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a high robustness even in highly distorted flows, keeping 
the aforementioned accuracies if one acquires at least one 
data point in y+ < 10. The wake component and the thick-
ness of the boundary layer are also simultaneously extrapo-
lated from the mean velocity profile. This results in the first 
study, to the knowledge of the authors, where a five-param-
eter fitting is carried out without any assumption on the von 
Kármán constant and the limits of the logarithmic layer fur-
ther from its existence.

1 Introduction

Dimensional analysis applied to wall-bounded flows shows 
that the mean velocity profile, or equivalently the veloc-
ity gradient, can be described by just two non-dimensional 
parameters. Without any assumption, we can write that 
du
dy

= uτ

y
�

(

y
δν

,
y
δ

)

, where u is the mean velocity (throughout 
the whole paper, lower case letters will refer to mean quan-
tities), δν = ν/uτ is the viscous lengthscale, uτ =

√
τwall/ρ 

is the friction velocity, and δ is the thickness of the bound-
ary layer or the half-width of the channel (Schlichting and 
Gersten 2000; Pope 2000). As Prandtl first postulated, at 
sufficiently high Reynolds number, there is an inner layer 
in which the velocity profile is described by the viscous 
scales independently of δ and ue, the freestream velocity; 
du+

dy+ = �inner

(

y+)

, where y+ = y/δν and u+ = u/uτ. Simi-
larly, for the outer layer, the velocity profile is independent 

of ν implying that du+

dy+ = �outer(y/δ). One can argue easily 

that for δν ≪ y ≪ δ: �inner(y
+) = �outer(y/δ). This condi-

tion can only be satisfied by both functions being a constant 
(Millikan 1938), thus resulting in du+

dy+ = 1
κy+, where κ is the 

von Kármán constant. It can thus be integrated to obtain the 
logarithmic law for the velocity u+ = 1

κ
ln(y+) + B, where 

B is an integration constant.

Abstract The present paper describes a method to extrap-
olate the mean wall shear stress, τwall, and the accurate rela-
tive position of a velocity probe with respect to the wall, 
�y, from an experimentally measured mean velocity profile 
in a turbulent boundary layer. Validation is made between 
experimental and direct numerical simulation data of turbu-
lent boundary layer flows with independent measurement 
of the shear stress. The set of parameters which minimize 
the residual error with respect to the canonical description 
of the boundary layer profile is taken as the solution. Sev-
eral methods are compared, testing different descriptions of 
the canonical mean velocity profile (with and without over-
shoot over the logarithmic law) and different definitions of 
the residual function of the optimization. The von Kármán 
constant is used as a parameter of the fitting process in 
order to avoid any hypothesis regarding its value that may 
be affected by different initial or boundary conditions of 
the flow. Results show that the best method provides an 
accuracy of �uτ ≤ 0.6 % for the estimation of the friction 
velocity and �y+ ≤ 0.3 for the position of the wall. The 
robustness of the method is tested including unconverged 
near-wall measurements, pressure gradient, and reduced 
number of points; the importance of the location of the first 
point is also tested, and it is shown that the method presents 
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As seen above, the most significant velocity scale of the 
velocity profile in the turbulent boundary layer is uτ. From 
an experimental point of view, the direct determination of 
the friction velocity presents a high degree of difficulty 
(Klewicki 2007; Hutchins and Choi 2002); therefore, the 
possibility to extrapolate this magnitude from the velocity 
profile is of particular relevance. With respect to the wall 
normal distance, the scaling parameter is δν = ν/uτ, which 
usually is of the same order of magnitude as the typical 
uncertainties that can be found on the wall normal posi-
tion determination of a typical velocity probe. Orlu et al. 
(2010) or Salari and Tabar (2011), for instance, provide 
reviews of the common experimental techniques to accu-
rately measure the wall location. The accuracies reported 
by different authors present a high dispersion with errors 
spanning from ±5 µm (Tay et al. 2012) to ±250 µm (Ryan 
et al. 2011), corresponding to approximately ±0.2 δν to 
±4δν , respectively. Additionally, these methodologies are 
usually applied under zero-velocity conditions; further 
deformations of the prong or of the traverse system due to 
the flow introduce further uncertainty on the measurement 
procedure.

From the dimensional analysis presented, it can be seen 
that the inner region, dominated by the viscosity, scales 
as δν and uτ. In particular, the velocity profile behaves as 
u+ = y+, and broad experimental evidence (Schlichting 
and Gersten 2000; Pope 2000; Hutchins and Choi 2002) 
shows that this expression is valid until y+ ≃ 5. This result 
has been used by several authors to extrapolate the fric-
tion velocity and the wall normal location (Hutchins and 
Choi 2002; Orlu et al. 2010; Tay et al. 2012). However, this 
approach requires that special care is taken to account for 
errors due to the wall effect when using hot wires (Chew 
et al. 1998; Hutchins and Choi 2002), limiting the range of 
validity to 3.5 < y+ < 5. Alfredsson et al. (2011) use the 
similarity of the cumulative probability density function in 
the near-wall region to extrapolate uτ and �y. The accuracy 
of all of these methods to determine τwall and �y decreases 
drastically for increasing distance of the first measured 
point with respect to the wall.

Although the published data seem to point toward 
the commonly accepted description of u+ = y+ for the 
inner layer (Schlichting and Gersten 2000; Pope 2000; 
Marusic et al. 2010), the outer part of wall-bounded 
flows (scaling on the thickness δ) is assumed to pre-
sent a high dependence on boundary and initial condi-
tions. Coles (1956) was the first author to consider the 
description of the outer part of the boundary layer as a 
wake function added to the description of the inner layer 
(

u+ = u+
inner + �

κ
W(y/δ)

)

. Several different mathemati-
cal formulations of the wake function, W, can be found 
in the literature (Chauhan et al. 2007) resulting in dif-
ferent values of the wake component, �. These same 

authors (Chauhan et al. 2009) make use of the fact that 
the wake component is greatly affected by boundary or 
initial conditions, such as the pressure gradient in order 
to use � as a diagnostic quantity to assess the validity 
of experiments. The influence of the pressure gradient in 
the wake region is also studied by Nickels (2004) who 
proposes a different canonical description of the velocity 
profile. Mehdi et al. (2013) develop an integral method to 
estimate the friction velocity and the wall position show-
ing that the role played by the outer part of the boundary 
layer in the determination of uτ is secondary.

