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ABSTRACT

The work in this thesis is concerned with some unsteady
viscous flows and their stability.

In Part 1 the steady streaming induced by such flows in
pipes of slowly varying cross-section and channels of slowly
varying depth is considered. A purely oscillatory pressure
difference is maintained across the ends of each of the fluid
containers and it is assumed that a modified Reynolds number
associated with each of the flows is small. The first order
steady streaming is evaluated for both flows in the limits of
the frequency of the oscillatory pressure difference tending
to zero and infinity.

In Part 2 the stability of some unsteady viscous flows
is considered. In particular the stability of the flow
between concentric cylinders when the outer cylinder is at
rest and the inner one has angular speed Q{1 + € cosut}
is investigated. Solutions of the linear and non-linear
stability problems are obtained in the limits of w tending
to zero and infinity. The related Bénard convection problem
is also investigated using the same methods as for the

cylinder problem.
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GENERAL INTRODUCTION

In Part 1 of this thesis we investigate the steady
streaming associated with some oscillatory viscous flows.
It is well known that when such a flow is set up adjacent to
a rigid boundary, a Stokes layer forms near the boundary.
In this layer the flow adjusts itself so as to satisfy
the no-slip condition at the boundary. Suppose w 1is the
frequency of the oscillatory flow, then if v 1is the kinematic
viscosity, this layer will be typically of thickness order
(% : . In some flows of this type, which depend also on the
coordinate parallel to the boundary, the Reynolds stresses
associated with the net transfer of momentum in the Stokes
layer, are such that a steady component of velocity is induced
there. This steady velocity persists away from the layer
because of the action of viscosity. The magnitude of the
induced steady velocity is much smaller than that of the basic
oscillatory flow velocity, but, since it leads to a migration
of fluid particles, this steady flow can be important.

The first theoretical work on this topic was done.by
Lord Rayleigh (1884), who considered the flow in a Kundt dust
tube. Dvorak (1874) had previously considered the flow in such
a tube ekperimentally. When a standing sound wave is set up
in such a tube any small particles present are carried to the
velocity nodes of the wave. In this problem the role of the
steady streaming is to carry the particles to the nodes of the
dominant oscillatory velocity field where they settle. Using
perturbation methods.Rayleigh was able to explain some of the

phenomengg associated with this flow.



The next problem investigated was that of determining
the steady streaming induced near a body placed in a vibrating
viscous fluid. The first experiments on this problem were
-performed by Carriére (1929), Andrade (1931) and Schliqying (1932).
In particular they were concerned with the case of the body
being a circular cylinder, although it should be said that many
of the results for a circular cylinder are applicable to bodies
of different shape. Schlichting was also able to verify some.
of the résults of his experiments theofetically using first
order boundary lafer theory in the high frequency limit. More
recent work on this topic has been done by Riley (1965, 1966,
1967), Stuart (1966) and Davidson & Riley (1972). There has
also been some work done on the related problem of determining
the steady streaming induced by a disc performing torsional
vibrations. (See Rosenblat (1959), Benney (1964) and Jones §
Rosenblat (1969)). |

A problem which has been considered more recently is that
of determining the steady streaming induced by an oscillatory
viscous flow adjacent to a wavy wall. Lyne (1971) has studied
this problem using a conformal transformation to change the
wavy~wa11 into a plane wall,

In Chapter I we use what is often knowsm as 'lubricatioﬂ
theory' to investigate the steady streaming induced in a two-
dimensional channel by an oscillatory viscous flow. In order
to use this method we require tha£ the channel depth varies
slowly and that a modified Reynolds number associated with the
flow is small. We solve the problem by expanding in powers
of this Reynolds number, RM’ énd a parameter § which represents
the order of magnitude of the rate of change of the depth of

the channel. In Chapter II we use the same kind of approach to



investigate the steady streaming induced by an oscillatory
viscous flow in a pipe of slowly varying cross~éection.

Manton (1971) has considered steady flow in an axisymmetric

pipe of slowly varying radius. In the Appendix we show that

our formulation of the unsteady problem can be used to reproduce
Manton's results for the steadylproblem by putting the frequency
of the oscillations equal to zero.

In Part 2 we consider the stability of some unsteady
viscous flows. Since the experimental work of Donnelly (1964),
there has been much theoretical work in this field. The
motivation for Donnelly's work was to see if fluid flows could
be stabilized by modulation in the same way as can be done in
other physical systems. The best example of this behaviour
is that of an inverted simple pendulum composed of a heavy bob
and a light rod. It can be made to stand on its end if its
support is suitably oscillated (see Corben § Stehle (1960)). The
stability of the pendulum is in fact govgrned by Mathieu's
equation. This equation also governs the stability of a fluid
surface in a contour performing vertical oscillation. This
problem was discussed by Benjamin & Ursell (1954). The equations
which arise in our work are, unlike Mathieu's equation, partial
differential equations but we shall see that they have, in many
ways, properties very similar to the latter equation.

The particular problem investigated by Donnelly was the
stability of a viscous fluid between concentric cylinders when
the outer cylinder was at rest and the inner one had angular
velocity Qi{l + ¢ coswt} . When € ié zero the flow first
becomes unstable when the Taylor number, proportional to Qi,

reaches a critical value To’ The instability is in the form



of toroidal Taylor vortices spaced periodically along the
axis of the cylinders. The appearance of these vortices is
predicted by linear stability theory as given by Taylor (1923).
According to linear theory if the Taylor number, T, is greater
than T, the disturbance to the flow, i.e. the Taylor vortex
flow, grows exponentially in time. However, this is not
observed in practice, and for a range of values of T slightly
greater than TO it is found that an equilibrium flow exists,
and the amplitude of the Taylor vortex velocity is then
proportional to ’{T'To}%' This can be explained theoretically
by taking non-linear effects into account. (see Stuart (1958),
Davey (1962)). If T 1is inéreased further the vortices are
modified by a waviness in the azimuth and become waves travelling
in that direction (see Coles (1965)). Davey, DiPrima § Stuart
(1968) and Eagles (1971) have given some analysis describing
this type of flow. |

With € non-zero Donnelly found that the critical Taylor
number T, based on the steady part of the angular velocity of
the inner cylinder, at which instability first occurred was
increased from its unmodulated value for all ¢€,w . Moreover,
for fixed € , there was a certain value of w independent
of ¢, at which this enhancement of stability was a maximum.

The first theoretical work on this problem was done by
Meister § Munzner (1966). They used a Galerkin method to solve
the linearized differential equations governing the stability.
of the flow. In their problem the outer cylinder also had a
steady velocity. They considered the evolution in time of the

kinetic energy of a disturbance imposed on the basic flow at

time wt = 0. For several values of the Taylor number they
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found that at a certain time after the disturbance was imposed
the kinetic energy was a minimum for a particular value of w.
'Howeﬁer, they do not say whether this was the case for all time.
The next and last investigation of this problem was by Rosenblat
(1968). He found that, if viscosity was ignored, modulation
tended to destabilize a stable mean flow and stabilize an unstable
one. However, as stated by Rosenblat, it is necessary to include
viscosity, to find the increment in the critical Taylor number.

Since Rosenblat's paper most of the research has been
concentrated on the related Bénard convection problem. Venezian
(1969) considered the stability of a fluid between parallel
planes when one or both of the planes had their temperatures
modulated about a non-zero mean. The mean temperatures of the
planes were different and large compared to the oscillatory parts
of their temperatures. Using a perturbation method he was able
to show that in some cases modulation could stabilize a‘flow, but,
unlike Donnelly's results, the maximum enhancement was always in
the iimit of zero frequency. A similar result was obtained by
Rosenblat § Herbert (1970), who used a Galerkin method for the case
when only the lower plane had its temperature modulated. Other
work on this probliﬁfuu;been done by Davis (1970), Grescho §
Sani (1970) and Yi%‘(1972). There has also been some work done
on the stability of oscillatory plane flows. (See Yih (1968),
Grosch & Salwen (1968), Kelly § Cheers (1970) and Kerczek §
Davis (1972)).

In Part 2 of this thesis we consider theoretically the
problem investigated by Donnelly and the related thermal convection
problem. We consider separately the low and high frequency limits

for both the linear and nom-linear stability problems. The low



11

frequency calculations follow closely the work of DiPrima §
Stuart (1972, 1973) who considered the stability of the flow
between eccentric rotating cylinders. In the high frequency
limit we obtain a solution using the method of matched asymptotic
expansions. The type of analysis used is in fact very similar

to that used for example by Stuart (1966{'wheanszestigating the

steady streaming induced near an oscillating cylinder.
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PART 1

THE STEADY STREAMING ASSOCIATED WITH SOME OSCILLATORY VISCOUS FLOWS




CHAPTER 1

UNSTEADY VISCOUS FLOW IN A TWO-DIMENSIONAL CHANNEL

1.1 Introduction

We consider the steady streaming generated when a purely
oscillatory pressure difference is maintained across the ends
of a two-dimensional channel which is defined in Cartesian

coordinates (x,y) by

’3'\<-D°F(%)) O0<x < KL (1.1.1)

Thus D,, L are characteristic lengths in the y and x
directions respectively, and K is taken to be a positive
constant. We assume that the depth of the channel varies

slowly in the sense that if we define S by

(%)z ‘ (1.1.2)

then we have that

J«’ (1.1.3)
We further assume that if we take U0 to be a characteristic
velocity along the channel, and b to be the kinematic

viscosity, then the parameter RM’ defined below, is also small

compared to unity.

Ry = U, V (1.1.4)

We see from (1.1.4) that R is just the usual Reynolds
number based on the length L multiplied by J. . We shall
seek a solution by expanding the velocity and pressure in

powers of the parameters RM’ J . The dominant steady streaming



will first appear at order RMSO in these expansions when
the basic velocity field is of order Rﬁ £°,

We shall find it useful to define a frequency parameter

2
o = mbg/y (1.1.5)

where @ is the frequency of the pressure oscillations.

o by

Thus dﬂh represents the ratio of the typical channel depth
compared to the thickness of the Stokesilayer associated with
the oscillétory métion of the fluid. We shall consider in
detail the special limits of & tendiﬁg to zero and infinity,
and we s@all.refer to the corresponding solutions as the low
and high frequency solutions respectively.

In the high frequency limit we find that the solution takes
a similar form to that found by Lyne (1971) if the ends of the
channel are of the same depth. However, if the ends 6f the
channel are not of the same depth, and K is of ofder unity,
then the steady streaming velocity field is of larger order of
magnitude and always directed towards the deepedf end of the
channel. If, on the other hand, K is allowed to tend to
infinity, this part of the steady streaming will become
unimportant and the steady streaming will be dominated by thét
corresponding to fiow in a channel whose ends are of the same
depth. |

In the low frequency solution the steady streaming is
again,chaiacterized by two parts, one of which is zero or
unimportant if the ends of the channel are of the same depth
or K 1is infinitely large. therwise this part of the steady
streaming represents a steady flow towards the deepest end of

the channel. The other part of the steady streaming gives no
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net flux through the channel. 4 colool res bl 4 oa ?g@—n F-ﬂc"*"%“’
63 /ﬁi’féZ&ﬁiaika (“?7&9 am B CortiAd & man CFQ*AIOOV6'Aﬁ/

W okl Soadea .
1.2 Equations of motion and the Stokes flow

We consider viscous incompressible flow in the channel
defined in Cartesian coordinates, (x,y), by (1.1.1). We take
(u,v) to be the corresponding velocity vector and p(x,y,t),/p s
t to be the pressure, density, and time respectively. We
assume throughout that the kinematic viscosity, 2/, is constant.
The momentum and continuity equations for the flow may be

written in‘the form

du +udy +vde = -1 4 YT \
DY4 dx Oj S ax

N +ur +vdr= LY F YRLY

) d ( (1.2.1)
c’t g Jﬂ f y . a,b’C
Q_,(_‘, + é_y -r 0 J
Sy éj
e T4+
where Vz'-" &%14'53:.

We assume that the pressure difference between the ends,

evaluated at the upper wall, is given by

p (ke F(K),t) — p(0,F(0),¢) = (sinwot (1.2.2)

and the boundary conditions on the velocity required to

completely specify the problem for wu,v,p are

’

u=v = O J :j = = :Do F({') '(1(:*?{)3)

so that there is no relative velocity at the boundaries.

We now define dimensionless variables X,Y, ™ by

X=zx/L , V= j/Dc , b= wt (1.@.4)

We assumed in §1.1that a typical value of u was Uo’ and so
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we can infer from the equation of continuity, (1.2.1)c, that

a typical value of v 1is LLI%/Q_ . Hence we define a

deminsionless velocity vector (U,V) by

(U,V): ("“'/UO)VL/UO‘Dg')) (1.2.5)

and we define a dimensionless pressure, P, by

P= P‘D}/‘,Wa (1.2.6).

We can then use (1.2.4), (1.2.5), (1.2.6) to rewrite (1.2.1),
(1.2.2), (1.2.3) in the form

e P+ U +ITV A
- +p,,{uau+vw} W+ LY +ITY |
a uavw_y = =P +4Qy +3°QY ,
Sy IR F F S a0
v+ 3y =0 J
X Y
- ‘__ ot—’[o,?=
P (K,F(K),x) = PLOFIOLY) = acsad (1.2.8)
=t F(X
U=V =0, (%) (1.21.39)
a,

where o ,Ry, § are as defined by (1.1.5), (1.1.4), (1.1.2)

respectively and ©& 1is given by

« = CD2 /g?/LUa (1.2.10)

We now determine the so called 'Stokes Flow' which is
obtained by putting the parameters RM,<J equal to zero every-

where. We first expand U,V,P in the form

U= Us+U,Ry + O(Ry,d)
V=V, +V,Rm + O (R4, 4) (1.2}.)11)
P= 8""?QM 4_0(;?'3.’5) a,b,c



and we then write Uo’Vo’Po in the form

U=p{Ve"+ U™

PRRIRY. Fis
%=J£{Ve 4{6 (1.2}.)12)
R,:.-—fi{P*e‘*" P#ét'rj a,b,c

where the functions U*,V#*,P* are independent of Y and A
denotes complex conjugate. If we now substitute for UO,VO,P
from (1.2.12)a,b,c into (1.2.11) and then substitute the

resulting expressions into (1.2.7), (1.2.8), (1.2.9) and equate

terms proportional to e“t and independent of R, J , Wwe
obtain
%
JP": -l
X avl } |
F*= O (1.2.13)
oY ' a,b,c
&)U“-J'Q.V":O
3% oY
UV =V*=0, y=2F(X) (1.2.14)
' ' a,b
¥ . .
P'(k, F(x)) = P (0, Fl0) = -ix (1.2.15)

and so it follows that P* is a function of X only.
We can write the solution of (1.2.13)a which satisfies
(1.2.14)a in the form

- -p*{l -casl\l)']

<osA AF

where 1': \‘id’ ~ (1.2.17)

and a dash denotes a derivative with respect to X. Substituting
g
X
from Y=0 to Y=Y we obtain

(lv. 2.16)

for from (1.2.16) into (1.2.13) and then integrating
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v¥(X, %’) ~V*(X,0) ,
{’v -sin)Y | + P FsiblFisinh AY
;\wsMF Lo coshiAf (1.2.18)

and by symmetry V*(X,0) must be zero. If we now put Y=F
in (1.2.18) and use (1.2.14) we obtain the Reynolds equation

for the pressure

F S,A/L}A{]P* /"5/,;/57/!//0 0 (1.2.19)
Ncosh AF cosh'M

and using this equation we can rewrite (1.2.18) in the form

4
* =p*[VY- F}inhAY} | (1.2.20)
Vi) "g-{ “Aunh)F.
We can integrate (1.2.19) once to give

P'e A /{F - bachIF ] Q2.2

where A is a constant, which, after integrating both sides
of (1.2.21) from X=0 to X=K and using (1.2.15), is found

to be given by

fonef(fo )

1.3 Calculation of the steady streaming

We now evaluate the order RM correction to the Stokes
flow. If we substitute for U,V,P from (1.2.11) into (1.2.7),

(1.2.8), (1.2.9) and equate terms of order RM we obtain

— [ . U= {U, s +V, 0 )

{5?‘ fﬁl} ’ { X g“sﬂz

Q_ﬁ:o [ (1.3.1)
QY a,b,c

oX 9OV
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U=y=0 , Y=2F()

ﬁ (1.5.2)
67((,;((//“?")";0(‘3/70/?)50 (1.3.3)

and we can see from (1.2.12) that Ul’Vl’Pl will have
components independent of T and components proportional to
cos2v , sin2v. If we denote the steady parts of UysVy,Py

by Us’Vs’Ps respectively we can use (1.2.12), (1.3.1), (1.3.2),
(1.3.3) to show that

28 = PU _ L (V¥ + DU 4 v * 4 / )
5,; Iyr k] v X Iy

=0 | @y
Qgs 43)&:0 o

) =V;=0, ¥Y== F(X) (1.31.35)-
g(;(}‘r(g)).—P,(O/F(o))———»O- ©(1.3.6)

and it follows immediately from above that P is a function
of X only. If we substitute for U*, V¥ from (1.2.16),
(1.2.20) into (1.3.4)a and solve the resulting differential

equation subject to (1.3.5)a we obtain

- P*P* Yamh)Y _ Fe ,))/ 3:4:4/”/
U5= g{}/-z-iz} * [W lmmfl( /‘cosﬁ)F

- Féiusﬁﬁ; Y 4cosVir Y j # fomp/ﬂ]
- iﬁ;ca’h/\f’shk’if ‘"y"j"&
+B(x) + B(x) (1.3.7)

o~/ w

o é;-_-. F,’la'--i- /QA’/O*‘,L/D /0/
B(X)"’ p*p*{i +FcaM/1F /réanM/‘ »

'fF(u.ashJ_-F ’L“SFF)}
Q2 coshIF snhAF

and

(1.3.8)
a,b
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If we now substitute for U, f£from above into (1.3.4)c and

integrate from Y=0 to Y=Y we obtain the following
expression for VS after noting that by symmetry VS is zero

at Y=0.

- _g{w N +FEGY -8 -8

[(P#P”) {3/1{4“)/ F;mﬁf’y + VmHY
Veosh A Wiah AF Neo Vicosh ¥

~ Ak AY "F'/.wm/n/z?)’ +SnFY) /

Nessh \F hacoshlf anhJF
/ot '
v [_Boinh Y (Lo Y sk Yy
+ f:;P ¥ ( cosh \F ) 'a’j”- m/,AF )

+vmhxym) ..mm 'EZ/J?)

