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ABSTRACT

The role of the classical action (i.e. the tjme
integral of the Lagrangian) is studied in statistical
mechanics by taking as paradigms two simple systéms, viz.,
the linearly damped particle (LDP) and the linearly damped
harmonic oscillator (DHO). | Both of these systems can be
described by means of an exact Lagrangian which forms thé
basis of a self-consistent dynamical theory, Hamilton's "
equations being satisfied. The action can be calculated
és a quadratic function of the position and the time.

While the minimum number of assumptions is made in both
cases, a new viewpoint is introduced whereby the dissipative
term in the Lagréngian is made physically transparent, We
propose thag the aforementioned term be understood as a
natural metric, and that‘the particle (LDP or DHO) is thus
moving in a curved space.

A consistent formulation of quantum mechanics can be
made, and although no alterafion is caused to the physics,
_the formalism is developed in a rigorous manner. A complete
quantum description can be given either in the Schr8dinger
picture, or by means of the functional integral method of
Feynman, in which the action is of paramount importance.

Finally the irreversible statistical mechanics 1is
developed using the quantum propagator to find the time-
dependent density matrix. Two possible ways of doing this
are shown, andAthe connexlion between thisvwork and the

standard theory of Brownian motion is pointed out. The



entrépy and average enexrgy are.also calculated and it is
shown that for very large times a pure.state results.

A comparison is made with the work of several authors
who have used the same Lagrangian, and a discussion given
of the differences that exist. Alternative methods of
describing the LDP and DHO are reviewed, and notable agree-

ment is found with the early (1943) work of Chandrasekhar.
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INTRODUCTORY SURVEY

In this work we have set out an attempt to solve cne
of the oldest problems in physics, namely that of how to
describe the dissipation of energy, especially in statis-
tical mechanics. The emphasis.throughout our study 1is on
the rdle that the classical action plays in such a process,
since we know that equilibrium thermodynamics in particular
can be deﬁeloped from the action based formalism of Feynmaﬁ-
path integration. ~ The treatment of dissi?ation conventional-
ly ascribes the losses as resulting from two distinguishable
sets of forces: systematic mechanical ones, and random ones

which must be treated in a statistical fashion. We wish to

concentrate our attention on the systematic forces and in-
clude them in Lagrangian theory, then using the Feynman
propagator to extend the description to finite temperatures,
or in other words to a theory of irreversible statistical
mechanics.

To this end we concentrate our attention on tﬁo simple
cléssical systems which exhibit dissipation of energy, namely
the damped harmonic oscillator (DHO)iand the linéarly damped
‘particle (LDP), and try to phrase these problems in‘the
language of the Lagrangian formalism. This generalization
turns out to be very simple, and both the LDP aﬁd.DHO
Lagrangians are found to be quadratic functions of the velo-
cit} and position, which smoothly reduce to the duadratic
Lagrangians of a free particle and simple harmonic oscillator

(SHO) respectively as the damping is switched off.  The




description of dissipation by such quadratic Lagrangiéns

is the simplest way of aéhieving decay in time, We then
agtempt to give as complete a description of the problem

as possible, studying in turn the classical, quantal and
statisticél mechanical behavior using the classical action
as the basic function characterizing the evolution of these
systems.; In all these disciplinés we expect to find
evi&ence of dissipation of energy, and in the finite
‘temperature case that we are dealing with an irreversible
phenomenon.

"The equations of motion for the LDP and DHO have been
discussed within the framework of Newtonian Mechanics for
well over two centuries, whereas a Lagrangian-Hamiltonian
description did not make an appearance until comparitively

«

recently. Kanai, writing in 1948, seems to have been the
first to attempt a solution of the quantum problem including
the type of dissipation envisaged above. At present the
problem of losses is of great importance in the quantu™
theory of cocherent optics, and the DHO is dftén intred v ced
here as a simple model of a lossy cavity.‘

In Chapter 1 we introduce our dissipative moder s 2and
set up the appropriate Lagrangian functions. Hence prt€ can
find the Hamiltonian and the action function in a cong & Stent
way. At this point we indicate a novel interpretatio* ©f
the way in which the damping features invthe probleﬁ b¥

introducing the tensor calculus of curvilinear coordins £ €S-

This helps us to find an expression for the mqmentum‘ftliCh
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is decreasing 1in ;ime, in contrast to the work of others
where this generalized momentum increases with time.

Then we can find a suitable expression for the energy.
Having found the Hamiltonian, we devote Chapter 2 to a
solution Bf the Schrldinger equation. First a consistent
formalism is developed, avoiding difficulties associated
with thefdefinition of the position-momentum commutater.
Then the Schr8dinger equation is solved by means of a
unitary transformation to comoving coordinates. The wave-
functions are found, and thence the average of the Hamil-
tonian and. total "energy'" may be found. It turns out for
the DHO in.particular, that there is a one to one corre-
spondence between states of the DEO and the SHO which is
obtained in the limit ¥y +70. Since the quantum mechanical
problem can be.solved, we can pass with confidence to the
pathAintegral description of the damped systems, using>the
classical Lagrangian to find the quartum propagator. We
obtain the propagators for LDP and DHO and show that they
obey the rules for propagators, thaf they tend to the
relevant undamped propagators as the damping is switched
off, and that they are consistent with the wavefunction
describing the quantum problem.

Finally in Chapter 4 we deal with the statistical
mechanics of an ensemble of such dissipative systems., The
aim is to find a density matrix which contains the damping
in a way which guarantees the agreement of the expressioné

for the potential and kinetic energies with those given by




.

other theories of dissipation. It is hoped that the well-
known analytic continuation methods of quantum statistical
me;hanics can be .applied to give the density matrix at

finite temperature from a knowledge of the (zero temperature)
quantum propagator. We introduce the influence functional
formalism and show how the ideas in this theory enable a

density matrix to be constructed by propagation of the

initial conditions. We then show how to calculate the
mean energy and the entropy. In the entire discussion, a
knowledge of the action is of fundamental importance. Even

to write down the explicit form of the Schr8dinger equation,
we first must have the Lagrangian, since the Hémiltonian
which is-implied by it cannot be found in any other way.
(other than trial and error).

Considering the simplicity of our models for dissi—
pating systems, the above programme has been reasonably
successful in giving results in accord with our knowledge
oflhow such systems behave in practice. ‘ G

During the years over which this work was undertaken,
much of the physics dealt with above has also been stﬁdied
by other authors, and much of it has been published else-
vhere by Denman (1973, 1974) and Papadopoulos (1973, 1974).
Some of the results of these authoré have iﬁfluenced this
work. Nonetheless, the Lagrangian at the hearf of this
work was deauced independently, and the ideas relating to
tensor calculus are original. The results of'th; finite

temperature calculation are entirely new.



CHAPTER ONE

DISSIPATION IN CLASSICAL MECHANICS

1,1 Introduction

The dissipating systems which we wish to study have
the following classical equations of motion in one dimen-

sion, where a dot denotes time differentiation:

LINEARLY DAMPED PARTICLE (L.D.P.):
oy )
ﬁ?X'ﬁz*x =0 (1)

DAMPED HARMONIC OSCILLATOR (D.H.O):

Mx+ Ax KX =0 | (2)

Both .equations are second order differential equations
for the position of the particle, mass m, as a function of
time. A is the viscosity constant, and k the spring con-

stant whence the undamped frequency, @ _, is defined:
o

: 4

In both casés, an attempt is made to replace thé
Viscous or damping effect of an interacting collection of
particles (henceforth referred to as the bath) on a single
selected heavy pa;ticle by a systematic force. Experimen-
tally it is found that this force is velocity dependent
and always opposes the motion, so that A must be positive,
Eduation;A(l) and (2) are satisfactory approximations to

the actual situation provided the velocity of the particle



is low.
Solution of the above equations is elementary. We
note down a solution of each for boundary conditions as

indicated.

L.D.P.

X(t) - >g"[£—=a) = Po (/-¢€ d’é—} (4)

X(lf'=0) = 5
m )
where t is the time wvariable, P, is the initial momentum,

and x = X at time zero.
D.HIO.

The behavior of the solution here is dependent on

" the relationship between the quantities mg and y2 = (%E)z-

We distinguish three cases:

- U

(1) waz ’ 3’2 (Underdamping)

X(¢ = X,e % oy Wt, | (52)

2 2 2
With W':mo—x

(ii) Q%}'= Xz (Critical damping)
-yt
X(t) = X, ¢ (5b)
2 2 .
and (iii) W, < .4 (Overdamping)
_ vt / |
X(t) = X € cooh WE | (5e)
2 :
with h/, = Z’%— 7y} 2



We have inAeaﬁh case considered the particle to be
at the position X, at time zero. In all three cases the
particle displacement gradually shrinks to zero.

However, the above statements comprise the entire
analysis thch can be made by Newtonian mechanics: it is
not possible to arrive at a rigorous expression for the

i
energy, and indeed the Hamiltonian formalism is inappli-
cable, since the system described by x(t) is not conservative.
| The best that can be done is to argue as follows
(Landau and Lifschitz, 1960): the enérgy of the LDP is
totally kinetic, so that E = %mx2 = %é e_zYt, which decays
in time as it should. For a DHO with very small damp{ng,
one expects the energy to be proportional to the square of
the displacement, as is the case for a simple harmoniec
;scillatofo(SHO); Then for initial energy Eo’ ome can
show that E(t) = Eo e-zyt.

However, in order to use the LDP and DHO to gain in-
sight into the general problem of dissipation, it 1is neces-
sary to have a more fundamental way of ascertaining the energy,
bearing in mind that the same type of decay as above must
emerge from such a théory. Early attempts were made to
develop a Lagrangian theory incorporating dissipation.
Rayleigh introduced the ad hoc formalism of the dissipative
function, whence dissipation could be included in the usual

Euler-Lagrange equations by adding in the valocity derivative

of this function:



d/#) X - - R
df—b—;)-” dx Ox

wherelif is the Lagrangian df(i,x) without dissipation,

and R the, dissipative function,
1.2

R= Ax".
Q!

R is clearly positive definite. Then for the DHO the

quantity

d (Lmi*e Lfx?] = -
Zé[&-m +Lhxt = - AR

" is clearly monotonically decreasing as t - =, and the left
‘hand side of this equation may be regarded as the time

[

derivative of the energy of the oscillator,
Nonetheless, this theory lies outside the scope of
Lagrange-Hamilton formalism since the dissipative forces

are not derivable from a potential and therefore Hamilton's

equations are not correctly obtained.

1.2 Lagrangian Theory of Dissipation

Starting from first principles, we have succeeded in
finding a Lagrangian function which enables a complete and
.consistent deéériptiOn of. the classical dynamics to be given.
Not surprisingly, we are not the first to discover such a
Lagrangian, the first being Heinrich Helmholtz in 1887. A

partial list of contributors to the theory includes Kanai



(1948), Havas (1957), Kerner (1658), Stevens (1958),
Bopp (1962), Denman (1966), Marcuse (1970) and Papadop0u1§s
(1973).

Our problem may be enunciated thus: we have the
equations of motion (1) and (2), and wish to find a function

'&f(é, X, t) such that its substitution in the Euler-Lagrange

equation
_ﬁ((ﬁf _ o
b\ dx dX
will reproduce the equations of motion exactly. We seek

OZf(ﬁ,mx, t) in the general form

L (iont) = ge) § = Fhes

substitute in the Euler-Lagrange equation, and by comparison
induce what form g(t) should have. It may be immediately

verified that

g(t) = Ce

for both DHO and LDP Lagrangian functions, with C an'arbitrary

3%

constant set equal to 1, since it cannot alter the dynamics

in any way. (We neglect the trivial case C = 0.)

Then we notjz
. - .2
o( ("Jf‘)z e 7 mx
L-pP- 3 S (6)
and
AL
m

(X.Xf' = e ;mx'-l—- @52 . .
O{D‘,‘/OJ ) ) T 2 | : | | (7)-7



There is a striking similarity to the undamped processes
when LDP becomes a free particle, and DHO reduces to a SHO.

Since the two functiéns (6) and (7) satisfy the
Euler-Lagrange equation, wé can call them the Lagrangians
for our s;stems. Now are they unique, indeed is there only
a single Function‘g(t) which is generated by the procedure
mentionediabove? This question has been investigated in
detail (Havas, 1957), and in fact tﬁe Lagrangians above are
not unique, There are other so-called g-equivalent
Lagrangians and Hamiltonians (Currie and Saletan, 1966)
which will generate the correct equation of motion for q, °
but not for p. For our purposes, we shall restrict our-
- selves to the above Lagrangians (6) ard (7) since (i) they
are the only ones among the gq-equivalent Lagrangians dis-
ﬁlaying explicit time dependence; (ii) they satisfy Hamil-
ton's equations, and (iii1) lead to the standard commutation
relations in quantum mechanics+. (See §2.2)

Of .course, it is always t?ue in classical mechanics
that one can add on to any Lagrangian a function which is
a total time derivative of an arbitrary function of the
coordinates only, without altering the physical situation in
any wvay. Our statement of uniqueness embraces such a

possibility.

T The situation as regards the uniqueness of the quantum me-
chanical Hamiltonian is even more complicated. It so
happens that the position and momentum operators will only
give the correct commutation for a certain subset of q-
equivalent Hamiltonians. It is only the Hamiltonians which
are related to one another by unitary transformations that
should be regarded. as physically relevant. See Razavy (1972).



