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ABSTRACT 

The problem of carrying out standard statistical 

analyses when the data are incomplete is considered from 

two standpoints. A "maximum likelihood approach" 

postulates a distribution for the incomplete data and 

estimates the parameters by maximum likelihood. A "fitting 

approach" finds suitable fitted values for the missing 

data, and carries out a modified standard analysis on the 

completed data. If maximum likelihood estimates are 

found by Orchard and Woodbury's Missing Information 

Principle, the resulting methods also make sense from 

the "fitting approach" point of view, and are robust 

against departures from the underlying model. 	This is 

illustrated by the problem of estimating the means and 

covariances of p variables from N incomplete observations; 

multiple regression and autoregression analyses are also 

considered. The idea of "randomly missing" data is 

formalized, and some non-random deletion patterns, for 

example in censored data, are analysed. 
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1 INTRODUCTION  

1.1. The Problem and the Literature.  

Consider the following situation. We have N 

experimental units, and for each unit we wish to observe 

the values of p variables XuXu...X1,)  some of which are 

stochastic. 	A complete data matrix X consists of the 

(Nxp) matrix of values 

(Xi,) 	= 	1,2)- • .)13). 

Given such a matrix, we can proceed to some kind of 

statistical analysis, such as multiple regression analysis, 

factor analysis, or principal component analysis. 

Now suppose some of the Xii's are missing. 	For 

example, they have not been measured, or measured and then 

lost, or are known to have been misrecorded. 	The question 

is how to modify the standard analysis, given such a set 

of incomplete data. 

We describe 	Xi, = (Xii,Ziv...,41) as the ith 

observation, and this observation is complete if a31 the 

DC-)S 
	are observed, (j=1,2,...,p). A simple way of avoiding 

the problem of incomplete data is to reject any individual 

with incomplete observations, and to analyse the remaining 

complete data. 	This is feasible and widely practised 

when a large number of complete observations exist, but in 

many cases such a procedure would be impossible, or highly 

inefficient. 	For example in a linear regression, with p 



large, an observation may be rejected when the value of 

one covariate is missing, and this variable may be 

insignificant in the final regression equation. Then 

intuitively speaking this observation contains as much 

information as a complete observation as regards estimating 

the regression. 	Further it is quite conceivable to have 

no complete observations, particularly when p is large. 

In such cases we are compelled to find some way of 

exploiting the information in the incomplete data. 

A number of authors have tackledthis problem. For 

reviews of the literature, see Afifi and Elashoff (1966), 

or more recently Orchard and Woodbury (1971). 	Two 

distinct approaches to the subject can be recognised, 

which are simply described as the "fitting" approach, and 

the "maximum likelihood" approach. 

In a fitting approach we seek to fill the gaps in 

the data by estimates of the missing variables, which are 

in some sense close to the true values. 	We then proceed 

with the standard analysis of the completed data, perhaps 

with some modification to allow for any bias introduced 

in the fitting. 	It seems intuitively reasonable that 

a method constructed according to the following 

Principles of Fitting will be sensible: 

(P1): Find good estimates of the missing values, 

according to some criterion such as unbiasedness 

and small mean square error. 
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(P2): Use a standard method on the completed data. 

(P3): If necessary adjust the standard method to 

correct for systematic bias caused by the 

fitted values. 

In the chapters that follow we consider more precisely what 

these principles involve. 

In a maximum likelihood approach we postulate a 

distribution for some or all of the variables, and estimate 

unknown parameters of this distribution by maximum likelihood. 

A common model is to assume 

the multivariate normal distribution, with mean 	and 

covariance matrix 2E )  and to estimate (p,E) for incomplete 

data where the missing values are in a sense "randomly 

missing". 	Even for this, the simplest of distributional 

assumptions, the resulting maximum likelihood equations for a 

general pattern of missing values are complicated, and an 

iterative solution is needed. 	Anderson (1957) deserves 

special mention here, for introducing a simplifying 

factorization of the likelihood for the special case of 

monotone data: that is, when the variables (XL, X2)•• .., )(I)) 

can be renumbered so that ti  is always observed if 7.Xi44,1  

is observed. 	Eventually, perhaps, the increased power 

of computers provided the necessary spur for the iterative 

calculation of the maximum likelihood estimates (m.l.e's) 

oflpta) for a general pattern of missing values. 	See 

• 



Harley and Hocking (1972). 

We shall return to this solution later, but it is 

interesting to compare it with the fitting approach to 

this problem. 	In its simplest form this involves 

fitting values for the missing )Vs,and then forming 

the sample means 

N A  

j 	-k, 2, )cLi 	j 3., 2, . 
1.ra 

and ')the sample sum of squares and cross products (S.S.C.P.) 

matrix about the means, with (j,k)th element 

A 	 /A n iA 
Sjic 	 - 	(Xij Xj

N 
 ( 	Xk 	, 

A 
where Dqj refers to the observed or fitted value of x

41
. 

A crude estimate of a missing value is the mean of that 

variable over all the observations for which it is present. 

Another method is to estimate Ri  and 5ik separately from all 

the observations where Xi is observed, and all the observations 

where Xj and X, are observed. 	Here an adjustment may be 

necessary to ensure that 	is positive definite. 	Such 

methods can produce considerable bias in the usual estimate, 

J6. 
WI 	of the covariance matrix, and simulation studies 

have shown that the estimates can be misleading. 	See 

for example Haitmsky (1968). 

Let us construct more efficient estimators by using 

the principles of fitting. 	Suppose that Xij  is missing, 
A 

and that we fit Xid, some function of the data. 	If we 

assume a distribution for the data and assume 	has the 
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A 
same mean whether it is present or missing, we may seek 

so that 

= 0 
(1.1.1.) 

for repeated sampling with the same pattern of missing 

values. Clearly the fitted value found by averaging Xj 

over the observations for which it is observed satisfies 

(1.1.1.). However a closer fit to Xid is obtained if we 

ask that 

(1.1.2.) 

where a stands for the set of observed variables in the .ith 

observation, and the expectation is taken with these variables 

fixed. 	If Xi  is multivariate normally distributed, E(X) IR) 

is a linear combination of the known variables Fl,with 

regression coefficients which are known functions of (1,01,1C), 

We are led to the method of fitting proposed by Buck (1960). 

An initial estimate of (104,,E) is found from the complete 

observations, and these estimates are then used to fit for 

the missing values linear combinations of the known 

variables in each observation. 

Sample means and covariances are then formed from the 

completed data. 	We can improve these estimates by 

considering the principle P3, for although the sample 

means are unbiased estimates of p., 1-1-a,5 S 	is a biased 

estimate of /: 	To correct for this, we must add certain 

	

E(X- 	I P-) 

	

ki 	L.) 	L 
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adjustments to the S.S.C.P. matrix of the completed data. 

Buck gave the correct adjustment for one missing variable, 

but failed to consider the necessary modification to Sak s  

when Xij and Xik are both missing in some observation i. 

We consider these adjustments in some detail in Chapter 3. 

A final modification to Buck's method is to make the 

process iterative. 	The new estimates oflitZreplace the 

original estimates from the complete observations, and the 

procedure is repeated. Then iterate until there is no 

significant change in the estimates. We call the resulting 

method Iterated Buck. Figure 1 gives a diagrammatical 

summary of the procedure. 

• 'Form initial estimates of (RIE 

--1Enter loop over the observations 

4,  
it missing values in the ith observation 

Find adjustments for new S.S.C.P. matrix  

Accumulate observation i into new sample 
means and S.S.C.P. matrix. Add adjustments 
for the ith observation. 

Compare new estimates of 1,4,1:) with 
current estimates. Replace current 
estimates by new estimates. 

[Stop' 

Figure `.Flow Diagram for the estimation of (/M, X) by Iterated 
Buck 
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We consider the asymptotic unbiasedness of the estimates 

obtained by this method in Chapter 3, for a general 

distribution of X 	A less detailed analysis is given 

by Beale and Little (1973). 

We now return to the maximum likelihood approach, 

and the method of Iterated Buck forms a bridge. 	Orchard 

and Woodbury (1972) produced a set of iterative equations 

for obtaining m.l.e's of %)) when )CI is multivariate 

normally distributed. 	These equations are much simpler 

to solve than those given by Hartley and Hocking, 

referred to above; in fact they are nearly identical 

to the equations of Iterated Buck, the difference being 

that the maximum likelihood method (called here M.L.M.) 

makes no correction for the degree of freedom in estimating 

the mean. 	Of interest here is Woot4butsy's contribution to 

the discussion of Hartley and Hocking's paper. 

Orchard and Woodbury derived these equations by an 

application of a general principle for finding m.l.e's from 

incomplete data, their Missing Information Principle (M.I.P.). 

This simple and powerful idea plays an important role in this 

thesis, and in Chapter 2 we give a derivation of the principle, 

also given in Beale and Little (1973). 	The principle 

indicates the connection between the fitting approach and 

the maximum likelihood approach for a large class of problems, 

and the intuitive appeal of the equations found by applying 
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M.I.P. suggests that the resulting estimators will be robust 

against normality assumptions in the underlying model. 

This survey of the literature has been very selective 

and biased, for example no mention has been made of many 

useful papers on univariate missing data problems. 	A 

more detailed treatment of past work may be found in 

the review papers mentioned above. 

Chapters 2 and 3 of the thesis concern the problem 

of estimating the means and covariances of p variables; 

Chapter 2 considers the maximum likelihood approach and 

Chapter 3 the fitting approach. 	Chapter 4 concerns the 

precision of the estimates. 	Chapter 5 considers the 

linear regression of one variable on the other p-1 variables, 

and Chapter 6 considers the precision of the resulting 

estimates of the regression coefficients. 	Chapter 7 gives 

the result of simulation work to compare some of the methods 

proposed in Chapter 5. 	Finally Chapter 8 is a simple 

application of the Missing Information Principle to time 

series data, as an illustration of the potential value 

of the Principle in this field. 
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2. MAXIMUM LIKELIHOOD ESTIMATION OF THE MEANS AND 
COVARIANCE MATRIX. 

2.1. Introduction. 

A complete set of data consists of N independent 

observations X on a set of variables )(J.)  X2)...)  X0)  

which we suppose are multivariate normally distributed 

with mean p. and covariance matrix 2: 	. 	We 

shall write 	= (Xi.„X12).--)XiOrd.  M Np 041 

We consider the problem of estimating ILL and 27. 	by 

maximum likelihood, when some of the X!S are missing. 

First we exclude cases where a value is missing because 

it is in some sense unusual (for example, too high to 

measure). 	The natural assumption is that P6 the set 
of variables present in the ith observation, have the 

joint distribution found by integrating the missing 

variables, Mil out of 1\11\1),(04,1) . 	This property, 

assumed for each observation i, corresponds to a 

random pattern of deletions. 

For this data and model, it is possible to write 

down the maximum likelihood equations for pt and 2: 
and to solve them iteratively. 	(See, for example, 

Hartley and Hocking (1972)). However these equations 

are very involved, and a much simpler set of equations, 

which also give maximum likelihood estimates (m.l.efs) 

of IX and 	were found by Orchard and Woodbury (1971). 
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These were derived by an application of their Missing 

Information Principle (M.I.P:;.), which they explained 

in the same paper. 

In§2.2 we derive the MTI.p. 	The argument follows 

that of Orchard and Woodbury, but we include a formal 

definition of the Principle, and emphasize that the 

effect of the principle is to replace a maximization 

problem by a fixed point problem. 	This section is 

the result of joint work with E.M.L. Beale, and is a 

revised form of the derivation of M.I.P. given at a 

R.S.S. Multivariate Study Group conference at Hull, 

as part of a joint paper (Beale and Little, 1973). 

This paper has been submitted for publication to 

the Journal of the Royal Statistical Society, Series 

We follow Orchard and Woodbury in showing that 

the principle leads to a simple iterative algorithmfor 

finding m.l.e's of 14. and /: for our problem. 

We noted that for the resulting estimates to be 

maximum likelihood, certain assumptions are involved 

about the circumstances which cause the data to be 

incomplete. 	These assumptions are formalized in 

2.3, and some examples are given to indicate how to 

proceed when they do not hold ) that is the pattern of 

missing values is in a sense non-random. 	Included 

in this category are censored data. 
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2.2. Orchard and Woodbury s Missing Information Principle. 

The Missing Information Principle is concerned with 

the situation in which there are random variables that 

can be grouped intb two sets P and t.A, with a joint 

distribution depending on the vectore of parameters, 

and where P have been observed but IA have not been 

observed. 	In our application of the principle 

represents the set of means and the covariance matrix 

for the multivariate normal distribution, P represents 

the complete observations and the known variables in 

the incomplete observations, and 	represents the 

missing values in the incomplete observations. 
A 

We wish to find ())the estimate of 0 that 

maximises the log-likelihood e(P> * 0) of 
	P given 

But it may not be easy to compute this directly. 	On 

the other hand it may be much easier to find the value 

of 0 that maximizes the log-likelihood t(P)M.;0) of P 
and IA given e, for any complete set of data (P)t1). 
Furthermore we may be able to find the value of 	that 

maximizes the expected value of t(P)1\it )*E9 )  if M is 

treated as a random variable with some known distribution. 

The appropriate formulae can sometimes be derived by 

imagining that the sample is replicated an arbitrary 

number of times, with P taking the same values in all 

replications, but with PI having its known distribution. 

This procedure is central to the M.I.P., which is now 

described. 
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Let 	I- ( A I P3 ) 	denote the probability 

density function for the conditional distribution 

of PA given 	P 	and 0 ) and let e(mIP;  
denote tn, S OA pi 10) . Then 

Q(m)p .36) = t(P .3 0)+ UMIP.,36) . 	
(2.2.1) 

Now take any assumed value GA for 0 . This, together 
with the observed value of P, defines a conditional 
distribution forM,given the data. 	Take expectations 

of both sides of (2.2.1) over this distribution. We obtain 

E R(11)P .30) 1 Pit = UPI)) + ERNIP41Re,I (2.2.2) 
The left hand side of equation (2.2.2) is a function 

of P , 	and 	. We find 0 
	

the value of 9 	that 

maximizes this function. 	This may depend on OA)  so 
we write 

Om  = 0(0A ) 	. 	
(2.2.3) 

Equation (2.2.3) represents a transformation from the 

vector e 	to the vector 0 . We now define 

The Missing Information Principle  

Estimate 0 by a fixed point of the transformation 0 
i.e. a value of 0 	such that 

(2.2.4) 
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The set of equations (2.2.4) are called the fixed  

point equations, and they are analogues of the likelihood 

equations. 	This approach is justified by the following 

two theorems, which show that the m.l.e. of 0 	satisfies 

(2.2.4), and conversely, that every solution of the 

fixed point equations is a stationary value of the 

likelihood function. (Orchard and Woodbury implicitly 

define of by differentiating the left hand side of (2.2.2) 

w.r.t. 	and setting the result equal to zero. 

Defining 	as a maximization reduces the possibility 

• 	 of finding turning values of the likelihood other 

than local maxima). 	We assume regularity conditions 

which allow us to differentiate with respect to the 

parameters inside the expectation sign. 

Theorem 2.2.1. 
A 

The maximum likelihood estimator e 	satisfies 

equation (2.2.4). 

Theorem 2.2.2. 

• If 	eN119;0) is a differentiable function of e , then any 
other value of e 	satisfying (2.2.4) is a maximum or 

stationary value of 	(p.,0) . 
To prove the theorems, we observe that if the distribution 

of M has a probability density element 4(MIP;Cal\i, then 

atAIPOIP;OA] = f t(miP;e)RmiPA) am , 
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and regarded as a function of 	0 	, this is maximized 

at 0 = 	. This is simply Jensen's inequality. 	The 

proof is elementary: see for example Kendall and Stuart 

(1967), pp.39-40. 	Thus setting 04. 	in (2.2.2), 
A 

the value 9 = et maximizes both terms on the right hand 

side of (2.2.2). 	It therefore maximizes their sum. 

This proves Theorem 1. To prove Theorem 2, we note that 

0 = 
	

maximizes the second term on the right hand 

side (2.2.2), and by hypothesis this is differentiable. It 

cannot then be a maximum of the left hand side of (2.2.2) 

unless it is either a maximum or a stationary value of the 

first term on the right hand side. 

The proofs carry over to the situation with discrete 

random variables in the set /A; integrals becomes sums 

in the usual way. 	Also the theory can be rephrased to 

allow for partial information about the distribution of M. 

Then e(P;O) represents the log likelihood of the data 

including this information, and 4.(bAIPA is the 

density for the missing data, given the data and the 

partial information. 	This is illustrated in 32.3. 

We now apply this theory to our problem. 	Denote byiK 

the complete (NIXO matrix of variables, by 	the set of 

variables observed in observation i, and by 
	P 	the 

total set of variables observed. 	Then in the above 

notation 
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0 = (j-t)Z) , OA (PA)Z A OM — ( OA) = (IAMI M 

The log likelihood for the multivariate normal 

distribution is 
N p 

(X ;IA, 2) 	ZZ (xv  —pi)crik(xL1/4 —frik) 	ift.(cittl) , 
ird 

where CT A denotes the(j,k)th element of 

Taking expectations with 0=19A  and P 	fixed, 

we have that 

N a 
E I t(x;itz 1 P pA) A? _ — 2 ZZ Ll - 

	
,-J4k) + 

j:1 1r1 

-k NI 	(sat ) 
where 

A 
XL'iA 	= 	 X 

and 
	

cri k 
	= Coy i(xii,zik)i PL. 4A) A? 

Maximization with respect to )11. and 	gives 

the analogue of (2.2.3): 
N 

Am 

cr",jk m 

_ *I Z tCL, PA 
l._1 

N _ 

= N Ls Lk XVI 
A \-7 	 ) 51  (CiitA "71411)÷ CrjkA. Pij ) 

1 /  

i,---1 

for 1 < j , k, p 	Now set )4  A Pit A 	 2m' Z. 

The fixed point equations are: 
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;cy 	E 	1 Pi ; jA ,1E 

Jj 	
/ 

— 

crjk /(14-7,M4 
c=1 

 

Sj vt. 	= Coy {(Dci;,xlit) I Pi, ; IA 	• 

(2.2.5) 

(2.2.6) 

(2.2.7) 

(2.2.8) 

These are the equationsfound by Orchard and Woodbury. 

To find m.l.e's we obtain initial estimates of (4,1E) and 

cycle through (2.2.5) - (2.2.8) until we find no 

significant changes in the estimates between successive 

iterations. 	Note that 

A 	X Zi 	Xi is observed ; 
= 	a linear 'combination of the variable in Pe 

if Xj,i 	is missing. 

At each iteration the data are completed by equation (2.2.5), 

and the means, and a sum of squares and products (S.S.C.P.) 

matrix found for the variables. 	This matrix is 

adjusted by adding 03k.p, to the (j)k)th element for 

each observation i. 	This adjustment is zero unless 

both 	and Xist  are missing, and it depends only on 

the pattern of missing values in observation i, and not on 

the values themselves. 
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It is important that the computing involve in 

this procedure is very simple. 	For a missing ?Cif )  

we fit 

x&  J A  =}",ia+ z 
e 	 (xit --)Am) (2.2.9) 

where bitglA is the partial regression coefficient 

between Xj 	and Ye when Xj is regressed on the 

variables in R I  calculated from the current estimate 

	

of the covariance matrix. 	These 

coefficients, and the adjustments 031041i)are found at 

the same time by pivoting on the elements of 2:A 
corresponding to the variables in Pi. . In symbols, 

if 
	Piv ( Pi.) zA 	v(p,p,)  

then 	Vik = 6jlea 	for X ij 	R xi. 6 Pi.; 

trio = 0711/A. Pi. 	for 74.:j 4 Pt: 	)C1:14 

The PIV operator is defined in Appendix I, and 

some basic properties given. 	A discussion of this 

important computational point is given by Jowett (1963), 

or an expository account with more emphasis on 

computational aspects, by Beale (1970). 
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We describe the method of estimating 	Z 	in 

this section as M.L.N., to indicate maximum likelihood 

for a normal distribution. 	The method assumes a 

random pattern of deletions, and we consider this 

assumption in more detail in the next section. 

2.3. Random Deletion Patterns.  

In the previous section, we analysed a given 

partition(P,M)of the data, under the assumption that the 

observed variables had their marginal distribution after 

the missing variables had been integrated out of the 

joint distribution of all the variables. We now consider 

the partitioning process in more detail, by embedding 

the model of f2.2. in a larger model, where the 

partitioning process is stochastic. 	We consider when 

maximum likelihood for this larger model corresponds to 

maximum likelihood for the conditional model of f2.2. 

We suppose data to be generated from the following 

model, which has two components: 

(a) A joint distribution for a complete set of data )( 

inclexed by a set of parameters 9, which we wish to 

estimate. 

(b) A deletion mechanism, which causes the partition of 

)( into two sets P and M, where p is the set of 

variables present, and M is the set of missing variables. 
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The data consists of P 	and a deletion pattern 

which is a set of binary variables, one corresponding 

to each variable in )( , and taking value 0 if that 

variable is present, 1 if that variable is missing. 

The deletion pattern is considered stochastic, and 

has a distribution from a class defined by the 

deletion mechanism, indexed in general by 0 
and a set of additional parameters, 

In the following examples )( represents an Nxp 

data matrix. 	We consider some possible deletion 

mechanisms. 