. /
- (sinhdzeY+sinl22Y) (. £ ) f
#a'm/:}'/"casln/v’
+ Camfalew ‘Conjujat& - (1.3.9)

and if we now put Y=F- and use (1.3.5)b we obtain

{ ﬁ;im’ FE'

/ .4

){ L banhIF -._5 +§;
- F(LSm/)\/z-f -H'mJZ;F) ]

/ot Lo cosh AF sinhAF

+ (PA‘P ){ #‘smhl\F(w,M/f) - smﬁlf WZ

+rca5/\/v (——7‘:‘”/"4 ) I
fand MM 0‘ - F—
( u‘ FromieF) (—E ) JI

+ Com‘)‘ek (;nJuja&J

(1.3.10)



If we substitute for B from (1.3.8)b into the above expression

we find that the resulting expression is an exact differential

which we integrate once to give
D= F’J P"‘P”‘ —Ltahdf + SF + Folidf - FRankAF
¥ i\ A

-} o
* F(ZFWAJ;F’%"’JZ_” 7yl N -3 2y N 3 2 ]
- eV

+ COMFIV;X C’onjujate]

(1.3.11)

where D is a constant which can be determined using (1.3.6).
Suppose we define a stream function,s,/ 52 by

= 9_\_‘./5 ) \/5 = -Qj_lo‘ (1.3.12)
Y | X

a,b

then we can use (1.3.7), (1.3.9) to show that'+ s is given

o 3 2 z
ﬁg_g{y.ésyr} +BY +BY

} P/*“\P/;‘ 450,,“)/ st/zly + Yeoss AY
4—0’ ) cosh ,\F l Sinh )F ,\ cesh)\F

—F (s.hf2cY + 5aJ22Y)
i o cosh AF sk 3¢

+ (om/:/d (on) ujcba. ] (1.3.13)

wherei ,B are as given by (1.3.8)a,b respectively

The high frequency limit

We now consider the nature of the steady streaming in
the limit of &  tending to infinity. This corresponds to
the Stokes layers associated with the oscillatory motion of the

fluid being thin compared to the typical depth, D,, of the
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channel. When ¢ is large, we can use (1.2.21), (1.2.22)

/
to show that P* 1is then expressible in the form

p/%__,-z&{ﬁa +ﬁg +:@_, -;0[0:’)] (1.3.14)

where

e {4 BB 07 o

and in order to simplify the following algebra we choose ¢
such that

ok = uﬁ§;4
This is equivalent to redefining the typical value of the

velocity along the pipe, U in terms of the amplitude of the

o’
applied pressure difference. With the above choice of o<

/
we can write P¥* in the form

P'*'-'-—:é-{ ,‘ ,,,mtz 7[%— +0(o—)} (1.3.16)

We now define a Stokes layer variable, Y ,» for the upper

Stokes layer by

v = {F Y}J—. | (1.3.17)

and so Y is of order unity in the upper Stokes layer. We
can use (1.2.16), (1.2.20) to show that for large o< U¥,V#

have the following form in this layer

U* | { | — € (Ht)y} 4 0( _3/2)
{ oF -—(l-H)Y } ‘ +0( ,.;,) (12.131.)18)
- F : ,

and as we might expect the dominant terms of these expressions
represent a velocity parallel to the channel wall. If we put
F’ equal to zero in these expressions the Stokes flow in the

upper layer reduces to Stokes shear wave solution for oscillatory
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viscous flow adjacent to a plane wall.
Suppose now that we let ¢ tend to infinity in (1.3.11)

with jg as given by (1.3.8)a. We thus obtain

! / ~%
%.—:3 "',{;557 + O(+%) (1.3.19)

and if we integrate both sides of this equation from X=0 to
X=K and then use (1.3.6) we obtaln

D = {FZ[K 2(0)}//2¢j dX +0(°’$/‘) (1.3.20)
If ends of the channel are of the same depth then the dominant
term of the right hand side above is zero. In fact, it can be
shown that all higher order terms also vanish in this case. If
the ends of the channel are not of the same depth then the
dominant -steady streaming, as given by (1.3.13), has no Stokes
layer type of behaviour and we can use (1.3.8), (1;3.11), (1.3.13),

(1.3.20) to show that %’ can>be wrltten in the form
. -5
3b {F’(K) FZ(O) y?- 3”—2}/24 zFde + 0(e%) (1.3.21)

and this represents a steady flow which is always directed
towards the deepest end of the end of the channel. When the ends
of the channel are of the same depth the dominant steady stream-
ing does have a Stokes layer type of behaviour and we can write

the following form for Nk in the upper Stokes layer

v=rE= J_.,,, {IB-AY’ . (2cosY'sY- ¥4V 406G (1 5229

and a similar expression can be obtained in the lower Stokes layer.

g away from the Stokes layer is

_ ! 3 2 /4 1.3.23)
..83F$_{Y YF} +0(57) (

and so we see that the steady streaming persists throughout the

The appropriate form for yb

channel.
Lyne (1971) has considered oscillatory viscous flow adjacent
to a wavy wall, the amplitude of which was small compared to the

thickness of the Stokes layer formed at the wall. If we take our



24

channel walls to be wavy with amplitude small compared to the
Stokes layers' thickness, then the expression (1.3.22) is
identical to that found by Lyne in one particular limit. Our
results correspond to the wavelength of Lyne's wall being much
greater than both the Stokes layer at the wall and the amplitude
of oscillation of a fluid particie far from the wall. The
steady streaming found by Lyne persisted a distance of the order
of magnitude of the wall's wavelength away from the Stokes layer
at the wall. Since the depth of our channel is small compared
to the typical 1length, L, a similar decay is not exhibited in our
problem.

The low frequency limit

We now consider the limit of ¢ tending to zero.
In this case the Stokes layers associated with the oscillatory
motion of the fluid completely fill the channel. When ¢ is
small we can use the series expansions sinh, cosh in (1.2.21),

/
(1.2.22) to show that P* can be written in the form

/ . 22 2 2
P = -%;.{v; 2% NFE-X +0(a~)}

(1.3.24)
.where Yo = {fo } X"' wa ,( (1.3.25)
and for convenience we choose 9&-3' which is again equivalent

to redefining UO in terms of the amplitude of the applied
4
pressure difference. We can then write P#* in the form
: z
pho =i {1 + AFE ) +0(o—)j
“F3 3 ¥

and so it follows that for small & we can write U*,V#%,

(1.3.26)

given by (1.2.16), (1.2.20), in the form
= -~ {\/3' FL} +0(¢)
aF?
vA‘___, _iF’iys-YFz + O(o")
2R
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We see immediately that in the low frequency limit the dominant
terms in the Stokes flow pressure and velocity are in phase.
This contrasts with the high frequency 1limit where they were
Tr/2 radians out of phase

If we let ¢ tend to zero in (1.3.11), where 4§~ is

as given by (1.3.8)a,we obtain

/ _ F/ .
%- f .i's%??" 7 0(s) (1.3.27)

which we integrate from X=0 to X=K. If we then use (1.3.6)

we can show that

K
D = M{F-Z//()-F'ZKO)}/WQE %—_}(5 + 0(¢)  (1.3.28)

and so it follows that the dominant term on the right hand
side is zero if the ends of the channel are of the same depth.
It can again be shown that all higher order terms vanish in
this case.

If we let ¢ tend to zero in (1.3.13) and use (1.378)a,

(1.3.27), (1.3.28) we can show that')(/ . is of the following

form for small ¢

%= EL[-10(4+S0) =905 +43 (%)

10080
K
EYIW < 3 X
433”20 P F(OJ}{(%) 3(’//F)}/f6i‘:_§_+0{&) (1.3.29)

If the ends of the channel are of the same depth we can write

s 3
+5 70080 { ) | ( /F) () 43( /,’:)}

Since n%/s, given by (1.3.30), is zero at Y=0 and at Y=F

there is no net flux assqciated with this steady streaming.

However this is not the case with the steady streaming specified
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by (1.3.29). The extra term in this expression corresponds

to a steady flow towards the deepest end of the channel.

1.4 Discussion of results

We have seen that in both the low and high frequency
limits the geometry of the channel is crucial in determining
the nature of the induced steady streaming. In particular
the difference between the depths of the ends of the channel
has an important-role.

When this difference is zero the steady streaming is
specified in the high frequency limit by (1.3.22), (1.3.23).
If the tgrms of order 0:21’ in (1.3.23) are evaluated
explicitly it is found that ’L s is zero up to order éf”
_at Y=0. Thus, since 705 evaluated at Y=F 1is also zero at
this order, there is no net flux through the channel up teo
order df”‘ . However,we can easily show that there‘is no
contribution to the flux from higher order terms by returning

to the expression (1.3.13) fox'ybs. Using (1.3.8)b, (1.3.11)

we can show that {‘I’s(ygF—'%,‘y;o

} ~ is equal ta -D,
and in the high frequency limit D 1is identically zero if
F(0)=F(K). Similarly there is na flux through such a chanmnel

in the low frequencyhlimit. In both limits the steady streaming
is confined between the points F'=0 .of such channels. In

Figs 1, 2 we have shown the steady streaming in a wavy channel
for the high and low frequency limits respectively. In Fig' 1l
/£hefe are four regions of recirculatiom, one in each of the
Stokes layers, and one between each Stokes layer and the line

Y=0. In Fig 2 there are two regions of recirculation, one

either side of the 1line Y=0.
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When F(0O) and F(K) are not equal the steady streaming
described above, which is induced directly by the Reynolds stresses
associated with the Stokes flow, gives a resultant steady
pressure difference between the ends of the pipe. In order
to balance this pressure difference a suitable multiple of

the flow velocity given below is required.

(f“/V) = CVZ”FIJ (//Yf’)
. F3 F

In both the high and low frequency limits it is found that this
compbnent of the steady flow is always directed towards the
deepedt end of the channel. In the high frequency limit the
steady streaming is in fact dominated by this component. If

the ends of the channel are not of the same depth but K tends
to infinity then we can show that D as given by (1.3.20),
(1.3.28) tends to zero like K '. The steady streaming is

then dominated by that corresponding to flow in a channel

with F(K)=F(0).



Y=(C1+¥y cosX)
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< ;
‘_)_
Y =0 1
=0 X = 2n
Fig. 1 : The steady streaming in the high frequency limit for

a two-dimensional channel of the form Y=3%( 1 + y cosX ) ,

0£X< 2
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> /

ﬁg Y =0 X=_2§n

Fig. 2 : The steady streaming in the low frequency limit for
a two-dimensional channel of the form Y = ¥ ( 1 fycosX ),
«3
fng <73



CHAPTER II

UNSTEADY VISCOUS FLOW IN A PIPE OF SLOWLY VARYING CROSS-SECTION

2.1 Introduction

In this chapter we use the methodé of the first chapter
to investigate the unsteady viscous flow in a pipe of slowly
varying cross-section when a purely oscillatory pressure
difference is maintained across its ends. In order to use
lubrication theory again we also require that a modified
Reynolds number associated with the flow is small.

Suppose that the radius of the pipe in cylindrical polar

coordinates (r,9,z) is given by
»ed) {/Q(—E) + Cg(%)casM@} (2.1.1)

where M clearly must be an integer which we take to be

positive. We define the parameter dﬁ by

= | (2.1.2)

so that if the radius of the pipe varies slowly we require

that

é«‘ (2.1.3)

and if Uo is a typical axial velocity of the fluid, and Y
is the kinematic viscosity, we require that RM’ defined below, is

also small compared to unity.

J

2
Ry = Yol (2.1.4)
Ly

We see from (2.1.4) that RM is just the usual Reynolds number
multiplied by d .

If the frequency of the pressure oscillations is &), we
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define a frequency parameter, ¢~ , by

= 0O /D (2.1.5)

iénd so o ¢ represents the ratio of a typical radius of the
pipe to the thickness of the Stokes layer associated with the
oscillatory motion of the fluid. We again consider the special
limits of @ tending to zero and infinity. In the latter case
we consider the Stokes layer at the pipe wall and the region
away from this layer separately. We solve for the velocity in
each region and match corresponding components where different
“;regions meet,

b We assume throughout that the perturbation of the pipe wall
1;;%n the (M ,0 ) plane is small compared to the thickness of the

"f’fétokes layer at the wall. Thus we require that

é&"((l ' (2.1.6)

The procedure adopted in this chapter is as follows.
In 82.2 we derive the non-dimensional partial differential
system and solve for the so-called'Stokes flow' by putting' RM,
A~ equal to zero everywhere. 1In §2.3, 2.4 we evaluate the

- first order steady streaming in the high and low frequency

limits respectively. This first order steady streaming first

@ppears in the order Ry correction to the Stokes flow in
‘both limits. In §2.5 we discuss our results and their relevance

tO some physiological flows.

‘JE}Z Equations of motion and the Stokes flow
We consider viscous incompressible flow in a pipe defined
in cylindrical polar coordinates, (r, 8,z), by
dsp =, {R(’f_) + € S(Tz_ )c.osﬂﬁ} = J(6,z)
oszs KL
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We define p,Z’vfa,t to be the pressure, kinematic viscosity
density, and time respectively. We assume that the pressure

between the ends is given by
Pl 0K - (5 8,0) = Co un o (2.2.1)

~and we introduce dimensionless variables % ,Z ,;' as follows.
veot, (= /Do, ¥ = 2/L (2.2.2)
a,b,c
If U, is a typical velocity along the pipe then the equation
of continuity shows that the other components of velocity are
of order LQZL/ﬁL . We therefore make the velocity vector

(u,v,w) dimensionless by writing

(u,v,w) = Us (@ﬁ’/L/fDol{/Ljf) (2.2.3)

and we make the pressure dimensionless by writing

P = poL Uy’ D, (2.2.4)

We can then write the momentum and continuity equations in the

form

.oélag +R, J’{? 2k +g3_% K"/- ._'g,.f[V-_L,’j..:zJ?C ,FJZ-‘%

N
el B R N

1 90 " I5

o QL P {gUE T + 1R f = Z T *"Z?
%(75) +7£ fz%f =0

(2.2.5)
a,b,c,d

2 2
599— 2 *Ywd

where

and Gf, ¢ Ry are as defined by (2.1.2), (2.1.5), (2.1.4)

respectively. These equations must be solved subject to there
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being no relative velocity at the pipe wall. Thus we require

that

f £ - 5’ 0, ,,L—Q é’ca.s‘/lﬁe (2.2.6)

and from (2.2.1) it follows that
,P"’(/Z-fésas/‘a?, A9 f-p*{;@f-é.(mﬁaj 80,v) = oLAind (2.2.7)

0L = C,O ’3@2.
A L Uy

The remaining conditions required to completely specify the

where (2.2.8)

problem are kinematical in origin. At the inner boundary,q'=0,
we require that p,f must be independent of 9, whilst g,h
must vary with cose R sin@® there. A useful reference where

these conditions are discussed in more detail 1is G%}l and

v
Batchelor (1962).
We now assume that the parameters €, M,cr are all small

and we seek a solution by expanding g,h,f,p as follows

1= Cut€QAE, +€hu G 108} EY
L= Hoo + o +hutiot ERN H, +O(An,d, €?)
6: foo + ) +inFrot €O F, + ORu,d,E%)

v

(2.2.9)
a,b,c,d

47 = 2@ + gpm + ﬁt\ffgo ‘/"é’ﬂ,t(? "0(/?&,({‘67

The so-called 'Stokes flow' is obtaiﬁed by putting the parameters
RM, Jﬁ equal to zero everywhere. We now solve for this flow up
to and including terms of order € . We.first write
Goo ~T{jooe?+ e 1
Hoo-‘&"{lscaf 't‘;:o -t'r} : - »
Foo = H{%s €7+ &, ™} ab,c,d

,Tza=='ﬁf(1knv¢ f’?;oefﬁi

~
(3]
(3]
-
(=}
~—
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where ™ denotes 'complex conjugate' and the functions 800?

h are all independent of % . If we substitute

f
00’ “o0’ poo

for Goo’ etc from above into (2.2.9), substitute the resulting

expressions into (2.2.5), and equate terms proportional to et

and independent of & » Ryps éﬁ we obtain

Yoo =
'975 J

oo = 0
76 )
e = (VEiofef, abscy

(uzgoo) 4 aAtM -I-»z _g;%gm = 0

Thus is a function of J only, and we can use (2.2.11)c

pOO

to show that, if solutions of Bessels equation which are

singular at«% (L are rejected f is given by

%o = :}_’_é [/’r,u cas)9+AgaamA9]f[5?) (2.2.12)

i Azo0

where a dash denotes a derivative with respect to f and s

is defined by

——c

§ = \[40- (2.2.13)

The coefficients All’ AAZ appearing in (2.2.12) are in fact
functions of } and will be determined later. If we substitute

for f00 from (2.2.12) into (2.2.11)c we can show that

] 9 ,U BEX Jc‘;fb "POO LAA.casAG *An-“”q&] ((57)

(2.2.14)

In order to solve. for €00? hoo we clearly require another

equation linking these qﬁantitﬁes.
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If we eliminate the pressure p+ from (2.2.5)a,b, substitute
for g,h,f from (2.2.9), equate terms of order J' and take

Goo’ H00 as in (2.2.10), we can show that

{Vi -za-} [-%:%[qfw) -%%%u =0

which we solve to glve

5@;(7‘/@) -gdab = V[@’ cos A0 4? r/mz(??Zg/{fz)

(2.2.15)

where Bkl’ B12 are functions of }' to be determined later.
The solutions of Bessels equation which have been neglected

above lead to terms in h which are singularaft=0.

00* o0
We can eliminate o0 from (2.2.14), (2.2.15) to obtain an

equation f024 h,, whose solution which is regular at L_=O is
doo = A Akisalb-Alrcos ] _z_f_%(gl)_
Azi
2 df(a
+5 [ B0 B8] T
Vg0
& |
+ ? FG. cosh +61m10]1,
- (2.2.16)
A=)
where the coefficients C%l’ C}Z are functions of f . If we
substitute for hoo from (2.2.16) into (2.2.14) then, after

multiplying by 1/ , Wwe can integrate from wﬁ=0 to 1’=\ to
show that

foe -5 efAvenl6 oAl ] GEC0
“ o a” ()
+ ;';,__L[ Mmh@-f&,us/\@] )

e

+5 [Gaudd -Guenll]] 1

(2.2.17)
Ao Zio

where we have used the fact that €00 is regular at 1 =0 to
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show that Z 00 1s zero there. We can repeat the above
calculations to show that the order € terms in the Stokes

flow arejlven by

g"‘ = ‘E ve LA v cosAD ta; oo Aﬁ‘]d (Sq) \

Aso "1
) Z Y [,b“,,;.,,w_jj,m/w] _A_(»_z)
),zl

[cA,A.mw "Aa“‘f‘@]f[ 47%,

~
[ 3]
e e .
[oall o8
. e
—
(e
N’

fm = '%; [d,{; an A0 a;cou\BJ GX{‘I)

[}
_.__!__[;f"“ cos G '4"13“ e (5"1)

‘a‘fM&"

Lo

’ v
'3 [CM cosAO .[CMSU‘Aa] 12,-!