From equations (6) and (7), we define the genera-

lized momentum p,

Yy
i

P;'-@

for beth LDP and DHO. .

pj
d-é_ . .
" MmMX (8)

.The Hamiltonian is the Legendre transform of the

Lagrangian with respect to the variable x, viz.,

H=xd&_&,
X

and writing this Hamiltonian in terms of the independent

variables p, %, we find

- -4k
m
H (P = e P
Lo-p- am )
and
At AE
- %= 25 1.2
H(px)= ¢ ’”_32.,.@”"_1‘2{ (10).
b-#o am X '

It may be verifiea directly that Hamilton's eq;ations
are satisfied. As is generally the case, the generalized
momentum p, and the kinematical momentum mx are different.
Ppuo behaves pathologically, diverging witﬁ timg irrespective
of the type of mofion, whereas the kinematical momeétum
decreases. On the other hand PLDP remains cqhs;gnt, whareas
(mi)LDP decreases. ‘Thus, while HLDP above deé?easés with

time, H

DEO does not always do so, and depending on the

relatiocn between wg and v?, may either oscillate, decrease



or remain constant., Thus for the DHO, an ad hoc definition
of the energy based on the kinematical momentum is made
(Kerner, 1958; Denman, 1966):

_ayt

»io - € bH-o- (L.

This "eneigy" is equal to the sum of "kinetic energy",
Imx2, and the "pétential energy" 1kx?2, and always decreases
with time.

To complete this discussion, it is worth studying the
equation of motion (2) further, from the point of view of
constaﬁts of the motion. Since the squation is time-
translation invariant, i.e. replacing t byﬁ£+ﬂ for constant
.b does not alter the form of the equation of motion, a con-
stanf of the motion exists. However it should not be sup-
posed that this automatically demands conservation of energy.
To find this constant for the DHO (Denman, 1968; Denman and

Buch, 1973), we set

U= x |
) X

and then integrate equation (2), to find the constant c:

| | . y .
C =»&[(X+b’x)a+ WX‘E]” O% W[JZ/;X‘/ (12,

and for mg > y2, may write,
-7£
C= ,&[WX[o-)-/_.

To make the meaning of this constant more transparent,




e e A R s T

A= X+yx
b= Wx.

Then Q= — on e /,1//7 sz‘
A = WXO e— ¥ 9:%) LV?{'.

If we now change to polar coordinates (p, $) such

that

2

= a +62
;2— e P

where

(14)

b h(2):

Then equation (13) can be written as

= 2) . 2y (15).
C ‘-/lh/f)f e

From equation (13) it may be seen that C is related to the
initial energy of the oscillator; indeed when Yy »> o, the
;fgument of the logarithm is essenﬁially the energy of the
éHO of frequency W, .

On the other hand, equation (15) is the plane polar
coordinate representation of a logarithmic spiral. This
is the same type of curve as the phase-space trajectory of -
the oscillator fof phase-space variables of the position
and kinematical momentum (Marion, 1965),’§ince the variables
a and b are related to these by a linear transformation.

The constant, C, above is therefore equal to the initial



el
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value of the radius vector (see Figure 1).

a

‘Fig. 1 Phase space trajectory of the DHO.

. Arrows indicate direction of evolution.

Therefore, although a constant of the motion exists, -
it only refers to the initial state of the system and does
not give any direct ihformation about the géneral evolution
in time. | All that can be said is that a differeﬁt such

‘constant corresponds to each different initial condition,

1.3 Curvilinear Coordinates

A 3-space is completely described by its line element
2 _ Lo J s - , _
ds™ = da.{j_dx axd,  iryf= 13 | (16),
where gij is the metric tensor,'{dxl} are the contravariant
coordinate displacements, and we have used the Einstein
summation convention. The inverse of the metric tensor 1is

glJ; therefore



D _.{L'
ﬂj? - T kDD
where 6; is Kronecker’s delta:

‘: -
51(: 0, L%k
gi

L {no sum)

The elements gij may be explicitly time and co-
ordinate dependent.

The kinetic energy, T, is defined by
7= M(afé
2 \ dt

ie. T= m g X‘'x¢ | | (7,

—

a2 Y
so that in the presence of a scalar potential V(xl),vthe

Lagrangian is written as

x‘,ixi,f)= LA XixF — Vxd) (18)-

Comparing equations (6), (7) and (18) we now assert
.that the integrating factor e%-lt can be identified with the
metric tensor elements in (18). Although we have confined
our study thus far to one dimension, no complications arise
when three dimensions are studied - the same identification
is possible. Therefore we shall continue to work imn one
dimension, using sub and superscripts solely to distinguish

contravariant and covariant quantities where necessary.

We write
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and the motion is now visualized as taking place in a curved
space. This accords well with Eddington's (1965) idea that

forces acting on a particle can be incorporated into a

: *
metric; thus into the geometry.

Thus we have

" . YRE1
LG5 = m g (¢) XX

ofo.//(-g[”“.>f)= 25 ) X X7 - ;—L/E Fo )% %7 (20) .
Note that
gb.X£X{ = X}X%_ ' o (21)

is valid because the metric tensor is not coordinate dependent.

The line element of our3-space is

AE ) g |
2 ™ 2 2 2 | »
ds* = e ™ (dx*+ dgt+ dx; REETY
‘where the "curvature" arises solely from the damping.

Incidentally, the de Sitter line element of general relativity

* v ;
Denman and Kupferman (1973) have indicated that the problem

of a particle subjected to quadratic friction may be con-
strued in similar fashion: an exponential integration factor
with argument'sgd'(f);\x is introduced.



-

theory (Tolman, 1934), viz.,
e 2 2 2 LL-Z
dot= e‘Q(dX/ +dxa+dxj)—-6{ 5

bears close resemblance to the line element (22). Our
3-space may thus be viewed as a constant time segment of a
. 3 y *
de Sitter universe.
-
In general Tensor calculus, the invariant volume

element, dV, is given by

dV = \»/;/é) dx, dx, dx; = zzéX)
where -

a(¢) = detg,‘./-. = €

in our case.

It

The LDP is now to be regarded as a free particle
moving in a "curved" space, and its path is therefore a
geodesic, (Although our time dependent metric implies

zero spatial curvature, we still refer to the space as

, curved).

- The geodesic condition is
and from equation (22) we thus find the geodesics are given

by

mx + AX =0,

which is exactly the equation for the L.D.P.. In this

Wé shall not pursué this cosmological analogy further here.
In Newtonian Cosmology (Bondi, 1968) a basic requirement is

the conservation of energy, and we certainly cannot fulfill
this here. :



curved space, geodesics are curves - no longer straight lines
as would be found in a space with constant metric tensor

elements.

From the fact that x; = gij X7, we see that
© _ A x. o+ g.x7 |
X ol gy (23),
and that X; satisfies the equation
mX; -—’\X‘- =0 (24) .

Therefore the time evolution of Xg and x' is different -
both for LDP and DHO - the magnitude of x; grows with time
whereas xi decreases, as is experimentally observed. There-
fore xi describés the true situétion, and we.shall therefore
always calciulate solely with xi. Henceforth, x will denote
xi wherever a superscript is not vital.
The (covariant) generalized momentum
lb[ = ?o_t.:‘ . : (25)
ox

which increases with time, is an independent variable in
-any Hamiltonian theory. We can therefore write down its

associate vector, the contravariant quantity

/Ol = ; ¢y /od( (26))

and this momentum always decreases with time (LDP and DHO)

*
as would be found for the kinematic momentum mx?l.

We therefore construct the quantity

E = 5{,‘ pip? + Scj mwtxt x7I | Cen
oZm | 2
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by analogy with the expression for the energy of the SHO.
For the LDP we obviously do not include the second term on
the right, This quantity, E, has the same value as equation

(11).

The Hamiltonian follows rigorously from equation (10)

as

H[P[JXL‘): fb:j.pi/bj' -+ V/X‘j e (28).
am

Hamilton's equations are once again satisfied.
q

1.4 Canonical Transformation of Coordinates

We briefly examine the following important change of

coordinates; following Bopp (1962):

. Kt ) .h )
X — Z= Xe (29).
This transformation, which appears at first sight
to be merely a change of scale, is in fact a true canonical
transformation, as will be shown below for the case of the

DHO.

Under the above change of variable, the Lagrangian

df(i’x) is transformed to

. X . 2.2 ‘
Z(,2)= Lmz— Aég —mWz (30),
which is no longer explicitly time dependent. W is as

defined earlier.

The canonical momentum is



Tr= &

e

or

/= mz—~ Az (31).
X .

The new Hamiltonian H] is once again given as the

i

Legendre transform of“f (z,2):

H'(Thz) = _7[1 + ¥z + é_?ré/o'zzl - (32),
aAm

We can write equation (30) in the more transparent

form

- « _ R ) 2
and since the iast term is a total time derivative of a

function of the coordinates only, this Lagrangian is equi-

valent to the Lagrangian

’ ; >3 L M/“z 2
= 33)
L(z,2) = L mz~— LmW’2 (
2/ =2 = > |
which is the Lagrangian of a SHO of frequency W. Further-
more the Hamiltonian H' shows no explicit time dependence.

The transformation (29) is thus to a set of comoving co-
ordinates in which our dynamic functicms gf,H' show no
Idamped behaviqur;

since [ = pe 7t (33)
the Poisson bracket, {ﬂ,z}; equals unity, thus confirming

that the transformation, whilst time dependent, is canonical.



The generator of the transformation is

—-at
F=pze | | | (34a),
which satisfies the usual conditions (Landau and Lifschitz,
1960) viz.,
M-t = 2F | (34b)
B 7 - -
and [ = —~ 9F. | (34¢)
-

1.5 Action
The last dynamical function we wish to calculate 1is

the action, obtained as the time integral of the Lagrangian:
: f/ .
o, ‘ . . —

ﬁ(x)éj)f)t) = d'LL cf(x)x]&) . (35))
- L .

where the particle motion commences at time t from position

X, and terminates at t' at position x'. The action is thus

“the generator of the classical motion, and satisfies the two

relations

oA = p’
ox’

(p' being expressed in terms of t'),

and

‘ : ’
A H(P)’()'
ot | |
For a given system the action is evaluated as follows:

having solved the e.o.m. for x(t), one writes the Lagrangian

o BN PE S a8 AR S Sy o+ i+ e - . . e - e e i e e ey e
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as a function of time only, and thus (inlprinciple) can
carry out the time integration. The resulting expression
is then written as a function of the initial and final posi-
tion and time variables, Below we list the essential

features of this procedure carried out for the LDP and DHO.

LDP

—

—A£
LE)=e ™ />
so that
p ,_ = A/ x- X, b (36)
Alxyt; %, ,8=0) = a?_([/— _J,\éfm) ’

and we note that as X + o, this goes smoothly over to the

expression for a free particle.

DHO

Without loss of generality, we only consider m°2 > 2,

1) = g (vess e Wain W]~ 4 kx? cos® I,

go that

' ] . Bt Xf 7 é’
A(XE x,f)_ mW (xl X UHCMWT oZXe e %,
7 .smn/r 5qu/T

| —
s (Xleazi-__ X em‘) ,
W ' 2 (37)

where T = t' - ¢t.

For moz < y2, we write W' = i¥W and substitute in



i

equation (37), resulting in the replacement of sines and
cosines by the relevant hyperbolic functions.
Again, as A(y) - o, equation (36) goesvover smoothly

to the expression for a SHO.

. . . - -JA
A brief calculation using the relation H = r shows
consistency with our earlier expression for H.
It is important to note that the quadratic Lagrangians

both yield quadratic action functions.

1.6 Conclusion

We{ﬁave developed a comblete and consistenf description
of damping insofar as it is understood in classical mechanics,
"namely that energy is lost but no sink of energy is described
in the formalism.

| Botthagrangian and Hamiltomnian theor{es are constructed,

‘and their respective descriptions are concordant with one
anofher. The Hamiltonian is the basis for the subsequent
-Schrldinger picture of the problem, while the lLagrangian is
the basis of the path integral one;

The introduction of the metric as suggested by the
form of the Lagrangian, gives a means of identifying those
position and coordinate variables which behave as do the
experimentally observed ones. Hence we arrive at a value
for the energf,shéwing the correct time dependence.

Bf means of a canonical transférmation it 1is shown

how the damped system (DHO) is related to the undamped one

(suo).



Lastly, the action has been calculated, both for later
use and as a check on the value found for the Hamiltoﬁian.

Like the Lagrangian, the action is also a quadratic function.



CHAPTER TWO

DISSIPATION IN QUANTUM MECHANICS

2.1 Introducticn

Since the équation basic to quantum mechanics viz.,
Scﬁrﬂdinger's equation, is reversible in time, it may be
poncluded that one cannot speak of dissipation for a single
particle system on this microscopic level. Yet by con-
templating a quantum-mechanical generalization of equations
(1) and (2), this is precisely the difficulty that faces
us . We note in passing that authors such as de Broglie
(1964) and de la Pena Auerbach e.a. (1972), have developed
- the "hidden variable" theory of quantum mechanics to include
the fictitious case of the thermodyrnamics of a single particle
interacting with this hidden thermostat. Our description
of the dissipating processes, by focussing attention on the
particle itself, attempts such a single particle view, but
replaces the effect of the real bath by the unquantized,
.classical constant XA,

Now,by identifying the damping with the geometry of
the space, we are able to introduce dissipation on the
microscopic level since there is no difficulty in setting
up a general curvilinear quantum theory.