DM1: Each 	has a known or unknown probability iNj  
of deletion, which is functionally independent of 

the parameter e. The parameter)6isthe set of 

distinct (Vs., and we may specify Pijr-K,or more 

commonlypei,or some such relation. 	Anyway we 

assume the factorization of the underlying parameter 

space, th
ree 

o) 

DM2: (Censored Data). 	We assume ,Ci,j is observed if 

and only if XeieRi )  where Ij is some range of values of 

the variable, usually an interval. 	This interval 

may be known, or the cat-off points may be additional 

parameters to be estimated. 
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DM3: Now suppose 	 is observed if Xaceek, where 

Rit 	is some range of values of the variable 41, k *j . 
Again Rk may be known or unknown. 	For example Xj 

may be the result of a medical test, which is not 

carried out if some other aspect of a patient's condition, 

as measured by )(it ) renders the test dangerous. 

DM4: The value 	is observed if and only if it is 

within k standard deviations of its mean. 	For such 

a standardized type of censoring the a priori probability 

of obtaining the deletion pattern does not depend on 

the parameters B. 

DM5: Suppose 	has probability pi oto of deletion, 

which depends on the population mean of Xi. 

These mechanisms can be combined or made more 

elaborate. 	We see how the deletion pattern may be 

determined by part of the data, or by missing data 

(e.g. a mixture of DM1 and DM3), or it may depend on 

the parameter 0 (e.g. DM2, DM5).  

Now let e 	D ; 0,4 ) 	be the log likelihood of 

the data, under the full model. 	We have 

(P)D;010) Qi f !1Die,0) + 	 D; 	(2.3.1) 
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Also component (a) of the model defines the likelihood 

L ( 	, ) 
	

of a complete set of data. 	The log- 

likelihood of the marginal distribution of P is thus, 

to within a constant, 

ei 	ja) ea[ fL(RM;(0) PA.] • 	(2.3.2) 

We define a random deletion mechanism to be one such that 

for all possible sets of data (PO), the value of 4) 

which maximizes WA))  also maximizes e(P1 D;043) 
By the partition (2.3.1), we see that sufficient 

conditions for this are 

CP D ey 	= t, (PA 
	

(2.3.3) 

S2: 	ez  l D; v,0) el  (D; 	, and SZ=2x_a. ( 2 . 3.4) 

Condition S1 is self-explanatory, and S2 implies that 

the deletion pattern D is ancillary as regards the 

estimation of 0. 

Turning to the examples, we see that DM1 is random, 

DM2 fails S1 and S2, DM3 fails Si and S2, DM4 fails 

Si and DM5 fails S2. 

Less stringent conditions are sufficient if the 

deletion mechanism is such that a subset a of the 

variables )( have probability 1 of observation. 

Then for any deletion pattern these variables have 

their marginal distribution from component (a) of 

the model. 	If ec  06 0 	is the corresponding 

log-likelihood, then 



27 

e(P)o;e)) = UFO)) + t3(PIPc)D.;846)+4(Meif4), 

and 	ti (Pja) 	tc (Pc ;O) 	t3(Pi Pc,;0) 

Hence the deletion mechanism is random if 

Cl 
	

e;(Pipc)Die,o) = f3 ( pipc;e) 	(2.3.5) 

C2 	e,(Di pc .,6,0)  = ti (D ico), and. 9,,,:Qa x.Q0 . (2.3.6) 
• For if Cl and C2 are satisfied, 

e(PAGM 	fc(Pc;e) + e,(Pia;0)-1-q.(DiP60) 

= ,(P;())+ ezt(DIR;c6), 

and so maximizing ti (P; 9) 	with respect to 0 	is 

equivalent to maximizing (P)D ;04) 	with  respect to 

el l  and the deletion mechanism is random. 
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The conditions Cl and C2 parallel S1 and S2, 

but we can allow the deletion probabilities to depend 

on the values of variables which are always observed. 

Considering the examples, we see that DM2 fails Cl and C2, DM4 

fails Cl, DM5 fails C2, DM3 fails Cl and C2 except if Xk 

is always present, since then conditioning on that variable 

shows thatDM3 is random. 	The latter example is important, 

for it shows that it is possible to have a random deletion 

pattern, although the sample of observed values of a 

variable which is sometimes missing does not have the 

marginal distribution of the variable when it is always 

observed. 

Before working out some examples, we indicate when we 

are justified in conditioning on the deletion pattern 

obtained, and in using conditional maximum likelihood to 

estimate the parameters. 	The conditions are C2 and 

c 	e;( P Pe D;(0) 	t; (p P,; 9 )  

	

which is weaker than Cl. 	If Clt  and C2 are 

satisfied D is statistically ancillary to the 

estimation of 0 	Two examples are worth a brief 

mention. 

(a) DM2: For censored data, Cl' and C2 are satisfied if 

the cut-off points are known. 	However if the cut-off 

points are unknown, we must use the deletion pattern 

to estimate the additional parameters. 
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ir, nl 
(b) DM5: Here the log likelihood CL U

r\
-'1 U ,114) 

is the marginal likelihood Up;1)) from 

component (a) of the model, but the deletion 

pattern contains additional information 

about the means. 

Thus strictly speaking we are losing information 

by maximizing e/(1);()))although in practice this 

loss may be small. 	Example (2.3.3) is a 

simple illustration of this. 

We now apply the M.I.P. to some further examples. 

Example (2.3.1). 	To illustrate DM1 and DM3, mixed. 

Suppose (Xi  ,)(2)-1- 	MN2  (itt, l), and 
	

Xz 	is not 

observed if X1  is greater than a known constant C. 

After measurement, some proportion of the measurements 

on 	are lost. 	These losses do not depend on 

the values of the variables. 

Analysis. 	According to M.I.P., from current estimates 

of the parameters, we find the fitted value 

= E (xi,z 	)(4, >c) = E (xia I xi.a) 

fair-  an observation with Xi 	present and )(12 	missing. 

Here the information in the deletion pattern, that 

does not affect the conditional distribution of DCI2 

given Xi/ ) which is normal. 	Thus the fitted value 

)42 	and the adjustment for the variance is the 

same as for M.L.N. 	However for an observation with 

missing but 	N; 	present, the fitted value is 
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E (xii I xi„, 	 Xi-  93(x"ji.-x.4 
dx  

fc 	(xi-1AL) ctx, 

where 	represents the standard normal density, and 

(DCE:.  V' ) 	are the mean and variance of the 

conditional distribution of (X1.1 1)CL2) )  which is 

normal. 	We see that the deletion pattern tells 

us that 	) so Xis 	has a truncated normal 

distribution. 	The fitted value from M.L.N. is 
4.* 

3  which is different from XL . 	Hence M.L.N. 

is maximum likelihood only if Ky is always 

observed. 	This is indicated by the previous 

theory. 

Example 2.3.2. Censored Data. 

Suppose 	1Ci ti PIIN043 X)l but that the variable 

)(j 	(1.4.13) 	is only observed in a known range R. 

We can find m.l.e's of (/A, E) using the M.I.P. 	If 

is missing, we substitute 

4 
Xj 	r (zi I Pi. ) XEj 6 r?j 3,1A)IA) 	x  f(x) 

 dx  

ax 
where 	rCj =(00,00)\Ri, and 	f(x) is the normal 

density for the conditional distribution of Xii 	given 

the variables present in observation i. 	The corresponding 

adjustment to the estimate of variance is 

)C 
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x2f(x)cbc  
Vox. xij I ) xi.j 6 kJ:4411,2A 	

f(x) ax R;  

Hence we can solve the fixed point equations, calculating 

these integrals at each iteration. 	We can also 

incorporate missing values in the other variables, which 

are considered randomly deleted. 	Suppose 	xik 	is 

such a missing value, and Xij  is also missing. 	Then 

we fit 

x:A 	E (xat I ) xt;si 6 kj 	) ) 

f E (xik 	xivAAI EA) f(;)61.;  

(xi ) ctx j  

and the 	

,M AI 

are 

COT (Xij, Dfix I Pi 3 	E RiA)EA) 

= 	DCJ EC X (.12 I Pi, 	.jp,,,r4) (xi) cbcj 	X xikA )  
fie 	 (xi ) dxi 

Var(Adiloc.(jeki.),6x)..:fitlE(zatiPoxi;PA,ZA)}24-(x)dxj.  

f-ibc.) - R j 	J 

More complicated models for deleting multivariate 

normal data can be handled in a similar way. 	The 

quadratic nature of the log likelihood function for 
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complete data ensures that first and second moments 

of the truncated distribution are all that are required 

to solve the fixed point equations. 

Example 2.3.3. (An example of DM5). 

L- c/- 	/ 
Suppose again 3,47L 0.)  Ink(")  ) ) but Xj 

has a probability h of deletion in any observation, 

where 

= 

where 

	0 
	

is an unknown parameter, independent 

• 
of (14,2). 

Then if 	e = (/4  ) 5E) ) 

t(P)Dle) 0) = 	 fz(olp)0),. 

M.L.N. maximizes the log likelihood el(PIDA)), but 

this is not the true m.l.e. of 0 	since the deletion 

pattern itself contains information about /A. 

Applying the M.I.P. the transformation 	A) is the value 

0 which maximizes 

E I t(m)p,o10,s6)1p)Di 	C6A 

instead of 

E 	(ivI)Plo; 0,0)1P,D;OA rbAl . 
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If 	are the number of observations for which Xj 

is observed, the difference between these terms is 

the factor 

D 	„ 1h 0) 	n Lag pj  0.4j 	N- nj) (03 [ I- pi WI, ()  

which modifies the estimates found by M.L.N. 
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3. Robustness of Estimators of the Means and Covariances. 

3.1. Introduction. 

In the previous Chapter we considered the maximum 

likelihood approach to the problem of estimating the 

parameters of a multivariate normal distribution, from 

an incomplete random sample. 	We now examine the methods 

of Buck and Iterated Buck, derived in Chapter 1 by adopting 

the fitting approach. 	As indicated there, virtually 

the same method as M.L.N. can be arrived at by considering 

"good" fitted values for the missing variables and 

adjusting the usual estimates of the means and covariances, 

formed from the completed data, to elimate bias. 

In §3.2 the goodness of fit of the linear estimators 
of the missing values is considered, using the criterion 

of mean square error. 	In 43.3 the bias corrections 

are considered in some detail for Buck's (1960) method, 

from an unbiasedness viewpoint. 	In the following 

section the iterative version of the method is considered. 

The estimates are found to be consistent as N tends to 

infinity in such a way that the number of observations 

with an observed deletion pattern also tends to infinity, 

provided every pair of variables is observed together in 

at least one of the observed patterns. 

The "robustness" in the title of this chapter is 

justified by the fact that no normality assumptions are 
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made about the joint distribution of 	X1, Y 2 ) • • • )(17 • 

For sections 3.2 - 3.4 we assume that 

(i) 3C072,...,XN  are independent, with mean A 
I - ) 

covariance matrix Z • 

(ii) The deletion pattern is random, in the sense that 

the means and covariances of the set 	of 

variables observed in observation i are the same 

as those given by (i). 

(iii) The distribution of 244 has finite fourth moments 

(i = 1„2,...,N). 

The condition (ii) is the analogue of Sl, equation 

(2.3.3), but here we are concerned only with the first two 

moments of the underlying population, rather than a specific 

distribution. 	It allows us to take expectations for 

repetitions of the sample with the same pattern of 

missing values. 

Finally we consider a finite sample argument, where 

moments are taken with respect to a population consisting of 

the hypothetical complete observations. 	If "random 

deletion" is considered as meaning that every observation 

has an equal chance of coinciding with any of the N 

deletion patterns (R,P1„...,R4) 	in the observed 

sample, then good estimates of the sample means and 

sample covariances of the undeleted sample are obtained 

by Iterated Buck. 
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3.2. The fitted values. 

We have an incomplete data matrix X, which 

satisfies the conditions of §3.l. 	A certain value Xisi 
A 

is missing, and we fit Xt-j )  a function of the data. If 

we knew completely the distribution of 	, then 

the best fitted value in the sense of minimizing the 

mean square error 

(xci  ,4)2  1 Pt.} 
	

(3.2.1) 

is evidently 
	E ( 	I pi) . 	In this expression we 

consider replications of the sample with the values of 

Pt: fixed. 	For multivariate normal data this value is 

= jot; 	 ) 	(3.2.2) 

where 	are partial regression coefficients for 

the regression of Xj 	on PL , calculated from /: . This 

value cannot be fitted in practice since we do not know 

/A and 	2: • 	However in the M.L.N. method 

this value is estimated for assumed values (,4/02:A) 	of 

the unknown parameters. 	See Equation (2.2.9). 

In general FNIR) will not be a linear 

combination of the variables a l  and for a particular 

distribution of Xi  better fitted values can be found. 
4t4  

However for any underlying population, DICLJ 	is the 

best linear combination of the variables in Pi  , in 

the sense of minimizing 
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E x 5(12 1/41 (3.2.3) 

where we average over the values of R. 	For any linear 

fitted value 	:Cij 

E 	-5\c,j)2  = E (x,, 	+ Dc(1 	5‘cid)2  

E (*xv )cjr E bcc; - 

since the residual 	()Cid —4) 	is uncorrelated with 
 

the variables in pi 	and hence uncorrelated with (Xir \ 
A 

Thus (3.2.3) is minimized at 	Xid =
r 
. 

Hence with a mean square error criterion, M.L.N. fits 

estimates of the best fitted values when the data are 

multivariate normal, and estimates of the best linear fitted 

values when the data are sampled from a general underlying 

population. 	Improved non-linear fitted values for certain 

non-normal populations are considered briefly in Chapter 5. 

Buck's method estimates the means and partial regression 

coefficients of (3.2.2) by their sample analogues, 

calculated from the set of complete observations. 	Hence 
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for the observed or fitted value, 

X ij = 	"F". bJ'PL(1Le 
QE Pt ( 3 .2.4) 

where 
	

is the sample mean off 	from the complete 

observatior4 and 

sample partial regression coefficient, 
found from the complete observations, if tjE M • 

cij e 5 
	 if 

	e R 

(3.2.5) 

where Pli are the missing variables in the ith observation, 

and 	is the Kronecker Delta. 	Then form 

(j=1,2...,p) 

/ A 	n 	11_ 
Xi )( Xaq 	) 

A 

and estimate 
	

fj 
	

by Xi 	and 	Crik 	by 

A / 
tr. =- 	[e 	) 4 Cy, 

( 3.2.6 ) 
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where C-9k is a correction term to eliminate bias 

introduced by the fitted values. 	We now consider what 

the correction terms should be to produce an unbiased estimate 

of /: 

3.3 Bias Correction for Buck's Method. 

In the rest of this chapter we shall be concerned 

with asymptotic bias in the estimates, as the number of 

observations tends to infinity in some way. 	We shall 

require the following result: if W 1,1 	is a statistic 

based on N observations, and 	1(y) 	is a function of 

tf) independent of N, then subject to mild regularity 

conditions on 4 , 

E(N) --z a + 	, as N 	00 

and 
	OR) 	1  as N co 	x(3.3.1) 

together imply 	E(9(9,,)) = 3 (0) + OR-), as 1\1->00 . 

This follows by considering the first three terms of the 

Taylor expansion of 43(9N) 	about 0 • 
Now let us consider the bias in the estimate of 2: 

formed by Buck's Method. The estimate Or / 	of 

equation (3.2.6) is unbiased if 
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141:i ( 	 ilk)} L 
o- ) 

where the expectation is for repetitions of the sample 

with the same deletion pattern. 	Hence Cijle must 

satisfy 

E(2 cijk) 	(N- 	E (ajkz) 	
( 3.3.2) 

We expand 	E kik) 	Write 

A 
L.) Dcij 	± e (.‘j 

(i) Vj  4- )14i )  

where 
44- 

X9' 
A 

is the limiting value of 	as the 

number of complete observations, no , tends to infinity, and 

'V  
1/-=A7' = U g X id 6 Pi.) 

(3.3.3) 

= 	-(3 	(=0 if X .  P) j it Pi, 	it Pc.) Xt. ; (3.3.4) 

In terms of these variables, 



N-1 	A A 
N L4 Xtd Xt1Z 

N N 
A 

4 	
X • XIa" 14 .1 

his to 
ir.i 
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N — N-1 	* * 	* 	* 
N 71_ 

tiq 1-1.4 	
.,,,,, 	-2) 

	

Xfj )4 	 )C 1.4 i :Ici k  — 
N kola 

ti  X.i.  ( Cij -gag + t'lj Xjle + gLiz X11)  
N N 1 	 -X  .... 	1 	7 71 t i,,1 .2A + "i,,i Xi2 k 7 

 
"  i.2412 ZIA/. N 	1.1 u

i Ltd 
S la 

We assume without loss of generality that the means of 

K)Yay-A are zero. 	Then the "partial covariance" 

of Xi,, j 	and DC-Lot  , 

(ritt — TiO.R. ) i-i Li  = il= i. { 
0 	) if L14 il  (3.3.5) 

where OJk4 is the residual covariance of Xi 	and Xlq 
after fitting linear regressions on the variables in R. 
This partial covariance is the conditional covariance 

COV 	1 PO in the multivariate normal case. 
Next consider (3.3.3) and (3.3.4). 	The terms 2 

../ 
J 

(0 
nd hence also U- are functions of the complete bit Pi 

 
and nce 	J  

data, and hence independent of all functions of the incomplete 

observations with constant coefficients, and in particular 

the Xiit
*) 

 S for an incomplete observations i. 	Using this, 

and the fact that the means of the variable3are zero, we have 
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C(IPI)X.  ) 	if xi j  6 	) observation L2 complete 
p. 	f J ti)k 
L.  ' 
fr

1'0 ti)12/ )otherwise 	(3.3.6) 0  

F(vi"')vit'') 	) if ilti2  ; 	(3.3.7) 

E(-vf.vit"))+E ( (i:J s..it) )
if i1=i2=i 

Now suppose the first n, observations are complete. 

Taking the expected value of 	and using (3.3.5) - 

(3.3.7), we have 

E (apt) 	1171N (3-51t  - Crilt.p3 + + 	+ T3 	(3.3.8) 

where 

E 1.• 

N 

E (v  'ilk —1— E Nyfile)] 1=ncil 

f , I VI)  ) wag., 
* 

3 

we N 	/ 60 T3 	ZZ Ekvi  14;Am 

First consider T. By the independence of the observations, 

E te  pt. Inc 	jt-Ft —  (,ie-Pi)(1)itm.e,;Pitrivn.) Cremi 
(3.3.9) 
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Let i16) 	denote the 	ri,) 	S.S.C.P. matrix of the 

complete observations, for the Pi, variables in a , 

( . r4  .1 § ) . 	Let 2:(0  denote the submatrix of 1: 
A 

corresponding to these variables, and 2:6)= 71i;:i 	. Then 

ZCt) 	) Cov ( L0) 	V (16.,) ) as nc co , 

since the distribution of (X1)X2)....)  4) has finite fourth moments. 

Hence by (3.3.1), if is a known function of 

2:6) , independent of ac  

E( ( ii(0)) = 9 (Etc)) + 0(t-4). 	(3.3.10) 

A 

	

Setting 9 c 	= 	, we see that EN Yik) 

is ON  -le) 	as Plc 00 . We now work out the OWterm 

under the multivariate normal assumption. 	Then 

conditionally on Pi., 

	

bit. Pi — (it .PZ) 	° 	; C°V b;4  ) bkm  1 R) :17  attr) 	) 

bm 	 A1 
where 	aco 	is the (1,,m)th element of Ako . 	Also 

E() — E(t) + 0(4--4)) 

by another application of (3.3.10). 	Hence 
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E Yid  IC 	= 	(471 ) 151061  Cri t?' PI; Crefn 	- 0 0-7);2') 3 
mePj 

i . e . 	E 	 . (3.3.11) 

Now 	E (v)")v,"}) r•-• E{(ai z bie.p,0—Z 	3cjIn)] 
tePi 

 in Pi. 

and by a similar argument to that given'above this 

term is o(4-e) 	Again we find the OW term when the 

• variables are multivariate normal. 	Then the means ICJ  

are uncorrelated with the partial regression coefficients, 

so 
e„ 

E (v3  v°) = E 	— 	(5uCit 	(312174.17i Xmi  

+ •i=[ 	i  lb J{' 	(3jt-Pi,) xe me  pi 	-Pi; - Nert.Pi) 3jCin] 

rtc  EN)y =  

Adding and summing over 1, we have 

N z Wan erk.pi,  4-  n oc` )7 Ltm  
(3.3.12) 
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n for the normal case, and some other v nc) term in 

other cases. 

("I)t")  

	

To calculate Ta ) we need 	,_ R , Vj -v ) k 	for 

	

12. 	As for the case CI = 	this is Ca  c), 
and for the normal case 

	

E (v." 	)(,) 	\i(t)(Xit!"-  Zp2km.P,,X111).1) ec 

+ 0 ( -1-x) 

. PI, 

	

:== 	TA. 	R, 	Rz  , ne   

but the right hand side has no simple form unless 

	

R. C pie  or Piz 	Therefore we consider the 

01J) term only when the data is monotone, i.e. we 

can arrange the observations and variables so that 

	

R, C- R2 	if 	. 	(3.3.13) 

Then 
NI 	N 

	

T2, 	— 2 	 Crjk-Pil  + 0 (4) 1 , i nc 	Peri 	is  

i.e. 	T2 	- 	(N-1) 07*.R. +0(4). Nnc 	 (3.3.124) 
.1101, 

	

Finally T 	
(0,v 

3  = - risk, ZN  [ E (-14-" 5k ) + Ebik xJ) • - 1:11,41 	 ) .  

