connectivity” to supplement 
empirical relations (10, 13). A problem with this approach is that one can never be sure that the 
distance effect is not actually caused by an unmeasured environmental variable. Mechanistic 
models constitute an alternative approach. Eulerian models with coupled phytoplankton ecology 
and biogeochemistry can simulate biogeographic patterns produced by environmental selection 
(14). However, the Eulerian approach generally assumes all species are present everywhere and 
does not consider dispersal limitation.  
 
An alternative approach is to use a neutral model, where environmental selection is excluded. 
Such a model can be used as a null hypothesis, where deviation from observed patterns can help 
quantify the effect of the omitted factors (e.g., selection) (6, 15, 16). A neutral model can also be 
used to directly predict biogeographic patterns resulting from neutral processes. Of course, this is 
only meaningful if the model parameters are sufficiently constrained. For bacteria in the open 
ocean, hydrodynamic transport is relatively well-understood and rates of growth and base pair 
mutation are available (17-19), allowing us to make meaningful predictions without prior 
calibration (e.g., dispersal parameter, (15)). 
 
We model individual bacteria using an agent- (i.e., Lagrangian-, individual-) based approach (20-
24). The large number of ocean microbes, one estimate is 3.6×1028 prokaryotes in the surface 
ocean (25), makes simulating all individuals impossible and we therefore model a smaller 
number of representative cells, referred to as super individuals (21, 24). This prohibits us from 
explicitly simulating absolute diversity or species richness. However, biogeographic distribution 
quantified as nucleotide divergence between cells at different locations (total nucleotide 
difference of cells from different locations minus local nucleotide diversity) (26) is independent 
of population size. This is supported by theory (27) and an application of our full model to a 
simple two box system (28), and it can be understood as follows. Consider two locations 
(provinces) with equal-sized populations and limited mixing. Cells continuously migrate 
between these provinces and periodically one succeeds to take over the recipient province 
(coalescence). At that time the nucleotide divergence between the subpopulations is eliminated 
and then it increases in linear, clockwise manner that is independent of the population size until 
the next coalescence event. Thus, the frequency of coalescence events determines the average 
divergence. The rate at which cells migrate between provinces is proportional to the population 
size, but the probability of a migrant cell taking over the population is inversely proportional to 
the population size. As a result the frequency of coalescence (migration and takeover) is 
independent of the population size. Despite the large scaling in population size (model versus 
reality), the super individual approach should produce meaningful estimates of nucleotide 
divergence.  
 
Our model simulates a population of individual cells. The cells die at a constant rate and divide 
at a rate that depends on the local cell concentration using a logistic approach. Death and 
division are stochastic. As the local cell density approaches a specified carrying capacity, the 
growth rate slows down. The parameters were adjusted to produce reasonable growth rates (0.14 
day-1 (29)) and a population of about 100k cells distributed at a relatively constant density. Cells 
have a 1 Mbp genome (i.e., an array of A, T, C and G letters) subject to mutation, where the 
mutation rate was increased from the point mutation rate (i.e., m = 5.4×10-10 bp/division for 



Escherichia coli, (17)) to account for base pair changes by recombination (r / m = 63.1 for 
Pelagibacter ubique, (18, 19), m + r = 3.5×10-8 bp/division). Cells are transported in a 
Lagrangian manner horizontally within the surface layer using a 1/10º eddy-resolving circulation 
model, spanning the oceans from 75ºS to 75ºN  (30), with cycling of a 31-year period to allow 
for simulations up to 100k years (28). 

 
We first consider the diversity in the model, which is not a realistic estimate of the actual 
diversity in the surface ocean microbe population because we simulate super-individuals, but it 
illustrates the behavior of model. When the model starts with a diverse population (each cell has 
a different genome) and no mutation, diversity decreases monotonically as OTUs are lost by 
extinction and not gained by mutation (Fig. 1A). After about 100 years, the population consists 
of about 10 OTUs, resident in relatively distinct spatial regions and the rate of OTU loss 
becomes limited by dispersal between these provinces (28). At that time, the model starts to 
predict higher OTU richness than a neutral theory model that does not consider dispersal 
limitation (31). The rate of OTU loss becomes low, but the populations continue to mix (28) and 
the probability of extinction remains greater than zero. At 100k years the model includes two 
OTUs, in the Southern Ocean and everywhere else. The model should eventually reduce to one 
OTU, although this is not realized in the 100k year simulation. 
 