The adoption of this approach means that our des-
cription 1s semi;classical,since we only quantize fhe par-

ticle motion’treating the bath classically.



2.2 TFormalism of_Quantum Mechanics in Curvilinear Coordinates
We assume therefore that the classical DHO (or LDP)
is the analoéue of a certain one-dimensional quantum system.
The observables of this system are functions of the co-
ordinate and momentum operators q and p respectively. Now
-a knowledge of the commutation relation between these two
!
operatoré is generally sufficient for setting up and solving
the quantum dynamics completely,
In the case of dissipative systems, Marcuse (1970)
has pointed out certain difficulties encountered in attempt-
ing to define such a commutation relation, namely that if
both coordinate and momentum operators are time dependent
- e_Yt, the commutator eventually vanishes, whereas the non-
\
vanishing (indeed constant) nature of this commutator is
essential for ; quantum description to be given at all times
Recalling the analogy drawn in §1.3 between our
Lagrangian integrating factor and the metric tensor we

?

note down and adapt the theory of quantum mechanics in curvi-
linear spaces (de Witt, 1957). We must now distinguish

between contravariant and covariant operators.

The scalar commutator of ﬁi and aJ is postulated as
. A A 4
d - &

"where F is Planck's constant.

. r/\J A
L s _
-{ZP Te [ o

The coordinate basis states in Dirac notation, |q,t>,

are normalized at time t as.
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(25t]9, f) 5(2 s f//,é)

-L -
- /
= 2% 5(54)
x5
Since our space gij = e Gij has zero spatial

curvature, (R 0), the momentum operator in coordinate

*
representation is given by

o

pjr_’ii.. - (3

‘ ai.]

Because the metric tensor is time-dependent, the
conservation of the norm of the system wavefunction demands
a modifie.” time differentiation operation.

Briefly, one can show that the change in the repre-

sentation of the state vector |y> under the infinitesimal

unitary transformation

V= 1+ iHE
é

¢  where 8§t is an arbitrary displacement in time, 1s

gt s [y = 1= L (SRE)5E [(u ey
'/'i_(i%f"//‘/(ﬁ'j/%) &f/ (4)J

where H is the quantum analogue of the classical Hawmiltoniarn,

- w

~assuming that it exists.

We observe that the conventional time derivative is

replaced by the "conservative" tire derivative'

See also Trigg (1964) an&‘Charap (1973).
de Witt's terminology



_1_)_ - 0 + (,Zz?) (5)
Ot Of 4 ot | >
which for our metric (equation (19), §1.3) becomes

D - o ¥ |
5—{- aé -+ z— (6).

Equation (4) is the Schr8dinger equation in the curvilinear
space, and from it one can immediately verify that the norm
of <q|y>= ¢¥(q) is time independent, since the time dependence
of the volume element dV is eliminated by the additional
term in (6). -

In the next section we write §owu and solve the

Schrldinger equation for the D.H.O..

2.3 Solution of the Schr8dinger Equation of the DHO

We can now write the Schrldinger equation (4) in the
coordinate representation using the representations of the

position and momentum operators found in the previous section.

We find

ﬁ U()a

+ M £ j/f) L"-
im ¢ ‘(f)aid() 2 ?’f[t}z[)z JZLMZ /

L : )
= Lﬁ/’é‘wf[i‘)ﬁ) + 1%[%1')&/
p L 7).

The above equation is deri&ed froﬁ the classical

Hamiltonian (§1.3 equation 28) by appealing to the corre-

spondence principle. In this classical theory, the canoni-

o R A e, N e st i = o mm e
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In general, (Charap, 1973) a quantum theory taking a

: . ]
cal momentum 1is P; = —i;.

~ .
Lagrangian}$s its starting point cannot yield a Hamiltonian
by means of a Legendre transform as in the classical case,

since differentiation with respect to a quantum operator -

od
axt
to replace the process of differentiation by a suitable

p; =

i means just this7is meaningless. Instead one needs

commutation or anti-commutation relation. The Legendre
A A - -
transform relating L and H is thus written in quantum

mechanics as
A A .{i &.. ~
L = :z/‘(PL"L + T h)-H.

In our case, since the Christoffel symbols vanish
identically, we can easily relate* éi and ﬁk via the Heisen-
berg equation for ai, and thus write down (7) without ambi-
guity., We now proceéd to a rigorous solution of this equation,
pointing out the significance of the metric term as we proceed.

The way to solve equation (7) is by changing the

variable q by the substitution (one-dimensional)

Z = 7,6&‘, t—» t . (8)

As we pointed out previously, this transformation is in fact

We have for a particle of unit mass, #f = 1,

i [0,8] - < [2hd - w8, 3
. . &
or ic'=3/[;'ue’ fskf

A . . .
so that ZL\ =" jtk/gk since .;t = l’k(t only).



a canonical transformation (Kerﬁer, 19583 Bopp, 1962).

In §1.4 we found the change in form of the classical
‘Hamiltonian under such a ﬁransformation, but to avoid any
‘ambiguities (specifically: to ensure the Hermiticity qf g),
we cannot immediately apply the correspondence principle to
equation (32))51.4. Rather we have to work with the sym-

metrized form

AR A A A FT 2/\2 ‘ .
_Z_7+%(77'z+2//)+m%2 ®,
am | ol

A

Whére T and 2z are respectively the transformed momentum and
coordinate operators.

One can then readily solve equation (f) by applying
the comﬁutation relation between 7 and z, then finding the
wavéfunction, and lastly transforming it back to the x
coordinates. To do this one needs to know the quantum
transformation analag;us to equation (8).

. Now, to every classical canonical trangformatipn,
there corresponds a unitary transformation in quantum
mechanics. Denot'e this operator by U. Wé seek U in the
A
form [2 eLS

——
—]

(10)
: J

A

where S is Hermitian, and such that the time-dependence
associated with the operators is removed from the Schr8dinger
equa;ion. Proceeding in this way, but with a.different
appiication in mind, Stevens (1958) has found ;ucﬁ an operator

r ¢ r
S, For our purposes we use this S, but with opposite
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b3 .
sign . Accordingly we take

A AL A A Ay :
\5'—‘-_5_44(1/06"'/0&%) (11)

M 2
(wvith no Sum on 1i). | '

Then using the commutation relation (1), it is easy

to show that

f

I A ~15 ~xt A o :

665 g e = € 9  (12a)
& At _./§ ¥t A2

e 9 e = C 7, | (12b)

e, A - A t AL
and é" r e e P (12¢) -

What we are doing is to operate on the physical

system. The transformed wave function 1is [¢>:

o> = e > | s

.U

. . A A\
Ay LS 2 -5
. and H =e”He™ (13b)
is the transformed Hamiltonian.

Now we normalized our states previously by

s> =68(159t)4 = ¢"t 5(3'-2) .

Insert the unit operator

T - e I'Se'-l'g

"in the left-hand side of this relation:

* . -
] may also be found from first principles from the in-
finitesimal generator. See de Witt (1957).




LA A  .« L" Xt ,
e Sge e 1= e Mg 9

Now by equation (l2a), this is the same as
. A Ka) ‘
! RN A S (/_ ) :

[@//8 )%é’ ley) = 9 8§(¢-2). (14)
The transformed coordinate basis states are thus normalized
differently - in fact what (14) indicates is that in the
transformed system, the metric is effectively the flat
space (gij = Sij) one. This 1s in accord with the meaning
of equation (8), where the line element in ‘the z system
would be (one-dimension)

: 2 2
ds =dz
p
so tha; 811 = 1.
: :.'.“,1, .
Therefore we do not operate with the conservative

%?, but with the ordinary time derivative

time derivative,
in the transformed system.
Now by inserting the unit operator I = e e in

-equafion (4), we obtﬁin o
f?l/?ﬁ)*ﬁ 35 /45>'= ‘ﬁ /¢> | _"."(15))

so that the generator of the motion (translation in time)
. ' ol LR . .
is now the operator H -4 3t rather than the Hamiltonian
itself. This is the analogue of equation (34b) §1.4.

k]

In full we have the equation
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and in the transformed basis |Q> we then have

Z i(d?l‘) L e ik (1 02 )t

a result in agreement with equation (9).

Mékiﬁg the separation of wvariables

(@),

then substituting in equation (17), we have

I,

2
;ﬁw;{[@)_.. A2 320) . mW&* 2(@). (19)
am Q¥ 2

This equation is identical to the Schr8dinger equation for
a harmonicuoscillator with frequency W = (m02 - vz)i.
We thus have transformed the system to a frame in which the
Schrdinger equation is essentially time independent. This
agrees with the result found in 3$1.4 for the transformed
classica} system.

If, on the other hand, woz < y2, we can introduce
W'2 =y 2 - Y2 where w'ois purely imaginary: w'o= iw.

Solution is now in the range of continuous eigenvalues.

2 2

For w < = v%, we have the case of a free particle (in trans-
» » . . - *
formed coordinates), and a solution is again possible .
Returning now to the eigenmvalue equation (19), we

know its solution from elementary quantum mechanics:

This has been done by Buch and Denman (1974) for the LDP
in the theory of conductivity.
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W = W(ntd), n=05/2.---- . (20)

n

are the eigenvalues, and the eigenfunctions are ‘ .
L _mWQza?}'z“ ' :
X (@)= (fratal)%e /- ,z/”/]/n;ty_h/ﬁ@)D -

with the {Hn(/%EQ)} Hermite polynomials of order n. They
are a set of complete orthogonal polynomials. The normali-
sation factor (Y7 2"n!) -4 guarantees the normalisation of
the'{xn(Q)} to unity.

The full solution of equation (17) is thus

q?a[Qf): —Wﬂfc’—mxa /Zél (®) (22

Now

He) = (ale) = (z/c 5 5 fyy

by using the replacements indicated earller; i.e.

¢(q) = ¢(4), " (23)

where Q is the coordinate in the system with metric gij= Gij'

. We know that q ='Qe_Yt, so that

.‘zl?r(%f) (W/_'?n/)_— ““%t ”’Wi@ s 'hxzzez%ﬁﬂnéﬁdj(u).

In the absence of the metric interpretation, we would
find wn(q,t) multiplied by the factor eYt/2 arising from
using ordinary time derivatives in equatioﬁ (4) (Kanai, 1948;
Kerner, :1958; Stevens, 1958; Bopp, 1962; Buch and Denman,

1973). This factor does not alter the observable properties



of th; system since it is identical in value to the value
associated with dV in the presence of a metric different
tolsij.

Again, since the X, were normalized to one, the funec-
tions wn are so normalized as well. Furthermore the
{¢n(q,t)} are a complete orthonormal set of functions.

It may be verified by substitution that wn(q,t) is
a solution of equation (7). However it is not an eigen-

- function of H*, nor are the {mn} eigenvalues of H. ﬁpis
is because equation (7) is.only satisfied by the cancellation
of identical terms oh the right and left hand sides, thus
changing the form of H. This also applies to the trans-
formed coordinatés: the eigenvaiues belong to the operator
- BT+ ?l(ﬁa +'a§). Although the transformed system is re-
lated to the time dependent one by a unitary transformation,
”~

the eigenvalues are not the same in both systems since U is

time dependent.

) The label n is the same quantum number that would occur
1n the problem of the undamped oscillator, Since n is not

a function of Y, aﬁd for vy - 0o a smooth transition is made

to the frequency W there is thus a one-to one correspondence
between the states of the DHO and SHO even though n is not

a good quantum numnber for the DHO Hamiltonian in the metrical
coordinates. This absence of mixing of the non-interacting
states means that subsequent calculations based on wn(q,t)

will possess features of a non-interacting description.

e,

Application of H to the function ¥_(q,t) gemerates three
. states: the state~wn, and states labelled n*2, See below.
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We now indicate some results to be found for the

observables of interest.

2.4 Quantum Machanical Energy

To explicitly calculate the energy in the state
wn(q,t), we cannot simply attempt to identify it with 0 in
the argument of the leading exponential factor in equatioﬁ
(24). Instead we have to explicitly calculate what happens
when H operates on the wave function wn(q,t) given by
equation (24). On the other hand, a comparison of the
results in §1.4 fér the energy in the transformed system
allows us to conclude that in the transformed quantum system

the "energy" eigenvalues are given by
/ .

_ 9+ L =0,/, ~--.-.
E =#WW( a) n=0505d (25).

These are the eigenvalues of the quantum generator of time

translations.

To célculate-ﬁ|w>, we first need the following iden-
tities

Q?H,,(y) = n+/ (#J + an A, [?)
land Hn/(?) = o?/) Hﬂ*l (?))

whence one easily shows that

| 2 20t/ ,
M,,(w) "kd (n+)¢n(¢f) AL A .,m%e 4
ve /”’i# (232" (cwv~ j// (™)

o | ) . | [ zf~zzrbv)f (¢)
p= o,
5
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. . ' n -
where fn denotes the normalisation constant (/FZ n!) i,

Now

ﬁ-ﬁ,g = /,, ZIL/EV’ +/)(,HR{/“;‘<L

and

.f‘a = an.a?.[n[rzﬂ)] gi

so that we can rewrite equation (26) as

i, (g,8)= 13 (s lg, ) e Xr T Loty (0.8) #
Y ' o

7"]/'7(”“/) -@ *L/'n-a (i)éj | (27))'

where

Y, .(2(2— /'B’M/)E 5

aw _

I

%
and  is the complex conjugate of Q.
Since the {¢n} are normalised, we have the expectation

value of H for the nth wave function:

(l&) - Ep‘ﬂ/az[’?v"é{') | | : | (28).