Following Millikan (1938) argument, the logarithmic 
layer, also called overlap region, is the part of the velocity 
profile, which adapts the two aforementioned scalings. From 
this point of view, y+ du+

dy+ = �inner(y/δν) = �outer(y/δ);  
therefore, du+

dy+ = 1
κy+ = constant is the only restric-

tion applying. It does not provide information regarding 
whether this constant should be the same independent of 
the type of the flow or the boundary conditions nor its lim-
its. Moreover, if the logarithmic law adapts inner and outer 
regions of the boundary layer, regarding that the outer flow 
is affected by boundary conditions, one can expect that the 
logarithmic region is as well affected by those boundary 
conditions. It is possible that these changes can be reflected 
in the constants of the logarithmic law, namely the von 
Kármán constant, κ and the integration constant B.

As possible examples of the values that the von Kármán 
constant has taken through the years in the literature, one 
can cite that von Kármán (1930) assigned the value of 
0.38 to this constant. Some years after, Coles (1956) used 
κ = 0.40 and assessed that in practically all cases where 
equation [log-law] is explicitly taken as a definition, κ is 
found to lie between 0.39 and 0.41, Zagarola et al. (1997) 
assume κ = 0.436, Österlund (1999) uses κ = 0.38,  
Schlichting and Gersten (2000) give the value κ = 0.41, 
whereas Pope (2000) gives a margin of ±5 % to that value, 
Zanoun et al. (2003) provide a summary of the values 
used from 1930 until 2000 comprising 0.33 ≤ κ ≤ 0.43 
and show that from their data, κ = 0.37(∼1/e) inde-
pendently of Reynolds number. McKeon et al. (2004) 
study pipe flow at very high Reynolds number and show 
κ = 0.421. Some years after, Nagib and Chauhan (2008) 
included published data of the von Kármán constant span-
ning 0.3 ≤ κ ≤ 0.6 and showed different asymptotic val-
ues for pipe flow and boundary layer flow (κ = 0.41 and 
0.384, respectively) as well as a dependence on the pres-
sure gradient. More recent publication by Marusic et al. 
(2013) presents κ = 0.39 ± 0.02 and shows that due to 
uncertainty in the measurements, its value cannot be dis-
cerned inside this range. Similar dispersion is obtained 
by Bailey et al. (2014) who shows κ = 0.40 ± 0.02 for 
pipe flow. Along this line, Segalini et al. (2013) demon-
strate that the uncertainty on the determination of the von 
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Kármán constant is, at least, the same of that in the fric-
tion velocity.

As one can see, the value (and the universality) of this 
constant has been subjected to question from the scientific 
community since its appearance. This debate is important 
not only from a fundamental point of view, but also from, 
as Orlu et al. (2010) show, the wall position and the shear 
stress, and other quantities which can be extrapolated from 
the mean velocity profile present a dependence on the cho-
sen von Kármán constant. Therefore, the selection of one 
or other value appears as one of the sources of uncertainty 
in any method extrapolating magnitudes from the veloc-
ity profile. For instance, Klewicki (2007) assesses that the 
von Kármán constant [has to] be chosen judiciously when 
referring to the Clauser (1954) method.

Even though one can see that the constants of the log-
arithmic layer are subject to debate, several authors have 
used the description of the velocity profile on this layer in 
order to extrapolate the scaling magnitudes of the boundary 
layer. One can find as the first, and most broadly extended, 
method the Clauser plot (Clauser 1954), which provides 
an accuracy of ±5 % for the friction velocity, better for 
increasing Reynolds number (Klewicki 2007; Wei et al. 
2005). Note that in any case, as Orlu et al. (2010) mention, 
the use of the Clauser plot cannot be seen as a measure 
of the wall stress but just as an estimation of it from the 
velocity profile. Also, since it does not take information of 
the inner part of the boundary layer, it does not allow the 
extrapolation of the wall location.

In order to do so, we have to consider a continu-
ous description for the mean velocity profile including 
inner, buffer, and logarithmic layers. Nickels (2004), Orlu 
et al. (2010), or Chauhan et al. (2007) consider different 

strategies for this description concluding, as well as other 
authors (Chauhan et al. 2009; Nagib and Chauhan 2008; 
Monkewitz et al. 2007), that the Musker velocity profile 
provides the best solution to the problem (Musker 1979). 
Figure 1a shows the buffer layer adapting from the linear 
velocity profile to the logarithmic layer. Musker (1979) 
described this adaptation region as a continuous change in 
the eddy viscosity from the wall to the overlap region. Note 
that by definition u+

musker ≤ u+
log since the solution is calcu-

lated to asymptotically match the logarithmic layer.
Kendall and Koochesfahani (2008) assess an accuracy of 

±1% in the friction velocity extrapolated from the velocity 
profile and mention that this method can be used to detect 
the wall location with an accuracy of ±5 µm. However, 
most of the results presented in those papers are obtained 
for a fixed �y = 0, considering only uτ as a fitting param-
eter. They also demonstrate that allowing the wall position 
to vary as an optimization parameter has an effect around 
0.25 % in the estimation of the friction velocity, but they 
do not assess the influence of the optimization of the wall 
stress on the accuracy of �y. This dependency was later 
studied by Orlu et al. (2010) who reported errors of the 
order of �y ∼ 0.5δν independently of considering or not 
uτ as an optimization parameter. Table 1 provides a sum-
mary of the different quantities that various researchers 
have extrapolated from the mean velocity profile and the 
parts of the velocity profile that have been included for this 
extrapolation.

The difficulty of choosing the appropriate von Kármán 
constant for given boundary conditions introduces fur-
ther uncertainty to the methods. The problem can be sum-
marized as mentioned by Chauhan et al. (2007) in the 
abstract : even an accurate composite representation must 

(a) (b)

Fig. 1  Detail of mean velocity profile. a Detail on the buffer region for Musker (×) velocity profile, b � = u+ −
[

1
κ

ln(y+) + B
]

 for bump (△) 
and Musker (◦) velocity profiles
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utilize the [...] accurate values of its parameters κ and 
B for the given flow geometry. The way to approach this 
obstacle in the present paper follows the argument shown 
above, specifically if we consider the logarithmic layer as 
the adaptation between the inner layer and the outer part. 
Since this outer region depends on the boundary condi-
tions, it forces the overlap region to be dependent on those 
boundary conditions. The information of these conditions 
is already contained in the measured velocity profile; thus, 
the present paper will leave the von Kármán constant free 
to adopt the value that best suits the flow without further 
hypothesis than the existence of the overlap region between 
inner and outer scalings. This hypothesis is also supported 
by the studies of Nagib and Chauhan (2008) where κ is 
shown to present a dependence on the type of flow and 
the pressure gradient. The information of the type of flow, 
pressure gradient, or any other source of change in the von 
Kármán constant is already included in the velocity profile; 
therefore, it seems reasonable leaving κ as an optimization 
parameter rather than forcing it to be a somehow arbitrary 
value based on previous studies (which might not match the 
exact physics of that particular flow).

