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Abstract Gauge-based radar rainfall adjustment techniques have been largely-used to improve the 
applicability of radar rainfall estimates to large-scale hydrological modelling. Their applicability to urban 
hydrology is however insufficient since these techniques were mostly developed based upon the Gaussian 
approximations and therefore smoothed off the so-called ‘singularity’ (or non-normality) that can be 
observed in the fine-scale rainfall structure. Overlooking the singularities could be critical because their 
distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause 
tremendous errors in the subsequent urban hydrological modelling. In this paper, a methodology is proposed 
to incorporate an existing gauge-based radar rainfall adjustment technique with the local singularity analysis, 
aiming for improving the applicability of existing adjustment techniques at urban scales. Three historical 
storm events recorded by a flow survey campaign in 2011 in Edinburgh (UK) were selected as case study to 
evaluate the proposed methodology. The result suggests that the proposed ‘singularity-sensitive’ 
methodology can in general better re-construct the non-normality in local rainfall structure and at the same 
time preserve the advantage of the original adjustment techniques of generating unbiased estimates.  
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INTRODUCTION 

Traditionally, urban hydrological applications relied mainly upon rain gauge data as input as these 

provide accurate point rainfall estimates near the ground surface. However, they cannot capture the 

spatial variability of rainfall, which has a significant impact on the urban hydrological system and 

thus on the modelling of urban pluvial flooding. Thanks to the development of radar technology, 

weather radar has been playing an increasingly important role in urban hydrology. Radars can 

survey large areas and better capture the spatial variability of the rainfall, thus improving the short 

term predictability of rainfall and flooding. However, the accuracy of radar measurements is in 

general insufficient, particularly in the case of extreme rainfall magnitudes. This has a tremendous 

effect on the subsequent hydraulic model outputs. 

In order to improve the accuracy of radar rainfall estimates while preserving their spatial 

description of rainfall fields, it is possible to dynamically adjust them based on rain gauge 

measurements. Studies on this subject have been carried out over the last few years, though most 

of them focus on the hydrological applications at large scales. A couple of recent research works 

have examined the applicability of these adjustment techniques to urban-scale hydrological 

applications and concluded that these techniques can effectively reduce rainfall bias, thus leading 

to improvements in the reproduction of hydraulic outputs (Wang et al., 2013). However, 

underestimation of storm peaks can still be seen after adjustment and this is particularly significant 

in the case of small drainage areas and for extreme rainfall magnitudes. This may be due to the fact 

that the underlying adjustment techniques, mainly based upon 1st or 2nd order (statistical-) 

moment approximations, cannot properly cope with the non-normality observed in urban scale 

applications. In fact, it is often the case that the radar image captures striking local extremes (albeit 

the actual rainfall depths may be inaccurate), but these structures are lost or smoothened through 

the merging process. These striking local extremes correspond to singularity points within the 

rainfall field and can be identified through a local singularity analysis (Cheng et al., 1994; 

Schertzer and Lovejoy, 1987).  

With the purpose of improving this aspect, a methodology has been developed which identifies the 

local extremes or ‘singularities’ of radar rainfall fields and preserves them throughout the merging 

process. A preliminary test of this methodology in an urban area in London (Wang and Onof, 

2013a, 2013b) has demonstrated that the original Bayesian data merging technique (Todini, 2001) 
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could be effectively improved by incorporating this singularity analysis. In this work, this 

incorporation has been further used to reconstruct a number of storm events observed in an urban 

catchment in Edinburgh during the Summer of 2011 and for which high density rainfall and flow 

data are available. 

EXPERIMENTAL SITE AND DATA SET 

As aforementioned, the proposed methodology was originally developed using the radar and 

raingauge data over the Maida Vale catchment (London) in June 2009. However, due to the 

confidential reason and lack of flow measurements, its impact on urban hydrological modelling 

could not be evaluated in this catchment. Therefore, in the context of this paper, the dataset of the 

Maida Vale catchment will be used merely for demonstrating the intermediate results in the 

development of the methodology, and the description of the catchment and the dataset used will 

not be given in this paper. For readers who are interested in the details, please find the link in 

(Wang and Onof, 2013b). 

