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ABSTRACT

The problem of carrying out standard statistical
analyses when the data are inccmplete is considered from
two standpoints. A "maximum likelihood approach"
postulates a distribution for the incomplete data and
estimates the parameters by maximum likelihood. A "fitting
approach" finds suitable fitted values for the missing
data, and carries out a modified standard analysis on the
completed data. If maximum likelihood estimates are
found by Orchard and Woodbury's Missing Information
Principle, the resulting methods also make sense from
the "fitting approach" point of view, and are robust
against departures from the underlying model. This is
illustrated by the problem of estimating the means and
covariances of p variables from N incomplete observations;
multiple regression and autoregression analyses are also
considered. The idea of "randomly missing" data is
formalized, and some non-random deletion patterns, for

example in censored data, are analysed.
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1 INTRCDUCTION

1.1. The Problem and the Literature.

Consider the following situation. We have N
experimental units, and for each unit we wish to observe
the valuez of p variables XLQQ,..Xb, some of which are
stochastic. A complete data matrix X consists of the

(Nxp) matrix of values

(xy) v (i=2.2, N j=4,2,..,p).
Given such a matrix, we can proceed to some kind of
statistical analysis, such as multiple regression analysis,
factor analysis, or principal component analysis.

Now suppose some of the‘}h% are missing. For
example, they have not been measured, or measured and then
lost, or are known to have been misrecorded. The question
is how to modify the standard analysis, given such a set

of incomplete data.

We deseribe 3 = (XiyXip...,Xip) 25 the ith
observation, and this observation is complete if all the
DQJ)S are observed, (j=1,2,...,P). A simple way of avoiding
the problem of incomplete data is to reject any individual
with incomplete observations, and to analyse the remaining
complete data. This is feasible and widely practised
when a large number of complete observations exist, but in
many céses such a procedure would be impossible, or highly

inefficient. For example in a linear regression, with p



large, an observation may be rejected when the value of

one covariate is missing, and this variable may be
insignificant in the final regression equation. Then
intuitively speaking this observation contains as much
information as a complete observation as regards estimating
the regression. Further it is quite conceivable to have
no: complete observations, particularly when p is large.

In such cases we are compelled to find some way of
explolting the information in the incomplete data.

A number of authors have tackledthis problem. For
reviews of the literature, see Afifi and Elashoff (1966),
or more recently Orchard and Woodbury (1971). Two
distinet approaches to the subject can be recognised,
which are simply described as the "fitting" approach, and
the "maximum likelihood" approach.

In a fitting approach we seek to fill the gaps in
the data by estimates of the missing variables, which are
in some sense close to the true values. We then proceed
with the standard analysis of the completed data, perhaps
with some modification to allow for any bias introduced
in the fitting. It seems intuitively reasonable that
a method constructed :according to the following

Principles of Fitting will be sensible:

(P1): Tind good estimates of the missing values,
according to some criterion such as unblasedness

and small mean square error.



(P2): Use a standard method on the completed data.
(P3): If necessary adjust the standard method to

correct for systematic bias caused by the

fitted values.
In the chapters that follow we consider more precisely what
these principles involve.

In a maximum likelihood approach we postulate a

distribution for some or all of the variables, and estimate
unknown parametérs of this distribution by maximum likelihood.

A common model is to assume
i

X ”:d qudp (f*)ﬁi) )
the multivariate normal distribution, with mean j& and
covariance matrix :E) and to estimate GM,ZZ) for incomplete
data where the missing values are in a sense "randomly
missing". Even for this, the simplest of distributional
assumptions, the resulting maximum likelihood equations for a
general pattern of missing values are complicated, and an
iterative solution is needed. Anderson (1957) deserves
special mention here, for introducing a simplifying
factorization of the likelihood for the special case of
monotone data: that is, when the variables (Xi, ) ST XP)
can be renumbered so that X 1s always observed if Ay j,,
is observed. Eventually, perhaps, the increased power
of computers provided the necessary spur for the iterative
calculation of the maximum likelihood estimates (m.l.e's)

of(}b,z) for a general pattern-of missing values. See



Harfley and Hocking (1972).

We shall return to this solution later, but it is
interesting to compare it with the fitting approach to
this problem. In its simplest form this involves
fitting values for the missing lifs,and then forming

the sample means
A N

A A
X; = w2 Xy oo (j=42.5p)
=4

and > the sample sum of squares and cross products (S.S.C.P.)

matrix about the means, with (j,k)th element

A & /4 Fal A Y
Sk = _Zi(xij"xj)('xéu"xk) s
Le
A
where X refers to the observed or fitted value of Xy -

A crude estimate of a missing value is the mean of that

variable over all the observations for which it is present.

Another method is to estimate 5@ and SW separately from all

the observations where Xg is observed, and all the observations

where X} and X}‘are observed. Here an adjustment may be
necessary to ensure that g is positive definite. Such
methods can produce considerable bias in the usual estimate,
53 ? , of the covariance matrix, and simulation studies
have shown that the estimates can be misleading. See

for example Haitovsky (1968).

Let us construct more efficient estimators by using
the principles of fitting. Suppose that Xb is missing,
and that we fit %q, some function of the data. If we

assume a distribution for the data and assume 1§ has the

257 o g e e NS TR
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A

same mean whether it is present or missing, we may seek Xg

so that
E(’)C;,j-'s\('aj) =0 )
(1.1.1.)
for repeated sampling with the same pattern of missing
values. Clearly the fitted value found by averaging X&
over the observations for which it is observed satisfies
(1.1.1.). However a closer fit to Xg is obtained if we

ask that

3

Elxy-x;1P):=0 ,

(r.1.2.)
where F% stands for the set of observed variables in the .ith
observation, and the expectation is taken with these variables
fixed. ]I‘Jti is multivariate normally distributed, Effxglﬂ)
:is a linear combination of the known variables F%,with
regression coefficients which are known functions of (f’i, ?)
We are led to the method of fitting proposed by Buck (1960).
An initial estimate of (;&,z) is found from the complete
observations, and these estimates are then used to fit for
the missing values linear combinations of the known
variables in each observation.

Sample means and covariances are then formed from the
completed data. We can improve these estimates by
considering the principle Pj, for although the sample
means aré unbiased estimates of ﬁ*)i%& § is a biased

estimate of ii. To correct for this, we must add certain



adjustments to the S.S.C.P. matrix of the completed data.
Buck gave the correct adjustment for one missing variable,
but failed to consider the necessary modification to §k,
when X and X are both missing in some observation 1.
We consider these adjustments in some detail in Chapter 3.
A final modification to Buck's method is to make the
process iterative. The new estimates ofghs)replace the
original estimates from the complete observations, and the
procedure is repeated. Then iterate until there is no
significant change in the estimates. We call the resulting

method Iterated Buck. Figure 1 gives a diagrammatical

summary of the procedure.

Form initial estimates of Oa,ZJ

—{Enter loop over the observations |

Y

Fit missing values in the ith observation
Find adjustments for new S.S5.C.P. matrix

g

Accumulate observation 1 into new sample
means and S8.S.C.P. matrix. Add adjustments
for the ith observation.

v

Compare new estimates of 0“,2) with
current estimates. Replace current
estimates by new estimates.

v
IStop‘

Figure 1.Flow Diagram for the estimation of (}hz) by Iterated
Buck
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We consider the asymptotic unbiasedness of the estimates
obtained by this method in Chapter 3, for a general
distribution of Ay . A less detailed analysis is given
by Beale and Little'(1973).

We now return to the maximum likelihocod approach,
and the method of Iterated Buck forms a bridge. Orchard
and Woodbury (1972) produced a set of iterative equations
for obtaining m.l.e's of (M,}:) when }Cé is multivariate
normally distributed. These equations are much simpler
to solve than those given by Hartley and Hocking,
referred to above; in fact they are nearly identical
to the equations of Iterated Buck, the difference being
that the maximum likelihood method (called here M.L.HN.)
makes no correction for the degree of freedom in estimating
the mean. Of interest here is Weedbuvy's contribution to
the discussion of Hartley and Hocking's paper.

Orchard and Woodbury derived these equations by an
application of a general principle for finding m.l.e's from
incomplete data, their Missing Information Principle (M.I.P.).
This simple and powerful idea plays an important role in this
thesis, and in Chapter 2 we give a derivation of the principle,
also given in Beale and Little (1973). The principle
indicates the connection between the fitting approach and
the maximum likelihood approach for a large class of problems,

and the intuitive appeal of the equations found by applying
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M.I.P. suggests that the resulting estimators will be robust
against normality assumptions in the underlying model.

This survey of the literature has been very selective
and biased, for example no mention has been made of many
useful papers on univariate missing data problems. A
more detailed treatment of past work may be found in
the review papers-mentioned above.

Chapters 2 and 3 of the thesis concern the problem
of estimating the means and covariances of p variables;
Chapter 2 considers the maximum likelihood approach and
Chapter 3 the fitting approach. Chapter U4 concerns the
precision of the estimates. Chapter 5 considers the
linear regression of one variable on the other p-1 variables,
and Chapter 6 considers the precision of the resulting
estimates of the regression coefficients. Chapter 7 gives
the result of simulation work to compare some of the methods
proposed in Chapter 5. Finally Chapter 8 is a simple
application of the Missing Information Principle to time
series data, as an illustration of the potential value

of the Principle in this field.



2. MAXIMUM LIKELIHOOD ESTIMATION OF THE MEANS AND
COVARIANCE MATRIX.

2.1. Introduction.

A complete set of data consists of N independent
observations ; on a set of variables XL; Xg,,,,) XP’
which we suppose are multivariate normally distributed
with mean /% and covariance matrix & . We
shall write 3; = (:)cu,xu)...)xw)*}'é"" MN, ( 1 E)
We consider the problem of estimating jﬁ and Ez by
maximum likelihood, when some of the 1%3 are missing.
First we exclude cases where a value is missing because
it is in some sense unusual (for example, too high to
measure). The natural assumption is that Fﬁ, the set
of variables present in the ith observation, have the
joint distribution found by integrating the missing
variables, M, out of MNb (,;.,E) . This property,
assumed for each observation i, corresponds to a
random pattern of deletions.

For this data and model, it is possible to write
down the maximum likelihood equations for }A and &
and to solve them iterativély. (See, for example,
Hartley and Hocking (1972)). However these equations
are very involved, and a much simpler set of equations,
which also give maximum likelihood estimates (m.l.e's)

of /u. and z, were found by Orchard and Woodbury (1971).
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These were derived by an application of their Missing
Information Principle (M.I.F.), which they explained
in the same paper.

Tn2.2 we derive the MII.P. The argument follows
that of Orchard and Woodbury, but we include a formal
definition of the Principle, and emphasize that the
effect of the principle is to replace a maximization
problem by a fixed point problem. This section is
the result of joint work with E.M.L. Beale, and is a
revised form of the derivation of M.I.P. given at a
R.S.S. Multivariate Study Group conferencé at Hull,
as part of a joint paper (Beale and Little, 1973).
This paper has been submitted for publication to
the Journal of the Royal Statistical Society, Series
B,

We follow Orchard and Woodbury in showing that
the principle leads to a simple iterative algorithmfor
finding m.l.e's of‘/l and & for our problem.

We noted that for the resulting estimates to be
maximum likelihood, certain assumptions are involved
about the circumstances which cause the data to be
incomplete. These assumptions are formalized in

§2.3, and some examples are given to indicate how to
proceed when they do nothold ,that is the pattern of
missing values is in a sense non-random. Included

in this category are censored data.
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2.2. Orchard and Woodbury's Missing Information Principle.

The Missing Information Principle is concerned with
the situation in which there are random variables that
can be grouped into two sets P and ”«, with a joint
distribution depending on the vech?@ of parameters,
and where P have been observed but M have not been
observed. In our application of the principle @
represents the set of means and the covariance matrix
for the multivariate normal distribution, P represents
the complete observations and the known variables in
the incomplete observations, and P4 represents the
missing values in the incomplete observations.

We wish to find é)the estimate of @ that
maximises the log-likelihood C(P,%) of P given @
But it may not be easy to compute this directly. On
the other hand it may be much easier to find the value
of e that maximizes the log=-likelihood {(RM,@) of P
and P\ given fa,for any complete set of data (P,Pﬁ)
Furthermore we may be able to find the value of @ that
maximizes the expected value of {(P}ﬂ;@), ir M is
treated as a random variable with some known distribution.
The appropriate formulae can sometimes be derived by
imagining that the sample is replicated an arbitrary
number of times, with P taking the same values in all
replications, but with M having its known distribution.

This procedure is central to the M.I.P., which is now

described.
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Let  F(M|P;®) denote the probability
density function for the conditional distribution
of M given P and ©, and 1et €(MIP;9)
denote {nf([\'\'P}Q)_ Then

((M,P;0) = L(P;0)+ {(M]P;B) .

(2.2.1)
Now take any assumed value eA for 9 . This, together
with the observed value of P, defines a conditional
distribution for M,given the data. Take expectations
of both sides of (2.2.1) over this distribution. We obtain

EQ(M.P,0) P8 = ((P:6) + Eft(mip;0)IP;04

(2.2.2)

The left hénd side of equation (2.2.2) is a function

ot P,O ana B,. we rina @, , the value of @  that
maximizes this function. This may depend on eA y SO

we write

8. = ¢(6,)

(2.2.3)

Equation (2.2.3) represents a transformation from the

vector GA to the vector eM . We now define

The Missing Information Principle

Estimate e by a fixed point of the transformation ¢,

i.e. a value of e such that

6 = ¢(0)

(2.2.4)
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The set of equations (2.2.4) are called the fixed

point equations, and they are analogues of the likelihood

equafions. This approach is justified by the following
two theorems, which show that the m.l.e. of Q satisfies
(2.2.4), and conversely, that every solution of the

fixed point equations is a stationary value of the
likelihood function. (Orchard and Woodbury implicitly
define @ by differentiating the left hand side of (2.2.2)
w.r.t. 9, and setting the result equal to zero.
Defining ¢ as a maximization reduces the possibility

of finding turning values of the likelihcod other

than local maxima). We assume regularity conditions
which allow us to differentiate with respect to the
parameters inside the expectation sign.

Theorem 2.2.1.

N
The maximum likelihood estimator 6 satisfies

eguation (2.2.4).

Theorem 2.2.2.

If QUWfP;Q) is a differentiable function of & , <then any
other value of © satisfying (2.2.4) is a maximum or
stationary value of €(P,9) .

To prove the theorems, we observe that if the distribution

of M has a probability density element +[FUP;QJAP‘, then

ELemMip;0)1P;0.] = [L(MIP;@)F(MIP;6,) dM
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and regarded as a function of 9 , this is maximized
at 9 = 9A~ This is simply Jensen's inequality. The
proof is elementary: see for example Kendall and Stuart
(1967), pp.39-40. Thus setting @ﬁé in (2.2.2),

the value © =é maximizes both terms on the right hand
side of (2.2.2). It therefore maximizes their sum.

This proves Theorem 1. To prove Theorem 2, we note that
9 ==€% maximizes the'second term on the right hand
side (2.2.2), and by hypothesis this is differentiable. It
cannot then be a maximum of the left hand side of (2.2.2)
unless it is either a maximum or a stationary value of the

first term on the right hand side.

The proofs carry over to the situation with discrete
random variables in the set ﬁ\; integrals becomes sums
in the usual way. Also the theory can be rephrased to
allow for partial information about the distribution of M.
Then ?(P,e) represents the log likelihood of the data
including this information, and :f'(M{P,e) is the
density for the missing data, given the data and the
partial inforﬁation. This is illustrated in §2.3.

We now apply this theory to our problem. Denote byx
the complete vak)nmtrix of variables, by F{ the set of
variables observed in observation i, and by P the
total set of variables observed. Then in the above

notation )
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6 = (P)Z)) QA:(FA’EA)) 9M2¢(QA)=(,1AAM>Zf4),

The log likelihood for the multivariate normal

distribution is

((XpZ) = —% ‘Z if (i ~)o*(up) =% N n(detE),

=1} ki
ik . 3
where U denotes the(J,k)th element of }E
Taking expectations with Q:BA and P fixed,

we have that

ELEOGRDIP; P == 3 2 Gl Furp) + n
“ZNh (@),
where
%ija = {xu ]‘A ? }
and Uirat; = Cov g(xg:xik),Pij}“A;zAg .

Maximization with respect to A  and 2 gives

the analogue of (2.2.3):
N

=1

P

Min o = N5 X
N
Tje = Z L(&;A"}‘Jﬂ)(’xum /“m)-l- kA pJ

for 1 <€ j,ksp . Now set )ln = ia\MZi\ ) 2}1: 2,4:2.

The fixed point equations are:
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A

Xy = Eiquﬂ,‘}*,ig » (2.2.5)
o= Ly 3

Fi T N 'ii Xy ’ (2.2.6)

ok = % 2 B pBuptonals e
Ojer, = Cou {(DCLJ,XL;‘”P;JA,EE . (2.2.8)

These are the equationsfound by Orchard and Woodbury.
To find m.l.e's we obtain initial estimates of (}A, Z) and
cycle through (2.2.5) - (2.2.8) until we find no

significant changes in the estimates between successive

iterations. Note that
A _ Xij 5 1§ i is observed ;
xij = a linear “combination of the variable in Pa
, if Xij is missing.

At each iteration the data are completed by equation (2.2.5),
and the means, and a sum of sguares and products (S.3.C.P.)
matrix found for the variables. This matrix is

adjusted by adding Oj.p, to the (j,k)th element for

each observation 1. This adjustment is zero unless

both X and X are missing, and it depends only on

the pattern of missing values in observation i, and not on

the values themselves.
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It is important that the computing involved in

this procedure is very simple. For a missing %@,
we it
A 4
xLJA - )LJA + @Z‘i" bjm.pi(xét "}"M) 3 (2.2.9)
L

where bjm,p‘: is the partial regression coefficient
between XJ- and )(2 when XJ' is regressed on the
variables in P.‘, , calculated from the current estimate

zﬂ of the covariance matrix. These
coefficients, and the adjustments Gjka.p, ,are found at
the same time by pivoting on the elements of zA

corresponding to the variables in P;, . In symbols,

if PIV ( Pn) ZA = v(f:x;%) )

then Vie = Ljnﬂ.?i for Xij ¢ Py, Xiw€ Pi;

)
Uik = Ojra.p , for X ¢ P, Xiw §Pi.

The PIV operator is defined in Appendix I, and
some basic properties given. A discussion of this
important computational point is given by Jowett (1963},
or an expository accountwith more emphasis on

computational aspects, by Beale (1979).
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We describe the method of estimating (iﬁ, EE) in
this section as M.L.N., to indicate maximum likelihood
for a normal distribution. The method assumes a
random pattern of deletions, and we consider this
assumption in more detail in the next section.

2.3. Random Deletion Patterns.

In the previous section, we analysed a given
partitiOn(P,VOOf the data, under the assumption that the
observed variables had their marginal distribution after
the missing variables had been integrated out of the
joint distribution of all the variables. We now consider
the partitioning process in more detail, by embedding
the model of§2.2. in a larger model, where the
partitioning process is stochastic. We consider when
maximum likelihood for this larger model corresponds to
maximum likelihood for the conditional model of §2.2.

We suppose data to be generated from the following
model, which has two components:

(a) A joint distribution for a complete set of data )(,
indéxed by a set of parameters 9, which we wish to
estimate.

(b) A deletion mechanism, which causes the partition of

X  into two sets P and M, where P is the set of

variables present, and M is the set of missing variables.
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The data consists of P, and a deletion pattern D
which is -a set of binary variables, one corresponding
to each variable in X » and taking value 0 if that
variable is present, 1 if that variable is missing.
The deletion pattern is considered stochastic, and
has a distribution from a class defined by the
deletion mechanism, indexed in general by @

and a set of additional parameters, ?é-

In the following examples )( represents an Nxp
data matrix. We consider some possible deletion
mechanisms.

DMl: Each Xi has a known or unknown probability bg
of deletion, which is functionally independent of

the parameter e‘ The parameteréis the set of
distinet Pq’s, and we may specify Pg#&,or more
commonly]h:ﬁj,or some such relation. Anyway we
assume the factorization of the underlying parameter
space, .9.(9)9,) = SZQX.Q¢.