Summarizing the present paper presents a method to 
extrapolate the friction velocity (uτ ), a possible wall offset 
(�y), the von Kármán constant (κ), the wake component 
(�), and the thickness of the boundary layer (δ) from one 
measured experimental velocity profile. A note of caution 
has to be made at this point. Most of the studies summarized 
in Table 1 did not perform an optimization on all five param-
eters simultaneously for a diverse range of reasons. Among 
them may be the fact that the skin friction was directly 
measured, e.g., Österlund (1999), or the studies were simply 

only concerned with outer variables, e.g., Nickels (2004), or 
inner variables, e.g., Hutchins and Choi (2002), only. The 
novelty of the present approach is that by optimizing for all 
five parameters {uτ , �y, κ , �, δ}, no assumptions need to be 
made a priori as to the nature of the velocity profile other 
than the existence of an logarithmic layer and the empiri-
cally observed relation of Eq. 3 (which will be discussed 
further in Sect. 2). In particular, no a priori knowledge of 
the extent of the logarithmic layer is required. This means 
that the method is exceptionally robust, not only for canoni-
cal turbulent boundary layers but also to low Reynolds num-
ber and nonzero-pressure-gradient cases.

2  Description of the method

The present paper shows the possibility to extrapolate 
{uτ , �y, κ , �, δ} from one measured experimental velocity 
profile. Here, the thickness of the boundary layer, δ, is defined 
as the point where the mathematical description of the veloc-
ity profile reaches asymptotically the freestream velocity, 

u+∣

∣

y=δ
= u+

e  and du+

dy+

∣

∣

∣

y=δ
= 0. In order to obtain these val-

ues, one can define a canonical description of the mean veloc-
ity profile, which depends on the aforementioned parameters, 
and then compare with the experimental mean velocity pro-
file. The set of five variables, which minimize the error with 
respect to the canonical description to the experimental veloc-
ity profile, is taken as the optimal solution of the method.

Allowing a possible offset to the wall location will 
account for the uncertainties in the relative position of the 
measurement device with respect to the wall. Let y⋆ be the 

Table 1  Parameters 
extrapolated from the mean 
velocity profile and parts of 
the profile which have been 
considered for the optimization 
in the literature

Used part of velocity profile Parameters optimized

Viscous Buffer Log Wake uτ �y � δ κ

Clauser (1954) × × � × � × × × ×
Coles (1956) × × � � × × � � ×
Coles (1968) × × � � � × � � ×
Durst et al. (1996) � � × × � � × × ×
Hutchins and Choi (2002) � × × × � � × × ×
Nickels (2004) � � � � × × � � �

Kendall and Koochesfahani (2008) � � � × � � × × ×
Nagib et al. (2007) � � � × � × × × ×
Chauhan et al. (2007) � � � � � × × × ×
Nagib and Chauhan (2008) � � � � × × × × �

Chauhan et al. (2009) � � � � � × � � ×
Orlu et al. (2010) � � � × × � × × �

Tay et al. (2012) � × × × × � × × ×
Vinuesa (2013) � � � × × � × × �

Present paper � � � � � � � � �
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estimated wall normal positions at which the experimental 
velocity profile is measured. The uncertainty associated 
with the wall location can be just taken as an additive con-
stant �y defining the wall normal location in inner varia-
bles as y+ = (y⋆ + �y)uτ /ν, which depends explicitly on 
uτ and �y. Let us define u⋆(y⋆) as the mean velocity meas-
ured for every wall normal location y⋆ defining therefore 
u+

exp = u⋆/uτ , which obviously only depends on uτ.
The canonical description of the boundary layer can 

be made as follows. One can assume that the inner layer 
(y+ < 5) is described by u+ = y+. Assuming the validity of 
the logarithmic law verifies u+ = 1

κ
ln(y+) + B in which, as 

we have justified in the previous section, the von Kármán 
constant is a free parameter in the optimization. A continu-
ous description of the buffer layer adapting the inner and 
logarithmic layers is given by Musker (1979) as:

where s is a constant that relates the eddy viscosity in the 
inner and overlap regions. This formulation is commonly 
accepted (Kendall and Koochesfahani 2008; Chauhan et al. 
2007; Orlu et al. 2010) and has been improved by the inclu-
sion on the formulation of an overshoot over the logarith-
mic law on the buffer layer, first reported by Monkewitz 
et al. (2007) to reflect experimental and numerical evi-
dence, in the form of

with M1 = 30 and M2 = 2.85. Note that the inclusion of 
this overshoot over the logarithmic law achieves a better 
description of the mean velocity profile but, contrary to 
the description of Musker (1979) (based on eddy viscosity 
hypothesis), is not deduced from any equation and empiri-
cally fits high Reynolds number data. This is why two dif-
ferent canonical velocity profiles are subsequently used. 

Figure 1b shows the variable � = u+ −
[

1
κ

ln(y+) + B
]

 

where the overshoot described by Eq. 2 is clearly seen. Let 
us define the Musker velocity profile as that for which the 
overshoot is not considered and define the bump profile as 
that for which the overshoot over the logarithmic law is 
taken into account.

The role of the parameter s, as described in Musker 
(1979), has the effect of changing the constant of integra-
tion, B, in the logarithmic description of the boundary layer. 
Making use of the same argument as above, the overlap 
region (where du+

dy+ = 1
κy+) just provides information about 

the slope of the logarithmic law, not about its integration 
constant. Nagib and Chauhan (2008), by plotting several 

(1)
du+

dy+ =
(y+)

2

κ
+ 1

s
(

y+
)3 + (y+)

2

κ
+ 1

s

(2)u+
bump =

exp
[

−log2
(

y+/M1

)]

M2

values of the constants κ and B for different boundary con-
ditions and pressure gradients, found an empirical collapse 
of the data over the curve described by:

Equation 3 is also supported by the study of Vinuesa 
(2013) who extrapolates the wall location as that 
which minimizes the residual between the optimized 
pair (κ , B) and the curve given by Eq. 3. Another 
expression that could close the problem would be 
κB = B(u+

log − B)−1 ln y+
log (obtained by rearranging the 

log-law expression). This equation has the advantage of 
not being based on experimental results. However, it is 
only valid for the pair (u+

log, y+
log) belonging to the loga-

rithmic layer and thus requires the a priori specification 
of the limits of the logarithmic layer. Optimizations using 
this equation have been taken, and the results (not shown 
for brevity) show that the method fails to reproduce the 
friction velocity when applied to low Reynolds num-
ber or nonzero-pressure gradient. Therefore, the present 
paper will assume the relation B = B(κ) or, equivalently, 
s = s(κ) given by Eq. 3, so this parameter will be depend-
ent on the von Kármán constant.