	

/ 	Li ) _, , (t) \ 
this term is found in the same way as 	E t lli - vh i . 

Again it is 0 (1410 1  and in the normal case: 
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T3 = — 
7 	. 

N 	t TA- Pi Cite-Pi) 

(3.3.15 ) 

Substituting (3.3.12), (3.3.14) and (3.3.15) into (3.3.8), 

Milk) 
L=I 

and if the data are from MNI, (IA )E) and are monotone, 

Etaitt) N-  I  N  (031e Olik.PZ) 4-  i2::41 	— 2 (144)— -.-] N 	 rtc nc  N 

Substituting this in (3.3.2)., for unbiasedness we 

require 

(3.3.16) 

and for monotone data from Mil, QA,Z) 

E (ctjte) = CrAz• Pi E 	- 	0(aa n o ) 

If we replace (N-i) by its average value for i=nc+1,nc +2,...,N, 

we obtain 
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a 

\ ) r N4-1 	 °Lilt / E 	 L W 	ne 	Nne 4 

i.e. E(c) ne- 1 	 crjk.p. -I- 0 (rica) (3.3.17) 
ti 

Now if /: 	is the estimate of 1: from the complete 

observations, and y z.pi  is the (e,k)th element of 

then 

V(1) 	= Plv(R) Z 

E(vik-pi) 	
nc _ri — I 

Jiz. Pt (3.3.18) 

the numerator nc-n-1 results from losing 	degrees 

of freedom by the pivoting process. 

Comparing (3.3.17) and (3.3.18), we see that yjit.pi  

is the correct adjustment, ignoring terms of 	 t A 	\ and Q t 

subject to the approximation given above. 	This is exact 

when all the incomplete observations have the same deletion 

pattern. 	(The simpler case of one incomplete observation 

was considered by Beale and Little (1973), and achieved the 

same result by a somewhat different methdd). For non-

normal data, or when the pattern of missing values is not 

monotone, the correction Yik.N 	is correct to ()(40. 

For these situations no simple formula can improve on Vile.pi  

from this unbiasedness viewpoint, and the final estimates 

of 014,2) are still correct to O)  . In the next section 

we consider the adjustments for Iterated Buck. 	The 
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iterative nature of this method appears to preclude 

a detailed analysis based on unbiasedness. 	However 

a consideration of the consistency of the estimates leads 

to an adjustment similar to Wjla Pk . 

3.4. The Bias Correction for Iterated Buck. 

We write down the set of iterative equations explicitly, 

and consider the limiting equations as N tends to infinity. 

First we need to define limiting properties for the 

deletion pattern. 	Let 	be the set of distinct 

patterns among (R I  Pal ...I RAand let P be a typical 
pattern. 	(The usage of the letter P in this 

section differs from elsewhere in the thesis, where it 

means the set of data). 	Let np be the number of 

observations in 5p)the set of observations with pattern P. 
Then 

N -4 00 	denotes tq-'7a) such that -1-:Apjaconstant '701\IPEP 

In this section we do not assume (L>0) i.e. that complete 

observations exist. 	If there are no complete observations 

the iterative process can be started by some other estimate 

of (p1 )!)2 for example 

rut  

rni 	Dczi 

ajk z 17)17-1 	Ex id -14j) Xik-)alz) 
jk-  xiiTlii,xiitett 

(3.4.2) 

(3.4.1) 
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where Mij and rrjk are the number of elements in the 

corresponding summations. 	The resulting estimate, of 

27 may require a correction to make it positive semi- 

definite. 	This is done by pivoting on the matrix, 

and setting "negative variance" terms, and the 

corresponding covariance terms, equal to zero. 

The equations of Iterated Buck are 

A 	A 

/14,1
t-y  

feft 	—it —"i
A  

" =  
N r,A  

A 	 Ltx-. —JAA .)(xA -k—i1A4k)i-  cijki 05k = N-1 	(:1 

where 	bie.pi.  are defined by (3.2.5), except that they 
A 

are estimated from 27., rather than the complete 
observations. 	Hence 

= 

	

N zz DI;  + 	P L (x. —ye) 
P 	 ] , e NO La 	fe? (3.4.3) 

,74;:i):Z[XE 101
A )1 A 

PEa 1,,Egp  to (no je.P km.pk:Xit 	 4n--).44)-1-  cidiej 
(3.4.4) 

Now for PCP the statistics 

5 
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zA 

I1 	 Cie nP 1.€ Jr,  

A 	 A \ 	A \ 
crpefrt 	ne iZe  5,;( 	--)JP(,) (Xi4n—)1011) 

(3.4.5) 

(3.4.6) 

form a condensed set of data which is fixed over iterations. 

In terms of these quantities, (3.4.3) and (3.4.4) become 

Z/ 
	A \ 

Pe& N 	bie.p k Pee —),t = 0 (3.4.7) 
(3)1z  = c7 rtp  [77 	I). 	I 	n it ( A 	A 

P4E-1.0 " 	fri'ep Jo'  knit) °-11171-1-  VAPt-P0m-1141)÷  CPPJ
( 3 . 

14 
 . 8 ) 

I V r where 	CNk = --eci, fest  t.,,yit . 

N 
f 	P  Now let r4 --, 010 , and consider the limiting equations. As 

N  %-  00 , N
A 

= pc 4 A 
 (v  ) , 'v)p _ 0e. + vN13I 0 „   c„;,t  --> cp,„ (say), 

and (3.4.7), (3.4.8) tend to 

Z 	
• A 

(.74) 
( 3 . 4 . 9) 

— ZAP AP[
P P

bitP ef (rem  ±0AL—Iikm-)A44)}4-e + 0(i)  PA 
(3.4.10) 

The limiting equations are (3.4.9) and (3.4.10) with the 

()(ik) terms ignored. 	For consistent estimates, 
= (1,412:)  

must be a solution of the limiting equations. 	Substituting 

this solution, with the consequent population partial 

regression coefficients, we have from (3.4.10) 
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Crik  = 
S) PEI 	 meP 

X [ 	Z Pji.P13t2M•P hemn 	CPA 

	

= PuP 
Xp E 	— crivz.p 	Cplie ] 

Hence 	C4ix  = 07j1/4) . 

Therefore for consistent estimates, we choose Co 	so 

that 

	

ti.vn 	= 

	

W4c40 	 (3.4.11) 

Replacing(3-3ht for CZik 	in the equations of 

Iterated Buck, we obtain the same equations as M.L.N., 

(2.2.5) - (2.2.8), except that the factor .7,1T 	in (2.2.7) 

1 
is replaced by --- N— I , 

the standard correction when the 

data are complete. 	Thus Iterated Buck is "corrected 

maximum likelihood" when the data are multivariate normal, 

and although in the Chapters that follow the method M.L.N. 

will sometimes be quoted for theoretical reasons, in 

practice the corrected method can always be used. 	Of 

course the practical difference is small. 

We now ask the question: under what conditions do 

the limiting equations have a unique solution? 	If 

and )(it  are never observed together, then the set of 

solutions 
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6!=1,2,-,10), 

9 (e) ftt) 	(j;k), 

(TA .11>. = l 	 oidt.-15  )(-1 <e <  I). 

where p is the set of variables (AI,A.z)•••) Al) 

)jt = 
A 
Tent = Cren1 

(3.4.12) 

with 

xi  and )(1,t 	removed, satisfy the limiting equations, 

since CTipt  does not appear in the set of equations (3.4.10) , 

and thus can be chosen arbitrarily in the sense of (3./4.12) 

Consequently the estimate of OJpi 	from Iterated Buck 

is not consistent, as one might expect since we have no 

information about the partial correlation e  of {3.4.12). 
A 

In practice, convergence is speeded up by setting 

at the start of each iteration. However, if the deletion 

patterns are such that every pair of variables are observed, 

the limiting equations have a unique solution, and Iterated, 

Buck is consistent. 

Asymptotic Unbiasedness of the Estimates. 

Evalation of 	(-L) bias in the estimates of (P)E) 
is not feasible, but we can show that if the initial 

estimates of 9A, Z) are unbiased to 0(i!,;) as N400)then the 
A A 

final estimates vt,E) are also unbiased to OC44-) as N--?° )̀• 

We sketch a proof. 



E (ltjA) 

E(ti„ JA 	= 	x:20 	, 

where 	XijA = 	 bieft.pi,(xit —AA) 5 

A 

(3.4115) 

(3.4.16) 
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Suppose current estimates (IAA,ZA) are unbiased to 
and (#141Em) are new estimates, found by one 

iteration of the method. 	It is sufficient to show (4J1) 

application of (3.3.1) with are unbiased to 

a  E lkA. 

E (bi  kit • pi) 

. By an 

0 = (p)1) 3 

crik.ft  + 04i) 

Nt.pi  

as 
„ 4E 
N--->oo 

, 
as N 3 

O.* 

(3.4 .13) 

(3.4.14) 

with the notation of §2.2. 	Using (3.4.13), it is 

sufficient to show 

and 
	xy = 1

u. +C% (33  t.P4 

 
(xle —)e) 

Equation (3.4.15) and (3.4.16) follow from Lemma (3.3), 

provided also 

E bieA Pt xie) 
	

E (Nt.p, xie) 	OW 5 	(3.4.17 ) 
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and 	g(bRA.11, Xzi,e 	 E 	Xi,A Nm.pel  x4„.4) 4- 0(141).  
(3.4a8) 

These would follow by an application of (3.3.1) if 

LA.N.1.) 	was independent of (Xi4t XE.2)m) and 

	

jeit.pi,  was independent of Xj 	This difficulty is 

i  overcome by considering bjtkpi,  , equal to bjtA.R.  but with a 

new independently sampled observation replacing the ith 

observation, with the same deletion pattern. 	Clearly 

t/  
DjEA.N, 	is independent of xie 	and 

DjLA P, =  6A 4,L f V 
n 
 ( ) as N 

This is sufficient to prove (3.4.17). 	Similar tactics 

prove (3.4.18), and hence the result. 

3.5. Unbiasedness under permutation of the observations. 

So far we have considered the data as part of a random 

sample from a joint distribution with means and covariances 

and finite fourth moments. 	We now consider a finite 

sample approach to the problem. 	We make no distributional 

assumptions about the variables, and the problem is to 

estimate the sample means Xj,and the sample S.S.C.P. matrix 

S of the undeleted sample, given the incomplete data. 

For a given pattern of deletions, Iterated Buck produces 

estimates of 1; and S 	Now consider a hypothetical 

permutation of the underlying undeleted observations. 	Every 

permutation It produces a different set of data, and different 

estimates 'jr  and Sjo7c  of xj  and 5:jk . Now suppose every 
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permutation is equally probablejand consider the average 

values of the estimates over all the possible permutations. 

If EN  denotes this averaging process, and if initial 
estimates ;5)Sito are such that 

EN ( 	+ 0 (*) 	 (3.5.1) 

EN  (sji,o) = 	+ 0(0 , 	
(3.5.2) 

A A 
then the final estimates xj, St from applying Iterated 

Buck satisfy 

EN ( 	= 	° (41) 	(3.5.3) 
• 	

EN (sjiv) 	+ 0 (I) 	. 
(3.5.4) 

To prove this, we require the finite sample analogue of 

(3.3.1), together with the following theorem. 	Consider 

a hypothetical method where fitted values and adjustments 

for one iteration of Iterated Buck are found from the 

complete undeleted sample, i.e. are functions of € 5,, sjo}.  

These fitted values are finite sample analogues of the 

	

Xiti 5 for an infinite population. 	Let Xiir) 5A71. be the 

estimates of iipsot  from this method, for permutation It 

of the observations. 

Theorem 3.5.1. 	The estimates 57sor )Sor  satisfy 
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(5circ) = 

EN kict7r) 	SA + Xik 

where 	is OW as N 00 

Proof. 	We treat the deletion patterns (R,11)...)P14.) as 
A 

distinct, and let ;(0  be the observed or fitted value of 

DCQ 	when pattern P. coincides with observation i. 

For the hypothetical fitting  procedure we are considering  

this value is invariant under permutation of the other 

(N-1) observations. 	Hence 

N 
	N 

E 	 1  1!N ( 5? j1t) 	t7* 	 74-1 
I S7 A 

L=1 	1'.=.1 (3.5 .7) 
A 

with the obvious notation for Xijik- 	Similarly 

ENCZ 	z 
A 	A 
X j (N) Xi lit (p1-) • 

(3.5. 8 ) 

Now fix Pp. , and suppose 	Then 
A 	 A 
DC00  )414,0  are the fitted values from the regression of 

Xi and 4 on the variables in. Pr, calculated from the 
undeleted sample. 	Thus by the geometry of least squares, 

A 

N 	(fir) 	1.---  
(3.5.9) 

since the residuals _sum to zero, and denoting  the left hand 

side of (3.5.9) by 	Xj(4) 

4,4 A 	A.  A 	A \ 
( 141,1(Pr) XjCPOR 	Xia(PrV = Sly 	Sid pr 

m (3.5.10) 
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where 	Sik.Nr 	is the jk'th element of 

PTV (PM) S 
and is the residual sum of cross products.between 

and 	)42  . 	Equation (3.5.10) follows by noting 

Sj it. pp  
— C-7  / ( 	I6C (pr) 	Cit 5)CiletPr) 

If 	Xi e Pp , 	1400  = Zi:i 	(i=1 , 2, ...,N), and (3.5.9) 

and (3.5.10) remain valid with SA is, 	defined as zero. 

Using these expressions, (3.5.7) and (3.5.8) become 

EN  ( 	Xj 

as required, and 

	

E„{ Z" 6ckir, 	N Rjrr  ±kT j = 	(s 	5jle.P1) -Orik 
(3.5.11) 

A a 
= XA,0400 NIEubf 	 .where 	 (3.5.12) 

Equation (3.5.11) is equivalent to (3.5.8), since the 

estimate of 	Siik 	is 

±..i 7r)( 	7eftrt)+ 	S.A.P■1 Sjim  

Thus it remains to show that it  is 0(0 	as N co . But 

i= I 

xi.i2 	±% tjtPt) 
I  

	zi ictpr) J 

EN ( 5ej 
et 

= j1.1*) 1.1*) 

So 
	

N Cov,,, I  xin- .2tari =o CO 
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by analogy with infinite populations, or by explicit 

calculation, assuming 	= 	= 0.;&/„, here denotes 

covariance for the finite sample. 

The argument from (3.5.1) and (3.5.2) to (3.5.3) 

and (3.5.4) now follows the corresponding argument of 

the previous section. 	The details, are omitted. Note 

that initial estimates obtained by either (i) forming 

estimates from the complete observations, or (ii) forming 

) 	as in (3.4.1) and (3.4.2), satisfy equations 

(3.5.1) and (3.5.2). 

Two properties of this finite sample argument 

illustrate the appeal of the approach. 	Firstly, no 

independence assumptions are made about the observations. 

Secondly, Theorem (3.5.1) illuminates the geometrical 

aspects of the method of Iterated Buck, by appealing to 

the geometry of least squares. 
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4. ASYMPTOTIC COVARIANCE MATRIX OF  THE MAXIMUM 
LIKELIHOOD ESTIMATES.  

4.1. Introduction. 

In Chapter 2 we found m.l.e's of the means and 

covariances, for an incomplete sample from the MNIJt4)E) 

distribution. 	We now consider the precision of these 

estimates, and hence derive confidence intervals and 

classical tests of significance for the means. 

The standard method of obtaining an asymptotic covariance 

matrix for the m.l.e. of Q  is to find the expected 

information matrix 1p(e)0) , by differentiating the log-

likelihood f(P11) of the incomplete data, and then inverting 

this matrix. 	However the M.I.P. provides a simpler way 

of finding ];(030) which we describe in the next section. 

We apply the method to our problem in f4.3, and discuss the 

resulting matrix, and its potential use in choosing an 

experimental design. 	In X4.4 ,1p(Q )$) 	is inverted 

for the simple case of two variables, and we propose 

approximate t-tests for hypotheses of the form 

: cTiA = Cfrio , 
for a constant vector C . 	We also touch on the 

extension to more general linear hypotheses where C is 

replaced by an (r x p) matrix C 
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4.2. The Expected Information Matrix for Incomplete  
Data . 

This section is an extension of §2.2, and is given 

more concisely by Orchard and Woodbury (1971). 	We 

adopt the notation of §2.2. 	Recall equation (2.2.2): 

E uP,m ;s) I P;eA} 	(P;Q) 	Eitz.(m1P;CIPigni 

We differentiate both sides with respect to 	and assume 

the regularity conditions which allow us to commute the 

derivative with the expectation sign. 	Then 

E l at (P,m;e)  p.9 
A 
	 1(P;9) 	E ae2(6Tip;e) 

The expression Eiumip-Aip,941 is a maximum at e = OA 

so setting 0 = OA 

a e(p,m;e)  p . 9 	= del (P;O) 
aoi 	 dej  

(4.2.1) 

Also writing 
	for 

	e(p"e), 
coy ic sil);e1 = Eicovf(431)1p;0},0 

+ Coy i-LE( Aip;0),E(fokipki;01. 

(4.2.2) 

The left hand side of (4.2.2) is the (j,k)th element of the 

expected information matrix for a complete set of data, say 

Tirt(e)e) 
	

By equation (4.2.1), the second term on the 
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right hand side of (4.2.2) is the (j,k)th element of the 

expected information matrix for the incomplete data, 

Ve )) The first term on the right hand side of 

(4.2.2) represents the "lost information" in the missing 

data. 	Thus  

where 

Tp,m (0:00,,) = J (0,0 OK) + Lip (ej )01,) ,

• Tmip ej, Ok) 	E Cov[C fi,) 	P;61 9 
(4.2.3) 

(4.2.4) 

The lost information, calculated from (4.2.4), may be 

simple to calculate for any set of data P. Then 

is found using (4.2.3). We apply this 

procedure to the multivariate normal example in the next 

section. 

4.3. The Multivariate Normal Case. 

Now write 0 17  (L I 	3 the means and covariances of 

the p-variate normal distribution. 	We carry out the 

analysis of the previous section. 

The log-likelihood of a complete set of data X 	is 

N 

(Dcg -")(x.12--)4)0-* 
1:=1 j=1 12=1 

eractizit 

Differentiating with respect to 0 , we find 

r3Q _ 	c-70 
f:4  

(4.3.1) 
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N 0 

= 	—gtn) [ 0-tm 	zzz a0bq 	2 	L=I P.7.1 SP-1 
(4.3.2) 

where 	Cem 	= ,e=m , the Kronecker Delta. 

0 	,e*m 

The factor (2-Sery4) results from the symmetry of Z . We 

now find the expected information for a complete set of data, 

by finding the variances and covariances of the "scores" of 

(4.3.1), (4.3.2). 	We require the following simple properties 

of the moments of MN 0( 3) : for I 45. t-,S,t)(A-11:1 3 

• Cov (x6.. -frtr) , 	-ius)(xib „at)] = 0 	3 

COV [(X0.--i-tr)(Xi.s7Us), 	—Pt)()C4,14) = art Els“,+ Grra. 0-st 	
( . 3 3 ) 

We find 

ip,,(9,0)= 
[1 

[K) 

N 

Cue.] 
0 

j4: N 62--Serd)(2-S. frs (oiro-"ls+ tr'5crrAr) 

(4.3.4) 

where the elements of (4.3.4) correspond to submatrices as 

‘. j,k,trn,r,s 	; r*s , 
We now find the Lost Information, given by (4.2.4). 	The 

following generalization of (4.3.3) simplifies the 

calculations:- 
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Lemma 4.3. 	Suppose (VI ,V2.,•-•,V0) 	MN0(0,2). 	Let A 
be any subset of the variables. 	Then for 16 r,s,t,u.lp, 

E iCov [(yr, vsvt) IA ; J ;E.1 = 0 3  
(4.3.5) 

E Coy[Cvrvs,\AVOIA;Ej;E3 = urt 175v. — (art- 6et.A)&7544-05u-s3 

+ Tr% Crst 	0-n4.- 0-ry...13 (0.st - CrstA) 	(4.3.6) 

where on the left hand side the inner covariances are taken 

with the variables in A fixed, and the outer expectations 
are over the distribution of the variables in A. In 

(4.3.6), 	crrtA = CovE(vr,W)1A; 1:1 	, 	etc. 

The proof of the Lemma is straightforward. 	Writing 

Et v.; IA ;  E) , 	apply (4.3.3) to the 

conditional distribution of the variables, with A fixed. 

Coy [(Vi .-7121•41) (v5 ?SAX Vt  

CO y R.Vr -1443( VS -JP S'A).) (Vt -Pt-A)(V0,- eu.q).] = 0-rt-A a-s%-ft 0rik A trst.A 

(4.3.7) 

Now expand (4.3.7) and take expectations, noting that 

E(Pi-A ;X) =7 	; E(P.I.APIZA ; 	Crjk 0112-A 

Hence obtain (4.3.5) and (4.3.6). 

Now we can find the Lost Information matrix, by 

applying the Lemma with of :=7Cijlij 	and A =Pi 	the 

set of variables present in the ith observation. 	From 

(4.3.1), 
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`SHIP ( .I 'Pk) C 
	ri ae 	) 	;11 = 	Covi_ rpj' at 1 P;E}  

L=I 	In-1 crjealm(rem R. 