DM2:  (Censored Data). We assume X is observed if
and only if xejePJ-,where ?j is some range of values of
the variable, usually an interval. This interval
may be known, or the cut-off points may be additional

parameters to be estimated.
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DM3: Now suppose 'X'.;j is observed it JC¢keRk,where
ﬂ, is some range of values of the variable Xh, k*j .
Again Rk may be known or unknown. For example X&

may be the result of a medical test, which is not

carried out if some other aspect of a patient's condition,
as measured by Xg 3 renders the test dangerous.

DML: The value A 1is observed if and only if it is
within R standard deviations of its mean. For such

a standardized type of censoring the a priori probability
of obtaining the deletion pattern does not depend on

the parameters e‘

DM5: Suppose Xjj has probability }J{/AJ) of deletion,
which depends on the population mean of XJ .

These mechanisms can be combined or made more
elaborate. We see how the deletion pattern may be
determined by part of the data, or by missing data
(e.g. a mixture of DMl and DM3), or it may depend on
the parameter 6 (e.g. DM2, DMB).

Now let Q(P,D ,9;¢) be the log likelihood of

the data, under the full model. We have

L(PDB,B) = K(PID;8,8) + L(D;08). (2.5.1)
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Also component (a) of the model defines the likelihood
L(P,M;8) of a complete set of data. The log-
1ikelihood of the marginal distribution of P is thus,

to within a constant,

0. (P;0) = tal [L(PM:0)aM] -

(2.3.2)

We define a random deletion mechanism to be one such that

for all possible sets of data (P,D), the value of H
which maximizes eg(P,@) also maximizes Q(P,D)@,ﬁ)
By the partition (2.3.1), we see that sufficient

conditions for this are

Sl: 8!{ (p’D)elﬁ) = {:(pJ@) . (2.3.3)

s2: £,(0;6:9)=L(0:6), and R, =80, 2.3.8)

Condition S1 is self-explanatory, and S2 impliles that
the deletion pattern D is ancillary as regards the
estimation of 9

Turning to the examples, we see that DM1 is random,
DM2 fails S1 and S2, DM3 fails S1 and S2, DM4 fails
S1 and DM5 fails S2.

Less stringent conditions are sufficient if the
deletion mechanism is such that a subset i% of the’
variables x have protability 1 of observation.
Then for any deletion pattern these variables have
their marginal distribution from component (a) of
the model. If ec (ch 9) is the corresponding

log-likelihood, then
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L(PD;0,8) = {.(R;0) + ((PI2,0;0,8)+ & (DIR;0,8),
s 000;0) = Lln30) + L(pIR0).

Hence the deletion mechanism is random 1if

a G(P1e.D;89 = L(Pir;0) . (2.3.5)

g2 ((DIR;8,8) = £, (D1R;P), end 8, ,=0xQy. (2.3.6)

For 1f Cl and C2 are satisfied,

0(PD;8,8) = {.(7:8)+0,(Pir;0)+L(DIR;@)
{,.(p;0)+ L, (vIn;g),

t

and so maximizing 3, (P}e) with respect to 9 is
equivalent to maximizing Q(P,D 39,#) with respect to

P, a2nd the deletion mechanism is random.
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The conditions Cl and C2 parallel S1 and S2,

but we can allow the deletion probabilities to depend
on the values of variables which are always observed.
Considering the examples, we see that DM2 fails C1l and C2, DM4
fails Cl1, DM5 fails C2, DM3 fails Cl and C2 except if Xy
is always present, since then conditioning on that variable-
shows thatDM3 is random. The latter example is important,
for it shows that it is possible to have a random deletion
pattern, although the sample of observed values of a
variable which is sometimes missing does not have the
marginal distribution of the variable when 1t is always
observed.

Before working out some examples, we indicate when we
are justified in conditioning on the deletion pattern

obtained, and in using conditional maximum likelihood to

estimate the parameters. The conditions are C2 and
/ ’ , / .

9_.].; eb(P(PC)DJe)¢) = e3(P}P{;)$),

which is weaker than C1. I ¢! and C2 are

satisfiea D is statistically ancillary to the

estimation of 9 . Two examples are worth a brief

mention.

(a) DM2: For censored data, Cl' and C2 are satisfied if
the cut-off points are known. However if the cut-off
points are unknown, we must use the deletion pattern

to estimate the additional parameters.
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(b) DM5: Here the log likelihood e:(PlD;e)
is the marginal likelihood ez(P;e) from
component (a) of the model, but the deletion
pattern contains additional information
about the means.
Thus strictly speaking we are losing information
by maximizing gi(P;e),although in practice this
loss may be small. Example (2.3.3) is a
simple illustration of this.
We now apply the M.I.P. to some further examples.
Example (2.3.1). To illustrate DM1 and DM3, mixed.
Suppose (XMX::.)TN MN; (}J, 2),and X2 is not

observed if X, is greater than a known constant €.

After measurement, some proportion of the measurements
on X,_ are lost. These losses do not depend on

the values of the variables.

Analysis. According to M.I.P., from current estimates

(/,(A) Zp} of the parameters, we find the fitted value

Xy = E(xal i, xare) = E (calo)

for an observation with X,_ present and Xz missing.

Here the information in the deletion pattern, that Xig 7€)

does not affect the conditional distribution of Xz

given ¥y, which is normal. Thus the fitted value
x?: and the adjustment for the variance is the

same as for M.L.N. However for an observation with X

missing but Xg present, the fitted value is
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¢ ¥
-[w 2! ¢(X1;qu) dx,
[, ¢ (255) d,

where ¢ represents the standard normal density, and

R

Xig = E(xulxmxu '(C) =

J

(DCJ > V‘) are the mean and variance of the
conditional distribution of (Xi,_ll Xig), which is
normai. [ We see that the deletion pattern tells
us that Xy<C,s0 Xy  has a truncated normal
distribution. The fitted value from M.L.N. is

'.)C{r, which is diff‘erer_lt from ZX‘Lf*. Hence M.L.N.
is maximum likelihood only if X_{_ is always
_ observed. This is indicated by the previous
theory.

Example 2.3%.2. Censored Data.

ti.d.
Suppose X, ~ MNP(#,E), but that the variable

Y.

J
We can find m.l.e's of (}hZ) using the M.I.P. If

(j_ <] SP) is only observed in a known range RJ-,

Dc‘;j is missing, we substitute

#*

? 3 d
Xijg = E(xglPa,xgeﬁj;th) - Jo xf() dx

) fk} £(x) dx

where —Qj = (-oo,oo)\Rj sy and f(x) is the normal

density for the conditional distribution of X given
the variables present in observation i. The corresponding

adjustment to the estimate of variance is
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= - = X f(x) dx * 2
Var (4|0, % e K3 Ra2a) = ﬁex — Ayja,
a‘r( Jl Ay J))u ) fﬁ' £l dot JA

g
J

Hence we can solve the fixed point equations, calculating
these integrals at each iteration. We can also
incorporate missing values in the other variables, which
are considered randomly deleted.  Suppose Xk is

such a missing value, and X is also missing. Then

we Pit
»*

xU?A = E(xl«blpg)xﬂeé) ;}‘A)ZA)

< ff?‘ E(xue,ﬂ)xjjf‘n,zn)f(xj)dxj
Aé f:(]a) 43% ’

and the adjustments are
Cov (‘)Cg, YXie | P, X G_Iéj ;}‘A,IA)
- f’e’ X E(xiel P, ;PA,ZA)J'(IJ) dxj x;;,‘-i. Xc:;;,
Sy #(x:) dx;

- f?&[E(x&lPuxj ;FA)ZA)]QUL(xJ)d‘xj - DC;(:.
j%f f(zﬁ)tiij

Var (xal?., Xij€ R j}“mzA)

More complicated models for deleting multivariate
normal data can be handled in a similar way. The

quadratic nature of the log likelihood function for
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complete data ensures that first and second moments
of the truncated distribution are all that are required

to solve the fixed point equations.

Example 2.%.3. (An example of DM5).
: . L.i.4.
Suppose again ¥; o~ MNP(;,%X) , but Xj

has a probability PJ of deletion in any observation,

where
o
b, = e
J 1+ PP
where ¢ is an unknown parameter, independent

of (}*,Z)
. Then if e = (ﬂ,i),

UP;D[@,¢) = ei(p[D)g) -+ eg,(Ol}%_‘?),

M.L.N. maximizes the log likelihood &(PID,%), but
this is not the true m.l.e. of @ , Since the deletion
pattern itself contains information about ;A .

Applying the M.I.P. the transformation Q@A) is the value

® which maximizes

E {{(M;P,D}Q,Sé) ‘P)D,'em%}

instead of

E{C(MPID;8,8)[P,D;8a, faf .
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If M; are the number of observations for which )&
is observed, the difference between these terms is

the factor

e ( D ,/"’3; ¢> = N Loﬁ h} (/UJ) . (N"nj> («Oﬁ[l” PJ{/GJ)]J

which modifies the estimates found by M.L.N.
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2, Robustness of Estimators of the Means and Covariances.

2.1. Introduction.

In the previous Chapter we considered the maximum
likelihood approach to the problem of estimating the
parameters of a multivariate normal distribution, from
an incomplete random sample. We now examine the methods
of Buck and Iterated Buck, derived in Chapter 1 by adopting
the fitting approach. As indicated there, virtually
the same method as M.L.N. can be arrived at by considering
"good" fitted values for the missing variables and
adjusting the usual estimates of the means and covariances,
formed from the completed data, to elimate bias.

In §3.2 the goodness of fit of the linear estimators
of the missing values is considered, using the criterion
of mean sguare error. In §3.3 the bias corrections
are considered in some detail for Buck's (1960) method,
from an unbiasedness viewpoint. In the following
section the iterative version of the method is considered.
The estimates are found to be consistent as N tends to
infinity in such a way that the number of observations
with an observed deletion pattern also tends to infinity,
provided every pair of variables is observed together in
at least one of the observed patterns.

The "robustness" in the title of this chapter is

justified by the fact that no normality assumptions are
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made about the joint distribution of )C,Xz,“.,XP-

For sections 3.2 - 3.4 we assume that

(i) X,,X;,-,%, are independent, with mean M
covariance matrix Z .

(ii) The deletion pattern is random, in the sense that
the means and covariances of the set R of
varlables observed in observation i are the same
as those given by (i).

(1iii) The distribution of X; has finite fourth moments
(i = 1,2,...,N).

The condition (ii) is the analogue of S1, equation
(2.%3.3), but here we are concerned only with the first two
moments of the underlying population, rather than a specific
distribution. It allows us to take expectations for
repetitions of the sample with the same pattern ef
missing values. '

Finally we consider a finite sample argument, where
moments are taken with respect to a population consisting of
the hypothetical complete observations. If "random
deletion” is considered as meaning that every observation
has an equal chance of coinciding with any of the N
deletion patterns (R,f{,“.,ﬁu) in the observed
sample, then good estimates of the sample means and
sample covariances of the undeleted sample are obtained

by Iterated Buck.
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3.2. The fitted values.

We have an incomplete data matrix x, which
satisfies the conditions of §3.l. A certain value JC,;J-
is missing, and we fit 5\6‘;‘; ; & function of the data. If
we knew completely the distribution of (xmxur“xép) , then
the best fitted value in the sense of minimizing the

mean square error

F % (xéJ“QiJ)Z va;} (3.2.1)

is evidently E ('JCiJ' l PL) . In this expression we
consider replications of the sample with the values of

P;' fixed. For multivariate normal data this value is

H¥
Xiyoo= Myt é’& @je-m(?fcr}‘t) ; (3.2.2)

where @JQ.P,; are partial regression coefficients for
the regression of Xj on P , calculated from z . This
value cannot be fitted in practice since we do not know

}L and z . However in the M.L.N. method
this value is estimated for assumed values (}AA,ZA) of
the unknown parameters. See Equation (2.2.9).

In general E('x,;J- ]P,,) will not be a linear
combination of the variables P{. and for a particular
distribution of ;¢ , beti:er fitted values can be found.
However for any underlying population, DC;'; is the
best linear combination of the variables in P,-, , in

the sense of minimizing
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E (Iéj*it‘d)z ) (3.2.3)

where we average over the values of R;. For any linear

A
fitted value XQ R

2
F (o -2 + o - %)

E(Xq "7‘5)2+ F (xéj‘k"ﬁﬂ')i

E (DCLJ‘ - 5\&3)2

]

i

since the residual (x.-d- —-xdj‘é) is uncorrelated with
the variables in Pé, and hence uncorrelated with CX§~§%1
Thus (3.2.3) is minimized at iig = xg*.

Hence with a mean square error criterion, M.L.N. fits
estimates of the best fitted values when the data are
multivariate normal, and estimates of the best linear fitted
values when the data are sampled from a general underlying
population. Improved non-linear fitted values for certain
non-normal populations are considered briefly in Chapter 5.

Buck's method estimates the means and partial regression
coefficients of (3%.2.2) by their sample analogues,

calculated from the set of complete observations. Hence
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for the observed or fitted value,

A ~s s
Yo = %4+ X bpp (xu~%)

Y ’ T (3.2.4)
where xj is the sample mean of )(j from the complete
observationg and

sample partial regression coefficient,
b found from the complete observations, if Xﬁ éiW;;
e
. if % € P
e J ’
(3.2.5)
where ML are the missing variables in the ith observation,
and Sjg is the Kronecker Delta. Then form
N N i
. = L Yo ,
X N L;-xﬂ ’ (J=1,2...,p) 2

N sa a2 Y
ajk = z (xij'-xj)(%ﬂ?"xh)’ (j,k=l,2,...,p)}

A
and estimate }{,‘ by X and Oig by

>
Cw
K~
i

N s A A
N_l.] ?-:1 [(xij”xJ)(;erk) + féjk] ,

- (3.2.6)
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where Cy, is a correction term to eliminate bias
introduced by the fitted values. We now consider what
the correction terms should be to produce an unbiased estimate

ofz.

3.3 Bias Correction for Buck's Method.

In the rest of this chapter we shall be concerned

with asymptotic bias in the estimates, as the number of

observations tends to infinity in some way. We shall
require the following result: if 3N is a statistic
based on N observations, and 3(5) is a function of

y, independent of N, then subject to mild regularity

conditions on 5\! )

E(y,) = & + 0(%) , as N5 oo,

and Cov(yN) = O(‘r’i) 7 a8 N> (3.3.1)

together imply E (g(gw)) = 3(9) + O(%))as N-00]

This follows by considering the first three terms of the
Taylor expansion of ﬂ(HN) about © .

Now let us consider the bias in the estimate of g,
formed by Buck's Method. The estimate Osk/ of

equation (3.2.6) is unbiased if
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ngv}?l(ajee‘*' i Ci.jk)} = Ok,

t=1

where the expectation is for repetitions of the sample

with the same deletion pattern. Hence Cijk must
satisfy
N
( 2. C"k) = (N~ 1) oy — E(a':e> .
E &Y ’ (3.3.2)

We expand E:(ajk) . Write

A *
Xy = x5 + €,

€,

i

L © _

o A
where :xg is the limiting value of X as the

number of complete observations, Mg s tends to infinity, and

(» '
vp = & “e%abjefﬁe , (=0 4 1eR)s (3.3.3)
Kij - ZP;,(E]Q-PL'* pjbpé)xi'e’ (:O i }Q}je PL) ‘ (3.3.4)

In terms of these variables,



N-1 x5 A A N N
a; = —_— Wi Xiw — ry A A
IR N & ¢y Ak N Z Z X¢1’J ')Cibk
14 tg=i
N Li#‘.z
- N-1 * 1 * *
- — X X = x
N LZ;. Y TR N ey gg t) x"nk
4+ N+

Z ( gh,] g‘yh + gl.,,J ’xcl,k + g!.z x‘-bJ)

N ‘.‘Ci ‘1-
u$ia
We assume without loss of generality that the means of

Xt)Xz)-")Xp are zero. Then the "partial covariance"

of XE(’I and i,k »

% X* o -0 P .£ L:L:L
E (3(';,,,] i) = { " 0 R PR T
i-£ (i $¢

y 1= LiFh (3.3.5)

where UOjk.n, is the residual covariance of ¥Xj and Xg

after fitting linear regressions on the variables in R

This partial covariance’ is the conditional covariance
COV(DCL,,},IQ,.;IP«:) in the multivariate normal case.

Next consider (3.3%.3) and (3.3.4). The terms Dné‘,',
bjc-PF. y and hence also 'I/J'(i), are functions of the complete
data, and hence independent of all functions of the incomplete
observations with constant coefficients, and in particular
the 'JC,;:’S for an incomplete observations 1. Using this,

and the fact that the means of the varlable are zero, we have

L
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E(C x*) . E(V}L')xi;,k) , i Xy EMel}observation i, complete
W TR/ T 0 yotherwise (3.3.6)

( \ F (v ) ,if dg#i, ;0 (3.3.7)
E Ct.,j gi,h =
: E(’V(L)'U::))'}'E(?fg ?Si;g) )if 121,51

Now suppose the first ﬂc observations are complete.
Taking the expected value of Oy and using (3.3.5) -

(3.3.7), we have

E(ij) = &;il g:‘ (O-J'R‘ J;-Pc)+E+Tz+T3 )

(3.3.8)

where

. :{
)

LZ,H, [ E (Vm )+ E( ¥y que')] )
Tz — ,_JN~ z@ i E(VM ,ui(:zq )
E

/

b1
Ne N
— (2) (1-7
T, = =52 % BV xt wWn,).
. uzl  trshedl

First consider 1}. By the independence of the observations,

E( ¥ Yie) = CeZa 2:;‘& [( bive—Besl Beme— Pkm.ﬁ) U’gm]

©(3.3.9)
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Let Ay  denote the (i xm) S.S.C.P. matrix of the
complete observations, for the M variables in P;_ )
(l g7 < p). Let ZU denote the submatrlx of 2

corresponding to these variables, and Z(o ﬁi“l Am Then

E(z(i)) = Z(i) ) COV(Z&)) = O('r!&) 3y &S N¢~>00,

since the distribution of (X,, Xz>~--) XP)(has finite fourth moments.
Hence by (3.3.1), if 3(20.\) is a known function of

Z(i) , 1independent of fl¢,

E(ﬁ(ém)) = 9(&0 + O(‘%}) (3.3.10)

A
Setting (j(zm) = Ué\j?ﬁ'k » we see that E(&Jmk)
is O('}fe as N¢e~» 0. We now work out the 0(‘,:‘( term
under the multivariate normal assumption. Then

conditionally on Fi,
E(bje-m "@Je-ﬂ) =0 COV(bJe-p.-abum.a ~il Pc) = af{',“ Olke-p: ,
where Qg is the (Lom)th element of Ag . Also
E(E,) = %o +0(%),

by another application of (3.3.10). Hence
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E ( Xaj Xik) = Z (ﬁ%—]) B-{l)gm Ojep, Otm +- O(’?"}?) 3

(ch mep;

: |
o, E(¥%¥%) =5 Uen + 0l) . (3.3.11)

Now E ('V_',u) ,vk(i)) = E [( i(j - ;[% bjﬁ'?ﬁ %@ )(%h “”é:&bkm.p; ’i'm)] s

and by a similar argument to that given above this

term is O(ﬁ) . Again we find the OG{;) term when the
variables are multivariate normal. Then the means 5\5"3
are uncorrelated with the partial regression coefficients,

S0

E ('UJ(L)’U)S)) = E [(%J - iGZP.; @j?-?{; &vg) (%k --%:ﬂ pka‘ im)]
+ ELZ oo e Z, (b fonn) %ol
= ‘;{c T, F E(Ktjlﬁse) = 'f'?c"?"?'ﬁ'*O(?t‘)'

Adding and summing over i, we have

To= X ) on + 0]

L=t . C o (3.3.12)
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for the normal case, and some other O(‘r{}) term in
other cases.
To calculate Ij,we need E(V“o'\)(u) for
Lo (2 . As for the case L =Lla, this is O(‘rla'c),

and for the normal case

E ( Vju')’t/:ﬂ) =E[‘h’} {(XJ - ;ZEP. Bier, Xe)( Xﬁ;’mm;& ﬁm.p.-;Xm)H

{

+ 00

———
o——

but the right hand side has no simple form unless
P, e P, or P, € RI . Therefore we consider the
O(—,‘-,;) term only when the data is monotone, i.e. we

can arrange the observations and variables so that

P‘q gpbz if ifl >i'2 » (3.3.13)

Then

S S oen, + 0

N“c Ll Lok

fe. I = Z (N-1) o3 +0(72). (3.3.14)

=0t

o
I

~ w
Finally Ts = Z [E(Vm Ih)+ E(‘Uh‘ %J) .
this term is found in the same way as E(Vu, (ﬂ).

