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ABSTRACT  

The role of the classical action (i.e. the time 

integral of the Lagrangian) is studied in statistical 

mechanics by taking as paradigms two simple systems, viz., 

the linearly damped particle (LDP) and the linearly damped 

harmonic oscillator (DH0). 	Both of these systems can be 

described by means of an exact Lagrangian which forms the 

basis of a self-consistent dynamical theory, Hamilton's 

equations being satisfied. 	The action can be calculated 

as a quadratic function of the position and the time. 

While the minimum number of assumptions is made in both 

cases, a new viewpoint is introduced whereby the dissipative 

term in the Lagrangian is made physically transparent. 	We 

propose that the aforementioned term be understood as a 

natural metric, and that the particle (LDP or DHO) is thus 

moving in a curved space. 

A consistent formulation of quantum mechanics can be 

made, and although no alteration is caused to the physics, 

the formalism is developed in a rigorous manner. 	A complete 

quantum description can be given either in the Schr8dinger 

picture, or by means of the functional integral method of 

Feynman, in which the action is of paramount importance. 

Finally the irreversible statistical mechanics is 

developed using the quantum propagator to find the time- 

dependent density matrix. 	Two possible ways of doing this 

are shown, and the connexion between this work and the 

standard theory of Brownian motion is pointed out. 	The 



entropy and average energy are also calculated and it is 

shown that for very large times a pure state results. 

A comparison is made with the work of several authors 

who have used the same Lagrangian, and a discussion given 

of the differences that exist. 	Alternative methods of 

describing the LDP and DHO are reviewed, and notable agree-

ment is found with the early (1943) work of Chandrasekhar. 
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INTRODUCTORY SURVEY 

In this work we have set out an attempt to solve one 

of the oldest problems in physics, namely that of how to 

describe the dissipation of energy, especially in statis- 

tical mechanics. 	The emphasis throughout our study is on 

the role that the classical action plays in such a process, 

since we know that equilibrium thermodynamics in particular 

can be developed from the action based formalism of Feynman 

path integration. 	The treatment of dissipation conventional- 

ly ascribes the losses as resulting from two distinguishable 

sets of forces: systematic mechanical ones, and random ones 

which must be treated in a statistical fashion. 	We wish to 

concentrate our attention on the systematic forces and in-

clude them in Lagrangian theory, then using the Feynman 

propagator to extend the description to finite temperatures, 

or in other words to -a theory of irreversible statistical 

mechanics. 

To this end we concentrate our attention on two simple 

classical systems which exhibit dissipation of energy, namely 

the damped harmonic oscillator (DHO) and the linearly damped 

particle (LDP), and try to phrase these problems in the 

language of the Lagrangian formalism. 	This generalization 

turns out to be very simple, and both the LDP and DHO 

Lagrangians are found to be quadratic functions of the velo-

city and position, which smoothly reduce to the quadratic 

Lagrangians of a free particle, and simple harmonic oscillator 

(SRO) respectively as the damping is switched off. 	The 



description of dissipation by such quadratic Lagrangiens 

is the simplest way of achieving decay in time. 	We then 

attempt to give as complete a description of the problem 

as possible, studying in turn the classical, quantal and  

statistical mechanical behavior using the classical ac tion 

as the basic function characterizing the evolution of these 

systems. 	In all these disciplines we expect to find 

evidence of dissipation of energy, and in the finite 

temperature case that we are dealing with an irreversible 

phenomenon. 

The_ equations of motion for the LDP and DHO have been 

discussed within the framework of Newtonian Mechanics for 

well over two centuries, whereas a Lagrangian-Hamiltonian 

description did not make an appearance until comparit yvely 

recently. 	Kanai, writing in 1948, seems to have been the 

first to attempt a solution of the quantum problem incl uding 

the type of dissipation envisaged above. 	At present the 

problem of losses is of great importance in the quantt 

theory of coherent optics, and the DHO is often intr(d iced 

here as a simple model of a lossy cavity. 

In Chapter 1 we introduce our dissipative modeLS and 

set up the appropriate Lagrangian functions. 	Hence arse can 

find the Hamiltonian and the action function in a cons istent 

way. 	At this point we indicate a novel interpretation of  

the way in which the damping features in the problem 55r 

introducing the tensor calculus of curvilinear coordina 

This helps us to find an expression for the momentum wl-lich 



• 

is decreasing in time, in contrast to the work of others 

where this generalized momentum increases with time. 

Then we can find a suitable expression for the energy. 

Having found the Hamiltonian, we devote Chapter 2 to a 

solution of the SchrEidinger equation. 	First a consistent 

formalism is developed, avoiding difficulties associated 

with the definition of the position-momentum commutator. 

Then the SchrBdinger equation is solved by means of a 

unitary transformation to comoving coordinates. 	The wave- 

functions are found, and thence the average of the Hamil- 

tonian ane total "energy" may be found. 	It turns out for 

the DHO in particular, that there is a one to one corre-

spondence between states of the DHO and the SHO which is 

obtained in the limit y 	o. 	Since the quantum mechanical 

problem can be solved, we can pass with confidence to the 

path integral description of the damped systems, using the 

classical Lagrangian to find the quantum propagator. 	We 

obtain the propagators for LDP and DHO and show that they 

obey the rules for propagators, that they tend to the 

relevant undamped propagators as the damping is switched 

off, and that they are consistent with the wavefunction 

describing the quantum problem. 

Finally in Chapter 4 we deal with the statistical 

mechanics of an ensemble of such dissipative systems. 	The 

aim is to find a density matrix which contains the damping 

in a way which guarantees the agreement of the expressions 

for the potential and kinetic energies with those given by 
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other theories of dissipation. 	It is hoped that the well- 

known analytic continuation methods of quantum statistical 

mechanics can be applied to give the density matrix at 

finite temperature from a knowledge of the (zero temperature) 

quantum propagator. 	We introduce the influence functional 

formalism and show how the ideas in this theory enable a 

density matrix to be constructed by propagation of the 

initial conditions. 	We then show how to calculate the 

mean energy and the entropy. 	In the entire discussion, a 

knowledge of the action is of fundamental importance. 	Even 

to write down the explicit form of the Schr8dinger equation, 

we first must have the Lagrangian, since the Hamiltonian 

which is -implied by it cannot be found in any other way 

(other than trial and error). 

Considering the simplicity of our models for dissi-

pating systems, the above programme has been reasonably 

successful in giving results in accord with our knowledge 

of how such systems behave in practice. 

During the years over which this work was undertaken, 

much of the physics dealt with above has also been studied 

by other authors, and much of it has been published else-

where by Denman (1973, 1974) and Papadopouios (1973, 1974). 

Some of the results of these authors have influenced this 

work. 	Nonetheless, the Lagrangian at the heart of this 

work was deduced independently, and the ideas relating to 

tensor calculus are original. 	The results of the finite 

temperature calculation are entirely new. 
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CHAPTER ONE 

DISSIPATION IN CLASSICAL MECHANICS 

1.1 Introduction 

The dissipating systems which we wish to study have 

the following classical equations of motion in one dimen-

sion, where a dot denotes time differentiation: 

LINEARLY DAMPED PARTICLE (L.D.P.): 

InX4-1:K = 0 	 (1) 

DAMPED HARMONIC OSCILLATOR (D.H.0): 

M;(+ Ajf 7,  kx 	o 	 (2) 

Both .equations are second order differential equations 

for the position of the particle, mass m, as a function of 

time. 	X is the viscosity constant, and k the spring con- 

stant whence the undamped frequency, wo, is defined: 

(3). 

In both cases, an attempt is made to replace the 

viscous or damping effect of an interacting collection of 

particles (henceforth referred to as the bath) on a single 

selected heavy particle by a systematic force. 	Experimen- 

tally it is found that this force is velocity dependent 

and always opposes the motion, so that X must be positive. 

Equations (1) and (2) are satisfactory approximations to 

the actual situation provided the velocity of the particle 



(Underdamping) 

Cdo  2_ 

(5a) 

is low. 

Solution of the above equations is elementary. 	We 

note down a solution of each for boundary conditions as 

indicated. 

L.D.P. 

x(E) —0-0) 	po (1—e-4 ,v,) 	 (4) 

)(0-=-0) = 
4/ ) 

where t is the time variable, po 
is the initial momentum, 

and x = x at time zero. 

D.H.O. 

The behavior of the solution here is dependent on 

the relationship between the quantities w 2  and 

We distinguish three cases: 

72 . (1_)2  
2m • 

(i) 4 >Y2  

X(k) = xoe
_xi

c641 kit) 

11/ 2= with 

(ii) 	==ar z 
	

(Critical damping) 

x(() 
	

(5b) 

and (iii) 4.10_ 	e2 
	

(Over damping) 

X fr) 	Xo e Y6 cai LV 
	

(5 c) 

with 
	

11/ = 	
2. 	

0  , 



We have in each case considered the particle to be 

at the position xo  at time zero. 	In all three cases the 

particle displacement gradually shrinks to zero. 

However, the above statements comprise the entire 

analysis which can be made by Newtonian mechanics: it is 

not possible to arrive at a rigorous expression for the 

energy, and indeed the Hamiltonian formalism is inappli-

cable, since the system described by x(t) is not conservative. 

The best that can be done is to argue as follows 

(Landau and Lifschitz, 1960): the energy of the LDP is 

1 2 
,totally kinetic, so that E 	— 2mx2 

	
2m 

= 	 e-2yt , which decays 

in time as it should. 	For a DHO with very small damping, 

one expects the energy to be proportional to the square of 

the displacement, as is the case for a simple harmonic 

oscillatoi'(SH0). 	Then for initial energy E0, one can 

show that E(t) 	E
o 

e-2Yt  

However, in order to use the LDP and DHO to gain in- 

sight into the general problem of dissipation, it is neces-

sary to have a more fundamental way of ascertaining the energy, 

bearing in mind that the same type of decay as above must 

emerge from such a theory. 	Early attempts were made to 

develop a Lagrangian theory incorporating dissipation. 

Rayleigh introduced the ad hoc formalism of the dissipative 

function, whence dissipation could be included in the usual 

Euler-Lagrange equations by adding in the velocity derivative 

of this function: 
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= _ aiE 
ett(Tc:j 	57; 	a; 

where oe is the Lagrangian 06X,x) without dissipation, 

and R the. dissipative function, 

. Ax2  , 
a. 

R is clearly positive definite. 	Then for the DHO the 

quantity 

et ( ionx:2-4_ k x-z) 	czR 

is clearly monotonically decreasing as t 	co, and the left 

hand side of this equation may be regarded as the time 

derivative of the energy of the oscillator. 

Nonetheless, this theory lies outside the scope of 

Lagrange-Hamilton formalism since the dissipative forces 

are not derivable from a potential and therefore Hamilton's 

equations are not correctly obtained. 

1.2 Lagrangian Theory of Dissipation  

Starting from first principles, we have succeeded in 

finding a Lagrangian function which enables a complete and 

consistent description of the classical dynamics to be given. 

Not surprisingly, we are not the first to discover such a 

Lagrangian, the first being Heinrich Helmholtz in 1887. 	A 

partial list of contributors to the theory includes Ranai 



9 

(1948), Haves (1957), Kerner (1958), Stevens (1958), 

Bopp (1962), Denman (1966), Marcuse (1970) and Papadopoulos 

(1973). 

Our problem may be enunciated thus: we have the 

equations of motion (1) and (2), and wish to find a function 

Za, x, t) such that its substitution in the Euler-Lagrange 

equation 

will reproduce the equations of motion exactly. 	We seek 

0 01 	t) in the general form 

(b) i'vz ik)(2-1)  

substitute in the Euler-Lagrange equation, and by comparison 

induce what form g(t) should have. 	It may be immediately 

verified that 

gi  (6) 	C e 
At- 

for both DHO and LDP Lagrangian functions, with C an arbitrary 

constant set equal to 1, since it cannot alter the dynamics 

in any way. 	(We neglect the trivial case C = 0.) 

Then we note: 
A 	.2 

L'OP* (6) 

and 

A 1- 
x, 	= e 	nyj s1  

t a (7). 
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There is a striking similarity to the undamped processes 

when LDP becomes a free particle, and DHO -reduces to a SHO. 

Since the two functions (6) and (7) satisfy the 

Euler-Lagrange equation, we can call them the Lagrangians 

for our systems. 	Now are they unique, indeed is there only 

a single function g(t) which is generated by the procedure 

mentioned above? 	This question has been investigated in 

detail (Havas, 1957), and in fact the Lagrangians above are 

not unique. 	There are other so-called q-equivalent 

Lagrangians and Hamiltonians (Currie and Saletan 1966) 

which will generate the correct equation of motion for q, 

but not for p. 	For our purposes, we shall restrict our 

selves to the above Lagrangians (6) and (7) since (i) they 

are the only ones among the q-equivalent Lagrangians dis-

playing explicit time dependence; (ii) they satisfy Hamil-

ton's equations, and (iii) lead to the standard commutation 

relations in quantum mechanics
t
. 	(See §2.2) 

Of course, it is always true in classical mechanics 

that one can add on to any Lagrangian a function which is 

a total time derivative of an arbitrary function of the 

coordinates only, without altering the physical situation in 

any way. 	Our statement of uniqueness embraces such a 

possibility. 