A=l

:f;‘- .ﬂ -fz [‘a,\.casAﬁfa,\g.s‘m;‘@]f(ﬂ y

where a1 etc are arbitrary functions of S to be determined

ol’ £ |
A '3 'll'
Ga‘ 2 me “' OI }
-
Ho = ’—'{h“ C #,};m tj

ot -t‘t .
t =7 {’foc'e +£., } a,b,c,d
~ -tk ‘
/Pm -'-'-_;L—'{ Pon ‘h"f'?or ‘-}

In order to solve for the unknown functions of I in the

s M

later and 8017 h ol are defined by

~—~
g ]
3]
*

|
el
g

4

expressions for f f,1» etc we must consider the boundary

oo’
conditions on the velocity and pressure. From (2.2.6); (2.2.7),

(2.2.9), (2.2.10), (2.2.19) it follows that these may be written

in the form

oo + €du = hoo + €hoy = fopt € §u =0(€), n=Rt€Sallz.2.20).

a,b,c
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/Paa (K) “‘?ao (0} = -l

Po (K) "'”{’m(f") = O (2.2.20) d,e

We can use (2.2.12), (2.2.18)c to show that the condition
(2.2.20)a gives

0(6) - =L {’PM 4 ép,, [ [+ €an)eos}0 + (Ari 5’%)&”]5 ; if, é ; %

where from now on a dash on a Bessel fuﬁctlon denotes a derivative §
with respect to its argument, and we have replaced JA(SRHﬂSbaskB)
by its Taylor series expansion about sR. The validity of this
expansion is ensured by (2.1.6). The coefficients AAl’ agy, etc
are then found by equating terms proportional to cosil@,

€cosAO , etc. We find that

Ao,-:. Of 9:’-"'5/‘)‘2:/&()/{0 - (2.2.21)
e T arb

and all other coefficients are zero. Thus we can write

£, - —Z-Z -ZG) ] | ‘

Tol(sR)

\
? \
= - O/I S‘,’Daofép)(‘f[f)wﬂ/%& (253622) |
%; = [ 7’(757 s'bo~:7/(3£j¢&;(349 ) |

If we now use the conditions (2.2.20)b,c and take 00° h

o
00’

g 4, h as given by (2.2.17), (2.2.16), (2.2.18)a,b respectively
ol ol

we can show t at

0 -5 [(4,,%@4, ces)O+ (A + €afu) 20 )8 [ [sRB68) tooshte
M/s/ewmm)
; 7_- A [ Bt hn)sn W= (8ot Eb)hO][6R) ¢ & $ 0% )cosm)]

' wz [ (ot €an)nald- ((ins €cn)em ][R NS cos ]

_21_1: Por + EPO,]L/Q"" +2ERSa B
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0(¢Y =Z@ 4»*@:“ )8 - (Ase +£a52)m/§@}[ﬁ(lf)éfqgfé’@mftﬁ}

P‘% [: gm 4’%,\: QA/\Q 'f(gAz“éfﬁAz)AMAf)][‘ QJ}A@ +EFKST [*f}wﬁ/%
Z.
:O

+ &, S [@)Mﬁ]

of . ) .
4?.0'}- [(C,\; + Eﬁan)@z\ﬁ 4 (CAI +CCA,)m%A§][/€ + G&in & (9]
Az

(2.2.23)
a,b

where we have again expanded the Bessel functions in Taylor
series. If we equate terms independent of € and @ in the

above expressions we obtain

{Ra RJ-(‘SQ) 'Poo - /R?,’P:o EJI/A%’R) e

5 JoGsR) JsR) (2.2.24)
: , : a,b
and Bo: =0

where we have replaced A ol in (2.2.24)a using (2.2.21)a.
The equation (2.2.24)a is the so-called 'Reynolds' equation for

the pressure and can be integrated once to give

—

o) = —E
oo {R’ RJ’(s(} (2.2.25)
X STLGR)-

where E 1s an unknown constant which we determine by integrating

both sides of the above equating from)’ =0 toj =K and then

using (2.2.20)d. We thus obtain

E=_ - 4~ | (2.2.26)

df
‘[ {kl ﬁf(sf)}

s o(s

+
|



The remaining unknown functions ofj , i.e, BAl’ BAZ’ b“, bAZ’
CM’ CAZ’ Cy1s Crgo for A z 1, are obtained by equating terms
proportional to sintw, cosw, sin M0 R cos)\ﬁ, in (2.2.23)a,b
The order € pressure, p i, is found by equating terms of

order € in (2.2.23)a. We find that

/

Por = > gg’ég (2.2.27)
(£ '::7;‘-@@)} |

and using (2.2.20)c it follows that F 1is zero. The only

remaining unknown function of 5 is bol' If we equate terms
of order €, independent of ©in (2.2.23)b we find that b,q
is in fact zero. Having determined all these functions of 3

we can write 807 8o1» Stc as follows

o 2z [ - RIGY ]

2o T, (sR)
Mt g
T fenr s () 5 A ST (- sRL (R)[ 5 6%
- [(&} é (@*4 Z ]olmz/
"ql"ﬂsg/‘/ﬁ [57)1‘ 4aisyzf[£) Jﬁfﬁle/zl/(/:g;fé/ﬁ (a;J'A‘
HAoo = O

:ﬂf(/? vy (4R)
ko = [~ ()" (s e )+ e ST QA @)
-iamsé’;. (57) +4 /fo,s'f[f[ﬂe)-;@f ]7/(‘7 UM/Z(Q

where Aj1» 3 are as given by (2.2.21)a,b.
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2.3 Calculation of the steady streaming for large &

When ¢- 1is large the Stokes layer associated with the
oscillatory motion of thé flulid is very thin compared to a
typical radius of the pipe. We first discuss the nature of
the 'Stokes flow' for large ¢ . If we use the asymptotic
expansion of a Bessel function of large argument in ('2.2.25),

(2.2.26) we can show that

(P"::' -.o«.{ﬂ-&?ﬁ Q,ﬁl fO(d:?}

R* Rite Nio (2.3.1)
K
.} 2 d
where ﬂoz { o Cél ls f;——z-f; (253{)2)

-
and for the sake of convenience we choose ﬁo = O

This is equivalent to redefining the typical axial velocity, Uo’
in terms of the amplitude of the applied pressure difference.

We can then write po’o in the form

f_ 142 _afd +oa;ly
Poo = /Ez{ Rite e | (2.5.3)
I

by
EQ ~ Q]J’zz (2.3.4)

then if we expand the Bessel functions in (2.2.22), (2.2.28),

If we define a Stokes layer variable Z

for large lS'll , |SR‘ and use (2.3.3) we can show that in the
Stokes layer _(“"
£, "k* [l- IL] +0(5>4) \
.(\u)v‘ n
doo~ R‘ [l ~e ] +0(s )
-(m'nl‘ -
For > e + O(&) (2.3.5)
\F—Q“ a,b,c,d,e
dor~ SR &+ 0¢3")
e R?

hoe ~06")
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If we put s=R’=0 in (2.3.5) we see that the 'Stokes flow'

in the Stokes layer reduces to Stokes shear wavé solution for

flow in a circular pipe. We can also see from (2.3.5) that the

order € corrections to the axisymmetric flow have a dominant

term which decays to zero at the edge of the Stokes layer. We

shall refer to the region away from this layer as the 'outer' layer
If we substitute for g, h, £, p+ from (2.2.9) into

(2.2.5) and equate terms of order RM we obtain:

é@ﬁo = 6
%,
3‘/’

{V" fa]/.’ 9&+[/‘3@o+%99€,+é’“ g(2-3-6)

70 ’l a,b,c,d
D (1 Go)+ Do +7] 260 =0

and similarly by equating terms of order éRM we have

9?; ’

M )
3!7, =0

ivz oBjh Dot (LI 1 Dot B

# Hoo
;f 7 70
575/ } (2.3.7)

‘f’/‘/cl ?go fa?o o +
A

'9%6767’) 9# 4134,..

We recall that in §(2.2) Foo’ Goo represented the axisym-

3‘1

/

metric solution and F_;, G ;, Hj; gave the order € non-

axisymmetric correction to this solution. Similarly Fio° Glo

will represent the order Ry axisymmetric solution and Fiq»

Gll’ H11 will give the order éRM non-axisymmetric correction

~to this solution. Thus we drop the O dependence of (2.3.6)
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and put Hy = 0. The relevant boundary conditions for F

lo?
G,, are
ﬁ=£o=0/ ,Z-:% (2.3.8)
a,b
and the conditions for Fyqy» Gyq, Hyy are
2 -
Eo“éjfu :él)af é;: é’/'“.:'d(é)}.z-/?v‘(fcas/({é (2.3.9)
a,b,c

where Flo’ Glo are assumed known. We also require that Flo’

Fll’ Plo’ P11 are independent of @ at 'I) =0 and that Glo’

Gll’ Hlo’ Hll vary with cos 6, sin @ there.
We first solve for the axisymmetric solution. If we

substitute for F G

00 P from (2.2.10) into (2.3.6) we

00’ o0
can see that Eior Glo’ P'10 will have both steady terms and

terms proportional to cos 2%, sin 2% . Suppose that we

denote the steady parts of F G P by £

10’ %10’ 10
respectively, then we can use""%'f*=~2.10')," (2.3.6).%t0 show that

{9%19}{ 1,5 ££a 0430 9;_3&;” 9-fao+ja,?_{a,,}

:z SfL
(2.3.10)

' . | a,b
$019) 4155 <0

We shall obtain the solutions of (2.3.10)a,b in the Stokes and

s, gs, ps

outer layers separately and match the solutions where the layers
meet. We denote (gs, fs) in the Stokes and outer layers by
(g;‘, f;’) and (gg, fg) respectively. We can use (2.2.22),(2.2.28),

(2.3.3), (2 3.4) to show that fsi, fg satisfy the equations

[% R-§ '31}’(‘ g(f;") ; \
' R' ?'[Coi f.ﬁat]]e HLcosqc'i Su,e
—28 M0t 7]
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where g\(g g-) is as defined below and has no Stokes

layer type of behaviour

f(ﬁo*):ff;f +“;z ?éfp;"a ﬁ?;",?go} (2.3.12)

and it follows from (2.3.8) that we require that

f‘i = g: =0 ):L'-.-O (2.3.13)

a,b

and from (2.2.7), (2.2.9) we see that

/Ps(K)“TS(o) =0 (2.3.14)

|1}
o

and we also require that gg, fg, pg are regular atrl

We can write the solutions of (2.3.11)a,b in the form

ﬂ::?é“:z_ J;;,Z‘Q} +A(5,0) 4?(50-){(°jm}§ '—Z:Jé H (‘??I g}t}

) ~ -yl - -
4;25,25 { Q'Lasv?'- sw,‘]e 1. é.funzl«e_ 1'- c_,,,"e:'l‘.. 27’4’0(5’"‘&

s°=_£ {vf»—’Rz} + () » (2.3.15)
y

a,b
where A,B,C for the moment are unknown functions of J}a-
and we have rejected solutions of (2.3.11)b which are singular
at Il =0. If fi, fg are to match at the edge of the Stokes

layer it follows that

A:C) “B=0 | (2.3.16)

and using the boundary condition (2.3.13)a on fi we find that

A.:__/_IZ_!_ *0(037/‘)

o3RS
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i o}
? fS as follows

. ; / -n! < yon 1'51’ ‘3')‘ -
‘}; zg {q"m\fi}'&?.l} ZS‘ 5{? [cas?’-smtz‘]eqwésm?'e r’-mma e 32 H?(’ej

and so we can write £

3(;,”23-{ —-’sz +;§'€ + 07" e

Suppose now that we denote g in the Stokes and outer
layers by g; and gg respectively. In the Stokes layer

the equations of continuity (2.3.10)b can be written in the form

'--a.(‘:—‘{(rQ*j%:’?')?’:} 4-[3-@7‘][”%{;{" 1‘/;@:%’?‘]:0 (2.3.18)a

and in the outer layer we have

??L(?,i ) +'l 9{; = (2.3.18)b

If we substitute for f; from (2.3.17)a into (2.3.18)a and

| !
integrate from ll =0 to a point Il' =12 in the Stokes layer

we obtain

(R-{31)4; = é{ (R-FZ1)* 2RY(R~[Z1) +’R‘}
b[ SRR - é—ﬁf-)[' +0f"")]] [@ Eﬂ -«

p LRI e 435, 7”".(7]

'F'?ll R-J'?; ‘ { Cosn -S4 ,' Gsu ‘evq‘
&;R‘[ ?] 1lero ]S Co,,’ti f;’he‘w;z}
4 0( ‘7/2)

(2.3.19)a

where we have used the boundary condition (2.3.13)b to show

LN e
that (KR“JZ'] ) 9; - is zero atII' =0. If we substitute

for fg from (2.3.17)b into (2.3.18)b and integrate fromll =0
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to a pointll ='l still in the outer layer we obtain

"lﬁ’:*' :%/{7%272,?"'}42{%[_’@; o )(l—d(“'*))}z (2.3.19)b

where we have used the fact that gg is regular at Q,=O to
show that 1/gg is zero there. "We now give an explanation
why we have evaluated only some of the terms of order Oﬁw
in (2.3.19)a,b. The terms of this order which are given
explicitly are those which arise from the order O_—S terms in
fi, fg through the equatioh of continuity. However, terms

of similar order will arise from the order orwu'terms in fi ,
fg again through the equation of continuity, and these are

the terms which we have not given explicitly.

The essential 'physical' difference between the terms is that
the latter, when combined with the order Pl terms in fi,
give a resultant velocity parallel to the pipe wall whilst

the other termé lead to a component of velocity normal to the
pipe wall. We shall in fact see that in the evaluation of the
stream function in the Stokes layer up to order drmq the
terms not shown explicitly are not required. If we use the
condition that (2.3.19)a,b must match at the edge‘of the Stokes

layer we obtain

O glq"' j}?’,e’ (2’4;) a’?/?". &Jj /:(7‘"‘) f‘d{& (2 3.20)

which we integrate once to give

@ §ﬁ+ (z‘%?;)[’ ,3]4 0(“7”) (2.3.21)

where Q 1is an arbitrary constant which we can obtain by

substituting foz‘j? from (2.3.12) into (2.3.21) and replacing
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7
pOO

integrate from J =0 to ¥ =K and use (2.3.14) we find that
§ - (R - R4)] f“df 00 |
= Ja - + y %
T e &%) (2.3.22)

Thus if the ends of the pipe have the same mean radius the
-2

by its asymptotic form given by (2.3.3). If we then

term of order' o in (2.3.22) vanishes. In fact it can be
shown that all the higher order terms also vanish. For Q non-
zero we can see that there is no need to distinguish between
the Stokes and outer layers as far as the dominant term in the
velocity field is concerned. If we take f R Q as given by
(2.3.21), (2.3.22) we can use (2.3.17)a,b, (2.3,19)a,.b to show

that we can write fs, gg as follows

f;==/ial;%;;j%; + 0(2?‘?47

gs= = A [R/;(f] %) fO(o"’}J
where A [,Q A[K) R ‘F(O)]/[“f | (2.3.23)c

and if we introduce a stream function % by
2 3

1% = %% » 14, = ‘%ﬁ ey

then we can show that

')Z/ A, { 4 :7:’07 #0/5{/2) (2.3.25)
0,2

and this represents a steady flow which is always directed

(2.3.23)

towards the widest end of the pipe.

When (;7 is zero we can use (2.3.20), (2.3.21) to show

that fi, gi given by (2.3.17)a, (2.3.1'9)3 may be written in
the form :
4: ! —fy
osn.sn e" bsn eq ces 'e” ™53 2 400"
s ,R;{V(/ 7-sq) 7 9
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ﬁ) ﬂ{! [C0§7 5‘,.,7)5'? 650}/’@,'} Co;,} "74% "’27’.‘ 2 +0(0?‘/‘2\)f
&

R -29/
"” ‘_ 'M,Q/&) {/}[Mm]a {’ILC@S(] 27 + 35(4/] e .;_5,_ - _g }
+ O[o?-’“) (2.3.26)

a,b
We can see from (2.3.26)a,b that thé order ¢ ~° term in (2.3.26)b
is just R/ times the order ¢ ° term in (2.3.26)a. Thus
at any point in the Stokes layer the dominant velocity is
parallel to the wall of the pipe. We can also show that the
order 077/2 termé not shown explicitly in (2.3.26)a,b similarly
represent a velocity parallel to the pipe wall. We define a

stream functlon 7[)‘: in the Stokes layer by
-Jz @_’f j - M R 2.5.2)
R-J3y R Gy b
and we can then show that }[ is given by

{
A/_ J" 7/: R’*

{2?5mq‘erl{gw.€?cq"6$wqe '4 -9.3-“”) 740(’”{](2 3.28)

and with Q -equal to zero we can show that the stream function

o
')L - in the outer layer is given by

’\/ KR' {7 ﬂ[lf }{l t0(s l)] Y ”‘? {7"2’% +0(a') (2.3. 29}

Thus (\}«: has only been evaluated explicitly up to order

&“3. However this expression matches up to order =72

with (2.3.28) at the edge of the Stokes layer, the term of order
¢’* not shown explicitly giving a contribution of order

0‘74 there. The flux through the pipe associated with this

steady streaming with Q zero is clearly zero (at least up to

~2
order O~ ) since

/7L5 I,lzo- ‘\Ly ’ o = O(‘;dk) (2.3.36)
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We now determine the order € correction to the axisynm-
metric solution. The order & Ry term in the expansion of the
velocity was found to be determined by (2.3.7), (2.3.9).

Suppose that we denote the steady parts of G H p

112 P11 P10 Pyg
by Gg» Hs, PS, PS respectively, then we can use (2.2.10),
(2.2.19) to rewrite (2 3. 7), (2.3.9) in the form
V2F; "'/P + ) {{oo &ﬁ” "fa;c;);c‘m +4 9@0 sz 4 got &uﬁm
’L ‘l
4 joo@‘gq +3m ‘g’:rc'm-& hoa §_€f_:3, 4 hocdfoo} (2.3.31)

1 Compex wauem:: a,b

&)1 M 4+ gDk =0
"’TJL) J0 = U35¥

$;+€F; = 45+ €GFEHs = OCE), n = Rt€Scost  (2.3.32)

a,b,c

where f are now assumed to be known. From (2.2.7);

s? 8g
(2.2.9) we can show that

R -P(0)= 0

(2.3.33)

We also require that P FS are independent of 69 at Z

and that G_, H_. vary with cos & , Sin @ there. If we

5 s
eliminate p+ from (2.2.5)a,b and substitute for g,h,f from

(2.2.9)a,b,c into the resulting equation and equate terms of

order €Ryd we obtain

T J (. - : _
{-3-(-(-1 —’Iig—q +1,0 1 5%—9(1”!) f-)/(t]:f

-.9 []l 700 ?110' -f-qjo‘ a‘)oc J—QF BAOI 4-7 ?Aoa
4 I'loo g-—go' "‘l\ol 2_’7\‘0’ ¥ I\oagoa 4 Ao‘g""}



~
2

! ﬁ [ '3 o4 m co W,Q o/ o adad ﬂ:,? s Io/? op
4 jo?gf *ff?c ?’%*s‘;gg"’ 73»}
"9 {ﬂ_jﬂo 2:.” 4’77410&9 -i‘z.i')?j gﬁ ’ s‘? & ’2{
hg; ?1\00 ’fA”‘g” + /{mﬁoaj]

(2.3.35)
Suppose that we denote (Gg, Hg, Fs) by (G;, HE Fi) and

S’
(G:, Hg, FS) in the Stokes and outer layers respectively.
We can use (2.2.22), (2.2.28), (2.3.3), (2.3.4), (2.3.31),
(2.3.34) to show that these functions are determined by
g - 9 + FL 2P N7 S$R' 2™ 2cosn T sade?
{'5'1 42951} Als + 4 {e ne —5aq
T I-'b g r(ﬁf) T ok quqe”#O(agcas}Iﬁ
QF.O;;?' . o
L4 RIGE T
_@[(R.Jz jg]+ z zw; + (R- /o.fl/[&.gﬁuf*’;;i? =0

(”‘lg) ’ @l-/; ,Z@Fto

L \ﬁ;' = Z 9 +_2 s .2 (K- s
{g’lu + R-JE.Q'Q'I' "'m,)fgab W}[ ,/ f?)H]
| 0[@‘/9 |

(2.3.36)
a,b,c,d,e,f

The non-linear terms on the right hand sides of (2.3.31)a, -

(2.3.34) are all exponentially small away from the Stokes layer.
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The boundary conditions (2.3.32) become
P plh 4 i C (@
‘,f: 4‘€r: = 55 4 CG; = GH;=0(62)) Z‘“ ':féf(."@.fl‘i& (2.3.37)
a

We can easily show that the solutions of (2.3.36)a,b which
match at the edge of the Stokes layer and satisfy the above

boundary condition are

{'l F’ZQ} + 5"Q‘ {' +35mqeq Qcosqeq -1 C’afyefas}’w

oy 2

él_{/— Z} cosMO + O(F)

£ :P;’{'Lz'?;} __%&_{ (%e)ﬁéaé’ﬁﬂ + {7(0:3)

o~
where .ﬁé is given by (2.3.21), and solutions of (2.3.36)b

(2.3.38)a,b

which are singular at Q =0, have been rejected. Similarly the
solutions of (2.3.36)e,f which match at the edge of the Stokes

layer are

— (n o d , & Y f{ ~57,
.—a%r[(ﬂjg ') He ] +§_9(§;_, = ~BGe) (1 |2 1) okt +067)

o o fat
%(‘I Hs) *%’ = Be) (%) w1 (2,359

where B(J, o) is for the moment an arbitrary function of i, o~
and solutions which are singular at q =0 have been rejected,
since these solutions would lead to Gg, Hg being singular at
1=0. We have assumed for the sake of convenience that only
terms proportional to sin M@ need be retained in (2.3.39)a,b.
(The vanishing of the other 9 dependent solutions would

otherwise be found when the boundary conditions were applied).