This result agrees with that of the authors cited
earlier, with the exception of Kanai (1%48), but the dis-

crepancy here appears to be a mere typographical error. In




the c;sé of Bopp (1962), the non-Hermitian character of
his transformed Hamiltonian (it is not symmetrized) leads
to.a complex energy.

On the other hand, if we take equation (27) §1.3 as

the definition of the energy operator we would find

AL
(E)=¢e 7 ﬁwz(m‘a%) (29),
: .

This amounts to evaluating <P2 >: this is permitted
kinematic

since [P, PkiA] = 0. One can recover this result following .

an heuristic argument due to N. Rivier.

In the classical limit, the energy of the SHO in the

comoving coordinates is ¢:
2,2
-~ L 74
é‘ o'(m ZCDJ !
where z is the maximum displacement.
Since the energy eigenvalues are

i;wwfg)

one can say that

25 4 (n+4).
mb/

Similarly, it is assumed that the energy in the x-coordinates

. . . . 2 2
at given time t is given by %mﬂo X" ok )31nce at the maxima
of displacement the "kinetic energy" is zero.
Nt
Now x2 = 22 e m-

max =~ O

w0 () = gmwie ¥ 2 lnad),
mw

which is merely equation (29). This amounts to saying that

e i, At e B 9

e b SRe I Rt o

Bt e 1 v oy et ST WA MBS s
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. . . . . 2 . .
given a quantity with dimension (length)” in the comoving
'coordinates, the relevant expression in the laboratory

)&/mt

- *
coordinates is e (1ength)2 .

Result (27) is an immediate indication that n is not
a good quantum number for H, since operation of H on wnv
does not reprqduce only wn’ but(also wn+2’ wn-Z' It may

be immediately verified that

. k‘h,za. /§/¢n>/1= (fh‘/) (/H-o'z) _Q_Q’é
and -/(gbn_a/ﬁ/¢”>/2___ n[n-/) ﬂjaé

What this seems to indicate is a preference to 'populate"

the states § with larger n, drawing a closer analogy between
the resuit (27) and the second-quantized thebry of stimulated
émissisn. For annihilation and creation operators, a and

at respectively, such thaf
[a' )‘.‘41‘] = -Z)
ad, (2,t) =i/ Yas (2,8)
Q+ ¥ (%é) = ‘V@_;H) %1-#/ (%é))

we can rewrite H as

with

A 2 £ 4 ¥
,Z{: Z’L/C-JD (c{'('q-fé{) .,t_ﬁaq_ + _Q aQa . - (30)
W : |
Clearly this operator is Hermitian, and as Yy > o, it becomes
the SHO second-quantized Hamiltonian. This shows how states

¥, 4o Decome "populated".  We have placed "popuiapé" in

inverted commas to stress that n is not in fact equal to the

The envelope e-x/mt is a geodesic in the curved space.
Riding along on it is going to give a time independent energy.
Conversely to leave it, we multiply by e~ /mt’ c.f. §1.3.



nuhbér of quanta - we do not even know what frequency these
' 2

have - should it be W as indicated by equation (25), or fg
W

as shown by equation'(28)? In the transformed system the fre-

quency of the quanta is W, whereas the expectation value of

th w
the Hamiltonian in the n state gives a shift to e
There is certainly a basic difficulty here. In fact one

author (Stevens, 1958) even regards the basic frequency as
being W, and from equation (29) deduces thaf the quanta

are shrinking in time, as does the zero point energy (see
below). Fu;thermore, since as t =+ =, the Squafe of‘non—

. +
metrical wave function

” (M—) ¥4 _/sz - im¥g e"‘ﬂ%zﬁ —mg e /QﬁA/ 657/@]

shrinks into a delta function located at the origin:

Sl o,y 70

£ Jo0
Kerner (1958) interprets this as meaning that the oscillator
-has entefed the classical regime in which a Qénishing zero-
point enmergy is understandable.
Alternatively, for the value of <ﬁ> given by (é8) i.e.

the value following formally from the Hamiltonian, we find
12

. h .
a zero point energy 5%0, a value in excess of the undamped
hw , . . . ’ '
value —50. The interaction with a heat bath represented

by the phenomenological damping parameter A thus seems to

T Under integration the metrical wave function is-also a
delta function, and this is all that matters. We find it
easier to visualize §(x) symbollcally rather than

exp (-vyt) 6(x).
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boost the zero point energy.
To complete the mathematical detail, we note that
the position~-momentum uncertainty relation¢ApAd)is given

by the time-independent value
/

Ap Ag> = 0"\. d‘.gf . A"’.QAJ)&L>
(Lp 49 (f /DL]DJ) (?yi v/ (31,

which equals

L
¢Ad Asr= z%“’.{7 ”+a,) - (32)
Bpap= B (778,

a value léfger than the minimal value nhw,(n+}), and we again
see that the interaction with the bath has increased the

- uncertainty in the position-momentum relation.

) Were we to calculate this uncertainty relation for

the operators combined in the scalar form introduced for

équation (27) §81.3, we would find a time decaying.product
' A L -
> 7 )= éi')?,Aaj a . A. “;)cz.
Mp b= (5 XD (& 5 fy

One might then have concluded that the system had entered
the classical régime as t + =, This only indicates how.
careful one has to be before ascribing direct physical

‘meaning to notions like the energy and the number of quanta.

2.5 O0Other Models of the D.H.O.

Because of its importance in the field of coherent
optics many authors have studied the DHO to gain insight

into the general problem of losses. Such models usually



assume a Hamiltonian of the form
”~ A

A A
= . + H. . + H
H Hosc111ator _ H1nteract10n bath *

Various properties are then assigned to the medium e.g. in
the case of a lossy cavity (Glauber, 1969; Haake, 1973;
Louisell, 1969; Agarwal, 1971) as consisting of a set‘of
oscillators with some spread in frequency, or as consisting
of two-state dipoles (Senitzky, 1959). The above prqcedures
and the one adopted here are fundamentglly different in ﬁhat
we do not assign any structure to A and in particular do not
quantize the metric tensor gij = a v Sij’ nor do we need to
carry out any decoupling approximation.

On the other hand, the detailed models are successful
in obtéining a time—-dependent deséription, showing how the
zero—-point energy evolves in time, the usual constant value
being appréached aé te > o, The constant value is contributed
by the random properties associated with the interaction bath.
Qur metric théory gives a constant value for;the zero point
energy, whereas the ad hoc theory (viz. that in whiéh Ei+-o
as t + «») gives a value tending to zero.

We should also mention the work of Santos (1969) who
has constructed a Lagrangian theory of dissipation working
from the theory of stochastic quantﬁm mechanics. The only
effect of the random forces is to produce a diffusibn efféct.

The last model we wish to comsider is that in which
dissipation (damping) is introduced into an oéciiiating

system by the modulation of the cscillation frequency



(Kubo, 1962).

For constant w, the equatiocn _
X(t) = iwx(t), (33)

is identical to the equation of motion for a SHO of fre-
quency w, as can be verified by differentiation of (33)
with respect to time, and subsequent substitution of x(t)
by the value (33).

Now if @ is some (usually random) function of t, w(t),
carrying out the same procedure as above leads to the real

equation

Xﬂ') - w(f) Xﬂ-} + Q)[é)x{f} (34)
Wit .,

which looks like that describing the DHO.

The modulated frequency, w(t), is a stochastic process
so that the differential equation (34) is stochastic too,
and as such its solution is given by a probability distri-
bution.

For example, with an assumed Gaussian distribution,
one can calculate the displacement autocorrelation function
<x(t)x" (0)>.

This fun;tion is found to exhibit a behaviour strong-
ly dependent bn tﬁe speed of modulation. gor fast moaulation
it shows negative exponential decay with e—ﬁt, where % <<

the modulation frequency. For slow modulation, the time

dependence is Gaussian. The first type is the one we have
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éncountered thus far in our studies and represents the
situation where the (incoherent) impulses of the surround-
ing medium have a much shorter lifetime than that of the
damped particle.

i
'

2.6 Conclusion

i
Il

We have presented a formalism in which the time-

dependent Schr8dinger equation may be formulated and solved.
The solution to this equation is however not an eigenfunction
of the Hamiltonian, nor do we find its eigenvalues. This
makes for difficulties in interpreting the averaging of the
Hamiltonian in the nth quantum state, where the label n
refers fo a stationary state, whilst the Schr8dinger equation
as a whole is manifestly time-dependent. Nonetheless within
the stricttfraﬁework of the formalism we can show that our

momentum—-position commutation relation is vindicated and

- that a reasonable value for the zero point -~ energy is ob-

tained. All the above conclusions are unaltered if no metric

identification is made, and the solution as a whole is exact.
On the other hand we can look at the expectation value

of the ad hoc definition of the energy, constructed to show

a damped behaviour. The zero point energy is then also

decaying in time, which is assumed by some to indicate the

. ”~ . - » -
system enters a classical regime. However, 1f a sufficient-

ly detailed study is made of the problem, it is seen that the
zero point energy remains finite as t =+ o,

The mathematical reason why all the observables in




thé rigordus théory turn out to be time-independent is
bécausé (both with, and without the metric theory) all
integrals are evaluated by means of the transformation

x exp(yt)»z, which is a transformation to time-independent
coordinates. The expansion of the volume element always

compensates any decay.,



CHAPTER THREE

FUNCTIONAL INTEGRAL THEORY WITH DISSIPATION

3.1 Introduction

_ The path (functional) integral method in stochastic
process t%eéry developed by N. Wiener was intrdduced into
quantum mechanics two decades ago by R.P. Féynman in his
doctoral dissertation (Feynman, 1948). A comprehensive
review of the topic is to be found in the paper by Gel'fand
aﬁd Yaglom_(l960) and in the monograph by Feynman and Hibbs
(1965).

The path integral arises in the stochastic theory as
the solution (for specified boundary conditions) of the
partial diﬁferéntial diffusion equation. A simple scaling
of constants and the substitution of the real time variable
by .2 purely imaginary one has the effect of chahging the
diffusion equation into the Schr8dinger equation, and one
can thus state that subject to the same replacements, the
Schr8dinger equation also possesses a path integral solution.

Feynman's idea was to take this latter statement as
the starting point for a description of quantum mechanics.
The evolution of a physical system is now written as a sum
of weighted probability amplitudes.

In barticular the probability amplitude that a single
particle initially at poéition x, at time&ta will be found

at x, at time ty is given by the propagator (or Kernmel or
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Green's function)

: Xy é ..
K(xblfé)-xq)fa) :/9X/é) expﬁéﬂdé ; (1)
X 0 a

whére ézLx(t) denotes a sum over all paths x(t) joining

X and X, subject to x(t = ta) = x_ and x(t = tb) = x

b
The time integral in equation (1) is simply the
classical actioﬁ, and the weight function exp %A(Xb’tb; xa,ta)

is termed the Feynman measure.
A fifst préperty of ¥(b,a) = K(xb,t;; xa’ta) is that

of closure:

= [ KOIKES,

whére X, > %X > X .,
b c a
Furthermore when K(b,a) depends only on the time

difference T = ty - ta, one has

K*(’(&XQJTJ - /(_(X‘”(%"‘ﬁ) . LS

and

/66( k[xaxg‘ T) /(JZGX”;' 7j = J;’/X"'XZ} - (3b),

The path integral description provides a very compact
and elegant picture of ;he quantum mechanical behavior of a
systém. Moreover, let f - 0 in equation.(i).;  Then the
argument of the exponential will fluctuate greatly from one

neighboring path to the next so that these contributions to

o AT e et o e e P s Bt < s+ e e e et e



the éum will cancel each other. Only when the action is
stationary with respect to a change to a neighboring path
will a contribution be found - in this case the propagator
is proportional to exp %é01a$51031 . This 1is exactly what
is meant by the extremization of the actioﬁ in classical
méchanics “h = 0).

Note that equations (2) and (3) can be immediately
generalized to the case where the metric tensor is not flat,
but only time dependent as is our gij(t); one simply in-
cludes dtx in place of dx.

The propagatb% is also the starting point for a deve-
lopment of equilibrium statistical mechanics, Before
considering how this arises, we‘examine how the propagator

may be calculated for our model systems.

3.2 Calculation of Propagators

One can show (Feynman and Hibbs, 1965) that if the

Lagrangian is a generalized quadratic,

Lix ) = al)i®+ bE)xx + c@x*edt)5 + eltle+ £(8) o)

then
/((67“) = F(’—Lé,ﬁa)?/’y’ é_Aﬁéf‘,m/ 7

where

A |
Flbo t)= /O@MW L[ fl iy o oo,



and éhe path integration above is over all paths subject
to the condition y(o) = 0 = y(T); The limitation to
qﬁadratic Lagrangians still covers a large number of systems
since the approximation of an interacting system either by
a non-interacting one or by a linear interaction is often
valid.*

The free particle, SHO, LDP and DHO are exactly of
the form (4), and we therefore need only find the conditional
propagator (5) to have the full propagator.