From equation (4.3.5), we obtain 

Li> (14j Pin) 

From equation (4.3.6), we obtain 

I (Tern )crrs) -7--  +I. (2-40(2-Ers) ±21 	eta."0-"0rsw  

where Yamw Olvaimo -- (01v-Crnkrgrum-Dimkei) 

061„,Oiw --(.t3tw°670./1%)(arum — Cr'ckvpi 

Subtracting u1„,(0,0) from Teti  (0 we find the expected 

information matrix for the incomplete data P : 

Ecrimj 

0  II I 
Tp e,)= 	Lt *Pi  

0 	i. 	 N  {2-60)(2-irs) Z (Y/et-AtliNt+Yls.PgY',4 
LL 

( 4 .3.8) 

where V/'k, AL 	rat 
	(0-rs crys.0 
	

(4.3.9 ) 

Properties of Tp(0 ) 0  
First we notice the formal resemblance of 7p(0,0) and 

"Tpiti  ( 0 3 9 ) . The elements 	0-ik 	in Tp,m(0,69 are replaced 

by 	j it . Pi 	in Tp(0)0). Two extreme patterns of missing 

values are : 

• 
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(i) all the variables in observation i observed: 	Viik. 

(ii) no variables in observation i observed 	.;),2-ft== 0 digs. 

Furthermore we can show 

= 	if DC:c) or Zit is missing 
(4.3ao) 

This can be proved from (4.3.9), but we defer the proof 

until Chapter 6, when the result follows by a 

reparametrization of 0. From (4.3.10), we have 

Sp(pi,)10=0 \i/k, if X:ij 	is missing in all the 
observations. 

Tp(crjk ,5-erA):--• 0 V Q,yn ) 	if X-V  and t are never 
observed together. 

In both these situations we have a lack of information 

about the parameters, and the expected information matrix 

is singular. 	This parallels the results of 3.3, 

concerning the non-uniqueness of the solutions of the 

limiting equations of Iterated Buck when two variables 

are never observed together. 

The expression ip(e)Ohas potential value in certain 

design problems. 	For example, we may wish to estimate 
I 

the means of p 	correlated variables, but the nature of 

our experimental units limits us to measuring any r of the 

p variables for each unit, where 1<r..1p. 	How do we 

allocate variables to units, given some a priori knowledge 

about the covariances between the variables? 	For the 

pattern (PA,...) PN) , we have 
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-1 	-I 
T9 (P  VA) 	E Y E 	where ■irs  = 	(Yrs (3-rs.pi) , 

deb J-p()A,,t) = (detl) 1  AO/. 

Thus if det144A) is considered a good overall 
measure of information about the means, a design should 

be chosen to maximize detV. 
Another application of the matrix V0,0) lies in the 

calculation of confidence intervals and tests of 

significance of hypotheses concerning the means. 	This 

involves the inversion of T(0,0). We now do this 

analytically for the case of two variables, and derive 

some results from the resulting asymptotic covariance 

matrix. 

4.4. The Two Variable Problem  . 

Suppose we have the following paired data, with 

extra observations in one or both of the variables: 

rtc  observations ( Xii, Zia) 	t=1)2,-• 	ft) ; Ac • 

a, observations ( 	- )3  (C-7.1101,11‘41)--,1/44111); (4.4.1) 

R2  observations (- 	742)1  (i.:-.11c4f141) 	N) ; 	2 112: 
N • 

so that 	Ac4 A l A2 -4  I • 

	

First we find Tp 0 ) 	. From (4. 3.10) , 

= b& 
Y119.- 	t 11.1 	Yli. 	4 	' 

2 2 

Also 

 
rr  	Z  	ars-1  	Yi22-2  	012 •  1.21 3:. 



Ye'  4) =
[rc + 	eg 

N Kt 
Jk 0-22 

Ac cra 

[Ac-F Aiti—el 0-21 

where 

(4:4.3) 
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So 

TP (NA) (e,e) = 	
Tp(r x)_ 

where Tp(i'l  
r2 	 Q  ± 

Ld qj 
n/ [0 0 

0 cr 1 j 

N [Aci-Alci—)]oV 
—Ace14 [Aci-AL -r)]0 

e = Corr (Xs )(1). 

    

Similarly — 
N Pkc+Al(1—(2)2J  42 	—2 Ac e lit: 0'121 	Ac e ov P22 ;: 

	

ezo_e -2Ac et6i: of: 	2 Xc ( I 4  e2) aTst  67i. 	
.4 .4 

-2Ac e 0-21 G. 
Tp(r:E) = 

	

A, Clop tr:1 	— 2 Ac t%  cr-21 cri-21 	LA, i.,\2(1-er] tf: 

Inversion gives the asymptotic covariance matrix 

fftm ) 	0 

(i)  5°)  = 	‘10446 	V(I)E)] (4.4.2) 

3 

N+A26.-VAT:' 	[N,.+ X/(1-01 an. 	Ac 

ik-t- A2 - 	A,(1"{ + 4- of AcArt-V2+)0.26-01] trn 722 [ACIA16-01622Ci 

AC. Ent 	
LActAi  - 	tr22. 012 	 EACIA1(111 Crn 

( 14 . 14 . 	) 

where 	fCt  = (Ac4A1)(Avotz)-Nkrand 	14 = (Ae4A(Ac-az) -AtAz . 

We now concentrate on (4.4.3). 	Rearrangement gives 
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A 
V ar 

asymitt- 	(711  { 	Adtz P7"  
ni 	(AcfMacth)- Xi X2 el 

(4.4.5) 

and the second term of the right hand side of (4.4.5) 

represents asymptotically the gain in precision in using the 

extra observations on X2  to estimate )1A1; for the naive 

estimate, the sample mean of XI over the first ne-i-ni  
observations, has variance nen, 	This increase in 

precision increases with (12  and as el  .1) / A 	
N-- 

This is as it should be. 

Now suppose we wish to test the hypothesis: 

Ho : 	=pto 

against ageneral alternative. 	A simple procedure is 

to construct a test based on the m.l.e. of p,. Asymptotically, 
tv N /A:0 , (dkv+A20-t93(74  N K, 

We substitute m.l.e's for e)014 	and 0-21 

Ai f° 	

a  N(o,i), 

in the 

sr* 
Hence 

denominator of Z,. We can use Z, with standard normal 
tables to obtain confidence intervals for /43 and to test Ho. 

For small samples this statistic suffers the usual 

drawbacks of a normal approximation, and hence we seek to 

approximate to a t-distribution. 	From (4.4.4), after a 

little manipulation, we have 

w A 'ICY*. 2  e r 	rAc  A,  
v ar 	= 	no- L 	K2  

(4.4.7) 

FA.  

under Ho. (4.4.6) 
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This suggests that approximately 

Z 	kv 
(4.4.8) 

under the null hypothesis, where tv is the standard 

t distribution with I) degrees of freedom, and 

nc+ni- 

[ - t 
A21 	

(4.4.9 ) 

In (4.4.9) we replace (44n, by ne+ni`.1 , 	so that when 

110111 
I1  P 1  rrte, =0 , JAI 

4r,L 6'
0  

4 

and then V zrtarti-1 is such that (4.4.8) is exact. 	In 

postulating 	we ignore the fact that the factor of al  

in the denominator of 27, has to be estimated. 	Nevertheless 

(4.4.8) should be an improvement on the normal approximation. 

It would be possible to construct the generalized 

likelihood ratio 631x) test of Ho. The resulting statistic, 

like Zi,does not have a closed form, and it requires more 

computing thanZ,since two iterative processes are 

involved for estimation under the null and alternative 

hypotheses. 	Both tests are asymptotically efficient, 

and for small samples an approximate distribution such 

as (4.4.8) appears to be less easy to construct. 	We do 

not consider the g.l.r. statistic here, although a 

comparison with 2 	would be interesting. 

The same remarks apply to the problem of estimating 

the difference of two means, S = P 
	

We propose 

estimating 	by its m.l.e. 
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A A  A 

= XI 71  

where 
A 
xi is the mean of Yj over the final 

observed or fitted values found by Iterated Buck. 

The asymptotic variance of 	is found from (4.4.3.): 

Var 	= 6 g̀2  = Cli (TH t C22  (722 — 2c12  cm. 

Ac+A2(I—e) 	) C22  = Ac+A'(1—e2) 	• 
N IC, 

Ac 	 (4.4.10) 
NKI 

Thus to test the null hypothesis 14: . S = 
	or 

to find confidence intervals for S) we propose the 

statistic 

z 
	

6-g 
	5 	

(4.4.11) 

A% 
where 01 is the m.l.e. of O 3 found by substituting the 

m.l.e. of ]: in (4.4.10). 	As before under PO) Z 

is asymptotically normal, but we find an approximate t- 
A 

distribution from the asymptotic covariance matrix of 1: 

The variance of 
A z 	A A 	A A A A 
rj's z: 	+ C22 012 	

,.., 
Ci2  012  

is approximately 

	

C,? vat + en 82.1  cov 	+ 	Var an) 

AZ I/ A 	A A r 
1+ 	var 

/ 
o-m) — 

L 	
cm  wv 	, am) — 4 C:2 c,2Cov(e'22, 

Substituting the corresponding elements of ri(E 3 

C„ 

C12. 
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for the variance and covariance terms, we obtain an 

expression for Vox 8% . 	Writing this in the form 

4 

Vas-  O 	= s 

(4.4.12) 

we assign k's 	degrees of freedom to the approximate 

t-distribution for 2 	Again we ignore the approximation 

in estimating the Cipe  S and the variance terms in 	. 	We 

find 	Ks 	for two special cases:- 

(a) )■c 7: I 	A1=-. 2 =0 • 

For complete data 	0% = 	( 0-11 1-  012 2 012) , 	and 

z. 
Vat ( 	= fi3 [ 	2 c4 + 	+ 2 o ail (IT) —4.6„ma — 

. 

Hence 	k's = N . 	In fact Z 	is simply the paired t 

statistic, which has N—I degrees of freedom. 	To bring 

the approximate method in line with the exact distribution 

for this special case, there is something to be said for 

assigning ks-1 	rather than k's 	degrees of freedom to _ 

the t-statistic, in the general case. 

(b) Ac= . 

With no complete observations, we are left with two 

independent samples of size ni 	and n1 3  i.e. the Fisher- 

Behrens problem. 	As pointed out in the previous 

chapter, we have no information for estimating O. 

Nevertheless Iterated Buck converges slowly to a solution, 
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A 
and convergence is speeded up by setting 07/1:0 

after each iteration. 	The resulting estimates of pi and 

are the sample means, and the variances 	Oi 	and Cht 

are estimated by the sample variances. 	Also 

co  — 41171 	) C22 	n
i
l  )C2 = 0 3  

and 

(VI 4.202  
= 	k 	n,  

sail 4. 

(4.4.13) 

which is similar to the approximate degrees of freedom for 

the Fisher-Behrens problem suggested by Welch (1947), 

equation 26, p.32:- 

- 	
_ fi 	- i. 

i 	

) 

inZ 75 TRTIA 

gi.21z 
I 

(4.4.14) 

ks  and 5 	differ in that 'f takes into account the 

estimation of?' and )L42. 

Alternative assumptions about :E. 

The statistic Z 	belongs to a class ed of statistics 

of the form 

ZR = 
(4.4.15) 
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A 	A 2. 
where SA , rYSA are m.l.e's of kat under 

some assumption A- about the covariance matrix Z . A 

general approach to the problem of estimating and testing 

is to find a statistic in 	e 	for the relevant assumption A, 

and then find an approximate t-distribution, that is an 

appropriate number of degrees of freedom, VA. 

With a reasonable proportion of complete observations, 

a lower bound for VA is found by considering the degrees 

of freedom when incomplete observations are rejected. 

The statistics in 1. formed from the ne 	complete 

observations are described in Table 1. 

Assumption about 	(A) Statistic Degrees of Freedom 

Al : 2: arbitrary. 	paired t 	nc-I 

A2 : E known; f unknown, 	paired t 	nc-1 

A3 : 	unknown; ?=0. 	Itunpaired t" 	(ac-.1)< 	< 2(ne-i) 

A4 : gtz  known; 	0 • 
	 "unpaired t" 

	
(nc- 

A5 : 2:known 	normal 	a0 

Table 1. Statistics for testing 1-1t:S40., based on the  
pomplete observations. 

Also A3 and A4 are analogues of A3 and A4, when 	is 

non-zero and knowr4 with the same degrees of freedom as when 

e =0. 	Assumption A3 is the Fisher-Behrens problem with 

equal sample sizes, so 1413  is formed by setting ric =rti=n2 
A 

in (4.4.14). 	In all cases S is the difference in sample 

means, and "paired" and "unpaired" refers to the estimate 

of variance. 
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Now consider statistics in e which use all the 
data, and compare them with other approaches in the 

A 

literature. Lin and Stivers (1974) finds SAs s the m.l.e. 
of S when 2: is known. 	This is normal, with a 

variance given exactly by (4.4.10). 	For unknown 2: 2 
2 

they propose estimating S and O 	by substituting 

the estimate of 1: found from the complete observations. 

The resulting statistic lies in C if n, or n2 is zero. 
They propose nc-i degrees of freedom for the approximate 

t-statistic. 	With extra observations in both variables, 

this statistic differs from Z in the estimate of  , which 
does not use all the available information. 	An iterative 

calculation is avoided, but for small numbers of complete 

observations one would expect Z to be more powerful. 
/ 

Morrison (1972) tests Ho for extra observations in 

one variable only (say 111=0 ), and an assumption about 2: 
similar to A4 : 

2: = 	el 2 e known, 0'1  unknown, 

(4.4.16) 

He calculates the g.l.r. statistic, and slightly modifies 

the estimate of or to obtain a statistic 

ZM = So  
Crsm  

which is distributed exactly as a tkric3  distribution under 
A 

14(1)440 . In fact ZM is nearly in e , since Spi can 

be shown to be the m.l.e. of S 	under ( 	and 
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is nearly maximum likelihood. 	For unknown e , Morrison 

(1973) replaces 	by its m.l.e. when the variances are 

assumed equal, viz. 

— 
2 an.  
an  4 ctu 

where A is the S.S.C.P. matrix based on the complete 

observations. 	Thus the estimate of g is still 

maximum likelihood. 	Morrison proposes ne-1 degrees 

of freedom for this statistic. 	These results may 

be compared with A2 and A4 of the table. 

The general approach of this section can of course 

be applied to a hypothesis about any linear contrast of 

the means, for two or more variables. 	Furthermore to 

test the more general linear hypothesis 

CIA = C/40  

for a constant (rxp) matrix C ) we have 

C (14 - pa) ar PIN,( 3 C (ie ,p)C) 
from which we can construct in the usual way a test 

statistic which is asymptotically Xa  with r-  degrees 

of freedom, under 140 
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5. MULTIPLE LINEAR REGRESSION.  

5.1. Introduction. 

So far we have treated the variables YA,...24 

symmetrically; now we write )(:-=-. 	and consider the 

regression of )( on )60(2,...,)(-1 • 	First consider 

the following model:- 

1-1 

qi, j.0  (3i 	+ 

EW = 0 
	 3 	

(5.1.1) 

E(6iiee2) 

where 	1 	N , 	and 
	

X i.0 	is identically 

equal to 1 for all i, so 00  is a constant term. (The 

analysis which follows is easily adapted to a regression 

through the origin) 	We write 
2)T 0 	( (30 clt • • • 3 (312-1 

the parameters of interest, and compare estimators of el, 
when values are missing in the dependent and independent 

data. 

We can estimate el, by maximum likelihood. 	For an 

incomplete sample from PAINI.(ulE) 	as in Chapter 2 writing 

	

el= (1.44,41.."cru,04,01,3 ...)cr"), 	is a (1-1) vector 

function of 0 	and hence the m.l.e. of lit 	is 

A 
Of = CO) 

(5.1.2) 
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A 

where 	0 	is the m.l.e. of 9 , found by M.L.N. 	In 
A 	 A 

practice 0/ 	is found by pivoting on the matrix I. 

However the multivariate normality assumption is 

often unrealistic in the regression situation. 	Indeed 

some of the independent variables may be points of a design 

matrix, and therefore fixed. 	Thus it is desirable to 
A 

weaken the assumptions under which el is the m.l.e. 

of 	04 . 	We can certainly do this if the data 
1,1k. 

are complete. 	Then V 	also maximizes the conditional 

likelihood of the data with the independent variables fixed. 

No distributional assumptions are needed for X/jX2)• • •.) Xt7-1  

and we are left with the standard model (5.1.1) with an 

i.i.d. normal structure of error. 

With missing independent data this model is not enough, 

since we require a distribution for missing independent 

variables in order to use the information in the 

incomplete observations. 	However if a set of the 

independent variables, say 	XI  ,X„...)  Xt- (t- 0-1 ) 	are 
/ .1/4 
V present in every observation, then 	maximizes the 

conditional likelihood of the data with 

fixed, so no distributional assumptions are needed for these 

variables. 	This is stated more generally and proved in 

i5.2. 

For Br  given by (5.1.2) to be the m.l.e. of 01 we 

require a multivariate normal distribution for Y 	and the 
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independent variables which are sometimes missing. 	In 

§5.3 we consider a general distribution for the missing 

independent variables, with a normal structure of error, 

and we see how this affects the estimate of 0, found by 

applying the M.I.P. 	In general M.L.N. no longer finds 

the m.l.e. of 01) 	but since it fits the best linear 

approximations to the missing values, it remains a valid 

method. 	The m.l.e. found by solving the fixed point 

equations is generally much harder to compute, and this 

is illustrated by some examples. 

Whereas in §5.3 we generalize the distribution of the 

independent variables, in §5.4 we generalize the 

distribution of the errors. 	Nelder and Wedderburn (1972) 

give a concise formulation of how to construct and solve the 

maximum likelihood eauations, for regression with a non-

normal structure of error, when the error variance is 

proportional to a known function of the mean. 	The 

equations are solved by Iterative Weighted Least Squares. 

In §5.4 the method is modified to deal with missing values 

in the independent variables. 

Both for the "maximum likelihood" and the "fitting" 

.approaches to the problems of this chapter, we cannot 

proceed without a distribution for the missing variables. 

So far we have estimated this distribution from the data, 

by maximum likelihood. 	But it is desirable from a 

theoretical point of view to provide a framework for 

incorporating other information about a missing variable 

into the analysis. 	Consider the following 5 observations 
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on 3 variables, with 	)( 	the response: 

.
? x,_11:: 1  [2 . 2 2  [3.1} [ 0.6 I 1 2 . 8] 4.2 • 

Y 1.3 1.1 -2.0 2.9 -0.5 

A regression of Y on X: and )(z 	using the 

4 complete observations, gives c(/1 	- rr . 	Using 

this information, the fitted value for 1:41 is about zero. 

But suppose we know that X 	is a controlled variable, 

and we have external information that indicates a value of 

4. 	We may wish to incorporate this by some prior 

distribution for X,,  , with high probability at Xiii=4. 

This will evidently reduce the goodness of fit of the 

regression equation. 	The hazards of such a procedure 

are obvious, and the example is illustrative rather than 

practical in nature. 

A theoretical basis for such an approach is outlined 

in §5.5. 	We construct a prior distribution for the 

missing independent variables, which may be regarded as 

subjective, or as having a frequency interpretation based 

on past data. 	We also allow the prior to depend on 

the independent data, but not on the values of the response 

variable y 	In this way the maximum likelihood 

methods we have been considering are included in the 

general framework. 	The prior distribution is converted 

into a posterior distribution by the dependent data, via 
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the model (5.1.1) with normal errors. 	Hence data on 

the dependent variable have a different logical status 

to the independent data, which we consider as "prior 

knowledge". 	The resulting structure is flexible, 

but its usefulness will depend on the feasibility of 

specifying the prior to a practical situation. 	Some 

applications are discussed briefly. 

Finally we include a brief note about the uses of 

M.L.N. or Iterated Buck for estimating the parameters 

of a Multivariate Linear Model. 	The ideas are a simple 

generalization from the univariate response variable to 

a multivariate response variable. 

In this chapter we classify each variable Xv 	in 

the data matrix as "present" (P) 	or "missing" 00, and 

"independent" (7) or "dependent" 6:0 . 	We adopt the 

following notation, applied to (a) all the data and (b) the 

ith observation.. 	The marginal sets areunionS over 

classifications, so 	P = go./1), 3 	etc. 

(a) All the data: 

present.: missing 

independent 

dependent 

(b) observation i: 

Pr 	M 

P 

present: missing 

Pr.  
independent 	 t. • 	c . 	_ .._..1.. _ ..... _.. 	 

dependent 	P vi 	PA h 	
ii 

AIL 

o 
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• 

5.2. 	Maximum Likelihood Estimates of 01  

We divide the independent variables X,X2,-.A., into 

two groups: 	Xc 	are the variables present in all N 

observations, and XI  are the variables which are sometimes 
missing. 	Let Pc 	be the set of data on 'Land P1 	the 

set of data on X/  , 	so 	Br = pc u PI  . Let 	t(P319) 	be the 

log-likelihood of the data, for some distribution for P 

indexed by 0 	If the factorization 

(P;0) = ti(PI pc, ; 01) + e2  (pc ; 02) 
(5.2.1) 

where 0% 	and 02 	are functions of 0 	is such that t"1 

and 14,2  are disjoint sets of parameters, and gooll =glog.,  wg ,  

then the estimate of A 	found by maximizing tt(pia 3 0,) 
is the same as that found by maximizing up; 0) with respect 

to e 	and setting A=10(4). 