Again it is O('},;), and in the normal case,
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(3.3.15)

Substituting (3.3.12), (3.3.14) and (3.3.15) into (3.3.8),

(D'ja“‘gi'k-m) + O(":Tc):

Mz

E(ajh) = N,;",'

-
n

and if the data are from MNP (}ﬁ)z) and are monotone,

N N
N-1 s N ; N-D_ 2
E(C\-jk) = N ZI (U-JR"UJ%-\‘%) + g%’; U}w-m[ 5%2—' *zw-f\sn:*‘,:;

+ 0(%) .

Substituting this in (3.3.2), for unbiasedness we

require

E (Cc}jk) = e + 0GR,
(3.3.16)

and for monotone data from MN;: (}",z.) 5

E (Cgk) Oee L % - rH*'l(N k)]'* O+ )

If we replace (N-i) by its average value for i=nc+1,nc+%‘..

we obtain
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E (chie) 2 Ge [ ;%4 _ n+| + N—ﬂc l] +O(7u"'g)

i.e. E(an) = (n“r‘ ‘)U'ma-l- O(nc) , (3.3.17)

~J
Now if Z is the estimate of 2’. from the complete

observations, and Vje.p; 1is the (J,k)th element of

Vi, = PIV(R) T

then E ( k p‘) = ncr;er: ; ! O“-jk‘P; ; (3 o5 18)

the numerator Me~%-l results from losing ™ degrees
of freedom by the pivoting process.

Comparing (3.3.17) and (3.3.18), we see that Vjgp;
is the correct adjustment, ignoring terms of O(-;,,‘?), and
subject to the approximation given above. This is exact
when all the incomplete observations have the same deletion
pattern. (The simpler case of one incomplete observation
was considered by Beale and Little (1973), and achieved the
same result by a somewhat different methdd). For non-
normal data, or when the pattern of missing values is not
monotone, the correction Vjk.p; is correct to O(":Tc)
For these situations no simple formula can improve on ij_pi
from this unbiasedness viewpoint, and the final estimates
of (P,Z) are still correct to O(‘v’?;) In the next section

we consider the adjustments for Iterated Buck. The
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iterative nature of this method appears to preclude

a detailed analysis based on unbiasedness. However

a consideration of the consistency of the estimates leads
to an adjustment similar to Vjke -

2.4, The Bias Correction for Iterated Buck.

We write down the set of iterative equations explicitly,
and consider the limiting equations as N tends to infinity.
First we need to define,limiting properties for the
deletion pattern. Let @ be the set of distinct
patterns among (P, Ps,..,Pu),and let P be a typical
pattern. (The usage of the letter P in this
section differs from elsewhere in the thesis, where it
means the set of data). Let Rp be the number of
observations in Sp,the set of observations with pattern P.
Then

3
N-» o denotes N2 such that %’: )\P)aconstant 70)Vp€@‘

In this section we do not assume @¢>0, i.e. that complete

-

observations exist. If there are no complete observations
the iterative process can be started by some other estimate
of (ﬂ,Z), for example

{

Vi M skxge P e (3.4.1)

Oje = me 2,: (:x'd "/"J)(xerﬂn)
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where "U and Mgk are the number of elements in the

corresponding summations. The resulting estimate. of
EE may require a correction to make it positive semi-~

definite. This is done by pivoting on the matrix,

and setting "negative variance” terms, and the

corresponding covariance terms, equal to zero.

The equations of Iterated Buck are

A A
5\% = M+ e%,‘ biee, (- ft)
| N
‘AJ = N ;_-7; 5\% ’
N
83,! = ‘2:; [(xg /‘J (xn,lz /'(k)"}' Cojk_]

where bR?L are defined by (3.2.5), except that they
A

are estimated from Ei, rather than the complete

observations. Hence
ﬁj s .,ZeS [ Pit Z b;!p(xce )“0)_] )
o

(3.4.3)

<1

= 15 00 T L XX b by (x4 cip] -

® ieSp feP meP (3.4.4)

Now for PE 6), the statisties
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A
P = Ti?gspx“ ’

(3.4.5)

oo = -flrp igsp;<xiﬁ”ﬁ"‘)(xm-ﬁpm) (3:4.6)

form a condensed set of data which is fixed over iterations.

In terms of these quantities, (3.4.3) and (3.4.4) become

® 9""2 fgp bJ’“’ (/&"-ﬁ‘) =0, (8.4.7)
;Pmep QPbka G@Lm""(}*f’i )" f)(/“’?m }IW‘)}"{' CPJ;J

(3.4.8)

where Cpp = n,, Z Cth .

Now let N >00, and congider the limiting equatlons As
NSoo, fio = g +06R), Gm=t+0G), Coe— oy (say),
and (3.4.7), (3.4.8) tend to

Z )‘PZ bjg-p(}.‘c“ﬁl) = O(T:‘G) 2

(3.4.9)

63‘,{‘—'- Ped® ;:“Z b‘;lenmp UQM'*'(}*&‘”}*{ j&,,,)j-l—(:%]‘{‘o

(3 4.10)

The limiting equations are (3.4.9) and (3.4.10) with the

4—“—,) terms :Lgnored For consistent estimates,
(j,8) = (p,5)
must be a solution of the limiting equations. Substituting

this solution, with the consequent population partial

regression coefficients, we have from (3.4.10)
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Oik = :/e:‘& Xp[ é?%ep Bie Prmp Ttm + C;h]

»*
= Z )\p[ Ok — Uje-p + CPjh]
Pe@

* .
Hence Cow = Tjwp .

Therefore for consistent estimates, we choose Cyr  ®0

that
‘QUR Cijk = Ojr-p .
NE S ‘ (3.4.11)
S

Replacing Oj.p, for Cyk in the equationgof

\
Iterated Buck, we obtain the same equations as M.L.N.,

(2.2.5) - (2.2.8), except that the factor 77 in (2.2.7)
is replaced by ;ﬁ; , the standard correction when the
data are complete. Thus Iterated Buck is "corrected
maximum likelihood" when the data are multivariate normal,
and although in the Chapters that follow the methed M.L.N.
will sometimes be quoted for theoretical reasons, in
practice the corrected method can always be used. of
course the practical difference is small.

We now ask the question: under what conditions do
the limiting equations have a unique solution? If )%

and )% are never observed together, then the set of

solutions
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}A!! = /u(, ‘ ) (e=‘)27";>t))3
8.

tm = Otm . (e,m) #(J;k)’ ’
s = 0Bir s 1 <€< 1), (3412
where P is the set of variables (X|;X1)---,)<p\) with
Xj and Xh removed, satisfy the limiting equations,

since Uj does not appear in the set of equations (3.4.10),
and thus can be chosen arbitrarily in the sense of (3.4.12).
Consequently the estimate of Ujk from Iterated Buck

is not consistent, as one might expect since we have no
information about the partial correlation e of (3.4.12).
In practice, convergence is speeded up by setting ébba==0
at the start of each iteration. However, if the deletion
patterns are such that every pair of variables are observed,
fhe limiting equations have a unique solution, and Iterated,
Buck is consistent.

Asymptotic Unblasedness of the Estimates.

Evalation of 0(’,':7) bias in the estimates of (}":Z)
is not feasible, but we can show that if the initial
3
estimates of (}*,Z) are unbiased to O(r%) as N»0ghen the

final estimates (ﬁ,%) are also unbiased to O(‘,{,‘) as Nj"?m-

We sketch a proof.
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Suppose current estimates (}QA,ZA) are unbiased to

1 .

O(‘f;) , and (szm) are new estimates, found by one
iteration of the method. It is sufficient to show (szn)

1
are unbiased to O('ﬁ) . By an application of (3.3.1) with

‘!N =(}CA,ZA) 3 9 = (Paz) 3

E(S'jka-&) = Ojpp, + O(i'q) as Nioo )

(3.4.13)
E(bm.p&) = B, T 0(—:‘_) a8 NS00 ? (3.4.14)
with the riotation of §2.2. Using (3.4.13), it is
sufficient to show \
E(%) = EGG) + 06, (3.4215)

E(&i,,ja S\C;,,.,mg = E(x:j x:m) + O(—&’—) » 1€LLEN, (3.4.16)

A

A A
where xijn = /LJ'A + QGZ& bjCA-P;,(xi.e "'/LU‘) )

*
and X

I g"; Biews (i - o) |

Equation (3.4.15) and (3.4.16) follow from Lemma (3.3),

provided also

E( bjen s Im) = E(Pjtﬂ: xie) + O(‘:lv") R

(3.4.17)
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ana L (bJCA-&, Xie E,,,,,A.pi Iim) = E(@j& Py, Xist Penr, xf»z,m) +0).
: (3.418)

These would follow by an application of (3.3.1) if
(bjzA-PL. bmn_m) was independent of (xi,,{ DCcz,m) and
bﬂk& was independent of Xi . This difficulty is

overcome by considering 5&»& » equal to hw4k but with a

new independently sampled observation replacing the ith

observation, with the same deletion pattern. Clearly

7
bjEA‘P.', is independent of X , and

/ ¥
— L _—
Ejan-ﬁ. — bjeA-P.: + O(N) as N =00
This is sufficient to prove (3.4.17). Similar tactics

prove (3.4.18), and hence the result.

3.5, Unbiasedness under permutation of the observations.

So far we have considered the data as part of a random
sample from a joint distribution with means and covariances
Q&,E),and finite fourth moments. We now consider a finite
sample approach to the problem. We make no distributional
assumptions about the variables, and the problem is to
e;timate the sample means i%,and the sample S.S.C.P. matrix

s of the undeleted sample, given the incomplete data.

For a given pattern of deletions, Iterated Buck produces

estimates of 3@ and S . Now consider a hypothetical

permutation of the underlying undeleted observations. Every

permutation T produces a different set of data, and different

estimates 5%,,; and Sy, of Ej 'and Sjk - Now suppose every
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permutation is equally probable,and consider the average
values of the estimates over all the possible permutations.
If E; denotes this averaging process, and if initial

estimates S%OJS}Oare such that
=) = ¥ L
EN(xjo) - le+ O(N) ? (3.5.1)

EN (Sjko) = Sje t 0 )

o A
then the final estimates ¥j, Sjg from applying Iterated

(3.5.2)

Buck satisfy
Fr (%) = s+ 00D

|

(3.5.3)

(3.5.4)

To prove this, we require the finite sample analogue of
(3.3;1), together with the following theorem. Consider
a hypothetical method where fitted values and adjustments
for one iteration of Iterated Buck are found from the
complete undeleted sample, i.e. are functions of Z i%,f%h}_
These fitted values are finite sample analogues of the
xb-j-”s for an infinite population. Let SEJ-,” Sjer e the
estimates of 3%’3& from this method, for permutation M

of the observations.

Theorem 3.5.1. The estimates i&;,%m,satisfy
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EN(D—C}W) = i.i 3

EN (53“") = S t Kjk P

(3.5.5)

(3.5.6)
where 2"3 is O(-&,—) as Nf?oo_
Proof. We treat the deletion patterns (P,,Pz,...,PN) as
distinct, and let 3’%{;}‘(&,) be the observed or fitted value of
X when pattern P. coincides with observation i.
For the hypothetical fitting procedure we are considering

this value is invariant under permutation of the other

(N-1) observations. Hence
N NN
— - i ! ___J_ A
EN(IjTT) - m[ﬁ ‘Z; &‘jﬂ'} T ONZ g:‘i;x'd(ﬁ-) 2 ( )
- e 3.5.7
A
with the obvious notation for x;‘,ﬁf . Similarly
N N N
%o X ) =L ST Sy i -
EN('; YT RT N 7 e L () A inler) (3.5.8)

Now fix J\.Pr s and suppose Xj € Mr, XhGM,,_ Then
A
Xijtay > fcmp,) are the fitted values from the regression of
X} and Xg on the variables in Pr, calculated from the

undeleted sample. Thus by the geometry of least squares,

N N
l A I | =
LS Sum =hZx =%,
N Z; e N & T (3.5.9)
since the residuals sum to zero, and denoting the left hand

Fa)

A

side of (3.5.9) by Xy >

N A A
.Z ( SCCJ(M”IJ(P»)(&MM‘ xncm) = Sjk = Sjr-pe s
(3.5.10)

L=



57

where  Sig.p, is the jk'th element of

PIV(R) S,

and 1s the residual sum of cross products.between XJ

and Xh . Equation (3.5.10) follows by noting

N
Sjoe = 2 (X5~ Fijio ) (Lon - Ninten)

iz

z—

i

f/ A A
( Xiy Xie — Xijier) xik(?r)) .

p
-

1t XeR

and (3.5.10) remain valid with Sjep defined as zero.

B) xij(p,.) = Z£J (i=1,2,".'..,N),and (3.5.9)

Using these expressions, (3.5.7) and (3.5.8) become

Ew(ijrr) =% ,

as required, and

& A A - = <
EN[Z Xijre Likre = ijﬂxkrr_] =}{,‘ Z Sjie~ Sikec) + X,-k(, |
iz1 t=1 3.5.11

<

N A
th = FZ' xm-)ka NE (waxR“) (3.5.12)

-

where
Equation (3.5.11) is equivalent to (3.5.8), since the

estimate of S is

Sikmc i [(chn JW)(xuhvt“xkn>+ N Sik- P:J .

izt

. Y,
Thus it remains to show that b.’jh is O(D as NS00 . But
— 2
B (Tx) = % = T,

So th = - N COVN [ iﬂ\' [ 2kﬂ'] = O('),
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by analogy with infinite populations, or by explicit
calculation, assuming ¢ = Xp = O, COVN here denotes
covariance for the finite sample.

The argument from (3.5.1) and (3.5.2) to (3.5.3)
and (3.5.4) now follows the corresponding argument of
the previous section. The details. are omitted. Note
that initial estimates obtained by either (i) forming
estimates from the complete observations, or (ii) forming

(ﬁjya'jh) as in (3.4.1) and (3.4.2), satisfy equations
(3.5.1) and (3.5.2).

Two properties of this finite sample argument
illustrate the appeal of the approach. Firstly, no
independence assumptions are made about the observations.
Secondly, Theorem (3.5.1) illuminates the geometrical
aspects of the method of Iterated Buck, by appealing to

the geometry of least squares.
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1

4, ASYMPTOTIC COVARIANCE MATRIX OF THE MAXIMUM
LIKELIHOOD ESTIMATES.

4,1, Introduction.

In Chapter 2 we found m.l.e's of the means and
covariances, for an incomplete sample from the qubéﬂ,z)
distribution. We now consider the precision of these
estimates, and hence derive confidence intervals and
classical tests of significance for the means.

The standard method of obtaining an asymptotic covariance
matrix for the m.l.e. of 9 is to find the expected
information matrix J;(e,e) , by differentiating the log-
likelihood @(P;B) of the incomplete data, and then inverting
this matrix. However the M.I.P. provides a simpler way
of finding ‘];(9,9) , which we describe in the next section.
We apply the method to our problem in §M.3, and discuss the
resulting matrix, and its potential use in choosing an
experimental design. In é4.4 J-p(e,e) is inverted
for the simple case of two variables, and we propose
approximate t—-tests for hypotheses of the form

Ho : €pp = Cpo,
for a constant vector € . We also touchhon‘the
extension to more general linear hypotheses where € is

replaced by an (r x p) matrix C'.
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4,2, The Expected Information Matrix for Incomplete
Data . ‘

This section is an extension of €2.2, and is given
more concisely by Orchard and Woodbury (1971). We

adopt the notation of §2.2. Recall equation (2.2.2):

E{ep,M,0)1P;0,) = G(P&)+E{t(mip;0)p0,}.

We differentiate both sides with respect to Qia and assume
the regularity conditions which allow us to commute the

derivative with the expectation sign. Then

E{oenO g ] = HED 1 F{LERD|pg, |,

The expression ES&(M!P;GMP;Q} is a maximum at §=0,,

so setting 0= 0.,

Ef ae(PM e)“’ 93 = 4(P;9)

(4.2.1)
Also writing e for @(P,P4;9) )

Cov 38,8 );03 = EfGa[(%:38)1P:00;00
+Cov£[E( 1P,0),E(2 Ip:0)];0].

(Ll’52.2)
The left hand side of (4.2.2) is the (j,k)th element of the
expected information matrix for a complete set of data, say

J_,,,M(e)e) . By equation (4.2.1), the second term on the
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right hand side of (4.2.2) is the (j,k)th element of the

expected information matrix for the incomplete data,
3;(9,9)- The first term on the right hand side of

(4.2.2) represents the "lost information" in the missing

data. Thus

Tem (8,6 = To(6,64) + Jun(61,60)
{C"V[(% aek)lpe] 9}

(4.2.3)

w‘here :TMIP(QJ;QR)
L ' (4.2.4)

The lost information, calculated from (4.2.4), may be
simple to calculate for any set of data P, Then

J;(QJQ) is found using (4.2.3). We apply this
procedure to the multivariate normal example in the next
section.

4,3, The Multivariate Normal Case.

Now write @ '—‘(}h Z), the means and covariances of
the p-variate normal distribution. We carry out the
analysis of the previous section.

The log-likelihood of a complete set of data X  is

( ) FJZ) = ':2'— ZZ‘ (x!}j "/‘j)(xah‘}‘h)ﬂ'jk ~=zN n (dt Z) .

=l j=1 k2l

Differentiating with respect to ) y we find

= 3% (o) o™

L=t b=

\?é!”

(4.3.1)
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b

‘sé o*e"c'"‘s(xi,-}ir)(xes—}k)] s
(4.3.2)

where Som =El ,l=m , the Kronecker Delta.

N p
3 = —ING-s)[ 0¥ - XY,

Otm izl r=l

0 ,lim
The factor (Q-Sem) results from the symmetry of z . We
now find the expected information for a complete set of data,
by finding the variances and covariances of the "scores" of

(4.3.1), (4.3.2). We require the following simple properties
of the moments of MN@(}*,E) : for |« P,S,t,uSP,

COV[(xér "/’lr') 5 (xis “f*s)(xu:-}‘«t)] =0 ,
COV [( Xir 'jur)(fxi,s -ﬂs) ) ( Xit "/*e)(?i’.‘.'_wjiu)] = Opt TsF Ora Ust

(4.3.3)
We find [}‘i] [ e‘e,,,]
[w] No® 0
I’,M ( e )e) = ' ! 5
ml O NS5 ot e+ v5™)
(4.3.4)

where the elements of (4.3.4) correspond to submatrices as
| $jskybom,rs < b 5 rss, fsm.

We now find the Lost Information, given by (4.2.4), The

following generalization of (4.3.3) simplifies the

calculations:-
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Lemma 4.3. Suppose (V.,V;,...,V,,) NMNp(ﬁ,i). Let A

be any subset of the variables. Then for 1< r,s,t,usp,

E { o[ (Ve, Vi) [A;£1 ;8]
(4.3.5)
E { Cov[(Ver,VtVu)[AQZ] ,Z} = Oyt Ugy, — (vt~ Oven ) (Osu-O3un)

T OruTst ‘(ﬁ'm*ﬁ'm-A\l(ﬁ‘se-G'sm) ) (4.3.6)

1

0

where on the left hand side the inner covariances are taken
with the variables in A fixed, and the outer expectations
are over the distribution of the variables in A. 1In
(4.3.6), oven = Covl(Ve,VYIA; 2] ete.
The proof of the Lemma is straightforward. Writing
HMia = E(VJ-IA;i) , apply (4.3.3) to the

conditional distribution of the variables, with A fixed.

COV [(Vr "‘/ur.n) ) (Vs "/us-n)(vt "'/"'%.-A)] =0
COV Kv" "}‘ ""‘)(VS '}‘S‘A): (Vt - A f-ﬂ)(vu." ):‘u-n)] = Ovga Osun + Ovua Ust-a
(4.3.7)

Now expand (H4.3.7) and take expectations, noting that

E(pin;2) =0 E(}‘i-a/‘k-n ;Z) = Tk~ Oiea
Hence obtain (4.3.5) and (4.3.6). .