The situation as regards the uniqueness of the quantum me- 
. chanical Hamiltonian is even more complicated. 	It so 
happens that the position and momentum operators will only 
give the correct commutation for a certain subset of q- 
equivalent Hamiltonians. 	It is only the Hamiltonians which 
are related to one another by unitary transformations that 
should be regarded. as physically relevant. See Razavy (1972). 



From equations (6) and (7), we define the genera- 

lized momentum p, 

(8) 

for both LDP and DHO. 

.The Hamiltonian is the Legendre transform of the 

Lagrangian with respect to the variable X, viz., 

and writing this Hamiltonian in terms of the independent 

variablei p, x, we find 

Ai- 
, 

a en 	 (9) 

and 

171  cf ,x ) 
1)-  

.2  
e  KA 

iL 
(10). 

It may be verified directly that Hamilton's equations 

are satisfied. 	As is generally the case, the generalized 

momentum p, and the kinematical momentum mX are different. 

DHO behaves pathologically, diverging with time irrespective 

of the type of motion, whereas the kinematical momentum 

decreases. 	On the other hand P
LDP remains constant, whereas 

(mi)LDP decreases. 	Thus, while H
LDP above deCreases with  

time, H
DHO does not always do so, and depending on the 

relation between w2  and y2, may either oscillate, decrease 

/4 (p) 	e 
z-b-p. 
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or remain constant. 	Thus for the DHO, an ad hoc definition 

of the energy based on the kinematical momentum is made 

(Kerner, 1958; Denman, 1966): 

—art 
bv4-0, 	

e 	b-N-a- 
This "energy" is equal to the sum of "kinetic energy", 

imX2, and the "potential energy" Ikx2, and always decreases 

with time. 

To complete this discussion, it is worth studying the 

equation of motion (2) further, from the point of view of 

constants of the motion. 	Since the equation is time- 

translation invariant, i.e. replacing t by t+b for constant 

b does not alter the form of the equation of motion, a con- 

stant of the motion exists. 	However it should not be sup- 

posed that this automatically demands conservation of energy. 

To find this constant for the DHO (Denman, 1968; Denman and 

Buch, 1973), we set 

and then integrate equation (2), to find the constant c: 

= -61(i +2r x)c2  + kix - y 	1-614-11eyx - 
(12))  

and for w2  > y2, may write, 

c= li21-wx(°)Y - 
To make the meaning of this constant more transparent, 

set 



_ „221,96Av 
0 (14) 

' 
can be written as 

1,(I/9 (15). 

it may be seen that C is related to the 

2= ez. 4- I) 
 L2 

J 
or 	f == 

From equation (13) 

where 

Then equation (13) 

- 13 - 

-----= X + 1,1,/ 
b = 1,14v . 

Then 	- PIA; e--  41n h/b, 

A 	WA; e-  6  GOO 11146 - 

If we now change to polar coordinates (p, 4) such 

that 

initial energy of the oscillator; indeed when y 4  o, the 

argument of the logarithm is essentially the energy of the 

SHO of frequency coo  . 

On the other hand, equation (15) is the plane polar 

coordinate representation of a logarithmic spiral. 	This 

is the same type of curve as the phase-space trajectory of 

the oscillator for phase-space variables of the position 

and kinematical momentum (Marion, 1965), since the variables 

a and - b are related to these by a linear transformation. 

The constant, C, above is therefore equal to the initial 
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value of the radius vector (see Figure 1). 
4. 

Fig. 1 	Phase space trajectory of the DHO. 

Arrows indicate direction of evolution. 

Therefore, although a constant of the motion exists, 

it only refers to the initial state of the system and does 

not give any direct information about the general evolution 

in time. 	All that can be said is that a different such 

'constant corresponds to each different initial condition. 

1.3 Curvilinear Coordinates  

A 3-space is completely described by its line element 

a d d x xj 3 

where gij  is the metric tensor, {dx) are the contravariant 

coordinate displacements, and we have used the Einstein 

summation convention. 	The inverse of the metric tensor is 

gij• 
therefore 
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J-L  

where Si  is Kronecker's delta: 

k — 0 , 	k. 

 

(no sum) 

The elements gij  may be explicitly time and co-

ordinate dependent. 

The kinetic energy, T, is defined by 

Al ds ) 2  
( 	' 

a: 
so that in the presence of a scalar potential V(xi), the 

Lagrangian is written as 

,()j,ix i  i-) 	a v 
	- v6r 	(18)- 

Comparing equations (6), (7) and (18) we now assert 

at 
.that the integrating factor em can be identified with the 

metric tensor elements in (18). 	Although we have confined 

our study thus far to one dimension, no complications arise 

when three dimensions are studied - the same identification 

is possible. 	Therefore we shall continue to work in one 

dimension, using sub and superscripts solely to distinguish 

contravariant and covariant quantities where necessary. 

We write 

i.e. T .= 
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e— 44  v 

and the motion is now visualized as taking place in a curved 

space. 	This accords well with Eddington's (1965) idea that 

forces acting on a particle can be incorporated into a 

metric; thus into the geometry. 

Thus we have 

	

of (x`,1-) = 	y. (6)X GX  
3 • A • 	:27 `.1 

	

- 	1- (b) 
027 

(20). 

Note that 

X X 	 (21) 

is valid because the metric tensor is not coordinate dependent. 

The line element of ourg-space is 

els2  = e 	(6(Xil  thaZ.  C1K3 
	

(22) 

where the "curvature" arises solely from the damping. 

Incidentally, the de Sitter line element of general relativity 

Denman and Kupferman (1973) have indicated that the problem 
of a particle subjected to quadratic friction may be con-
strued in similar fashion: an exponential integration factor 
with argumentsgOz*is introduced. 
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theory (Tolman, 1934), viz., 

.26 
d ig-2=e (d 	dx., 24 dx32) — ‘162  
bears close resemblance to the line element (22). 	Our 

3-space may thus be viewed as a constant time segment of a 

de Sitter, universe. 

In general Tensor calculus, the invariant volume 

element, dV, is given by 

di/ = 	d x dxa  cbc3  = dt x 

where 

y(z) det 
in our case. 

The LDP is now to be regarded as a free particle 

moving in A "curved" space, and its path is therefore a 
geodesic. 	(Although our time dependent metric implies 

zero spatial curvature, we still refer to the space as 

curved). 

The geodesic condition is 

and from equation (22) we thus find the geodesics are given 

by 

•• mA 1- 4X ..C))  
which is exactly the equation for the L.D.P.. 	In this 

We shall not pursue this cosmological analogy further here. 
In Newtonian Cosmology (Bondi, 1968) a basic requirement is 
the conservation of energy, and we certainly cannot fulfill 
this here. 
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curved space, geodesics are curves - no longer straight lines 

as would be found in a space with constant metric tensor 

elements. 

From the fact that xi = gij x
j we see that 

;i 	ni._1 	+ Q  J  X  1 	 (23) 

and that xi  satisfies the equation 

A 	0 	 (24). 

Thereforethetimeevolutionofx.and xi  is different - 1 

both for LDP and DHO - the magnitude of xi  grows with time 

whereas x1 decreases, as is experimentally observed. 	There- 

fore xi  describes the true situation, and we shall therefore 

always calculate solely with x1. 	Henceforth, x will denote 

x
i 
wherever a superscript is not vital. 

The (covariant) generalized momentum 

pl = 
()?j' 
	 (25) 

which increases with time, is an independent variable in 

any Hamiltonian theory. 	We can therefore write down its 

associate vector, the contravariant quantity 

P 
	

(26))  

and this momentum always decreases with time (LDP and DHO) 

as would be found for the kinematic momentum mxl. 

W,e therefore construct the quantity 

E. p 	(5.0. /1 	j e0o2  L 

0207 	 OZ 

	 (27) 
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r 

by analogy with the expression for the energy of the SHO. 

For the LDP we obviously do not include the second term on 

the right. 	This quantity, E, has the same value as equation 

(11). 

The Hamiltonian follows rigorously from equation (10) 

as 

61( Pi Jx1) = , 11.  Pj' 	V(KI) 
	

(28). 

am 
Hamilton's equations are once again satisfied. 

1.4 Canonical Transformation of Coordinates  

We briefly examine the following important change of 

coordinates; following Bopp (1962): 

X 	Z. Xe 	 (29). 

This transformation, which appears at first sight 

to be merely a change of scale, is in fact a true canonical 

transformation, as will be shown below for the case of the 

DHO. 

Under the above change of variable, the Lagrangian 

onXix is transformed to 

of(i)Z)-= — m  W-e2 	 (30) 
,72 	a 

which is no longer explicitly time dependent. 	W is as 

defined ,earlier. 

The canonical momentum is 
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lrribm■ 
) 

dIVZ 

or 

(31). 

r 

The new Hamiltonian H: is once again given as the 

Legendre transform of oL°  (Z,z): 

14 TT; ) = 77-2  + 2( 77-Z 7i" M 41'2  

eZ 	 :27 I)  

(32). 

We can write equation (30) in the more transparent 

form 

Z(4 	mi x-- 	 0/"27_ z- 
02 	 4- de• 

and since the last term is a total time derivative of a 

function of the coordinates only, this Lagrangian is equi-

valent to the Lagrangian 

	

.442) --- oz 	
-1-rnW°2z2 
	

(33) 

	

which is the 	Lagrangian of a SHO of frequency W. 	Further- 

more the Hamiltonian H' shows no explicit time dependence. 

The transformation (29) is thus to a set of comoving co-

ordinates in which our dynamic functions 0-(5,H' show no 

damped behaviour. 

	

Since 	if = /De 	 (33) 

the Poisson bracket, {ir,z}, equals unity, thus confirming 

that the transformation, whilst time dependent, is canonical. 



and = 

aF 

a F 

(34b)  

(34c)  
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The generator of the transformation is 

F = 	e_ 	 (34a) 

which satisfies the usual conditions (Landau and Lifschitz, 

1960) viz., 

1.5 Action 

The last dynamical function we wish to calculate is 

the action, obtained as the time integral of the Lagrangian: 

(35))  

where the particle motion commences at time t from position 

x, and terminates at t' at position x'. 	The action is thus 

"the generator of the classical motion, and satisfies the two 

relations 

(p' being expressed in terms of t'), 

and 

For a given system the action is evaluated as follows: 

having solved the e.o.m. for x(t), one writes the Lagrangian 
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as a function of time only, and thus (in principle) can 

carry out the time integration. 	The resulting expression 

is then written as a function of the initial and final posi- 

tion and time variables. 	Below we list the essential 

features of this procedure carried out for the LDP and DHO. 

LDP 

0C(t) - e 	ibo-‘  
oZni 

so that 

?? ) 	X0  ) /-=0) =-* 

and we note that as A 4 

X — X 
	

(36) 

o, this goes smoothly over to the 

'r 

expression for a free particle. 

DHO 

Without loss of generality, we only consider wog > y2. 

1 2 

6qt") = 	fn No  2.  (b/elf71 11/6 1/1/ 	/VI) — 	k)(02  eoozivz- 
oc. 	 oz 

- so that 

E(4) t-1 ; X 
/ 	2rt/  2 gut ) 	02A-e6A-IeZr.41 mfrt [(x' e i‘x e 	1 

514 wr 	WT 

111 
 (xze  a x& 	ze  et)] 

7 	

(37) 

where T = t' - t. 

For wog  < y2, we write W' = iW and substitute in 
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equation (37), resulting in the replacement of sines and 

cosines by the relevant hyperbolic functions. 

Again, as X(y) 	o, equation (36) goes over smoothly 

to the expression for a SHO. 

A brief calculation using the relation H - at 
 shows 

consistency with our earlier expression for H. 

It is important to note that the quadratic Lagrangians 

both yield quadratic action functions. 

1,6 Conclusion  

We aave developed a complete and consistent description 

of damping insofar as it is understood in classical mechanics, 

namely that energy is lost but no sink of energy is described 

in the formalism. 

Both Lagrangian and Hamiltonian theories are constructed, 

and their respective descriptions are concordant with one 

another. 	The Hamiltonian is the basis for the subsequent 

.Schr8dinger picture of the problem, while the Lagrangian is 

the basis of the path integral one. 

The introduction of the metric as suggested by the 

form of the Lagrangian, gives a means of identifying those 

position and coordinate variables which behave as do the 

experimentally observed ones. 	Hence we arrive at a value 

for the energy showing the correct time dependence. 

By means of a canonical transformation it is shown 

how the damped system (DH0) is related to the undamped one 

(SHO). 

• 
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Lastly, the action has been calculated, both for later 

use and as a check on the value found for the Hamiltonian. 

Like the Lagrangian, the action is also a quadratic function. 
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CHAPTER TWO 

DISSIPATION IN QUANTUM MECHANICS  

' 2.1 Introduction  

Since the equation basic to quantum mechanics viz., 

Schr8dinger's equation, is reversible in time, it may be 

concluded that one cannot speak of dissipation for a single 

particle system on this microscopic level. 	Yet by con- 

templating a quantum-mechanical generalization of equations 

(1) and (2), this is. precisely the difficulty that faces 

us. 	We note in passing that authors such as de Broglie 

(1964) and de la Pena Auerbach e.a. (1972), have developed 

the "hidden variable" theory of quantum mechanics to include 

the fictitious case of the thermodynamics of a single particle 

interacting with this hidden thermostat. 	Our description 

of the dissipating processes, by focussing attention on the 

particle itself, attempts such a single particle view, but 

replaces the effect of the real bath by the unquantized, 

.classical constant X. 