-0-, Now suppose the distribution of Y 	given X;  )(2). 

,is indexed by 01. We do not specify O 	in this 

general formulation butin the context of this chapter GI 

represents the coefficients of a linear regression, and 

parameters associated with the residual error. 

is a function of ,51 , and so the m.l.e. of el 	is 
A 

el 	= 	
A 

COI ).] 

Now 

where 01  can be found by maximizing t(17;0) or ft (Pia ;0!)- 
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Now suppose 0 are the means and covariances of the 
A 

multivariate normal distribution, and 0 	is the m.l.e. 

of 0, found by M.L.N. 	Then for the distribution of Y 
given 	XI )  X2  ) 	Yo-t, 

(5.2.2) 
j""6 

L. 4. et N(0, 61) 

A 

The above theory implies that the m.l.e. 	01(e) 
A 

found by pivoting on the estimated covariance matrix 1: 
is also the m.l.e. of a under a model which fixes PC) 

and results in a log-likelihood el(PIR;A) 	which 

satisfies (5.2.1). 	This model is given by (5.2.2), with 

the additional assumptions: (a) 0(11X0 	is multivariate 

normally distributed, with constant covariance matrix, and 

a mean which is a linear combination of the variablesin A; 

(b) the observations are independent, in the sense that 

the distribution of (P1110 	factorizes into N terms 

corresponding to the N observations; (c) the deletion 

pattern is random, and in particular (Pi IR) 	has 

its marginal distribution after the missing variables have 

been integrated out of the distribution of (X1Pc) , 

given by (a). 



83 

Two extreme patterns of missing values are of 

some interest. 	First if Pc  is empty, we are led to 
• the full multivariate normal model of Chapter 2, as 

one might expect. 	If PerPx, that is all the independent 

variables are present, then the independent data are fixed, 

and we have the model (5.2.2). 	Observations with ) 

missing contribute no information to the estimation of el , 

and Iterated Buck is equivalent to ordinary least squares 

on the complete observations. 	Even in this situation 

the method has some computational value. 	Orchard 

and Woodbury (1971) suggest that Iterated Buck may be quicker 

to compute than a least squares analysis, when extra 

design points can be added to make a balanced design. 

Such a procedure is equivalent to standard missing value 

techniques as used by Yates (1933), Tocher (1952), and 

others. 

5.3. Regressibhvurith Normal Errors. 

We have seen that in order to estimate the linear 

regression of y 	on )60G,.."4.1 by maximum likelihood, 

given a random deletion pattern, our model must include 

the following characteristics. 

(i) A distribution for (YI) A2,-A-Ibindexed by an 

unknown parameter 0, ; 

(ii) A distribution for (ma possibly indexed by an 
unknown parameter 02- 

We apply the Missing Information Principle to a model 

of this type. 	Let 	t0( )  1 P. ;OA) 	be the 

log-likelihood of a complete set of data. 	Then according 
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to the principle, we seek a fixed point of the 

transformation 95 ) where 	(9tA AA) 
	

is defined as the 

value of (el )el 	which maximizes 

EA [ fUX/)vi P. 01,02)..] ' 

Here EA refers to expectation over the conditional 

distribution of the missing data 11 3 given the data PI 

at assumed values (01A)02A) of the parameters. 	Now 

Ell{ 	x') 	Pc 3 01,92)] = EARIC9 1 X,01)] 4-  EA re2.( XII 11; 02)] 
(5.3.1) 

where ti and 	are are the log-likehoods of a complete set 

of data, corresponding to the components (i) and (ii) of 

the model given above. 	Hence if the parameter space 

factorizes, i.e. 

=  
g(6„8.) Q®1yg 02. (5.3.2) 

then 0 is equivalent to two separate maximizations: 

(a) maximize 	EA [ el(111x1. 00.1 with respect to el, 

leading to Cm , 

(b) maximize 	EA. R Oef Pe j 0211 with respect to 02,  

leading to 02M . 

We consider (5.3.3) for the model with normal errors (5.2.2), 

without specifying the distribution of the missing 

independent variables. 	Then 

(1 XI; 	— 2-I 	[ Y‘• 	(3.Pcj 2 Z N 6 	t y + cons, 

so (5.3.3) is equivalent to solving 
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E 	agi 	E 	 Z (311XL12)1} 	0 , ( 03 —) 17-1)  
A 76/ 	-Y A 1=1 - 	Wro 

	

F 	I 	\ 	- 0 

Eft ( 01) = 	FA L 2 6-1,4  ft,  I 9 	(3,,x0,)  - 	-k`a 

Hence for the assumed distribution of (Mv 	eiA)02A) 

we fit 

"kc jA 	Pr: ; 	302A) 	

(5.3.5) 

if 	is missing, and then form the S.S.C.P. matrix of 

the completed data. 	Then for each observation i, we 

add to the (j,k)th element of this matrix the adjustment 

Ca (xcj,xii2 tPi.; 44,028) 	ilk :50 . 	
(5.3.6) 

This adjustment is non-zero only if both 	Xi:j 	and XCk 

are missing. 	We then pivot on this adjusted matrix in 

the usual way, to obtain a new estimate 0u,, 	of 0. 

Thus the influence of the distribution of the 

independent variables in the estimation of 0, 	appears 

solely in the resulting fitted values and adjustments of 

(5.3.5) and (5.3.6). 	We have seen that for the 

multivariate normal case the fitted values are linear 

combinations of the data, and the set of adjustments are 

the same for different observations with the same pattern 

of deletions. 	We consider this to be a good approximate 
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A 
procedure for many other problems, particularly when Xj 

can be well approximated by a linear combination of the 

variablesPi. 	For non-normal distributions, the 

estimation of 02 and the fitted values and adjustments 

often involves a lot of computing, as can be seen from 

the examples which follow. 

Example (5.3.1). 

We wish to estimate the regression of Y(ItX3) 	on X 

and X2, and we suppose that the distribution of (YIY13)(2) 

is normal, with mean (30(31 X1 4c32.)(2 , and variance 01. 

The data consist of N independent observations, in which 

X and 	Y 	are always observed, but X2 is present 

for the first flc observations, (1=1,2,...I nc) 	and 

missing for the remaining N—rte  observations 

We suppose X.2  is a binary variable, and 

= 	= 1 1 xi;1) 	I - Pr ( :42 = 1 

where 
_cP ( Ao-r a, zA)  

I 4- exp (A0+ Ai xe,) 
(5.3.7) 

The parameters (A0,X3 	are unknown, so in the general 

notation 

( (30) 	(4)/- 	Oz = (A., x,)7  . 

For such a model, the distribution of the missing data 

given the data is given by 
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e °4  = I I 	YL) 
C25i4  6-  OD e-9514. 

(5.3.8) 

_ 1 
where 	

/ 
0-,;x 	130 - 7CiA f'7-)1  

A  

- 	 1° — 3( 

[ x.„ ta 	q- 	frt (1- v).] 

[ 5`ciart k + - 5:̀ Qrt 	PO] 	( 5 3  9 ) 

Also 	(2(PIIPc ;192) 

14 

SO 
	E8{ e2(r1ipc; 01)1 = i=1 

A 
where 	E(x I x, 4 _ 	; ;  eime2a) • (5.3.10) 

Given assumed values of the parameters, we find the 

fitted values (5.3.10) and the adjustments from the 

distribution given by (5.3.8), and hence find a new estimate 

of Of • 	The new estimate of O 	is found by maximizing 

(5.3.9) with respect to A0 and A, 	This involves 

a logistic analysis of the model (5.3.8), for the completed 

set of data. 	The algorithm usually used is iterative 

weighted least squares, but probably one iteration will be 

sufficient within the overall iterative scheme for solving 

the fixed point equations. 
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Notice in this example the lack of distributional 

assumptions about X1 which is always present. 	In the 

simple case with one binary variable missing, the 

specification of the model is straight forward and the 

analysis is not too involved. 	With several missing 

binary variables, which may be correlated, the logistic 

model tends to create a lot of nuisance parameters, 

and the analysis is complicated by the inconvenient forms 

of the marginal and conditional distributions required 

for different patterns of missing variables. 

Example 5.3.2. 

Now suppose we have a set of N observations 211,01 

where 

= (Zit, 	. • • 	Lid T  /1.0 M I, itAi) 

61i I 24) 	ti N(lk, 0-5,2) 

P-I 
= 	1:i 

• ( 5 .3.11) 

In (5.3.11) , :ri:j = xij(zi.) 	are known functions of the 

underlying 2-variables, for example polynomials in the 

in the components of 	. 	If cr4-1 and /g 

(j=1,2,...,p-l), we have the multivariate normal model 

of Chapter 2. 
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Once again the fitted values and adjustments required 

for a new estimate of 0, are given by (5.3.5) and (5.3.6). 

ThedistributionoftheX)s is in general not simple, 

and the calculations may involve numerical integration. 

The parameter ez here represents the means and 

covariances of the 'S,and the equations for a new 

estimate Out of Oz are 

A 	 N A 
= N 	tjA 

!!jky  - I 714 	A V 	 A 
- N 	 iiitg-)(210) 	akittit-P ) 

where 	= E [ 	R obe2A 

	

j k A P‘ 	Col 	Zia  I 	; 
If yi is observed, the distribution of the missing data 

given P 	is in general non-normal, and the fitted values 

are not linear combinations of the known variables. We 

illustrate the problems of finding m.l.e's for such a 

model with a simple regression with a quadratic term. 

Example 5.3.3. 

This is a special case of the previous example. 

The model is 

yi = 	+ 	+ (32 Z42 4 

)41 = 	) 42 = 70. Da3 

Zil 	dM 	IPI ) 	(CH 012 )] 
2i2) 	 2 	 Viz 

6t; 	kt( 0 	) 	
(5.3.12) 
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We consider the fitted values and adjustments for 

different patterns of missing values, given assumed 

values of the parameters. 

Case 1: Patterns with X1 (and hence )(3) 	present. 

The distribution of 0(2)Y 1X1) 	is normal, and so the 

fitted values and adjustments are the same as in Iterated 

Buck. 

Case 2: 	y and X2 present, X1 	missing. 

For the fitted values and adjustments we need the mean 

and variance of XI and 	or equivalently the first 

four moments of the distribution of (XilY,X2) 

Now the density function 

Hence 

1)(X, I Y1 X2 ; Ouve2A) cc ])( Y I X0x2 ; Dm) I? (x1 IO2A 

( IY,X2, CAL) ot e0 1— 2A (y—FoR -t),Ax,— 2A X2 -§Akil  

— 	JAI/02  1 

E X," I YiYa j 0,A) OzA) = 	IrA( ̀ I) x2)  
ToA(Y) x2) 

2 

where 

(Co

Y, x2) = 
	exp{--1-2 	x 	133,4 - (xrpiAl dx  .20- 	A IA I 	2 	i 

2cniA 	t* 
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In practice the integrals :If%  are reparameterized 

to depend on low distinct parameters. 	Thus simplified 

the values of 104,11A and I2A  are found by numerical 

integration for each observation with this deletion pattern. 

The integrals 134  and 	are found from Ioe  Ila and 124 by 

using the identities 

f°3  (x) e-46° ax =  -00 
\ -40) 

f 'c* a ( -wx)) 	= 	(I - x 	e dx 0 , _00  a-„ x e 

where KX) is the exponent of the integralsLA. These 

expressions are also useful for checking the subroutines 

which carry out the numerical integrations. 

Case 3: 	y present, X, and X2 missing. 
,--, 

For such a pattern we.require moments of the distribution 

of (Xs3X2IY) , which is not bivariate normal. 	Calculation 

of these moments involves double numerical integrations. 

The information recovered will only improve the estimate 

of the mean of )/ 3  and in practice one might hope that 

this information is small, and that little is lost by 

discarding these observations. 

Case 4: X2  present 	y 	and XI 	missing. 

Again double numerical integration is required. 	As in 

the previous case the information is heavily dependent,on 

the multivariate normal assumption about the distribution 
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of the 	's . 	With the dependent variable missing, 

the value of these observations is even more questionable. 

We conclude from this example that 

(1) Maximum Likelihood for higher order polynomial 

models requires in general much more computing time 

than Iterated Buck. 

(2) The maximum likelihood equations should be treated 

with discretion when dealing with "sparse" observations, 

with several missing values; if these observations 

are used, the distributional assumptions should be 

tested by plotting or goodness-of-fit techniques. 

Example (5.3.3) is perhaps the simplest practical 

example of a higher order polynomial model, for comparing 

the maximum likelihood estimates with those found by 

Iterated Buck. 	Observations with Y and XI present, 

X, missing, can carry considerable information and a 

pattern of deletions can be constructed with every pair 

of variables observed together, but with no complete 

observations. 	We report on a simulation study based 

on this example, in Chapter 7. 	However the practical 

importance of these techniques is greater for problems 

with more variables. 

5.4. Regression with Non-Normal Errors - the  
Generalized Linear Model. 

In the previous section we considered models with a 

normal distribution for 	(YI)(IX2,...,X1,-)). 	Nelder and 
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Wedderburn (1972) consider a more general class of 

regression problems, which arise from assuming the 

following Generalized Linear Model (G.L.M.). 	The 

density of (ilOczoXi2,..., 34) 	has the form 

(Vt.; 	= exp to‘c0,)[ yz e4— Voi.)+Ift(yi)J-i-g, c.)} 
(5.4.1) 

where 	are are considered nuisance parameters, for example 

the variance of a normal distribution, and O is a scalar, 

which depends on the independent variables through a 

systematic component 

Jr: 
Si, 	(3j xci 

combined with a known link function 

 

(5.4.2) 

 

( 5.4.3) 

Finally the observations 	gt„ are 

independent. 	The density (5.4.1) characterizes the 

unexplained variation in Y, and includes as special cases 

a Normal, Poisson, Binomial, or Gamma distribution of errors. 

For a complete set of data, we can find the m.l.e. of 

(11 	((3°'P')"".)(31,--1). If if 
	

is the log-likelihood of the 

sample, then by differentiation we find 

= ce(4) 	tot,(x9 —)1,) 
, 	(t ) ()(1  (5.4.4) 
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N 0.4)  

	

actiapt,/ 	° 

(5.4.5) 

where the weight kh is defined as 

	

tA), = 	M'S 	 (5.4.6) 

	

and )14,A 	are 	proportional to the mean and variance of 9: 

(5.4.7) 

g"(e.i.) = ce(ck,) Var (90 .7.. VI; 
(5.4.8) 

These equations are found directly from (5.4.1). 	The 

likelihood equations result from equating (5.4.4) to zero 

from j=0 1,...,p-1. 	One way of solving them is by 

Fisher's method of scoring. 	Given current estimates 

PA of 0 	calculate 

= ECIZ4.)] = PI . . 	)7-  apo' 	' • 	app., (5.4.9) 

from (5.4.4.) and (5.4.5), and then form new estimates 

(3  + 4 A 	) where 

M S(3 = c 	. 	
(5.4.10) 
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Then proceed iteratively. 	Alternatively, the estimates 

can be found by Iterative Weighted Least Squares (I.W.L.S.). 

Add ?Alp to both sides of (5.4.10), using 
N 

Om 	= (A) 	Z w, zci ,c,,, 	= a (o) Z to, xo  S. 

We obtain 

N 
2: Z. 	xoci.h (taw+ spk) = Z "cm , ,= + k=o 	 6r.1 (5.4.11) 

where the weights (A); are calculated at each step from 

(5.4.6) and 	' is a modified dependent variable: 

(5.4.12) 

Note that o<(0o) does not affect the estimation of pj 	and 

00  is not estimated in this process. 	Nelder and 

Wedderburn adopt a criterion of goodness-of-fit based on the 

likelihood ratio, called the deviance and this is in 

general only proportional to the usual (asymptotic or exact) 

statistic. 	However for Poisson or Binomial errors, 

is not needed. 

Now suppose we have an incomplete set of data, but all 

the 0 are present. 	As in the previous section we assume 

the deletions are random, and the missing independent 

variables have some distribution indexed by 02 . 	For 

the distribution of (YIYI,X2,...) XI)-I) 3 



E E ( 	
N 	r 

(Ah .0C1;i X4k) 	= Z EA L 	"Cid (94/0-1—  
Wt) kco (5.4.14) 

• 
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Assuming el, 02 are disjoint sets, in the sense of (5.3.2), 

O(OA)is given by the maximizations (5.3.3) and (5.3.4). 
Again we consider the maximization of EA [ ti(1. ()(1;0A 
with respect to 0, for assumed values (0m$ 0m) 

	
of 

the parameters. 	Differentiating, we must solve 

EAR $u = EA [ 
N 

c,(0) i.2=1 	 (—A) (j=0,1,...p —1) 

this from (5.4.4). 	These equations can be solved by 

adapting the method of scoring, so that (5.4.10) becomes 

EA (M)So = EA(c) 	
(5.4.13) 

The equations for the increment in f 	are 

The evaluation of (5.4.14) is complicated by the fact 

that kk,/k and gi 	are in general functions of the Xi,j)S, 

and hence not constant with respect to EA . We propose to 

approximate (5.4.14) 

$1-1 	111 
WC( XitifO 

L=.1 	k=0 

tCtaA 	= 	E(x,j1P6 where 

COO = COVR 

by 

A 
[ 416Z  —ill)] 

(5.4.15) 

(5.4.16) 

. (5.4.17) 

Z r-lkA 	CLikA) g. 1% = 
(=I Si k4/ 

k,(6) 

Xij 	xL1c2) I 	; 
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Wi 
This assumes that approximately , ( 	and 	

04) 	
are 

fixed with respect to EA . The weights IA4 are in 

general not too critical to the answer, so this should be a 

reasonable approximation, particularly for the important 

sufficient statistics case, when 	Si. • For then equations 

(5.4.6) and (5.4.8) imply that 	IA.= 1t5. 

For the normal errors model (5.2.2), 	= 	.7. 1, 

and (5.4.15) is exact and can be solved non-iteratively. 

The modified I.W.L.S. equations (5.4.11) are found by 

adding EA040)J to both sides of (5.4.15). 	Again the 

influence of the distribution of the missing variables in 

the estimation of 3  is solely ip the fitted values and 

adjustments (5.4.16) and (5.4.17). 	We make the simplest/ 

assumption about this distribution, and propose the 

resulting method as an approximate procedure in the general 

case. 	The method is 

Weighted Adjusted Iterative Least Squares (W.A.I.L.S.) 

The method entails two distinct iterative cycles . 

First Iterated Buck is applied to the 'data, and the final 
A 	 A 

fitted values X.j and the adjustments crIk.R.  for each pattern 

F' of values present,are retained. 	Then (5.4.15), or 

the modified I.W.L.S. equations, are solved iteratively, 
A 	A 

with 	CCijA = Xt:j 	and Com = (5311-Pe 	for every iteration. 

By using Iterated Buck to fill in the missing variables 

we are fitting linear approximations to the true values, 
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and in this sense W.A.I.L.S. is the analogue of Iterated 

Buck for the Generalized Linear Model with missing data. 

With M.L.N. instead of Iterated Buck, W.A.I.L.S. would be 

maximum likelihood if the distribution of 0(11)(cM 

was multivariate normal, with constant covariance matrix 

and a mean which depends linearly on )(c  and y 	This 

condition, together with the required partition of the 

log-likelihood >  

L( XDY 	013 02) 	e I (Y I YI)Y2)...)4-1; et) + tiOcixc i e2) 
is only possible if A:=Si, and the errors are normal; then 

W.A.I.L.S. is equivalent to Iterated Buck. 

For the complete maximum likelihood solution we must 

specify the distribution of (Xilk) and find the fitted 

values and adjustments from the first two moments of the 

distribution of Ni I Xc ) 	. 	This has density 

(X/I Xc  ,Y) 	CC TC( Y I 040)1)4/14; 01) . 

Even for a simple choice of P(XrIXe ; 0%) , 	such as a 

multivariate normal density, p( 
	

X0)Y) 
	

will be a 

non-standard density if the error distribution 7r is non-

normal, and except in special cases the calculations of 

the moments will require numerical integration. 	Any 

theoretical gain in finding the maximum likelihood estimate 

of 01 	is counterbalanced by the large amount of 

computing involved in its calculation, as compared with 

W.A.I.L.S., and the feasibility of specifying the 

distribution of (XIII(c). Thus W.A.I.L.S. would seem to be 
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a useful generalization of Iterated Buck to a large 

class of generalized linear models. 

5.5. Likelihood Methods with Missing Variables  
considered as Parameters. 

So far we have treated independent variables which 

are missing in some observations as random, and have 

maximized 

( ; e) 	or e(f)  i Pc ;01) 
by maximum likelihood. 	In what follows we consider 

the known independent variables as fixed, and the unknown 

independent variables as parameters, and maximize the 

conditional log likelihood 

( px mx)91) 
	

(5.5.1) 

to obtain estimates of el. 	We assume Pit` , that is , 

all the 	are are present; observations with y missing may 

be regarded as containing extraneous information about tvh. 

To maximize (5.5.1) jointly with respect to Mx and 9,, 

we simply discard the incomplete observations for the 

estimation of oi . 	For example with normal errors, 

(5.5.1) becomes 

0-1 
ZN 	p. 	- N 14 0'2  

g2 	 j= 	
Y 

and now if xik 	is missing we can choose its estimate so that 
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TT A 

4 ACX  = 0 	This analysis corresponds to total 
.l=o 

lack of knowledge about the missing values: we cannot 

predict them from the data, and have no other information. 