An alternative catchment in Portobello (Edinburgh area) was used in this paper as case study due 

to the completeness of rainfall and flow data. A full-scale test of rainfall estimation and the 

subsequent hydrological modelling was carried out in this catchment. A description of the 

catchment and the local monitoring data (including raingauge, flow and depth data) available and 

used in this study is next provided.  

In addition to the local monitoring data, the experimental catchment is within the coverage of C-

band radars operated by the UK Met Office. Radar rainfall estimates are available through the 

British Atmospheric Data Centre (BADC) with spatial and temporal resolutions of 1 km and 5 min, 

respectively. These estimates correspond to a quality controlled and multi-radar composite product 

generated with the UK Met Office Nimrod system, which includes corrections for the different 

errors inherent to radar rainfall measurements (Golding, 1998; Harrison et al., 2000). 

Portobello catchment (Edinburgh, UK) 

Catchment description: Portobello is a beach town located 5 km to the east of the city centre of 

Edinburgh, along the coast of the Firth of Forth, in Scotland (Figure 1a). The catchment is 

predominantly urban and has a drainage area of approximately 53 km
2
. The storm water drainage 

system is mainly separate and drains from the south-west to the north-east (towards the sea). 

Hydraulic model: The model of the sewer system of the Portobello catchment (Figure 1b) is setup 

in InfoWorks CS and was verified in 2011 based on the medium term flow survey data described 

below (using solely raingauge data as input). It comprises 2,916 nodes and 2,906 conduits. 

Rainfall is applied to the model through subcatchments and runoff is estimated using the NewUK 

model. 

Local monitoring data available for this catchment: The only local monitoring data available 

for this catchment is that of the medium term flow survey used for the verification of the model. 

The flow survey was carried out between April and June 2011 and comprises data from 12 

raingauges and 28 flow gauges (Figure 1b). Radar rainfall estimates (at 1 km and 5 min resolution) 

for the same period of the flow survey were obtained from the BADC. 

Selected storm events  

During the flow survey monitoring period, three relatively large storms were recorded and were 

used for the verification of the model. The same three storm events were used in this study to test 

the gauge based adjustment methods. The dates and main characteristics of these events are 

summarised in Table 1. 

 

 

Table 1: Rainfall events selected for testing of adjustment methods in the Portobello catchment.  
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Event Date 
Duration 

(hour) 

RG Total 

(mm) 

RG Peak 

Intensity 

(mm/h) 

RD Total 

(mm) 

RD Peak 

Intensity 

(mm/h) 

Storm 1 06-07/05/2011 7 9.25 11.21 9.67 7.29 

Storm 2 23/05/2011 7 7.70 5.03 10.80 4.80 

Storm 3 21-22/06/2011 24 32.96 8.46 25.85 5.42 

RG = Raingauge; RD = Radar. NOTE: The accumulation and peak intensity values shown in this table correspond to areal mean values 

for the entire domain under consideration. 

 

  

Figure 1 : Portobello catchment (a) general location; (b) sensor location, sewer network and radar grid over 

the catchment. 

 

METHODOLOGY 

Bayesian radar-raingauge data merging 

The Bayesian data merging (BAY) is a dynamic adjustment method intended for real-time 

applications (Todini, 2001). It has been proven to outperform many other adjustment techniques in 

numerical experiments (Mazzetti and Todini, 2004) and in urban-scale hydrological applications 

(Wang et al., 2013). The underlying idea is to analyse the uncertainty of rainfall estimates from 

different sources (in this case, radar and raingauge sensors) and combine these estimates in such a 

way that the overall (estimation) uncertainty is minimised. The key techniques used in this method 

include the block-kriging interpolation (BK) and the Kalman filter. The principle of the BAY 

method is summarised as follows. 

The first step of the BAY method is, for each time step t, to interpolate the raingauge 

measurements into a synthetic rainfall field using BK interpolation (steps (a) and (c) in Figure 2). 