When the model is initialized with a diverse population and includes mutation it also exhibits an 
initial rapid loss in diversity, but then levels off at an OTU richness slightly higher than the 
simulation without mutation (Fig. 1B). For these simulations the diversity is determined from a 
sample of the population (100 cells) by performing pairwise whole-genome BLAST alignment, 
identifying OTUs using 99.9% whole genome identity cutoff and then up-scaling to the true 
richness (in the model) using Chao1, a non-parametric species estimator that extrapolates from 
the sample data to “true” richness (see Methods). The OTU richness is variable over time 
because of stochastic transport and sampling (see Fig. S4), but that is identical for all 
simulations. Therefore, the difference in OTU richness between the simulations with and without 
mutation can be attributed solely to mutation. The difference is relatively small, but increases 
with higher taxonomic resolution (99.95% cutoff) or mutation rate (X3). For a simulation 
starting with a uniform population (all cells have the same genome) and including mutation, the 
OTU richness starts at one and then increases once sufficient mutations accumulate to exceed the 
OTU threshold. After about 200 years, the simulations starting diverse and uniform converge. At 
that time model has reached a dynamic steady state where the rate of OTU loss by extinction is 
balanced by the rate of OTU gain by mutation. From a practical perspective, this shows that 
specifying different initial conditions or running the model any longer would not change the 
diversity. 
 
The model is then used to explore the role of neutral evolution in producing biogeographic 
patterns. As an example, we compared the genomes of cells from Hawaii and the Gulf of Alaska 
(Fig. 2B). For the simulation starting diverse without mutation, the difference (nucleotide 
divergence) is 100% until about 700 years when it abruptly decreases to 0% (Fig. 2A). This is 
caused by a takeover of the Central Pacific province by a cell from the North Pacific province, or 
a coalescence of these two subpopulations (27) (see also Movie S1 around 700 years). The 
simulation starting diverse with mutation also starts at 100% and decreases at the coalescence 
event, but then increases again as the two subpopulations diverge. The simulation starting 



uniform initially has 0% difference, but immediately starts to increase and then converges with 
the simulation starting diverse and including mutation. Coalescence events are stochastic (see 
also Fig. S4B) and over the 1,500 year simulation period we observed two. There are also 
occasional abrupt drops in nucleotide divergence, which are due to vagrant cells that enter a 
province, but do not establish. The magnitude of nucleotide divergence is a function of the 
growth and mutation rates (Figs. S5 and S6).  
 
The time between coalescence events puts a limit to how much two provinces can diverge and in 
this case the model predicts up to 0.5% difference (99.5% identity). These results can be related 
to observations. If two cells are sampled from these two locations and their genomes are 
sequenced and compared, 0-0.5% of the observed difference can be attributed to neutral 
processes. This level of divergence is substantial, but considerably lower than what is commonly 
considered a species (>95% identity). We map out the biogeographic pattern produced by neutral 
evolution for Hawaii compared with all locations across the globe (Fig. 2B). The model predicts 
that nucleotide divergence generally increases with distance from Hawaii. However, the 
divergence is larger for the North Pacific than the Indian Ocean, so distance and/or the presence 
of landmasses are not necessarily good proxies of dispersal barriers. We also compile this 
information for all locations compared with all locations into an atlas of neutral biogeography 
(Table S1). 
 