We also assume implicitly that the distribution of Y 
depends on the missing variables, i.e. in the example 

above p0. 

We may consider Mx as incidental parameters, and 

01  as structural parameters, fixed over observations. 

Suppose we can specify some prior distribution for the 

incidental parameters, say 

7v ( mx Px) 
	

(5.5.2) 

which may depend not only on the independent data, but 

also on external information. 	We can then remove Mx 

from the likelihood or log-likelihood, and maximize the 

resulting function with respect to Of  . 	We consider 

two ways of doing this, one suggested by the theory of 

likelihoods and one suggested by the procedures of 45.2. 

The first method is to integrate Mx out of the 

likelihood function, with respect to the prior 7(Mr1P10. 

The resulting Integrated Likelihood  

i 	el) = fL(' P.; mx,tqw(mx1Px)dmx (5.5.3) 

is then maximized with respect to el. 	We call this 

method Maximum Integrated Likelihood (M.I.L.). 	For a 
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discussion of Integrated Likelihood and other techniques 

for removing incidental parameters, see Kalbfleisch and 

Sprott (1970). 

This method has certain similarities with the 

maximum likelihood procedures of §5.2 - i5.4. 	The 

estimate of 0 found by (5.2.3) is found by maximizing 

with respect to a 

ren(yiPx;e.) =1601;01)1)(Hx1r3c)4;eupouJettix, (5.5.4) 

where 	1)(MxiPz)y)  CAA) is the distribution of the 

missing variables given the data, at OC-43#111)02-- OzA 1 We 

contrast the two procedures represented by (5.5.3) and 

(5.5.4): 

(1) Considered as functions )  Qvl L(vi Pz; Mx el) = U I X; 0). 

(2) M.I.L. is non iterative, given the prior for 

whilst the maximization of RA is part of the iterative 

procedure for finding the fixed point of the transformation 0. 

Thus the parameters Oz  do not appear in (5.5.3). 

(3) The set Ma:are considered logically as parameters 

with a prior distribution in M.I.L. 	They are random 

variables in the M.I.P. procedure. 

The prior distribution 1r(Mx1r)x) , together with 

the model and the data 9 ;induce a posterior distribution 

for the missing variables: 
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17 (mx 1 N14; 010 oc 7rtmx i px)17 (y1Px; mx )00). 

If we integrate Mx out of the log-likelihood I( 9 1 r; o,) 

with respect to this posterior distribution, we are 

left with a function of 0/which is formally the same as 

Iffi(91&;0in (5.5,4). 	Then define the transformed value 

of OA to be the value of 0, which maximizes this function, 

and find a fixed point of this transformation. 	The 

resulting method is a "generalization" of the M.I.P. 

procedure, with the distribution P(Mx4replaced by the 

prior 71-042c1Px).We call this Integrated Pseudo-Maximum 

Likelihood (I.P.M.L.), and this is our second method of 

removing I% 

Choosing the prior. 

The flexibility of M.I.L. or I.P.M.L. comes from 

allowing extraneous information to affect the choice of 

prior, but first we consider a prior distribution formed 

from the data pac alone. 	Suppose we assume a multivariate 

normal distribution for Mx)  and estimate the means and 

covariances by Iterated Buck, applied to the independent 

data only. 	I.P.M.L. with this prior is easily seen 

to be the same as Iterated Buck on the whole data p, 

the fixed point equations being solved in a different way. 

Logically speaking the prior distribution for Mx then has 

a frequency interpretation, and I.P.M.L. becomes a true 

maximum likelihood method, under a suitable model. 
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M.I.L. with this prior produces the following 

method: 

(a) Apply Iterated Buck to the independent data, and 

fit for Mx the final fitted values found by 

this procedure. 

(b) Analyse the completeldata, without adjustments, by 

Iterative Weighted Least Squares, with weights 

Wt. 	
431%. 	 (5.5.5) 

Al 
where iTy is the estimated residual variance when y is 

fitted as a linear combination of Y443.-340and af ci  

is the estimated residual variance when Y is fitted 

as a linear combination of_the independent variables present 

in the ith observation. 	These estimates are found 

iteratively by pivoting on the current weighted S.S.C.P. 

matrix. 	Notice Wi=1 for complete observations, W,; 

for incomplete observations. 	Observations with Y 
missing are given weight zero, although they can be used 

in (a). 

This is quite a sensible method, first suggested by 

E.M.L. Beale as a straight modification of ordinary least 

squares when data are incomplete. 	It suffers from not 

using the Y-variable when fitting missing values, but it 

should be robust against non-normality of the X's, and by 

excluding the dependent data during the fitting process) 
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residuals can be calculated in the usual way to 

test the model. 	A comparison with Iterated Buck by 

simulation, and an improvement of the method, is 

given in Chapter 7. 

Subjective Priors. 

No practical work has been done with subjective 

priors in this thesis. 	We discuss briefly two examples. 

Example 5.5.1. Suspect x-variables. 

Suppose in a complete set of data we have a value geot  

of a variable which we have reason to suspect as inaccurate 

or misrecorded. 	We replace 5*  by a normal distribution, 

centred at fql 	with a variance 	chosen a priori. 

With this prior for x'qe, we can apply M.I.L. or I.P.M.L., 

As in the previous example, M.I.L. gives a weighted least 

squares analysis. 	The uncertainty about xiit 	produces 

a weight)  

cr 
VO = 4 	cry  + 

  

 

(5.5 .6) 
for the ith observation , compared with weights of 1 for 

A 

the other observations. 	Since 	(31, 	is the estimated ' 

regression coefficient of 4 ) the analysis is iterative. 
A2  

Note that 	k4 	decreases as 0; or 	Pit 	increases. 

This method would seem to have possibilities as a robust 

regression technique, although the problem lies more in , 

the detection of suspect variables than in the analysis. 
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With the normal prior the method is in a sense a 

generalization of the model proposed by Berkson (1950) 

when the X'S have "target values". 	Other priors 

may be appropriate, for example skew distributions 

to deal with punching errors. 

In I.P.M.L. the fitted value for Zik is changed 

from f4, to 

	

Sc4,„ = E beat I Pi.; 91A) = .516/t 	
°,)ta 	IL% 

CrYA 	 a fit 

)34 

where 	Rif; 	— 	(3,A xis 
*k 

6.1  st Also an adjustment 	fr 1"  i/ 	is added to the (k,k)th yit 4 Pla Cre 

element of the S.S.C.P. matrix of the data. 	Equation 

(5.5.7) represents a shift of the quantity 	towards 

i the regression line. 	This is illustrated for two variables 

in Figures 2 and 3. 

4 4. 

1 0  

(5.5.7) 

0 

Figure 

X 

= suspect reading 
= other data. 

. Plot of data on two variables with a suspect 
reading. 
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• 

F. en la..3effient of Flare 2 . 

St  r.. observed value 
Zi r.: fitted value 

A 
	

X 

II 	as crst a oo. 

Figure 3. 	Observed and fitted value of a suspect 
variable, for I.P.M.L. 

A comparison between these method3 would be interesting. 

The equations are easy to derive, and readily extend 

to problems with more than one suspect variable. 

Example 5.5.2. 	A uniform prior on a missing value. 

Suppose we attempt to express indifference about the 

value of a continuous variable which is missing by an 

(improper) uniform prior: IT(XikIPx)c4 const. 

For the normal errors model the posterior distribution 

of 	C"‘:{el &Ai) 	is then normal. 	One might expect 

that the result of applying I.P.M.L. with this prior 

would be to reject the observation i, but this is not so. 

A simple calculation shows that the effect of the ith 
A 

observation is to shrink the regression coefficient 12c, 

estimated from the complete data. 	This results from 

allowing for the possibility of Xi.k 	taking extreme 

values in comparison with the rest of the data. 	Thus the 

uniform prior is not an expression of indifference about 

the value of X. 
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If 	Xi,le 	is binary, we might set a priori 

• pr (X02 =1) 	I — 121  beck 	= 2 . 

The analysis then follows Example 5.3.1. 

5.6. The Multivariate Linear Model. 

So far we have considered linear regression with one 

dependent variable. 	We consider briefly how to analyse 

a multivariate linear model, when N variables, say 

XI AL).-)X7.) are independent, and 1971" variables 41 

are dependent, for some t—cp . 	We adopt the obvious 

generalization of the notation of §5.1. 	Thus 01=6RX,), 

where 13 is the matrix of regression coefficients, and Zy 

the residual covariance matrix. 	We adopt the usual 

assumption about the vector of errors, that of a zero- 

centred multivariate normal distribution. 	With a 

random pattern of deletions, e1 can be estimated by 

applying Iterated Buck:, and then pivoting on the estimate 

of the covariance matrix: 

A 	 -) A 
13  

PIV 1,2 )• — j r ) 	Z 
V 
	 y 

IA  
The conditions under which (Zy 

 

 

are (corrected) 

maximum likelihood estimates parallel those of §5.2. 	We 

simply fix the variables in the set 	Xr) 

which are always observed, and then make the obvious 

assumptions of normality, independence, and random deletion 
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for the remaining variables. 

McDonald (1971) considers the extreme case where all 

the independent variables are observed, and all the 

dependent variables are missing from the incomplete 

observations. 	This generalizes the problem of missing 

design points to a multivariate response. 	By fitting 

missing values by treating dependent variables separately, 

and using standard missing value techniques, McDonald 

finds best linear unbiased estimates of p, in the sense 
of minimising the trace of the residual S.S.C.P. matrix. 

As in the univariate response case, Iterated Buck 

produces best linear unbiased estimates of lit for this 

pattern of missing data. 	When the dependent variables 

in some observations are partly observed, the best 

linear unbiasedness criterion ceases to mean much. In 

this more general situation Iterated Buck is justified 

by Maximum Likelihood, or the asymptotic unbiasedness 

considerations of Chapter 3. 
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6. ASYMPTOTIC COVARIANCE MATRIX OF THE ESTIMATES FROM A  

LINEAR REGRESSION. 

6.1. Introduction. 

In Chapter 4 we 
, 	

considered the asymptotic covariance 
tA A\ 

matrix 	
i
kti ) V ) 	where e represents the means and 

covariances of the MN1,(1t,Z) distribution. 	In 

Chapter 5 we estimated the linear regression of 4 

on X10(2, ... 3 	. 	This involved estimating the 

alternative set of parameters 

(6.1.2) 

where the (VS are regression coefficients and a;,2  is the 

residual variance. 	We now find the expected information 

matrix 
	

Tp 
	corresponding to this parametrization, 

in order to estimate the precision of our estimates of the 

regression coefficients. 

One way of doing this is to transform the matrix 

JO)* using the Jacobian of the transformation from 8 

to )0 
	

It is less arduous, however, to simply 

adopt the same approach as Chapter 4, that is to work out 

ji,m(Ve2ife) and subtract the Lost Information. 	The final 

expression Tp(k,,p) is rewritten in terms of the weights 

which appear in the Weighted Least Squares procedure 

outlined in §5.5 (Equation(5.5.5)). 	This indicates a way 

of finding an approximate covariance matrix for estimates 

(P1942,  • "))4P )(711  3 Cr12 )1722 ) • "5 (3-0-14-13 (31 ) 	pp-f, (1) 
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of the regression coefficients, by assigning  a weight 

to each observation and forming  a weighted S.S.C.P. matrix.. 

This is simpler than inverting  the whole matrix Tp( yo). 
The two methods are compared for the two variable problem, 

and in less detail in the general case. 

6.2. Calculation of the Expected Information Matrix. 

We express the log-likelihood of a complete set of 

data as 

Y1) =-1Z: Z:11  r  (1.9 -Ili) CC2k( k 11K) 
N e  

— en &A L 

Nba o-Y ( 6.2.1) 

where 0 -:)110 J 
j  

cr 	
I, --)(4 	1.,1 	j 

6i  = 	9i, — 	r.) 	XC 
.7. 0 

27x is the covariance matrix of 	and 

ce is the (j,k)th element of the inverse of Z. 

Notice that pi, rather than p, is included in the 

parametrization (6.1.2). 	This allows us to calculate 

the Lost Information Thilph4,1P) by applying  Lemma (4.3) to 

the set of variables 

(x,-)1 ; X2,-/t12. • 	 6) , 

which have zero mean. 	The scores are . 
- 	 }  1=, t•Z  

ae = 	6a 	 1  q21. 
de 	— N (2— sb ) [ esie' — x z z rlittr cr:Yxif -.)4,XxidAs)1 

NI  rt..: f)-11 

m 	 2  N 
(k 1 ; 21...; P-1)  

-Pk)  

N  2] 

- 	 N E -04;3  t■Tir7 Z ea/ 	 Lz 

(6.2.2) 
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Forming covariances of the elements of (6.2.2), we find 

- CUD 	QV 	(mm) 	40 	10) 
(/ik) qteiti-vl 11/2s) —N ti. 	0 	0 	0 

00 —N -21 	
IL 
eq 	o 	o 	0 

Tp,m($4,14) = 
(rs) 	0 	0 144(2Sa2ifskercsr-foiN1 0 	o 

N . 
() 	 ff lo 	o 	0 	0 	,cr.oe 	0 

(09') 0  0 	0 	0 N 

7 
- 

(6.2.3) 

The right hand side of (6.2.3) is a condensed form of the 

matrix, with a similar notation to (4.3.4).- 	We write 

then inversion of the submatrix 

correspondirgto (I gives 

A "a4t f
0-

l  2 

COV p ) N x 

which is the analogue of the standard least squares 

estimate for complete data 

C
A 

oy (p) 	= Sx  61, 

where Sx is the S.S.C.P. matrix of the independent 

variables, held fixed. 

The Lost Information terms are found as in Chapter 4; 

the details are omitted. 	Suffices run from 1,21...,p-11  

except where stated: 
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r  
1  

1,-1 
0-2.cit(7)12,40im.pi  - 642  Z 	trone.N- -iii.""`CCrtE.P.:+0, Cri6.d) 

P-1 

Y 01=1 WI 

N it 
Ott: • P‘ 	try 	Y

ree. N. .5 
t=',1 

UMW ( PP )1'10 	tate"  1=1 ry4 

141P ( 	Tem) = TM1P (itj pit) = JM1P ;Ai ryl ) 

1 71 	-I 2 	/6 mu. pv so? 
Ttilp (0-644firs) 	71. (2- (2 -SYs) 	 0-x 0-% crx, (Tx 6,t,„, 

L=1 t= u.=1 	Lo-1 

where ?rt:tavia is the same as in Chapter 

14 r  1)-1 
Ili  1p ( fit )QM) = (2-  e'vl) 20-1 	Z 7_4 a-x6tor[orti-p,(citr-lxv.pi)i-  (rve. Pi (Critit-'1XtV0Pa I / 

N — 13-1  
TM 1P 0c CetrI) = Eby) 	ZLZZ 	„ 

2cry4 . 	°2c 	vue-er: 
Lc! 	uzi vr.t 

, (30 = 

Tr-11P ( Pie try) 

I
N r, 

V ., L(crik -qiut)fseepe 6Y2  
z 

1112E 'Pi (01 - 0-e6-Pi) 

-q76-Pc (Tite.ed 

0 	122).-.) 1") 

2 
mere Pi 
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In these expressions, 	e.pi  = Cov(Dczil ei I Pi.) 	and 

cree.pi  = Var(Edri) • 

Now if Rei  is the set of independent variables 

present in observation i, we have 

COv 	)6& Px1) =0 s (j =1, 2 , 	, and Var(EilPx0---74, 

Hence 

	

Vox E I P;,) = Vat (6i  & L ) 	iCov Xcp, el 1 Px:),1 
i 	

2  
Vat (xtp 1 Px1) 

e . . 	= 	(44) 6Y2 

	
(6.2.4) 

and Cy (xzi , ei I Inc) = COv 	EL P,0 Cov (xo,x,p Iga) Cov(xc pAlPzi)  , 
Var (xc,1 P%i) 

i.e. 0:i p„, pzi  (6.2.5) 

where 	
Va 

- x 	
if Xi', is present; 

Wi = 	
6 
(/
/i Nti)  

if xt:p is missing . 	(6.2.6) 

The definition of K4 is that given in i5.5, and may be 

considered intuitively as the weight of observation i. 

Subtracting the Lost Information matrix form (6.2.3), 

and substituting (6.2.4) - (6.2.6), we find 

( so, 10) 	= 
1 
ot 

()))1A) 

0 kd  Ips  (a°  )6 ) its 
(6.2.7) 

where 
s r 

= 	053., • • • , 	 a, , 
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05) 	 (141°)  

Pt- 	(Ty (13j 	- akil• 	( 1e C\i1)*Piti) 	(Pk' attp.Pe4) 
+ LA-4 	 k4/ 

/ „ 
( 13j 

Tp (1'14= 

(6.2.8) 

\  
04tS) 2%(arplaihej.Ntasp.pxb60 

0  A 
41",,,wkettasillki. 

titk /
W 2. 

"- 0----  ( 47,ik + (551e.ParE-2°314.9) 	5.);—
'

.-'19.Ppec 

-1  W 1. tr. 	 w. 2  
6- 

L 10 	J .Pzi 2 CryY 

( -564)(2-Srs)66enfl: Osts.k+ 54s-Pig5v4rA) 

(2- Semw--qaeke„ 	444.P4 bat. PI) 

Wit 	
poi 26; 

A ̀ p. ; amp. 

(6.2.9) 

In these matrices 

of It- Pi, 

. 
Z Z ofo-P(cra-a-rs.0 

P-1 
Cry. Milan 

tzt 

(6.2.10) 

(6.2.11) 

(6.2.12) 

bjk• 	= j€  .0-01 —  Tek.0 
I= I 
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Properties of Tp(*,Y0 
First compare (6.2.7) with (4.3.8), the expression for 

Tp(0160 • 	The matrix Rp3y0 decomposes into 

two submatrices JAP,p) 	and 	Cr) 
corresponding to the means and the other parameters. 

Equation (6.2.8), summed over the observations, is thus 

another expression for VIA.4A). Since tA4=0 when Y4 
is missing, comparison of the two expressions shows that 

	

Ylso.pi=0 if Xq)  is missing. 	This proves the assertion 

(4.3.10) of Chapter 4. 

Now let us turn to JOr,T) , since in this Chapter 

we are more interested in the regression coefficients and 

residual variance. 	When )4 is missing, WO and 

all the elements of Tpi(17,0) 	vanish except those 

corresponding to the covariance matrix of the independent 

variables. 	Such observations are useful only in that 

they improve the estimate of Ex)  as one might expect. 

An unfortunate aspect of (6.2.9) is that the cross 

which terms TA,Urs) Thrtl,ak) and TOjp0371) , 

vanish when all the variables are measured, or the dependent 

variable is not measured, do not in general vanish for 

intermediate cases. 	Therefore we are not justified 

in simply inverting the submatrix ];(1,41) 	to obtain 
A 

the asymptotic covariance matrix of p. 	Instead we 

must invert the complete matrix 307,17) . 	We now do 



+ n , 
0 L 0 

0 0 0 

0 0 0 

    

IOW 
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this analytically for the simple case of one regressbr 

variable, and consider an approximation for the general 

case. 

Example 6.2.1. 

Suppose we have two variables XI,X1=Y, 	and the data 

of the example of §4.4. 	Then 

.JP (13",) _  

	

Ai _ n2 ma 	cri 
where 	CorteNDX2) r 1 FT; 

Adding and Inverting 

pi  AZ e20-e0 
W(3 

A 
fl 2A2?y±fia_cfl 

1 t AcOit L 	K2  

alp,  /119(ActAr)O-r.? 
N A* K2  

2407 , Agra-r) 
N Ki  

_20;191VAtiAt)(1-02  
Is I At 

Zoi .jt f A24,10-el 
NAI L 	Kz 

 

     

     

(6.2.13) 
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where 	11(2 = (AC -1 Ai)(at-0■2) AIX), r , 	as before. 	Note the 

asymptotic variance of & 	agrees with the expression 
A 

in (4.4.4). 	The asymptotic variance of (31 is 

VaY 
r. 	11 

	2a2 r0- ActA  ,)1 
NA oi,

r  
L 	1<2. 

(6.2.14) 

A 
It is interesting to compare this with (3,e, the least 

squares estimate of p, based on the complete observations. 

Asymptotically, 

Vert
MI2  

 IC 

(6.2.15) 

Thus incomplete observations are most useful for values of, 

el  such that eql-ex) is high, that is for values in / 

the middle of its range. 	Also 

V ar (31 	Va. r 	as e 0 or 	e -2) 1  
A 

If 	ni= 0 ) v 131 = Vat plc , 	and then observations on Xi 
A 	A A 

alone do not contribute information to 	in in fact (311c. 

Observations on xi  alone increase the value of 
observations on X2  alone, by the factor 	Ae4A1 	 3 (ACM atfAt) - Ap\a  ti# 

found by setting 	Ai=o 	in (6.2.14). 	This 

improvement is greatest when e
2 

is high, and results from 

the increased precision of the estimate of O. 

NA c (70 
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A 
If 071 is known, the asymptotic variance of pi 	is 

Var 	= L 	2Azr(i-  et)  1 
NAccrn 	 A(1-t4),J 

(6.2.16) 

This is found by inverting the (2 x 2) submatrix of J-1,(6",br) 

corresponding to (31 and 51. Naturally this expression 

does not involve A1, since observations on Xi  have no value. 