The path integration in equation (5) does not in fact
need to be carried out, as there is a simple relationship
between F(tb,ta) and A(xb,tb; xa,ta) in the quadratic

Lagrangian case. This was first noticed by Pauli (1962),

Vusing the work of Vanm Vleck (1928). Below we outline a

flat space method of calculating F(tb;ta) due to Miller

(1970) .

The starting point of this calculation is the uni-
tarity condition (36). One assumes that K(b,a) can be

written as

K (ba) - B(ba) omp é_‘-q%a) >

for two functions B and ¢, and then by applying a stationary

phase argument can show that (3b) is satisfied if

186/ =< _é@_z)/z

LT dX, 0X,

c.f. 83.4
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This result holds true for any Lagrangian in the limit

*
X + 0, and is exact for quadratic Lagrangiamns.

de Witt

(1957) extended the formula to include the case of curvi-

linear coordinates. He showed that

Flty &)~ A )E
X J/ré ;(é)axm §3(t))

Then we have the following results:

(i) free particle

Fl, L) ( )
QiR T,

"with propagator

bubal - () oy em 1)

AT
(ii) 1pP ,, _ Ay, Z
Rl )= e

and

K (ba) 7//\e ALfom 2 (;(6_)(,,)z

Lbp

(iii) SHO

Fﬂb,{q) = [_MWo
it smw, T

g
2

erifi (e ) 2k (1- %)

6)

(7a)

(7b)

(8a)

(8b)

(9a)

.The case of three dimensions can be found in Bruch and

Revercomb (1973).
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and

L
imal,

(67 ) »\?77(,:1 Smcd ) 255/;74?,

(‘:f"w‘oﬁ%tz&’(b (9b)

and

(iv) DHO (w,z>b"‘)

Flb,t)= [ |7 (102)
(bt b snWT o

and

Konlt) =

[ ST

imW 6(" 2, X Zz'tb cea W’
onp == s jPV

nitsawT) A | StinWT

ta | '
- qu_x ¥ +{:b) ¥ /2 zz;f XzbeZYéy
* (10b)

For the case wg < YZ, replace sin WT by sinh W'T and cos WT

by cosh W'T throughout.

Incidentally, Papadopoulos (1973) has calculated the

LDP and DHO propagators without making the metric identi-

fication. The propagators are similar to ours and sétisfy

the same closure relatlon, but the pre exponentlal factors

*

(8a) and (10a) are respectively altered to
A | 7
L a'é +¥l | R
A ol mWe 277,
and '

2nit (1- e‘At/'") - | @it smwT
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All the above propagators, including these of
Papadopoulos also satisfy the unitarity condition.
In the next section, as a check and for completeness,

we give a direct calculation of the DHO path integral.

3.3 Path Integration for the DHO

The standard way of evaluating path integrals such as
(1) is by dividing the time interval T into N segments of
1ehgth € such that Ne = T.

At the end of the calculation, the limit N - « is to
be taken. Some approximation for the stepwise Lagrangian

is then chosen e.g.

(Z, - o{/xn.. Xn-t 5 Xn #Xn-1 4 £, + to
n e 2 2

Other choices are also possible - see Feynman (1948).,
It may then beyshown that our path integral takes the

form of the following N-fold integral:

K(b,) = f;:/,/;{ﬂ/ £ X C[nfn':‘(—JC)?D‘eZ‘Z’ - (11)

where

A = [2rifie

m
is a normalizatioﬁ constant whose value 1is the same as the
flat space value, as shown in Appendix 1.
The first result we need is the reievanf_pathvintegral

for the SHO. This is a well-known result but {s rafely cal-
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culated in full in the texts, and accordingly we present
such a calculation below (in flat space).
Because of the periodicity condition in the general

definition of F(t,,t ), we introduce
b’ a

X(f-—-}e) = X;

. -1
Xj = ah s %‘,‘/72 , | . . (12)
n=y ) ‘

and write the action, having made use of the SHO Lagrangian

and the definition ofin as

F][b a) n’lé S/n ﬂ?]j —Smﬂ(/ )7f Smfly szm‘ﬁ'-j’ —_
AN

n= /

L=

—w?lsinan skl | (13)
N N
Nowrsince
v
N S,
E e - N&,
J=!

we reduce equation (13) to

2
_/4[5)“)= ————mzNQ % g—g—i(/‘m'f‘;d—ziwol C s

The introduction of the Fourier series expansion of the

'{xi} means that we are now regarding the set‘{an} as the
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variables of integration, and consequently the propagator

is now to be evaluated from

4 fa, = Zé _Z__ J— . a,;--dan‘, (.mélv.
Fla, W>o0 AV lo/ 7

|

n=1 ) _
o . )/ - T 1,2
I Zaz jz_z (1 coo_%) 3 zdof S (1s)

=/
where J is the Jacobian arising out of the change of variables.

The elements of the Jacobian matrix are

T = ‘—f—/’?

Muir (1882) evaluated the determinant J above as
N=1
S = dt T N2
-—. ‘;k/- 2 .

Now using

o , Y
f dxl T dxﬂ W ...:{-/GL./tX‘-XK S 2 >
) -- (MA‘A)&

we find

Np Wy g |l M ~+
Fﬂb,fa) =0 [m ﬁ) Z [tnchel / ; /—@aﬁv-lwazéj .
N >0 Amhe) | 2 m A/ N2
m={
}Now ’ : | ,
N"" §-/ N-/ 2 2
. 7] w
2'2(/—- oo MTT _ ilw:gz)=2 2{/—60454_7_7) /-— _/é_f_f_
m= N mz/ NI ey f~ cop mir

N
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and since (Gradshteyn and Ryzhik, 1965)

N T
TT3(1- o kr) = N,
ks N

we have
N—-1
”(/—warmr z.mze’) [~ Zw, ¢
m= N I~ cogmT
N~
Write l-cos %E = ZSin2 %%, and apply the identity
(1= sine 1= 57 ). [- 50 | = sin W6

sn* T sif 7.2 st (v-) 70 &

N N

(Jolley, 1922), by identifying 6 with %wos. Hence

( /4) é — S o?l\/./ifd,,é — St w1 .

€->
501 m7f w4 € o @7

The complete expression above is then

p A
N- 2

77‘(/— cogm‘i‘ ’w éjﬁ_ -/ /&JOT )

4//'/%f l SnWel

Insertion into the expression for F(tb,ta) shows full agree-

ment with equation (9a) as is required.




To proceed further in the calculation of KDHO(b’a)’
we use the results of §1.4, making the transformation
z = xeYt as before.

The Lagrangian to be inserted in the transformed

path integral is now

L(2,2) = dmi*~ A2z —mW e

s 2 2 2
For the classical path, the Lagrangian is taken without the
term in A for the reason pointed out before in §l.4,. We
now proceed to calculate F(tb,ta) for the DHO, and since the
sum is over all possible paths, including the claséical one,
the full Lagrangian must be retained in the time-integral
since the )\ term is only irrelevant on the unique least
action path. This causes no mathematical difficulty since
the X term is an exact time derivative and may immediately
be integrated out.

Specifically we have

»

) T :
. F(fb,z.‘q)f—:/@z&é)/wf_éfdé (fmz'ifmh/zgz)jz,wg;’g@:‘zﬂf(ls).
| J £ Yo ;
The remaining path integral is exactly that found
above for the SHO with W replacing W There is no_Jacobian
shown explicitly in (16) - it is in fact equal to 1, since

no additional factors need be introduced in the mgfrical form

of equation (5) to make the above transformation.
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Finally, combining all the terms and transforming
back to the {x,t} coordinates, we recover equatiéns (10a)
and (10b), the exponential in (16) which involves Y'beingb
absorbed into the classical action exponent to give the

full ADHO(b,a).

3.4 Observables in the Path Integral Method

Feynman (1948) and Pauli (1962) haveAshown that for
all systems in the classical limit, and generally for sys-
tems described by a quadratic Lagrangian, the propagator

satisfies

i dkha) = HBIK(4a)+ikdlyx) S(E5-1), any
%,
and that it therefore contains the saQe information as the
wave function for the system. {H(b) means that the operators
in H only affect the "b" coordinates.] Equation (17) is
a

consistent with our definition of K(b,a) only for t, > t,.

We see that K(b,a) is quite formally the Green's function of

‘the differential équatic_m ( 7)§3*3.

When H is time independent_the solution K(b,a) can be

?

written in terms of the energy eigenfunctions {¢n(x)} as

_ b (ty~ta)

K(b,a) = Zl.‘iﬁ.n{’(b,)‘b:(xa)e % | (18)

En being the energy eigenvalues.
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The importance of equation (19) lies in éhe fact that
knowiﬁé K(b,a) we should in principle also know {¢n}
and vice versa.

As a tentative way of generalizing equation (19) to
include time-dependent systems such as those discussed
éariier, we absorb the time-evolution factor back into the

wave functions, writing
. 0 B |
K(b}“) = Z %{Xblfb) ¢/’7 (Xd)éfl) b . (1'9)

the'{wn} being solutions of the time-dependent Schfodinger
Equation.

Using equation (24), §2.3, we see that expression
(19) takes the form

. 4 2 axb, 2 28t
K (ha) = onp —1m¥ x*e"tf’— e - mW (x3e™™ % xe .
(o) - p LB (3 e GRS

o

D Ty

*
Now, since (Magnus, Oberhettinger and Soni, 1966)

I 2 Vi ) R
Fee mgocmm) y} PR

€ (21)
. 4 J
we can evaluate the sum in equation (20) and obtain
This is Mehler's formula, It is also given in Morsé and

Feshbach (1965), but appears with the wrong sign in the square
root on the LHS.
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Kba) =W |onp oy [ i e ool _
AnibsimWT, h snWw7
é
; '—'—2)&){663{&1‘@) +i(x:f“t°‘—xze th") (22)

S WT
which isfthe result for the propagator found in (10b) above,
Clearly this procedure is reversible, relying only on the
connection offered by Mehler's formula. The same applies
‘to the undamped oscillator. As to finding the eigenvalues,
given thg propagator, we can proceed following Burtonm and
de Bor&e (1955) by trying to generalize the formula
. o0 : oo —5.67%
[ ax k(xeyxt0)= ) e o
—~® L. . n=o '
which follows from eqdation (18).

For the SHO, the LHS of equation (23) may be evaluated,

and is equal to
o

Z - it (n+1L)
2

n=o .
whence we can equate the arguments of order n to recover the

well-known result

E, = hw, (H-I'z/).

In_the‘case of the DHO, the x variables always feature
in conjunction with the exponential time factor exp(yt).

We have terms like xi exp(2yta), x2

b exp(2ytb), and recalling




the metric description, realise that these are equal to the
norms of xl(a) and xl(b) respectively. We denote these by

Xz(a) and Xz(b). Then we can write

K (X@),X@),T)=/mW “onp imWIXTa)e XTH){ oo T
/(-( _() : )émT e 7 w7

!

SnWT7T W

Then the trace procedure of equation (24) can be

.;2)</A)X(5)+ Xfxz@)“xz@/]r | (24)

carried out as

— W, 7
/d.XK(XaXﬂj = Ze > (25)
_00 ’ =0

which can be seen from the form of wn(x}t). Unfortunately
‘this yields no‘more information than in the SHO example,

since we merely obtain the eigenvalue aﬁpearing in the trans-
formed equation (19) of §2.3.

In standard many-body theory (Brown, 1967), expectation

values can be found directly from the Green's function, no
knowledge of the eigenfunctions being necessary. For a
system of single particles, the Green's function G(x,T)
(in momentum representation) allows a direct expression for
the ground state energy, <E> = <T> + <V>, to be found. <T>
and <V> are the respective expectation values of the kinetic
and potential energies. |

Since |

/&YI’L G(k,'l:):—:—- 5/1/(, | - (26)

T>-0

LI o AT LAY #ee g At T m = e o e 2 sty s e ein e e om o b . e me e e il i C e e e e s re——— k7 e e o P A 041 P I ST
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th

where"nk is the occupation number of the k momentum state,

<T> is given by

(7—> S Zé—éj (—‘-nk)' | | (27)
K m

Further, from the equation of motion for G(k,T), it can be

shown that

(T + AV == e AC(k5T).

K T>-0 9T | (28

‘Thus <T> and <V> are .-known, and <E> can be found.
For the Feynman propagators, in coordinate represen-

tation, the statement equivalent to equation (26) is

L K(xb,ée;kq,é“)=f(yb-,\;) ,

(29)
b >,
and in the situation where gij = gij(t)’ we obtain
: H(K@, éb}Xa;éq) = g(xél Xa t«) ‘ 4(-30)
éb —-764 .
In the momentum representation defined by
o
hprih
/f(/fa,é)'ﬁ,éa) =%& 45’(66 A’()@,fa;xq,fa),
| (31)
-0

(key is the covariant momentum; Xy is contravariant as before:

the quantity kb‘ Xy is thus a scalar product) when ty <t

o PP

g inraAs
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we find,

A /f(kb”’tb) A 154) = Cﬂk g(kf /C,J : (32)
éb —>£4_

| In, contradistinction with (26), we have a singulér
distr%bution, only one "k" state being occupied. We are
dealing #ith a single particle, rather than the many non-
interacting particles described by G(k,t) above, There
is insufficient informationm in equations (30) and (32) to
enable us to find a value for the energy compatible with
the desc;iption of §2.4, This conclusion was also reached
by Monfréil (1952), whose value for the energy of a general
system is once again given in terms of the“syﬁtem wave function.