The outer part of the boundary layer will be taken after 
the description given by Coles (1956) where the wake will 
be defined as the exponential wake function described in 
Chauhan et al. (2009). The canonical description of the 
boundary layer is therefore given by:

where u+
musker is given by the integration of Eq. 1 by an 

Euler method marching in y from u+ = 0 for y+ = 0 with 
a step on y+ of 0.001. u+

bump is given by Eq. 2 and can be 
activated (bump profile) or deactivated (Musker profile). 
W(y/δ) is described in Chauhan et al. (2009) and is given 
by:

where η = y/δ, a2 = 132.8410, a3 = −166.2041, and

a4 = 71.9114. Note that the canonical velocity profile is 
defined as a function of just {κ , s(κ), �, δ, y}. In order to 
compare with the experimental velocity profile, it has to 
be defined for the points in which the velocity is measured, 
y⋆. This introduces the dependence of the friction veloc-
ity and the wall offset. Therefore, u+

canonical depends on 
{uτ , �y, κ , �, δ}.

(3)κB = 1.6
[

exp(0.1663B) − 1
]

(4)

u+
canonical =

{

u+
musker + u+

bump + 2�
κ

W(y/δ) 0 ≤ y ≤ δ

u+
e δ ≤ y ≤ ∞

(5)

W(η) =
1 − exp

[

−(1/4)(5a2 + 6a3 + 7a4)η4 + a2η5 + a3η6 + a4η7
]

1 − exp
[

−(1/4)(a2 + 2a3 + 3a4)
]

×
(

1 −
1

2�
ln(η)

)



 Exp Fluids  (2015) 56:68 

1 3

 68  Page 6 of 16

We can define the residual error of the optimization 
method, E, in two ways. First, E1 is taken as the mean rela-
tive error, it will give greater weighting to the points close 
to the wall where the velocity is smaller. This is done in 
order to enhance the sensitivity of the method to these 
points, which provide more important information about 
the inner scaling and the friction velocity. The second 
method, E2, will be defined as the mean quadratic error, 
considering all the points of the velocity profile with the 
same importance. The two definitions of the error are thus

Thus, the constrained optimization problem results as fol-
lows, with the exact values provided in Table 2.

The initial conditions have been selected as typical and 
possible reasonable values for the different variables of 
the optimization. In any case, the problem is convex and 
therefore independent of the initial conditions but faster 
convergence is found if they are chosen according to the 
sensible estimations of the variables. The bounds of the 
optimization are activated in order to ensure robustness in 
the method. They are selected to be far enough from any 
optimal point so as to not have any influence on the results. 
Different bounds have been tested without effect either on 
the result of the method, or on the convergence rate.

Let us define the Lagrangian of the problem as 
L(xk, �) = E(xk) − �

T
b(xk), where the error function 

is E : R5
 R, defined in Eqs. 6 or 7, b comprises the 

bounds of the optimization expressed as b(x) ≥ 0, and � 

(6)E1(uτ , �y, κ , �, δ) =

〈

∣

∣

∣
u+

canonical(uτ , �y, κ , �, δ) − u+
exp(uτ )

∣

∣

∣

u+
canonical(uτ , �y, κ , �, δ)

〉

(7)

E2(uτ , �y, κ , �, δ) =
〈

√

(

u+
canonical(uτ , �y, κ , �, δ) − u+

exp(uτ )
)2

〉

(8)

find min
�

E(uτ , �y, κ , �, δ)
�

subject to























uτ ∈
�

uτ ,min, uτ ,max

�

�y ∈
�

�ymin, �ymin

�

κ ∈ [κmin, κmin]

� ∈ [ �min, �max]

δ ∈ [ δmin, δmax]

are the Lagrange multiplicators. The problem is solved 
using sequential quadratic programming (Nocedal and 
Wright 2006), that is, for a given xk, the Lagrangian, L, of 
the system is approached by a quadratic subproblem, and 
then, the search direction, dk, is found as the solution of the 
following subproblem:

approaching the derivatives by centered finite differences in 
second order. Once the search direction is known, the next 
step of the optimization will be xk+1 = xk + αdk, where α 
is a constant. Note that in the present problem, xk, dk ∈ R5.  
The tolerances in xk and in the function E are set to 10−10,  
the tolerance in the constraint violation is relaxed to 10−6 
since the constrains do not play any important role in the 
optimization problem.

3  Results

The aim of this section was to provide information about the 
accuracy and robustness of the proposed method. The topol-
ogy of the error function in the vicinity of the optimal point 
will be shown in order to justify that the method is absolutely 
convex and with a single solution. The next two subsections 
will compare the results obtained by the method with flows in 
which the friction coefficient is independently measured, i.e., 
the experiments of Österlund (1999) in zero-pressure-gradient 
turbulent boundary layers and high Reynolds number DNS 
performed by Jiménez (2014) [fully documented in Sillero 
et al. (2013); Simens et al. (2009); Borrell et al. (2013)] and 
Schlatter (2014) [fully documented in Schlatter et al. (2009); 
Schlatter and Örlü (2010)]. The next sections will study the 
importance of the location of the first point with respect to the 
wall and a robustness study to various perturbations. The last 
part will provide a discussion of the results as well as some 
points to consider in advance of performing experiments if this 
method is to be used in the post-processing.

Results are presented for the four methods studied, that 
is, activating or not the bump on the velocity profile given 
by Eq. 2, and using both possible definitions of the error 
given by Eqs. 6 and 7, we can therefore define the methods 
bump1, bump2, musker1, and musker2, respectively.

3.1  Error topology

As stated above, the use of the von Kármán constant as an 
optimization parameter is justified based on the existent 
overlap between inner and outer layers, which is seen by 
the flow as a change in the slope of the adaptation region. 

(9)
find min

d

[

E(xk) + ∇f (xk)
T

d +
1

2
d

T ∇2
xxLd

]

s.t. b(xk) + ∇b(xk)
T

d ≥ 0

Table 2  Upper and lower limits and starting point of the optimiza-
tion

a  ũτ is estimated by the Clauser (1954) method
b  y⋆

ini is the measured location of the first point

uτ �y κ � δ

Max 1.5ũτ
a −y⋆

ini
b

0.8 5 8δ99

Min 0.5ũτ
a ∞ 0.2 0 0.8δ99

Initial ũτ
a 0 0.4 0.5 1.3δ99
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However, one may realize that the change that the velocity 
profile (Eq. 4) experiences for a given change in κ is similar 
to the change that it would experience for a change in uτ. 
This is the cause of the linear relation present in the residual 
function E(κ , uτ ) (Fig 2a–d). This ambiguity, which in fact 
is present in the Clauser (1954) method, does not appear in 
the present method, since the measurements out of the log 
layer introduce further information, generating a clearly 
defined minimum in the vicinity of the optimum for every 
method tested. This can be seen in Fig. 2, where a clear con-
vex topology is shown along with the fact that the method, 
independently of which one is used, detects this minimum.