Finally, we mapped out the biogeographic pattern produced by neutral evolution using fragment 
recruitment (7), which is akin to in silico DNA hybridization. Specifically, we take the single-
cell genomes (SCGs) of the OTUs that were maintained in the simulation starting uniform at 
1,400 years (see Fig. 1B) and recruit fragments collected on a 1010º grid. We assigned each 
grid box to the highest-recruiting SCG (i.e., dominant OTU) and color them accordingly, which 
illustrated the provinces produced by neutral evolution and maintained by dispersal limitation 
(Fig. 3). The resulting map is a function of the taxonomic cutoff used and at less than 99% the 
model does not show any diversity or biogeographic patterns. This is expected, because over 
1,400 years the genomes only evolve by 0.5%, corresponding to a 99% identity. However, at this 
time, there are still provinces that have not yet experienced a takeover or coalescence event (Fig. 
1A), and those are expected to continue to diverge beyond the 99% threshold for longer times. 
This distribution can change temporarily as a result of takeover events. For example, at times the 
Central Pacific and North Pacific provinces were distinguishable at 99.5% (0.5% difference, see 
Fig. 2A).  
 
We conclude that neutral evolution (neutral mutations and genetic drift) coupled with dispersal 
limitation can produce substantial biogeographic patterns in the global surface ocean microbe 
population. Microbes evolve faster than the ocean circulation can disperse them, a feature that 
can also be seen in molecular observations (10). The patterns are dynamic. Provinces gradually 
emerge as subpopulations diverge by neutral evolution and periodically collapse due to 
coalescence. Neutral processes, along with environmental selection, have to be considered in 
future research on microbial biogeography and our results provide a quantitative benchmark for 
their potential role. Our results contrast the notion that “everything is everywhere” (11, 32) and 
may have important implications for how the oceans will respond to global change. Our model 
provides insights into the role of neutral evolution in shaping biogeographic patterns. The 
biology in the model is relatively simple and future work may build on this by considering more 



spatial and temporal patterns (e.g., carrying capacity, division and death rates based on ocean 
productivity) and more explicit representation of processes (e.g., recombination). Our modeling 
approach can theoretically be used to explore environmental selection as well. This will require 
relating genes to function, which is difficult but can be done for select genes or at the genome 
level (23, 33).  
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Fig. 1. Diversity (OTU richness) in global surface ocean microbes predicted by a neutral 
agent-based model. Results from several simulations are presented: "Start Diverse": All initial 
cells have an individual, completely random genome. "Start Uniform": All initial cells have the 
same, completely random genome. “No Mut.” indicates zero and “X3 Mut.” indicates three times 
higher mutation rate. “99.95%” indicates 99.95% cutoff (vs. 99.9% used in other analyses). 
“Theoretical”: Based on neutral theory, not considering dispersal limitation (31). (A&B) OTU 
richness over time. Note x- and y-axis scales. Start diverse (red) and start uniform (blue) lines 
overlap after 200 years. (C) Life history of an individual cell isolated near Bermuda at time 
1,000 years. Color changes demarcate mutation events. This cell was initialized with the P. 
ubique HTCC1062 genome (34). 

Fig. 2. Biogeographic pattern (nucleotide divergence) in global surface ocean microbes 
predicted by a neutral agent-based model and quantified by genome alignment. (A) Cells 
from Hawaii (HOT) compared to cells from Gulf of Alaska (GOA) over time. See panel B for 
locations. See caption Fig. 1 for description of simulations. SCGs collected at GOA (n = 10) 
were aligned against SCGs collected at HOT (n = 10). 1 Mbp genome size. Start diverse, no 
mutation (green) and start diverse (red) lines overlap up to 700 years. Start diverse (red) and start 
uniform (blue) lines overlap after 700 years. (B) Cells from Hawaii (HOT) compared to cells 
from all locations. SCGs collected on a 1010º grid (n = 5 at each box) were aligned to SCGs 
from HOT (n = 5). 100 Kbp genome size. “Starting Uniform” simulation (all initial cells have the 
same, completely random genome). Average of nucleotide divergence over 1,500 years.  

Fig. 3. Biogeographic patterns (OTU provinces) in global surface ocean microbes predicted 
by a neutral agent-based model and quantified by metagenomics fragment recruitment. 
Alignment of fragments collected on a 1010º grid (n = 10,000 at each box, l = 1,000 bp) with 
SCGs from OTUs remaining at 1,400 years (see Fig. 1B). 99.9% and 99.5% BLAST identity. 
“Starting Uniform” simulation (all initial cells have the same, completely random genome). The 
colors demarcate areas with common dominant OTU. 
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