Now we can find the Lost Information matrix, by
applying the Lemma with V; =2 -p; ana  A=P , the
set of variables present in the ith observation. From

(4.3.1),
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H

MIP( JJ/‘R) EICO\’L(&, e )IP E] z}

Z o™ Gomep.
L= I ={ m=l

i

From equation (4.3.5), we obtain

J_Ml? (}‘J ) U'@m)
From equation (4.3%.6), we obtain
b

_ L 3 hi }E ¢
Tove (Gem>00s) = % (2-50)(2-5:5) ;2; MZ‘WIO‘ ™™ o™ Bituw
where  Oitunw = Otvluw ~— (Ctv ~Tiv.ri) (O‘M"Uuw-ﬂ)
+ Otw Ty "‘(U'tw“ﬁ'twy,)(t}‘w-{)'w Pa) .
Subtracting :};lP( )e) from j}ﬂ(Q e)we find the expected

information matrix for the incomplete data, P:

U"] [D'!m]

[ i’ ¥, 0
Tp(gae)" " ’

wl 0 wlese) & (FentantFesntine)

, (4.3.8)
where %h,& = Z UJYO‘ks(O'rs—O‘rs-e.;) . (4.3.9)

rzi

Proplerties of —J;(e,@)

First we notice the formal resemblance of 3}(9,6) and
IM(Q,Q), The elements Ujk in ];,"(9,9) are replaced

2
by y’jk-?; in 3},19,9). Two extreme patterns of missing

values are .
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() all the variables in observation i observed:ﬁh&:GﬁEVLk
(ii) no variables in observation i observed ' ¥ien= 0 Vi
Furthermore we can show
%jh-l’; = Q0 if X5 or Xjg is missing .
(4.310)

This can be proved from (4.3%3.9), but we defer the proof
until Chapter 6, when the result follows by a
reparametrization of 0. rrom (4.%.10), we have

Jolpiopul=0 Vs st %y s miseing in wix ene

];(U'jk,b'em)':o Y&m , if Xj and Xy are never
observed together.

In both these situations we have a lack of information
about the parameters, and the expected information matrix
is singular. This parallels the results of §3.3,
concerning the non-uniqueness of the solutions of the
limiting equatiéns of Iterated Buck when two variables
are never observed together.

The expression %(9,9) has potential value in certain
design problems. For example, ﬁ? may wish to estimate
the means of P correlated variables, but the nature of
our experimental units limits us to measuring any r of the
p variables for each unit, where 1<rgp. How do we
allocate variables to units, given some a priori knowledge
about the covariances between the variables? For the

pattern (P.,Pz, cev s P~> , We have
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=! -~I N

J-;(}ij"‘) = Z VZ , Where V¢4 = %(0}5'0;’5-?& )

det Jp(p, ) = (det £V derV.

Thus if det Tp(P)P) is considered a good overall
measure of information about the means, a design should
be chosen to maximize detV.

Another application of the matrix 3;(9,9) lies in the
calculation of confidence intervals and tests of
significance of hypotheses concerning the means. This
involves the inversion of 3;(9,9) . We now do this
analytically for the case of two variables, and derive
some results from the resulting asymptotic covariance

matrix.

4.4, The Two Variable Problem .

Suppose we have the following paired data, with

extra observations in one or both of the variables:

. Y.y fe .
n. observations (x, In) ) (FbZ:u-, ~) 3 Ac = N )

n, observations (’xu, '), (t'.':ﬂdl,ﬂdfl,---,"c*"'); A= %’, > (4.4.1)

. . - nl
N, observations (—,I;,),(z,:n;*n.ﬂ,ndnni’,-.., N)>>‘2 ~ -

so that )\c’* At /\z = ].

pirst we finda Jp(0,0). Prom (4.3.10),

%u_., = yi‘-‘.'l = o = ¥ = 0.

H

2 2
' <7 v S - - = L
Also  Yuq o'~ %%:‘- 06 Over S 5n  Vhe2 T on



So

J.(6,8) = [J‘P(P’ﬂ)

Ae U't:

where K= (ActA)Betda)-Me f’and

We now concentrate on (4.4.3).

| [AC"')\z(l"(z)]O'uUFz

o},

sl e w e [l

[)\d‘}\g (1~ Qz)] 022012 [A&A;(!—e"ﬂ O3

0 »(2,%)
wnere  Jo(psp) = nc[v" o +nf& 0] +mfo O
D.ﬂ. O-II o o o _é_iz
— 1 :I "’Ac 10:1
= T'.V'éz [/\c"')\-(zl fhv ¢ % } ;e:Corr(Xqu).
ofion [Acthli-gllon
Similarly _ ) v -
N PerM1-67] ot W Ac 020y Uz
T,(53) = BT _deeriiad Deleoion  -efOnon
Ae P*0 O Rt [Atali-eY]oin
Inversion gives the asymptotic covariance matrix ‘
Fee- [FeH 0 ;
P 0 o (2,8) (4.4.2)
where J':OA}\) B} ')\TIE p\‘_,_ Xz(‘"(”)]ms A Oiz ,
, Ae Oz [f\c*‘}\l((“?z)] Gz
e - (8:4-3)
& Dentelod et hal1-e o0 Aot |

(4. 4.4y

Ky ‘—'(Ac-f A (Acida) =Mz (“' .

Rearrangement gives
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A a.gmlbb. O _ Ac >\1 (’1
VGJ" /M N+ 1y [ ‘ ()\ch\g)Q,;M;)— Atz ez.—,

(b.b4.5)
and the second term of the right hand side of (4.4.5)
represents asymptotically the gain in precision in using the
extra observations on Xz to estimate }4-; for the naive
estimate, the sample mean of X; over the first Ne+n

. . O . . .
observations, has variance Tgn, . This 1lncrease 1in

precision increases with Qz, and as Qz—?l) Vhﬁﬁ,—e %%.
This is as it should be.
Now suppose we wish to test the hypothesis:
o o o= oo
against ageneral alternative. A simple procedure is

to construct a test based on the m.l.e. of}pv Asymptotically,

ﬁl o/ N(}‘eo > ['\c'*}\r:{(‘!—Q‘)JO'u)

ﬁl"/‘m asymbt
Hence Z, =JN!2[&+A2(,,_5;)]3" ~ N(O;l): under Ho. (4.4.6)

' We substitute m.l.e's for @»On and O22 in the
denominator of ‘Z..we can use 4 with standard normal
tables to obtain confidence intervals for M, and to test He.
For small samples this statistic suffers the usual
drawbacks of a normal approximation, and hence we seek to
approximate to a t-distribution. From (L4.4.4), after a

little manipulation, we have

asympt. > e
Var 5, = Jlﬁk_[l - £ Az]

A+ My Ka

(. b4.7)
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This suggests that approximately

Z ~ty (4.1.8)

under the null hypothesis, where tu is the standard

t distribution with V degrees of freedom, and

nc‘l" ﬂ,—'l

R

(4.4.9)
In (4.4.9) we replace f¢+N, by Ne4R-l , so that when

A

b, ==t nflx- 7, = Mfe

and then 7V =RA-l is such that (4.4.8) is exact. 1In
postulating vV we ignore the fact that the factor of a;,
in the denominator of Z, has to be estimated. Nevertheless
(4.4.8) should be an improvement on the normal approximation.

It would be possible to construct the generalized
likelihood ratio (g.e.f:) test of Ho. The resulting statistic,
like Zg,does not have a closed form, and it requires more
computing than Z,,since two iterative processes are
involved for estimation under the nulland alternative
hypotheses. Both ’césts are asymptotically efficient,
and for small samples an approximate distribution such
as (4.4.8) appears to be less easy to construct. We do
not consider the g.l.r. statistic here, although a
comparison with Z‘ would be interesting.

The same remarks apply to the problem of estimating
the difference of two means, 9 = Mi~f2 . We propose

estimating S by its m.1l.e.
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A £ 2
S - DC| '-Ig 9
o
where X is the mean of Xi over the final

observed or fitted values found by Iterated Buck.

The asymptotic wvariance of § is found from (4.4.3):

VOJ"S\ = 0-82 = CyOu+ Cno'zz-zcnmt ’

¢y = Aethall=g) g, o= AtA0-€D Y

NK, NI
= A (4.4.10)
CI?. - NK' *
/ . -
Thus to test the null hypothesis Ho- S = $o ? or

to find confidence intervals for S, we propose the

statistice

LA
z =S
A
U (4.4,11)
As 2 . .
where Uy 1is the m.l.e. of 05 , found by substituting the
/

m.l.e. of g  in (4.4.,10). As before under Ha, Z
is asymptotically normal, but we find an approximate t-

A
distribution from the asymptotic covariance matrix of !Z.

The variance of

A A A A A A A
O"sz = C; Oy + Cyp 022 — (20

is approximately
P A A A2 A
e"?‘ Var 8'" + QEII i COV(S-H, U'zz.) + (2 Var ( U'zz)

+ q" eé VQ-" {8‘11} - 4‘ ell 2!7. COV { 8-" 2 6'“.) -~ 4’ ’C\n%nz Cov(ﬁ'u_, &n.) .

Substituting the corresponding elements of J; (Z ,Z)
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for the variance and covariance terms, we obtain an

A
expression for Vhrof . Writing this in the form

V A 26‘“
§

oY O — o— b ]
5 Ks

(4.4.12)
we assign k% degrees of freedom to the approximate
t-distribution for Z . Again we ignore the approximation
in estimating the Qm’s and the variance terms in § . We

find kg for two special cases:-
(a) Ac=1s >\l=>\z:o'

i
For complete data 0'51 = N ( Oy '1”0'22"20'-2) > and

Vor (85)

2 [ o + 20 + On + 4 O'nD};(H(") ~4 00 0n "Ll'UizO?z]

N3
= éy%?
N
Hence k% =N . In fact Z is simply the paired t
statistic, which has N-1 degrees of freedom. To bring

the approximate method in line with the exact distribution

for this special case, there is something to be said for
assigning ks—] rather than k% degrees of freedom to

the t-statistic, in the general case.

(b) Ae=0.

With no complete cbservations, we are left with two
independent samples of sige My and N2, 1i.e. the Fisher-
Behrens problem. As pointed out in the previous

chapter, we have no information for estimating 0.

Nevertheless Iterated Buck converges slowly to a solution,
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A
and convergence is speeded up by setting =0
after each iteration. The resulting estimates of }h and

}1;. are the sample means, and the variances Ci and 0Oz

are estimated by the sample variances.

Also
C, = 4 C,, = L C. =0
= Tp, )y Y22 n, ) M )
and
% + %)
l(s = n Ny 3

ot + 022
T2 T3
n, n;

(b.4.13)
which is similar to the approximate degrees of freedom for

the Fisher-Behrens problem suggested by Welch (1947),
equation 26, p.32:~

o 4 Tl
f = i + Nt) ;
[ o
1t + 21
(n.’?rw) ni{n)

(b.4.1k)
K¢ ana §  aiffer in that §

takes into account the
estimation of }h and }*z-

Alternative assumptions about & .

The statistic Z belongs to a class C of statistics

of the form

(4.4,.15)
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A A 2
2
where SA ) Usa are m.l.e's of Sa,ﬂ's under
some assumption A - about the covariance matrix 2 . A

general approach to the problem of estimating and testing
is to find a statistic in 6 for the relevant assumptionA,
and then find an approximate t-distribution, that is an
appropriate number of degrees of freedom, V,.
With a reasonable proportion of complete observations,
a lower bound for Vj is found by considering the degrees
of freedom when incomplete observations are rejected.
The statistics in C formed from the N, complete

observations are described in Table 1.

Assumption about & (A) Statistic Degrees of Freedom

Al ¢ Z arbitrary . paired t Ne—1|
A2 : [, known; £ unknown. paired t Ne-1
Al ¢ B known; €=0. "unpaired t" 2{ne-1
A5 Z known normal o0

Table 1. Statistics for testing He: $=8, based on the
complete observations.

Also AB* and AL‘* are analogues of A3 and A4, when Q is
non-zero and knownyg with the same degrees of freedom as when
(’=O . Assumption A3 is the Fisher-Behrens problem with
equal sample sizes, so Va, 1is formed by setting Re=mi=n,

in (4.4.148). In all cases g is the difference in sample

means, and "paired" and "unpaired" refers to the estimate

of variance. _
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Now consider statistics in € which use all the
data, and compare them with other approaches in the
literature. Lin and Stivers (1974) finds §A53 the m.1l.e.
of & when & is known. This is normal, with a
variance given exactly by (4.4.10). For unknown & )
they propose estimating ) and 0'; by substituting
the estimate of Z found from the complete observations.
The resulting statistic lies inC ir n, orN; is zero.
They propose NM¢~| degrees of freedom for the approximate
t-statistic. With extra observations in both variables,
this statistic differs from Z in the estimate of Z,which
does not use all the available information. An iterative
calculation is avoided, but for small numbers of complete
observations one would expect Z to be more powerful.

Morrison (1972) tests Ho/ for extra observations in
one variable only (say Ny =0 ), and an assumption about Z

*
similar to AL :

> = G'L[é ?] y @ xnowns U  unknown

(4.4.16)

He calculates the g.l.r. statistic, and slightly modifies

2 . . L.
the estimate of O to obtain a statistic

A
ZM - SM - go 3
U‘SH

which is distributed exactly as a tm,,c,3 distribution under

A
H;:S-‘So. In fact ZM is nearly in 6 , since S" can

be shown to be the m.l.e. of~ § under ( 4.416), and



75

is nearly maximum likelihood. For unknown e, Morrison
(1973) replaces § by its m.l.e. when the vériances are
assumed equal, vigz.

A _ d0y

0 = e
where & is the S.S.C.P. matrix based on the complete
observations. Thus the estimate of $ is still
maximum likelihood. Morrison proposes Ne-l degrees
of freédom for this statistic. These results may
be compared with A2 and A4 of the table.

The general approach of this section can of course
be applied to a hypothesis about any linear contrast of
the means, for two or more variables. Furthermore to
test the more general linear hypothesis

Ho :Cp=Chp,

for a constant (rxp) matrix C y we have
C (ﬁ '}'o) “5’.‘1\:“?‘& MN,.( o 3 C J—:(/‘)}‘)C") 3

from which we can construct in the usual way a test
statistic which is asymptotically X* with » degrees

of freedom, under HO.
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5. MULTIPLE LINEAR REGRESSION.

5.1. Introduction.

So far we have treated the variables )(uX:z,---, Xp
symmetrically; now we write )“EX¥ and consider the
regression of Y on XXz XP" . First consider

the following model:-
p-1 ’
- .y €;

E(e) = 0 g
E(enen)=  Sui Oy

(5.1.1)

where | € byl,la € N, and Xio is identically
equal to 1 for all i, so @o is a constant term. (The
analysis which follows is easily adapted to a regression

through the origin) We write
9. = (@03@»:“-:@:’-136;)1-:

the parameters of interest, and compare estimators of )
when values are missing in the dependent and independent
data.
We can estimate 9, by maximum likelihood. For an
incomplete sample from MNp(}‘,z) 5 as in Chapter 2 writing
0= (/A.,}lg,.‘.)lp,m,,v,l,o;,_,...,G‘H,), 8, is a (1-1) vector

function of @ s and hence the m.l.e. of 9, is

6‘ = 9:(6) 3
(5.1.2)
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A
where 8 is the m.l.e. of & 5 found by M.L.N. In
practice 6, is found by pivoting on the matrix 2
However the multivariate normality assumption is
often unrealistic in the regression situation. Indeed
some of the independent variables may be points of a design

matrix, and therefore fixed. Thus it is desirable to

A
weaken the assumptions under which G:A is the m.l.e.

of & . We can certainly do this if the data
A
are complete. Then 9. also maximizes the conditional

likelihood of the data with the independent variables fixed.
No distributional assumptions are needed for XiyXp,--;Xp>
and we are left with the standard model (5.1.1) with an
i.i.d. normal structure of error.

With missing independent data this model is not enough,
since we reguire a distribution for missing independent
variables in order to use the information in the
incomplete observations. However if a set of the
independent variables, say  X;,Xy-.., Xv (rsp-t), are
present in every observation, then 6, maximizes the
conditional likelihood of the data with anz,-'-, Xe
fixed, so no distributional assumptions are needed for these
variables. This is stated more generally and proved in

£5.2.

For 6, given by (5.1.2) to be the m.l.e. of & we

require a multivariate normal distribution for Y and the
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independent variables which are sometimes missing. In
§5.3 we consider a general distribution for the missing
independent variables, with a normal structure of error,
and we see how thisg affects the estimate of 9, found by
applying the M.I.P. In general M.L.N. no longer finds
the m.l.e. of 9:, but since it fits the best linear
approximations to the missing values, it remains a valid
method. The m.l.e. found by solving the fixed point
equations is generally much harder to compute, and this
is illustrated by some examples.

Whereas in §5.3 we generalize the distribution of the
independent variables, in §5.4 we generalize the
distribution of the errors. Nelder and Wedderburn (1972)
give a coneise formulation of how to construct and solve the
maximum likelihood equations, for regression with a non-
normal structure of error, when the error variance is
proportional to a known function of the mean. The
equations are solved by Iterative Weighted Least Squares.
In §5.4 the method is modified to deal with missing values
in the independent wvariables.

Both for the "maximum likelihood"™ and the "fitting"
.approaches to the problems of this chapter, we cannot
proceed without a distribution for the missing variables.
So far we have estimated this distribution from the data,
by maximum likelihood. But it is desirable from a
theoretical point of view to provide a framework for
incorporating other information about a missing variable

into the analysis. Consider the following 5 observations
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on 3 variables, with 'Y the response:
X, 1 2 3 7 5
X2 |® 2.20 91 3.1} O.60s [2.8)s] #4.2] &
vyl L1.3 1.1} [-2.0 2.9 |-0.5
A regression of Y on Xi ana X: using the
4 complete observations, gives E(Y) 2z Ga-X . Using

this information, the fitted value for X4 dis about zero.
But suppose we know that X is a controlled variable,
and we have external information that indicates a value of
4, We maj wish to incorporate this by some prior
distribution for X, », with high probability at X =4%4.
This will evidently reduce the goodness of fit of the
regression equation. The hazards of such a procedure
are obvious, and the example is illustrative rather than
practical in nature.

A theoretical basis for such an approach is outlined
in §5.5. We construct a prior distribution for the
missing independent variables, which may be regarded as
subjective, or as having a frequency interpretation based
on past data. We also allow the prior to depend on
the independent data, but not on the values of the response
variable ’Y . In this way the maximum likelihood
methods we have been considering are included in the
general framework. The prior distribution is converted

into a posterior distribution by the dependent data, via
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the model (5.1.1) with normal errors. Hence data on
the dependent variable have a different logical status
to the independent data, which we consider as "prior
knowledge". The resulting structure is flexible,
but its usefqlness will depend on the feasibility of
specifying the prior to a practical situation. Some
applications are discussed briefly.

Finally we include a brief note about the uses of
M.L.N. or Iterated Buck for estimating the parameters
of a Multivariate Linear Model. The ideas are a simple
generalization from the univariate response variable to
a multivariate response variable.

Inﬂfhis chapter we classify each variable Irg in
the data matrix as "present" (P)  or "missing" (M), and
"independent" (x) or "dependent" (y) . We adopt the
following notation, applied to (a) all the data and (b) the
ith observation.. The marginal sets areunions over
classifications, so P = Pe v y 3 etc.

(a) All the data:

presentl missing

: '
independent Py : Mz X
dependent Pg b Ms ’3
P I M

(b) observation i:

present: missing

-

independent

dependent Py é' My, Yi
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5.2. Maximum Likelihocod Estimates of 9.