Regarding the error function E : R5
 R, it cannot 

be represented in two dimensions; therefore, we define 
E(κ , uτ ) = E(κ , uτ )|�y=�yopt ,�=�opt ,δ=δopt

. Figure 2 addi-
tionally shows that the sensitivity of the method to changes in 
the friction velocity is greater than the sensitivity on the other 
variables of the optimization such as κ or �y as previously 
reported by Kendall and Koochesfahani (2008). This makes it 
possible for the method to overcome some uncertainties on the 
other variables but still provide an accurate estimation of τwall.

3.2  Validation with Österlund database

In order to validate the current approach, the results 
obtained by the present method are compared with the 

Österlund (1999) database. It contains data taken using 
hot wire anemometry over a zero-pressure gradient turbu-
lent boundary layer, and it has been used as a benchmark 
for testing different methods to determine τwall (Kend-
all and Koochesfahani 2008; Chauhan et al. 2007; Nagib 
et al. 2007). The four methods proposed (bump1, bump2, 
musker1, musker2) are tested for the 70 velocity profiles 
2533 < Reθ < 27, 320 making a total of 280 validation 
cases. The friction velocity is independently measured 
using oil film interferometry. Fernholz et al. (1996) report 
that usually the accuracy of this method is ±4 %, further 
improvements to the method ensure that it can be taken as 
±1.5 % (Nagib et al. 2004), this is the error assumed in the 
measurements by Österlund (1999). The probes are posi-
tioned with respect to the wall using a microscope with 
accuracy of ±5 µm (Österlund 1999).

Let us define ǫ(%) = u
opt
τ −umeasured

τ

umeasured
τ

× 100 as a measure 

of the error that the present method introduces on the deter-
mination of the friction velocity. The velocity umeasured

τ  is 
taken as the result of the independent measures performed 
by Österlund (1999). Note that the possible error on the 
determination of umeasured

τ  is not considered for the defini-
tion of ǫ.

Eopt is defined as the value of the optimization func-
tion (Eqs. 6 or 7) at the optimal point. It is obvious from 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2  Topology of the error E1,2 in the vicinity of the 
optimum. Dataset SW981129A of Österlund (1999). 
ûτ = uτ −u

opt
τ

u
opt
τ

∈ [−10, 10 %] and κ̂ = κ−κopt

κopt ∈ [−10, 10 %] Isolevels 

for E1 (a, b, e, f) are from 0.009 closest to the optimum increasing 

in steps of 0.007. Isolevels for E2 (c, d, g, h) are from 0.06 closest to 
the optimum increasing in steps of 0.12. Black star shows the optimal 
point found by the optimization method
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the definition that E2 > E1, this can be seen also in Fig. 
3a. However, there are two clear behaviors of the value 
of the optimal residual Eopt. For every measured point 
E

bump
opt < Emusker

opt , Although this is not a surprising result 
(the expression of the bump is calculated to fit, among oth-
ers, these experimental results), the opposite trend is fol-
lowed by |ǫ|. As one can see in Fig. 4, Musker profiles pro-
vide a centered error, which can be attributed to statistical 
dispersion. The bump profile, on the contrary, presents a 

biased error toward negative values. Although this error is 
consistently biased, its small magnitude (�ǫbump

1,2 � = −0.7 %) 
always places it within the experimental error of the method. 
Note also that the biggest dispersions of ǫ using the bump 
profile are concentrated in the smallest Reynolds numbers. 
This is an expected result since the definition of the bump 
fits better high Reynolds number boundary layers, where 
one cannot see any difference between the use of the two 
different velocity profiles (Fig. 3b).

(a) (b)

(c) (d)

Fig. 3  Variation in optimization parameters with Reθ. 4 methods × 70 Österlund (1999) data sets = 280 validations. Symbols mean: open trian-
gle bump1, filled triangle bump2, open circle musker1, filled circle musker2.

(a) (c)(b) (d)

Fig. 4  Histograms of error, ǫ, for validation with 70 data sets of Österlund (1999). a ǫ for profile bump1, b ǫ for profile musker1, c ǫ for profile 
bump2, d ǫ for profile musker2
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With respect to the wall positioning, the method always 
provides �y+ < 0.25, which translated into physical units 
is approximately �y < 5 µm, the diameter of a typical 
hot wire probe. It suggests that the actual accuracy of the 
method is higher and what we are detecting here may be 
the uncertainty present in the measurements of Österlund 
(1999), this effect will be further discussed in Sects. 3.3 
and 3.4.

Regarding the value of the wake parameter, �, the main 
result that can be observed is that for every experimental 
data set, �bump > �musker. Special care should be taken 
with this aspect; in particular, one has to be aware that, con-
trary to what happens with uτ, there is not a correct value 
for �. The wake component provides a way to describe the 
velocity profile in a way that is dependent upon the fitting 
method and the canonical description chosen for the veloc-
ity profile. This makes it very difficult to compare with 
published results in which different definitions are taken. 
As one example of this, Chauhan et al. (2009) compute � 
with the same wake function but he explicitly decides not 
to include the formulation of the bump reasoning that a 
small change on the buffer region does not affect the outer 
part of the boundary layer. The results shown in Fig. 3d 
exhibit clear differences when including or not the bump in 
the optimization. This may be due to the inclusion in the 
optimization of uτ, which was not included by Chauhan 

et al. (2009) and links the behavior in the inner and outer 
layers. One has to ensure therefore that the same method is 
used to obtain the wake component if the results are going 
to be compared with published data.

3.3  Validation with DNS database

Some of the features that have been observed in the valida-
tion with experimental data are also seen in the validation 
against DNS. In particular, we observe again the depend-
ence of the wake component on the chosen description of 
the velocity profile (Fig. 5d). It can be also observed that 
the bump profile fits better the numerical results (Fig. 5a), 
where E

bump
opt < Emusker

opt . However, the contrary trend is 
seen with respect to the ability of the method to recover 
the accurate friction velocity, |ǫbump| < |ǫmusker | in Fig. 5b. 
Note that in this case, there is not any error in the deter-
mination of uτ from DNS; this, together with the fact that 
E

bump
opt < Emusker

opt  sustains the observation of a better result 
produced by the bump profile. It can be also clearly seen 
that the error ǫ is smaller when using the definition of E1 
given by Eq. 6.