If we substitute for F; from (2.3.38)a into the equation of

continuity (2.3.36)c, and eliminate G; from the resulting
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equation and (2.3.39)a we obtain

T ) MR-y VUi = M féﬁ-}%ﬁ’ﬁ” £ Am/i(f
%{M'@’Z){’%:Me »/F'f/"’fs]*";g'g_gé “Z (;37:1) ]( fﬂ

+ OCo
and we can show that the corresponding equation in the outer
1ayer is
N#Q} 006
1 o
{"L ’LH5}*9H‘ . Q___‘?M] b4 0C5)
76"

and the solutions of these equations which match at the edge

of the Stokes 1ayer are

)
Hi=[-M ) +2042)B T (R-J51) k1 C (i- - JE4 i 1)

g
1; (#)

e [:-M (—Sé; )’4 oZ(MPz)g]‘ M b + C(/@) .w/‘iﬂ +0(¢) 1

s = g™ |

w O1) (2.3.40)

where C is for the moment an arbitrary function of 3 P 4

and solutions which are singular at 1,=O have been rejected.

We have again assumed for convenience that any (9 dependence i
of HL, H is with sinN@

Having determined F H;, we can substitute for these

functlons into (2.3.36)c and integrate from i = ...\I-E-Qg’cgs "19

to a point 1/ ’b still in the Stokes layer. We thus obtain

[(Q 3’7)) l ggco,M@
= -’P/'{CR j‘rz) 2R (R J—q) +#R ] A M{ffﬁ/ K/

1 {uez () %j{ (K-/;J/) 1 e ] cat

+é§4& TR 0SAT { ( F‘?)[ 4—35(/&75'] QCoS:, '7' b)co.f/] 'e ]f zfymu‘ﬂ

+0 (¢ €)



However, using (2.3.37), we have that

N2
[(‘2 J ’2)(55‘“‘:’6) )Jr[--Jrfg’ms}m = 0(¢°)
and so using (2 3.19)a, (2.3. 20) we obtain

R-[21') G = 7;”[(@ f7')* 207 R-[E) 4R /ﬂ’m/ae )4 /

f{fwz(ﬂm - 2018 /{(,(2\/0,7) 20" o0

& (M+) \
L (R~[Zy)"- A’/m;/é[@ f@ffeaas.ﬁfﬁ

Kﬁ:
\/ /z( /L[ (K 7‘)[6. 7 *3?&11(5'}. 2&:05? e -7 40576 ‘]/&”m
2

(2.3.41)a
and if we substitute for Fg, Hg from (2.3.38)b, (2.3.40)b into
(2.3.36)c, integrate from Q,=O to Q{ =1, still in the outer -

layer, and use  the fact that Gg is regular at Jb =0  we

obtain | Mi2
bt é,a { 2 272] 2 {Mff(}g{,) 3%3/7 695/‘/5
4 ! g (M) _
- c v FosMO + 0(&3) | |
(2.3.41)b

and if (2.3.41)a,b are to match at the edge of the Stokes
layer we require that
/ 7
0 (63) = TeRY + %R
v ¥ (2.3.42)

44 a,b
. O1)= BRI +8c. frroetooy (% ),e"/
R LT

We can integrate (2.3.42)aonce to give

A
’};'__,_%r +0(¢”)

where Z is a constant, which after integratiﬁg from ./~ =0 to
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J =K and using (2.3.33), is found to be zero. If we put

—~g€§685M9 in (2.3.40)a and use (2.3.37), then equate

terms proportional to € sin M@ we obtain an equation for B,C

which we solve together with (2.3.42)b to give

’/“'ﬁ'ﬁ;’ = =1 ( ) (/‘:H)cﬂq # 0(0-_31
<
R

- (mz)@sR’ ‘f? +0(s?
s+ 2 106

and then we can show that 1 , HI, pl will be given by

= [RLO)T-(W % ‘f] - 89 (%)%

12K SRQRSL-ZV’; 35mqeq QCosqe ~q cosrie ]}egrs }Z@ +0(0"3
N2 Sa

{4@[( AR JLSR’-SR]}AM/‘{@ +0(F)

R*

O SR P sord & 20 'e_heo "4'} os /(0
RO A
40(&3) (2.3.43)

' a,b,c

and G Hg, Fg will be glven by

Gs-{w[ (7/,2)"" )" 7 -4 1- 59(% %’jmﬂaw(p’/
He = {AQ[ (%) = (%) J[ <& -] faultt +0(5)

o - M 3
o {89 (3)"fes + 0c2)

(2.3.44)
a,b,c

where we ha\'re repia’ced ‘é‘\ by (2.3.21). We have deliberately
written the terms in (2.3.43)a,b,c which are porportional to g)
in terms of 4, since they do not have a Stokes layer type of
behaviour. Moreover, if the pipe is such that R(X) and R(0)
are not equal, we can see from (2.3.22) that ) is of order

-2

o and so the dominant steady streaming of order & is given
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by the terms proportional to @ . In this case there is no need

. to distinguish between the two 1ayers and we wrlte

& ~Ae{ [ (" )" 5= 251 = (3) ek 406%)
=_AL{[(ZR)N1(%)""]% ] fantts 40 ")

Fo = =248 Z ) ces/‘f(@ 4066%
ToR3 R
| (2.3.45)

a,b,c

where Ao ~is given by (2.3.23)c. However, if R(K) and R(O)
are equal, then Q is zero and we can write (2.3.43)a,b,c, .

(2.3.44)a,b,c as follows
2 |1 - N -
Gg J'f’x-ﬂf{ 17 350!72.1 Qca.nle,/’-l)cm;)z jc sM6 +O(a )
a '
Fs =‘JT,;€§;'ZK;‘{ F 2’ f3$vu;el‘ .‘ZCosqe nqco.nle"}m}(ﬁ + O(or )

; :65 Faa H 0(0')

and so in this case the dominant steady streaming of order €

is confined to the Stokes layer and has no swirling component

of velocity. Similarly, if we choose  § =3/Rg where ¥ s

a constant, thén the dominant steady streaming of order <

given by (2.3.45) Will. also have no swirling component of ve‘locity.
This particular choice of S, R, corresponds to the pipe having

a uniform cross-sectional shape,

2.4 Calculation of the steady streaming for small &

When ¢ is small the Stokes layer completely fills the
pipe and there is no need to split the flow field into separate

regions. We again solve for the order Ry axisymmetric steady
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streaming velocity, (gS,O,fS), and then for the ‘order € RM
non-axisymmetric correction to this solution. We first consider
the form of the Stokes flow for small ¢ . If we expand the
Bessel functions appearing in (2.2.25), (2.2.26) using the

series form for Bessel functions of small argument we obtain

’Peo/z - OL %’*L Bgio@g—f%ﬁo + 0(9'2)]? .

R —Z
where {f } "Z i’;

. |
and for convenience we now choose .6 = ’3; in which

case we can write

oo = ~f§«- {Hio'f‘ +%i0'4 0(01)} (2.4.1)
We can then use (2.2.22), (2.2.28) to show that

3‘00‘\/ "L { ‘Q‘R‘u} 4’0(0‘)

doo -£.‘{ﬂ -ﬁ?‘; R' 4 OCo')

ALK’
foo o iS ri) Meos MO +0(o)
AR?
h-l ) ?
QO‘ n :"zs(zi '7 )casHe tﬂ:—{( ) '%?3 %f@sﬂ@ 1"0(0’)

;,o.m,...{(% - () M5 5“’}/»4;«9 +0(o)

Using the notation of §23 we can see that g fs’ pg are
determined by the equations (2.3.10) together with the boundary

conditions
45 = 0 , rL = R

Ps(k) ~Ps(@)= 0 <2-§-2)



We also require that Pg> fs’ 8s are regular atsz =0,

If we now let ¢ tend to zero in (2.3.10ja,b and use (2.2.22)a,
(2.2.28)a, (2.4.1) and the series expansions of Bessel

functions, we obtain

D 1INl R (tatet o
A TR R

9(“23,) * 195 =0 ' Y

~

The solution of (2.4.3)a which satisfies (2.4.2)a is

f '7‘{17:-7 R {2 q,}@,ez—f/&eé hONy/7 4 fm(, (2.4.4)a

We can then substitute for fs from (2.4.4)a into (2.4.3)b

and integrate from ‘1’=0 to ’l =h to give
= - s,/ Gk__zzgz + //ng b
o= PR g R

e i

+ R s EntR2 N R ] +0(s)
et I

where we have used the fact that gs 1s regular atf =0 to

(2.4.4)b

show that qﬂs is zero there. If we put n =R in (2.4.4)b
and use (2.4.2)b we obtain the Reynolds equation for the pressure

which we integrate once to give '

MC :’fs - R, R 4 O(o)

R~ 3:{({ (2.4.4)c
where C 1is a constant which after integrating both sides of
the above equation from‘ =0 to 7=K and using (2.4.2)c is
found to be given by

K
z{ RMK) —?"*(o)} / @—%—«gﬁ-“’@

(2.4.5)



57

and C 1is zero if the ends of the pipe have the same mean
radius. (It can be shown that all the higher order terms in
(2.4.5) also vanish in this case). If we introduce the stream

funCtiOH‘% s defined by (2.3.24) we can show that
N o= ot "27“f<’zjﬁm4
u,as {(7 g 6( +cf(/ﬁ A'(%! (2.4.6)

Thus we see that, as in §2.3, there is no net flux through the
pipe if the ends have the same radius.
We now determine the order é:RM correction to the axisym-

metric solution. If we again denote the steady velocity of

v

this order by (Gs, Hy, FS) and the corresponding pressure by

Ps then these functions are determined by (2.3.31), (2.3.32),
(2.3.33), (2.3.34). If we now let ¢ tend to zero in these

equations we can show that

S b e\
33_(/]@5) +_2£_s_ 736 =0

[ur, 5t % qf["?(qu‘) S 58

_-.#(r){ (%) ()" fﬁuﬂm 0(o)

where/a(f).. ﬂMl}S’;@ —kS'"..(/‘I-Z sR" yask’ (2.4.8)

RS K3

and the boundary conditions are given by (2.3.32), (2.3.3)

where f are taken as given by (2.4.4)a,b. The method

s* 8s
of solution now follows the methods used in §2.2, 2.3 and so
we briefly explain the various steps used and give the final

results.
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We first integraté the equation (2.4.7)a and after using

the boundary condition on F, at q =R the only unknown

function in FS is PS. We can then substitute for FS into

(2.4.7)b and after integrating (2.4.7)c we can eliminate GS

from the solution of this equation and the equation of continuity.

This gives a differential equation for Hg which is easily

integrated. We can then substitute for Fg, H, into (2.4.7)b

S’

H

and integrate to give G_. The boundary conditions on G_, Hg

S

then give all the unknown functions in GS, Hs and the Reynolds
equation for PS.. After integrating the Reynolds equation twice
we find that P, is just a constant. The expressions for Fg,

G H ave found to be as follows.

55—{ AR CZ

L™ 0 N (-zm)/ ] las o)

V[ ()" () [0SR s MSERpL - himiee R

g‘M 384 (M+2)(M+3)

192K 4 TR 256 (M) (a2 )(13)
+y\/ ss/5¢'f M5
™ (-—-Eh ) M (ﬁ” 54)’:?;) K A;,qro)I)]
Pl R S (FMt2 I(n +3) M+

@/ﬂ)ﬁ" CMQ" qu Sps ]} cosHO + 0Co)
F;;: {}_:{Bl” l QWR) f_fZQﬁl. :}+ f (??) }2@0;’19

F6R* | 9 (mi2) (M+1)
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{[(7/ " (/,{) ][M e W)ya/zl//&”() /o’&’u/&fz){mﬂ

0™ o () 8] st
Af;)

" "" e Y, Mrask't L (mor pskR 1ak
+[ Co/ﬂ - (V/K ][-E' (R%) ‘,q2 R'P A_P /zs&(”ﬁ){/‘wi)

+ ! Pt ’
+[ R ‘(ﬁ«« - K™ (5 /éu }/.;MH& +0(0)
(M3 ) ZMH)

where ps{/” are as given by (2.4.4)c, (2.4.8)
and F' is given by

/ L M2 6M 411

GéR* L (M+1) (M+2)

2.5. Discussion of Results

We have again seen that in both the low and high frequency
limits the geometry of the fluid container is crucial in
determining the nature of the steady streaming. In particular
the difference between the mean radii of the pipe ends has an
important role. If this difference is zero then the steady
streaming is confined between the nodes of the pipe (i.e. where
R' 1is zero) and this steady streaming is produced by the
Reynolds stresses associated with the oscillatory Stokes flow.
If thé ends of the pipe do not have the same mean radius these
Reynolds stresses induce a steady pressure difference between
the ends of the pipe which must be balanced by the pressure

difference associated with the axisymmetric flow

{,a,v,w) =[',lz;”2f'] (K‘? , O,KR) (2.5.1)
RS | |
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which is merely Pois#euille flow in a pipe with radius equal

to the local radius of the pipe. This effect is particularly
important in the high frequency limit where the steady

streaming velocity field is dominated by the component of
velocity given by (2.5.1). In contrast to this we find that

in the low frequency limit the steady velocity field is

affected at the same order in o by the component ofvvelocity
given by (2.5.1), and that induced directly by the Reynolds
stresses. We can easily show that the stream surfaces associated

with (2.5.1) are given by

JL:AE/ Jd §s A5 (2.5.2)

In Fig. 3 we have shown the steady streaming in a wavy
axisymmetric pipe whose ends have the same mean radius. In
Fig. 4 we have shown the steady streaming in the Stokes layer
at the pipe wall in more detail. The steady streaming shown
in Fig. 4 is qualitatively similar to that found by Lyne (1971)
who considered oscillatory viscous flow adjacent to a wavy wall.
Our results correspond to the wavelength of the wall being much
greater than both the thickness of the Stokes layer at the wall
and the amplitude of oscillation of a fluid particle far from
the wall. We recall that in Chapter 1 we considered oscillatory
viscous flow in a two-dimensional channel of slowly varying
depth. If one of the walls of the channelwas taken to be wavy
then the steady streamiﬂg in the Stokes layer at fhe wall was
found to be identical to that found by Lyne.

| In Fig. 5 we have sketched the steady streaming given by

(2.4.6) for a pipe defined by

n= | = Lep(-[54]Y), o555



The ends of this pipe have the same radius and so C in

(2.4.6) is zero. In contrast to the high frequency limit we
see that there is no region of recirculation near the pipe wall.
The flow in such a pipe might be of some interest as a model for
oscillatory flow in a narrow constricted blood vessel. However,
in such a flow the condition that the pipe radius changes
slowly would be violatea and so J} defined by (2.1.21)wou1d
not be small.

Finally we compare the order of maénitude of the high

frequency éteady streaming given by (2.3.28) and that found
by Lyne (1970) for oscillatory flow in a curved pipe. A
calculation shows that in the Stokes layers of these flows the
ratio of typical axial steady velocities for flows with similar
order basic velocities and pipes of similar radius 1is ﬁ%- where
R, 1is the radius of curvature of the curved pipe. Thus we
might expect that for flow in a curved pipe of varying radius
the effects of curvature and narrowing are equally important as
far as the Stokes layer type of steady streaming is concerned.
The steady streaming of the form given by (2.5.1) would clearly
be more important than both the latter contributions since;

as shown by (2.3.23), (2.3.26) this effect appears at lower
order in o . Lyne (1970) has discussed the relevance of.
his work to the flow in the human aorta. The pa;ameters {

and ¢ for such a flow are typically of order, 10'§ 10.0 but

the parametér Ry is of order 102. Thus our theory is not
strictly applicable but it is likely that the effect of narrowing

ofuthe aorta is at least as important as the effect of curvature

as far as the steady streaming for such a flow is concerned.
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CHAPTER 111
THE TINEAR STABILITY OF UNSTEADY CYLINDER FLOWS

5.1 Introduction

We consider the stability of the flow between concentric
cylinders when the outer cylinder is at rest and the inner one has
angular velocitylh{“fhxcq. This problem has been considered
experimentally by Donnelly (1964) who found that modulation
enhanced the stability of the flow . Moreover, he found that for
all € this enhancement was a maximum for a certain value ,.27 ,
of a frequency parameter , g ,defined to be the square of the
ratio of the separatibﬁ of the cylinders to the thickness of the
Stokes layer associated with the oscillatory motion of the inner
cylinder .

In this chapter we examine the stability of this flow to
disturbances which are small enough for linearization to be a
valid approximation . The procedure adopted is as follows .

InJ§5.2 we determine the nature of the basic flow and
derive the partial differential equations governing the linear
stability of this flow . These equations are solved subject to
there being no relative velocity at the walls of the cylinders .

We follow Venezian (1969) and Rosenblat &Herbert (1970) and use

the so-called 'periodicity' criterion to define a boundary between
stability and instability . The above authors considered the linear
stability of the thermal analogue of this problem , The results of f
former and latter authors corresﬁonded to taking parameters corres-.
ding to € and o respectively to be small .