This step generates comparable areal raingauge rainfall estimates (  
  ) to the radar estimates 

(  
  ), based upon which a field of errors (i.e. the bias at each radar grid location:      

   
  

  ) can be constructed (steps (d) and (e)). The covariance of this error field can be used to 

represent the uncertainty of radar estimates (   ) and is further compared and combined with the 

estimation error covariance of areal raingauge rainfall estimates (   
  , representing the uncertainty 

of raingauge estimates) that can be derived from the BK interpolation. The Kalman filter (Kalman, 

1960) is employed herein (step (e)) to conduct this combination (where the radar data and the 

interpolated raingauge estimates respectively act as ‘a priori estimate’ and ‘measurement’ in the 

typical Kalman filter algorithm). The degree of ‘certainty’ of each type of estimates constitutes a 

gain value (the so-called Kalman gain, Kt) at each radar grid location, which determines the 

proportions of each type of estimates used to compute the merged output. As mentioned above, 

this gain value ensures the minimisation of the overall estimation uncertainty and is expressed as 

(a) (b) 

FM1 

FM8 

FM23 
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    ,  

and the merged output (i.e. the ‘a posteriori’ estimates in the Kalman filter) can be obtained from 

  
     

     (  
     

  ). 

It can be seen that the Kalman gain is a function of the covariances of radar and raingauge 

(estimation) errors. When        
   (or     , i.e. radar estimates are of much higher 

uncertainty), the output estimates will be similar to the interpolated raingauge estimates. In 

contrast, when    
       (or     ), the output will be similar to the radar estimates. 

  

Figure 2: Schematic of the Bayesian radar-raingauge data merging (BAY) technique (left) and the local 

singularity analysis (right). 

 

Local singularity analysis 

The local singularity analysis is a simple yet effective method to identify the anomalies from geo-

data. This method was proposed in (Cheng et al., 1994), and has been used for the estimation of 

geo-chemical concentration (Agterberg, 2007; Cheng and Zhao, 2011; Cheng et al., 1994). It 

employed the definition of the coarse Hölder exponent to identify the local scaling behaviour that 

follows a power-law relationship (i.e., the areal average measure increases as a power function 

when the area decreases; see Figure 2 (right)):  

              , 

Where   represents proportionality, the term ρ(x, ϵ) represents the density of measure (e.g. 

concentration of geo-data) over a squared area with side-length ϵ centred at the location x, α(x) is 

the singularity index (or the coarse Hölder exponent), and E=2 is the Euclidean dimension of a 

plane. By introducing a constant c(x), one can further formulate this power-law relationship as an 

equation (Cheng et al., 1994): 

                  . 

This equation constitutes a useful tool to decompose a rainfall magnitude at a given location x into 

two components (Wang et al., 2012): 1) the background (or non-singular, NS) magnitude c(x) that 

is invariant as measuring scale ϵ changes and is more approximately normal than the original field, 

and 2) a local ‘scaling’ multiplier of which the magnitude changes according to the local 

singularity index α(x) and measuring scale ϵ. It can be seen that, when α(x) < 2, the rainfall 

magnitude will strikingly increase as the measuring scale ϵ decreases (namely local enrichment), 

so it is a ‘peak’ singularity. In contrast, when α(x) > 2, the rainfall magnitude decreases as ϵ 

decreases (i.e. local depletion), and it is therefore a ‘trough’ singularity. When α(x) = 2, there is no 

singularity; the rainfall magnitude within a ϵ × ϵ area retains the same as scale changes (i.e. ρ(x, ϵ) 

= c(x)).  

An example can be found in Figure 3 a and b of applying this local singularity analysis to the 

decomposition of a radar image. As compared to the original radar image (a1: RD), the spatial 
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structure of the non-singular component c(x) (b1: NS-RD) is found to be smoother and more 

symmetric. In addition, the NS-RD estimates are of better normality than the original RD data (In 

Figure 3 a2 and b2, it can be seen that the NS-RD estimate quantiles are highly consistent with the 

Normal theoretical quantiles, but this is not case for the original RD estimates, where a much 

longer tail at the right end of the data distribution is expected). Therefore, the NS-RD estimates 

may be a more suitable input than the original RD estimates for many existing data merging 

techniques under the Gaussian approximation. 