Regarding the ability of the method to recover the accu-
rate wall position, we can see in Fig. 5c that the accuracy 
is more than one order of magnitude larger than in com-
parison with experimental results. In particular, the trend 

Fig. 5  Variation in optimization 
parameters with Reθ. Com-
parison using DNS by Jiménez 
(2014) and Schlatter (2014). 
Symbols mean open triangle 
bump1, filled triangle bump2, 
open circle musker1, filled 
circle musker2. a Eopt = f (Reθ ),  
b ǫ = f (Reθ ), c �y+ = f (Reθ ), 
d � = f (Reθ )

(a) (b)

(c) (d)
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followed by the comparison with DNS of Schlatter (2014), 
(Reθ < 4000) differs from the DNS by Jiménez (2014) 
(Reθ > 4000). This is because the distribution of the points 
in the near-wall region is different for both DNS (higher 
concentration of points for Schlatter (2014) results, which 
provide a more accurate wall detection). The decreasing 
trend followed by the error of �y for increasing Reynolds 
number is justified by the distribution of points in the near-
wall region for the computational domains. The turbulent 
boundary layer is evolving in a domain where the grid 
points have a constant distance from the wall in physical 
units, it means that a larger number of points is included in 
the near-wall region for high Reynolds number. This fact 
shows the importance of the points that are located in the 
near-wall region, their separation, and their initial position, 
and this effect will be further studied on the next section.

3.4  Influence of the first point, y+

0

One of the sources of differences between the results 
shown in Sects. 3.3 and 3.2 is the location of the first point. 
In the case of DNS, the first point is located at y+

0 ∼ 0.01, 
whereas the experiments are taken with the first point 
measured at between 4 and 5 wall units. Orlu et al. (2010) 
studied the influence of the location of the first point and 
concluded that the closer to the wall this point is located, 
the smaller the errors of the method. Similar results are 
shown in this study where, as shown in Fig. 6, the errors 
increase with increasing distance of the first point from the 
wall. In particular, we can see that taking the first point at 
y+

0 = 10 provides an error in the wall offset of �y+ < 0.5.  
Note also that the sensitivity to the bump method is much 
smaller than Musker, where an abrupt change in the val-
ues is reported for y+

0 > 10. Figure 6 can be used by future 
experimentalists to provide information on the expected 

accuracy of the method as a function of the location of the 
closest point to the wall. This accuracy will be higher the 
closer the points can be measured. Although it will only be 
known after the performance of the experiment, an estima-
tion of �y+ ∼ 0.3 for the commonly available positioning 
methods may be appropriate.

3.5  Influence of distorted wake region. Pressure 
gradient

In order to validate the method for non-canonical bound-
ary layer flows, it will be tested against the Watmuff 
(2014) database of turbulent boundary layers affected by 
both adverse and favorable pressure gradients covering 
368 ≤ Reθ ≤ 4857, fully documented in Watmuff (1990). 
This study presents measurements of the wall shear stress 
by means of Preston tubes of different diameters, and 
due to the experimental techniques, the uncertainty in the 
determination of Cf  is expected to be bigger than in the 
Österlund (1999) database. Watmuff (1990) estimates it as 
±3 %. Figure 7a shows that the present method succeeds 
in the determination of the friction velocity within the 
quoted range of uncertainty. Figure 7b shows that it also 
recovers the exact wall location with an error |�y+| ≤ 0.5 
for medium values of the pressure gradient coefficient, 
β = δ⋆

τw

dp
dx

, and �y+ ∼ ±1 for β > 3. This deviation cor-
responds with the uncertainty reported by Watmuff (1990), 
50 µm, which corresponds to 0.4 ≤ �y+ ≤ 1.3 for the dif-
ferent friction velocities. Two particular features are seen; 
first, as reported in previous sections, using the definition 
of the residual error E1 given by Eq. 6 provides a better 
result when determining the absolute wall position. Sec-
ond, contrary to previous sections, the estimation of the 
wall shear stress is more accurate when using the Musker 
velocity profile than when including also the bump in the 

(a) (b)

Fig. 6  Variation in optimization parameters with y+
0 , the location of the closest point to the wall. Comparison using DNS by Jiménez (2014) and 

Schlatter (2014), a ǫ = f (y+
0 ), b �y = f (y+

0 )
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formulation. This may be because the pressure gradient 
affects the natural development of the boundary layer mak-
ing the definition of the bump (developed for zero-pressure 
gradient) not valid. Note that these results are tested for 
relatively mild pressure gradients (−0.009 ≤ p+

x ≤ 0.02) 
where κ is not expected to present high variations. How-
ever, they have been obtained without any a priori speci-
fication of the von Kármán constant, which is known to be 
influenced by the pressure gradient (Nickels 2004; Nagib 
and Chauhan 2008). It also supports the use of Eq. 3 for 
flows influenced by different pressure gradients.

3.6  Influence of velocity measurements. Gaussian noise

In order to assess the robustness of the method with respect 
to statistical errors caused by the velocity measurements, 
we test one of the DNS by Jiménez (2014), Reθ = 6500,  
applying a Gaussian noise with zero mean and ampli-
tude proportional to the turbulence intensity for every 
point of the velocity profile. This tries to simulate a poor 

convergence of the velocity statistics due to insufficient 
sampling time. The new velocity is obtained as

where N(µ, σ) is a random Gaussian variable of mean 
µ and variance σ, u′ is the turbulence intensity and 
ξ ∈ [0.01, 10 %]. In order not to contaminate the results 
due to the addition of noise, with those uncertainties asso-
ciated with the location of the first measurement point, or 
the number of points of the profile (covered in Sects. 3.4 
and 3.7), the whole mean velocity profile is used. Figure 
8 shows that the method maintains its accuracy up to the 
highest ξ = 10 % tested whether we use the bump formu-
lation. On the contrary, the accuracy of the estimation of 
the wall shear stress is clearly affected by the noise level if 
one does not consider this overshoot. This may be due to 
the high turbulence intensity in the buffer layer, where the 
bump is located, which may distort more the measurements 
in this zone. Note also that the inner points, which provide 
most of the relevant information for the wall shear stress 

(10)unoise(y) = u(y) + N
(

0, ξ · u′(y)
)

(a) (b)

Fig. 7  Variation in optimization parameters with β = δ⋆
τw

dp
dx

, the pres-
sure gradient coefficient. Comparison using Watmuff (2014) data-
base. Symbols mean open triangle bump1, filled triangle bump2, 

open circle musker1, filled circle musker2. Dashed line marks ±3 %

, the estimated accuracy on the determination of Cf . a ǫ = f (β), b 
�y = f (β)

Fig. 8  Variation in optimiza-
tion parameters with the level of 
noise in the velocity measure-
ments, ξ. Comparison using 
DNS Reθ = 6500 of Jiménez 
(2014). Symbols mean open 
triangle bump1, filled triangle 
bump2, open circle musker1, 
filled circle musker2. a ǫ = f (ξ), 
b �y = f (ξ)

(a) (b)
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(as will be shown in Sect. 3.7), are less affected by this 
kind of Gaussian noise, since the fluctuations in the viscous 
sublayer tend to zero near the wall; this may explain why 
the error definition E1 shows a clearly better result because 
of the greater weighting of the near-wall points. A different 
kind of perturbation will be studied in Sect. 3.8 where these 
effects are assessed.