Nowlby identifying the damping with the geometry of 

the space, we are able to introduce dissipation on the 

microscopic level since there is no difficulty in setting 

up a general curvilinear quantum theory. 

The adoption of this approach means that our des-

cription. is semi-classical,  since we only quantize the par-

ticle motion1 treating the bath classically. 



- 26 - 

2.2 Formalism of Quantum Mechanics in Curvilinear Coordinates  

We assume therefore that the classical DHO (or LDP) 

is the analogue of a certain one-dimensional quantum system. 

The observables of this system are functions of the co- 

ordinate and momentum operators i and p respectively. 	Now 

a knowledge of the commutation relation between these two 

operators is generally sufficient for setting up and solving 

the quantum dynamics completely. 

In the case of dissipative systems, Marcuse (1970) 

has pointed out certain difficulties encountered in attempt-

ing to de-cine such a commutation relation, namely that if 

both coordinate and momentum operators are, time dependent 

yt 
e 	, the commutator eventually vanishes, whereas the non- 

vanishing (indeed constant) nature of this commutator is 

essential for a quantum description to be given at all times. 

Recalling the analogy drawn in §1.3 between our 

Lagrangian integrating factor and the metric tensor, we 

note down and adapt the theory of quantum mechanics in curvi- 

linear spaces (de Witt, 1957). 	We must now distinguish 

between contravariant and covariant operators. 

The scalar commutator of pi  and 0 is postulated as 

[13 , 	s = tze k k 	 7:-  (1) 

where fi is Planck's constant. 

The coordinate basis states in Dirac notation, lq,t>, 

are normalized at time t as.' 



= 

(2) 

Since our space gib. = e 	8..13 has zero spatial 

curvature;  (R E 0), the momentum operator in coordinate 

representation is given by 

A a 
api 

(3) 

Because the metric tensor is time-dependent, the 

conservation of the norm of the system wavefunction demands 

a modifies' time differentiation operation. 

Briefly, one can show that the change in the repre-

sentation of the state vector 1p under the infinitesimal 

unitary transformation 

/ i Ct 
■i- 

where St is an arbitrary displacement in time, is 

<selif-t Et/ 	= 4-4L. 

(1:3671.1(6)k) 16' 	(4) 

where H is the quantum analogue of the classical Hamiltonian, 

assuming that it exists. 

We observe that the conventional time derivative is 

replaced by the "conservative" time derivativet  

See also Trigg (1964) and Charap (1973). 

de Witt's terminology 
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which for our metric (equation (19), 51.3) becomes 

J) = a „ 
at a. 

Equation (4) is the Schr8dinger equation in the- curvilinear 

space, and from it one can immediately verify that the norm 

of <q111)>E Ip(q) is time independent, since the time dependence 

of the volume element dV is eliminated by the additional 

term in (6). 

In the next section we write down and solve the 

Schr8dinger equation for the D.H.O.. 

2.3 Solution of the Schr8dinger Equation of the DHO  

We can now write the Schr8dinger equation (4) in the 

coordinate representation using the representations of the 

position and momentum operators found in the previous section.  

We find 

1--6 	 tritd2  
a(t) 	Y/y(6 6  (t.)1 

tAiL(t1)0 	
( 7) . 

The above equation is derived from the classical 

Hamiltonian (51.3 equation 28) by appealing to the corre- 

spondence principle. 	In this classical theory, the canoni- 

(6), 
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calmomenturnisp. - Ii- 
Dx 

In general, (Charap, 1973) a quantum theory taking a 

A 
Lagrangianhas its starting point cannot yield a Hamiltonian 

by means of a Legendre transform as in the classical case, 

since differentiation with respect to a quantum operator - 

pi  - 	means just this7is meaningless. 	Instead one needs 
Dx 

to replace the process of differentiation by a suitable 

commutation or anti-commutation relation. 	The Legendre 

A 	A 
transform relating L and H is thus written in quantum 

mechanics as 

p,) 
In our case, since the Christoffel symbols vanish 

* • 
identically, we can easily relate It

1 
 and 13

k 
via the Heisen- 

berg equation for qi, and thus write down (7) without ambi- 

guity. 

	

	We now proceed to a rigorous solution of this equation, 

pointing out the significance of the metric term as we proceed. 

The way to solve equation (7) is by changing the 

variable q by the substitution (one-dimensional) 

= 	
• 	(8) 

As we pointed out previously, this transformation is in fact 

We have for a particle of unit mass, 11 = 1, 

or 
	t = 	 4-7 16k 

so that 
. 	A 

= 	Pk 	since  
ik (t only). 



A 

e Ls 
Denote this operator by U. 	We seek .0 in the 

A 
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a canonical transformation (Kerner, 1958; Bopp, 1962). 

In §1.4 we found the change in form of the classical 

Hamiltonian under such a transformation, but to avoid any 

A 
ambiguities (specifically: to ensure the Hermiticity of H), 

we cannot immediately apply the correspondence principle to 

equation (32))§1.4. 	Rather we have to work with the sym- 

metrized form 

A 	A a 

77* 4.- 	(1%.1 4- 	11) 	me11;22  
(9) )  dm 	 02. 

where ; and 2 are respectively the transformed momentum and 

coordinate operators. 

One can then readily solve equation (7) by applying 

the commutation relation between ; and 2, then finding the 

wavefunction, and lastly transforming it back to the x 

coordinates. 	To do this one needs to know the quantum 

transformation analagous to equation (8). 

Now, to every classical canonical transformation, 

there corresponds a unitary transformation in quantum 

mechanics. 

form 

where S is Hermitian, and such that the time-dependence 

associated with the operators is removed from the Schr8dinger 

equation. 	Proceeding in this way, but with a different 

application in mind, Stevens (1958) has found such an operator 

S. 	For our purposes we use this g, but with opposite 
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* 
sign . 	Accordingly we take 

y A 	A 

— ( , 	4-  /3E:  

(with no sum on i). 

Then using the commutation relation (1), it is easy 

to show that 
.^ 

„pa 	--/ 5 	-at  
.^ 

C 	) 

A A 2" -/S 	-cza-t ^2  

e 	e 

Ag 	 -•2 

and 	e p 	^ e P 

What we are doing is to operate on the physical 

system. 	The transformed wave function is 143.: 

(12a) 

(1213) 

(12c) - 

(13a) 

and 

• 
" / 	e tis 

11 	n e (l3b) 

is the transformed Hamiltonian. 

Now we normalized our states previously by 

Insert the unit operator ^ 

e e 5 - 5 

in the left-hand side of this relation: 

0 may also be found from .first principles from the in- 
finitesimal generator. 	See de Witt (1957). 
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• 

Now by equation (12a), this is the same as 

(14) 

The transformed coordinate basis states are thus normalized 

differently - in fact what (14) indicates is that in the 

transformed system, the metric is effectively the flat 

space (gib  = d id) one. 	This is in accord with the meaning 

of equation (8), where the line element in the z system 

would be (one-dimension) 

662...=cte 

so that gli  = 1. 

Therefore we do not operate with the conservative 

time derivative, -- but with the ordinary time derivative 

in the transformed system. 

Now by inserting the unit operator I = e
ig e-ig ir. 

 

-equation (4), we obtain 

(15))  

so that the generator of the motion (translation in time) 

is now the operator H - 	
a_g_ 
3t rather than the Hamiltonian 

itself. 	This is the analogue of equation (34b) §1.4. 
2 

In full we have the equation 

P 14-1/q61>= 2_ 4 olteiL at- 	 y, 	a 
1.4 (-ix 1)I4-.6 	(16), 
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and in the transformed basis IQ> we then have 

a_4(4)10 	-2- 2- 4-  n ee ih 	 - ja4  (/+ 02Q.A 

ab 	07th 	pa 	a 

a result in agreement with equation (9). 

Making the separation of variables 

ofQ4 = e-'6)'e - tmdg2/024-
X(Q), 

then substituting in equation (17), we have 

(18)  

tea(Q).- 	azz(Q) + 11/202  

4:261 4)QZ 	Oa 

(19)  

This equation is identical to the SchrHdinger equation for 

a harmonic oscillator with frequency W = (1)02  - y2)1. 

We thus have transformed the system to a frame in which the 

SchrBdinger equation is essentially time independent. 	This 

agrees with the result found in 51.4 for the transformed 

classical system. 

If, on the other hand, wog < y2, we can introduce 

W
1 	

i 
1 

= mot - y2  where W'  is purely imaginary: W' = iW. 

Solution is now in the range of continuous eigenvalues. 

For wog = y2, we have the case of a free particle (in trans-

formed coordinates), and a solution is again possible . 

Returning now to the eigenvalue equation (19), we 

know its solution from elementary quantum mechanics: 

This has been done by Buch and Denman (1974) for the LDP 
in the theory of conductivity. 
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W(n.-14-1.) 
	

(20) 

are the eigenvalues, and the eigenfunctions are 

xn (Q) = 6 / a /2 . 
e Wq2AA- „, 	 a-ir 	■ 	7 

(1/---4/  (62) 	(21) 

with the {H n h 0/2-0} Hermite polynomials of order n. 	They 

are a set of complete orthogonal polynomials. 	The normali- 

sation factor (1/;;-  2nn!)-1  guarantees the normalisation of 

the {Xn(Q)} to unity. 

The full solution of equation (17) is thus 

cbe,(Q,./-)=e 	6?2 ,-, (6?) 

Now 

(22). 

by using the replacements indicated earlier; i.e. 

sb(62) 	(get), (23 ) 

where Q is the coordinate in the system with metric g..= du. 

We know that q =e it, so that 

th(V)=-. P---?",0-4-4&e-initZCZYtM - iin2reez% 

In the absence of the metric interpretation, we would 

find 11,11(q,t) multiplied by the factor eTt/2  arising from 

using ordinary time derivatives in equation (4) (Kanai, 1948; 

Kerner, .1958; Stevens, 1958; Bopp, 1962; Such and Denman, 

1973). 	This factor does not alter the observable properties 
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of the system since it is identical in value to the value 

associated with dV in the presence of a metric different 

to d
ij 

Again, since the 	were normalized to one, the func- 

tions
n are so normalized as well. 	Furthermore the 

{IPn(q,0} are a complete orthonormal set of functions. 

It may be verified by substitution that 0n(q,t) is 

a solution of equation (7). 	However it is not an eigen- 

function of H , nor are the {wn} eigenvalues of H. 	This 

is because equation (7) is only satisfied by the cancellation 

of identical terms on the right and left hand sides, thus 

changing the form of H. 	This also applies to the trans- 

formed coordinates: the eigenvalues belong to the operator 

1i(pA 1i 	tii) • 	Although the transformed system is re- 

lated to the time dependent one by a unitary transformation, 

the eigenvalues are not the same in-both systems since U is 

time dependent. 

The label n is the same quantum number that would occur 

in the problem of the undamped oscillator. 	Since n is not 

a function of y, and for y 	o a smooth transition is made 

to the frequency wo, there is thus a one-to one correspondence 

between the states of the DHO and SHO even though n is not 

a good quantum number for the DHO Hamiltonian in the metrical 

coordinates. 	This absence of mixing of the non-interacting 

states means that subsequent calculations based on 0n(q,t) 

will possess features of a non-interacting description. 

Application of H to the function 0 (q,t) generates three 
states: 	the state-0n, and states lagelled n±2. 	See below. 
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We now indicate some results to be found for the 

observables of interest. 

2.4 Quantum Mechanical Energy 

To explicitly calculate the energy in the state 

0n(q,t), we cannot simply attempt to identify it with wn in 

the argument of the leading exponential factor in equation 

(24). 	Instead we have to explicitly calculate what happens 

when H operates on the wave function On(q,t) given by 

equation (24). 	On the other hand, a comparison of the 

results in §1.4 for the energy in the transformed system 

allows us to conclude that in the transformed quantum system 

the "energy" eigenvalues are given by 

Fr = tIA/ (ei ,f) 

  

 

(25). 

These are the eigenvalues of the quantum generator of time 

translations. 

To calculate HIO>, we first need the following iden- 

tities 

02(7 gn(y) = 	(Y) t  4" )  4-1 (ClJ 

and 
	II (y) 	070 /1„_, (y), 

whence one easily shows that 

/7 11'0 	.4j0-2(r)  c-2.) ifrn 	
„z 

e
_m w7,2e1%ftw pe r iirw- 2)1-/- x6)'7("1  • 

. 	2  i 21' 	2 	(26) 
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where f
n denotes the normalisation constant (1/72

nn!)-1. 

Now 

and 

=a fn 1)] 

so that we can rewrite equation (26) as 

171  (ekt) = W( vi7c.OtilAet 	 74a  0, Le.) 

w 

1-kn-- /Y12 ( frn-a (46) 
	

(27) 

where 

(xz-- niv)i 

*  
and Q is the complex conjugate of S2. 