“Singularity-Sensitive” radar-raingauge data merging 

The underlying idea of the proposed methodology is to use the local singularity analysis to 

decompose each radar snapshot into a non-singular image and a singularity map, where the 

former’s distribution is closer to normality and thus can be better merged with the coincidental 

raingauge data under the Gaussian assumption. Afterwards, the singularity map is applied back to 

the merged image for recovering local extreme magnitudes. In implementation, the local 

singularity analysis is firstly carried out in the step (b) of Figure 2 (left) to decompose the RD 

image, then the non-singular part (NS-RD) of the original radar image is merged with the BK 

raingauge estimates (steps (c)-(f)) to obtain the non-singular merged (NS-BAY) estimates, and 

then the singularity map is multiplied back to the merged output to finally produce the ‘singularity-

sensitive’ merged (SIN) estimates. 

An example is shown in Figure 3 to demonstrate the variations in spatial structure of each 

estimate. It is observed that the structure of the BAY estimates tends to be smoother than that of 

the SIN estimates, where the latter can better preserve the non-normality of the original RD 

measurements than the former and thus its pattern is relatively realistic. In addition, due to the lack 

of raingauge information at the middle-left area of the experimental domain, the BK and BAY 

techniques failed in reproducing local extreme magnitudes measured by radar at that area. This 

indicates that the reliability of the BK and BAY estimates is very sensitive to the number and the 

deployment of raingauges, and the underlying Gaussian approximation causes the BAY technique 

to give more credit to the ‘smooth’ estimates generated by the BK technique and subsequently to 

neglect the local peaks in the RD data. This tendency towards ‘smoother’ estimates in the original 

BAY technique can be improved using the proposed methodology and therefore the missing local 

information at the middle-left area in the BAY can be re-constructed in the SIN estimates. 

 
Figure 3: Snapshot images of RD (radar, a1), NS-RD (non-singular radar, b1), BK (block-kriged raingauge, 

c1) and NS-BAY (NS-RD merged with BK, d1), BAY (RD merged with BK, e1) and SIN (singularity-

sensitive merged, f1) rainfall estimates, and the associated Q-Q plots (a2-f2) for demonstrating the degree of 

normality of each estimates. 

 

RESULTS AND DISCUSSION 

The proposed SIN methodology, as well as other gauge-based interpolation (BK) and adjustment 

techniques (BAY) mentioned above, was employed to reconstruct three historical storm events in 

Portobello (Table 1), and the resulting rainfall estimates were further used as input for hydraulic 

simulations. In addition, the adjusted estimates generated from a simple yet effective method, 
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called mean-field bias correction (MFB), were also included in the comparison because it has been 

a widely-used correction procedure used by many meteorological services (Goudenhoofdt and 

Delobbe, 2009; Harrison et al., 2000). This adjustment is implemented by comparing the 

summations of the RG and the co-located RD grid rainfall estimates over a specific area (i.e. the 

Portobello catchment area in this paper) and duration (i.e. one hour) to obtain a sample bias ratio 

(i.e. B = ΣRG/ΣRD). This ratio is then multiplied back to each radar grid estimate to ensure that 

the mean of RD rainfall estimates is the same as (or similar to) that of the RG measurements.    

In the following, features of the rainfall estimates resulting from different interpolation and 

adjustment techniques are firstly presented and discussed. Then, the hydraulic outputs resulting 

from each rainfall input are presented, inter compared and discussed. Due to space constraints, 

only the results for Storm 1 are presented and discussed in detail. At the end of this section the 

results obtained for Storms 2 and 3 are briefly discussed and general conclusions are formulated. 

Results from Storm 1 were chosen as it is the most intense storm analysed for this catchment and, 

as such, it is the most relevant from an urban pluvial flood modelling perspective. 