6.3. A  Simple Approximate Solution. 

For more than two variables, explicit inversion of 

Te(6-,0") 
	

for a general pattern of missing values is 

impractical. 	For a given set of data we can find TpAr2139 

and then invert, but for large numbers of variables this / 

may involve a lot of computing. 	Beale and Little (1973) 
A 

suggest an approximate method of estimating 104 which 

involves less calculation. 	We now describe this method. 

For a complete set of data, we have by least squares 

theory 

A 	--1 
CO V e = SX (7Y1  

(6.3.1) 

where Sx is the (p-1) x (p-1) matrix with (j,k)th element. 

1=1 

For incomplete data we replace Sx in (6.3.1) by Sid , 

with (j,k)th element 

-R. )(11k--X12) 

(6.3.2) 
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A 
where XC,j is the final observed or fitted value in 

A 
Iterated Buck, and wi is an estimate of the weight (Ah 

A 

of equation (6.2.6),found by pivoting on Z. Observations 

with y missing are given weight zero. 	These weights 

also appeared in the weighted least squares method of §5.5, 

and although the fitted values of (6.3.2) are different 

from the fitted values of that method, this approximate way 
A 

of estimating Cc.1,0 	was developed from considering the 

weighted least squares approach. 

First let us apply this approximation to the special 

case of two variables. 	Ignoring terms of order 	we have 

E( 4) 
I 	2  6= 1,2)••• )  nc 	; 

0 =net! >nti2)... )  nen; ; 
3 	netnri Ilvk nt+ I )  . • • N ,  

and 07, 	, 	1,2,..., rkin, 
E 	= 	, 	tic+ rotnei n, 4Z 7 •-• 

Hence the approximate method gives 

A 
Vela 3, 

.n. 
E(Coi)E(aii-tr 

F=I 

%, 

i.e. 	vax pi 
csI  

Ncr, EA44 A7. r(1-(")] (6.3.3) 

Compare, this with the "naive" estimate, 

-1 	iTS,1  
Var 	T1' (3‘ 	Nuis  [Ac 4 2A 2 ge(1-12)] 

(6.3.4) 
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The latter is smaller, by the factor 2 in the denominator, 

but, it is an underestimate of Vat?), 	since no allowance 

is made in estimating 	To 	and O , 	and (6.3.4) is 

strictly less than the asymptotically exact estimate (6.2.14). 

Comparison of (6.3.3) and (6.2.14) is less clear, but an 

encouraging feature is the common factor Q20- ,z2, 	which 

appears in both expressions. 	Our approximate method 

gives no weight to observations on X1 alone, but for 

the regression of 	X on X1 	such observations are of 

limited value, as noted above. 	For the special case At =0)  

writing 	K = tio-r), we have with a little rearrangement: 

(1) 	asymptotic exact estimate VI = gTiF,Tki-ocAzki; 

N(ii) 	approximate weights estimate V2 --- --- 	A 
All<  

NAcc$ 	c tALI< 

where Ac+A2 . 

value, then 

= V2 

VI  < 

ili ›Vt 

If 	k =0.2 ) a fairly representative 

if 	Az 	iF ) Ac 	j 

if 	A2. t  g XC > 8 3 

if 	XI. > S 1 Ac < 	; 

Hence the approximate .estimate 	NA 	is conservative unless 

more than 5/8ths of the data are observations on xa alone. 

The approximate method seems reasonable in this case, 

but its practical advantage is when p is large. 	AD 

before,let V, 	and VI be the two estimates in the general 

case. 	Then the expected value of the contribution of the 



121 

ith observation to the denominator of V2 	is to orderW 

E [ 	blecr i i)(izit --54)3 	(4i ( aJo-a-AO 
(6.3.5) 

The corresponding contribution to Tp(13.4k) 
	

is 

(6.3.6) 

which is always larger than (6.3.5) for the diagonal terms 

j=k, since 

Jj • Pat 	JJ • Pc 

However as in the two variable case, these terms are 

reduced when the matrix Tp(r )47) is inverted, which allows 

for the estimation of the other parameters. 	This fact,/ 

taken with the similarity of (6.3.5) and (6.3.6), suggests 

that the approximate weighting method will produce a 
A 

reasonable estimate of Wye 	in the general case, 

particularly if the data are not too sparse. 	This 

conclusion is supported by the results of the simulation 

study of Chapter 7. 
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7. SIMULATION STUDIES, AND A PRACTICAL APPLICATION. 

7.1. Introduction. 

We report on two simulation studies to compare 

various methods of estimating the linear regression of 

Y on Xi,X2,...,Xp_i, when the data are incomplete. 

In the first study, also reported in Beale and 

Little (1973), a set of N independent observations 

from the ( ,!) distribution were generated 

from random numbers, where /4- Os and 1: was one of a 

set of predetermined covariance matrices, including some 

matrices considered by Haitovsky (1968) in a similar 

simulation. 	Then for each variable Xi a predetermined 

proportion 7i of the values 771::, was deleted, independently 

for j=1,2,...,p, to produce a set of incomplete data. 

The regression coefficients and residual error for the 

regression 
0_1  

E(Y) = 	N Xi 

were calculated by six different methods, and the resulting 

estimators compared with the estimators found by ordinary 

least squares on the undeleted sample. 	Our criterion for 

judging the effectiveness of each method was the residual 

sum of squares of deviations of the observed and fitted 

values of the dependent variable, when the deleted values 

are restored. 	That is, 



123 

1)-1 

= s 	 Z:.- x!a)z  3 (7.1.1) 

where (go)t),•••ytp..,) 
	

are the constant term and 

regression coefficients,estimated from the incomplete data 

by one of the six methods, and (Xij,90 	are the true 

values of the variables without deletion. 

Clearly a small value of 	S 	represents a 

successful method. 	We decided to judge a method by the 

overall success of the regression equation, rather than 

the closeness of individual regression coefficients to 

their true values. 	Therefore we computed the average 

value of S for each of the six methods, over ten sets / 

of random numbers, for each covariance matrix, and each 

number of observations and deletion pattern KIV2,-.2 114). 

The results are expressed as percentage increases over Smk, 

the minimum possible value of S for each set of data. 

This minimum value is obtained by ordinary least squares 

on the undeleted data. 

For the problems considered in this study, Iterated 

Buck is corrected maximum likelihood, and consequently 

it does well in the comparisons. 	Of particular interest 

is how much the general procedure of Iterated Buck loses 

by ignoring some special structure in a set of non-normal 

data, as compared with a method which exploits this 

structure. 
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This question was considered in the second simulation 

study, which was based on Example (5.3.3). 	Data were 

generated for the model (5.3.12), i.e. 

; 	sz  

ila Awl I 
(DC Xya ) 	ti In N2 (iA,c1Zx) ) 

A) N Co (7- ) 
(7.1.2) 

The special structure of this problem is that X3= X,. 

A certain number of values were deleted from )1, x, and )(2 )  

and X) and )(3 were deleted together. 	Then for predetermined 

choices of the parameters, three methods of estimating the 

regression equation were compared by the criterion S of 

(7.1.1). 	These methods were 

(a) to reject the incomplete data, and analyeethe complete 

observations by ordinary least squares; 

(b) Iterated Buck; 

(c) Maximum Likelihood,as described in §5.3. 

The results of this study are discussed in f7.3. 

In Chapter 6 we proposed an approximate way of finding 

the covariance matrix of estimators of the regression 

coefficients found by Iterated Buck. 	This procedure is 

tested in the first simulation study, and found to be a 

reasonable approximation. 
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In q7.4 we report briefly on an application of 

Iterated Buck to a Discriminant Analysis of incomplete 

medical data, kindly supplied by Dr. C.C. Spicer of the 

Medical Research Council Computer Unit. 	The data 

consisted of 181 observations on 61 variables, and none of 

the observations were complete. 	The analysis exploited the 

formal equivalence of discriminant analysis and linear 

regression, and a reduced set of variables was found for 

calculation of the discriminant function. 

The general conclusion is that Iterated Buck is a 

useful technique in a wide class of prOblemsj and that 

the method works well: for non-normal as well as normal 

populations. 	However there is scope for further work to 

find out how much it loses against a more specialized 

technique, which exploits the special structure of a 

particular problem. 	Such a technique can be constructed 

by solving the fixed point equations for a model which 

incorporates this structure. 

7.2: The First Simulation Study: Methods, Results and  
Conclusions- 

For incomplete data from frINI410E) 	the 

following methods were compared:- 

Method 1: Ordinary Least Squares on the subset of 

complete observations. 

Method 2: Buck's (1960) Method. 

Method 3: Iterated Buck, or Corrected Maximum Likelihood. 
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Method 4:  Ordinary Least Squares on observations with y 
present, after fitting missing values of the 

independent variables by Iterated Buck on 

the independent variables only. 

Method 5: Method 4, but with incomplete observations 

given fractional weights. 

Method 6:  Method 5, but using the estimate of the 

covariance matrix from Method 3 to find the 

fitted values and weights. 

Method 1 requires no explanation, and Methods 2 and 3 

are described in Chapter 3. 	For Methods 4 and 5 the 

missing independent variables are estimated by Iterated 

Buck on the independent data 11, prior to a least squares /sr 

analysis. 	Method 4is inefficient, since it amounts to 

giving incomplete observations the same weight as complete 

observations. 	Thus Method 5 computes a weight Wk for 

each observation 	and carries out a weighted least 

squares analysis. 	This method is M.I.L. with a normal 

prior, and it was mentioned in §5.5. 	The weights depend 

on the estimates of the parameters, and hence require an 

iterative calculation. 

We contrast the fitting procedure of the least squares 

approaches with that of Methods 2 and 3. 	In the latter 

methods, linear combinations of all the variables, Pi.)  

present in the ith observation are fitted, whilst in 
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Methods 4 and 5 linear combinations of the known 

independent variables ,p,, are fitted. 	In fact the 

conditional mean 

E 	plci) 

is the best fitted value of a missing variable X 	for 

use in a least squares analysis. 	The methods of Buck 

and Iterated Buck fit 

E Cxq 
and then correct the least squares analysis of the 

completed data for bias, by adding adjustments to.the 

covariance matrix before pivoting. 	This summarizes 

the difference in the approaches. 

Finally Method 6 is a combination of Methods 3 and 5., 
A 

An estimate Z of the covariance matrix of all the variables, 

Lis found by Method 3. ' Then missing values for the 

independent variables are found as in Methods 4 and 5, using 
A 

the submatrix of I corresponding to the independent 
A 

variables. 	Weights Mare found directly by pivoting on Z, 

and a weighted least squares analysis is carried out on the 

completed observations for which y is observed. 

The results of the simulations are given in Table 2,„ 

at. the end of f7.3. 	The statistic 

100(t -1)% 
	

(7.2.1) 

is calculated for the methods M=1,2,...61  averaged over 10 
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sets of data, and for 7 matrices A - G. Notice that the 

statistic (7.2.1) is the same for Method 1 for matrices 

C to G. 	This arises because the data for each of these 

cases are generated by transforming the same set of 
SI 

uncorrelated data. 	The statistic -371; 	is 

invariant under these transformations, since Method 1 uses only 

complete observations. 

We draw the following conclusions from Table 2. 

Method 3 always improves on Method 2, except for three 

very marginal cases with 5% deletions. 	The improvement 

is often considerable, for example in problems_C and D 

Method 3 requires more computing than Method 2, but it can 

be used when there are no complete observations, and is 

therefore a more general method. 

Method 4 is only appreciably better than Method 3 

for 2 cases in problem E; otherwise it is usually slightly 

worse, and much worse on problems F and G, where the 

multiple correlation coefficient R2  > 0.98. 	In these 

problems the method performs badly, because relatively 

useless observations are given the same weight as complete 

observations. 	Thus we do not recommend this method. 

Method 5 is an improvement on Method 4, but is 

generally less effective. than Method 3, and is sometimes 

beaten by Method 1 in problems F and G. In these problems 
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the value of the fitted variables are critical, and a 

better estimate of the covariance matrix of the independent 

variables used to fit those values produces a considerably 

better fit. 	In Method 6 all the data are used in finding 

this covariance matrix, and the results are seen to be an 

improvement on Method 5. 

It remains to compare the best of the least squares 

approaches, Method 6, with Iterated Buck, Method 3. 

There is not much to choose between the methods, but 

Method 3 is marginally better in a large majority of the 

cases considered. 	From a computing point of view the 

methods are very similar, and the weighting procedures of 

Methods 5 and 6 are used to derive approximate standard 

errors in the regress-ion coefficients for Method 3. 

It is perhaps worth noting that we also tested the 

straight Maximum Likelihood Method M.L.N. of Orchard 

and Woodbury. 	The results are almost identical to 

those of Iterated Buck. 	Mostly they are worse, but by 

less than 0.1% 	We therefore see no reason to use M.L.N. 

in preference to the conventional correction represented 

by Iterated Buck. 

For Iterated Buck we formed an estimate of the 

covariance matrix of the estimates of the regression 

coefficients, by the approximate weighting procedure of 
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Chapter 6. 	To test the validity Of the approximation, 

we could have taken each regression coefficient individually 

and formed an approximate )(1  variable from the sum of 

squares of the deviations of the estimated regression 

coefficients from their true values, each divided by 

its estimated variance. 	But it seems preferable to form 

a single A„ variate on ex(p-r) degrees of freedom, where e 

is the number of replications, here 10, and j-1 is the 

number of regression coefficients estimated. 	We do this 

by forming 

aZ  E(0-PTSw(p-(1) 

where 	= Of, 	3 	Sw 	is the estimated 

covariance matrix of t, given by (6.3.2), and the 

summation extends over all replications. 

The results are tabulated in Table 3 as multiples of 
,,/ 

the corresponding /V statistic obtained from ordinary 

least squares on the complete data before deletions. Hence 

values >1 suggest an underestimate and values <1 an overestimate, 

compared with those found from the complete data. 	The results 

suggest that the approximate theory is adequate to give general 
A 

guidance of 	But we should point out that 

we have not tested the theory for more systematic deletion 

patterns. Such systematic patterns of missing data often 

arise in practice, and may not be quite as well covered 

by our approximate theory; the asymptotic exact theory 
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of Chapter 6 is still correct for such cases, provided the 

deletion mechanism is random in the sense explained in 

Chapter 2. 

7.3. The Second Study: Regression with a Quadratic Term. 

Three methods were compared in this simulation study. 

Method 1 and Method 3 are the same as the previous study. 

Method 7 is corrected maximum likelihood for the model 

(7.1.2), and a description of the fitted values and 

adjustments is given in Example 5.3.3 of f5.3. 	Observations 

with only one variable present were avoided in the.  deletion 

process, since the solution of the fixed point equations 

involves double numerical integrations,  when a single 

variable other than X, is observed. 	In practice these 

observations would carry little weight, and could with some 

justification be rejected before applying Method 7. 

Numerical integration is required for observations with 

X1 missing; the integrals were reparametrized to depend 

on four distinct parameters and calculated at each iteration 

by a straight forward "halving" algorithm, with stopping 

values calculated to cover the distribution of (XI(2, /), 

which could be unimodal or bimodal according to the values 

of xt,y and the parameters. 

The coefficients of the model were chosen to illuminate 

differences between the methods. 	For all the problems, 

Px 0  ) 	Zx (;,e14) 	•<1= 	p =(t3i)(32,(33Y5  cry = 0.5; 
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and for the chosen values of (3. and (X 3 the following 

correlations were calculated:- 

R2 	= multiple correlation coefficient of Y with X1, 

X2 and X3' 2 
R12 = multiple correlation coefficient of Y with Xi  

and X2. 
2 R 	= multiple correlation coefficient of Y with X2. 

R213 = multiple correlation coefficient of Y with X1  

and X3. 

We now compare the results of Table 4, with the help of 

these correlations. 

The results for Method 1 are the same for all the 

problems. 	The reason is the same as for the first 

simulation, i.e. the data for each problem are generated, 

by 	
• 

by transforming the same set of random numbers. 	This also 

allows for a more direct comparison of the methods between 

problems. 	For the second deletion pattern (20%, 20%, 40%) 

there are only 10 complete observations, which explains the 

high increase in residual sum of squares for Method 1 for 

this pattern. 

One would expect Method 7 to improve on Method 3 most 

clearly when the quadratic term is highly significant in the 

regression equation. 	One measure of this significance 

is 	
2 

s R2  - R11 
which is high for problems D and E, low for 

problems A and intermediate for problems B and C. 	We see 
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that Method 7 beats Method 3 clearly in problems D. and E, 

whilst in problem A Method 3 is slightly better than 

Method 7. 	Here the h term is low, and for the second 

deletion pattern Method 7 failed in one problem, because 

the assumed value of Nwent to zero. 	In future this 

difficulty will be avoided by an alternative calculation 

of the fitted values and adjustments when 1P3I falls below 

a certain tolerance. 	(In fact if P34 =0 the distribution 

of (Xi IMO is normal, and so the alternative 

calculation is much simpler). 	However in this study the 

starred result is calculated over 19 sets of data, whilst 

all the other results are calculated over 20 sets of data. 

For the intermediate values of R
2 - R212,  problems 

B and C, Method 7 beats Method 3, but not always by as 

large an amount as in problems D and E. 

The results can be considered from other viewpoints. 

i For example R2
2  is in a sense a measure of the information 

in observations with X1  missing for Method 3, but it 

underestimates the information in these observations for 

Method 7. 	Thus Method 1 and Method 3 should be similar 

for the first patterns in problems D and E, where 14 = 0. 

In fact Method 3 is marginally better in the results. 

However detailed comparison of the methods is not 

practical with' these results, since the percentage increases 
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in residual sums of squares were very variable between 

problems, and the size of the study was limited by the 

large amount of computing required for Method 7. 	In all 

runs the iterative process was terminated after 20 

iterations; some trial runs at 50 iterations did not 

affect the results.noticeably. 

Overall the results indicate that the Maximum 

Likelihood method is slightly better than the general 

method of Iterated Buck when the quadratic term is 

reasonably significant in the regression equation. 
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Table 2 

Average Percentage Increase in Residual Sum of Squares 
over best fit when all variables are known. Averaged 
over 10 runs. 

Problem 	Method Percentage deletions from each variable, and 
number of observations. 
(5%,) 
(100) 

(5% ) 
(200) 

(10%) 
(50:) 

(10%) 
(100) 

(10%) (20%) 
(200) (50 ) 

(20%) 
(100) 

(20%) (40%) Av. 
(200) 	(2-00) 

1 0.4 0.3 2.7 1.4 0.5 	3.9 3.9 1.3 	6.4 2.3 

A 2 0.2 0.1 2.0 0.8 0.2 	2.1 3.0 0.7 	3.3 1.4 

3 0.2 0.1 1.9 0.8 0.2 	1.9 2.4 0.7 	1.9 1.1 

3 var. 4 0.3 0.2 2.1 0.9 0.3 	2.4 2.9 0.9 	2.3 1.4 

5 0.3 0.2 2.0 1.0 0.3 	2.4 2.8 0.9 	2.2 1.3 

R2 = 0.95 6 0.3 0.2 2.0 1.0 0.3 	2.3 2.8 0.8 	2.2 1.3 

1 0.9 0.4 4.5 2.5 0.7 	8.6 4.7 3.1 30.6 6.2 

B 2 0.5 0.2 3.1 0.8 0.4 	4.3 1.8 1.5 15.7 3.1 

3 0.6 0.2 3.o 0.8 0.4 	3.8 1.4 1.2 	3.1 1.6 

4 var. 4 0.6 0.2 3.0 0.8 0.4 	3.8 1.3 1.2 	3.3 1.6 

5 0.6 0.2 3.0 0.8 0.4 	3.8 1.4 1.2 	3.4 1.6 

R2= 	0.09 6 0.6 0.2 3.0 0.8 0.4 	3.8 1.4 1.2 	3.6 1.7 

1 1.6 'o.8 7.7 3.3 2.4 36.2 12.1 7.3 37.4 12.1 

C 2 0.8 0.3 3.4 1.8 0.9 23.1 4.1 2.5 25.3 6.9 

3 0.8 0.3 2.6 1.7 0.8 	9.5 2.9 1.5 	6.8 3.0 

5 var. 4 0.9 0.3 2.9 1.8 0.7 11.0 3.0 1.3 	7.1 3.3 

5 0.8 0.3 2.9 1.8 0.8 10.7 2.9 1.4 	6.8 3.2 

R2 = 0.44 6' 0.8 0.3 2.9 1.8 0.8 10.4 3.0 1.4 	6.8 3.1 

1 1.6 0.8 7.7 3.3 2.4 36.2 12.1 7.3 37.4 12.1 

D 2 0.9 0.3 4.2 2.0 1.0 24.6 4.8 2.8 25.2 7.3 

3 0.9 '0.3 3.2 1.8 0.9 11.2 3.4 1.9 	6.5 3.3 

5 var. 4 1.1 0.4 3.9 2.2 0.9 15.1 3.4 1.6 	8.6 4.1 

5 1.0 0.3 3.6 2.0 0.9 13.9 3.2 1.6 	8.1 3.8 

E2 = 0.63 6 1.0 0.3 3.6 2.0 1.0 12.9 3.4 1.8 	8.0 3.8 

1 1.6 0.8 7.7 3.3 2.4 36.2 12.1 7.3 37.4 12.1 

2 0.7 0.3 5.7 1.5 1.2 25.6 6.1 3.4 27.3 8.o 

3 0.7 0.3 5.2 1.3 1.1 16.3 5.8 2.5 	9.7 4.8 

5 var. 4 0.8 0.3 7.4 1.4 1.2 14.2 4.7 2.6 18.8 5.7 

5 0.8 0.3 6.1 1.4 1.2 12.1 4.8 2.3 17.7 5.2 

R2 = 0.71 6 0.8 0.3 5,8 1.3 1-2 12.8 5.2 2.3 14.6 4.9 

•-• 
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Table 2. Continued. 