For ﬁs the practical value of the propagator lies in

its use as a check on the solution of the SchrBdinger equation,

[

and more importantly in determining the statistical mechanical

properties of the system,

™

We had hoped, moreover, that a finite te mperature
formalism could jbe found by analytic continuation of the
proﬁagator in the same way as is done in conventional many
body theory (Abrikosov e.a, 1965). All our attempts in
this direction have been fruitless, the essential difficulty

being that ours is a single particle theory.

3.5 Conclusion
We have shown how damping maybe included in the path
integral formalism of Feynman, Since this theory is Lagran-

gian (action) based, our Lagréngian incorporating damping



is particularly easy to introduce into this formalism,

We first showed how to modify the formulae of the
flat space theory to include any time-dependent metric ten-
sor. Then, having established the propagator for the SHO
by a dire;t method, we were able to explicitly calculate
the DHO propagator. This is in accordance with the value
to be foind‘from the Van Vleck-Pauli-de Wit; formulae.

Furthermore, the propagator so found (for overdamped
and underdamped) motion is exactly the same as that to be
found by building the propagator from the wave—functions.
Most impo:tant of course is the fact that there are no
approximations in these calculations: the.quadratic nature
of the Lagrangian means all our formulae are exact.

However, the path integral method as developed here
is of litcie use in calculating <H> or <E> as was dome in
Chapfer 2, Ideally we would like to calculate these quan-
" tities directly with no knowledge of the {wn}, but this seems

to be impossible.



CHAPTER FOUR

DISSIPATION IN STATISTICAL MECHANICS

4.1 Introduction

The system we are interested in describing is that of
a particle, possibly subject to an harmonic oscillator poten-
tial, moving in a heat bath which exerts viscous forces on
it. .The system of particle + bath is open to the outside,-
and the particle is free to exchange emergy with the bath.

The usual éssumétion (Buch and Denman, 1973) is that
the energy of the oscillator is larger than the average
energylof the bath so that the energy exchange‘is essentially
one way — from particle to bath until equipartition is éeached.
This picture is of course incomplete, there being no indication
of exactly where the energy is going to since we do not dés-
cribe any sinks of energy in the bath.

The question of the thermodynamics of such systems
has been studied by-Haake (1973) using the Master equation
approach. The method we shall adopt is that develoéedlby
Papadopoulos (1973, 1974), based on the work of Feynman and
Vernon (1963). -

In general the to£a1 density.matrigfof an interacting
system such as the above, is reduced to the densify matrix
of that part of the system whose properties are bf interest
by averaging over all unwanted coordinates. »Thiglis done

by taking the trace over these coordinates. Since

6 = exp(-Bﬁ), it is essentially a Hamiltonian approach to




the problem. Feynman and.Vernon (1962) showed how to carry

out the same procedure when the system can be described by.

means of Lagrangian functions for particle, interaction and
bath. The unwanted coordinates are lumped together in an

"influence functional" by carrying out path integrals over

unwénted coordinates.

Such processes are barred to us by virtue of the fact
that we begin with a single particle model where all the
interaction effects are contained in A (except of course the
random forces which we haQe chosen to ignore).

Our first aim is to try to adapt the functional inte-
gral formalism of equilibrium statistical mechanics to in-
clude damping in the same way as was successfully done in
the quéntum theory. In equilibrium the density matrix of
a system described by a quadratic Lagrangian is proportional
to the exponential of the classical action functional énaly—
tically continued frém real touimaginary time i.e.

p(x:x) ~ e_A(x’x)ﬁﬁ; where K(x:x) is the anaiytically con-
tinued action.

Incidentally, one can quite formally write the pro-

bability P(x) for a given coordinate state as P(x) =~ exp—géil,
B
where S is the entropy and k, is Boltzmann's constant. We

B

also showed that our quadratic Lagrangian gives a quadratic
action function, so that A is also quadratic. ‘In‘ﬁhe quasi-
classical case, S(x) is also quadratic in x (Landau and
Lifschitz, 1959), so that K and S closely resémbiéveach other.

There is thus the suggestion of some basic connexion between



the ;ction and entropy, these being the quantities which are
central to the extremum principles of classical and statistical
mechanics respectively.

The basic characteristic of irreversible processes
such as damping is that during the whole pfocess the entropy
of fhe universe should increase until a maximum value is
attained when equilibrium is reached. Unfortunately, the
definition of entropy out of equilibrium is not at all ob-~
vious (Meixner, 1969),especially since a clear splitting
off of the system entropy from that of the environment is
not always possiblé'(Cox, 1955) . The solution of the
quantum DHO showed that there was a one to one relationship
between states of the SHO and Dﬁo. This means that from

the point of view of information the entropy of the two

' *
systems will be the same . The information theory definition
of entropy is S = -k Tr § 2n §» (f being the density operator)
and will be seen to give a time independeﬁt result, We

P4

shall try to obviate this difficulty by an alternative cal-
‘culation of the entropy:

Below we sﬁall recapitulate the path integral ﬁheory
and then extend it in two different ways to find two possible

density matrices.

T de Broglie (1964) has discussed this point in detail in
his monograph.

Suggested to the author in private conversation with Dr.
D. Ter Haar. '
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4.2 Resumé of Path Integral Theory of Equilibrium Statis-

tical Mechanics

(1) If eigenvalues of the Hamiltonian of the system can

be found such that

li/\gbn@() = E, an(x) )

one can write the density matrix in the canonical ensemble

s =2 ) 4,49 o

where B8 = %T’ T being the absolute temperature.

. We have chosen the coordinate representation to faci-

litate comparison with equation (18), §3.4. If we set -
L(bo-t) <= s . (2)

4

in this equation, we arrive back at equation (1) above.

This is the same conclusion reached by comparison of the

Schrldinger andJBioch equations.

(2) The replaéement (2) is then given the statuskéf a
geﬁeral rule: 1In equilibrium the analytic contipuation of
the pfopagator iﬁ coordinate representation is the density
matrix (Abrikosov et al.,, 1965).

(3) Such a procedure is valid even when the energy eigen-
values do not exist or cannot be extracted amnalytically.
This folloﬁs because like equation (18) §3.4, equation (2)
above can be written as a path integral over aisﬁécifié

measure in which no mention is made of eigenvalues.  The

i rmon R T e e



path integration is over the imaginary time variable t

running from O to B?:
X —
A JO(X',K) =‘/(@X[Z) W—g{/t (X:XJ/Bé) (3)
o Y |

with A as defined earlier.

For quadratic Lagrangian systems we then have

e S0 VAl g JAGxi-ih)
efz(f')() f( 2% f “r 7 |

4
0 x'dx )
wﬁére A is the classical action functional.

Since the eigenvalues of the DHO Hagil;onian could
not be found, this procedure seems to offer the possibility
of finding its density matrix with little difficulty.

(4) An_glegént physical picture of the above process has
been presented by Miller (1971) in a paper on the classical
limit approximation.

| Starting ‘from the classical equation of motion, the
chapge from real to imaginary time has the effect of revers-
ing the sign of the potential V, éo that the motion now takes
place in a classically forbidden region. Thus to find
p(x;x) one calculates the propagator wi;h vV > -V,

This procedure relies on the existence of a Lagrangian
and action functional. We showed earlier how to modify the
1Lagrange formalism to include a particular kind of dissipation.
It is to be hoped that é simple generalization of the analytic

continuation will give us the required time-dependent density
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matrix.

The assumption that the energy of DHO 1is greater than
the average bath energy is equivalent to saying that the
time~scale for smoothing out disturbances in the heat bath
is much shorter than the damping time-scale, aﬁd consequent-
ly that the bath remains in thermal equilibrium at the tem-
perature T. (See §2.5 and §4.6.)

~For later comparison, we note here tHe results of
the analytic continuation in the case of the free particle

and the SHO.

Free particle

i 2
f(’fx} A m(xx) ¢5)
7y i 24% 5

and

g

é‘/‘() | Y —’;"0 % x )coaluo f- 2xx
JQ H%Suﬂhkbpé avpdé$m4kkpf{z ‘ °P o .4

6)

Using Mehler's formula, equation (22) §3.4, it may
directly be shown that, as required, the SHO density matrix
is diagonal in the energy representation.

The partition function, Z, for the SHO is given by

Z=Trp
where p is the density operator. In the coordinate repre-

sentation, the trace is given in general by
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Z= /\:dxf(x,x) R | P,

where V indicates the domain of integration. For the SHO

we have a trace on (=, - =), so that

'-Z}='/ ' . (8)

/ -2 Sl;vh wD ﬁﬁ/z

The free energy F, is defined by

F:"é/&?‘az) (9)

and the energy, E, by

F=-2 gz o

The energy then takes the well-known value
E = &a Co#’z ‘JD/StAZ . ' (11)
ol

The above definitions hold whenever H is time-
independent. Having found F and E, we can find S from the

relation
F=E-TS. a2
Hence S has the wvalue

S = & pho, ol wghl2 = kLo Rsimhwphs) . (15

Alternatively, S may be calculated from

Se ok EP)S(B), e




the information theory definition of entropy. Even if
the energy representation of the demnsity matrix is unknown,

S can be evaluated from the above relation using e.g.

p(x,%) .

The method is to write
A A
Po= - (/—Jo) 5
and to use the McLaurin series for the logarithm,
| 0 o
Lo 3= ()= D7 1) (F)
| n=;
Finally each term (1—3)n is expanded in powers of

» . . . :
p using the Binomial theorem:

o A |

a kg 375 (1)L G [faxd B e

+ k/z'bz- ~' (15)

The matrix element of 3m is then found (Aﬁpéndix 2),
and the summations carried out, The same result aé equation
(13) will be found.

We now proceed to find the DHO density matrig‘by

analytic continuation.



4.3 Density Matrix by Analytic Continuation

The action for the DHO (and the LDP, if the motion
commences not at t = o, but say at t = t") depends‘not only
on the time difference, but also on the initial and final
times themselves, so that it is not obvious how a replace-
ment like equation (3) 1is to be made. This troublesome
time dependence is confined to the exponential time factors
accompanying the coordinates x and x.

If we retain the metric idea, and employ the Ansatz
of Miller, we can surmise as follows: the particle motion
takes place in a certain geometry, fixed and immutable, but
the potential acting on the particle is to be altered accord-
int to the replacement t - -it in the equation of motion.
Furthermore; the density marrix of equilibrium gives the
_probability of finding the particle in a particular state
at the timg t. Therefore, after modifying the propagator
by the Ansatz, we obtain the density matrix in the limit
t, = t_.

.

The substitution t -+ -it in the equation of motion

of the DHO gives

2 .
mdxX . /4 dx _ 50,’?(=0) (16)
dT? dtT _

whence we find that the substitutions
A — -4

. 2 2
WSy - W AT
4m

are to be made in the propagator. Then setting tp, = t.»
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K °
we find

A5 =

9’? —mh/c”t (et conk 54—

i /5‘5/”4 W/b/f Serth W/bé

/ ’
—Wx_ o~ ¥y | |
: : (17)
S //74 W/sﬁ W
We can now calcuiate the average values of quantities
of interest for a damped oscillator at the constant tempera-

ture B, e.g. the averaged squared displacement <x2>:

. |
() = _»szfz (i x) 4 N Cas
' S Rlox)dx

* :
We can obtain this result by a different method: recall
the definition of our propagator;

\M [!cé x(—) Z -6 (2 é)qg (x¢ “)é (xe /

At the temperature B, by analogy with the construct-
ion of the many body "temperature Greens functions"
(Abrikosov.e.a, 1965) we assume

/\/b/;o(xiy 4 = Z ¢n(x€x6)é “[/te*é) —'f"/‘u"‘}

thus -associating a canonical probability‘distribution with
our wavefunctions. Then the density matrix is obtained by
setting t = t', and performing the Mehler sum,.
= n =
Z E e » W Win+i).

The same quantity as (17) is obtained.
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and

The denominator of equation (18) will be termed the
partition function, #,even though we do not strictly have a

set of eigenstates for our basic Hamiltonian. We have

2= L ___ as
o 5oy W/Sé‘/z

which is the same as would be found in the case of an un-

damped oscillator of frequency W.

" Now

D - %j‘i;é oty wehlh o
’ ”n

G 2 S i+
| Am 3x* | 4 | 2

— 1";}%/.5/% Wpﬁf ; <~21)

for the averaged "kinetic emnergy". Multiplying (20) by
2 . '
EQO, and adding to (21), we have an estimate of the total

2

energy at temperature B)

——

¢

This agrees favourably with the values found in

£t b0 ot iphs - a

§2.4 for <E> and <H> in quantum theory at T = O, The value
E in the limit vy - 0, i.e. W > s is exactly edual to the
SHO value. The large time behavior of équatiqn (17) will
be discussed in the neéext section. L

The free energy, F, is conventionally defined in



equilibrium by the expression B

A e_p(ﬁ'\—F)

S (23)
whence F = -% in Z. We cannot apply this definition for
two reasons: firstly equation (23) is strictly an equili-

briqm expression, assuming a canonical proability distri-
bution, Jnd we are clearly dealing with a non-equilibrium
situation. Secondly, we do not have an'oﬁerator (i.e.
coordinate free) form for the density matrix. We only have
équation (16), from which we have been unable to extract
the quantity F.