3.7  Influence of the number of points

The number of points in the velocity profile is a parame-
ter of a particular experiment, which has to be decided a 
priori. This section aims to provide an estimation of the 
number of points needed to achieve sufficient resolution 
for the extrapolation of the friction velocity. A common 
practice is to choose the measurement points logarithmi-
cally, which ensures that more velocity readings are taken 
in the inner region of the boundary layer. The velocity 
profiles used in this section will be obtained by under-
sampling the highest Reynolds number dataset by Jiménez 
(2014) logarithmically with 18 ≤ N ≤ 371 points inside 
the boundary layer (i.e., for y < δ). The small separation 
between the original cells of the DNS makes it possible to 
use linear interpolation when the desired wall normal loca-
tion is not found. Figure 9 shows that the accuracy of the 
method is not affected by the number of points if we use 
the bump1 method up to the number of points simulated. 
As expected, using the residual error definition E1 provides 
a significantly better result since it applies greater weight-
ing to points located close to the wall. If, on the contrary, a 
linear scheme is used to under-sample the velocity profile, 
the results are seen to be greatly affected if the number of 
points inside the boundary layer is <50 (meaning between 
4 and 7 points in the logarithmic region). While assessing 
the influence of the number of points, the location of the 
first point has been kept the same as in the original DNS. 

The great difference presented for the residual definitions 
E1 and E2 and the study developed in Sect. 3.4 show the 
importance that the inner points have in the determination 
of the wall shear stress.

3.8  Influence of distorted inner region. Probe 
interference

In the last few years, the development of the diagnostic plot 
(Alfredsson and Örlü 2010) allows the experimentalist to 
spot points in the inner or viscous region, which have been 
influenced by the velocity probe, due to a local blockage 
or a significant heat conduction toward the wall in the case 
of hot wires. Both cases result in artificially high-velocity 
readings. The diagnostic plot presents the advantage of not 
needing either the friction velocity or the exact wall loca-
tion in order to detect the distorted points. These points 
can be identified by their departure from the linear trend 
between u′ and u close to the wall, where turbulence fluc-
tuations should decrease linearly with mean velocity. These 
deviations from the canonical profile have been simulated 
by modifying the inner points in the highest Reynolds 
number DNS of Jiménez (2014). Different intensities of 
distortion, 0 ≤ γ ≤ 30, are tested for the points located in 
3 ≤ y+ ≤ 8 with shades spanning from black to white in 
Fig. 10a. The rest of the points of the velocity profile are 
kept unaltered. Although the uncertainty in �y+ is affected 
by distorted points in the inner region (Fig. 11b), it is kept 
in reasonable values (�y+ ∼ 1) up to stronger distortions 
than the ones expected in real experiments. Since the wall 
position presents a higher error, the estimated friction 
velocity tends to decrease (the similar trend is shown in 
Fig. 6). Note also that the determination of �y+ is better 
when using the residual definition E2, which gives smaller 
weighting to points in the inner region, which in this case 
are distorted by the velocity probe. Figure 11a shows that 

(a) (b)

Fig. 9  Variation in optimization parameters with the number of points inside the boundary layer, N. Comparison using DNS Reθ = 6500 of 
Jiménez (2014). Symbols mean open triangle bump1, filled triangle bump2, open circle musker1, filled circle musker2. a ǫ = f (N), b �y = f (N)
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globally the method presents a reasonable accuracy up to 
the highest distortion simulated, which is expected to be 
significantly stronger than the ones present in real experi-
ments. The inaccuracy shown in ǫ = 0.7 % for γ = 0 cor-
responds to the one due to the position of the first measure-
ment point y+

0 = 3 as studied in Sect. 3.4.

3.9  Discussion

Figure 10b shows that even though no further conditions 
have been imposed to the value of the von Kármán con-
stant, it takes values similar to those already presented in 
the literature, κ ∈ [0.37, 0.45]. This result provides further 
evidence of the used theory, namely one does not have 
to specify a given κ based on the published data, but one 
can leave the optimization free to adopt a value of the von 
Kármán constant as a function of different boundary or ini-
tial conditions. On the other hand, there is clear depend-
ence seen on the velocity profile used for the canonical 
description. In particular, using bump profile, the mean 

and standard deviation of the von Kármán constant are 
κ = 0.379 ± 0.008, whereas when using Musker profile, 
κ = 0.400 ± 0.011. Two main conclusions can be made. In 
the first place, it may explain why the value suggested by 
Nagib and Chauhan (2008) is κ = 0.384, since the authors 
of this paper considered the bump to account for the over-
shoot present over the log layer in order to estimate the 
von Kármán constant. Some of the previous publications 
(where the experimental and numerical techniques were not 
as accurate as in the present and therefore did not report 
the appearance of the bump) seems to point closer to 0.4 
or 0.41. Secondly, we have to be especially careful when 
comparing results with published data. The sensitivity of 
the method is high enough so as to recognize differences 
in the used velocity profile and change the value of the von 
Kármán constant accordingly. This result also suggests 
a certain subjectivity on κ = 0.384 published by Nagib 
and Chauhan (2008) since it is clearly shown that it pre-
sents a dependence on the velocity profile used. This is a 
further support for the present method where no subjective 

(a) (b)

Fig. 10  a Diagnosis plot (Alfredsson and Örlü 2010) filled circle 
showing distorted inner regions (⋆). b Variations in von Kármán con-
stant with Reθ using experimental data by Österlund (1999) (empty 

symbols) and DNS by Jiménez (2014) and Schlatter (2014) (filled 
symbols). a Diagnosis plot, b κ = f (Reθ )

Fig. 11  Variation in optimiza-
tion parameters with the degree 
of distortion in the inner region, 
γ. Comparison using DNS 
Reθ = 6500 of Jiménez (2014). 
Symbols mean open triangle 
bump1, filled triangle bump2, 
open circle musker1, open 
circle musker2. a ǫ = f (γ ), b 
�y = f (γ )

(a) (b)
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decisions have to be made regarding κ in order to obtain 
the friction velocity. Finally, note that the aim and the main 
result of this paper are not simply to provide any value of 
κ. The main output of the present method should be seen 
as its ability to provide an accurate representation of the 
friction velocity uτ and the wall position �y without any 
assumption a priori about the boundary conditions of the 
flow from the experimentally acquired velocity profile.