We divide the independent variables xuxz,..~,Xp., into
two groups: Xc are the variables present in all N
observations, aﬁd XI are the variables which are sometimes
missing. Let P be the set of data on x,,and 2 the
set of data on X, 3 S0 B; =P.;UPI . . Let ((P,e) be the
log-likelihood of the data, for some distribution for P

indexed by 0. If the factorization

{{(P;@) = el(PlPC3¢c> + ez(Pc}gsz) ’
(5.2.1)

where ¢: and ¢2 are functions of © ) is such thatf’,
and 952 are disjoint sets of parameters, and Q¢»,¢1:Q¢\XQ¢QJ
then the estimate of @, found by maximizing {,(Plﬁ3¢,)
is the same as that found by maximizing UP;B) with respect
to O and setting B,'-’- ¢(é>

Now suppose the distribution of Y given X, Xa,..-y Xpu
is indexed by 0. We do not specify o, in this
géﬁeral formulation,but in the context of this chapter @,
represents the coefficients of a linear regression, and
parameters associated with the residual error.  Now &,

is a function of ﬁ,,and so the m.l.e. of 6, is

éc = 6 (8:) = en[¢|(é)] ’

where ;, can be found by maximizing Q(P;B} or @.(PIP.;;?‘,)-
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Now suppose 9 are the means and covarlances of the
A
multivariate normal distribution, and 0 is the m.l.e.
of @, rfound by M.L.N. Then for the distribution of Y

given K,Xa5-- Xb";

B, = (BosBiyeey BpurO7)

d ® JE:L Bj Xy + & ,('Lz'rz’r--)N) (5.2.2)
Li-d .
€. ~ N(O,GY)
A
The above theory implies that the m.l.e. 9,2 Qg(é)
found by pivoting on the estimated covariance matrix ﬁ
is also the m.l.e. of & under a model which fixes P,
and results in a log-likelihood é,(Pch;ﬁg) which
satisfies (5.2.1). This model is given by (5.2.2), with
the additional assumptions: (a) (X7 | Xc) is multivariate
normally distributed, with constant covariance matrix, and
a mean which is a linear combination of the variables in ;Xc;
(b) the observations are independent, in the sense that
the distribution of (PIch) factorizes into N terms
corresponding to the N observations; (e¢) the deletion
pattern is random, and in particular (PI[R:) has
its marginal distribution after the missing variables have
been integrated out of the distribution of (XIP«:) >

given by (a).
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Two extreme patterns of missing values are of
some interest. First it P is empty, we are led to
the full multivariate normal model of Chapter 2, as
one might expect. If Rﬁ=&,that is ail the independent
variables are present, then the independent data are fixed,
and we have the model (5.2.2). Observations with Y
missing contribute no information to the estimation of 9.,
and Iterated Buck is equivalent to ordinary least squares
on the complete observations. Even in this situation
the method has some computational value. Orchard
and Woodbury (1971) suggest that Iterated Buck may be quicker
to compute than a least squares analysis, when extra
design points can be added to make a balanced design.
Such a procedure is equivalent to standard missing value
techniques as used by Yates (1933), Tocher (1952), and

others.

§5.3. Regreséi?ﬁ*%ith Normal Errors.

We have seeﬁ that in order to estimate the linear
regression of Y on XUXQ,U.,qu by maximum likelihood,
given a random deletion pattern, our model must include
the following characteristics.

(i) A distribution for (VIXHX§r.gM»J,indexed by an
unknown parameter o ; '

(ii) A distribution for (XIIX‘), possibly indexed by an
unknown parameter 92.

We apply the Missing Information Principle to a model
of this type. Let @(X_',S [ P. ;0,,0,) be the

log-likelihood of a complete set of data. Then according
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to the principle, we seek a fixed point of the
transformation $ , where ¢ (8, 79:m) is defined as the

value of (9.,9;.) which maximizes

ET4(X,9l1R;6,0.)] .

Here EA refers to expectation over the conditional

distribution of the missing data M, given the data Ps

at assumed values (Q.A,em) of the parameters. Now
F[0(X,912.50,,0.)] = Ealt(yl X,8)] +Ea[6(X'1P;0))] ~

(5.3.1)

where ‘e, and 01 are the log-likehoods of a complete set

of data, corresponding to the components (i) and (ii) of

the model given above. Hence 1if the parameter space

factorizes, i.e.

Q(e.,ao = QBI XQGz 3

(5.3.2)
then ¢ is equivalent to two separate maximizations:
(a) maximize EAH,(lng',Bv)] with respect to &,
leading to em ; ) (5.3.3)
(b) maximize Ea [&(x’quez)] with respect to &,
leading to Om . , (5.3.4)

We consider (5.3.3) for the model with normal errors (5.2.2),
without specifying the distribution of the missing

independent variables. Then

el(ﬂ IXI, o) = "3%1% [‘JL“ J%;@chj]z“’yl.‘ Nla oy + const,

so (5.3.3) is equivalent to solving
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-5,:3 E" [ g". xi.j(y;,— :Zi @Rx;’h)] =0, (j=0,l,...) }’“) )

J>t"!"l
—~
(Y
=
~—
i

5

f() = Elamd - Ens) -da] -0

Hence for the assumed distribution of (M.;!Pe,'e,nﬁm)
we fit
%Cj,\ = E(xi.j IP&) emgem)
(5.3.5)
if Xij is missing, and then form the S$.S.C.P. matrix of
the completed data. Then for each observation i, we

add to the (j,k)th element of this matrix the adjustment

Cov (xij)xih lpi-} 0> ezn) ('sj'RSP) .

(5.3.6)
This adjustment is non-zero only if both Xy and X
are missing. We then pivot on this adjusted matrix in
the usual way, to obtain a new estimate Om of 6 .
Thus the influence of the distribution of the
independent variables in the estimation of 0, appears

solely in the resulting fitted values and adjustments of
(5.3.5) and (5.3.6). We have seen that for the
multivariate normal case the fitted values are linear
combinations of the data, and the set of adjustments are
the same for different observations with the same pattern

of deletions. We consider this to be a good approximate
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procedure for many other problems, particularly when 5\59
can be well approximated by a linear combination of the
variablesP; . For non-normal distributions, the
estimation of ©2 and the fitted values and adjustments
often involves a lot of computing, as can be seen from
the examples which follow.

Example (5.3.1).

We wish to estimate the regression of Y(EXE) on X
and Xz , and we suppose that the distribution of (Y[X.X.)
is normal, with mean stBXi4f:X; 5 and variance 6y.
The data consist of N independent observations, in which
Xx and Y are always observed, but xﬁ is present
for fhe first MN¢ observations, (i=h2,”.,ﬂc) ) and
missing for the remaining N;nc observations,(Lzmﬂﬂwg“vN)

We suppose X} is a binary variable, and

b, = pr(x;ﬁ!fxa) = |- prix=01%u) ,
where
b o= 2 (ot M%) ‘
| + exp (ot Nxur)
(5.3.7)
The parameters (AO,AJ are unknown, so in the general
notation

O = (@Wp!»@z;c';)’- , 0 = (/\o,)u}T .

For such a model, the distribution of the missing data

given the data is given by
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. '¢€-:
v (X =1 lxq ‘JL} = bi e
pr (xa ’ b o % 4 (-bdePe

(5.3.8)

"

75 (4 -pompu =) 5
2
267 (yo-go-proxa)

where ¢;,,

"

B
Also e,,z/(PIch 392> = 2\: [xh Pﬂf’» + .Q" x'“)e"("”‘ﬂ N
o Elu(rin; 0] = 2 [ukp 402000

where S\Can = E(.xi‘a_‘x-‘i Y [ enmezn) . (5.%.10)
Given assumed values of the parameters, we find the

fitted values (5.3.10) and the adjustments from the
distribution gi{r’e‘lfiiﬂ'lsy“(é‘.‘:’:;'8), and hence find a new estimate
of 9, . The new estimate of ©, is found by maximizing
(5.%.9) with respect to Ao and A - This involves
a logistic ana1y51s of the model (5.3.8), for the completed
set of data.  The algorlthm usually used is 1terat1Ve
weighted least squa;.e's » but probably one iteration will be
sufficient within tide ov;erall iterative scheme for solving

the fixed point equations.
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Notice in this example the lack of distributional
assumptions about Xu, which is always present. In the
simple case with one binary variable missing, the
specification of the model is straight forward and the
analysis is not too involved. With several missing
binary variables, which may be correlated, the logistic
model tends to create a lot of nuisance parameters,
and the analysis is complicated by the inconvenient forms
of the marginal and conditional distributions required
for different patterns of missing variables.

Example 5.3.2,

Now suppose we have a set of N observations (2;,9;),

where
-4

2, = (2o, 2y) A MNy (Mos)
| il2:) ~ N (v, o) ,

p-1
Vi = 20 B Xy

(5.3.11)

J‘-.-o

In (5.3.11), Iq = Iij(at) are known.functions of the
underlying Z-variables, for example polynomials in the
in the components of &; . If Q=p-1 and I =2,
(j=1,2,...,p-1), we have the multivariate nérmal model

of Chapter 2.
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Once again the fitted values and adjustmeﬁts required
for a new estimate of @, are given by (5.3.5) and (5.3.6).
The distribution of the xgs is in general not simple,
and the calculations may involve numerical integration.
The parameter 91 here represents the means and
covariances of the %'S,and the equations for a new

estimate Bu. of 6, are

n
z|-
Mz
M >
L¥]

A
P%W
&gjk” =N Z[( %gA }*‘zm (ztkﬂ"/‘(zkﬂ) + U'zlkn P,] >

=

where Zijn_ = E [Zij ’PL,' B, “],/ , /;
6—2jkA-P; = €UJI_ ZLJ b Zir I Pl: 5 em)e?.ﬂ] e

If Y; is observed, the distribution of the missing data M;
given P is in general non-normal, and the fitted values
are not linear combinations of the known variables. We
illustrate the problems of finding m.l.e's for such a

model with a simple regression with a quadratic term. '

Example 5.3,3.

This is a special case of the previous example.
The model is
= Bo + fi Xy +B. % 4 Baxiz + €i
2
Xu = Zu ) xcg = Zi ) Ais = 2y
Zir “’d ( (Uu ml)
(2&2) MN" g Gia Om

iid

& K N(oo) (5.3.12)
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We consider the fitted values and adjustments for
different patterns of missing values, given assumed
values of the parameters.

Case 1: Patterns with X, (and hence X}) present.

The distribution of O&,Ylm) is normal, and so the
fitted values and adjustments are the same as in Iterated
Buck.

Case 2: Y and X, present, X; missing.

For the fitted values and adjustments we need the mean
and variance of X, and X/, or equivalently the first
four moments of the distribution of (anY)Xz)

Now the density function

P( XY, X2 emaem) o ,P(YIXU)G}OM) (X 10:4)

b (X, 1%Xe; Bins0ua) ¢ b [ =23 (Y-Pon-BaXi-fua Yo Bl
- X;-BMYJ

o Gua

Hence

E ( X:. Iy;Yz 3 Q> 97_}\) = _:_[m( Y, Xa)
IoA(YJ Xz) N where

Im( Y)Xz) = fw‘x.' CXP[‘:Z%-%(Y-’(%R’P.AIP@AXFP%II g—'—%‘-}] dx,.
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In practice the integrals ;Im are reparameterized

to depend on four distinct parameters. Thus simplified
the values of Io,,Im and Im are found by numerical
integration for each observation with this deletion pattern.
The integrals I3A and Iua are found from IaP Ilﬂand IzAby

using the identities

[ ¥to 4P 4x
foo d xe"w’o)dx
00 ZG:

where ny) is the exponent of the integralsIm. These

1

o,

[0-xpw) €Pac=o,

1"

expressions are also useful for checking the subroutines

which carry out the numerical integrations.

Case 3: Y present, X; and X2 missing. o/
For such a pattern We-require moments of the distribution
of Oﬂ,erY) s which is not bivariate normal. Calculation

of these moments involves double numerical integrations.
The information recovered will only improve the estimate
of the mean of ‘Y, and in practice one might hope that
this information is small, and that little is lost by }

discarding these observations.

case 4: X, present , Y and Xi missing.
Again double numerical integration is required. As in

the previous case the information is heavily dependent-on

the multivariate normal assumption about the distribution
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of the X’s. With the dependent variable missing,
the value of these observations is even more questionable.
We conclude from this example that 7

(1) Maximum Likelihood for higher order polynomial

models requires in general much more computing time

-~

than Iterated Buck.

(2) The maximum likelihood equations should be treated
with discretion when dealing with "sparse" observations,
with several missing values; 1if these observations
are used, the distributional assumptions should be
tested by plotting or goodness-of-fit techniques.
Example (5.3.3) is perhapsrthe simplest‘practical

example of a higher order polynomial model, for comparing

7
4

the maximum likelihood estimates with those found by

Iterated Buck. Obéér&ations with Y and X, present,
X, missing, can carry considerable information and a

patterﬁ of deletions can be constructed with every pair

of variables observed together, but with no complete

observations. We report on a simulation stﬁdy based

on this example, in Chapter 7. However the practical

importance of these techniques is greater for problems

with more variables.

5.4. Regression with Non-Normal Errors - the
Generalized Linear Model.

In the previous section we considered models with a

normal distribution for Cleuxa,m,qu) . Nelder and
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Wedderburn (1972) consider a more general class of
regression problems, which arise from assuming the

following Generalized Linear Model (G.L.M.). The

density of (‘J;,l'xi..,xi;,..., Xip ) has the form
Y5 0,8 = exp [a(@ Y0 9o +hlwd] B Y} »
: . (5.4.1)
where ?& are considered nuisance parameters, for example
the variance of a normal distribution, and 6, is a scalar,
which depends on the independent variables through a

systematic component

-1
S = éi[%:xﬁ >

(5.4.2)
combined with a kndwn 1link function
_ /
0. = f(&D . . /
.,/w o . ~ (50413)
Finally the observations Y,Y,...» Yn are
independent. The density (5.4.1) characterizes the

unexplained variation in Y, and includes as special cases
a Normal, Poisson, Binomial, or Gamma distribution of errors.
For a complete set of data, we can find the m.l.e. of\
@ - ((50,@.,---,(3;,—.). 1f & is the log-likelihood of the
sample, then by differentiation we find

g_g" = 0((¢b) g Wy ("x"{!-}l") (g:':._;>

J

.
L

(5.4.4)
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N
_E(,ale. ) - °((¢Q§, Wi Xy Xix

‘ 98 Opn
‘ - (Sou-B)
where the weight W; is defined as
A2 )
W, = 'éi(d : )
(s 2%) (5.4.6)
and }Q,MQ are prdportional to the mean and variance of y;:
9'0) = Elw) =p
' - (5.4.7)
q"(6) = (@) Var(y) = Vi .
‘ ) (5.4.8)
l/'
These equations are found directly from (5.4.1). The

likelihood equations result from equating (5.4.4) to zero
from j=0,1,...,pwl. One way of solving them is by
Fisher's method of scoring. Given current estimates

Ba of B ca;culéte

Mo [EGER) s e (g )

from (5.4.4.) and (5.4.5), and then form new estimates

(5.4.9)

B,+5@ , where

€8 =
" b= (5.4,10)
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Then proceed iteratively. Alternatively, the estimates
can be found by Iterative Weighted Least Squares (I.W.L.S.).-

Add ﬁﬂé to both sides of (5.4.10), using

(MP)J = () iZ:go Wi g Xie B = °<(¢)§W&9CQS;.

We obtain
N P

N
57 % g (Bt SB) = X Wi%g;
T et (5.4.11)
where the wéights W; are calculated at each step from

(5.4.6) and M; ' is a modified dependent variable:

(5.4.12)

M, = Si+ (Uc"}'ﬂ).@%) .
. 5i)

Note that (%) does not affect the estimation of B, ana
¢° is not estimate§.in;this process. - Nelder and .
Wedderburn adopt a criterion of goodness-of-fit based on the

likelihood ratio, called the deviance,and this is in
general only proportional to the usual (asymptotic or exact)
P statistic. G'prever for Poisson or Binomial errors,
9& is not needed.
Now suppose we have an incomplete set of data, but ail
the %3 are present. As in the previous section we assume
the deletions are random, and the missing independent

variables have some distribution indexed by 0: . For

the distribution of (YIXUXQ.H,qu)J
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6 = (?°1€':-")Pp-l > ¢o) .
Assuming el;ez are disjoint sets, in the sense of (5.3.2),
¢(0,)is given by the maximizations (5.3.3) and (5.3.4).
Again we consider the maximization of EA[Q,(!J[X';Q,)]
with respect to f, for assumed values (QM,GM) of

the parameters. Differentiating; we must solve
N
Ly - NETTAYE
EA( é)) = EA[ 0((¢°) § Wb(be ﬂt)(%)] )

this from (5.4.4), These equations can be solved by

adapting the method of scoring, so that (5.4.10) becomes

{

EA(M) S@ = EA(C) .
The equations for the increment in @  are /

§Z E g X¢ o)S % ['/O,, 0(9, t | |
:Z.,m Wi i k) o = G I (a”:)] (5.4.18)

The evaluation of (5. 4 14) is complicated by the fact

(5.4.13)

that hh,/k and %ég are in general functions of the xgs,
L
and hence not constant with respect to EA . We_propose to

approximate (5.4.14) by

N4 Pl N ) A !
Z: Zﬂo Wc(%nxckﬁ%hd) §Br = {Z é)g:) [xijn(ﬁa—)‘i)] )
(5.4.15)
where S\%‘A = E(xﬂd”)ii Oin s 02?‘) > ' (5.4.16)

C.’,‘;Rq = COV[( xéj)xih) l Pi, 5 em:_e“‘.] . (5.4,17)

(j=0,1,...p-1)
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This assumes that approximately , w; and zg%s are
fixed with respect to [E . The weights Wi are in

general not too critical to the answer, so this should be a
reasonabls approximation, particularly for the important
sufficient statistics case, when 9r=SL- For then equations

-

(5.4.6) and (5.4.8) imply that Wi = %éﬁ.
For the normal errors model (5.2.2), W; = %%f::l,
and (5.4.15) is exact and can be solved non-iteratively.
The modified¢ I.W.L.S. equations (5.4.11) are found by
adding EA(Mg)j to both sides of (5.4.15). Again the
influence of the distribution of the missing variables in
the estimation of @ is solely'in the fitted values and
adjustments (5.4.16) and (5.4.17). We make the simplest
assumption about this distribution; and propose the /
resulting method as aﬁ‘aﬁéroximate procedure in the general

case. The method is

Weighted Adjusted Iterative Least Squares (W.A.I.L.S.)

The method entails two distinet iterative cycles .
First Tterated Buck is applied to the data, and the final
fitted values QQ and the adjustments %m4k for each patte}n
P. of values present,are retained. Then (5.4.15), or
the modified I.W.L.S. equations, are solved iteratively,
with &(,JA :gcij and Cijea = 33&-9; for every iteration.
By using Iterated Buck to fill in the missing variables

we are fitting linear approximations to the true values,
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and in this sense W.A.I.L.S. is the analogue of Iterated
Buck for the Generalized Linear Model with missing data.
With M.L.N. instead of Iterated Buck, W.A.I.L.S. would be
maximum likelihood if the distribution of (X! Xe,Y)

was multivariate normal, with constant covariance matrix
and a mean which depends linearly on X} and' Y . This
condition, together with the required partition of the
log-1likelihood,

e( XD\”xf.; 6.,91) = el (\” xuxa,...,)(p-.jel) + el(xjixco 92)

is only possible if }&==S; and the errors are normal; then
W.A.I.L.S. is equivalent %o Iterated Buck.

For the complete maximum likelihoéd solution we must
specify the diipribution of CX;IXC) and find the fitted-/

values and adjustments from the first two moments of the

distribution of (X;IXe,Y) . This has density
b(X%I%.,Y) o« T(YI0,8,)p(XlXe;0,) .

Even for a simple choice of p(X;[Xc;8.),  such aé a

multivariate normal density, p{¥;]X.,Y) will be a

non-standard density if the error distribution M is non-~
normal, and except in special cases the calculations of

the moments will require numerical iptegration. Any
theoretical gain in finding the maximum likelihood estimate
of is counterbalanced by the lafge amount of
computing involved in its calculation, as compared with
W.A.I.L.S.,\and the feasibility of specifying the

distribution of (¥!Xc). Thus W.A.I.L.S. would seem to be

;o
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a useful generalization of Iterated Buck to a large
class of generalized linear models.

‘5.5, Likelihood Methods with Missing Variables
considered as Parameters.

So far we have treated independent variables which
are missing in some observations as random, and have

-

maximized
{((P;8) o (PIP;$)

by maximum likelihood. In what follows we consider

—

the known independent variables as fixed, and the unknown
independent variables as parameters, and maximize the

conditional log likelihood

E(Pgipx;Mx)el) | ‘A (5/.5.1)

to obtain estimates of €. We assume Py =Y, that is /

all the 9;5 are present, sbservations ﬁith Y missing may
be regarded as containing extraneous information about My.
To maximize (5.5.1) jointly with respect to wa and Gu
we simply discard the incomplete observations for the
estimation of 9,. For example with normal errors,

(5.5.1) becomes

N -t
. Z (Ut“gﬁirii) - yNlne?

and now if X is missing we can choose its estimate so that
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()

Y. - g; ﬁirg =0. This analysis corresponds to total
lack of knowledge about the missing values: we cannot
predict them from the data, and have no other information.
We also assume implicitly that the distribution of Y
depends on the missing variables, i.e. in the example
above P“*O . V

We may consider Mx as incidental parameters, and

e, as structural parameters, fixed over observations.