Since the OP } are normalised, we have the expectation 

value of H for the nth wave function: 

(i; = 	
(28) 

This result agrees with that of the authors cited 

earlier, with the exception of Kanai (1948), but the dis- 

crepancy here appears to be a mere typographical error. 	In 
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the case of Bopp (1962), the non-Hermitian character of 

his transformed Hamiltonian (it is not symmetrized) leads 

to a complex energy. 

On the other hand, if we take equation (27) §1.3 as 

the definition of the energy operator we would find 

e 	47Z  ( 7"1- (29). 

This amounts to evaluating <P
Lnematic>: this is permitted 

since EP' Pkin)  = " 	One can recover this result following 

an heuristic argument due to N. Rivier. 

In the classical limit, the energy of the SHO in the 

comoving coordinates is e: e 	rn   
where z

o is the maximum displacement. 

Since the energy eigenvalues are 

one can say that 

et, 0N- V 	(4400  , 
n't 

Similarly, it is assumed that the energy in the x-coordinates 

at given time t is given by im6) 
 x2max  since at the maxima 

of displacement the "kinetic energy" is zero. 

Now x2
max 

=  z20 
e
-kmt 

 

— A6 

niW 
which is merely equation (29)'. 	This amounts to saying  that 

SO 
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given a quantity with dimension (length)
2  in the comoving 

coordinates, the relevant expression in the laboratory 

pmt 
coordinates is e 	m  (length)

2*
. 

Result (27) is an immediate indication that n is not 

a good quantum number for H, since operation of H on *n  

does not reproduce only *
n
, but also t rn+2' 11)11-2* 	It may 

be immediately verified that 

Kama / 	(17 ,f t) (ite?) 1212 44  

and 
	

kik?? -a1111  147)12 	n(11-1  

What this seems to indicate is a preference to "populate" 

the states 1  with larger n, drawing a closer analogy between 

the result (27) and the second-quantized theory of stimulated 

emission. 	For annihilation and creation operators, a and 

a
+ 

respectively, such that 

= 't '1:77 Cket-1 

(fre? (cT,t) ---1//7  +0 '&4( (/6)) 
we can rewrite H as 

*Itio  (6tfct 4-4 	 cc a1 4 	Ct 
0/11  

hl 
Clearly this operator is Hermitian, and as y 	o, it becomes 

the SHO second-quantized Hamiltonian. 	This shows how states 

*114.2 become "populated". 
	We have placed "populate" in 

inverted commas to stress that n is not in fact equal to the 

* The envelope e-X/ mt is a geodesic in the curved space. 
Riding along on it is going to give a time independent energy. 
Conversely to leave it, we multiply by e-Ximt f. 	 1 • L • 	gl • 	• 

(30) 

with 
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number of quanta - we do not even know what frequency these 
w2 

have - should it be W as indicated by equation (25), or 0 
W 

quency of the quanta is W, whereas the expectation value of 
co2 

the Hamiltonian in the n
th state gives a shift to W  -- • 

There is certainly a basic difficulty here. 	In fact one 

author (Stevens, 1958) even regards the basic frequency as 

being wo, and from equation (29) deduces that the quanta 

are shrinking in time, as does the zero point energy (see.  

below). 	Furthermore, since as t 	co, the square of non- 

metrical wave functiont  

e '64e-1144 — 1.41a42?lehhe--41.4942?-24-  
lif766 e a jf-r? 

Shrinks into a delta function located at the origin: 

0.0 	12 

k 01  df 

— 

Kerner (1958) interprets this as meaning that the oscillator 

has entered the classical regime in which a vanishing zero-

point energy is understandable. 

A 
Alternatively, for the value of <H> given by (28) i.e. 

the value following formally from the Hamiltonian, we find 

hwg 
a zero point energy -- , a value in excess of the undamped 

2W 

The interaction with a heat bath represented 

by the phenomenological damping parameter X thus seems to 

Under integration the metrical wave function is also a 
delta function, and this is all that matters. 	We find it 
easier to visualize 6(x) symbolically rather than 
exp (-yt) 6(x). 

as shown by equation (28)? In the transformed system the fre- 

o  Iw 
value -- 

2 • 
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boost the zero point energy. 

To complete the mathematical detail, we note that 

the position-momentum uncertainty relation<AilLbis given 

by the time-independent value 

Ais ) .-=((y ') A ) 	NR- 
which equals 

( • d 	6w, 01,4 	
(32) 

a value larger than the minimal value hoo(n+1), and we again 

see that the interaction with the bath has increased the 

- uncertainty in the position-momentum relation. 

Were we. to calculate this uncertainty relation for 

the operators combined in the scalar form introduced for 

equation (27) §1.3, we would find a time decaying product 

 P=l 1 ATI) 
One might then have concluded that the system had entered 

the classical regime as t 	cc. 	This only indicates how 

careful one has to be before ascribing direct physical 

meaning to notions like the energy and the number of quanta. 

2.5 Other Models of the D.H.O.  

Because of its importance in the field of coherent 

optics many authors have studied the DHO to gain insight 

into the general problem of losses. 	Such models usually 
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assume a Hamiltonian of the form 

A ^ 	A 	 A 

H = H
oscillator 

+ H
interaction 

 + 
bath ' 

Various properties are then assigned to the medium e.g. in 

the case of a lossy cavity (Glauber, 1969; Haake, 1973; 

Louisell, 1969; Agarwal, 1971) as consisting of a set of 

oscillators with some spread in frequency, or as consisting 

of two-state dipoles (Senitzky, 1959). 	The above procedures 

and the one adopted here are fundamentally different in that 

we do not assign any structure to A and in particular do not 

quantize the metric tensor gij  = e 	6ij, nor do we need to 

carry out any decoupling approximation. 

On the other hand, the detailed models are successful 

in obtaining a time-dependent description, showing how the 

zero-point energy evolves in time, the usual constant value 

being approached as t 	The constant value is contributed 

by the random properties associated with the interaction bath. 

Our metric theory gives a constant value for the zero point 

energy, whereas the ad hoc theory (viz. that in which E 	o 

as t 	co) gives a value tending to zero. 

We should also mention the work of Santos (1969) who 

has constructed a Lagrangian theory of dissipation working 

from the theory of stochastic quantum mechanics. 	The only 

effect of the random forces is to produce a diffusion effect. 

The last model we wish to consider is that in which 

dissipation (damping) is introduced into an oscillating 

system by the modulation of the oscillation frequency 
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(Bubo, 1962). 

For constant w, the equation 

(33) 

is identical to the equation of motion for a SHO of fre-

quency w, as can be verified by differentiation of (33) 

with respect to time, and subsequent substitution of X(t) 

by the value (33). 

Now if w is some (usually random) function of t, w(t), 

carrying out the same procedure as above leads to the real 

equation 

i(76) _ 	)u1.-) 4- 020-) x (b) 
ec) 

(34))  

which looks like that describing the DHO. 

The modulated frequency, w(t), is a stochastic process 

so that the differential equation (34) is stochastic too, 

and as such its solution is given by a probability distri-

bution. 

For example, with an assumed Gaussian distribution, 

one can calculate the displacement autocorrelation function 

<x(t)x (o)›. 

This function is found to exhibit a behaviour strong- 

ly dependent on the speed of modulation. 	For fast modulation 
-at 

it shows negative exponential decay with e m  , where 	 << ;  

the modulation frequency. 	For slow modulation, the time 

dependence is Gaussian. 	The first type is the one we have 
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encountered thus far in our studies and represents the 

situation where the (incoherent) impulses of the surround-

ing medium have a much shorter lifetime than that of the 

damped particle. 

2.6 Conclusion  

We have presented a formalism in which the time-

dependent Schr8dinger equation may be formulated and solved. 

The solution to this equation is however not an eigenfunction 

of the Hamiltonian, nor do we find its eigenvalues. 	This 

makes for difficulties in interpreting the averaging of the 

Hamiltonian in the n
th quantum state, where the label n 

refers to a stationary state, whilst the Schr8dinger equation 

as a whole is manifestly time-dependent. 	Nonetheless within 

the strict framework of the formalism we can show that our 

momentum-position commutation relation is vindicated and 

that a reasonable value for the zero point - energy is ob- 

tained. 

	

	All the above conclusions are unaltered if no metric 

identification is made, and the solution as a whole is exact. 

On the other hand we can look at the expectation value 

of the ad hoc definition of the energy, constructed to show 

a damped behaviour. 	The zero point energy is then also 

decaying in time, which is assumed by some to indicate the 

system enters a classical regime. 	However, if a sufficient- 

ly detailed study is made of the problem, it is seen that the 

zero point energy remains finite as t 	co. 

The mathematical reason why all the observables in 
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the rigorous theory turn out to be time-independent is 

because (both with, and without the metric theory) all 

integrals are evaluated by means of the transformation 

x exp(y04-z, which is a transformation to time-independent 

coordinates. 	The expansion of the volume element always 

compensates any decay. 
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CHAPTER THREE 

FUNCTIONAL INTEGRAL THEORY WITH DISSIPATION 

3.1 Introduction  

The path (functional) integral method in stochastic 

process theory developed by N. Wiener was introduced into 

quantum mechanics two decades ago by R.P. Feynman in his 

doctoral dissertation (Feynman, 1948). 	A comprehensive 

review of the topic is to be found in the paper by Gel'fand 

and Yaglom (1960) and in the monograph by Feynman and Hibbs 

(1965). 

The path integral arises in the stochastic theory as 

the solution (for specified boundary conditions) of the 

partial differential diffusion equation. 	A simple scaling 

of constants and the substitution of the real time variable 

by a purely imaginary one has the effect of changing the 

diffusion equation into the Schr8dinger equation, and one 

can thus state that subject to the same replacements, the 

Schr8dinger equation also possesses a path integral solution. 

Feynman's idea was to take this latter statement as 

the starting point for a description of quantum mechanics. 

The evolution of a physical system is now written as a sum 

of weighted probability amplitudes. 

In particular the probability amplitude that a single 

particle initially at position x
a 
at time to  will be found 

at x
b 

at time t
b is given by the propagator (or Kernel or 
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Green's function) 

(1) 

where 0'10:0 denotes a sum over all paths x(t) joining 

xb  and xa subject to x(t = ta) = xa  and x(t = tb) = xb. 

The time integral in equation (1) is simply the 

classical action, and the weight function exp TiA(xb ,tb ; xa,ta) 

is termed the Feynman measure. 

A first property of g(b,a) a K(xb,ta; xa,ta) is that 

of closure: 

00 
0, a) f dxc.  KO )0 	 (2) 

where xb > xc > xa. 

Furthermore when k(b,a) depends only on the time 

difference. T = tb - ta
, one has 

eoc6Ka 	K(K4A ; -7-) 	(3a) 

and 

ev 

f olx <-1(7 x`i 	ki(()())("; (3b). 

The path integral description provides a very compact 

and elegant picture of the quantum mechanical behavior of a 

system. 	Moreover, let t -4- 0 in equation (1). 	Then the 

argument of the exponential will fluctuate greatly from one 

neighboring path to the next so that these contributions to 
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the sum will cancel each other. 	Only when the action is 

stationary with respect to a change to a neighboring path 

will a contribution be found - in this case the propagator 

is proportional to exp 4Aclassical . 	This is exactly what 

is meant by the extremization of the action in classical 

mechanics (-f = 0). 

Note that equations (2) and (3) can be immediately 

generalized to the case where the metric tensor is not flat, 

but only time dependent as is our g1.(t); one simply in-

cludes d
t
x in place of dx. 

The propagato'r is also the starting point for a deve- 

lopment of equilibrium statistical mechanics. 	Before 

considering how this arises, we examine how the propagator 

may be calculated for our model systems. 

3.2 Calculation of Propagators  

One can show (Feynman and Hibbs, 1965) that if the 

Lagrangian is a generalized quadratic, 

oe'64,4 eta) + 4 (0 Xi  X f COX 2+60).w 4  e (b))(  # 	( ) 

then 

where 
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and the path integration above is over all paths subject 

to the condition y(o) = 0 = y(T). 	The limitation to 

quadratic Lagrangians still covers a large number of systems 

since the approximation of an interacting system either by 

a non-interacting one or by a linear interaction is often 

valid. 

The free particle, SHO, LDP and DHO are exactly of 

the form (4), and we therefore need only find the conditional 

propagator (5) to have the full propagator. 

The path integration in equation (5) does not in fact 

need to be carried (Alt, as there is a simple relationship 

between F(tb,ta) and A(xb,tb; xa,ta) in the quadratic 

Lagrangian case. 	This was first noticed by Pauli (1962), 

using the work of Van Vleck (1928). 	Below we outline a 

flat space method of calculating F(tb  t
a
) due to Miller 

(1970). 

The starting point of this calculation is the uni- 

tarity condition (36). 	One assumes that K(b,a) can be 

written as 

K (h)4) 	8(h, 	i 0(1)a) ) 

for two functions B and 4, and then by applying a stationary 

phase argument can show that (3b) is satisfied if 

08 	(27; 	exs ax, 
(6 	L  

c.f. §3.4 
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This result holds true for any Lagrangian in the limit 

11 	0, and is exact for quadratic Lagrangians. 	de Witt 

(1957) extended the formula to include the case of curvi- 

linear coordinates. 	He showed that 

F(4, 1-.) le 	 
02/7& 	ex,oxa.  