The importance of the first point has been assessed in 
Sect. 3.4. These results highlight the importance of being 
able to take velocity measurement as close as possible to 
the wall. Although the present method can locate with a 
high accuracy, the real position of the wall, it is still nec-
essary to locate the velocity probes at y+ ≤ 10 by other 
means before carrying out the measurements to ensure 
|ǫ| < 1 %. The key difference with other methods applied 
in the past is that it may be sufficient to locate the probe 
close to the wall and start traversing it out from this loca-
tion without knowing accurately the relative probe—wall 
position a priori. This is a considerable difference, which 
should make the experiments considerably easier to per-
form. In most of the cases, a simple camera placed close 
(but at an arbitrary angle) to the measurement point is accu-
rate enough to avoid any damage to the probe but does not 
provide enough precision in the determination of the actual 
distance, which will be determined in the post-processing 
with the current method. Another advantage is that it does 
account for a possible deformation of the probe system 
under flow conditions, which may have not been taken 
into account in the determination of the wall position. The 
points close to the wall provide a big part of the informa-
tion available for the method; as seen in Sects. 3.3 and 
3.7, the more points that are measured close to the wall, 
the smaller the uncertainty in the wall detection. However, 
before the performance of experiments, one has to consider 
that, as stated in Sect. 3.4, the location of the first point pre-
sents a higher significance than the number of points meas-
ured in the near-wall region for a more accurate estimation 
of wall stress. Consider also that the bump method provides 
a lower sensitivity than the Musker profile to the position of 
the first point.

With respect to the robustness of the method, Sects. 3.5, 
3.6, 3.7, and 3.8 provide an estimation of the response of 
the method to distorted velocity readings, in both the inner 
and outer layers. It is shown that the accurate estimations 
of wall position and friction velocity are maintained even in 
worse situations of those expected in a careful experiment. 
A note of caution has to be made at this point; this robust-
ness study has been made keeping the other parameters 
as a constant, in particular the position of the first point is 
the most critical one as stated in the previous paragraph. 
In case the measured profile does not reach y+ ≤ 10, the 
possibility of the wall location should be disabled in the 

method. Another advantage is presented in an implicit way 
in the method description. It does not need the specification 
of the limits of the logarithmic layer. These limits span in 
the literature from the rather optimistic 30δν ≤ y ≤ 0.2δ to 
the quite conservative 200δν ≤ y ≤ 0.15δ, and they present 
a high relevance in the estimation of the friction velocity 
by means of Clauser-like methods, specially at low Reyn-
olds number. Therefore, the possibility of a method where 
a continuous description of the velocity profile is used will 
simplify these situations. The tendency followed by many 
authors (Table 1) has been to isolate the regions that may 
be affected by measurement problems (e.g., pressure gra-
dient in the outer region or near-wall distorted measure-
ments) when extrapolating inner or outer variables, respec-
tively; this process was conducted by means of imposing 
somehow arbitrary limits to those regions. The robustness 
of the present method to noisy measurements permits the 
omission of these external inputs such as the limits of the 
logarithmic layer.

Concerning the Reynolds number, those that have been 
studied with DNS are on the same order of magnitude as 
the lowest Reynolds number available in the experimen-
tal data by Österlund (1999). The results obtained for the 
experimental validation at low Re suggest that the bump 
profile performs worse than the Musker profile in terms of 
detection of the wall stress τw. However, when one consid-
ers even lower Reynolds number flows from the DNS data-
set, it is clearly seen that the bump profile detects the cor-
rect shear stress with more accuracy. Concerning this point, 
one has to bear in mind that the accuracy of the measure-
ments performed by Österlund (1999) is ∼ 1.5 %. This 
same error is obtained by the detection method; therefore, 
it is possible that the bump profile provides a better result 
(both for low and high Reynolds numbers) but the error 
present in the experimental method shows a bigger differ-
ence between the measured and the estimated shear stress.

Finally, a reminder is made again about the importance 
of an accurate comparison with published results. The 
method is sensitive to the velocity profile used and the 
definition of the error E1 or E2. A change in the definition 
of the error can account for up to 10 % in the value of the 
wake parameter, �, Thus, when comparing with results 
from other papers, it is especially important to consider the 
same velocity profile and residual definition. This effect is 
just important for the descriptive parameters of the method, 
i.e., the wake component, �, the von Kármán constant, κ , 
and the thickness of the boundary layer, δ. Considering the 
values of the friction velocity and the wall position, the 
exact solution is known for the chosen comparison data; 
therefore, one can assess the accuracy of the method and 
evaluate which of the methods performs better. As men-
tioned in the previous sections, the method that provides 
the best results in terms on uτ and �y is the bump1, that is, 



Exp Fluids  (2015) 56:68  

1 3

Page 15 of 16  68 

the description of the velocity profile given by Eq. 4 with 
the bump given by Eq. 2 activated and the error definition 
given by Eq. 6.

4  Conclusion

The proposed method allows the post-processing of the 
mean velocity profile in turbulent boundary layers. The 
main objective is the accurate estimation of the wall 
shear stress τwall and the wall position �y. The inclu-
sion of the von Kármán constant, κ , as a free parameter 
in the optimization enables an estimation of the fric-
tion velocity without making any previous assumption 
about the boundary conditions of the flow, which may 
have an effect on the von Kármán constant. Differ-
ent methods have been tested concluding that the best 
results are provided by the bump1 method, which con-
sider the overshoot over the logarithmic law in the buffer 
layer and provides a slightly larger weight to the points 
located close to the wall. Using this method and ensur-
ing that the first measured point is located within the 
first 10δν from the wall, the accuracy of the method is 
�uτ = ±0.6 % for the estimation of the friction veloc-
ity, uτ, and �y+ = ±0.3 for the position of the wall, �y 
with an interval of confidence of 85 % or �uτ = ±0.7 % 
and �y+ = ±0.4 with an interval of confidence of 95 %

. These results are, at least, as good as the most accu-
rate way of determining the shear stress by experimental 
means, and they do not rely on any previously selected 
value for the von Kármán constant. In fact, it can be con-
sidered higher than any uncertainty found in experimen-
tal methods (e.g., �uτ = 1.5 % by Österlund (1999). The 
robustness of the method is also tested providing accu-
rate results when including the fit pressure gradients, a 
poor data convergence, a reduced number of points, or 
distorted near-wall measurements. The only two hypoth-
eses behind this method are the validity of the logarith-
mic law as a canonical description of the velocity profile 
(Eq. 4) and the experimental collapse of the data over 
the curve given by Eq. 3 presented by Nagib and Chau-
han (2008). The method additionally determines the 
descriptive parameters of the boundary layer, � and δ, 
which can be used as a diagnostic quantity to evaluate 
the validity of the performed experiment.
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