Rainfall estimates 

The features of the rainfall estimates generated by different techniques were characterised by 

comparing them with the local RG measurements, in terms of areal average and individual-site 

time series. In Figure 4 (left), the result is presented of a direct comparison of areal average RG 

intensities versus areal average BK, RD and adjusted estimates’ intensities at each time step 

throughout the whole Storm 1 period. As expected, BK estimates are in good agreement with RG 

estimates. With regards to RD estimates, it can be seen that they tend to overestimate small rainfall 

rates and underestimate the peak intensities. This tendency can be explained by the fact that the Z-

R conversion that is used to convert radar reflectivity to rainfall rate has to statistically 

compromise to the range of rainfall rates that frequently occur (whereas the occurrence of very 

small and large intensities is relatively rare). It can be seen that both sources of error in RD 

estimates can be largely improved through adjustment techniques. Promising results are obtained 

from the BAY and, in particular, from the SIN merging methods, which are able to well reproduce 

low as well as high rainfall rates. As compared to the RD estimates, the MFB method does not 

seem to provide significant improvements in this respect and its performance is especially poor at 

higher intensities (which are of outmost importance in the modelling and forecasting of urban 

pluvial flooding). 

Similar comparisons were conducted at each RG location, and the associated statistics are 

summarised in Figure 4 (middle) and (right). The simple linear regression analysis was applied to 

each pair of RG measurements and the co-located grid estimates obtained from different gauge-

based interpolation and adjustment techniques. The result of these regression analyses can be 

evaluated in terms of β (regression coefficient) an R
2 

(coefficient of determination). These two 

statistics provide the measures of how well RG observations are replicated by the RD/BK/merged 

rainfall estimates at each gauging station. The R
2
 measure ranges from 0 to 1, describing how 

much of the observed dispersion is explained by the modelled one. However, the systematic bias 

(under- or over-estimation) of the modelled estimates cannot be reflected by this measure. The 

slope of the simple linear regression analysis (i.e. β) was therefore employed to provide additional 

information to cope with the drawback of R
2
 measures. 

As expected, the BK estimates in general possess the highest R
2
 values since the RD information 

was not taken into account (Figure 4 (right)). However, from the distribution of β values of the BK 

estimates, one can find that the whole box and the whiskers are below the axis of unity (Figure 4 

(middle)). A similar result can be found in the BAY estimates, where high R
2
 values are observed 

and most of the β values are below one. This indicates that both BK and BAY estimates tend to 

systematically underestimate the RG rainfall intensities at each gauging site. This may be caused 

by the underlying Gaussian approximation, which tends to smooth off some local extreme 

magnitudes. 
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The RD estimates possess the lowest R
2
 and β values. This is expected because RD data provide 

rainfall information at a certain elevation above the ground, which is unlikely to be the same as the 

ground raingauge measurements. Nonetheless, a certain degree of the similarity between RD and 

RG estimates can be still observed. The MFB adjustment can slightly increase their similarity, but 

the effect is very limited since this method uses merely the mean-field estimate from the RG data 

but fully follows the spatial structure of RD estimates.  

Although the ‘areal average’ behaviours of BAY and SIN estimates are similar, the SIN’s 

‘individual-site’ behaviour is very different from the BAY’s. It can be found that the distribution 

of the R
2
 values of the SIN estimates is somewhere between that of the BAY and RD estimates. 

This difference indicates that, as compared to the original BAY estimates, the SIN estimates 

inherit more features from the RD estimates. This is consistent with the underlying assumption of 

the SIN methodology, in which the reliability of the original RD data is improved after 

singularities are extracted. In addition, it can be found that the distribution of β values of SIN 

estimates is approximately symmetric to the axis of unity. This means no significant systematic 

under- or over-estimation is observed in the SIN estimates. This could be due to the process of 

singularity recovery of the proposed SIN methodology and the re-construction of the local extreme 

magnitudes (or the local singular quantities) that were smoothed off by the original BAY method.  