InJSB.B we obtain an asymptotic expansion of the Taylor number
in terms of € and ¢ when the latter are both small , In actual fact
we seek a solution to the partial differential system by letting

€ tend to zero with c/€ fixed and equal to o say .
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This is done so that the dominant time dependences of the partial

differential equations balance in some sense . A similar idea

Was used by Di Prima &Stuart (1972) who considered the global
stability of the flow between eccentric rotating cylinders when
the cylinders move with constant angular velocity . We expand

|

the perturbation velocities and the Taylor number in powers of €
and feplace g by a€ everywhere in the partial differential system,
We then equate like powers of € and obtalin ordinary differential
systems which contain the time variable only as a parameter . We
find that the order GOSystem gives the ordinary steady velocity fie
multiplied by an arbibéry function of the time variable . This
function is determined by solvability conditions on the order €
ordinary differential system . The order € term in the expansion
of T in powers of € is then specified by insisting that this
function ofwlis in fact periodic in ot . Higher order terms in
the expansion of T are determined by considering the higher order
systems . _ ‘

In\¢5;4 we consider the limit of o tending to infinity with
€ arﬁiﬂéry . The time dependence of the basic flow is then
confined to a thin layer near the inner cylinder . We shall
refer to this layer as being the 'inner' layer . However,the inter-
action of the basic flow with the disturbance in this 1ayef causest
the disturbance velocity field to have a time dependence which
persists throughout the fluid . Hence a second Stokes layer
is required at the outer cylinder to satisfy the relevant boundary
conditions there . We shall refer to this layer as the 'outer'
layer and the region between the Stokes layers will be called
the 'central' region . In each region we expand the disturbance
velocity in Fourier series in time and then expand the coefficients
in the series in powers of &' The Taylor number is also expanded

in powers of J . The disturbance velocity is then determined in
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each region by equating like powers of 5%in the relevant

differential systems . We then 'match' velocities where different

regions meet and the terms in the expanéion of T are essentially

determined by matching the steady parts of the perturbation velocity
Inij 5 we describe the numerical work required to solve the

ordinary differential systems appearing 1n\#% 3, ¢5.4 , and

1nJJ% 6 we discuss the results of our work and thelr relevance

to the work of Donnelly (1964)

3.2 The basic flow and the disturbance equations

We consider viscous incompresgsible flow between concentric
cylinders of infinite length and radii ﬁl , Ry ( RyDR) . We assume
that the separation of the cylinders is small compared to the

mean radius of the cylinders . Thus we have that
Gé: p.‘L-'Ql < R'

and we shall therefore neglect terms of order d/R, throughout .
We take cylindrical polar coordinates ( ., ©, z ) with the
z—axis along the axis of the cylinders . We take ( u sy V , W)

to be the Eorresponding@velocity vector ., We also take p , p , v ,
and t to be the pressure , density , kinematic viscosity , and

time respectively . We can easily show that the basic veloéity

field will be given by ( O R V(r,t)-, O ) where
E:ﬁ;'-
AR
\/O«r-ﬁ J

and the pressure distribution associated with this wvelocity

;-’M'»,,-EJvo )
{

ECosbt} ' (3.2.1)

field is then determined by
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* =/ =— (5.2.2)

We now introduce the dimensionless variables ¢ ,% by

Y= F- [ |
g (3.2.3)a,b
T= &

and a dimensionless velocity by

V=V | (3.2.4)
A1,R,

and the frequency parameter o , mentionrded in £%.,1-:, is
defined by

d-= _%9’_7: (%.2.5)

If we now write (3.2.1) in terms of the dimensionless quantities
introduced above we obtain a differential system which we can

solve to give

= (] e ‘3',,,;,(@[1-}])5”' . CoMPIEY ]}(5 )
V= {, 5 2 sinhJir CON TUGATE o

We do not require any knowledge of p/p in the following work
and so we do not solve for it here .

Suppos€ . now that the basic flow is perturbed in such a way
that the disturbed state may be charectgrized byu , v + V , w ,
5p . We make the usual assumption that the flow is periodic

along the z-axis with wavelength 2rn/k . Thus we write

= =V wF (YY) coskz \
A EZ’ ) |
V = _n_‘R, VAl (S;ﬂ coskz A | (3.2.7)a,b,c

= _y'v”()’&-s;nkt » ]
w e ) )
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This is the usual scaling for the problem and the minus signs
have merely been introduced for the sake of convenience . We
can show from the momentum and continuity equations by

linearizing and the usual manipulations that u%, V{are determined

by . \
d IMu¥= - *TVv*V
e =
%] i
SOOI NV _'M‘”_Q_Y ’ (5.2.8)
o;t \4 3

O

These equations are valid in the limit d/R, tending to zero
with £ , ¢ , etc., held fixed . ( For details of the derivation of
the above system the reader should see for example Chandrasekhar

(1961).) The quantities appearing above which are as yet undefined

are given by

a = kd | ) |
M= _59_’:1 - a* - (3.2.9)a,b,c
] |
T = 2.flfc13g?, : ‘ J
Y1

Thus @ is a non-dimensional wavenumber and T is the usual Taylor
number . Clearly (3.2.8) specifies an eigenvalue problem for d*,

v which leads to an eigenrelation of the form
F(T,4€a) =0 | (3.2.10)

b 4
We now stipulate that u , v must be periodic functions of }.
This serves to define a boundary between stability and instability
and the corresponding smallest value of the Taylor number will be

called the critical Taylor number and we shall denote this value

of T by Ty .
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3.3 The low frequency limit

We now determine the nature of T as € and ¢ tend to zero ,
in which case the Stokes layer associated with the oscillatory
motion of the inner cylinder completely fills the gap between the

cylinders . If we expand V given by (3.2.6) for small ¢ and

substitute into (3.2.8) we obtain ( after dropping the star notation

)
[M,, 0%‘] MLL - - ag"rv {Xd+€ X’cast- + Eg-%jm't'-l é;x.;tan-‘lm}

[M"d” ]V = AL {l + Ecosy 4+ Ea-é;‘}n. + é"%“””“"j (3.3.1)a

Ak :V:E_‘.‘.-:OJ j-‘:oj‘ B

where the first five ‘x; are given by

X, =X =1-3 \

X, ={3*-33* 4_23}
6

X;= (337 -155%+205°-87] RCRR
360

X, = {3¢-337-42]"+867%-328]
| 5120

and for convem.ence we have defined ¢--dk .

dy
We now constrain € and ¢ to tend to zero in such a way that

the v dependences of the right and left hand sides of the two
differential equatibns appearing above 'balance' in some sense ,
If we assume that T varies little from its unmodulated value

we can see that the responses of the .;?,; terms of the left

hand sides of these equations are proportional to the v dependences

imposed by the €cosxt terms of the right hand sides if we have

o~ &



Hence we write

P (3.3.2)

and let € tend to zero with o fixed ., This corresponds physically
to letting the frequency and velocity amplitude of the inner
cylinder tend to zero in such a way that the oscillatory
displacement of the cylinder ,oZ’(Td/2R,)% , Temains constant if d
R, are held fixed .

We now expand the perturbation velocities in the form

(BDBOB)aSb
Vz Vo +€v, + Evy 4
and the T:aylor number 1s expanded in the form
2
T=To +ET 1€ 4 (3.3.3)c

We shall in fact see that Ti = O for 1 odd which is only to be
expected since changing € to =€ does not essentially change the
physical problem under consideration . If we substitute for u , v,

T from above into {(3.3.1) we have

[M. océéa ]M[a, FEu +€%, 4. ] \
= -q {1’+é(+624’4 }{Xo*'é-/zmr ..... } [\{,46%! ]
M - «.€-« Vo +€v+C .
[M-«€x]] -]  (3.3.8)

- {H Ecost - -.}Laoféu,-(- ] |

[un €u, +€%,4.. .. ] =[ Vot év.-&efxl...]:gs;’[up*a\eelw,]:0, J=91,
where we have replaced ¢ by o€ everywhere . If we equate terms of
ordéer €®in (%.3.4) we have
2‘4, +a"1:xo vo~.=~.0
by ~Myv, =0

Ly = Vo = 5;0—0 I—

(3.2.5)
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We notice that « does not appear in (3.3%.5) and so we have :zn

ordinary differential system whose solution may be written in the

form
uo = BA)L(3)
Vo = ‘30(\’)50(3’)

where f (T) , ga(z;} are determined by
a"]a/f + a'zrzjo - 0
d: dsaz,*q ]30~ O

[ -

o = Jo f. = 0,):01 )

4

(3.3.6)a,b

(3.3.7)

and B (¥) will be determined by the order € system . In the

following work we shall find it usefuli to define -

as follows

;[(,uv)_ ,u.-l-a EX,V | ’,

£, (uv) =+ My i

2
d® _g%

NEZ{?‘

"’z’z, N

(5-5-8>a3b’

If we now equate terms of order € in (3.3.4) and use (3.3.6)

we have

2, (un) = %55 Nf,-B, coon T X, g, )

BT,
o{ (A)V)"'"’L dé, 30 —Boc"“bf; J

~

A’-V":g;‘u /}=Oj,

(3.3.9)

After solving the order € system the only unknown quantities

on the right hand sides of the above differential equations are
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4

+
B, and Ty . We now introduce the adjoint function pair , ( i;, g%)

, which we define by
N¥ +4t =0
azf, %a{: -Nj:;-o : (3.%3.10)

:(;:3::;%:0/ ]::0}] | y.

The eigenvalues @ , T, of (3.3.7) , (3.3.10) are the same but

as the form of the equations shows: the function pairs ( £ g;)

( f:, g:) are not the same . Having defined the adjoint function
pair we can shéw/that the condition that the system (%,%.10) has

a solution is that the integral from £ = O to { = 1 of the sum of .
f: times the right hand side of the first equation in (3.%.9)

and g: times the right hand side of the second is zero . ( See

for example Ince (1927) . ) Thus we have that

8 f f[rw £ 3143} - Geone { [ XAy gif]df
-3 27’[’({’*90 of

which is an ordinary differential equation for Byand has a

periodic solution if T = O)and By, is then given by

Bo (x) = Aewp {:gsm'r} ‘ (3.3.11)

where

0 L [FTXEy + gt ]dY
/[ 94 - FNE] IS

and A is a constant dependent on the parameters of the problem

(3.3.12)

which can only be.determiged by a consideration of the corresponding
non-linear problem . Having determined- B° we can substitute

back into (3.3.9) to show that
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(,a,,v,) = fﬁ,&)cgsr (£.4,) + ?B,/%)(ﬁ;go) (3.3.13)

where ( f;, ;) is determined by

N +a X g, = - TlE - T Y g,
£ - |\/f}, = 7{5’9 - £ (%3.3.14)

Q(; =5,‘-"_§_r£_=0j f'“:"ojl
d
The solution of {5‘.5.9) is clearly unique only upto an
arbitary multiple of the basic eigenfunction pair ( £, go) .
Hence the inclusion of the as yet arbiteary function of % B’_('t) .
times this eigenfunction pair in (3.3.13) . The determination of B,
requires the consideration of the order ez differential system

?

which from (3.%.4) , (3.3.6) , (3.%.13) is found to be

L (us ) = .ng_. Nfo-Bcosr L% o - B sur F, (5))
T

-5 :B. {Zazﬂ‘k‘j" + Ez_[‘ -I’Cosz'{v:]}

Iy (uamy) = -«.jﬁgo -Beosnd, ~«B sar &G, (F) (3.3.15)
T
-4 5, {I +CosZ’t} G‘:; (f)

where the functions ¥, , ¥, , G, ,Gi3 are given by

F(3)= Nf +az’f°7(‘;jo o I
Fia (9= FNJ[' 4-&"(,)(,3’ { (3.3.16)
G (%)= ¢4, - ¢ 8,b,c,d
G ()= 5(;"73, ‘ | )

Having solved the order e , ¢’ systems the right hand sides of the ¢

equations in (3.3.15) are known except for B (¥) and T, . If we

now invoke the solvability condition on this system we obtain
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an ordinary differential equation for B, (¥) , which has a

solution periodic in ¥ if

A S IR AY]

(3.3.17)
L X4 4] df
and B, (%) is then given by |
$ = KA {T,’casz- -f%_sini?r} (3.3.18)
where
-/, (ot vl s )
f" { y"j" 4 ‘M"} r |  (3.3.19)a,b
!
R g6
L[ {440 - £NEHS /
and the functions ¥, , etc. which appear in the above integrals

are as defined by (3.3.16)a,b,c,d respectively . If we now

substitute for B, (*) from above into (3.3;13) we obtain
(,a“V,): ?a cosT (‘£+ffﬁ17‘4¥j’) 4‘!29-.04‘&-2%;1 ({,Jjo) (3.5.20)
o

Having determined B,(Y) we can substitute back into

(3.3.15) to show that (u,, V,) is of the form

(306)= Bwson (5,420 + ot (F:h) + (6, gu) s 2% (igo)
b Ea (e, 99)] 48 (4,,40)

where the function pairs ( £, &) , ( £, &) , ( £, 8,) ,

(3.3.21)

( fg, 8;) are solutions of (3.3.22) with H, , etc., as given by
(3.3.23) .

/Wf+afkg;=m’
f: - Né" - K" . (3.3.22)
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H = "{“Nfo""::}
2= {20 o"F'z"h: N 020 190
Ha= {2TNF, _i_z_(f' fo + 7/275)]

e f LK ge v Ea ¢ XMWE 11 1ig)
HS‘:"% azﬁlz%,ga+ff§/\/ﬁ} (
| | | ! 3.3.23)
K = {rr'éo_@“} a,b,c,d,e,f,g,h
{2 g, + Qo X (BN, |
oo [Py + G L (g}
:"—i{@nz4h(¢ﬁ"ry0)} )
(=3P )

It follows from an inspection of (3.3.14) , (3.3.23) that the
function pairs ( fg, &) ,l‘( f,, 8,) differ only by an arbitary
L

multiple of the basic eigenfunction pair , ( fo, go) , and this fact
will be used later . The arbitary function of ¥+ , Bl(r) R

3
appearing in (%.3.21) is now calculated using the order € system

of equations .
3 .
Equating terms of order € in (3.3.4) and using the

expressions for u, , ve , etc, already calculated we can show

that

£\ (i) = <S8 N Feosr 'L, go-Ba oo \
1"8‘,{&260‘!' F, + xRy 6,. $cosdr Fas

beosr oy + skt Figr a2v B

1,( 4B, g0 -Beory,  © )
2(U3,v3) = -4 Jo - B cosx §,

.'.B‘{oc‘con—@u,hcs&h-@z 4 cos 3G, r

+cost Gy 4+ sdé&g@“ + 5&21-@“}

(3.3.24)

Qﬂ’:o

where F“ y Fzo , etc. are given by



F;, = -—az’]o/j{alﬁ '//sz

Fin = 296 X lglge) -4 Xgs =N {24, 114
£ = 4T lg, ~4 kg + W3- 14

Fiun = 490 g ~f ot Kids -0 Ty { 4o, 49, 4, 4171,
-a'TXigy + N{4c-1h-1g)
fis = "EKN’(;" “:LLG%Z'%'

Ec = ZF:( - 027: E /ﬂéoj"o

Gu= —d -g44,

Gz -+ -3¢, (5+116) + 245 +) 114,

Go= —+% H4N L -34, +11r1’f9!,

Gz = (furth) -3 QE —go s L Fg; + Ty,

G;f: "i"f; + é’ﬁjf

(o= 2Gyq

2
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7o

> (%.3.25)

a,b, .......

° )
Having solved the order € , € , € systems the only unknown

quantities on the right hand sides of (3.3.24)
which may be determined by invoking the solvabi
for the system in question .We find that T3= 0

a periodic function of ¥ . The function By(r) i

(B.‘L:‘Bo {«.75 Jsu -tfz'go.s? 4;‘7&:‘437 + gé_lm? +7’} CosiY

v 3

where Y‘z 5t r"‘_ , etc. are determined by

-~ .

are By and T3
1lity condition
if B,(r) is to be

s then given by

%Ca.ﬁZT (5.5.26)



However we recall that ( fS'

a
an arbitary multiple of the function pair ( f,, g8,), and so by

, gs,) andg( Tp g; ) differ only by

using (3.3.17) with pug as above we can show thati} is in fact

zero . Having determined Bg we can write.( Uy, Vy ) as follows

(1s,9) = B, [ssar (41 gustig) + ot (5 41t 40ip)
'/‘(’(/;-)i*ﬁ) + _______5{:31- (% "’l/{‘ﬁ}f”*ﬁ;fd
+ﬁ%‘z_ (f_{' 'I’ﬁéﬁ) i{a"ﬁéja -[—CaS»‘l?’[/’;ﬁ}Efa)]
| (3.3.27)

If we substitute for B, from (3.3.26) into (3.3.24) we can

show that ( Usy V3 ) is of the form

(iays)= B, [steest (b2, ge) vcside )¢ cosx (4, 1)
Feos (¥y,qq) Ha(hg) skt (fos90)  (3.3.28)
+ suT_.Zz_;f (%, 3,.) + c:s;é’?— (%2 ,7,1) + %_Sj_z» (%3, 7,3)]

+ B;) (fa)ﬁo) |

where By is an arbithry function of 4 and ( £y, gg) . ( 1, gv) ,
etc. are solutions of (3.3.22) with
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He = ENVE 1A,
toe = (2 ATV ~fa T gt
Hoe (- T0) Mo - 40T Y00 +5
Ho= (Fb D) Nfo -9 1L % g, 4124
Hto: - /,(4.,77'7./%7.7{)/@/{0 _2/_0-27;];,%‘7,0 _/5{
Hus = (B 12X )Mo~ 4 0 (fi 47) Xig 4 ha
Hfzz -Zibeo ~ ;—i—-aﬂﬁ.‘t 76,514
K(a’-" "T’3_¢o +G,2,
Ky = (4"4*’%{")7% -%’ﬁ 46;1
Kg = (Tiﬂrs'ﬂ;)ya_ﬂﬁ + @),
Kq = (%'}76)?""_7_:4&7(; ’LG.’u,.
Ko = (47947111’6’)59 -_Z.foﬁ‘/éi{
’<| = (mg"']"w‘ 56— (fi_f_ff] ;{;-"GDZG

‘ L 2 X
l(yz = %’7 ?a -—.gﬂﬁ
We can obtain By(t) by equating terms of order €4in (3.%3.4)

and invoking the solvability condition on the resulting

differential system . If B3(t) is to be a periodic function of ¥

we find that Ty, is of the form
2
To = «*Tho +7 (3.3.29)

where @ 7ie :/./{'ﬁlﬁzg(xfféft‘[;"‘”"f’]"% [fl””jo_p-/%/zj
o, ?‘,“[ St (447 L] FELFHTL] -ggjaﬂ“
2/ X g0 df
/. o _
and ) ,027,{:;1= I{“f’[‘?lfa(;&yq '/"1/2.[75"'{7’6‘9’0]4/"/‘/{;
| bati (AXegy 1YL 901Y 5]
- Hg # ALK se]-Mys]d |

7
v
:L/o)fofa Jo d’f (3.3.30)a,b
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5 ¢
If the order € ; € differential systems are considered we find

that T{~is zero and T¢ is of the form

,/’
Ti e WATa i NTa 4T 5.3

and so it follows that we can write T in the form

T+ AT, 4 EF [} o tTha]
L gé[u%d LT 4"/64,] /*d[ég) ‘(5.5.52)
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3.4 The high frquency solution

We now consider the limit of ¢ tending to infinity with €
arbitbry . In this case the Stokes layer associated with the
oscillatory motion of the inner cylinder is thin compared to the
sepgration of the cylinders . If we let o tend to infinity in

(3.2.6) we can show that
Un i'~3 +-§_{e“ﬁ;~3’+it~+e'ﬁ;f"i‘t} (3.4.1)
We can see from above that the time dependent part of the basié
flow is confined to a thin region near the inner cylinder . In
contrast to this behaviour we shall seethat the disturbance
velocity field has a time dependence throughout the fluid .
Hence the' disturbance velocity field must have a Stokes layer
at the outer cylinder in order to satisfy the no-slip boundary
condition there . As stated eariier we shall refer to these
layers as the 'inner' and the 'outer' layers respectively .
The region between thesg layers will be referred to as the
'central' region .