As was pointed out in §4.1, if the entropy S, is

taken as
A A A
f=—%.77‘(ﬂ/g)’£”‘%): (24)
we shall find a result independent of time. What we have

done in equation (24) is to take a formula which is supposed-
ly valid both fof reversible and irreversible processes, but
does not take account of the "varying mass" (or metric) in
the Lagrangian. To actually evaiuate this e#pression we
proceed as in the previous'seétion, expanding the logarithm
as a powver séries in p(x:x). It is apparent from the asym-
metry with respect to x,x of the imaginary exponent in
equation (16) that there is no contribution to the entropy
‘from this.term since it cancels out exactly for all powers.,
Furthermore it is possiﬁle to make the transformation

Z = xeYt throughout, whence the calculation follows that for
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a SBO of frequency W.

Therefore

S ok F + AW coth BN
DHo 8 2T kg T (25)
Now when %%T << 1, i.e. when the time scale of the bath is
6 .
much shorter than the oscillator decay time, equation (25)

may be approximated by v N
SH,\,A’//@/:( )#—7 e

and as W decreases for increasing A (note that mg > y2y,
the entropy slowly increases. Damping leads to an increase

of entropy.

It is important to note that the value obtained for

the entropy and indeed aﬁy of the obsefvables above does not
depend on the identification of e)'/mt as a metric factor,
since without this idéntification the modification of p(x,x)
leads to éxactly the same integrations.

Although we have an entrbpy whose value 1is igcreased
as compared with the undaﬁped system, it, along with';he
values found for the velocityland position, is striétly time
independént unless e.g. we resort to calculation of”<x2>
rather than <x?2 exp(2yt)> as above. Now, since our DHO and
LDP equations of motion bear a close resemblance td the
Langevin description of Brownian motion, and the functional

integration is closely connected with diffusion processes,

we expect a more complicated time evolution than the mere

e e e ey e

e



exp(-2yt) factors above. We shall now show how this may

be accomplished.

4.4 Progggafed Density Matrix

Thé path integral description of ih?eracting systems
at both zero and finite temperatures has been developed
(Feynman and Vernon, 1963) esﬁecially in the case where the
Lagrangian of the total system can be split up into the
three parts of test particle, interaction and interaction
bath. The formalism of such systems has been given the
title of Influence-ﬁunctional theory, since it is possible
to write the influence of the interaction on the test
particle solely in terms of test particle coordinates;
This p:ocedﬁre is equivalent to the usual operation in
sfatistical mechanics of taking the trace over unwanted co-
ordinates.

Suppose A(q(t)) is the action of the test system q,
AB( q (t)) that of the bath, and Ai(q(t), Q(t)) that of the
interaction. The probability of any event of the totai

K = [y 8y 60 Bup £[aly) +4:(4,6)+ A8 (9~
_ Aly)-h, (2,0)- Ag(a'}] R

and if one only wishes to measure the dependence on q, one

*
Feynman and Hibbs (1965) p. 344 - 351,



can write

S ZC: //O@‘; ‘@i/ F[i_Jij&,}of/A/@)*A[iZ]} (zé)

where F[q)q’) is the influence functional.,
The influence function due to a set of harmonic

oscillators at finite temperature (B) is then given by

FLate), 5t2)]= [0 046" K0 8:4,.6)K 10, 6936
;_ge“/sﬁ’ﬂ/@)éaﬁ?,’) , . |

(29)

whére ¢n(Q) is the wave function of the oscillator in the
nth state of energy En’ ande is the kernel for the SHO
including the interaction between each constituent of the
bath and the test particle, Now the sum in equation (29)
is exactlﬁ»the coordinate representétion of the SHO equili-

brium density matrix given in §4.1, so that one can rewrite

Flq(t), q'(1)):2 : ,
Flale, oft)]- [49 £6,66,,6) K8 68 )p(0.6)40,,

This statement has general validity, not being re-
stricted in any way only to a SHO. The only requirement
is that'{¢n} shogid exist.

The integfation over Q in equation (30) represents
the condition that one ié not interested in any propertie§

of the Q systen. We now remove this condition and allow




the final coordinate in the two kernels to be different.

We denote this new quantity as

/D[q)l )@%,,) Z_):/“/‘%Q/ C/d)// /r@bf)@nfz)k%z,)f} ,;Z;}f(@,,@,d,

(3D

It represents the propagated value of the initial conditions
contained in p(Ql, Ql'). Papgdopoulos (1973, 1974) has
taken P to be the definition of the nén—equilibrium density
matrix. The correctness of this hypothesis is to be as-
certained by the truth or otherwise of the predictiomns (31)
makes. in equation (31) the initial wave functioms are
propagated by the propagator (including fo}ces,.damping or
external fields), but the probability of each wave function
at the temperature B remains constant and equal to its ini-
tial,valu;: exp{-mao(n+§)}. The temperature and time-
dependence are thus not coupled, c.f. footnote on page

.73.

For the interacting systems described by our Lagran-
giah theory, the 3 way splitting into bath, interaction and
test particle is impossible, the averaging over intermal
parameters having already beén done and embodied in the
damping Y. The initial condition is that we release our
oscillator of frequenéy w, at time ty with the configuration
determined by a c;nonical distribution exp-{hmoB(n+%)}.
Their condition at a later time is then given by the pro-
pagated value (31).

It must be emphasized that this construction does not
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follow in a rigorous way from the theory of influence
functionals, but is merely a working hypothesis based on
the ideas of influence functional theory.
It is equally important to note that the propagators
/

K are zero temperature propagators. All attempts on our

part to generaliie these to finite temperatures have been

unsuccessful. We now proceed to evaluate P(Q2,Q2',t) for
2
an overdamped oscillator W = Y2 - wz, as follows:

: Q
Pl -¢) = /f K Gt ing) Km0t s

drhsinhwi | | 2rk sinh,gh %

| ¥,
=/ mW muy, oup 1Ml (Xiemé X' ewf)

(33)
where we have set t1 = 0, and
mw_ cosh w_ Bh -mWi cosh Wt myi
A = ) 0 _ _
2% sinh moBﬁ 2h sinh Wt 2h
mw_ cosh w Bh- ‘mWicosh Wt myi
0 o
B = + +
2h sinh woBﬁ 2R sinh Wt 2%
. -mw
cC =

% sinh w B%
* 0



N

mWi xeYt

D = —
4 sinh Wt
-mWi x'eYt

E = .

1 sinh Wt

To evaluate the double Gaussian integral, we first
complete the squares for each variable in the argument i.e.
transform the vériables to shifted coordinafes~so that we
have a purely quadratic form. Then the integration follows

directly:

(34) )

[%’)9& ex/D (/}x +5)<2+Cxxsz)9+txz) 37/“@,?4 /(C&E—AE'BDJ
va’

wﬁere ' ) ‘
: 41 ‘4/h3 C: '_;2 ng+'M/ C&046MZ V)—/7
| A

5/57/1 Wk W
Then , :
' 2
(xl’ﬁf) / )/”W" ) r .
Qi smh WEI 2 h 5inh a),ﬁfi VA’
| 1 2yt ) - 2 2 2' ,
. 8)50-’"‘1/%8 cm/z(w,pfz][x + X ]—— xx'( .
25 0 sinhwygh sinh WE | | |
:mWeut&‘x‘)j[tht ¥\ foshiit }f
"t SinhWe w Usmh’h/é Smh‘Vé wj (233
with

U S - C e



The trace of equation (35),

Z:ﬂéx Pé(,)(;é')

can be immediately calculated and is equal to that of a

system of harmonic oscillators

Z= / _— (36)
2 e w,ph/2 -
Now allowing y - o.in (35) reduces P(x ,x,t) to the
exact density matrix of a SHO. TFurthermore as w, > 0 we
find the equivalent function P(x,x',t) for the LDP as we
shall verify from first principles below. .In addition, as
pointed out earlier, the temperature and time remain un-
correlated, and the extra factor ( E] sinhZWt) will be found
to cancel exactly in -the calculation of the observables. |
The calculati;n of the information—-theory entropy
follows exactly as Before, with the imaginary exponent can-
celling out bécause of the asymmetry in x and x', However,
the value obtained here is that of an SHO with frequeﬁcy CP
rather then the value W found earlier. This entroﬁy is
completely independent of the strength of damping.
We now calculate §E%<x2>and‘<;%2§%;$, and after some

tedious manipulation we find for the classical limit (taken

for later convenience):

. 2 27 -
mated> = K TC-Z#_{S:%Z% Weahzwt ~ @0 [ (g

2 2 W W w2
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and

Ka /e ~-¥ smhWE +-?K5mL12WZ‘+
e
zm bx - T 7 W w2 (37b)

Taking the classical limit only alters the temperature-
dependent factor in front of the square brackets. The

general expression valid in the quantum regime has kT = %

replaced by coch ﬁE%E with the same time evolution as above.

Both (37a) and (37b) hold for underdamped and criti-
cally damped motion where the relevant solution to the
equation of motion is merely substituted.

We intimated earlier that there should be some con-
nection between thg above results and the theory of Brownian
Motion. Chandrasekhar (1943) studied the classical Brownian
Motion of a particle in a harmonic oséillator using a method
which is essentially that of path integration.

Assuming that the random forces f(t) in the pertinent

Langevin equation
mx + A +kx = ft) (38)

have a Gaussian probability and are uncorrelated with one
another at different times, and that the probability distri-
butions tend to a Maxwell-Boltzmann distribution at the
temperature T as;t + o, Chandrasekhar shows that a particle
starting from xo.at time zero with velocity u, is characterized

at time t by
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2y o, ¥ ool Wt =07 )0 # (3.
<x2>=r%_7_; [~ o {WSMhz%*&Vi W’) (x>

(39

(Lu"? - _@ZZ/* 6—23%%5:%2% +'_23;_—§,;1/,2W£+%{7+(“>2- |
I | 4

OQur classical limit expressions (37) bear very close
resemblance to these equations except for the presence of
the equipartition terms and averages <x>2 and <u>? which
vanish in our case. However, as t - «, equations (39)
tend to the equipartition.values, whereas ours do not.

This is not surprising, since our formalism does not contain
the random forces which are necessary to establish thermal
equilibrium. In fact once we release our system at t = tl)
it moves in such a way fhat the motion gradually shrinks
away, never actually reaching equilibrium.

What is surprising, is that notwithstanding our‘having
commenced with dissiﬁilar initial conditions viz. a canonical
distribution in our ‘case and a delta fﬁnction in Chandra-
sekhar's, we have found essentially the same time evoluﬁion
(apart from the sign). This is in part a ﬁonsequencé of
the Langevin Ansatz, viz. that a splitting of systematic and
random forces is permissible. On the other hand, the de-
tailed evolution probably results from the stochastic aspect
of functiqnal integrals (Gel'fand and Yaglom, 1960) in that
K(x?t‘;xl,tl) is an integration over a Wiener process, and
the solution of the Langevin equation is also.suéh a Wiener

process. In the limit t + =, our density matrix tends to
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a deita function located at the origin (c.f. comments in
§2.,4). Curiously we have as large time limit the Chandra-
sékhar starting condition, and correspondingly for the
initial condition andFChandrasekhar's long time limit. In
our case the energy of the particle decreaées from the equi-
partition value, whereas in the other it increases to this

value,. For completeness we note

(& = kT 26’ 2 5k 2 +1f

(40)

The above results for the DHO ére entirely new.

The long time behavior of the density matrix found
by'analytic'continuati&n viz. equation (17) is the same as
above, tending to a delta.function. Although the discussion
in §4.6 applies to this matrix, also, we are mainly interested
in the phyéics of the matrix (35), since it gives observables
which show good agreement with the accepted theory of Brownian

motion.

4.5 Density Matrix for the L.D.P.

Our discussion of the statistical mechanics has thus
far mainly coﬁcentrated on the DHO, However the propagator
method can be easily extended to the LDP, Instead of an
initial distribution of undamped oscillators, we commence

with an initial distribution of free particles at finite

temperature and described by equation (4) at time t = o.
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(This result can be obtained by allowing wy > 0 in the

SHO matrix.) As before we need to evaluate a double

Gaussian integral
Plose) [ ____ JFefm I\ [Jasc,.
GL_erAbﬁtL&ﬂ; Z”ﬁib hfA

+ exp.~i) " X |
?MM&Q“WW ﬁxa "

where {e Y%} is included if a metric interpretation is used.

As before we have

- m_ iA S *
‘A —, " ~ i 7mt = B
21i<B 28 (l-e )
C = 1
f2g
D = —-———7—E‘f;"
fi(l-e ')
E = -iix'
. = __——_:—7_f
h(l-e Am )
d A ( A 2
. ) (l-e-x/mt)ﬁ
then

~\~

p(""‘ *) j€ ﬁj ,rhz) -:ZZZ (c-x')%. ' W)
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Equation (42) is also obtaimnable directly from equation
(35) in the limit W - 0,

The trace Z is simply

Z-0(z)* '
- Z- (g;g?é T (43)
where we use box normalization,.side L, and (43) holds both
with and without the metfic idea. Apart from the irrelevant
e—Yt,(42) has the form of a free particle density matfix. |
The entropy is obviously then equal to the equilibrium value
and is constant.