(6) 

Then we have the following results: 

(i) free particle  

F(4, fa) 

with propagator 

/1  la 
0?/-r i 4T (7a) 

o (2/ri T) -G11f .eiZT(x6  - x4 
 2 

id 
Al  a 

F N,t,) (  A e  
.217i4 ( 1 	-1/inV 

and 

.1t/2M.1t/2MA (A•6  -M 2  
(Zni 4 (I- ohm }  )1 	24.  - 	I.  ) 

(8b) 

(iii) SRO 

  

     

(ii) LDP 

(7b) 

(8a) 

Pik = rric.00  

..?/7i 5L.rz-  WeT)i  

(9a) 

* 
The case of three dimensions can be found in Bruch and 

Revercomb (1973). 
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and 

cog co. T— (9b) 

and 

(waz > 2,) 

• F 	mw y7f -- 
-ontstri 14/ T 

and 

(iv) DHO 

(10a) 

Khil (6/4 

W 	12- 

(-2/7(.45in h/ 

1MW lea e.21ria x: e2 rth  

cc VT 
.S1;1 WI 

2x,L xhe"lta+6b) 	( 2 2riq 	2 Z triZ) 
Xae 	— X6 e 

5/1/ 4/7 	14/ (lob) 

For the case w2  < y2, replace sin WT by sinh W'T and cos WT 

by cosh W'T throughout. 

Incidentally, Papadopoulos (1973) has calculated the 

LDP and DHO propagators without making the metric identi- 

fication. 	The propagators are similar to ours and satisfy 

the same closure relation, but the pre-exponential factors 

(8a) and (10a) are respectively altered to 

2n t 6- cAtit")] 
and ( ni We  a.te# art/  

effiA Sir/ WT 

.2 
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All the above propagators, including those of 

Papadopoulos also satisfy the unitarity condition. 

In the next section, as a check and for completeness, 

we give a direct calculation of the DHO path integral. 

3.3 Path Integration for the DHO  

The standard way of evaluating path integrals such as 

(1) is by dividing the time interval T into N segments of 

length e such that Ne = T. 

At the end of the calculation, the limit N -4- co is to 

be taken. 	Some approximation for the stepwise Lagrangian 

is then chosen e.g. 

2 	2 

Other choices are also possible - see Feynman (1948). 

It may then be shown that our path integral takes the 

form of the following N-fold integral: 

co 
1.1.• 0,4 	fed,e , 	- • el, Xn  

0* 

where 

. 	 
rh 

flat 

is a normalization constant whose value is the same as the 

flat space value, as shown in Appendix 1. 

The first result we need is the relevant path integral 

for the SHO. 	This is a well-known result but is rarely cal- 
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culated in full in the texts, and accordingly we present 

such a calculation below (in flat space). 

Because of the periodicity condition in the general 

definition of F(tb,ta
), we introduce 

X (I. =16) 

an Sir? ni7,1 	 (12) 

n=1 	
Al  

and write the action, having made use of the SHO Lagrangian 

and the definition of 4, as 

Al Ar-/ 

ite .51n 	Sul illy 	 (13) 

N N 

5,;7  raj - Sir]. - )111/51 	51/7 Mir 6.-  
111 	1V 

Now since 

e 
1r/A1 

j=1 

3 

we reduce equation (13) to 

R(6,4)= nieIV co-t077-)— 
(14) 

The introduction of the Fourier series expansion of the 

{xi} means that we are now regarding the set {an} as the 



xk  
2 

- ,43 
L."(
,x 

A1/1.  
77-  

(66464:k 
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variables of integration, and consequently the propagator 

is now to be evaluated from 

GYi 

F(4,1.1) 	 dczn_ I r"--  1.4161V.  
N->c0 A A/ a_ a/ 2* 

oV-/ 

(I- coo tir) -2 ° (15) 

where J is the Jacobian arising out of the change of variables. 

The elements of the Jacobian matrix are 

T- e ' lc 	LA 
 

Muir (1882) evaluated the determinant J above as 

/VP-I 
A14) 

Now using 

= 

:=.11 r?  
N Cnike 

'IV 17  - c,s,j 	1 x • 
A/ .2 

m -17 

Now 

4/4  

ci„ 	11436,26)=/ p-- 6661.1.0) 
A/ 	41:: 	

AI 

   

4a)02.162  

I- rho P14/7"-  

 

n7= 

  

Al 

 



-/ 
_ 0:62  /  

m=I 	5/i1z oar 
,2 A1 

f 
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and since (Gradshteyn and Ryzhik, 1965) 

N -  

	

2 ( 1 - 	kiT) 	A, 

we have 

N-1 	 Al^  

1 I 	C4X) rfrar.  - 1412'62)z 	
/I 

	

A7 	° 01= 	 0(  

.14, 62 Z 

C /?27r 
A/ 

MR 

' Write 1-cos mr = 2sin2 2N  and apply the identity 

(I _ s,„22.9  )0_  
51 

	

.11" 	
sin-2.0 	5 IrizO 

2' 	 42 71.2 	S n' (Ai -1) 	.5././7 6-  
= Sin Zit / 6 

514   

	

2A/ 	.ZA/ 	 .zrt/ 
(Jolley, 1922), by identifying 6 with Ito

oc. 	Hence 

.9;) X11 zw,E 
6-> 21V ) 14) o  

f;7 w0T 

ejoT 

The complete expression above is then 

rv-/ 
(  eva  T r Tr coo  —  

7LT / 	N 	 10. 	5 in woT 

Insertion into the expression for F(tb,ta) shows full agree-

ment with equation (9a) as is required. 
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To proceed further in the calculation of KDHO(b,a), 

we use the results of §1.4, making the transformation 

z = xe
yt  as before. 

The Lagrangian to be inserted in the transformed 

path integral is now 

A iz 	//y/ Pti2z 2  

For the classical path, the Lagrangian is taken without the 

term in A for the reason pointed out before in §1.4. 	We 

now proceed to calculate F(tb,ta) for the DHO, and since the 

sum is over all possible paths, including the classical one, 

the full Lagrangian must be retained in the time-integral 

since the A term is only irrelevant on the unique least 

action path. 	This causes no mathematical difficulty since 

the A term is an exact time derivative and may immediately 

be integrated out. 

Specifically we have 

2 2iP16 ) vrk- i z 	- 
The remaining path integral is exactly that found 

above for the SHO with W replacing wo. 	There is no Jacobian 

shown explicitly in (16) - it is in fact equal to 1, since 

no additional factors need be introduced in the metrical form 

of equation (5) to make the above transformation. 
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Finally, combining all the terms and transforming 

back to the {x,t} coordinates, we recover equations (10a) 

and (10b), the exponential in (16) which involves y being 

absorbed into the classical action exponent to give the 

full ADH0(b,a). 

3.4 Observables in the Path Integral Method  

Feynman (1948) and Pauli (1962) have shown that for 

all systems in the classical limit, and generally for sys-

tems described by a quadratic Lagrangian, the propagator 

satisfies 

14 3/(0a) = 8(b)K(det)-0-461(Xh--)(4)g(4-6.))  (17) 
U6  

and that it therefore contains the same information as the 

wave function for the system. 	H(b) means that the operators 

in H only affect the "b" coordinates.) 
	

Equation (17) is 

consistent with our definition of K(b,a) only for tb > ta. 

We see that K(b,a) is quite formally the Green's function of 

the differential equation ( 7) (§<2.3. 

When H is time independent
? 
 the solution K(b,a) can be 

written in terms of the energy eigenfunctions {0n
(x)} as 

et) 
7 

(18) 

 

/7=--0 

 

E
n 

being the energy eigenvalues. 
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The importance of equation (19) lies in the fact that 

knowing K(b,(1.) we should in principle also know {4)n
1 

and vice versa. 

As a tentative way of generalizing equation (19) to 

include time-dependent systems such as those discussed 

earlier, we absorb the time-evolution factor back into the 

wave functions, writing 

= 
	

IPd )(17/4) (kn )(4) ea) 
	

(19) 

n=o 
the 	being solutions of the time-dependent Schrodinger 

Equation. 

Using equation (24), §2.3, we see that expression 

(19) takes the form 

/aka) 	-im1cNe"4- 	inw(xie" 4/ <to' 
.?* 	 2k 

• gh- if,,(/3x,e'th)/1066, eb.) 	. (20)  
11:zo 

Now, since (Magnus, Oberhettinger and Soni, 1966) 

-0e.qt ,e-2-)9(i!) 

I
! 	

Z2  C X2:12  (( 	j) 4rwir,C) 	= e 
we can evaluate the sum in equation (20) and obtain 

CO 

This is Mehler s formula. 	It is also given in Morse and 
Feshbach (1965), but appears with the wrong sign in the square 
root on the LHS. 
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ak,a 	rkiW 	o i milt/ (x zr  e 	e rt fsot/vreb tj c  

.Z/TiAS/;7WT) 

—A/X,6e r"e4 	(x'telYtk—k26-e  2-'4) 
W 7 	

a 

which is the result for the propagator found in (10b) above. 

Clearly this procedure is reversible, relying only on the 

connection offered by Mehler's formula. 	The same applies 

to the undamped oscillator. 	As to finding the eigenvalues, 

given the propagator, we can proceed following Burton and 

de Borde (1955) by trying to generalize the formula 

5/;7 11/ T 

(22) 

00 
d x  (x ,e;  t= 

iE„ 
(23) 

which follows from equation (18). 

For the SHO, the LHS of equation (23) may be evaluated, 

and is equal to 
Ao 

AY -  f1.) 

n= 0 
whence we can equate the arguments of order n to recover the 

well-known result 

(#1 

In the case of the DHO, the x variables always feature 

in conjunction with the exponential time factor exp(yt). 

2 	2 
We have terms like x

a 
exp(2yta), 	exp(2ytb), and recalling 
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the metric description, realise that these are equal to the 

norms of xi(a) and xi(b) respectively. 	We denote these by 

X
2
(a) and X

2
(b). 	Then we can write 

la 	) X(6), T)"--- 	 .? itsin 0/ 7) 4-6Y 	e 	
e(ei ) X1(6)1 alo k 

ll 	
/  

/;7 W T 

....?x(0x(04  qxy4.4(z(1 
1;7 W T 	h/ 

Then the trace procedure of equation (24) can be 

carried out as 

(24) 

00 

f ax K(x)X, -= (25) 

'r 

which can be seen from the form of *n(x).t). 	Unfortunately 

this yields no more information than in the SHO example, 

since we merely obtain the eigenvalue appearing in the trans-

formed equation (19) of g2.3. 

In standard many-body theory (Brown, 1967), expectation 

values can be fotind directly from the Green's function, no 

knowledge of the eigenfunctions being necessary. 	For a 

system of single particles, the Green's function G(K,r) 

(in momentum representation) allows a direct expression for 

the ground state energy, <E> = <T> + <V>, to be found. 	<T> 

and <V> are the respective expectation values of the kinetic 

and potential energies. 

Since 

.,apt 	(k, t) 	, 
z- 0 

(26) 
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where' n
k 

is the occupation number of the k
th 

momentum state, 

<T> is given by 

<(7-) = 	
.10,07 
	 , 	(27) 

Further, from the equation of motion for G(k,T), it can be 

shown that 

9T) ,Z<V> — 	
(1c,r) 

z." 
	

(28) 

Thus <T> and <V> are.known, and <E> can be found. 

For the Feynman propagators, in coordinate represen-

tation, the statement equivalent to equation (26) is 

A/4  44) 	A/4) (29) 

and in the situation where gib  = 	we obtain 

.1„ 
	Nit; ;x4,q) 	(K6t 	 (30) 

In the momentum representation defined by 

/C(c04;k4At)---- flo 1.,K6 e 	rk-6, t6;  x4  ta) ) 
ike  vikt  Kt  

(31) 

(k
b is the covariant momentum; xb is contravariant as before: 

the quantity kb, xb  is thus a scalar product) when tb 	t
a
, 
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we find, 

(kh )/6; A; ) Z4) e Y1-4  /Orb 	, 	
(32) 

In, contradistinction with (26), we have a singular 

distribution, only one "k" state being occupied. 	We are 

dealing with a single particle, rather than the many non- 

interacting particles described by G(k,T) above. 	There 

is insufficient information in equations (30) and (32) to 

enable us to find a value for the energy compatible with 

the description of §2.4. 	This conclusion was also reached 

by Montroll (1952), whose value for the energy of a general 

system is once again given in terms of the system wave function. 

For us the practical value of the propagator lies in 

its use as a check on the solution of the Schr8dinger equation, 

and more importantly in determining the statistical mechanical 

properties of the system. 

We had hoped, moreover, that a finite te'mperature 

formalism could be found by analytic continuation of the 

propagator in the same way as is done in conventional many 

body theory (Abrikosov e.a, 1965). 	All our attempts in 

this direction have been fruitless, the essential difficulty 

being that ours is a single particle theory. 

- 3.5 Conclusion  

We have shown how damping maybe included in the path 

integral formalism of Feynman. 	Since this theory is Lagran- 

gian (action) based, our Lagrangian incorporating damping 
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is particularly easy to introduce into this formalism. 