Suppose we can specify some prior distribution for the

incidental parameters, say

T(Mx1Pe) > (5.5.2)

which may depend not only on the independent data, but

also on external information. We can then remove Mx

from the likelihood of‘loé-likelihood, and maximize the

resulting function with respect to 6,. We consider

two ways of doing this, one suggested by the theory of

1likelihoods and one suggested by the procedures of §5.2.
The first method is to integrate Mx out of the

likelihood function, with respect to the prior T (MxlPx),

The resulting Integrated Likelihood.

IL(Yi®;6,) = IL(ﬂIPx}”x;et)W(MxIPx)de
_ (5.5.3)

is then maximized with respect to . We call this

method Maximum Integrated Likelihood (M.I.L.). For a

/
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discussion of Integrated Likelihood and other techniques
for removing incidental parameters, see Kalbfleisch and
Sprott (1970Q).

This method has certain similarities with the '
maximum likelihood procedures of §5.2 - §5.4, The
estimate of & found by (5.2.3) is found by ﬁéximizing
with respect to e,

IQR(S l P:x,el) = f((g' x/) ez) P(Hx'&ﬂ) emoem)de )
: (5.5.4)

where P(M;ley; 9,A.9m) is the distribution of the
" missing variables given the data, at 9.-’?9.5 ;91=9ml We
contrast the two procedures represented'by (5.5.3) and |,
(5'5-”):

. . . = (( /. )
(1) Considered as functions, {n L(g!Px,Mx,e.) = Yyl X50).

(2) M.I.L. is non iterative, given the prior for
whilst the maximization of I&;is part of the iterative
procedure for finding the fixed point of the transformation ¢

Thus the parameters 9, do not appear in (5.5.3).

(3) The set Mz are considered logically as parameters
with a prior distribution in M.I.L. They are random

variables in the M.I.P. procedure.

The prior distribution TT(MxIRJ , together with
the model and the data Y , induce a posterior distribution

for the missing variables:
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P{Mxlpx,;g;em) ¢ W{Mxlpx) !7(9 lpx,'Mx ;em),

If we integrate Mx out of the 1og-likeiihood 2(9]X{;GJ
with respect to this posterior distribution, we are -
left with a function of @ which is formally the same as
Ifg(ﬂl&;@,} in (5.5.4). Then define the transformed value
of em to be the value of & which maximizes this functién,
and find -a fixed point of this transformation. The
resulting method is a "generalization" of the M.I.P.
procedure, with the distribution p(MxlB;@replaced by the
prior 'ﬁsz”&).We call this Integrated Pseudo-Maximum
Likelihood (I.P.M.L.), and this is our second method of

removing Mx

Choosing the prior. - /
The flexibility of M.I.L. or I.P.M.L. comeé from |
allowing extraneous information to affect the choice of
prior, but first we consider a prior distribution formed
from the data Fﬁ alone. Suppose we assume a multivariate
normal distribution for Mx, and estimate the means and
covariances by Iterated Buck, applied to the independent
data only. I.P.M.L. with this prior is easily seen
to be the same as Iterated Buck on the whole data P,
the fixed point equations being solved in a different way.
Logically speaking the prior distribution for Mx then has
a frequency interpretation, and I.P.M.L. becomes a true

maximum likelihood method, under a suitable model.
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M.I.L. with this prior produces the following
method :

(a) Apply Iterated Buck to the independent data, and
£it for Mx the final fitted values found by
this procedure. h

(b) Analyse the completei data, without adjustments, by

Iterative Weighted Least Squares, with weights
W, = ~ﬁ§?‘* )

b (5.5.5)
where 8¢ is the estimated residual variance when Y is
fitted as a linear combination of X,Xa,-.sXpssand 8‘,‘.,,.“
is the estimated residual variance when Y 1is fitted /
as a linear combination of the indépendent variables presént
in the ith observatioﬁ; | These estimates are found
iteratively by pivoting on the current weighted S.S.C.P.
matrix. Notice Wi=l for complete observations, W; <|
for incomplete observations. Observations with Y
missing are given weight zero, although they can be used
in (a).

This is quite a sensible method, first suggested by
E.M.L. Beale as a straight modification of ordinary 1least
squares when data are incomplete. It suffers from not
using the Y-variable whenkfitting missing values, but it

should be robust against non-normality of the X%, and by

excluding the dependent data during the fitting process,



104

residuals can be calculated in the usual way to

test the model. A comparison with Iterated Buck by
simulation, and an improvement of the method, is
given in Chapter 7.

Subjective Priors.

No practical work has been done with subjective
priors in this thesis. We discuss briefly two examples.

Example 5.5.1. Suspect x-variables.

Suppose in a complete set of data we have a value f&
of a variable which we have reason to suspect as inaccurate

or misrecorded. We replace E& by a normal distribution,

centred at ﬁk 5 with a variance D? chosen a priori.
With this prior for X, we can apply M.I.L. or I.P.M.L./
As in the previous example, M.I.L. gives a weighted least
squares analysis. The uncertainty about Xy produces
a weight,
O.‘l
(5.5.6)

for the ith obse%vation , compared with weightéxof 1 for
the other observations. Since 6; is the estimated '
regression coefficient of Xp » the analysis is iterative.
Note that w; decreases as 0? or ﬁ: increases.
This method would seem to have possibilities as a robust
regression technique, although the problem lies more in |

the detection of suspect variables than in the analysis.



105

With the normal prior the method is in a sense a
generalization of the model proposed by Berkson (1950)
when the X’§ have "target values". Other priors
may be appropriate, for example skew distributions

to deal with punching errors. R

In I.P.M.L. the fitted value for Xy 1is changed

from 'ﬂ to

A ¢ Ria
Xiea = (%l Pi;0m) = S + Bra O
tkA E ( ¢ P} m) R d')-'fq " @ :ﬂ o_st

b (5-5-7)
where Ra = Y% - jz;:, Bia X35 ‘@mgih .
JER
6va Oy

Also an adjustment

T 1B o is added to the (k,k)th

element of the S.S.C.P. matrix of the data. Equation ;
(5.5.7) represents a shiff of the quantity 'ih towards /f
the regression line. . This is illustrated for two variables
in Figures 2 and 3.

N

suspect reading
other data.

[+
(11

Figure 2 . Plot of data on two variables with a suspect
reading.
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Figure 3. Observed and fitted value of a suspect
variable, for I.P.M.L.

A comparison between these methods would be interesting.~
The equations are easy to derive, and readily.extend

to problems with more than one suspect variable.

Example 5.5.2. A uniform prior on a missing value.

Suppose we atteﬁpt to expréss indifference about the
value of a continuous varigble which is missing by an /
(improper) uniform prior: WT(Iual%ch const.

For the normal errors model the posterior distribution
of @Khl&ugi) is then normal. One might expect
that the result of applying I.P.M.L. with this prior
would be to reject the observation i, but this is not so.

A simple calculation shows that the effect of the ith

N
observation is to shrink the regression coefficient @hc,

estimated from the complete data. This results from
allowing for the possibility of Xie taking extreme
values in comparison with the rest of the data. Thus the

uniform prior is not an expression of indifference about

the value of Xik. _
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If Uik is binary, we might set a priori

pr{xie=t) = |- pr(%ig=0) =3
The analysis then follows Example 5.3.1.

5.6. The Multivariate Linear Model.

So far we have considered linear regression with one

dependent variable. We consider briefly how to analyse

a multivariate linear model, when P variables, say
X”x;r",X,, are independent, and p-# variables XuXey..., Xb
are dependent, for some r<P . We adopt the obvious
generalization of the notation of §5.1. Thus 9,=(9,ZL),
where P is the matrix of regression coefficients, and Zy
the residual covariance matrix. We adopt the usual /
assumption about the vector of errors, that of a gzero-
centred multivariate normal distribution. With a

random pattern of deletions, 9. can be estimated by
applying Iterated Buck, and then pivoting on the estimate

of the covariance matrix:

A g
- |V B ,
PIV(‘)ZJ"')”) Z - é A lk
B %1
A A
The conditions under which .(B)ZV) are (corrected)
maximum likelihood estimates parallel those of §5.2. We

simply fix the variables in the set (XUXE,“.))G)
which are always observed, and then make the obvious

assumptions of normality, independence, and random deletion
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for the remaining variables.

McDonald (1971) considers the extreme case where all
the independent variables are observed, and all the
dependent variables are missing from the incomplete
observations. This generalizes the problem of missing
design points to a multivariate response. By fitting
missing values by treating dependent variables separately,
and using standard missing value techniques, McDonald
finds best linear unbiased estimates of B, in the sense
of minimising the trace of the residual S.S.C.P. matrix.

As in the univariate response case, Iterated Buck ‘
produces best linear unbiased estimates of P for this
pattern of missing data. Whentthe dependent variables
in some observations are partly observed, the best

" linear ﬁnbiasedness criterion ceases to mean much. In
this more general situation Iterated Buck is justified

by Maximum Likelihood, or the asymptotic unbiasedness

considerations of Chapter 3.
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6. ASYMPTOTIC COVARIANCE MATRIX OF THE ESTIMATES FROM A
LINEAR REGRESSION.

6.1. Introduction.

In Chapter 4 we considered the asymptotiec covariance
matrix J;'(Q,O) y Where e represents the means and
covariances of the MN;,(}‘,Z) distribution. In
Chapter 5 we estimated the linear regression of Xp
on Xqu,-u, XP# . This involved estimating the

alternative set of parameters

y = (/"n/lz)“-)/‘p Jo—lquzao—zzg"')o-b--,):-lJPhF'lJ:--)?P'l)o:/l) 3

(6.1.2)

where the ﬁ’s are regression coefficients and & is tqé _
residual variance. We now find the expected informatién
matrix U;(¥',¢) corresponding to this parametrization,
in order to estimate the precision of our estimates of the
regression coefficients.
One way of doing this is to transforﬁ the matrix
J;(e,e) using the Jacobian of the transformation from 0
to ¥ . It is less arduous, however, to simply |
adopt the same approach as Chapter U4, that is to work out
J;M(FQVO and subtract tﬁe Lost Information. The final
expression J;;()?, ,l') is rewritten in terms of the welghts
which appear in the Weighted Least Squares procedure

outlined in §5.5 (Equation(5.5.5)). This indicates a way

of finding an approximate covariance matrix for estimates
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of fhe regression coefficients, by assigning a weight

to each observation and forming a weighted S8.S.C.P. matrix..
This is simpler than inverting the whole matrix J}(P, P).
The two methods are cémpared for the two variable problem,
and in less detail in the general case.

6.2. Calculation of the Expected Information Matrix.

We express the log-likelihood of a complete set of

data as
lp;
e(x)’b) ”iu %; ('xg }"J) Jk{xch-/ln) —~~N€n datz
- ,g,.’z% "’iNLﬂUy . ( 6.2.1)
b1
where € = Y- Z ij% = Xip }Ap PJ ('JCLJ }J) /

Z; is the covariance matrix of C&,X@rn, X#J’ and

Gfk is the (j,k)th element of the inverse of 4&x.
Notice that ‘PP rather than f, is included in the
parametrization (6.1.2). This allows us to calculate
the Lost Information J;,,P(Y',P) by applying Lemma (4.3) to

the set of variables
(XI"/J" 3 Xz’/ul) ) X?.,—/U;,-., 6) >

which have zeﬁobmean. The scores are .
ol 7 - o g t e b
5}1‘; ‘Z'[Z_ {2y /Uv)OS( Eo%’:l (J 1,2,...,p D)
ot
af—‘b H
a0
0m
20
obe =i

6 . 2

3]
™Mz |
Z sl

B
1Mz "‘" y

(6.2.2)
lD'z Ty S(Iw Y>('xu }‘3)]

bt

: N bt b
Sem)[o'i ’ﬁ%mé

£ (Zoe~ ) (k< 1,2,..., b
y 2
[% -wm 26l
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Forming covariances of the elements of (6.2.2), we find

M (M) (Oem) (# o)

(oM i) N B 0 ° o

w NG W 0 °o ©
Ful,¥) = @ o o Saswbsedalbols™] o 0
®| © 0 0 §$¢m 0

@ 0 o o

(6.2.3)
The right hand side of (6.2.3) is a condensed form of the
matrix, with a similar notation to (4.3.4). - We write
_ . . .

B = (Bupsr---B)" 5 Then inversion of the submatrix
correspondirg to @ gives

A asywpt = .

Cov(B) = N‘zx Oy s

which is the analogue of the standard least squares
estimate for complete data

A |
where Sy is the S.S.C.P. matrix of the independent

variables, held fixed.

The Lost Information terms are found as in Chapter 4;
the details are omitted. Suffices run from 1,2,...,p-1,

except where stated:
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p-t

. N . ’ b o .
, p) = i G'ilecthc'aﬂ.?‘ - ﬁj-z Z O',E‘_m()'me.p;‘ _Q! . oimo'ce!’a"'ﬁ’ﬁ? 0;6?(] )
miph fhis . & & I )

l':-‘ "“ mt
p-l

Lm(}‘a‘»}*r)" g[?}'} l"a; Ue-p; '"-é* Dee. eb] >

=1

e )u,,/xp) Tec

J;‘(IP (/ud,oim) = 3;11? (/‘j,Pn) = ]—mp(ﬂj,v}‘) =0 ) (j:bl;...,}:) 3

) N B b b s '
Toue (tongie) = 7 (2-50)0-65) 27 2 55 ot o Bam,

Pz b=t =l vt wel

where Uitavw 1is the same as in Chapter il;

N b-l ja . ;’;,
Tn.p( Ph ;U?M) = (2' Stw) filo-\,‘ sz { uZ- §:| ot oimv[o'ueﬂ( Uir‘@v-ﬁ)‘l'U'W-P;(O'nu"%u-ﬂ)]} P

- bt bt
J—;“p (O'yz, UlM) = (Q’gﬁm) 2' L uZ vZ, U’;qu'xMVO'ue.p‘ o'vé.p‘-‘] b

[Rey ]

N
T ( PJ'@") = 31:,3 2 [(0‘.;‘&~03h-m>62<.e-r; + 0y Ojes, —Uje-P.;U'uP;] >

N

Tue (Ber &)= G2 2 Ohen (03 - Oens) »

=

Jie (&,’,0?}) 26—8 Z Oee-pi .

(=t
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In these expressions, Ojen = CoV(xQ,E;IR) and
Oge.p; = Var (€:1P3)
Now if l&; is the set of independent variables

present in observation i, we have

COV(x"'J‘IGCIPJ‘i) =0, (j=1,2,...,p-1), and Var(ecle;)=O'yz,
Hence [ ﬂ’
) _ ) _ lov (2, € 1P
VM (eulﬁ) - Va,r(esz;) VM(?ZCHP;(;)

ite. Ger, = (-wdod > (6.2.4)

and (Cov (Ixij,éi | Ps) = (ov {xij;&lPx;) ~ Covlg iy IP) Cov(ip.écl Pa) ’
: _ Var (%ip1 ;)

ioen 0:’:6~P.' = - w‘; GGP\'PxC 3 ’ (6.2.5)
oy . . /
SENS.A EES— X, .
where " :ivm%mPWn) s 1T ip 1s presen?, - /.
0 .. 5 if xip is missing . (6.2.6)

The definition of W; is that given in §5.5, and may be
considered intuitively as the weight of observation i.
Subtracting the Lost Information matrix form (6.2.3),

and substituting (6.2.4) - (6.2.6), we find

'?Z:J;’.(l‘;)‘) 0

(v, ¥) = "
Side o Pales| B 2D

{4

T
2
where oG = (UT()OTZ)G’L,...)U}-I,):-U pl’ﬁz)---,?}—l)d_y) )
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- 5] )
we X |
(M ¢Jk- P; + o (PJ Ph - PJ Ciep. B~ ‘Sﬁ o'J'l"P!i) - '3"% (Pk" akp-Pz;)
I’»(P s )= ' J
_ W w;
al o (B~ Qi) S
(6.2.8)
I (o,0) =
'Zl'{(:\’ “&m)(Q'Srs)(¢¢r.p; ¢ms-?.;+ gs~&‘¢m'-ﬁi) (‘)'SB) -%;’{a'l“"i b‘i'Pi+a¢'P“ b"fﬁ) .%’a*&‘%&‘
. . ’.
(2~ Sem %’;(aep&; Dork.p, + Q. bek-fk) ‘ oﬁ%( Uit o._jh'an—Qoih-Pe) %v”“"""c
wit . wd | > "/
20 Qap-pe; Qmp-Pu; ~ 5:;" O"JPPX«. : 02&,:‘;" |
(6.2.9)
In these matrices “
P b ‘. R
_ e _ks _
¢jh‘9a = g gl Gx Ox (U'rs O-I'S‘P;) 3 (6.2.10) |
b-1 3!
aw‘ B = U Utprx; ’
L=t ( 6.2. 11)
- 0
J -
bjk-?c = e 6; (Uekl o.ﬂhﬁ) !

(6.2.12)



115

Properties of J.p(p;")

First compare (6.2.7) with (4.3.8), the expression for
79(9,9) . The matrix J;(Y',}") decomposes into

two submatrices J;(jl,ll) and J—p(U’,U‘) s

corresponding to the means and the other parameters.

Equation (6.2.8), summed over the observations, is thus

another expression for J;(/‘;I‘) Since Wi=0 when X

is missing, comparison of the two expressions shows that
\)%p_P€=O if Xy is missing. This proves the assertion

(4.%3.10) of Chapter Mﬁ

Now let us turn to Jp(@,8) , since in this Chapter
we are more interested in the regression coefficients and
residual variance. When Xip is missing, W;=0 and
all the elements of JA(U3GJ vanish except those
corresponding to the ;ovariénce matrix of the independent
variables. Such observations are useful only in that
they improve the estimate of Zx, as one might expect.

An unfortunate aspect of (6.2.9) is that the cross
terms j&(ﬁ,ak) ) J&(cfbok) and J&(@;“?) ’ whicb
vanish when all the variables are measured, or the dependént
variable is not measured, do not in general vanish for
intermediate cases. Therefore we are not justified
in simply inverting the submatrix 3}(9,@) to obtain
the asymptotic covariance matrix of 6. Instead we

must invert the complete matrix 3;07,6') . We now do



this analytically for the simple case of one regressor .

variable, and consider an approximation for the general

case.

Example 6.2.1.

Suppose we have two variables
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of the example of $u.1,

Jo(os0) =
Ne [L

26i

O

0

where ¢ = GW{(X,,X;) ’ é;‘ = ez % ’

o

Adding and Inverting ,

XI)X2=Y)
Then
r
+n, |t
' 20} 0
6 O
O o

- 200 B, A20%(1-¢%)

and the data

oy = (|- ¢*)03, .

Te0) -

~2 %ﬁ_}_i!/\&hﬁ*["’ﬂ

_ A0y Ezkz *(1-¢)
NKz

- g O'yz ] g‘(l-e‘)

Nk,

E_z.
NAD,

NK,

4|8 fn B
20} '%5 263!
08 s pal s
O %1 On
T
208 G 26|
_ 5703 A 0%(1-0Y)
ey
- 201,? p:A: (/\d)h)( Hz)z
NA Kz

[ |- Pt l-s:)(/\dkr)]

_ L6V AlAcA)(-9)?

N/\c Kz

26 [i- A:@M—g_‘)‘}
K

NAc

(6.2.13)
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where Kz = (/\c*'\o()\ﬁ)\z)-r\n}ne“ , as before. Note the
A
asymptotic variance of Ou agrees with the expression
A
in (4.4.4). The asymptotic variance of f is
2 2 2
Ver B = [,_ 2Aze(r-e>(xm\.)] o |
NA:Cu kz_ - :
(6.2.14)

1

A
It is interesting to compare this with ﬁ.c » the least
squares estimate of {31 based on the complete observations.

Asymptotically,
2

A
= O
Var plc NA:Ci

(6.2.15)

Thus incomplete observations are most useful for values of/
(’1 such that Qlfl-ei) is high, that is for values in

the middle of its range. Also

Vow@. -2 Var?nc as ~ @—o0 or Q—vl .