The feature analysis of different rainfall estimates suggests that the proposed SIN methodology 

preserves the ‘areal average’ behaviour of the original BAY, but at the same time introduces more 

RD information into the data merging, and therefore stronger spatial and temporal variations can 

be found in the SIN estimates. The impact of these different features on the subsequent 

hydrological output is further evaluated in the following section.  

 
  

Figure 4: Comparisons of RG data and different rainfall estimates for Portobello’s Storm 1: (left) Scatterplot 

of instantaneous areal RG vs. RD (red markers)/BK (blue)/MFB (light blue)/BAY (pink)/SIN (yellow) 

estimates; (middle and right) Boxplots of β an R
2
 for the RG data vs. different rainfall estimates at each RG 

location. 

 

Hydraulic outputs 

In Figure 5 (left), a selection is presented of three observed vs. simulated flow and depth 

hydrographs from different locations within the catchment (respectively in the up-, mid- and 

downstream parts of the catchment) for Storm 1. In addition, in Figure 5 (right) boxplots are 

presented which show the distribution of the performance measures, i.e., Nash-Sutcliffe efficiency 

coefficient (NSE) (Nash and Sutcliffe, 1970) and relative error (RE) in peak flow output, for the 

simulated depths and flows at the different gauging stations for Storm 1. The RE measure is 

computed by dividing the difference of the simulated and the observed flow peaks (Speak - Opeak) by 

the observed one (Opeak). This measure gives an estimate of how well, in terms of magnitude, the 

simulation results can reproduce the true peak flows and depths. Negative RE values indicate that 

the model underestimates the observed peak flow/depth, while positive values indicate 

overestimation of the peaks. Moreover, the closer RE is to zero, the better. 

From Figure 5 it can be seen that, even though the RG and RD totals are similar (RD is slightly 
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higher) for Storm 1 (Table 1) , the RD associated hydraulic outputs consistently underestimate 

flow and depth peaks, with the degree of underestimation changing from location to location and 

possibly increasing in the direction of flows within the catchment (i.e. larger underestimations are 

observed in gauging locations further downstream, as compared to upstream locations). The 

underestimation in hydraulic outputs, in spite of the small difference of the RG and RD totals, can 

be explained by the fact that the RD estimates cannot well reproduce high rainfall rates (Figure 4). 

This suggests that not only is it important to get the areal total rainfall accumulations right, but 

accurately capturing the peak rainfall intensities is also of outmost importance in order to 

appropriately reproduce the dynamic behaviour of the hydrological system and, in particular, the 

flow and depth peaks.  

The MFB adjustment was found to provide some improvement over the original RD estimates; 

however, it is still insufficient to effectively reproduce peak rainfall intensities (Figure 4) and the 

associated flow and depth peaks (Figure 5 (left)). This confirms the fact that more dynamic 

adjustment radar rainfall adjustment methods which can better account for the spatial variability in 

the rainfall fields are required for urban-scales applications (rather than simple mean-field bias 

adjustments).  

In general and as would be expected, the hydraulic outputs obtained with the BK estimates are 

very similar to the RG ones, with BK outputs sometimes performing better than the original RG 

ones. A striking difference between BK and RG hydraulic outputs and which is worth analysing 

can be observed in the hydrographs of gauging station 23 (Figure 5 (left, bottom)): it can be seen 

that the RG outputs largely overestimate the observed peak depth, while the simply interpolated 

BK rainfall input already leads to much more sound hydraulic results which are in better 

agreement with the observations. This confirms that accounting for the spatial variability of 

rainfall fields, even through simple kriging interpolation, could lead to significant benefits in the 

modelling.   