We first define the followihg new variables

I ¥=1-3 | |
'l* = j*g : _ (3.4.2)a,b,:

1=z

Thus n’, n are Stokes layer variables for the inner and outer
layers respectively . We now define (u ,v) , (U, V) ,

( u#, Vf) to be the disturbance velocities in each region beginning
with the inner layer . We can use (3.2.8) , (3.4.1) , (3.4.2) to
show that the relevant differential equations to determine these

- function pairs in each region are given by

1
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%2 ks St W G — ?amm
= 4l g el |
a? .29 = vy -plis) HY 1 (3.4.5)a,b
-2a ~Ld (. I+ i |
P T L
dﬁ(le?: @'ﬁ1§%¥ | 1
3.4.4)a,b
i;_(bﬁij —crgﬁi f ( )
"t |
{_a;_zgx-zé) a’uafﬂx 1
912 o
= —ga*T N2 q*V
% ? (3.4.5)a,b

{Wu'%ﬁz "29{- }Vy ol

where C, C denotes 'complex conjugate' andiM i. ,fgaye as
- itkh To Mﬂ‘%&e LAJ T
determined by (3.2.9)b , (3.3. 8)a bA We can see from (%,2.8)

that the required boundary conditions are

e = V = 2‘-“4’0 ,1:0

N
. ok (3.4.6)a,b
u’: Vy:: 9—&-‘:0 )Jl'—"o
OF

and we also stipulate that the perturbation velocities must ' match!'

where different reglons meet .
We now expand the pedurbation velocities in each region in

Fourier series in time . This is possible since we are seeking

solutions which are periodic in~ .Thus we write
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fgg ( e'.“ﬁi éﬁw \
Ay
bz Mg b gl 0 ? b (3.4.7)a,b
né; ‘n«t. A Ul?') :
vV = Vs 4-‘5"'2; (V"e Vol /
n=
1) ~ ot 1
= 40? L/ )
Us Us +42 ( ne | ,
ot N """) :
= V. rd> Va4V e
V s Tﬂrl( ’

A= nzi 4 (3.4.9)a,b

where ~ denotes 'complex conjugate' . The expression ( ug o, Vg )
represents the steady part of the disturbance velocity in the
inne; layer . In the other two layers we can denote the steady
part of the perturbation velocity by the same expression ( US R VS )
This is because there is no Stokes layer type of behaviour for the
steady part of the perturbation velocity in .the outer layer .
However , in the inner layer this is not the case since the
interaction of the basic flow and the distwbance causes the steady
part of the disturbance velocity to have terms proportional to
decaying exponentials . Thus it is negﬂessary to distinguish
between the steady parts of the perturbation velocity in the
inner layer and away from it .

We consider first the outer layer and if we substitute for
u , v from (3.4.7)a,b into (3.4. 5)a b then equating terms

proportional to e iny we obtain "

(22-22 L an}{Dy-2a fud = - hdTa 2

72

(3.4.10)a,b
* |

* 21._ \ X - 2“;\
{g)* —-:_ 2LA}V4 -

o

d
whefe :D EJ:,

Yy
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and from (3.4.6)b it follows that the relevant boundary conditions

are

H

b3 X *
/ar - Vn @,gun = O_ J (( =0 (3.4.11)

We seekggsolution of the system specified by (3.4.10) , (3.4.11)

¥
by expanding u , V T in the form

nd
un = Y (o) [ s un” s un's -] '
o ‘:,, (3.4.12)a,b
vi = Y, (o-){v,, syt +Va ¢} c
‘I$ o
1= 1:"’_1_/'_.+I’1_-_*“ g /
o O

where qﬁd) is for the moment an arbifary function of ¢ . If we
substitute the above expansions into (3.4.10) , (3.4.11) and

equate terms of order doafter dividing throughout by y(o) we obtain

(00 -2 3D, w2 [Du-20rfvi*= 0

ox o¥ X
oy
An Va = {ZD.‘; Un = 0 J /L =0

|

which we can selve to give

% i i
wn = { ST u‘('“)?*‘..;}

V:k= 0

(3.4.13)a,b

where C® is an arbithry éonstant and exponentially increasing
n

functions of ﬁ# have been rejected . If we equate terms of order
~ita

o after performing the substitutions described above we obtain

o
a differential system for'u:¥, vV, which we solve to give

” 4. - .
" ' - n 2 (14) Yy . ’\’_
un = Coafe 1 g '} (3.4.14)a,t

w0

]

Ve

! : ~ ‘
where Cn is another arbifary constant . Similarly we can equate
terms .of order J and use (3.4.13) to obtain a differential system

an K .
for u, , v, which we can solve to give
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X My, .. .
g on (H&) 2 , %‘n
& Gt v -

. q“n"(”‘) g
+a?Cy ‘“‘L € + 'l "’1 *..__cml.“’" (5.4.15)a.b
o/z(“,,) A (i+t) e ¥
l/:.(;.u,v -n¥nY1 (1 ¥
1% 0 ¥ rl " T e & 4 m(‘-t[
e G-t il o
avi (L) th .

where Cé is yet another arbitlary constant . We can continue in
this way to determine any number of terms in the expansions

¥ * R - *

of uy , V., . If we then write n = £(0/2)Zwe can show that u)’, v,

have the following asymptotic forms at the edge of the outer layer

: . 0 ¥
Y, & a Cnaﬁ (Hi)a'uhaf%»‘o-vlr-cnws*‘“g

'U"“’ “a T L ' 4 I
+ i ‘j—g (Hi)smha)d].}ﬂ(r)

a
(3.4.16)a,b
Vo~ —d {u +0(c:')} (5-4.1602,

ino

( To help understand why the hyperbalic functions appear above
it is helpful to know that we can show inductively that the terms

4] 1. %2 ™M
WX ~Ca (@R3¥?2)
- C:,a C° "2((44))1 in u:” lead to the terms - g,,,:\_
Xt 1. am 22
Cn ( °2) B (1400 A" in u, and the terms +Cn (a J.) ~C, (“Q z)a’l (-)
A, leﬂ) L wn&m' aon ’-"-L.’Im-n;'

in v} respectively . )

We next consider the 'central' region and if we substitute
for U, V from (3.4.8)a,b into (3.4.4)a,b and equate terms propor-

tional to e ny we obtain

NWo ~inoNUp= ~a TXaV
Un - NV = -inaV;,

(3.4.17)a,

where N is as defined by (3.3.8)c . We-now expand U, , V_ in the
form : |
UO4U‘ ' |
Un '-'-'/‘Ln("'){ ‘N note "}
‘ o-lr (%3.4.18)ak
o ' ,
Va =/Ln(&){Vn +Va +.. .. }

o~
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where pn(o) is for the moment an arbivary function of ¢ . Taking T/

as given by (3.4.12)c and substituting for UIl s Vn from above

into (3.4.17) we can equate terms of equal order in G * %o give

differential equations which are easily solved to give

Us = fon {Arechaf 8 ental 6" Bieataf* B,suhaf |

vo(s" |
Vi = %_Un {’Hocc:)}

o o
where A~ ; B,

s’

J

(3.4.19)a,b

etc. are arbitary constants . It follows

immediately from (%.4.16) , (%3.4.19) that if the perturbation

velocities in the outer layer and the central region are to match

where these regions meet then we require that
fon = N
AC =0
32 = G ()
Qha
A =-c

C_ G ()"
21 q

Hence U V. in the central region may be written in the form

n?® n

Ua = /m {i?f s‘}lhafﬂ:“ [ B, snha }’"
- g,fa J—Z- cwhaf*]}

(1#)n'e

V= fin A {woa;')}

o

\

(3.4.20)
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It now remains for us to consider the steady part of the
perturbation velocity away from the inner layer . We can show from

(B.t.) , (3.4.5) , (3.4.6) , (3.4.8) , (3.4.9) that (U, V)

is in fact determined by

/Vzag -J’Gif%o\/ = 0
(/g’ _ A/\/s - O | (3.4,21)

US :\/S:j_%:'o)]:l'

which we solve by taking T as in (3.4.12)c and expanding Ug .y Vg

in the form

L& = :Xl;&){'(/:, +-é£; + .- 'i(

o' (3.4.22)a,

Vs = o) Ve+ Vs +-- -
d'{ +\£_;’+ }

where y(o) is for the moment another arbitary function of o .
Substituting for T and U, VS from above into (3.4.21) and
equating terms of order o€, &ﬂh, etc., after dividing by y(o)

throughout we can show that

V2US 40275 XV = 0 ‘
Ul -NVE =0 (3.4.23)
Uso =%o=3_§J5=0)5=| J
and for k)1 , ket

NGt TV = Z o o T )
CGK ~./V’V;k'=

(3.4.24)

We must now solve for the perturbation velocity in the inner

layer and ensure that it matches with the perturbation velocity
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in the central region where these regions meet , Substituting for

u , v from (3.4.7) into (3.4.3) and then equating terms

proportional to T , n =0,1,2,2,4,5,..00000.., We obtain

2_2a* % _ vl A (E a ~nlits)
(938} uy = AL vr 19 ) e e (T 0 )

+c¢)}

(3.4.25)a,b
/Z(H't.

{ﬂ)q'-%:}vs = %{us + .... (,a, (Hide

-2 - CD . 7
{LD c,g }£ . j"": ) ) ey ,/Z(t 4;)} r
= -A.,:i‘l/ V,(l—/l\/;,) -%( se- Vi e

z

,  (3.4.26)a,b

(9% 2 -Rijvi -
_@_{ + éJJ(ase’la tug Gy el ')}

e

and for n}, 2 |
{g)“._s_z%"- 2“"}{?‘&?@%"}“" =~4aT [v, (’“QJE)

0% —7(“" <
Jé(vs 1 ‘f"VL }

2
f (3.4.27)a,b
{J)l- 2a™o 2&\} = _....{un s éjt"(un TP S
¢ ~qU-)
4Unqs (I-0)€ }]

where D= d/d v

In orderto find the relevant scaling for ( LA ) in the
above equations:we consider the basic eigenfunction pair ( f., g )
, determined by (3.%.7) , which rep:esents the steady perturbation

velocity for the problem with € = 0 ., We can show from (3.3.7)
that near { = ‘

¥ 2 o
(’£, B _ (3.4.28)a,b

‘fa'\'f N 0:”1



bince we are seeking a solution which is in some sense a pertur-

bation from the problem with zero € , we assume that the correct

scaling for U, o, Vg follows from (3.4.28) . Hence we have that

g !

Vg ~ @:Vz'
and the above scaling for ( U, o, Vg ), together with (3.4.25)
(3.4.26) , (3.4.27) , suggests the following scalings for u, ,. v, ,

u, , ete.

-$n/2 ..(5..*27/1
'L‘Jn"l ~ - ulﬂ a O

~(Sn-2)/2 - (5at)/2
Vzn-] N/ 8" ) an A o
n=1,2,3,....

Hence we expand the above functions as follows

s = o—"'{uf’ui; 4}

o
- )
vs = o v’ v o
oll; (504.29)
S
w = o “s*"*' }
;'_‘/L
o'h
ete

If we now substitute the above expansions into (3.4.25) , (3.4.26)

and take T as in (3.4.12)c we can show that

&‘.Da-?;;.llz[u +u; ¥ ] -La* 1’+1‘ ¢ {(l-qﬁ')[}ﬁ—] \

".l. oM 0"“

(taly
r€ el e
) | ; (fV. +Vi 4] )V oy 3+4-39)
2 7 I
{'{D - E}][Vso + Vs """] 0’3/" Ius *—L-S-%TJ ]4-5 J_ (EU, J(”Uc’ a;b

s )
{‘D"..Qq 2& {’D 25} [-u' +i'. 4 - ’C
r A
- - 1. N [' (l((u
gz (a3 ei]é ,
+£ELV°+;: ?“"’] | (3.4.31)
{:thla, -2¢ }fv' -l::rl:.. - a,b

{11) - (l't)
i[w | +J§(m)[us+ ]3? +E Eu” j(h)e }

NIo3 ~
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It follows from (3.4.6)a , (3.4.7) , (3.4.29) that the relevant

boundary conditions axre

]

. ; U N . . .
£ = vu:"-"- Ve = \/na = @%":@A: =0, f:d, n://‘?/.... ¢z

/

Q
NN
N

(3.4.32)

S
can be determined without any knowledge of the expansion of ( .u‘ ,vl)

We can see from (3.4.30) , (%.4.32) that the first five ( u:;,gvi 3
Having calculated these terms we can see from (3.4.31) , (3.4.32)
that the first five terms in the expansion of ( Uy, v‘) can then
be determined . We can then return to (3.4.30) and calculate the -
next five ( uiS , v:; ) and , if we write down the equations for
(wu,, vo) , we find that we can also calculate the first five

( uj.;_ , vi ) . Continuing in this wdy we can calculate any number
of terms in the expansions of(us,vs) , (u,y v), (u,vz},
etc. We first equate terms of order d® &3 &, d 5 & in

(3.4.30) and solve the resulting differential equations su)}ect to

(3.4.32) . We obtain
,a,d-_- g‘,zl
'37"-.‘/4 3
'u" <’ '/'14:/13#6 B IZ“'

Aty '33'1 ""42’L +a’824+ a (A %7)-12
A= rf‘JrA;,Z + 023 ?‘/-’L__[A (af -G, ’7 .,La [aeﬁ’ +1J7 )Z

Vs'= C)a')/

»g..é
C,:I{Vra CalL
6314 ‘C}Q + q |
5 = C’wb-@?@_n +_Z,__q_‘/‘4. {,44a O)Z

where A, B,, etc. are arbitary constents and an arbitéry constant
in u: has been set equal to zero . This is not strictly

neccessary at this stage and has been done to save a great deal
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of tedius algebra . The reason for this choice will become
apparent later .

Having determined the first five ( ul vé ) we can eqguate

S 3

-y -y =%y

terms of order co, g5 0, 0 g G in (%3.4.31) and solve the
resulting differential equations succeasively subject to (3.4.3%2)
The first few terms in the expansions of u,, v, are found to be

as follows

(1t+é
= P {ez A -/ +¢Z(1+Lj
-a 6(0 {&(‘f‘)q e ;ZC ) queq('“lq‘ L]e-lzl“d)}

Ay = ’H{e'lm"d #9 (147)

-0 (CoTi4(, 1) {Z(M)q e hiag 71, si-i)(€ 1o 5]
]

_J—GB e’l(“t {4'1 4 3((-4.)? gub}
ETY
Vi = -Jié’l?,c'z‘”"{ wn3+ 3a-D 3}

<k (i
_ieheel {M’*M_a-c)q L6 +3cm)7}
32
where P, , Py, , P, are arbitary constants and exponentially

increasing functions of v have been rejected . We notice-

immediately from above that , in contrast to uf, | , the terms

.vf R v: consist solely of exponentially decaying terms , thus

giving no contribution to the velocity field at the edge of the
inner layer , However the éppearance of the termsxlf, UJ ete.

on the right hand side of_(3.4.51)bensures'that this not always
the case for higher order terms in the expansion of vy , Having
calculated the first five ( u% , vf ). we can célculate more of

the ( ué , vé ) and the first few of the ( ui_, vi ) . This )
enables us to calculate more of the ( u% . W? ) and so om .

If we then write n = 5(0/2)% we can show that u, and v, have
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the following asymptotic forms at the edge of the inner layer
n M;l{?o(l%c')mhaf 4 o:’/z[:"‘azéco’ﬂpcashaf ~ Py cosha¥

a2 A (148)
+ 7% (lH)Su«haS’]
adz
b3 % (HDsanaf 7 Sae ¢ @
o | To (4 smhaf-— ,cosbq,:f + da' e (G +GT, coal\e:_?)w(d ‘3;
adz .

Vi~ <4 [14 0cs7)] | | (3.4.33)a,b
Lo o

We must now match (3;4.35)a,b with the expressions (3.4.20)a,b

( withn =1 ) at theedge of the inner layer . Clearly we must

~5)
choose p, = & * and P, = O . The first non-zero terms in the
these asymptotic forms will then match if we choose Bf, P, as

follows

@o._. 5&1600’6 )
'L 3D snha (3.4.34)a,b

P = -2 5a2€CoT, cobla
3¢

Before matching the next terms we redefine C; as follows
. ¥
C'= 8?(!4‘() +C:
507'6'T°

C; mnow being an arbiﬁéry constant . The next terms in the expan-—

sions will then match if we choose P, , B: as follows

B'= 5ate (CGT+cTe) R
N (14() aunha , - ‘. (3.4.35)

(P.F-"- ~]2 5a%¢ Ecc_:r.-!'(‘*l:]cﬁk - a\ﬁﬁ Eaha
-8 (Vi) J
and higher order terms can be matched by a similar procedure .
Since we are primarily interested in calculating the first few
terms of the expansion of the Taylor number , and the information
already calculated will suffice for that purpose , we do not
pursue the determination of ( U,, V,) , etc. here,Taking By s B?
as above we see that the dominant unsteady velocity in the central
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region is given by

Cﬂzléaoﬁ sunha (1-3) (ces'&«t—awt-, cw@:-m-‘r)

& 2 O

Ssoha &

i ]

. {
Having calculated u,o U, 5 ¥V, 5 Y wWe cen equate terms

!
s -3
of order ¢ ':., ¢ in (3.4.25)a,b and solve the resulting

differential equations subject to (3.4.28) to give
45 =Bt hun’valbon* 42 A -LOTi G GT I+ ot £, wsfc:,r,m@f,lé
5 6 3 3 —

_ o
+77%¢[)40“C%1; ] 4)/7 + agiif@":\l? {ém’ [/-I»rl?'f- 27724’72,[ *75:] +78 —7‘5}]
.u:':: 3612 +A5,~l3+ 09‘385! ,"‘l’ t:_; {43-['(@’5 +( ‘f2+(1 ‘H+[3'&J]¢15+ 5%1'{@7’3345[_-@‘&*({1] +(z7§
3
tgi" A,_ECO’I’. +CT1edln? 4+ a?h, St In®
70 { : 3 } 1 “gg,g"{ 7!;} i
+a*e’A5To N2 { <M 4nt360°r llthz?.z@?q +264] 1231y ~264f
256
ta? €Y BT 46, 15] 2 { e'l'z[q,.,%z?,,zn:e? +75 [+ 78y -7{}
lqa

VSS-:: Cas.l/ ..‘.026.13 '4'(3-’2 LF‘* 'lo {A’.‘.&;QZ}’IS_‘Q‘LBO ’16
6 3o

- a"'é;caﬂ {é%f‘**ﬁ W +E] ~10cosyelt 9]
2 :

1.
V;: C@v‘ + QT(.“qg'+’%‘q‘P+fg {H:ffﬁé "f_fc_{_@]rl?

q
_aze"tco‘i:w:'.nj{g*" 2+ aq+8] ~10cosq£‘1+a}
32
4 Sa’é'aco'f; Coh‘u“ {'e‘:a"\_‘_2{'][35;1\_‘_05,‘]6'\"%;‘\‘0" -H}
3 ‘

If'we calculate a few more terms in the expansion of ( U, o, Vg )
. we can show that ug and v have the following asymptotic forms

at the edge of the inner iayer
I . N .
Aoas~ D & {&(A;,E;,Cc,alﬁ,X) +trms propartoaad to T, 9% kSL}

i=0 :
3o, §=a*5 ] _ 21 W $ v a? N 55+ 018
te ,;'5'[{ 20 J = Ql;" 1 = ;2:5 o )}

1 [ 5= 6- a 1a% T 408 T4 B (-0 %) ros) f#0Ce)




: V;»E afi‘/z {yz (42,55,6';]60,7:/1/) +tums pmf. bo Tl:, I<ks= l'.} 95
; z';_‘?_; {‘%: [‘5_Q+5¢] -2 ,?figf +o(;a)} n d;vﬁ%{;,a@;r

1% 0 {20
ta 058 -2 L5 4 (3, (1-a"0%) w(yéjjl 10(#*) (3.4.36)a,b
120 L4 L4
where .
'Nl:‘: Gzé Bg’roﬁl.g ) 0(& feond 8)0(! +01€%af;~fi23f )
3q @o 256
ﬁtz" Qé’iﬂo’l’;ﬁ 25 P b./ = --Ggé‘zco"/o‘ri g (5.4“57)Z’b’
64 /6 C’ \)e
’B;_: Couy + Qgéfﬁf;T:‘806iq s J
Co 32

and Sy , S,represent the following series

,L"?
e {50 50 A8 0]) s (57
' Z_~ 120 Somo 209z~ 1A
+AL {Saqu;#a*f7}-+0(yi)
d2 o 180