—

J

A A
If n.=0, v?-"P' = VNPIC ’ and then observations on X
A ? A A
alone do not contribute information to Pn in fact 6=Pm.
Observations on )C alone increase the value of |

observations on X, alone, by the factor (,\‘:\,\C';{ICA‘)_M(‘, b
3

found by setting A=0 in (6.2.14). This
improvement is greatest when Qz is high, and results from

the increased precision of the estimate of On.
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A
If Oun is known, the asymptotic variance of F, is

2 o o8 Ty 2:8-¢%) ]
var P’ NAcOy [l /\c'i)\'z(l—e“) )
(6.2.16)

This is found by inverting the (2 x 2) submatrix of ]}(U;U?
corresponding to f and 6y . Naturally this expression
does not involve Ai, since observations on X; have no value.

6.3. A Simple Approximate Solution.

For more than two variables, explicit inversion of
j;(u‘,o') for a general pattern of missing values is

impractical. For a given set of data we can find Jp{e )
and then invert, but for large nuﬁbers of variables this /;
may involve a lot of compdging. Beale and Little (1973)
suggest an approximate method of estimating vaé which
involves less calculation. We now describe this method.

For a complete set of data, we have by least squares
theory

A -
= S o2 i
COVP x VY 3 . (6.3.1)

where Sx is the (p-1) x (p-1) matrix with (j,k)th element.

N
2 (- %) (e - %) .
t=1

For incomplete data we replace Sx in (6.3.1) by Sw:

with (j,k)th element

-i: l:);(%.;j -I%j)(%ik—*%u) ’
iz}

(6.3.2)
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where iij is the final observed or fitted value in

Iterated Buck, and &5 is an estimate of the weight @k

of equation (6.2.6),found by pivoting on 2 Qbservations
with 'Y missing are given weight zero. These weilghts
also appeared in the weighted least squares method of §5.5,
and although the fitted valués of (6.3.2) are different
from the fitted values of that method,'this approximate way
of estimating Cm/é was developed from considering the
weighted least squares approach.

First let us apply this approximation to the special

case of two variables. ~Ignoring terms of order we have

A | , =h2e e
E(wt) = (8] , i =Nt 3Nt 2. ..y Netlls , ;
I~e* , Nt el ., N, \ /

e

and I 2, c'”'h ;

2
(xu xl) {e‘o‘u y L= ﬂc+n‘ﬂnd"n417 JN

Hence the approximate method gives

A oy
Var By E H o) E sy

ik

.

. 2 - 0-/ .
ie. Ve F o] - (63:3)

Compare, this with the "naive" -estimate,

—

A - - 0-:’1
Var b2 p;(@”?')] - Neow[Acru¢0r@)]

(6.3.4)
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The latter is smaller by the factor 2 in the denominator,
but, it is an underestimate of Vﬁrﬁna since no allowance
is made in estimating  Ow and 0y » and (6.3%.1) is
strictly iess than the‘asymptotically exact estimate (6.2.14).
Comparison of (6.3.3) and (6.2.14) is less clear, but an
encouraging feature is the common factor Qiﬁ-ﬁq which
appears in both expressions. Our approximate method

gives no weight to observations on X| alone, but for

the regression of X; on X} such observations are of

limited value, as noted above. For the special case Ai=0,

writing K:=(‘U—F), we have with a little rearrangement:

. . . oy
(1) asymptotic exact estimate V, = '“L—'O“QAzK)' _
Niety I
.. . . ) - Oy K /
(ii) approximate welgth estimate Yz = N/\va: (l“ A,c\-:A;K))'
where Actra= 1, ir K=02 , a fairly representative
value, then
V|=V1 if Az'—' 'g'))\c=%9
3
) Vi <Vy if M%) A73
Vi >V if )\¢>-§~:/\c<%3

Hence the approximate .estimate V& is conservative unless
more than 5/8ths of the data are observations on X alone.
The approximate method seems reasonable in this case,
but its practical advantage is when p is large. As
before,let Vi and Vz be the two estimates in the general

case. Then the expected value of the contribution of the
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ith observation to the denominator of V, is to orderﬁﬂ

E[ 3‘9 %;)(Zoe- x..)] (o5e-Gher:) -

(6.3.5)
The corresponding contribution to J}(ﬁhpk) is
Joo(Bisfe) = (0-Jk+o—hpx 20en) 5 (6.3.6)

which is always larger than (6.3.5) for the diagonal terms

j=k, since

b ~ Ojpc 2 0

However as in the two variable case, these.terms\are

reduced when the matrix J}&T,Gﬁ is invertéd, which allows
for the estimation of the other parameters. This fact,/#
taken with the similarity of (6.3.5) and (6.3.6), suggests
that the approximate weighting method will produce a
reasonable estimate of va@ in the general case,
particularly if the data are not too sparse. This

conclusion is supported by the results of the simulation

study of Chaptep 7. ) '
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7. SIMULATION STUDIES, AND A PRACTICAL APPLICATION.

7.1. Introduction.

We report on two simulation studies to compare
various methods of estimating the linear regression of
Y on Xl,Xz,...,Xp_l, Whgn the data are incomplete.

i

In the first study, also reported in Beale and
Littie {(1973), a setjof N independent observations
from the MNP(}A,Z) distribution were generated
from random numbers, where /A':oa and Z was one of a
set of predetermined covariance matrices, including some
matrices considered by Haitoysky (1968) in a similar
simulation. Then for each variable Xi a predetermined
proportion T; of the values X was deleted, independent{y
for j=1,2,...,p, to produég a set 6f inéomplete data.

The regression coefficlents and residual error for the

regression
b-1

Hﬂ—%@g
were calculated by six different methods, and the resulting
estimators compared with the estimators found by ordinary:
least squares on the undeleted sample. Our criterion for
judging the effectiveness of each method was the residual
sum of squares of deviations of the observed and fitted

values of the dependent variable, when the deleted values

are restored. That is,



123

S = %(Vi‘ggjxij)z )

(7.1.1)

where (go:&:-nygpq) are the constant term and
regression coefficients,estimafed from the incomplete data
by one of the six methods, and (xq,Be)\ are the ftrue
values of the variables without deletion.

Clearly a small value of S represents a
guccessful method. We decided to judge a method by the
overall success of thexregression equation,.ﬁather than
the closeness of individual regression coefficients to
their true values. Therefore we computed the éverage
Vaiue of S for each of the six methods, over ten sets /
of random numbers, for each covariénce ﬁétrix, and each
number of observations and deletion pattern fﬁgTﬁ,",ﬂ@);
The results are expressed as percentage increases over Smm,
the minimum possible value of S for each set of data.
This minimum value is obtained by ordinary leést squares
on the undeleted data.

For the problems considered in this study, Iterated
Buck is corrected maximum likelihood, and consequently
it does well in the comparisons. Of particular interest
is how much the general procedure of Iterated Buck loses
by ignoring some special strgcture in a set of non-normal
data, as compared with a method which exploits this

structures«
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This question was considered in the second simulation
study, which was based on Example (5.3.3). Data were

generated for the model (5.3.12), i.e.

3

2

y, = X Bxy + € 5 Xz =Xy,
=0

(x;.,x.;,)‘ Lr:f MN, (/‘x:zx) )
0 ENGOE) (.22

The special structure of this problem is that X3= X: .
A certain number of valuég were deleted frmg Y,X. and X&,
and X, and X} were deleted together. Then for predeterminéd
choices of the éarameters, three methods of estimating th@z
regression equation were compared by the criterion S of
\ (7.1.1). These methods were ~
(a) to reject the incomplete data, and analyse the complete
observations by ordinary least squares;
(b) Iterated Buck; .
(¢) Maximum Likelihood,as described in §5.3. \
‘The results of this study are discussed in §7.3.
In Chapter 6 we proposed an approximate way of finding
the covariance matrix of estimators of the regression
coefficients-found by Iterated Buck. This procedure is

tested in the first simulation study, and found to be a

reasonable approximation.
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In §7.& ﬁe report briefly on an application of
Iterated Buck to a Discriminant Analysis of incomplete
medical data, kindly supplied by Dr. C.C. Spicer of the
Medical Research Council Computer Unit. The data
consisted of 181 observations on 61 variables, and none of
the observations were complete. The analysis exploited the
formal equivalence of discriminant analysis and linear
regression, énd a reduced set of variables was found for
calculation oflthe discriminant function.

The general conclusion is that Iterated Buck is a
useful technique in a wide class of problems; and that
the method works well: fdf non-normal as well as normal
populations. However there is scope for further work to
find out how muéh it loses against a more specialized /
technique, which exploits the special structure of a
particular problem. Such a technique can be constructed
by solving the fixed point equations for a model which
incorporates this structure. -

7.2: The First Simulation Study: Methods, Results and
Conclusions..

For incomplete data from MNP(}‘» X) the
following methods were compared:-
Method 1: Ordinary Least Squares on the subset of
complete observations. |
Method 2: Buck's (1960) Method.

Method 3: Iterated Buck, or Corrected Maximum Likelihood.
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Method U4: Ordinary Least Squares on observations with y'
present, after fitting missing values of the
independent variables by Iterated Buck on
the independent variables only.

Method 5: Method 4, but with incomplete observations
given fractional weights.

Method 6: Method 5, but using the estimate of the
covariance matrix from Method 3 to find the
fitted values and weights.

Method 1 requires no explanation, and Methods 2 and 3
are described in ChapterFB. For Methodé 4 and 5 the
missing independent variables are estiﬁated by Iterated
Buck on the independent data Rb prior to a least squares /i
analysis. Method 4 is inefficient, since it amounts to
giving incomplete observations the same weight as complete
observations. Thus Method 5 computes a weight W; for
each observation +, and carries out a weighted least
squares analysis. This method is M.I.L. with a normal
prior, and it was mentioned in §5.5. The welghts depend‘
on the estimates of the parameters, and hence require an |
iterative calculation.

We contrast the fitting procedure of the least squafes
approaches with that of Methods 2 and 3. In the latter

methods, linear combinations of all the variables, P

present in the ith observation are fitted, whilst in
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Methods 4 and 5 linear combinations of the known
independent variables ,’&i, are fitted. In fact the

conditional mean
E(xu”)x‘) B

is the best fitted value of a missing variable Xy for
use 1n a least squares analysis. The methods of Buck

and Iterated Buck fit .
E(x;1f) ,

and then correct the least squares analysis of the
completed data for bias, by adding adjustments to. the
covariance matrix before pivoting. This summarizes
the difference in the approaches.

Finally yethod 6 is a comBination of Methods 3 and 5.,
An estimate & of the covgriance rhatrig of all the variabfles,-
Z,is found by Method 3. i'Then missing‘vélues for the
independent variables are found as in Methods 4 and 5, uéing

A

the submatrix of z' corresponding to the independent
A

variables. Welghts W; are found directly by pivoting on Z,
and a weighted least squares analysis is carried out on the
completed observations for which Y is observed. ‘
The results of the simulations are given in Table 2,.

at. the end of §7.3. The statistic

loo(2 - 1)%

Srmun

(7.2.1)

is ecaleculated for the methods M=1,2,...6, averaged over 10
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sets of data, and for 7 matrices A - G. Notice that the
statistic (7.2.1) is the same for Method 1 for matrices

C to G.  This arises because the data for each of these
cases are generated by transforming the same set of
uncorrelated data. The statistic ?%; is

invariant under these transformations, since Method 1 uses only
complete observations.

We draw the following conclusions from Table 2.
Method 3 always improves on Method 2, except for three
very marginal cases with 5% deletions. The improvement
is often considerable, for example in problems C and D

Method 3 requires more computing than Method 2, but it can

be used when there are no complete observations, and is ;

7
4

/

‘

therefore a mbre general mgthod. .

Method 4 is only appreciably better than Method 3
for 2 cases in problem E; otherwise it is usually sligﬁtly
worse, and much worse on problems F and G, where the

2 > 0.98. In these

multiple correlation coefficient R

problems the method performs badly, because relatively

useless observations are given the same weight as complete

observations. Thus we do not recommend this method.
Method 5 is an improvement on Method 4, but is

generally less effective than Method 3, and is sometimes

beaten by Method 1 in problems F and G. In these problems
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the value of the fitted variables afe critical, and a
better estimate of the covariance matrix of the independent
Variables’used to fit those values produces a considerably
better fit. In Method 6 all the data are used in finding
this covariance matrix, and the results are seen to be an
improvement on Method 5.

It remains to compare the best of the least squares
approaches, Method 6, with Iterated Buck, Method 3.
There is not much to choose between the methods, bpt
Method 3 is marginally better in a large majority of the
cases considered. From a computing point of view the
methods are very similar, and the weighting procedures of
Methods 5 and 6 are used to derive approximate standard /
errors in the regression égefficients fér Method 3.

It is perhaps worth noting that we also tested the '
straight Maximum Likelihood Method M.L.N. of Orchard
and Woodbury. The results are almost identical to
those of Iterated Buck. Mostly they are worse, but by
less than 0.17% We therefore see no reason to use M.L.N.':
in preference to the conventional correction represented
by Iterated Buck.

For Iterated Buck‘we formed an estimate of the
covariance matrix of the estimates of the regression

coefficients, by the approximate weighting procedure of
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Chapter 6. To test the validity ¢f the approximation,

we could have taken each regression coefficient individually
and formed an approximate 7(1 vafiable from the sum of
squares of the deviations of the estimated regression
coefficients from their true values, each divided by

its estimated variance. But it seems pfeferable to form

2
a single X variate on rx(p-1) degrees of freedom, where ¥

is the number of replications, here 10, and p-I 1is the
number of regression coefficients estimated. We do this
by forming

-{}‘:3 Z(@‘é)—rSw (F'@) )

where @;é\(@’éiyu'PFJ’y : Sw is the estimated
covariance matrix of 6, givén by (6.3.2), and the ;
summation extends over al%ﬂreplica%ions£

The results are.tabuiated in Table 3 as multiples of
the corresponding ‘X} statistic obtained from ordinary |
least sqhares on the complete data before deletions. Hence
values > 1 suggest an underestimate and values €| an overestimate,
compared with those found from the complete data. The results
suggest that the approximate theory is adequate to give general
guidance of Cavé". . But we should point out that
we have not tested the theory for more systematic deletion
patterns. Such systematic patterns of missing data often
arise in practice, and may not be quite as well covered

by our approximate theory; the asymptotic exact theory
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of Chapter 6 is still correct for such cases, provided the
deletion mechanism is random in the sense explained in
Chapter 2.

7.3. The Second Study: Regression with a Quadratic Term.

Three methods were compared in this simulation study.
Method 1 and Method 3 are the same as the previous study.
Method 7 is corrected maximum likelihood for the model
(7.1.2), and a description of the fitted values and
adjustments is given in Example 5.3.3 of §5.3. Observations
with only one variable present were avoided in the deletion
process, since the solution of the fixed point equations
involves double numerical integrations when a single

variable other than X is observed. In practice these ;
observations would carry little weight, and could with somé
justification be rejected before applylng Method 7. ‘

Numerical integration is required for observations with

X missing; the integrals were reparametrized to depend

on four distinct parameters and calculated at each iteration
by a straight forward "halving" algorithm, with stopping
values calculated to cover the distribution of CXJXESY): l
which coula be unimodal or bimodal according to the values
of Xa,Y and the parameters.

The coefficients of the model were chosen to illuminate

differences between the methods. For all the problems,

}‘xzo N Zx_(lez> P =0, P (?nﬁ; @3) Oy = =075,
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and for the chosen values of P and ex|, the following

correlations were calculated:-

R® = multiple correlation coefficient of Y with Xy,
, X2 and X3.
Ry, = multiple correlation coefficient of Y with Xy
and X,. )
Rg = multiple correlation coefficient of Y with X,.
RiB = multiple correlation eoefficient of Y with X,

and XB'

We now compare the results of Table 4, with the help of
these correlations.

The results for Method 1 are the same for all the
problems. The reason is the same as for the first .
simulation, i.e. the data for each problem are generated. /
by transforming the sdme sé£ of random nﬁmbers. This also
allows for a more direct comparison of the methods between
problems. For the second deletion pattern (20%, 20%, 40%)
there are only 10 complete observations, which explains the
high increase in residual sum of squares for Method 1 for
this pattern. ;

One would expect Method 7 to improve on Method 3 most
clearly when the quadratic term is highly significant in the
regression equation. One measure of this significance
2 - R§2’ W.

problems A and intermediate for problems B and C. We see

is R hich is high for problems D and E, low for
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that Method 7 beats Method 3 clearly in problems D. and E,
whilst in problem A Method 3 is slightly better than
Method 7. Here the P3 term is low, and for the second
deletion pattern Method 7 failed in one problem, bécause
the assumed value of @ went to zero. In future this.
difficulty will be avoided by an alternative calculation
of the fitted values and adjustments when IPJ falls below
a certain tolerance. (In fact if fis =0 the distribution
of (X;lY;Xz) is normal, and so the alternative
calculation is much simpler). Hoﬁever in this study the
starred result is calculated over 19Fsets of data, whilst
all the other results are calculated over 20 sets of data.

For the intermediate values of_R2 - R§2, problems /’
B and C, Method 7 beats Method 3, but not always by\as
large an amount as 1in problems D and E.

The results can be considered from other viewpoints.
For example Rg is in a sense a measure of the information
in observations with Xy missing,for Method 3, but it
underestimates tﬁe information in these observations for
Method 7. Thus Method 1 and Method 3 should be similar
for the first patterns in problems D and E, where Rg = 0.

In fact Method 3 is marginally better in the results.

However detailed comparison of the methods is not

practical with these results, since the percentage increases

N
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"~ in residual sums of squares were very variable between
problems, and the size of the study was limited by the
large amount of computing required for Method 7. In all
runs the iterative process was terminated after 20
iterations; some trial runs at 50 iterations did not
affect the results.noticeably.

Overall the results indicate that the Maximum
Likelihood method is slightly better than the general

method of Iterated Buck when the/quadratic term is

reasonably significant in the regression equation.
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Average Percentage Increase in Residual Sum of Squares
over best fit when all variables are known.
over 10 runs.

Problem

3 var.

R™ = 0.95

4 var.

5 var.

R = 0.4

5 var.

R% = 0.63

5 var.

R2 = 0.71

Averaged

Method Percentage deletions from each variable, and

SRS T R O O

[0 T 2 B S

AN =y

Cy N =N N

IS A NI I A

number of observations.

(5%,) (5% ) (10%) (10%) (10%) (20%) (20%) (20%) (L0%) Av.

(100) (200) (507) (100) (200) (50 ) (100) (200) (200)

0.4
0.2
0.2
0.3
0.3
0.3

0.9
0.5
0.6
0.6
0.6
0.6

1.6
0.8
0.8
0.9
0.8
0.8

1.6
0.9
0.9
1.1
1.0
1.0

1.6
0.7
0.7
0.8
0.8

0.8

0.3 2.7
0.1 2.0
0.1 1.9
0.2 2.1
0.2 2.0
0.2 2.0
0.4 4,5
0.2. 3.1
0.2 3.0
0.2 3.0
0.2 3.0
0.2 3.0
0.8 T T.7
0.3 3.4
0.3 2.6
0.3 2.9
0.3 2.9
0.3 2.9
0.8 7.7
0.3 4.2
‘0.3 3.2
0.4 3.9
0.3 3.6
0.3 3.6
0.8 7.7
0.3 5.7
0.3 5.2
0.3 T.b
0.3 6.1
0.3 5.8

1.4
0.8
0.8
0.9
1.0
1.0

2.5
0.8
0.8
0.8
0.8
0.8

3.3
1.8
1.7
1.8
1.8
1.8

3.3
2.0
1.8
2.2
2.0
2.0

3.3
1.5
1.3
1.4
1.4

1.3

0.5 309

0.2 2.1
0.2 1.9
0.3 2.4
0.3 2.4
0.3 2.3

0.7 8.6

0.4 b3

0.4 3.8
0.4 3.8
0.4 3.8
0.4 3.8

2.4 36.2
0.9 23.1
0.8 9.5
0.7 11.0
0.8 10.7
0.8 10.4

2.4 36.2
1.0 24.6
0.9 11.2
0.9 15.1
0.9 13.9
1.0 12.9

2.4 36,2

.1.2 25.6

1.1 16.3

1.2 14,2
1.2 12.1

1.2 12.8

3.9
3.0
2.4

2.9

2.8
2.8

h.7
1.8
1.4
1.3
1.4
1.4

12.1
b1
2.9
3.0
2.9
3.0

12.1
4.8
3.4
3.4
3.2
3.4

12.1
6.1
5.8
4.7
h.8

5.2

1.3 6.4
0.7 3.3
0.7 1.9
0.9 2.3
0.9 2.2
0.8 2.2

3.1 30.6
1.5 15.7
3.1
3.3
3.4
3.6
.3 37.4
.5 25.3
.5 6.8
3 7.1
1 6.8
b 6.8

=
-
NN

T R N I I

pt

7.3 37.4
2.8 25.2
1.9 6.5
1.6 8.6
1.6 8.1

1.8 8.0

7.3 37.4
3.4 27.3
2.5 9.7
2.6 18.8
2.3 17.7

2.3 14.6

2.3
1.4
1.1
1.4
1.3
1.3

6.2
3.1
1.6
1.6
1.6
1.7

12.1
6.9
3.0
3.3
3.2
3.1

12.1
7.3
3.3
4.1
3.8
3.8

12.1
8.0
4.8
5.7
5.2

4.9
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Problem Method Percentage deletions from each variable, and
number of observations.
(5% ) (5% ) (10%) (1C%) (10%) (20%) (20%) (20%) 0% )
(100) (200) (50 ) (100) (200) (50 ) (100} (200)(200)

Oy VT & W Oy W

1.6
1.4
1.5

15.9
1.6
1.4

1.6
1.4

1.5
21.5

1.6

1.4

0.8 7.7 3.3 2.
0.7 6.4 2.9 2.