We first showed how to modify the formulae of the 

flat space theory to include anytime-dependent metric ten- 

sor. 	Then, having established the propagator for the SHO 

by a direct method, we were able to explicitly calculate 

the DHO propagator. 	This is in accordance with the value 

to be found from the Van Vleck-Pauli-de Witt formulae. 

Furthermore, the propagator so found (for overdamped 

and underdamped) motion is exactly the same as that to be 

found by building the propagator from the wave-functions. 

Most impo- tant of course is the fact that there are no 

approximations in these calculations: the quadratic nature 

of the Lagrangian means all our formulae are exact. 

However, the path integral method as developed here 

is of little use in calculating <H> or <E> as was done in 

Chapter 2. 	Ideally we would like to calculate these quan- 

tities directly with no knowledge of the (4)11}, but this seems 

to be impossible,. 
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CHAPTER FOUR 

DISSIPATION IN STATISTICAL MECHANICS  

4.1 Introduction  

The system we are interested in describing is that of 

a particle, possibly subject to an harmonic oscillator poten-

tial, moving in a heat bath which exerts viscous forces on 

it. 	The system of particle + bath is open to the outside, 

and the particle is free to exchange energy with the bath. 

The usual assumption (Buch and Denman, 1973) is that 

the energy of the oscillator is larger than the average 

energy of the bath so that the energy exchange is essentially 

one way = from particle to bath until equipartition is reached. 

This picture is of course incomplete, there being no indication 

of exactly where the energy is going to since we do not des- 

cribe any sinks of energy in the bath. 

The question of the thermodynamics of such systems 

has been studied by Haake (1973) using the Master equation 

approach. 	The method we shall adopt is that developed by 

Papadopoulos (1973, 1974), based on the work of Feynman and 

Vernon (1963). 

In general the total density matrilof an interacting 

system such as the above, is reduced to the density matrix 

of that part of the system whose properties are of interest 

by averaging over all unwanted coordinates. 	This is done 

by taking the trace over these coordinates. 	Since 

p = exp(-01), it is essentially a Hamiltonian approach to 
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the problem. 	Feynman and Vernon (1962) showed how to carry 

out the same procedure when the system can be described by 

means of Lagrangian functions for particle, interaction and 

bath. 	The unwanted coordinates are lumped together in an 

influence functional" by carrying out path integrals over 

unwanted coordinates. 

Such processes are barred to us by virtue of the fact 

that we begin with a single particle model where all the 

interaction effects are contained in A (except of course the 

random forces which we have chosen to ignore). 

Our first aim is to try to adapt the functional inte-

gral formalism of equilibrium statistical mechanics to in-

clude damping in the same way as was successfully done in 

the quantum theory. 	In equilibrium the density matrix of 

a system described by a quadratic Lagrangian is proportional 

to the exponential of, the classical action functional analy-

tically continued from real to imaginary time i.e. 

-X(x,X)% 	- 1 
o(x,x) 	e 	/ , where A(x,x) is the analytically con- 

tinned action. 

Incidentally, one can quite formally write the pro- 
. 

S(x)  
bability P(x) for a given coordinate state as P(x) 	exp 

KB  

where S is the entropy and KB  is Boltzmann's constant. 	We 

also showed that our quadratic Lagrangian gives a quadratic 

action function, so that A is also quadratic. 	In the quasi- 

classical case, S(x) is also quadratic in x (Landau and 

Lifschitz, 1959), so that A and S closely resemble each other. 

There is thus the suggestion of some basic connexion between 
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r 

the action and entropy, these being the quantities which are 

central to the extremum principles of classical and statistical 

mechanics respectively.} 

The basic characteristic of irreversible processes 

such as damping is that during the whole process the entropy 

of the universe should increase until a maximum value is 

attained when equilibrium is reached. 	Unfortunately, the 

definition of entropy out of equilibrium is not at all ob-

vious (Meixner, 1969)7 especially since a clear splitting 

off of the system entropy from that of the environment is 

not always possible.(Cox, 1955). 	The solution of the 

quantum DHO showed that there was a one to one relationship 

between states of the SHO and DHO. 	This means that from 

the point of view of information the entropy of the two 

systems will be the same . 	The information theory definition 

of entropy is S = -k Tr $ Zn $ ($ being the density operator) 

and will be seen to give a time independent result. 	We 

shall try to obviate this difficulty by an alternative cal-

culation of the entropy. 

Below we shall recapitulate the path integral theory 

and then extend it in two different ways to find two possible 

density matrices. 

• 

de Broglie (1964) has discussed this point in detail in 
his monograph. 

* Suggested to the author in private conversation with Dr. 
D. Ter Haar. 
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4.2 Resume of Path Integral Theory of Equilibrium Statis-

tical Mechanics  

(1) If eigenvalues of the Hamiltonian of the system can 

be found such that 

954(Y) 	£n 4)(K)  

one can write the density matrix in the canonical ensemble 

as 

dc)(x ; ) 	On(x9 00'4(4 e—AEr) 	
(1) rl 

where 6 = 
1
—
' 
 T being the absolute temperature. 

kT 

We have chosen the coordinate representation to faci- 

litate comparison with equation (18), §3.4. 	If we set 

Lob-  ta) 	 (2) 

k 
in this equation, we arrive back at equation (1) above. 

This is the same conclusion reached by comparison of the 

Schr3dinger and Bloch equations. 

(2) The replacement (2) is then given the status of a 

general rule: In equilibrium the analytic continuation of 

the propagator in coordinate representation is the density 

matrix (Abrikosov et al., 1965). 

(3) Such a procedure is valid even when the energy eigen-

values do not exist or cannot be extracted analytically. 

This follows because like equation (18) §3.4, equation (2) 

above can be written as a path integral over a specific 

measure in which no mention is made of eigenvalues. 	The 
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a 2A(66-4,64) 
x'3 x 
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path integration is over the imaginary time variable T 

running from 0 to ah: 

X
I 

j°  (N. ) 	c9 X N 2.1()("K1/54)  ( 3 ) 
X 

with A as defined earlier. 

For quadratic Lagrangian systems we then have 

where A is the classical action functional. 

Since the eigenvalues of the DHO Hamiltonian could 

not be found, this procedure seems to offer the possIbility 

of finding its density matrix with little difficulty. 

(4) 	An elegant physical picture of the above process has 

been presented by Miller (1971) in a paper on the classical 

limit approximation. 

Starting 'from the classical equation of motion, the 

change from real to imaginary time has the effect of revers-

ing the sign of the potential V, so that the motion now takes 

place in a classically forbidden region. 	Thus to find 

p(x,x) one calculates the propagator with V 	-V. 

This procedure relies on the existence of a Lagrangian 

and action functional. 	We showed earlier how to modify the 

Lagrange formalism to include a particular kind of dissipation. 

It is to be hoped that a simple generalization of the analytic 

continuation will give us the required time-dependent density 
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matrix. 

The assumption that the energy of DHO is greater than 

the average bath energy is equivalent to saying that the 

time-scale for smoothing out disturbances in the heat bath 

is much shorter than the damping time-scale, and consequent-

ly that the bath remains in thermal equilibrium at the. tem- 

perature T. 	(See §2.5 and §4.6.) 

For later comparison, we note here the results of 

the analytic continuation in the case of the free particle 

and the SHO. 

Free particle  

	 -emr - 	 
7- ‘L/3 	 zA1/3 

( 5 ) 

and 

S.H.O. 

e‹ 	
77 	

1 tv

A inh 4p4) eA in414 0p4 	 ( 6 

gdo 	
6(2#-)Cii)c&Itt 4) 0- 2x 

Using Mehler's formula, equation (22) §3.4, it may 

directly be shown that, as required, the SHO density matrix 

is diagonal in the energy representation. 

The partition function, Z, for the SHO is given by 

A 
where p is the density operator. 	In the coordinate repre- 

sentation, the trace is given in general by 
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f cbcjo (xi  
V 

(7) 

where V indicates the domain of integration. 	For the SHO 

we have a trace on (03, - 03), so that 

   

(8) 
-; 	top itz  

The free energy F, is defined by 

— r .16n, 	) 
/5  

and the energy, E, by 

E= 	&2. 

The energy then takes the well-known value 

 cer/12 wolf/ 

The abc,v4 definitions hold whenever H is time- 

independent. 	Having found F and E, we can find S from the 

relation 

F'_ E TS . 	 (12) 

Hence S has the value 

S-- IC8 pkoa  coRI 4044 	fel, (2 sinA 4.40 	
(13) 

Alternatively, S may be calculated from 

(9)  

(10)  

— k8 T' (̀4 (14) 
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the information theory definition of entropy. 	Even if 

the energy representation of the density matrix is unknown, 

S can be evaluated from the above relation using e.g. 

p (x:x) 

The method is to write 
joA 	0-p)  

and to use the McLaurin series for the logarithm, 

Co 

/- 0-i0)1= 	( 
n-=/ 

Finally each term (14)n  is expanded in powers of 

^ 
p using the Binomial theorem: 

P74017 

••eel, 	(/--1 	 (x) 	n  

We then have 

Oa 4 

- kg 	1-1)4"7-1  Cmffix dxWf6700e/J6"1/()-7' 
P7=1 41--.0 	 -00 

Lenz. 	 (15) 

The matrix element of pm  is then found (Appendix 2), 

and the summations carried out. 	The same result as equation 

(13) will be found. 

We now proceed to find the DHO density matrix by 

analytic continuation. 

Oa 
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4.3 Density Matrix by Analytic Continuation  

The action for the DHO (and the LDP, if the motion 

commences not at t = o, but say at t = t") depends not only 

on the time difference, but also on the initial and final 

times themselves, so that it is not obvious how a replace- 

ment like equation (3) is to be made. 	This troublesome 

time dependence is confined to the exponential time factors 

accompanying the coordinates x and x. 

If we retain the metric idea, and employ the Ansatz 

of Miller, we can surmise as follows: the particle motion 

takes place in a certain geometry, fixed and immutable, but 

the potential acting on the particle is to be altered accord- 

int to the replacement t 	-iT in the equation of motion. 

Furthermore, the density matrix of equilibrium gives the 

probability of finding the particle in a particular state 

at the time t. 	Therefore, after modifying the propagator 

by the Ansatz, we obtain the density matrix in the limit 

tb 
= t

a
. 

The substitution t 4- -it in the equation of motion 

of the DHO gives 

rmex * 	the 
d zZ 	at. (16) 

whence we find that the substitutions 

/ A 

(v
1 • 
= 

z   L 	11/2 
 A  4)4  0 .7 

are to be made in the propagator. 	Then setting tb  = t
a 

4+171' 	4072. 



W  
•I.z,7 n5r;74 04)

-  
4/1   m Ve lYt  

- 

* 
we find 

‘ ,2/  ceo4h0  _ 
st;et 60.54 

_ 	_ Ye' (y2-A-19 
s,;74w,34. (17) 

We can now calculate the average values of quantities 

of interest for a damped oscillator at the constant tempera-

ture 8, e.g. the averaged squared displacement <x2>: 

.2 
(e) f  x2.11()(1)delx  

do Lo  A; xi dex 
We can obtain this result by a different method: recall 
the definition of our propagator; 

At the temperature 8, by analogy with the construct-
ion of the many body "temperature Greens functions" 
(Abrikosov.e.a, 1965) we assume 

6ri,g,(.6) =I Awm e 	. 4,(,c(ert)47? 	-/47(ele) 
.+Otio 	

e 
z  

thus associating a canonical probability distribution with 
our wavefunctions. 	Then the density matrix is obtained by 
setting t = t', and performing the Mehler sum,.  

Z = E e
-0 W

n, Wn = W(n+1). 

The same quantity as (17) is.  obtained. 
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The denominator of equation (18) will be termed the 

partition function2--even though we do not strictly have a 

set of eigenstates for our basic Hamiltonian. 	We have 

--- 	 , 
425/n11  140/2 

which is the same as would be found in the case of an un-

damped oscillator of frequency W. 

Now 

&1) 	 csei w/34/2 	
(20) 

W 
and 

42 	_ 2b-1- 	4- W /4,14 4/444. -f- 1511/  Ce14 
\ 4414 	e  

si;74 wis 41 , ryy tv 	
(21) 

for the averaged "kinetic energy". 	Multiplying (20) by 

M W 2 
-yo, and adding to (21), we have an estimate of the total 

energy at temperature 8)  

e 	4-1(2°  (4/4 404/02 z 	 (22) 

Zit/ 
This agrees favourably with the values found in 

§2.4 for <E> and <H> in quantum theory at T = O. 	The value 

E in the limit y 	0, i.e. W 	w
o
, is exactly equal to the 

SHO value. 	The large time behavior of equation (17) will 

be discussed in the next section. 

The free energy, F, is conventionally defined in 

(19) 
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equilibrium by the expression 

(23) 

whence F = 
	

9.n Z. 	We cannot apply this definition for 

two reasons: firstly equation (23) is strictly an equili-

brium expression, assuming a canonical proability distri-

bution, and we are clearly dealing with a non-equilibrium 

situation. 	Secondly, we do not have an- operator (i.e. 

coordinate free) form for the density matrix. 	We only have 

equation (16), from which we have been unable to extract' 

the quantity F. 