(3.4.38)

Nt g

S B {$Y et c) s G fTgfietle 5 Lot
= To vz ¢ T3d souo

tAc (55471 +o(5 € _}
A (571 )

It now remains for us to determine the constants A, , By, ete.

such that the above asymptotic forms match with (5.4.22)a,b
where the central region.and the inner layer overlap . We first

note that ( f, , g, ) , defined by (5.5.’7), have the following

form for small ¢

' (j(o / 3") = (Q{; ('4/81 C}a-/’fa,j)/ S: (A/ g/ (/a} 1;/5)) (5-4-59)

where A , B , C are given by

A _ “ _ "’ { |
A :{_35-_?‘; (c), B = ﬁ(")) C= J2go(0) (3.4.40)a,b,

where a dash denotes a derivative with respect to f and 8y , Sy
are as defined above . Hence if we choose y = 1 and ( US", VSO) =
( f5, 84 ) then (3.4.23) -is automatically satisfied and the

first terms of (3.4.22)a,b and (3.4.36)a,b match if we choose
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C, = C ., Similarly if we put

0 0 v Yo
/ﬁ:@
(Us, Vi) = gi({"/ﬁo) yl=l 8
(<]

then the next five terms of (3.4.22)a,b and (3.4.36)a,b match

at the edge of the inner layer « With the above choices for T,,

4 ¢
T,, etec. we can see from (3.4.24) that ( U, Vg ) is
determined by
A é
/VZ(/;:& A ‘“’176/%70 (3.4.41)a,b
U; had /\/[/5'6 = 0 .
with boundary conditions
6_ ¢ ¢ | 442
USz‘/S"' 4_{_/5:0/_(:/ (3.4.42)
Jd7 :

-3
and if the order ¢  terms in (3.4.22)a,b and (3.4.36)a,b are

to match at the edge of the inner layer we require that

Ug"m S, (,46,%&)()6)(2,7;/.;) 1., [f—a""(") Y e
] 120 J,’L

+1a*% € 40(59
120
Ve's 82 (A4 B4, (G, a,@f}-/z%(f”-fac%{? +A(/
+a2Y*+04*) 4 059

at the edge of the inner layer . However the above series are

(3.4.43)a,b

the small ¢ series salutions of (3.4.41) with boundary conditions

é . .
s =0, dis’= o Ve %, 5=0 (3.4 058)
dy - Ja

Therefore if we consider (3.4.41) with boundary conditions

(3.4.42) , ( 3.4.44) then the solution will automatically .
. 6

satisfy the requirements on ( U, VS‘) away from the inner

layer and for some A¢, Bg, Cg¢ will be of the form given by




o7

(3.4.43) at the edge of this layer . Thus the problem reduces

to solving the system specified by (3.4.41) , (3.4.42) , (3.4.44)
In fact , since we are only interested in finding T { » We
merely use the condition that this system has a solution which

gives

Gt = {-fa:%/o/-%,af/o)}
L Yty df

. | .
where ( f:, g%) is the adjoint function: pair defined by (3.3.10) .

Using (3.4.37) , (3.4.40) we can show that the above expression

can be written in the form

1 62({/37(; [OJf (0] &ga(o/gc*(olz (5.05)
3.zf’%‘,f o

- -
and a similar procedure for the order 5™ terms in the expressions

(3.4.22)a,b , (3.4.36)a,b shows that

2 4O c&a o (o) a( ~loo £ ?of:;o}
Ty = €T [AoaeRage@ge @ ’ /(5.4.4@

#7427 T o) £700)
and Tg , q s €Tc: can be obtalned by a similar procedure if

higher order terms in the expansion of the perturbation velocity
are considered . However we have seen that to order 54T may be

written in the form

f'—-“ /r: '/'1/60-:3‘/' ‘go___?/l /’d(‘:‘*) (5.4.47)

where T, and Ty are determined by (3.4.45) and (3.4.46)
respectively and Ty is the Taylor number for the steady problem
with € = 0 ,




98

2.5 The numerical work

If we wish to obtain the critical Taylor number , Tg,
associated with (3.3.25) we must take into account the variation
of @ with € near its critical value for the problem with zero € .
A calculation similar to the one given by Venezian_(1969) shows

that if this effect is taken into account then T. is given by

=t eores eTinient=8 ) voe
o
7%)

(3.5.1)

where T%, is the critical value of T4 for the problem with zero
c . A
€ , and Ti?, T, , etc. , which are functions of a , T, denote

T T+ , etec. evaluated with’g='q: and q equal to its critical

-
value , a‘, corresponding to Te = T:i

Similarly if the variation ofawith o is taken into account
we find that the critical Taylor number associated with (3.4.47)

is given by

Tee T4 Te + 5+ 06 | | (3.5.2)
o3 agih

‘ ¢ c ‘
where T% is as defined above and T¢ s Torepresent T, , T7
evaluated with T, = TS and a = a(,

All the computations were for the critical case and as a

starting point we assumed the following well-known values for

Qa s TC .

o - 31266, To = 3389-9 (3.5.3)a,b

We then solved the ordinary differential systems (3.3.7),(3.3.10)
by a fourth ordef Runge-Kutta scheme with 40 steps . The method
of solution followed that described in detail by Eagles (1971)

and so we do not describe it again here . The solutions obtained
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were in good agreement with the corresponding solutions
obtained by Di PrimadStuart (1972) when normalized in the same
way . Having determined the function pairs( £, ) 8, ), ( f:, g:)
we used Simpson's rule to evaluate the integrals in (3.3.12)

and we were able to show that

- -26-18 (3.5.4)

We then solvedthe system (3.3.14) again by using the method
described in detail for such systems by Eagles (1971) . We then
evaluated (3.%.17) and obtained

% ~208-6 | (3.5.5)

We then solved the systems (3.3.22) for i = 2 , 6 and used the

results to show that
Tao = 1.7 - | (3.5.6)

This value is correct only to two gignificant figures wheras Tg
is correct to four significant figures . If we now substitute for
Tg , TS, @fofrom above into (3.5.1) and eliminate « using (3.3.2)

we obtain

= 33899 ~208-6 €24 L7 404 €HY (5.5.7)

For details of the function pairs ( f5, 8¢ ) , ( f: , é; ) and
some of the more important higher order function pairs see the
Tables at the end of this thesis .

The high frequency critical Taylor number requires only the
knowledge of the basic eigenfunction pair together with the adjoint
function pair ., After evaluating the integrals appearing in
(5.4.455 , (3.4.46) using Simpson's rule once again we found that

Tc*was eXpre331ble in the form

1. = 3389 ?{/-€ [ w98 ~Bhxijlo *m)fz(”&”
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3,6 Discussion of results

We first discuss the nature of the velocity field associated
with the disturbance imposed on the flow . In the low freguency
limit the order e’ velocity is Just the usual steady velocity
multiplied by a function of %+, %’(t) , this function being
determined by (3.3.11) . Since P is in fact negative it follows
that the order € velocity has maximum value when % has the

following values

Yz (Gmt)H/2 , mzO 2 (3.6.1)

This is surprising since we would expect that the maximum
velocity would occur when the inner cylinder was moving with

its maximum velocity rather than when it had its maximum
deceleration ~ as is suggested by (3.6.1) . A related result was
found by "Di Prima &Stuart (1972) when they investigated the global
stability of the flow between eccentric rotating cylinders .
Suppose we wish to determine the position in a cycle when the

the Taylor vortex activity is a maximum when terms of order €

are taken into account . The above authors have suggested that a
relevant'ﬂysical quantity to consider might be the axial velocity
component'nearibhyouter cylinder . However , since the iatter is
in fact Zero at the point in question , a Taylor series expansion
of the axial component near { = 1 shows that the axial velocity near
£ = 1 is proportional to its derivative with respect to ¢
evaluated at £ = 1 . It follows by considering the equation of
continuity that this is equal to-—%%il . A calculation using.
(%3.3.11) , ( 3.3.20) shows that , if tgéés upto order € are taken

into account,then this quantity has its meximum value when

T=Tm T‘Q{o&): §,() [%,0) 1] X, jtoce)
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and the computations show that this becomes
o - 2 .
Y o= T + €[ Ohhx ~0-05] $0C€?) (3.6.2)

Thus we see that the position of maximum vortex activity in
a cycle is before or after the position‘of maximum deceleration
of the inner cylinder depending on whether or not ,va , waich we'
recall is proportional to the angular displacement of the inner
cylinder , is greater than 14,7 . With T~3390 this value of o
in fact corresponds to an angular diplacement of the order 600((1/3,)’-’12
In the high frequency limit = it is possible to isolate the
steady and unsteady parts of the disturbance velocity by Fourier
analysis . The unsteady flow is dominated by components with the
same frequency as that of the basic flow . The presence of the Stoke
layer at the outer cylinder means that the relevant measure of
vortex acti%ity is not nec¢gessarily the same as the one used
above . However , if we use the one described above and just
take the first term of the expansion of u intolaccount together
with the dominant steady component , f, , wé find that %%;Lz'
has its maximum value when the inner cylinder has its maximum
velocity .
It is of interest to know that the quantities F s ’E:
which we derived inJyB.B are related to the coefficients in the
expansion of T in powers of a small growth rate g, for the

problem with zero € .Essentially the latter problem is to solve the

following system '
;f, (a,v) = d5 N

W= u’:\’='0)f‘—‘0/ [

(3.6.3)

whereJ:,JﬁL, N are as defined (3.3.8)a,b,c . The above system can

be solved by expanding u , v 4 T in the form
A= Lo 'f C'},u.'{-*‘w,

L [ R T
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T = 7:4'4;'T74 .o

and the system can then be solved by using.the method ofEFPB.B .
The results of such a calculation ghow that

(“L""/VO):'(fa)ya) s (wyv) = -%L[d;ff;, g:)

(3.6.4)a,b

/m:_m/ﬂj 7;%((/’}1-071:.//7;1//5 ~ (3.6.5)a,b

where ( fgq, 84) 5 ( £, g’) , Ql,r are as defined inpP3%.% ,

The ratio T,/T,was computed by Davey (1962) who found that
A To= 1 /13

wheras , taking|ﬁ>as being -26.18 , we can infer from above that
[t = /1309

Thus we have reasonably good agreement with Davey's work , the
slight errof possibly being due to the fact that he used a slightly
different value for the Taylor number T,. Unfortunately Davey
did not compute Tl in his work but a rough estimate of TJ can
be obtained by intefpolation from Table 3 of Davey , Di Prima &
Stuart (1968) . The resulting value agrees within30 Z of the value
which we can obtain using (3.6.5]b .

We have seen that the critical Tsylor number at which
instability first occurs is given by (3.5.7) in the limit of
€ and o tending to.zero . Thus we see that the dominant correction
to T, from its unmodulated value is negative . For fixed € the
critical Taylor number increases as ¢ increases from zero ,
but , unless ¢ is taken to be greater thanall , T will
always be less thén its unmodulated value . In Fig. 6 we have
shown the variatiﬁn of Tc with o for fixed values of € . We have
¥

also calculated the order 6“‘ o]

, correction terms in (3.5.7) .

These terms include corrections to T¢ through & being dependent
on € .
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We found that the order g‘ term was -~1%03% and the order él§'term
was zero to two decimal places .

In the limit of o tending to infinity withgarbitfary we found
that the critical Taylor number was given by (3.5.8) . Again it
seems that the dominant effect of modulation is to destabilize the
flow since the first correction term of T from its ﬁnmodulated
value is negative . For fixed € we see that T increases as ©
decreases but unless ¢ is greater than~20T is less than its
unmodulated value , assuming of course that the next term in the
expansion is negligible for ¢ of this order of magnitude . We have

shown the variation of T with ¢ for fixed € in Fig.?7 .
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CHAPTER 1V

THE NON-LINEAR STABILITY OF UNSTEADY CYLINDER FLOWS

4, Introduction

In view of the results of the previous chapter with regard
to the work of Donnelly (]964) we now see if better agreement
between theory and experiment can be obtained by taking non-linear
effects into account . The procedure adopted in this chapter is
és follows.

In§4.2 we formulate the non-linear differential system
governing the stability of the flow. This system is Jjust the
system (3.2.8) of the previous chapter together with the non-linear
terms neglected in the derivation of the latter.

Inwpq.B we consider the low frequency limit and obtain a
solution to the differential system by the method of multiple
scales, We again balance the dominant time-dependences of the
system by letting € tend to zero with g/€ fixed and equal to «
say. The Taylor number is perturbed by an amwount of order €
from its critical value for the problem with zero €. The perturbati
velocity is then expanded in powers of € and we find that the
time~dependent amplitude of the leading Fourier mode satisfies

the following differential equation.

dA . =Y [T+ 2Tocest A +a, A’ "
@D 213{ ' } (4.1.1)

Here T, is the order € alteration to the perturbed Taylor number
and.q,r are negative constants. The non-linear effects are
represented by the A? term agbove ,and; since @, is negative,it
‘follows that the effect of the non~linear terms is to stabilize
the fi%w; If we suppose that the speed of the inner cylinder is
ri-qw given by .Q,{l +€‘f(0f‘{} ,Where f(wt) is a slowly varying function
ofmt,\we can show that the corresponding amplitude equation is
given by

«dA _ -T {f“‘ 21:3[(“6{;/4 +G.A3 (4.1.2)
@) ~ 2% |




107

If we put f identically equal to zero above and rescale certain
quantities appearing in this equation we can obtain the third-ordes
truncated amplitude equaticn given by Davey (]962) , and T is

then proportional to the growth rate of linear theory. Moreover,

if we define an instantaneous Taylor number ,TZ , by

T=T{I + €f )}

then it follows 'bhat} since 7T —;—Zﬁf is the order € alteration

of T;from T Davey's amplitude equa'tion may be regarded as

o
being valid for this problem if we replace the Taylor number T
used by Davey by T; definismed above.

In‘fp4.4 we consider the nature of the solutions of (4.1.2)

for various functions f(wt). In particular we consider the case

of f(wt) being cos(bt) and examine the possibility of A(wé)
being a periodic function of @t . We find that such solutions exist

if 1T, is positive.
Injy4.5 we examine the limit of ¢ tending to infinity with

€ arbitary. We as;sume that the Taylor number is given by

T=To + &1 + 0(6™) (5.1.3)
and 1t follows from the high frequency linear theory of the
previous chapter that the flow is unstablé to infinitesimally
small disturbances if

1. >-48980 T, €
when F(0t) = cosot.
In fact we consider only the case when f(wt) = cos(wt) so that
we can use the method ofj“BA which requires that:the
perturbations are periodic in wt. We find that to the order of
magnitude in o which we work the non-linear effects are only
important through their effect on the steady part of the
perturbation velocity. The latter is assumed to be of order 0-3'2'

in the central region and we find that the amplitude , A:, of
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the leadlng steady Fourier mode is given by
A T + T2
(4.1.4)
Qa, Te To
where T, is given by (3.4.45). Putting 3 equal to zero in the
above equation we find that , affer eliminating Té using (4.1.3%)

6
that Agis then the equilibrium amplitude solution of Davey's
truncated third—-order amplitude equation.

Injp4.6 we discuss the relevance of this work to the
experimental observations of Donnelly (1964) , We find that the
low frequency calculation explains some of his results but our
theory does not predict an optimum value o for the enhancement -

of stability.

4,2 The basic flow and the disturbance eguations

Using the notation of the previous chapter we recall that
the basic dimensionless velocity,(O,\(,() ), for the flow
between concentric cylinders when the outer one is at rest and

the inner one has angular veloc1ty'£2€J+ék05°€5 is
——— 1 -
\/= Y 4 6[ mhf&(l s')e COMPLEX . -U (4.2.1) .
Sinh CONTUGATE
Suppose that we again perturb the flow such that the

disturbed state may be charqcterized byu , v+ V , w ,
p/p + &p , where p is the basic pressure distribution , then
if we rescale u , v , Q as follows
u—-l)u/ZJ yv o= Q2R,v /2 y W = -yw/Za!
and define the varlableqs by

5;5 = z/d | (4.2.2)
4

we can show that u , v , w satisfy the following equations

[Eoep e VESR A5

;1 A . & (4,2_5)&,1),0
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=951 +3?;z (4.2.4)

and g)zzu,ﬁﬁ + Mfé%% ’;T&' h

| @ Lo’ + Wt

és 34 > (4.2.5)a,b, ¢

¥y n
Gh= 4« 35 1wy
and T is the Taylor number defined by

1T :'AZJlf‘Q,cri/J)Z'

The boundary conditions are determined by there being no

relative vélocity at the boundaries. Thus we require that
w=v¥z=w¥=0, 3=0,I (4.2.6)

Finally we note that the equations (4.2.3)a,b,c are the 'small

gap' equations obtained from the fyl1 equations by létting

d/R, tend to zero with the variables J,\; 7!) “.’;Vj W-y and the

parameters T , g , € held fixed.

4.5 The low frequency limit

If we replace V in (4.2,3)a,b,c by its asymptotic form

for small o and drop the star notation we obtain

{ef'o-ﬁiéfu, T{X +€'X.cosl»+£a~ksm} }Dv )

19"0: + 1 'Y,
2 34 2 9 5

9 -
{,f—-o:)-*}v - {’ "6C0$T4€0~¢L5’"“'+";}u -’Z!'@-; ? (4,3.1)a,b,0

du W _p |
3 3 |

where the functions]%,¢i are as defined by (5.3.1). The

relevant boundary conditions are

Lzvew=z=0 ,3=0, (4.3.2)

Following the method of the previous chapter we seek a solution .:

of the above partial differential system by letting € tend to
zero with o/€ fixed and equal to a. We thep expand u , v , w , T

in the form
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w= €1 {u,,,com +€"‘E‘10+“12 cos?a,&]-ﬁ 5[013“’5“’! .
+u“zos3mg40(£ )]
v = C& {Vm Cosaf +E€" v tvpcos2ad ] + €[ vy, cosa é :
| +%ﬁ“&g+mgﬁq
ws= €8 {Wo: s'm/a/efivé'/"[;ﬂo +M1.ﬂ}92ey‘]* 5[%:5“’“?‘
4wz 61 Saé]wlg"f}

(4.33 )a,b,c,cl

Tz To €T + O3

where ¢ is again a wavenumber., This expansion procedure is
similar to that used by Di Prima and Stuart ({973) who were
considering the stability of the flow between eccentric rotating
cylinders . The € scaling factor in (4.3.33a,b,c follows from
(4.5.5)@ and that if T is slightly greater than T, then the
amplitude of the disturbance is proportional to ( T - T,) .