0.7 5.3 3.0 1.

4
0

9

36.2 12.1 7.3 37.4
32.6 9.9 6.4 32.7
27.0 8.7 5.5 23.5

4,2 77.9 33.2 13.0. 245.4 65.5 26.4 118.2

0.6 13.5 4.0 2.
0.6 5.6 3.1 2.
0.8 7.7 3.3 2.
0.7 6.3 2.8 2.
0.7 5.3 3.0 2.

5.5 104.2 47.8 20,
0.6 10.5 3.9 2.
0.6 5.6 3.1 2.

78.4 15.4 5.7 77.6
25.3 8.5 5.5 25.8

3€.2 12.1 7.3 37.4
33,6 10.1 6.5 33.4
%0.9 8.4 5.8 24.4
372.9 96.6 37.2 178.3
112.1 18.3 6.8 119.5

28.2 8.3 5.8 26.7,

/

Av.

12.1
10.6
8.5
66.6
22.1
8.6

12.1
10.8
‘91

8.2
30.6
9.1
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Covariance Matrices for Problem:

1.0000
0.9817

0.9722

1.0000
0.9128
0.8730

0.2570

l
1.0000
0.8385
0.4596
0.3618
0.7522

C except

il
1.0000
0.8743
0.4570
0.3765
0.3705

X2 y

1.0000

0.9697  1.0000 R =
X, X5 y

1.0000

0.9529 1.0000

0.2851  0.2977  1.0000 ' RY =
X, X5 x), ‘ y

1.000 -~

0.6077  1.0000

0.4706  0.7962  1.0000

0.5958 0.6979 0.8232 2.2500 R® =

that Var(y) = 1.5625 R =
X, %y Xy y

1.0000

0.8255  1.0000

0.5181  0.6080  1.0000

0.4575  0.5039 0.8261 1.0000 R® =

0.9516

0.0888

0.4402
0.6339

0.7173
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Covariance Matrices for Prcoblem:

0.8738
0.5166
0.4267
0.7852

1.0000
0.8385
0.4596
0.3618

0.7522

X2 ' X3

1.0000

0.6314  1.0000
0.4650 0.7119
0.6137 0.6389

X2 X3

1.0000

0.6077  1.0000
0.4706  0.7962
0.5958  0.6979

Xu y

1.0000
0.8283 1.0000

XLl Y

1.0000
0.82%2 1.0000

R® = 0.9866

R® = 0.9904



Table 3

Approximate X? statistic for covariances of regression coeffic
estimated by modified maximum likelihood as a multiple of the X
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%ents

statistic for covariances of regression coefficients estimated from
complete data before deletions:

Problem:

Q = @m g aQ w >

Method Percentage deletions from each variable, and
number of observations.

(5% ) (5% ) (10%) (10%) (10%)(20%) (20%) (.;O%) (hO%)  Av.
(100) (200) (50 ) (100) (200)(50 ) (100) (200) (200

1.14
0.90
0.95
0.97
0.95
1.04
- 1.06

0.98
1.02
1.12
1.11
1.05
1.07

1.09

1.13 1.50
1.21 0.76
1.10 1.44
1.13 1.1
1.14 1.33
1.04 1.44

1.02 1.43

0.75

0.88

1.10 1.03

0.67
0.67
0.84
0.88

0.90

1.11
1.17
1.40
1.48
1.69

0.77 0.52
1.09 1.07
1.02 1.20
1.02 1.26
1.03 1.4
1.19 1.33
1.16 1.34

1.14
1.71
0.94
0.91
0.91
1.19

1.20

/

0.98._ .
1.10
1.06
1.07
1.16
1.18

1.21
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Table 4

Average Percentage increase In Residual Sum of Squares over best
fit when all variables are known. Averaged over 20 runs.

Model Y = fot RiXi+@:XetPiXPt+ €. 50 Observations.
Problem  Correlations Method Percentage deletions from (X]5%,,7)
(40%, 0,0) (20%; 20%, L4OZ%)
A R® = 0.83 1 9.4 T 91.5
@= (1;5,4) ng = 0.71 3 8.5 32.1
2 %
%= 0.8 Ry3 = 0.79 7 11.0 33.3
- 67 0.5 Ry = 0.59
B
6 =(1,0,0.7) R® = 0.8 17 9. 91.5 ;,
2 " /
%=0.8  Ry5 = 0.l 3. 9.7 - 46.1
2 2 ' -
0y= 0.5 RS = 0.8 7 8.6 33.0
R, = 0.26
c R = 0.8 1 9.4 91.5
8 =(0,1,0.7 RS = 0. 3 8.0 35.6 |
(=08 RS =0.66 7 5.6 0.8 "
0y= 0.5 R2 = 0.4
D R = 0.8 1 9.4 - 91.5
8 =(0,0,1) R)3 = O 3 8.5 37.1
R 0.2 RS = 0.8 7 5.6 21,8

"6y= 0.5 RS =0



141

Table 4 Continued

Problem Correlations Method Percentage deletions from (Xi,Xé,Y)
(40%, 0,0) (20%, 20%, LO%)

E R = 0.8 1 9.4 L5

g= (0,0,1) R =0 3 8.7 ~4b.8

0= 0.8 R5=08 7 6.1 30.3
03= 0.5 RS =0 )

* N
See text.
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7.4. An Application of Iterated Buck in
Discriminant Analysis.

Patients admitted/to hospital on suspiclon of having
a certain disease are examined by a specialiét over a
period of about U4 days, and for a certain proportion an
operation is advised. It is desirable to find out how
much the decision to operate or not operate can be
explained by the patient's history, and by tests which
do not require the specialist's attention. Data on 60
explanatory variables, and the response variable

y ={1, for a decision to opefate;
?;, for a decision not to operate,

were collected for a sample of 181 patients. These

- /

variables were continuous, L

e.g. Xy = "Maximum Fever, in °C, during first day of
admission",

discrete and ordered,

e.g. Xq = "Abdominal Tenderness", "None"(xm=o),
"Slight"(xm=l), or "Severe" (XM=2),

or discrete and unordered,

e.g. Xg: "Type of disease" (3 categories)

In all the observations some of the variables were not

recorded, so if all the variables were to be treated

simultaneously some missing values technique was required.
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The means and covariances of the variables were
estimated by 20 iterations of Iterated Buck on the data.
A forward’stepwise regression of (x|,X1,..., Xgo) on Y
was then carried out. The standard stepwise regression
programme consisted of 3 subroutines: (1) to form the
sample means and S.3.C.P. matrix of a set of complete
data; (2) to perform a forward stepwise regression to
introduce g variables into the regression equations,
by pivoting on the S.S.C.P. matrix found in (1); (3)
to calculate various estimates of precision. For our
purposes it was sufficient to use only the second subroutine,
using the means and adjusted S.S.C.P. matrix found by
Iterated Buck. - /
Most of the variatioﬁzwas expiainéa by 6 variables.
In Table 5 we list these variables in order of their
introduction into the equation, and the multiple Rz of Y
with the new variable and its predecessors. We also

. . . 2
give the estimated Mahalanobis distance D 3 Wwhere

D = (noin,~2) R*
A i-R*
(7.4.1)

n . . . .
A= 73?#7 2 f; = number of observations with Y=j.
This gives an idea of the separation between the two

populations.
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Variable entering Equation _gf _Qz
1 Xsy 0.38 3.7
2 X - - 0.4 5.4
3 Xs2 0.55 7.0
4 X33 0.59 8.2
5 Xa 0.61 8.9
6 X 0.63 9.8

Table 5. Results of Stepwise Regression.

Here M, = 38, N, = 153. With 20 variables
in the equation, the estimated R was 0.71. The results
suggest a reasonable separation betweep the populatiens
with 6 variables included in the discriminant function.
This function is proportional to the expression given ~ /
by the stepwise regression. o

This rather crude analysis could be refined in some
respects. Firstly, the unordered qualitative variables
were ordered in a rough way prior to the analysis. A less
arbitrary —way of handling these variables would be to
split a k-chotomous variable into k binary variables,
indicating to which of the categories each observation
belongs. Another procedure which avoids the generation
of additional variables, is to rank the categories according
to their observed relationship with the response variable.

Form a linear discriminant based on the other variables,

and find a score for each level of the unordered response X},
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by averaging the values of the linear discriminant over
the observations for which X takes that level. Then
rank the levels by these scores, or code the Yariable
using these scores directly.

A second refinement concerns the fact that 14 variables,
including the response, were binary. The response variable
was never missing, but the fitted values for some of the
explanatory variables, taking values O or 1, were occasionally

outside the range (0,1). The robustness considerations of

Chapter 3 are reassuring as far as the final estimates of

,the means and covariances are concerned, but the question
arises whether a better estimate of a missing binary variable
can be obtained by considering some form of multivariate //
logistic model. This suffers from the drawback that the |
introduction of correlation between the variables in a
multivariate logistic-type distribution results in complicated
marginal and conditional distributions, required for
applying M.I.P. Thus for simplicity independence between
missing binary independent variables will be a necessary i
approximation. Then fitted values and adjustments could be
worked out by an application of M.I.P. This would be a

worthwhile exercise for a smaller problem, although in this

case the number of variables is rather prohibitive.
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Finally, a practical consideration with large
numbers of variables is to rearrange the data to minimize
the compuéing time. Observations are grouped according
to the deletion pattern, and the groups arranged to
minimize the number of pivoting steps in each iteration.
If h is the number of pivots required when the ith
observation is introducid, we seek to minimize

t s Zh
b

Now P.; = X (dij "d"'»j)z 3

i

where dq ! , X missing

0 ) Xy present. j
_- /
A simple ordering procedure is to choose observation i ‘

to minimize Pg, subject to the new observation not belonging
to the set of observations (h2)~-ai") already chosen.
Repeat the process for =243, N. The result is an
ordering which does not necessarily minimize t) but

produces great savings over an arbitrary arrangement,
particularly when only a small number of the 2# possible
patterns are present in the data, as was the case in this

problem.
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8. MISSING VALUES IN TIME SERIES.

8.1. Introduction.

o~

So far we have considered incomplete data where
the observations are independent. In this chapter
we take a topic in time series where unknown parameters
can be estimated by maximum likelihood, and apply the
Missing Information Principle to obtain m.l.e's when
the data are incgﬁplete. The subject is autoregression,
and in the next section we estimate the parameters of
an autoregressive series with lag one (ARl), when there

are gaps in the series. ~ We assume that the pattern

of deletions is random, in the sense made precise in §2.3.

/
/
i,

series, and the general conclusion is that m.l.e's can be

YR

In §8.3'we consider the generalization to higher order-

found for any pattern of missing values without much "
difficulty. A

8.2. The AR] Series with Missing Values.

Suppose thp.“,UN) is an ARl series, so that

Yoo pt = AlYpamp) + €a 5 (n=020N)
\ e A% N(o,oY
(8.2.1)

and that some of the Y’S are randomly missing. We wish
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to find m.l.e)s of /\,}*, and O under the
simplest boundary condition, Y- pr= )\(Ho')‘)a‘éu,for some known

constant Y, . Then the log-likelihood of a complete

set of data is

ZUIZ[%—/L Alsmp)] - Nlgo? .

(8.2.2)
The scores are: _
AL Sy i
J_}-l = o2 g[ )" A(‘lj“'/‘)] 2
N -
g{ = ‘é‘ “Z:;L f‘)[yn—: f“) /\(':fn-:’/‘)]
R Y S ]
Let Y, = E(BnIP JoA het)
(8.2.3)
Ces * COV[('J'h Us) |P }/u’)" Uz]
(8.2.4)

where P stands for the set of 9,:5 present.

Then if © = (}MA)U‘)T,
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E(210;0) = 2 ZLhop-AGup)]

& 3 L0 i Al p?]
+ {_Ea,n-i "/\Cn-n,n-n] } )

F(g1p;0)

E(£.10:0) = -2 [% X1l -AGup)] - o

% % [cm - Dot Ky |

These éxpressions, equated to zéro, form the fixed

point equations, They arg:solved iterqtively to find
m.l.e's of CPJA"UJ)I "It remains to find Hy and e
for assumed values of the parameters, and for various
deletion patterns.

Intuitively speaking, the model (8.2.1) implies that
the distribution of Y, given (y,,,,,ym.) and any other
set of Y'S, depends only on  Yu,, Yy and 0, ana is
independent of the position of <yw,,9",ywﬂ> in the

series. Similarly if the data includes the sequence

Pn-h ) Hn—mn ) HvHu'z)--. 3 Mn»z; Hn-n Pﬂ 5

where P stands for "present" and M stands for "missing",
then the conditional distribution of the missing

(yml, Ypeiizy -+ s y“,,) given the data depends only on  Ypp
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and  Yn . Thus the joint distribution of the missing y's
given the data factorizes into blocks corresponding to
groups of missing values. These blocks are multivariate
normally distributed, with parameters which depend only
on O and the bounding Qfs at each end. We now express
this in symbols. y

For assumed values 9A= LPA,AmQK)of the parameters,
we write 2a = Hnjﬂn , and find the distribution of the

missing #’s. The model

Zn = Aa Zna t €En (n=l,2,...,N)

defines a linear transformation from a set of variables
(2,22,.-.,2%) o the set of variables (€,€,.-.,€n) 5
the latter being distributed as MNN(D:INO}:> )

where Ly 1is the (NxN)  identity matrix. Thus the

2's have a joint density proporticnal to
P[ (zn—/\ni’no) ]
20

Hence the conditional distribution:of the missing data M

given the data P is
={

s(miey = [T opfeded T} ] oot

m,ZméM

(8.2.5)
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Inspection of (8.2.5) shows that (a) M is normally
distributed, and (b) J(HIP) factorizes into a product .
of joint densities, corresponding to "blocks" of successive
missing values. For example if Y, is missing, Ypy

and Y, present, then

£MIP) = £ (Yal Ypos Your) T2 (MualP)

where Mu is M witn Y, deleted. Also,
f« (‘Jn lyn—nyna) ol UKP { ‘-5!5‘-“’ [(?ﬂ—M?n-Dz+(2m:'An2n)j}
(24- €")° ‘
of Lxp [ ~ {2 Vf ) ] )

where f,fn = E(Z,,IP) = "‘ﬁ?\'} (i\n-r'l Zm.) /’
W = Var(zalP) = On

]+ Aa

(8.2.6)

From (8.2.6) we have the following fitted values and

adjustments: \
A ' |

E(yq{P) = Y, = ('(‘n'f}la s

Var(y,tP) = Can = Ui ,

COV((jmgmlp) = Cam=0 »nim.

Next consider a block of k missing values, k>2.

Suppose gmngmz)“') Ynike are missing, and Yn, Yatky
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(0
present. Let and V@ denote the mean and
covariance matrix of the k-variate normal distribution
of Zon;2mn2y -5 2tk ,  glven P . Writing

k)
2% = (20, 2an, .., Z0) Ty ETOm (8.2.5).

nile 2
S (=Y (2 €") = - .E'?r':[ % (2e-AnZrar) :{

(8.2.7)
. . ()
Equating coefficients of 2 , we have
r 7 s -
- L | 14AR -)\n\\ , ~AaZn
Vk = o2 M 1 -)«\A\\ 0’s 5 §M= Vh 0 )
> \\’/\A I‘fA& \\\ 9
N\ TN : (8.2.8)
0’s AN SN : 0 N
RS PRTS! e '

For low values of k, the elements of Yk can be found '

as functions of Aa 'Ey inversion. Unfortunately for

high values of k,,the elements are not simple functions of

Aa, and the matrix must be inverted for each assumed numerical
value of AA- Let R be the largest number of consecutive
missing values in the series. Then the matrix V}

required for the fitted values and adjustments for a block

of M missing values, Ték is found by pivoting on the

first  + diagonal elements of \i’. So the computing

involved is not excessive, involving the inversion of

one (hxh) matrizx at each iteration.
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We see how the distribution of the missing values
depends only on the parameters and the adjacent data.A
Thus the calculation of fitted values and adjustments
is not affected by imposing a different boundary
condition for Y, which is present by definition. For

example, the stationary boundary condition

4y N(}M,L_’-;-,)

produces the same additional term to the log-likelihood
(8.2.1) whether‘the data are complete or incomplete.
The likelihood and fixed point equations are modified
accordingly.

8.3. Higher Order Autoregressive Series.

The m.l.e's of the parameterw for higher order
autoregressive series are found in the same way as for /
AR1. The scores for a chplete sét Sf data are
calculated, and modified by the fitted values and adjustments
for the missing gk.

To find the fitted values and adjustments, the
distribution of@4H0 does not necessarily factorize into blocks

{

of missing values. For example the sequence ;

N ,Mn,Pmanz; .-
in an AR2 series will not produce such a factorization.
However in the AR2 case we can split the series into blocks
with two variables present at each end. The distribution
of the missing variables in such a block depends on the
two bounding values at each end, and also on the values of

any isolated present values within the blcck. The means
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and covariances of such a distribution can always be
found by pivoting on the covariance matrix obtained if
all the intermediate values were missing. This in turn
is found by the obvious generalization of the right hand
side of (8.2.7). Similar remarks can be made about

higher order autoregressive series.
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Appendix 1. The Pivot Operator.

For any symmetric p¥p matrix A,(define the

operator PIV(j) as follows:

PIV(J)[R)': A* y a (Px)ﬂ symmetric matrix,\‘such that

X L
Qi =~ aj; ) (A1)
O'jt = %‘L > (k*J) H
4 (&2)
* Qo o
Oee = Ot = %% (R3j,02]) -

ajj (A3)
Also define ' )

PTV(jkd,...,#) = PIVOPIV(OPIVIY ... PIV(HY ./

- *

Tt can be shown PIV()) ana PIV(R) commute. Also the
operator inverse to PIV(}) is RPIVQ),defined by the same
equations as (Al) - (A3), except that (A2) is replaced by
0 = =%, (k) .
Ajj (Al)

1

H
Now suppose Z(M) is a true or estimated covariance

matrix of P random variables Xi,Xz,..., Xp . If we split

the variables into two groups (P)r1), we can consider
‘the linear regression of the variables in M on the variables
in P. The regression coefficients and residual

covariance matrix are then found from the matrix
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PIV( P)[ZJ ’

where PIV(P)  denotes pivéting with respect to the
subscripts of the variables in P. Then for X €M, PIV())
corresponds to introducing X} into the regression
equations as an independent variable, and for Xhép,
RPIV(k) corresponds to removing XE from the
regression equations, i.e. changing Xe from an independent
variable to a dependent variable. This correspondence
makes pivoting a powerful tool in multiple regression.

Finally,

PTV(1,2,. o P)R = - A

;

and applying the pivot operator is a satisfactory way of
computing the inverse of a matrix.  If a diagonal element
Oii becomes zero before PIVU) is applied, the matrix

is singular.
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