The BAY and SIN outputs appear to be similar to the BK ones (and better than the original RD 

outputs), with the former (i.e. BAY and SIN) showing slightly more dynamic and realistic flow 

and depth patterns and with the SIN outputs performing better overall in terms of effectively 

reproducing peak depths and flows. The better performance of the SIN hydraulic outputs in this 

respect is clearly illustrated by the RE boxplots (Figure 5 (right, bottom)), where the median of the 

SIN associated RE for peak depths and flows is closer to zero and the dispersion of the results is 

smaller as compared to that of other hydraulic outputs, including the RG ones. An interesting 

example which also illustrates the potential benefits of the SIN method in terms of better capturing 

storm extremes can be found in gauging station 1: at this location the SIN methodology is the only 

one capable of generating a higher flow depth peak which is in better agreement with the 

observations (Figure 5 (left, top)).  

From the results of Storm 1 it can be concluded that all adjustment methods can improve the 

applicability of the original RD rainfall estimates to urban hydrological applications, although the 

degree of improvement provided by each adjustment method is different. Overall, the BAY and 

SIN rainfall estimates lead to significantly better simulation results than the MFB adjusted 

estimates, with the SIN estimates performing particularly well at reproducing peak depths and 

flows.  

In general, the results obtained for Storm 3 are in good agreement with those obtained for Storm 1. 

However, the results of Storm 2 are somehow different: in this event the RD accumulations were 

larger than the RG ones (see Table 1) and the RD peak rainfall intensity was very similar to the 

RG one (though this was a mild storm event with maximum observed rainfall rates in general low). 

This led to unusual results in which at many gauge stations the RD estimates resulted in better 

hydraulic outputs (i.e. closer to the observations) than the original RG ones. For this event the 

benefits of the merged rainfall estimates as compared to the original RD estimates in terms of 

hydraulic outputs are not evident (some improvements are achieved in NSE, but these are rather 

minor). Nonetheless, in this as well as in the other storms, there are many sources of uncertainty 
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affecting hydraulic outputs and it is difficult to separate the effect of rainfall inputs from that of 

model structure, model parameters and even from errors in flow measurements.  

 

 

 
Figure 5: Comparisons of observed and simulated flow outputs for Portobello’s Storm 1: (left) Flow rate and 

depth hydrographs at 3 gauge stations selected from different part of the catchment (from top to bottom, the 

points FM1, FM8 and FM23 in Figure 1 (b)); (right) Boxplots of NSE (top) and RE (bottom) for flow depths 

simulated using different rainfall inputs. 

 

CONCLUSIONS 

In this paper, a new gauge-based radar rainfall adjustment methodology was proposed, aiming at 

better merging raingauge and radar rainfall data at fine spatial and temporal scales. The proposed 

methodology incorporates the existing Bayesian data merging technique with the local singularity 

analysis. This incorporation has proven to be able to better cope with the non-normality (or 

singularity) in urban-scale rainfall data in this paper.  

The applicability of the proposed SIN methodology to urban hydrology was tested and compared 

with other existing gauge-based interpolation and adjustment techniques (i.e. block-kriging (BK), 

mean-field bias correction (MFB) and Bayesian merging (BAY)). In terms of rainfall estimates, all 

adjustment methods led to areal average accumulations close to those recorded by raingauges, but 

only the BAY and SIN methods were capable of effectively reproducing high rainfall rates. These 

rates are usually poorly captured by radar, but are of outmost importance in order to properly 

reproduce flow peaks in the drainage system. Accordingly, in terms of hydraulic outputs, all 

merged rainfall products in general led to better results than the original radar (Nimrod) estimates. 

The Bayesian-based methods, in particular the SIN one, led to significantly better reproduction of 

the systems’ dynamics as compared to the MFB adjusted estimates.  

While the results are promising and the proposed SIN methodology shows great potential to be 

used in urban hydrological applications, the real benefits of its products in a verification context 

are likely to become more evident once the hydraulic model is re-verified. When this is done, the 

modeller will be able of analysing which rainfall product appears to be more 'logical/consistent' 

given the recorded depths and flows and the physical characteristics of the catchment and of the 

sewer system. In addition, the benefits of the SIN method are likely to become more evident in 

operational conditions, when storms outside the verification period are analysed and when data 

from fewer raingauge locations are available (when this is the case, radar becomes a necessary 

source of rainfall data). 
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