Problem Method Percentage deletions from each variable, and 
number of observations. 
(5% ) 
(100) 

(5% ) 
(200) 

(10%) 	(10%) 
(50 ) (100) 

(10%) 
(200) 

(20%) (20%) 
(50 ) 	(100) 

(20%)(40%) 
(200)(200) 

Av. 

1 1.6 0.8 7.7 3.3' 2.4 36.2 12.1 7.3 37.4 12.1 

F 2 1.4 0.7 6.4 2.9 2.0 32.6 9.9 6.4 32.7 10.6 

3 1.5 0.7 5.3 3.0 1.9 27.0 8.7 5.5 23.5 8.5 

5 var. 4 15.9 4.2 77.9 33.2 13.0. 245.4 65.5 26.4 118.2 66.6 

5 1.6 0.6 13.5 4.0 2.2 78.4 15.4 5.7 77.6 22.1 

R
2 = 0.98 6 1.4 0.6 5.6 3.1 2.0 25.3 8.5 5.5 25.8 8.6 

1 1.6 0.8 7.7 3.3 2.4 36.2 12.1 7.3 37.4 12.1 

G 2 1.4 0.7 6.3 2.8 2.0 33.6 10.1 6.5 33.4 10.8 

3 1.5 0.7 5.3 3.0 2.0 30.9 8.4 5.8 24.4 9.1 

5 var. 4 21.5 5.5 104.2 47.8 20.1. 372.9 96.6 37.2 178.3 8.2 

5 1.6 0.6 10.5 3.9 2.2. 112.1 18.3 6.8 119.5 30.6 

R2 = 0.99 6 1.4 0.6 5.6 3.1 2.1 28.2 8.3 5.8 26.7, 9.1 
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Table 2 Continued 

A 

Covariance Matrices for Problem: 

1 	x2 	y 

x1 	
1.0000 

x2 	
0.9817 	1.0000 

Y 	0.9722 	0.9697 	1.0000 

• 

R2 = 0.9516 

B x
1 	

x2 	x3x
3  

xl 
1.0000 

x2 0.9128 	1.0000 

x3  0.8730 	0.9529 	1.0000 

y 0.2570 	0.2851 	0.2977 	1.0000 R 	= 0.0888 

C x1 	x2 	x
3 	

x4  

x1  
1.0000 

x2 
0.8385 	1.0000 

x3  0.4596 	0.6077 	1.0000 

x4  0.3618 	0.4706 	0.7962 	1.0000 

y 0.7522 	0.5958 	0.6979 	0.8232 2.2500 R
2 

= 0.4402 

D as C except that Var(y) = 1.5625 R
2 

= 0.6339 

x1 	
x
2 	

x3 	x4  

x 1.0000 

x2  0.8743 	1.0000 

x3  0.4570 	0.8255 	1.0000 

x4  0.3765 	0.5181 	0.6080 	1.0000 

y 0.3705 	0.4575 	0.5039 	0.8261 1.0000 R
2 

= 0.7173 
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Table 2 Continued 

Covariance Matrices for Problem: 

xl 
	x2 	x3 x4 

1 1.0000 

x2 
0.8738 1.0000 

x3  0.5166 0.6314 1.0000 

x4 0.4267 0.4650 0.7119 1.0000 

	

y 0.7852 0.6137 0.6389 0.8283 1.0000 	R2  0.9866 

G 	x1 	
x2 	x3 	x4 

xl 1.0000 

x2 
0.8385 1.0000 

x3  0.4596 0.6077 1.0000 

x4 0.3618 0.4706 0.7962 1.0000 

y 	0.7522 0.5958 0.6979  0.8232 1.0000 	R
2 

= 0.9904 
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Table 3  

Approximate X2 statistic for covariances of regression coefficients 
estimated by modified maximum likelihood as a multiple of the X 
statistic for covariances of regression coefficients estimated from 
complete data before deletions: 

Problem: Method Percentage deletions from each variable, and 
number of observations. 

(5% ) 
(100) 

(5% 	) 
(200) 

(10%) 
(50 ) 

(10%) 
(100) 

(10%)(20%) 
(2C0)(50 ) 

(20%) 	(20%) 
(100) (200) 

(40%) 
(a)(1) 

Av. 

A 1.14 0.98 1.13 1.50 0.75 0.88 0.77 0.52 1.14 0.98 

B 0.90 1.02 1.21 0.76 1.10 1.03 1.09 1.07 1.71 1.10 

C 0.95 1.12 1.10 1.44 0.67 1.11 1.02 1.20 0.94 1.06 

D 0.97 1.11 1.13 1.41 0.67 1.17 1.02 1.26 0.91 1.07 

E 0.95 1.05 1.14 1.33 0.84 1.40 1.43 1.41 0.91 1.16 

F 1.04 1.07 1.04 1.44 0.88 1.48 1.19 1.33 1.19 1.18 

G 1.06 1.09 1.02 1.43 0.90 1.69 1.16 1.34 1.20 1.21 
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Table 4  

Average Percentage increase in Residual Sum of Squares over best 
fit when all variables are known. Averaged over 20 runs. 

Model 	Y = 	(10 -F (3,Xi4(32X2 t (33Xit C 	50 Observations. 

Method 	Percentage deletions from (X1,X2,Y) 

(40%, 0,0) 	(20%; 20%, 40%) 

1 	9.4 	91.5 

Problem 	Correlations 

A 	R2 = 0.83 

= (1;5;4) 	131 	= 0.71 3 8.5 32.1 

et= 0.8 	R13 = 0.79 7 11.0 33.3*  

2 6y= 0.5 	R 	= 0.59 

B 

c1=(1,0,0.7) R2  = 0.8 1 9.4 91.5 

2 Qc=0.8 	,12 = 0.4 " 9.7 	,- 46.1 

0-,;= 0.5 	R
13 

 = 0.8 7 8.6 33.0 

192
2 

= 0.26 

C 	R2 = 0.8 1 9.4 91.5 

=(0,1,0.7) R12 = 0.4 3 8.0 35.6 

ex= 0.8 	R
13 

= 0.66 7 5.6 30.8 

ay= 0.5 	R22 	= 0.4 

D 	R2 	= 0.8 1 9.4 91.5 

t =(0,0,1) 	133. 	= 0 3 8.5 37.1 

Zr= 0.2 	R13 = 0.8 7 5.6 24.8 

071= 0.5 	RZ = 0 
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Table 4  Continued 

Problem Correlations Method Percentage deletioris from (X1,X20Y) 

(40%, 0,0) 	(20%, 20%, 40%) 

E R2 = 0.8 1 9.4 91.5 

f= (0,0,1) R123  = 0 3 8.7 44.8 

0.8 R13 = 0.8 7 6.1 30.3 

(Xi= 0.5 R22 	=0 

See text. 
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7.4. 	An Application of Iterated Buck in 
Discriminant Analysis. 

Patients admitted to hospital on suspicion of having 

a certain disease are examined by a specialist over a 

period of about 4 days, and for a certain proportion an 

operation is advised. 	It is desirable to find out how 

much the decision to operate or not operate can be 

explained by the patient's history, and by tests which 

do not require the specialist's attention. 	Data on 60 

explanatory variables, and the response variable 

y = 1, for a decision to operate; 
0, for a decision not to operate, 

were collected for a sample of 181 patients. 	These 

variables were continuous, 

e.g. 	= "Maximum Fever, in °C, during first day of 

admission", 

discrete and ordered, 

e.g. 	YKI  = "Abdominal Tenderness", "None" (X14=0).; 

"Slight" ()(„1 =1) , 	or "Severe" (x102), 

or discrete and unordered, 

e.g. )(6 = "Type of disease" (3 categories) 

In all the observations some of the variables were not 

recorded, so if all the variables were to be treated 

simultaneously some missing values technique was required. 
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The means and covariances of the variables were 

estimated by 20 iterations of Iterated Buck on the data. 

A forward stepwise regression of ( , X2 2 • • - Xeo} 	on y 
was then carried out. 	The standard stepwise regression 

programme consisted of 3 subroutines: (1) to form the 

sample means and S.S.C.P. matrix of a set of complete 

data; (2) to perform a forward stepwise regression to 

introduce q variables into the regression equations, 

by pivoting on the S.S.C.P. matrix found in (1); (3) 

to calculate various estimates of precision. 	For our 

purposes it was sufficient to use only the second subroutine, 

using the means and adjusted S.S.C.P. matrix found by 

Iterated Buck. 

Most of the variation was explained by 6 variables. 

In Table 5 we list these variables in order of their 

R introduction into the equation, and the multiple K of y 
with the new variable and its predecessors. 	We also 

give the estimated Mahalanobis distance V 1 where 

(10-tn.,- 2) 	R' 
A 	 j_ R' 

(7.4.1) 

= 11911.1_ 
M tni 	nj 	number of observations with y= j. 

This gives an idea of the separation between the two 

populations. 



1414 

Variable entering Equation 	02  

1 	Ysi 	0.38 	3.7 

2 	- 	X,9. 	 0.49 	5.4 

3 	Xs: 	0.55 	7.0 

4 	X33 	0.59 	8.2 

5 	Xu 	0.61 	8.9 

6 	Xit, 	0.63 	9.8 

Table 5. Results of Stepwise Repression. 

Here ni  = 38, no  = 153. 	With 20 variables 

in the equation, the estimated R was 0.71. 	The results 

suggest a reasonable separation between the populations 

with 6 variables included in the discriminant function. 

This function is proportional to the expression given 

by the stepwise regression. 

This rather crude analysis could be refined in some 

respects. 	Firstly, the unordered qualitative variables 

were ordered in a rough way prior to the analysis. 	A less 

arbitrary —way of handling these variables would be to 

split a k-chotomous variable into k binary variables, 

indicating to which of the categories each observation 

belongs. 	Another procedure which avoids the generation 

of additional variables, is to rank the categories according 

to their observed relationship with the response variable. 

Form a linear discriminant based on the other variables, 

and find a score for each level of the unordered response n, 
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by averaging the values of the linear discriminant over 

the observations for which X,. takes that level. 	Then 

rank the levels by these scores, or code the variable 

using these scores directly. 

A second refinement concerns the fact that 14 variables, 

including the response, were binary. 	The response variable 

was never missing, but the fitted values for some of the 

explanatory variables, taking values 0 or 1, were occasionally 

outside the range (0,1). 	The robustness considerations of 

Chapter 3 are reassuring as far as the final estimates of 

the means and covariances are concerned, but the question 

arises whether a better estimate of a missing binary variable 

can be obtained by considering some form of multivariate 

logistic model. 	This suffers from the drawback that the 

introduction of correlation between the variables in a 

multivariate logistic-type distribution results in complicated 

marginal and conditional distributions, required for 

applying M.I.P. 	Thus for simplicity independence between 

missing binary independent variables will be a necessary 

approximation. 	Then fitted values and adjustments could be 

worked out by an application of M.I.P. 	This would be a 

worthwhile exercise for a smaller problem, although in this 

case the number of variables is rather prohibitive. 



1146 

Finally, a practical consideration with large 

numbers of variables is to rearrange the data to minimize 

the computing time. 	Observations are grouped according 

to the deletion pattern, and the groups arranged to 

minimize the number of pivoting steps in each iteration. 

If 	is the number of pivots required when the ith 

observation is introduced, we seek to minimize 

= 	. 

Now 	tk = 	(clij 

where etsi = {1  

0 

r- missing ) 

) 	present_ 

A simple ordering procedure is to choose observation 1 

to minimize p, 3  subject to the new observation not belonging 
to the set of observations (b2)...)i—I) 	already chosen. 

Repeat the process for C=2)3)...) 14 . 	The result is an 

ordering which does not necessarily minimize t, but 

produces great savings over an arbitrary arrangement, 

particularly when only a small number of the .1 possible 

patterns are present in the data, as was the case in this 

problem. 
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8. MISSING VALUES IN TIME SERIES. 

8.1. Introduction. 

So far we have considered incomplete data where 

the observations are independent. 	In this chapter 

we take a topic in time series where unknown parameters 

can be estimated by maximum likelihood, and apply the 

Missing Information Principle to obtain m.l.e's when 
K 

the data are incomplete. 	The subject is autoregression, 

and in the next section we estimate the parameters of 

an autoregressive series with lag one (AR1), when there 

are gaps in the series. 	We assume that the pattern 

of deletions is random, in the sense made precise in §2.3. 

In 8. 3 we consider the generalization to higher order-

series, and the general conclusion is that m.l.e's can be 

found for any pattern of missing values without much 

difficulty.  

8.2. The AR1 Series with Missing Values. 

Suppose (1)0 	1114) 	is an AR1 series, so that 

= A(YA-11) 	64 	) (1= 1)2,—,A0 

NI 
14:4 kg/ 

rt 	1 ( 0 0.1) 

(8.2.1) 

and that some of the 	are randomly missing. We wish 
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to find m .1. e' s of 	7 	and Cr 	 under the 

simplest boundary condition, VIII': A&0)0461)for some known 

constant ye 	Then the log-likelihood of a complete 

set of data is 
, 	12 

= - 	 On-c-PU 	N Log cr1  
2 crt 	 T. 

(8.2.2) 

The scores are: 

de --0"1-7-A  fit i9t, -)4 

-La 	pyd-itt)(v.I.1—).4)— A(yo_i—)-02] „s , 

Let 

1°J 	[V4-)A -At9n-i-JA)32  di 	 - 

Yit  = E(9411);),A,A) 1) 

(8.2.3) 

crs  = Covg yr, ys P ; jJ, co] 
(8.2.4) 

where P stands for the set of 9,,:s present. 

Then if a 	(p)a)172)1-3 
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E(g I P;0) = 774,Egn--)A—A(L.-7).1 , 
N 

E (ilie;o) = 	 A5„-,-)41 
+ tam 	A d es-101-1 

E E P; 8 = -111. I 7-'4 N [(6,04) - A (11-1 -p)]2  irt 
N  

+ 7%1 	{ 	— QA,,,„_ +Ate 11 • nr, 

These expressions, equated to zero, form the fixed 
■•■ 

point equations. 	They are solved iteratively to find 
A 

m.l.e's of 	(j A )0-2) - 	It remains to find 9n  and en  

for assumed values of the parameters, and for various 

deletion patterns. 

Intuitively speaking, the model (8.2.1) implies that 

the distribution of 	given (9,1.1)9,141) and any other 

set of U tS)  depends only on 9,1_,1 9)", and 0 , and is 

independent of the position of (%.1.1)9,119,ii,f) 	in the 

series. 	Similarly if the data includes the sequence 

Pn_ te 	lift-kfr ) Mn-k,2) 	Mn-,) ?PI 

where P stands for "present" and M stands for "missing", 

then the conditional distribution of the missing 

ijn_ko 91,0"2, 	Vn.1) given the data depends only on g,k 
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and VA. 	Thus the joint distribution of the missing 0 

given the data factorizes into blocks corresponding to 

groups of missing values. 	These blocks are multivariate 

normally distributed, with parameters which depend only 

on 0 and the bounding 9)5 at each end. 	We now express 

this in symbols. 

For assumed values OA= (IAA,X44)of the parameters, 

we write 	2A= 44 7/.1A )  and find the distribution of the 

missing 	S. The model 

= AA En-1 -I- En 	(n= 	, N 

defines a linear transformation from a set of variables 

(zoz2)...,214) to the set of variables (6h  61. ...,e0) 

the latter being distributed as 	( 0 IN  (4) 
where 'N is the (qxN) identity matrix. Thus the 

Z'S have a joint density' proportional to 

r _ (En — AA En-r)2  

it= I 	 20;11  

Hence the conditional distribution of the missing data M 

given the data P is 

—1 
(Mir) 	 I f 	N 

Ir1:1 	2 tri' 	  j 1 	417E(zn .2-Arr4Tn-)2:17v.ict. 

( 8 . 2 . 5 ) 
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Inspection of (8.2.5) shows that (a) M is normally 

distributed, and (b) 4(1110 	factorizes into a product 

of joint densities, corresponding to "blocks" of successive 

missing values. 	For example if yn  is missing, yn, 
and 9 	present, then 

(ti IP) z: 	y„_„ 	f2 	,„ 

where Mm is M with 1 deleted. Also, 

1((v„ Y„. )Y4.),) 	0C 	f 	API Zi-;)1  (Znti--An 2/02.21 
OC -tXt? [ 	( 11 	O2 

where Cif" E(zvdP) - - Alt 	GVI-F 4 2n+1 

V;Vo,y (zn P) 	crA2  
I+AA 

(8 .2 .6) 

From (8.2.6) we have the following fitted values and 

adjustments: 

E ( Vvi  I P) = yn 	C÷PA 
Vox (y„ 1P) 	con  3 

COV ( 	WI I P) Cnm 	 ) nfrn. 

Next consider a block of k missing values, k.2. 

Suppose 'dn+i > Vre2  ) A AA .) 	are missing, and 9n,Ywhn 
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A00  
present. 	Let 5 and )1/12  denote the mean and 
covariance matrix of the k-variate normal distribution 

of 	Zyt.11, 2,iii)  ...) 2A-tk , 	given 	P . 	Writing 

ik)  = ?pm ) 2,142)  ) Zn41,0T) from ( 8 . 2 . 5) . 
*4 

	

(e-  C(11  - :471 [ 	(r  -AA  2r.")2}. 
(8.2.7) 

(Ii, 
Equating coefficients of 2 , we have 

14A -AA 
Viz  7-- 	ai? -AA 14A ' A\ O's 

-AA i 	\ \ " 	\ 
5' 

-AAin 

O 
0 

 

  

(8.2.8) 

 

O's \ 	• 4' 
.-AA  

  

  

0 

 

     

     

For low values of k )  the elements of Vk can be found 
. 

as functions of A 	by inversion. 	Unfortunately for 

high values of 12 the elements are not simple functions of 

AA )  and the matrix must be inverted for each assumed numerical 

value of AA . 	Let le be the largest number of consecutive 

missing values in the series. 	Then the matrix V 
required for the fitted values and adjustments for a block 

of N missing values, 1,- 4e is found by pivoting on the 

first I' diagonal elements of Vk . So the computing 

involved is not excessive, involving the inversion of 

one (WO matrix at each iteration. 
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We see how the distribution of the missing values 

depends only on the parameters and the adjacent data. 

Thus the calculation of fitted values and adjustments 

is not affected by imposing a different boundary 

condition for 	which is present by definition. For 

example, the stationary boundary condition 

produces the same additional term to the log-likelihood 

(8.2.1) whether the data are complete or incomplete. 

The likelihood and fixed point equations are modified 

accordingly. 

8.3. Higher Order Autoregressive Series. 

The m.l.e's of the parametem for higher order 

autoregressive series are found in the same way as for 

AR1. 	The scores for a complete set of data are 

calculated, and modified by the fitted values and adjustments 

for the missing O. 

To find the fitted values and adjustments, the 

distribution of 4iP) does not necessarily factorize into blocks 

of missing values. 	For example the sequence 

• • 3 Mn,PmI Pri41 a • • - 

in an AR2 series will not produce such a factorization. 

However in the AR2 case we can split the series into blocks 

with two variables present at each end. 	The distribution 

of the missing variables in such a block depends on the 

two bounding values at each end, and also on the values of 

any isolated present values within the block. 	The means 
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and covariances of such a distribution can always be 

found by pivoting on the covariance matrix obtained if 

all the intermediate values were missing. 	This in turn 

is found by the obvious generalization of the right hand 

side of (8.2.7). 	Similar remarks can be made about 

higher order autoregressive series. 
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Appendix 1. 	The Pivot Operator. 

For any symmetric 1.0 matrix &define the 

operator PTV(j) 	as follows: 

p1v(j01= le 3 a (Imp symmetric matrix, such that 

a. 	_ 
au 	 (Al) 

4 
_It s a4 	 (0) 

a k e 	t apt aye )  
(A3) 

Also define 

PIV(i)k)¢,...,t.) = PRO MN) PIWO • ** PIM.) 

It can be shown PIV(j) and PI)commute. 	Also the 

operator inverse to PTV(j) is RPIV(j), defined by the same 
equations as (Al) - (A3), except that (A2) is replaced by 

(Ali) 

Now suppose 	is a true or estimated covariance 

matrix of p random variables )(0)(1,...,Xp. 	If we split 

the variables into two groups (P)M), 	we can consider 

the linear regression of the variables in Mon the variables 

in P. 	The regression coefficients and residual 

covariance matrix are then found from the matrix 
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where PIV(p) 	denotes pivoting with respect to the 

subscripts of the variables in P. 	Then for Xjoi, 
corresponds to introducing yi  into the regression 
equations as an independent variable, and for 40, 

R PIV 	corresponds to removing 4 from the 

regression equations, i.e. changing 4 from an independent 

variable to a dependent variable. 	This correspondence 

makes pivoting a powerful tool in multiple regression. 

Finally, 

and applying the pivot operator is a satisfactory way of 

computing the inverse of a matrix. 	If a diagonal element 

laji becomes zero before PIVW 	is applied, the matrix 

is singular. 
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