As was pointed out in g4.l, if the entropy S, is 

taken as 

— kis w' (J°^4 ) 
	

(24) 

we shall find a result independent of time. 	What we have 

done in equation (24) is to take a formula which is supposed-

ly valid both for reversible and irreversible processes, but 

does not take account of the "varying mass" (or metric) in 

the Lagrangian. 	To actually evaluate this expression we 

proceed as in the previous section, expanding the logarithm 

as a power series in o(x,x). 	It is apparent from the asym- 

metry with respect to x:x of the imaginary exponent in 

equation (16) that there is no contribution to the entropy 

from this term since it cancels out exactly for all powers. 

Furthermore it is possible to make the transformation 

Z = xe
yt  throughout, whence the calculation follows that for 
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a SHO of frequency W. 

Therefore 

cs-4 	 
offo —  B 	 T 	T 

	
(25) 

Now when 2kT  « 1, i.e. when the time scale of the bath is 
2k 
5 

much shorter than the oscillator decay time, equation (25) 

may be approximated by 

sotto A- (26) 

and as W decreases for increasing A (note that w2  > y2), 

the entropy slowly increases. 	Damping leads to an increase 

of entropy. 

It is important to note that the value obtained for 

the entropy and indeed any of the observables above does not 

depend on the identification of eA/ mt as a metric factor, 

since without this identification the modification of p(x:x) 

leads to exactly the same integrations. 

Although we have an entropy whose value is increased 

as compared with the undamped system, it, along with the 

values found for the velocity and position, is strictly time 

independent unless e.g. we resort to calculation of <x2> 

rather than <x2  exp(2yt)> as above. 	Now, since our DHO and 

LDP equations of motion bear a close resemblance to the 

Langevin description of Brownian motion, and the functional 

integration is closely connected with diffusion processes, 

we expect a more complicated time evolution than the mere 

'r 



(27) 

- 77 - 

exp(-2-yt) factors above. 	We shall now show how this may 

be accomplished. 

4.4 Pro agated Density Matrix  

The path integral description of interacting systems 

at both zero and finite temperatures has been developed 

(Feynman and Vernon, 1963) especially in the case where the 

Lagrangian of the total system can be split up into the 

three parts of test particle, interaction and interaction 

bath. 	The formalism of such systems has been given the 

title of Influence Functional theory, since it is possible 

to write the influence of the interaction on the test 

particle solely in terms of test particle coordinates. 

This procedUre is equivalent to the usual operation in 

statistical mechanics of taking the trace over unwanted co-

ordinates. 

Suppose A(q(t)) is the action of the test system q, 

AB( q (0) that of the bath, and A.(q(t), Q(t)) that of the 

interaction. 	The probability of any event of the total 

system can be found from 

= jpat c@ii PQ1  ii/A6) #44-4, A (Q) _ 

and if one only wishes to measure the dependence on q, one 

Feynman and Hibbs (1965) p. 344 - 351. 
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can write 

Ec.  ff 	/o -1-lA() -44/g (28) 

where F(q,e) is the influence functional. 

The influence function due to a set of harmonic 

oscillators at finite temperature (a) is then given by 

gic? 	K(Q, 4-.Q,74) K46,, 6 (Ql, ; 4). 

2—e-44156,4 96,, (.1,9 , 	(29) 

where 
4n 
(Q)is the wave function of the oscillator in the 

nth state of energy En
, and K is the kernel for the SHO 

including the interaction between each constituent of the 

bath and the test particle. 	Now the sum in equation (29) 

is exactly the coordinate representation of the SHO equili-

brium density matrix given in §4.1, so that one can rewrite 

F(q(t), q‘(0).: 

FlM, $4— c/Q /OP, t; Q, )4PrYS 6; (9:3 ti)f(0,,VV(40 )  . 

This statement has general validity, not being re- 

stricted in any way only to a SHO. 	The only requirement 

is that {fin}  should exist. 

The integration over Q in equation (30) represents 

the condition that one is not interested in any properties 

of the Q system. 	We now remove this condition and allow 
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the final coordinate in the two kernels to be different. 

We denote this new quantity as 

P(02.10:. 	cO, do; irOz2t)q)4)/(1*02.1)tA;Of(Q/)'v/). 
(31) 

It represents the propagated value of the initial conditions 

contained in p(Qi, Q1'). 	Papplopoulos (1973, 1974) has 

taken P to be the definition of the non-equilibrium density 

matrix. 	The correctness of this hypothesis is to be as- 

certained by the truth or otherwise of the predictions (31) 

makes. 	In equation (31) the initial wave functions are 

propagated by the propagator (including forces, damping or 

external fields), but the probability of each wave function 

at the temperature f3 remains constant and equal to its ini- 

tial value, exp{-ahwo(n+1)}. 	The temperature and time- 

dependence are thus not coupled, c.f. footnote on page 

73. 

For the interacting systems described by our Lagran-

gian theory, the 3 way splitting into bath, interaction and 

test particle is impossible, the averaging over internal 

parameters having already been done and embodied in the 

damping y. 	The initial condition is that we release our 

oscillator of frequency w
o 

at time t1 
with the configuration 

determined by a canonical distribution exp-fhwof3(n+1)}. 

. Their condition at a later time is then given by the pro-

pagated value (31). 

It must be emphasized that this construction does not 
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follow in a rigorous way from the theory of influence 

functionals, but is merely a working hypothesis based on 

the ideas of influence functional theory. 

It is equally important to note that the propagators 

K are zero temperature propagators. 	All attempts on our 

part to generalize these to finite temperatures have been 

unsuccessful. 	We now proceed to evaluate P(Q2,Q2  ,t) for 

an overdamped oscillator W
2 

= y2 - w2, as follows: 

co  

P( 1-) 	 KP1(),-/,&;x2,6,,li000(„x)ct‘r, 	
(32) 

	)(In 4)0  
.?77451;74wi- 	s/hlikw4 

4,(6, 414/1 - j 

sink (lit w 
_ PIK/2143 OCIXz EX2) 

(33) 

where we have set t1 = 0, and 

mwo cosh woOt 	mWi cosh Wt 	myi 
A 

2S sinh w
o8S 	Th sinh Wt 	2h 

mwo cosh cooOE 	mWicosh Wt 	myi 

Th sinh woOh 	2fi sinh Wt 	Th 

-MO) 
0 

S sinh
• woOS 
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mWi xelt  

▪ sinh Wt 

-mWi x'elt  
	 • 
▪ sinh Wt 

To evaluate the double Gaussian integral, we first 

complete the squares for each variable in the argument i.e. 

transform the variables to shifted coordinates so that we 

have a purely quadratic form. 	Then the integration follows 

directly: 

co 

fAckexp_(i4x,248xzl,tCyi xe )N Ex, 	-Z(ebE-AE1-13.4 
(34) ) 

where 

= 414-B- cz 41 2.  W 24
504 OIC 7 ,." ,  

Then 

.2774 sinh w7- 1 277- 4 5; pill 1444 v7 

• exp -  M  W D e2T 

.24.  a Sink to.154 51A 
43'64  PO 4) rx2# x; 

imwe t(11034wt  1)_ wz  (costilvt  ÷rji 
2k 	51,11.7w6 	asi,A2-wk 5inhwt  

with 

4'6 
n72 
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The trace of equation (35), 

A9 

_ 

can be immediately calculated and is equal to that of a 

system of harmonic oscillators 

(36).  

wo4/2. 

Now allowing y 	o in (35) reduces P(x ,x', t) to the 

exact density matrix of a SHO. 	Furthermore as wo 	o we 

find the equivalent function P(x,x',t) for the LDP as we 

shall verify from first principles below. 	In addition, as 

pointed out earlier, the temperature and time remain un-

correlated, and the extra factor ( 0 sinh2Wt) will be found 
to cancel exactly in the calculation of the observables. 

The calculation of the information-theory entropy 

follows exactly as before, with the imaginary exponent can- 

celling out because of the asymmetry in x and x'. 	However, 

the value obtained here is that of an SHO with frequency wo, 

rather then the value W found earlier. 	This entropy is 

completely independent of the strength of damping. 

mw2 _II 2 a 2 
We now calculate 2

—°<x2>and 
<2m .572->, 

and after some 

tedious manipulation we find for the classical limit (taken 

for later convenience): 

mg  (x2) 	IcsTe-27,  es/Aut.  -1.2r2c.oh vith --- 60,2  
wiz 

(37a) 
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and 

•-• 	) 	KS  / 

2m 3x2 	2 
—Ir sirl4k/t 14.2a'2‘4;2.42w1--t. 

W 2  (37b) 

Taking the classical limit only alters the temperature- 

dependent factor in front of the square brackets. 	The 

general expression valid in the quantum regime has kT = 1 

..tco a 
replaced by coth --a-, with the same time evolution as above. 

Both (37a) and (37b) hold for underdamped and criti-

. cally damped motion where the relevant solution to the 

equation of motion is merely substituted. 

We intimated earlier that there should be some con-

nection between the above results and the theory of Brownian 

Motion. 	Chandrasekhar (1943) studied the classical Brownian 

Motion of a particle in a harmonic oscillator using a method 

which is essentially that of path integration. 

Assuming that the random forces f(t) in the pertinent 

Langevin equation 

(38) 

have a Gaussian probability and are uncorrelated with one 

another at different times, and that the probability distri-

butions tend to a Maxwell-Boltzmann distribution at the 

temperature T as t 	=, Chandrasekhar shows that a particle 

starting from xo 
at time zero with velocity U0 is characterized 

at time t by 
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k8 7-  
nit.007-  

hn 

	

 _21' /y 	 coy 2.vr CJD 	(X> 2 
/— e 	w 	 1.175- 

(39) 

6,2) = 1-c87 	e.2b(1.sr;71,7214/6 	2:51;iewe 	u>2 
nit 

Our classical limit expressions (37) bear very close 

resemblance to these equations except for the presence of 

the equipartition terms and averages <x>2  and <u>2  which 

vanish in our case. 	However, as t 	00, equations (39) 

- tend to the equipartition values, whereas ours do not. 

This is not surprising, since our formalism does not contain 

the random forces which are necessary to establish thermal 

equilibrium. 	In fact once we release our system at t = t1 

it moves in such a way that the motion gradually shrinks 

away, never actually reaching equilibrium. 

What is surprising, is that notwithstanding our having 

commenced with dissimilar initial conditions viz. a canonical 

distribution in our case and a delta function in Chandra-

sekhar's, we have found essentially the same time evolution 

(apart from the sign). 	This is in part a consequence of 

the Langevin Ansatz, viz. that a splitting of systematic and 

random forces is permissible. 	On the other hand, the de- 

tailed evolution probably results from the stochastic aspect 

of functional integrals (Gel'fand and Yaglom, 1960) in that 

K(x,C;x1,t1) is an integration over a Wiener process, and 

the solution of the Langevin equation is also such a Wiener 

process. 	In the limit t 	00, our density matrix tends to 



- 85 - 

a delta function located at the origin (c.f. comments in 

§2.4). 	Curiously we have as large time limit the Chandra- 

sekhar starting condition, and correspondingly for the 

initial condition and Chandrasekhar's long time limit. 	In 

our case the energy of the particle decreases from the equi-

partition value, whereas in the other it increases to this 

value. 	For completeness we note 

 vi - e-2% T 2 :s/21 2: 	• 	
(40) 

The above results for the DHO are entirely new. 

The long time behavior of the density matrix found 

by analytic' continuation viz. equation (17) is the same as 

above, tending to a delta function. 	Although the discussion 

in §4.6 applies to this matrix, also, we are mainly interested 

in the physics of the matrix (35), since it gives observables 

which show good agreement with the accepted theory of Brownian 

motion. 

4.5 Density Matrix for the L.D.P.  

Our discussion of the statistical mechanics has thus 

far mainly concentrated on the DHO. 	However the propagator 

method can be easily extended to the LDP. 	Instead of an 

initial distribution of undamped oscillators, we commence 

with an initial distribution of free particles at finite 

temperature and described by equation (4) at time t = o. 
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(This result can be obtained by allowing wo  4- 0 in the 

SHO matrix.) 
	

As before we need to evaluate a double 

Gaussian integral 

 

A
-21(Al  e-ul'")21-41 	2174- Z!5 ff 

 

• exp 	 (x/- X 2.- - 
e'0") 	

2) 	
242p 

I X, -X21
2 

7 (41) 

where {e Yt} is included if a metric interpretation 

As before we have 

• 

is used. 

A is  
= 

2.011 ZE(1-e 
t
) 

B 

C 
-m 

 

iXx'  
s 	/nit ) 

-iXx'  

t(1-e-Xim 
t
) 

2 
and A = ( 	  _x/mt) 

(1-e 	-h 

then 

D 

(42) 
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Equation (42) is also obtainable directly from equation 

(35) in the limit wo  -÷ 0. 

The trace 	is simply 

- L 674zA) 
	

(43) 

where we use box normalization, side L, and (43) holds both 

with and without the metric idea. 	Apart from the irrelevant 

e-It,(42) has the form of a free particle density matrix. 

The entropy is obviously then equal to the equilibrium value 

and is constant. 