-From §1.3 we have

. ,A -—'Aé./'” 2 ' -
: = & £E
To find the average of this quantity, we need to find the
a2 82, . '
average of —%E <? /ax2>- We find
- AL =
— ™ ,
<Hy = € kel | : | o (45)
. —t . “ - .
2 . .
and as t =+ =, <fi> > 0 as in the DHO case. This agrees with

the result in the quantum mechanics, %E being the average
energy of a thermalized free particle. From eqﬁatious (42)
and (15) we can again calculaté the entropy, but as previously
the result will be time-independent. In this case we find

the free particle value both with and without the metric.
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4,6 Entropy

It is clear that so far we have not found a satis-
factory way of calculating the Entropy for our irreversible
system, since the entropy calculated for the density matrix,
equation (35), 1is conétant for all times, even though we
have seen that this matrix contains sufficient detail to ré—
produce some of the features of the evolution in time of
the Brownian motion, a process which is clearly irreversible.

In the célculation of the entropy we were always ablé
to eliminate the time dependence of the integrand by makiﬁg
the trénsformation xexp(yt) = Z. On the other haﬁd, for
a dissipating system such as ours we do not expect ensemble
averages to show no time-dependence. In particular we -are
inferested in the long time behavior of the density matrix
given by equation (35).

We féund earli;r that the classical phase—-space trajec-
tory collapses into the origin, and that the quantum wave

functions show a corresponding behavior in that
. 2 ;
¢{%F /L% (k}éz/ A (%)-
¢ 500 » o
In both these régimes there is a greater localization in
space as time becomes indefinitely large.
Now consider the non-metrical* density matrix given

by equation (35) with the additional pre-exponential factor

exp(yt). In an obvious notation, we can rewrite this

See footnote p. 40,
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' EXPI‘ESSIOH as

/)(X,x b) \/—'W (lcméw/gtfx+x’2f—21.xy)

onp i

.L is a function of B and t; M is a function of t

(46)

only. For the overdamped case it is obvious that as t - w;
L ~ EXPLZ(YfW)t and M ~ exp(2yt). Furthermore, the first
exponent is a positive definite qﬁadratic. It is easy to
transform the coordinates (x,x') to values y,y') in which

this quadratic assumes the diagonal form:
= —-L " ,= —L -y’ . .
X Vi-' (%"Lf) )‘ X V? (f ?) v (47.)

Then under this rotation,

,D(? vy t} 1/L floaz[anéwﬁh‘—/)dy /waé «, 3% - /)f

o ZEM gy

(48)

Now since the limit of a product is equal to the product of

thé limits, we have as t - =, (L - «), _
| | 2Myy” o
Plrrie) = S8 ()t e W= IR

Our infinite continuous matrix has only one entry,

located at the origin, and it has infinite mégnitﬁde. This

A+ o A A 7 a2 St e s o p g e+ D e a el L e s e i+ i siam s S e s e e e mr - e g e o e s e i mre



agreés with tﬁe findings for the classical and quantal cases
above. The same conclusion can be reached for the density
matrix (17) cbtained by analytic continﬁation. We see that
in the limit t + =, the transforﬁation x exp(yt) = Z is not
well defined for the density matrix. The.mapping of the
point at infinity isAnof unique.

Equation (35) refers to the overdamped case, but the
argument above is applicable even to the underdamped case.
There the value of M still goes as exp (2yt) for all times,
even at the zeros of the sine function. Furthermore the

longtime behavior of L is well~behaved, and the

. sin2 W't [
expression for M always has the same sign. We therefore

have similar‘behavior to the abéve case, viz. collapse into
 the origin.-

The same is true for the critically damped oscillator
- we set W = 0 in equation (35), and will find identicél
behavior té that ébove.

Z, the trace of the density matrix is in the limit
équal in value to the s{ngle entry of fhe matrix. We

‘therefore have

M D(x=0,¥=05¢) = 1.
£-e0 ,
The entropy is given by

S= - k1. 41 =0.

As necessary, the pure state reached as t - » has zero en-
tropy. The entropy would thus appear to have decreased

from the equilibrium value to zero. Unfortunately we



still do not have the behavior between tﬁese two casés.

To have a decreasing eﬁtropy associated with énergf
losses is not so strange however, since we are not assert-
ing that the entropy consisting of that due to the oscilla-
tors + that of the reservoir defining the temperature is
decreasing.* - All that ﬁhe above argument means is that
when a particle is localized our information concerning it
is the highest possible so that the entropy must be zero.

Unfortunately we cannot turn to the elementary con-
cept of entropy as used by Clausius to explain the above,
since the Clausius definition of entropy does not strictly
apply during irreversible processes (Meixner, 1969), but
rather makes a statemenf on the change of enfrOpy between
two equilibrium states A and B, where the changes A Z B may

or may not be reversible. Our initial state (with frequen-

cy w_, not W) is an equilibrium one by hypothesis, but the

«

final state is approached only asymptotically and we therefore

do not believe the Clausius statement is appiicable. In

We wish to briefly discuss an alternative way of describ-
ing irreversible processes due to Cox (1955). In this
approach the initial canonical distribution is perturbed not
only by a systematic viscous. force, but also by a time de-
pendent contribution to the temperature. The Master equa-
tion is then set up and solved, and the entropy calculated
from the information theory definition, and is found to be
time dependent only if the temperature is allowed to vary
in time. However even in this orthodox theory there are
difficulties of interpretation. It appears that the entro-
PY so calculated does not refer specifically to the damping
system, but is in some way (Cox ibid, p. 37) a. measure of
the entropy of the system + environment, This environment
is distinct from the heat bath, and is in addition in some
unknown way responsible for the time variation of the rese-
voir temperature, : :
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any event, even if it were applicable, thé bést wé would
obtain from it wouid be an inequality, which is of little
use here,

What of the LDP? In essence the LDP motion and
that of a critically damped DHO are the same, both motions
being characterized solely by Y. However, from the LDP
density matrix we cannot find the behavior qf collapse into
a pure state, The reason for this lies iﬁ the chosen
initial conditions, and the way in which these determine-
the detailed mathematics through the action functional whose
form depends critically on the initial conditions. The
eritically damped oscillator was set up with x = xoefk/mt:

thus an ensemble of oscillators with different values X5 all

have the same value of zero at large times. On the other
. o -At/m
hand we set up the LDP with x - x = E—(l-e ), and for

various X Po’ these solutions tend to diverse values as

«

t + o,

4.7 General Conclusions -

The above comments on the entropy associated with our
simple model of dissipation conclude this thesis. ~We have
shown in the statistical mechanics how a suitable Ansatz is
made whereby we obtain a density matrix by the propagation
of the initial conditions with a frictional propagator.

This Ansafz has feasonable success in that contact can be
madé with the well established theory of BroWn;aaﬁMotion.

The differences between the predictions based on this density



matrix znd those of ﬁhe Brownian motion are essentially

due to the absencé of explicit random forces in our theory,
while the similar dynamical evolution arises from the
similarity between the Brownian motion and path integration,
which are’ both Wiener processes.

The entropy calculated directly by ensemble averaging
is alway; constant in time when the transformationm to co-
moving coordinates is valid, However fof.long times when
this transformation cannot be made, we find a different
result to the ensemble average. We find a decrease in the
eﬁtropy, which can be understood in the sense that our
oscillators become more and more localized as time advances.
The same conclusion can be drawn from the results.of both
the classical and quantum calculations.

Hedhaveblaid out a complete description of the simple
dissipation introduced by the inclusion of the exponential
integrating factor in the simplest two Lagrangians,that of
the free particle, and that of the harmonically bound par-
ticie. This quadratic Lagrangian approach is the simplest
.choice when one does not wish to attribute any fine detail
to the bath. Having found the Lagrangian, one can discuss
the quantum mechanics either via the ac;ion (Feynman path
integration) or by solving the relevant SchrBdinger equation
(Hamiltonian method). |

In the cléssical and quantal descriptions, the intro-
duction of the notions §f tensor calculus effected by the

identification gi: = 8 exp(%t), has no physical effect,

j ij

but from a logical standpoint has proved quite useful.



Firstly we are able ﬁo discuss the canonical momentum
without the embarassing time dependence, and secondly we
only deal with real eigenvalues in the quantum case (the
transformed Schr8dinger equation has real eigenvalues).
The one—t;—one corresﬁondencé between DHO and SHO therefore
involﬁesra gompafison of real frequenciés, which is a desir-
able proper£y. Thirdly our proposals for modifying the
Miller Ansatz are reasonable and in agreement with an obvious
generalization of the standard many-body Green's function to
yield a density matrix at given time and temperature. At
the very .east, we note that the mathematical modifications
necessitated by such an identificatioan have been made in a
self-consistent fashion;

No rela;ion has been found between the entropy and
the action:! in the simple theory above, the entropy is time
indeéendent, whereas the action depends not only.on the time
difference but also on the starting time. Furthermore we do
not have a completely satisfactofy way of defining <E>, ® and
S. There would seem to be no uﬁambiguous way of analyfically
continuing the damped propagators to finite temperatures in
the way that standard quantum many-body theory proceeds.

The Feynman propagators are those of the full wave function,
and not as in many-body theory those of a single excitation.
As it is, we must stress that the entropy we have calcu-
lated refers to a subsystem, and not to fhe whole system of

bath and particle.

Various applications of this Lagrangian approach to



damping are to be found in the literature. An application
to tuned circuits is found in Stevens (1961); Papadopoulos
(1973), on the other hand, concentrates on studying.Brownian
motion on a quantum level. Buch and Denman (1974) have
used the LDP Hamiltonian to find the quantum mechanical

electrical conductivity under an applied electric field.
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APPENDIX 1

Calculation of the Normalization in Curved Spaces with

gij = gij (t)

In this calculation we closely follow the method
adoptéd by Feynman and Hibbs (1965). One can write any

wavefunction as a superposition of earlier wavefunctions

using the propagator as the kernel for such a summation i.e.

peE) = [KCSE ) wiodldxs

where we integrate over the invariant volume element (one

* dimension) and x',x are taken as contyravariant quantities.

When t',t are very close together, the kernel reduces to

/f(x;é'jx,b} :ALW%QZ/XQX, X:Z*X) 022*5) . 2)

For the DHO the above Lagrangian 1s written as

Lloxit)=e” * ﬁzl“/%y”f £ ,3:)«/ j/ " 3

Now we write x' = x + L E expand (1) in €, and by a

stationary phase argument for p, obtain

Al L ,A%?m

'é/’/")f)—'-A./ '2”?};66—' 2‘/(’(/ ¢) 6’\ g

m



The metric factors cancel, and in order for the

equation to be the identity as € » 0, we require

L |
Z L
/4 (o?/n}éé) ; | o @

as is found in the case 9

Gij’ where the Lagrangian
kinetic energy has a constant coefficient. The result

for A above is gemeral to any gij(t)’
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APPENDIX 2

We have to calculate the integrals

_Z=ﬂx dx’ (K//‘;/X'><’V'/f;‘m/"> - (1)

There are two ways of doing this. The first based on work

of Kac is due to Edwards and Lenard (1962).

Method of Edwards and Lenard

We can write out I as the following multiple inte-

gral by inserting complete sets of states.

R - s OO Jplie) - plsenr) -

Now the right-hand side can be interpreted by means of the
closure relation equation (2), §3.1, as being the demsity
matrix p(x',x;mB), since the "gime" interval in each den-
sity matrix above is B. 7 T

Thus we have

PRy < p (x5 mp). o

The remaining integral is then carried out and the two sums

evaluated.

Alternatively, if the above procedure were unknown,
the Gaussian form of the SHO density matrix (indeéd of any

system whose action is a quadratic) can be utilized as follows:

e UM G A SO A Lo o e



<x'|p™|x> is written out again, and use made of the general
gaussian integral (c.f. §3.3).

Then

v @ | - | m s
ﬂx JX'(X//‘;\/X/>(’(,//O Py = _C (77) % (4)
-0 -0 ‘ (MAM’) *

where Jp[x.',x) .-.= CW—(«x'Z-I-ozXZ__ e?/3x)<7

and Aik are the elements of the mxm matrix A

7 %

A similar determinant arises in the study of chains of
particles having only nearest neighbour interactions. To
evaluate the determinant we require its eigenvalues. These

are (Feynman, e.a. 1965’

by = e Aot

< e e
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so that
m-/

ot Ay = 77_£x —-,?/3590-_?_,%1?'.
n=0

Now inserting the values of o and B we find

m m-

bt A,y = L rta), 77_(&;/7%/35—- co0 N7 )
Chsmbw,ph ) 770 "

and using equation 1.395 #£2 of Gradshteyn and Rhyzik (1965),

we find

aéfﬁc/;; = /M, " corhs (mapt)— !
A sinh w8 27

The procedure from this point on is the same as that earlier)

: (6)

viz. evaluation of the sums. The result is exactly the same

as before.
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