-From §1.3 we have 

LDP 	.2,71 
e 	--P-- 
— A L-4,7  

(44)  

To find the average of this quantity, we need to find the 

 2a2 ,
ax- average of - 	< 	; > 	We find 

fi 	ar  e..... 	,47 e7  2  
(45)  

and as t 	co, <II> 	0 as in the DEO case. 	This agrees with 

the result in the quantum mechanics, PI being the average 

energy of a thermalized free particle. 	From equations (42) 

and (15) we can again calculate the entropy, but as previously 

the result will be time-independent. 	In this case we find 

the free particle value both with and without the metric. 

•• 
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4.6 Entropy  

It is clear that so far we have not found a satis-

factory way of calculating the entropy for our irreversible 

system, since the entropy calculated for the density matrix, 

equation (35), is constant for all times, even though we 

have seen that this matrix contains sufficient detail to re-

produce some of the features of the evolution in time of 

the Brownian motion, a process which is clearly irreversible. 

In the calculation of the entropy we were always able 

to eliminate the time dependence of the integrand by making 

the transformation xexp(yt) 	Z. 	On the other hand, for 

a dissipating system such as ours we do not expect ensemble 

averages to show no time-dependence. 	In particular we-are 

interested in the long time behavior of the density matrix 

given by equation (35). 

We found earlier that the classical phase-space trajec-

tory collapses into the origin, and that the quantum wave 

functions show a corresponding behavior in that 

„et /tfr,, (x,o/ 2 	six) . 

In both these regimes there is a greater localization in 

space as time becomes indefinitely large. 

* 
Now consider the non-metrical density matrix given 

by equation (35) with the additional pre-exponential factor 

exp(It). 	In an obvious notation, we can rewrite this 

See footnote p. 40. • 
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expression as 

-eAzIo — 	coi4tdo pt ix•27 , 	—21..xy). 

.L is a function of 

only. 	For the overdamped 

L • exp 2(y-W)t and M 	exp(2yt). 	Furthermore, the first 

exponent is a positive definite quadratic. 	It is easy to 

transform the coordinates (x,x') to values y,y') in which 

this quadratic assumes the diagonal form: 

	

X.= 07  (y41) 2 	,x 1= ".._7-1- (y1) • 
ify? 	

(47) 

Then under this rotation, 

L,2(cke1e,134--/) # L ' 2( 6 134  _ . 

-eAt10.71.myy, , 	
(48) 

Now since the limit of a product is equal to the product of 

the limits, we have as t 4- co, (L 	or,) 

/Yxd r' jt)= si y)i()Ite -zilv(YeY 1=..c(x)i(x-x). (49) 

Our infinite continuous matrix has only one entry, 

located at the origin, and it has infinite magnitude. 	This 

&1/4/()(2--  
/2) .  

(46) 

8 and t; 	M is a function of t 

case it 	is 	obvious 	that as 	t 4 00 
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agrees with the findings for the classical and quantal cases 

above. 	The same conclusion can be reached for the density 

matrix (17) obtained by analytic continuation. 	We see that 

in the limit t 	=, the transformation x exp(yt) 	Z is not 

well defined for the density matrix. 	The mapping of the 

point at infinity is not unique. 

Equation (35) refers to the overdamped case, but the 

argument above is applicable even to the underdamped case. 

There the value of M still goes as exp (2yt) for all times, 

even at the zeros of the sine function. 	Furthermore the.  

W'2  
longtime behavior of 	is well-behaved, and the 

sin2  W't 0 
expression for M always has the same sign. 	We therefore 

have similar behavior to the above case, viz. collapse into 

the origin.' 

The same is true for the critically damped oscillator 

- we set W = 0 in equation (35), and will find identical 

behavior to that above. 

Z, the trace of the density matrix is in the limit 

equal in value to the single entry of the matrix. 	We 

therefore have 

edff. p(y.-0,)k-'=0;6) == 1. 
z—co 
The entropy is given by 

5= 	k8 • .esi. 1 o 

As necessary, the pure state reached as t 	= has zero en- 

tropy. 	The entropy would thus appear to have decreased 

from the equilibrium value to zero. 	Unfortunately we 
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still do not have the behavior between these two cases. 

To have a decreasing entropy associated with energy 

losses is not so strange however, since we are not assert-

ing that the entropy consisting of that due to the oscilla-

tors + that of the reservoir defining the temperature is 

* 
decreasing. 	All that the above argument means is that 

when a particle is localized our information concerning it 

is the highest possible so that the entropy must be zero. 

Unfortunately we cannot turn to the elementary con-

cept of entropy as used by Clausius to explain the above, 

since the Clausius definition of entropy does not strictly 

apply during irreversible processes (Meixner, 1969), but 

rather makes a statement on the change of entropy between 

two equilibrium states A and B, where the changes A 
4 
 B may 

or may not be reversible. 	Our initial state (with frequen- 

cy moo, not W) is an equilibrium one by hypothesis, but the 

final state is approached only asymptotically and we therefore 

do not believe the Clausius statement is applicable. 	In 

We wish to briefly discuss an alternative way of describ- 
ing irreversible processes due to Cox (1955). 	In this 
approach the initial canonical distribution is perturbed not 
only by a systematic viscous force, but also by a time de- 
pendent contribution to the temperature. 	The Master equa- 
tion is then set up and solved, and the entropy calculated 
from the information theory definition, and is found to be 
time dependent only if the temperature is allowed to vary 
in time. 	However even in this orthodox theory there are 
difficulties of interpretation. 	It appears that the entro- 
py so calculated does not refer specifically to the damping 
system, but is in some way (Cox ibid, p. 37) a measure of 
the entropy of the system + environment. 	This environment 
is distinct from the heat bath, and is in addition in some 
unknown way responsible for the time variation of the rese-
voir temperature. 
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any event, even if it were applicable, the best we would 

obtain from it would be an inequality, which is of little.  

use here. 

What of the LDP? 	In essence the LDP motion and 

that of a critically damped DHO are the same, both motions 

being characterized solely by y. 	However, from the LDP 

density matrix we cannot find the behavior of collapse into 

a pure state. 	The reason for this lies in the chosen 

initial conditions, and the way in which these determine 

the detailed mathematics through the action functional whose 

form depends critically on the initial conditions. 	The 

critically damped oscillator was set up with x = xoe-X
/mt: 

thus an ensemble of oscillators with different values x6 all 

have the same value of zero at large times. 	On the other 

hand we set up the LDP with x - xo 	m = --o(1-e
-atom),  and for 

various xo, Po
, these solutions tend to diverse values as 

t 

4.7 General Conclusions  

The above comments on the entropy associated with our 

simple model of dissipation conclude this thesis. 	We have 

shown in the statistical mechanics how a suitable Ansatz is 

made whereby we obtain a density matrix by the propagation 

of the initial conditions with a frictional propagator. 

This Ansatz has reasonable success in that contact can be 

made with the well established theory of Brownian Motion. 

The differences between the predictions based on this density 
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matrix and those of the Brownian motion are essentially 

due to the absence of explicit random forces in our theory, 

while the similar dynamical evolution arises from the 

similarity between the Brownian motion and path integration, 

which are both Wiener processes. 

The entropy calculated directly by ensemble averaging 

is always constant in time when the transformation to co- 

moving coordinates is valid. 	However for long times when 

this transformation cannot be made, we find a different 

result to the ensemble average. 	We find a decrease in the 

entropy, which can be understood in the sense that our 

oscillators become more and more localized as time advances. 

The same conclusion can be drawn from the results of both 

the classical and quantum calculations. 

We have laid out a complete description of the simple 

dissipation introduced by the inclusion of the exponential 

integrating factor in the simplest two Lagrangians,that of 

the free particle, and that of the harmonically bound par- 

ticle. 	This quadratic Lagrangian approach is the simplest 

choice when one does not wish to attribute any fine detail 

to the bath. 	Having found the Lagrangian, one can discuss 

the quantum mechanics either via the action (Feynman path 

integration) or by solving the relevant Schr8dinger equation 

(Hamiltonian method). 

In the classical and quantal descriptions, the intro-

duction of the notions of tensor calculus effected by the 

identificationg.. 	
1.3 

= S.. exp(Tit), has no physical effect, 

but from a logical., standpoint has proved quite useful. 
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Firstly we are able to discuss the canonical momentum 

without the embarassing time dependence, and secondly we 

only deal with real eigenvalues in the quantum case (the 

transformed Schr8dinger equation has real eigenvalues). 

The one-to-one correspondence between DHO and SHO therefore 

involves a comparison of real frequencies, which is a desir- 

able property. 	Thirdly our proposals for modifying the 

Miller Ansatz are reasonable and in agreement with an obvious 

generalization of the standard many-body Green's function to 

yield a density matrix at given time and temperature. 	At 

the very _east, we note that the mathematical modifications 

necessitated by such an identification have been made in a 

- self-consistent fashion. 

No relation has been found between the entropy and 

the action: in the simple theory above, the entropy is time 

independent, whereas the action depends not only on the time 

difference bilt also on the starting time. 	Furthermore we do 

not have a completely satisfactory way of defining <E>, P.' and 

S. 	There would seem to be no unambiguous way of analytically 

continuing the damped propagators to finite temperatures in 

the way that standard quantum many-body theory proceeds. 

The. Feynman propagators are those of the full wave function, 

and not as in many-body theory those of a single excitation. 

As it is, we must stress that the entropy we have calcu-

lated refers to a subsystem, and not to the whole system of 

bath and particle. 

Various applications of this Lagrangian approach to 



- 95 - 

damping are to be found in the literature. 	An application 

to tuned circuits is found in Stevens (1961); Papadopoulos 

(1973), on the other hand, concentrates on studying Brownian 

motion on a quantum level. 	Buch and Denman (1974) have 

used the LDP Hamiltonian to find the quantum mechanical 

electrical conductivity under an applied electric field. 
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APPENDIX 1  

Calculation of the Normalization in Curved Spaces with  

3 
g..13 = gib  (t) 

In this calculation we closely follow the method 

adopted by Feynman and Hibbs (1965). 	One can write any 

wavefunction as a superposition of earlier wavefunctions 

using the propagator as the kernel for such a summation i.e. 

00 

(1) 
—00 

where we integrate over the invariant voluthe element (one 

dimension) and x',x are taken as contravariant quantities. 

When t',t are very close together, the kernel reduces to 

4 	
63c 	 7  02  2 	' 	(2) x.)6) 	 X/*K o2t746 

For the DHO the above Lagrangian is written as 

(02 g 2  

ce'6; )(it) 	L -2 	 10171( /--X)- 	(k /4. X)y 
6 	 z  

( 3 ) 

Now we write x' = x 	1, expand (1) in c, and by a 

stationary phase argument for 1, obtain 

• 6 e  it) 	
-2/7-1• 	e ()( 	

A t/oz,n  
/ e 	. 

A m 



the identity as c + 0, we require 

fz 
e27716 

equation to be 

In 
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The metric factors cancel, and in order for the 

as is found in the case g.. = 6.., where the Lagrangian 

kinetic energy has a constant coefficient. 	The result 

for A above is general to any g..(t). 

(4) 
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APPENDIX 2  

We have to calculate the integrals 

A9 

cix/ <//570<xitkilx) • 	 (1) 

There are two ways of doing this. 	The first based on work 

of Kac is due to Edwards and Lenard (1962). 

Method of Edwards and Lenard  

We can write out I as the following multiple inte-

gral by inserting complete sets of states. 

00 

(xifinik> 	66;„_,13(4 )(/)J0(x/Ix2 )-. f(x4i-/) k) - (2) 
Now the right-hand side can be interpreted by means of the 

closure relation equation (2), §3.1, as being the density 

matrix p(x',x;mS), since the "time" interval in each den-

sity matrix above is S. 

Thus we have 

/ 
6( if s7/X = f ( X ) X 	 (3) 

The remaining integral is then carried out and the two sums 

evaluated. 

Alternatively, if the above procedure were unknown, 

the Gaussian form of the SHO density matrix (indeed of any 

system whose action is a quadratic) can be utilized as follows: 
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<x'ipmix> is written out again, and use made of the general 

gaussian integral (c.f. §3.3). 

Then 

felxleix/6/fi/x)(xVir flx>= 	 
co co 

(det 4)/4- 

I (xx) = C 	(ctx'z4.0ex2— .0xxi 

and A. are the elements of the mxm matrix A 
ik 

(4) 

where 

A similar determinant arises in the study of chains of 

particles having only nearest neighbour interactions. 	To 

evaluate the determinant we require its eigenvalues. 	These 

are (Feynman, e.a. 1965) 

— -2A cad .2,77r 
4z 
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so that 

4=0 

Now inserting the values of a and a we find 

n7 0-1 

4.6e 	
.2 /7144 .et5,h4  topie4)  / I 606441,AS— coo 

Lk 	 (5) Pr7 0=o 

and using equation 1.395 #2 of Gradshteyn and Rhyzik (1965), 

we find 

/neva  
4.1c 	

It" 	(m100,50 — / 
si;14 4)44 	07- / • (6) 

The procedure from this point on is the same as that earlier)  

viz. evaluation of the sums. 	The result is exactly the same 

as before. 
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