If we replace o by a€ in (4.3.1) and substitute for u , v

?

etc. from above into (4.3.1) , (4.3.2) and equate terms of order

/L[Q-Z‘al”'agtx‘,vo, =0

dor ~Mvy =0 (4.3.4)
g#‘o' +awe, =0

€ we obtain .
/“el = VOO = W.,. 20).;:0/’

|

|

where M is as defined by (3.2.9)b. The solution of the above

system is given by

woi = Alr)of, (§)

Voo = Alr) 9o (5) - | (4.3.5)a,b,c
we = — A QELS) /q
as

where @5(@) , go(;)are as defined by (3.3.7). If we now substitute
for u., v, etc. from (4.3:3) into (4.3.1) , (4.3.2) , equate

terms of order € and then use (4.3.5) we can show that
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ag~ 3y
c)lﬂo—_:_ _/4 gé_ :Fo , (4.5-6)
= =5 )
.L{.o.._\/m.--gii-”-() I:O/’
and {é) -,4.;.}44.,,4-44 2 X Vi = -/42 "Tj"“ﬂ {dfd%f A
df ¢ 3+
-f;dif (4.3.7)
Ly - (a ""A,Q}Vg {sod‘f::- 'F Jgg}
Qun SJQMA =0
as Ll\f.L"V;g_-\N’m."O)f 0, ’J

and so we can.wrlte
Q
Mo = Wo .-.:0) Vie = Agz(f)
where €y is the solution of
db, — -1 d
ite < H-dg(ﬁ’gc)

We can also write u,, , Vjp , Wiq in the form
e = A (5)
vie. = Al«@:a ()
Wi = Al 3(3)

where fy , €3 , h3 are defined by

dr . 11 _,I d d‘f.o“’od;{o-ta

$i = Gl ge < f ($dgs -go 48]
df +2ah; =0

gs 535 :h;:-.-OJ 5‘30/(

If we now substitute for u , v , etc. from (4.3.3)

(4.%3.8)a,b,c

(4.3.9)
(4.%3.10)a,b,c
\
r (4.3.11)
J
into

(#.3.1) , (4.3.2) and eqﬁa’ce terms of order € and then use

(4.3,5) , (4.3.8) , (4.3.10) we can show that uy,

are determined by

) V:u ? W.u

Mot & Koy = LN A5 X0 coot ~ Ao Ty

o + A%F (3
- M = =gy o = Ao + A3G.(3)

a""’&' + qw.zl._, 0
33

Mgy = Vo =™, =0 f:@’

(4.3.12)
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where ) @) , G (r) are given by

/'//(~_. df 295d % 9% dE -2 3
S a5

R STRL SR
G- {55y iy 13p.f v df oo ]

and the operator N ig as defined by (3.3.8)c. If we now use the

(4.3.13)a,b

condition that the above system should have a solution we obtain

the following ordinary differential equation - -for A(Y)

dA- - [osc df]/l ra A3 (4.%.14).
K ps .

where {§ is ‘given by (3.%3.]2) and has the numerical value -26.1 8.

The constant @) is defined by

LEE 4 ,;‘Q}df (4.3.15)
L {9 70-{’"%}0/(’

where (f '8, ") is the adjoint functlon pair defined by (3 3.40) ,

and ¥y, Gy are as defined by (4.3.f3)prespectively. The constant a,
is in fact related to the constant & introduced by Davey . We

can easlly show that \

-.-'&7/5/

if we choose the function pair (f,,g ) equal to the function
pair (§ ,v)of Daveys work. The functions F, , W, , Vq introduced

by him are then given by

The numerical calculations performed by Davey in fact showed

that with g (1) = ", 8, has the value - 0.05 .
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_ Finally suppose now that the speed of the inner cylinder
is given byﬂ.,(“’éﬂcof}) .The dimensionless velocity V is then
as shown below for small ¢ |

v={k 4%@1&(3’)‘3_’5{]

and the method used above leads to the following equation for

the corresponding amplitude function , Alv).
%Cﬂz‘ﬁ{f(w 4_21/}4 +a, /43 (#.%2.16) -
S

270

where q ,(If are as defined earlier.

4.4 The solution of the amplitude equation

The equation (#.3%.16) is a 'Bernouilli' type of equation
and 1f we use the usual substitutions for such equations and

write

AP = 3-1 (4.4.1)

we can sutftitute for A from above into (4.3./6) to obtain a
first order linear differential equation for B whose solution
is given by

o~
[86) 8000, - 2af PG dr

anm——

o (4.4.2)

. _ | | (
where g = C&’P {“; [—Q f}&)d¥4g']}

We now consider the nature of the solution of (4.3%./6)
when f£(%) = tanh(¥). In this case the speed of the inner cylinder
changes slowly from.ﬂ,("‘f) at ™=~ b to _/Z. (1t€) a‘t>

N~-+4¢b . We can then write the equation (4.3./6) in the form

3
olcc.fﬁl: ”T({("MM' *5‘%}’4"‘7/4 | (4.4.3)
r
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and so as % tends to infinity A tends to the following equilibrium
J

amplitude solution
ity
/‘E = [Y(Qﬁ‘ff)ﬁaﬂ{] (4.4.4)

which is no more than the usual equilibrium amplitude solution
for the steady problem with the Taylor number based on the final
speed of the inner cylinder.

Suppose now that f is identically zero. We can show that
the time-dependent amplitude , A} , of Davey's work is related

to A(Y) Dby
Ap = é"QA/z (4.4.5)

and that Davey's time variable ,ﬁ,, is related toV by
ED = ‘\-—/o— (4.4.6)

and so with f identically zero we can write (4.3,16) as foilows

dht» = :3-09{_‘1 ~1}Ay —802 Ar
dy ° |

where we have replaced T by T - Toand o by c¢/€. This amplitude
€

(4.4.7)

equation is identical to the truncated third-order equation

found by Davey.

The special case (YY) = cos(n)

Before examining the special case £(X) = cos(t) we wish to
point out that the iollowing analysis is similar to that given by
Di Prima and Stuart (1973) who solved an amplitude equation
similar to (4.3.4) which arises in the non-linear study of

The eccentric rotating cylinders -stability problem
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Taking f(t) as being cos(*) in (4.4.2) we have

{ ( T L !
[BE)ER)], = m%g,fo ()’ (4.4.8)

<
more F09 = ep (- (4]

The equation (4.4.8) contains an unknown constant , B(O) ,
which is specified by insisting that B(}) is a periodic function
of . If we solve for this constant and substitute into

(4.4.8) we find that

B - {f TR+ [Ban-f, Y dr
T [ -] 1/« (x)

and in general this form can not be simplified further, However s

(4.4.9)

in the limit of T\/Te tending to infinity with o fixed we can use
(a.5.1) , (4.4.9) to show that ‘

/4{\') ) (l'('O(.‘r) } (4.4.10)

&a{T; To

and the dominant term on the right hand side of (4.4.10) is
Just the equilibrium amplitude solution for the corresponding
problem without modulation and the same Taylor number.
Similarly if we let & tend to zero with T, /Te fixed we can use

(Boad) , (5.4.9) to show that

Al) ~ :la. ) {' + O["z')} (4.4.11)

which shows that for o small but large compared to € modulation
has negligible effect on the stability of the flow. This is
consistent with the experimental observations of Donnelly (19e4)
which showed that ,;as the period of oscillation of the inner
cylinder tended to zero , the critical angular velocity at
which instability first appeared decreased to its unmodulated value

We recall that we obtained (4.4.9) by letting € tend to zero
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with « , T,/T, fixed.Suppose now that we let T, /T, tend to zero

with o held fixed (4.4.9). We find that |

Bér)~ e, To evp (R I, () {10 (6) |
T * (e

where I, is the modified Bessel function of zero order. We now

(4.4,12)

let o tend to zero in (4.4.12) and it then follows using (4.4.6)
that A(Y) is given by

/4(\_) . [-— Tfﬂ3/11€27’)"L] &“"*ex(p {TEIZ (‘—fm:)} E{O(%,«)] (4.4.1%)

and so for small a,T\/To it follows that A(X) behaves somewhat like

a d-function , being exponentially small away from the regions

near T=( 2n + ) ., n =0,1,2,3,4,5,6,.00ccveee.... However the
factor (T4 /T ) multiplying the exponential agbove ensures that A (¥
does not become infinite at these points. A sketch of A(T) in

this limit is shown in Fig, 8.

4.5 The high frequency solution

We now investigate the possibility ofvthe existence of
equilibrium perturbations of small but finite size in the limit
of o tending to infinity with € arbitéry. We consider.only the case
when the inner cylinder has angular velocity441(Wf€k°$09). Thus
we segk periodic solutions from the outset and can therefore use
the method ofJﬂB.ﬂ. ,

We recall that in the latter segction the effect of
modulation in the bulk of the fluid first appeare@ in theiorder
c‘)termlin the expansion of the steady component of the
pértﬁrbation velocity in powers of 5”2 whén the dominant term
was, of order Go . Hence we perturb the Taylor number in the form

T="To +75' +0(5™)

=3 (4.5.1)
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in order that the effects of modulation and non-linearities
appear at the same order when we expand in powers of dw&. It
is important at this stage to distinguish between Tg given above
and Té introduced in/d%.z . We recall that the T4 is the order 53
correction term in the expansion of the critical Taylor number in
powers of EMLfor the linear stability prdéblem . On the other hand
Ufgié determined by (4.5.1) for any given value of T and the flow is
stable or unstable according to linear theory depending on whether
or not TJ)KD.

We saw ind£3.4 that the effect of modulation in the central .+
region was to cause the perturbation velocity to have radial and

iv =572

~X?
azimuthal components proportional to e of order ¢ 3 ¢ when the

o
dominant steady velocity was of order ¢ ., We could also show that

2i%t =7t é“%z

the corresponding terms proportional to e were of order o ,

respectively . Suppose that we choose the dominant steady velocity in
~¥ >
the central region to be of order ¢ then the linear theory of the

previous chapter suggests that we expand the perturbation velocity in

the form

'?/ g PR U +U’,L....
[(/ +(/o/1+ +e/z [- 0’11 ] * CC \
L ei’l\'LU -I'Ug_ - :7+ c.cC }6054%

o7
-‘%{VH'Vs" b 2T [V 4T HCC
r a»*r/« ot '
Q.t\’ 0
LV +vl_,,,. +c.c}a>5a/ L (4.5.2)a,b
o,Q/‘L o"’t

we oW rwd ,__+C Lw0w +,.J-Lcc

(5'“" 65/" V 0'117

Lw,f’wum]w c}maylj
O’h

where C.C. denotes 'complex conjugate' and the choice of scaling
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for the steady component of velocity was made so as to be
i

R z 37
proportional to ( T - T, )  , which from (4.5.1) is of order v .
However if we let ¢ tend to infinity in (4.2.{) we can

use (4.2.3) to show that in the central region the perturbation

velocity is determined by
{f“ }Ih %1’@,\(—’31 y 4 &201
ot & 542 & 053y

e _ 4.5.3)a,b,c
{i Uét}v = L --é!_@, (
S 3Y P

where ¥, Q), Q)5 Q3 are defined b;y (4 2.4) (4.2.5). The °
expansions (4.5.2)a,b,c are clearly no longer suitable if

we wish to ret}ain the non-linéar terms above ., In order to
take the non-~linear effects- into account we modify the

expansions (4.5. 2)a b,c to give
- o3l U Us $.-T e v aif
U= O {U5+UH £ LU,-FU tec. +€ LU -H./,,f]nc}w!

i &g

to {U s e 4 (U +__{‘ 4en )st-?af}"‘ 0(07)
0'”1 o

V=' o_-.m Vs“’v‘ $oen 42 [UO-fU' ]f(“,e L\/,fV,, ]4((.}5050%
0'"‘ 0’711,

{V, ¥ Vsl 4 (W7 l+~')¢°‘2°§£}40(56)

o Tolh r (4.5.4)a,b,c

wm o oo [ Jrec 12 i H;:www

{Vo ;o_!” -{(W -}Ws 4. )SmZaf} +0(

‘h o

J

where the terms in the expansions with the triple index

notation are produced by non-linear interactions.
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From now on we shall use the words fundamental , mean ,
first harmonic ,etc. with reference .to theﬁg—dependence only.
The non-~linear interaction of the steady fundamental components
of velocity with themselves leads to the steady mean and first
harmonic terms of order g in the above expansions. The non-
linear interactions involving the unsteady fundamental terms
produces steady and unsteady mean and first harmonic terms
which are at most of order 6qbt Sinceuwe>shall consider terms only -.
upto order ;%tthese terms are negligible for our purposes. The
dominant steady mean and first harmonic terms produced by the
interaction degpribed above interact non-linearly with the
dominant steady fundamenfal terms to produce steady fundamen?al
terms of order gqn; Similar terms are produg¢ed by the non-linear
interaction of the order‘édwlerms with themselves and the other
terms . ‘in the aboveexpansions , but these terms will be at most of
order,d"gand s0 negligible for our purposes. Thus We see that
in the central region the steady fundamental terms upto order
6J”§re ungaffected by any non-linear interactions involving unsteady
terms. :

We recall that in the high frequency linear theory ofjJé.A
the steady part of the perturbation velocity in the outer
layer exhibited no Stokes layer type of behaviour. However ,
in this section the steady fundamental component of the
perturbation Velocity’inherits“such a behaviour through #he-
the non-linear interaction of the unsteady components of the pert~
urbation velocity whiph of course does have this type of
behaviour. Hence we must distinguish between the steady
fﬁndamental components in the central region and the outer

layer. However we can show that in both the inner and outer

layers, the residual steady fundamental components of velocity
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at the edges of these layers is first affected by non-linearities of

order 5@a< when the dominant steady fundamental component is of

order &™) , and the effect is independent of any non-linear

interaction of the unsteady parts of the perturbation velocity .

Thus the first order non~linear correction to the linear theory

of f5.4 is independent of the time dependence of the-basic flow .
Having said this we find that the solution of the problem is

trivial , since all the information which we require is embedded

in f}.A and(fA.B . If we substitute for u, v, win the central

region from (4.5.4) into (4.5.3) and take T as in (4.5.1) we obtain

the following after equating steady fundamental terms of order 53h.

NS +a* L X,V %= 0 } (4.5.5)a,b
L&o - Afbﬁé = d

Here N is as defined by (3.3.8)c . The method ofdﬁ%.4 shows that at

[

6
g » Vg must match onto the small

the edge of the inner layer U
series solution of (4.5.5) with boundary conditions
o
, Cﬁ’: V?y: ‘j64 ::(9 )cr::O
d¥

and at the edge of the outer layer we require that US s Vg match

(4.5.6)

onto the series solution of (4.5.5) with boundary cénditions

U=V =90 0, 5=/ (4.5.7)
| dy

and so we write

VDA ,0) s

where AS is an amplitude constant to be determined and f , g are

as defined by (3.3.7) . Similarly for n=1,2,3,4,5 we can show that

LU?J\/"’) = Ag('{:”f")
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n
where Ag are unknown amplitude constants to be determined. If
we substitute for u ,v , w from (4.5.4) into (4.5.%) and equate

-3
steady mean and first harmonic terms of order o we can show

o

that ( Ugy VoS W) and ( U2 VS* W) satisfy the differential
equations in (4.3.6) , (4.3.7) with these vectors replacing
v,

the vectors ( u,, v,, w,) and (u vy WeTespectively , and

"
A replaced by A;’. The matching conditions at the edgq of the
inner ard cuter layers have fi1o dependence on the time
depeﬁdence of the basic flow and merely require that at the
edge of the inner layer ( U;? v;,,w ) matches onto the small 7

sdies solution of the differential equations determining this

vector in the central region with boundary conditions

:\/SOQ_: 900:0)5.:9

and at the edge of the outer layer we require that the vector
matches onto the series solution of the differential equations

for small (} - ¢ ) with boundary conditions
o 00
U’ = "O)K:I
and so we(have

; .o 2 |
U wi*= 0, V6™ = (A7) 9a(3) | e

where g (SS is defined Qy (4.3,9), Similarly we obtain

( \/02 h/OZ) (/] )(a(;)?;)fa) _ (4.5.10)a,b,¢c

where £,({) , 53(f) , h(§) are défined by (4.3.11).
If we now substitute for u , v , w from (&4.5.4) into (4.5.3)
and take T as in (4,5.])and equate steady fundamental terms of order

~Qs .
c %ve obtain
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N+ XV - %4}172/&%4/4]3{6/7
%’ Ny AE 64;)369[)‘) (4#.5.11)a,b

where By , G’ are as defined by (4.3.13)a,b. The matching condition
at the edge of the outer layer requires that U? s V;qthere match

onto the series solution of (4.5.41) for small (| - ¢ ) with

boundary conditions

7
Ust =V =90, 5=
o9¥
Without modulation the corresponding conditions at the edge of

the inner layer would be that U;?, Vj’there match onto the small

(4.5.12)

¢ series solution of (4.5./1) with boundary conditions
' v/
/et \/5753% =0),%=0 (4.5.13)

However , with modulation the non-linear interaction of the basic
flow and the disturbance in the imnner layer affects this matching
in an identical way to'that observed inJy%.4 . An analysis

similar to that given in the latter section shows that , if
modulation is to be taken into account , then the conditions

(4.5.}3) should be replaced by

9 9 -2 9dg0 T 135%? 4593 = '
W=, WeLE i, U= T 1520 sy

and soljg, V;qare given by the solution (4.5.1 )with boundary
conditions (4.5.12) , (4.5.4). The condition that this system

should have a solution can be shown to be given by

F6) 1o Rgody ) LB 492Gl

13d L% -4998dg,
- s {PEIEE



where ( Q;, é:) is the adjoint function pair defined by
(3.3.10) aﬂd‘X;: | = £ . The terms in this equation are more
recognizable after a few substitutions. We can use (%.3.]2) ,
(3.4.45) , (4.3.15) to show that the above equation can be

written in the form
02 ?f /(/l’_/,u '
C/(g) Ty { 6 IG} (4.5.15)

-~3
We recall that Té was in fact the order ¢ correction to the
- ¥
Taylor number ,T, expanded in powers of ¢ zfor the high frequency

linear theory. Thus if (4.5.15) is to have a real solution we

/ :
require that Téf) Ty ,and so finite amplitude perturbations can- -
exist only when T is greater than its critical value of linear

stability theory.

4.6 Discussion of results

We first discuss the experimental work of Donnelly in
more detail. As stated earlier he considered the flow betwéen
concentric c¢ylinders when the outer one ié at rest and the |
inner one moving with angular velocityJQKHf“m{i Before saying how
Donnelly defined the critical Taylor number for the flow we
first discuss the important features of the stability of the
unmodulated flow.

When the outer cylinder is at rest and the inner one moving wit
sngular velocity /4 it can be shown by linear stability theory
that the flow first becomes unstable when the Taylor number
reaches the value 5589.9 . For T slightly greater than this
value the non-linear theory of Davey (|962) shows -that
equilibrium perturbations to the flow can exist. The amplitude
of the Taylor vortex flow i then pr0poftional to (T - Q,)% .

It can also be shown that equilibrium amplitude flows can not
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exist for T less than T4 . Thus for T less than Ty the
amplitude of the Taylor vortex flow is zero , and then when
T reaches the value Ty the amplitude begins to grow like
(1-Te)E .

With this in mind Donnelly defined the critical Taylor
number to be that value for which a slight inorease'in. /T~
caused the amplitude of the Taylor vortex flow to increase
rapidly. With this definition of the critical Taylor number
he found that the flow was stabilized for all € , o in the
sense that the critical Taylor number was always greater than
Ty « The maximum enhancement for all vaues of € was when ¢
took the value .27 .

Low frequency results with £(Y¥) = cos{t)

The first difficulty which we must overcome is to-decide
what property of the time dependent amplitude , A(Y) , Donnelly
actually measured in his experiments. We feel that the most

relevant property of A(A%) is its mean value , A , defined by
2a i '

4 = L
A = ME Ade (4.6.1)

We saw ingh.4 that A was in general only known in integral form .
Thus A’must be evaluated numerically using an integration

routine and then A can be evaluated using the same routine, The
result of such acalculation for various values of Ty / T4 , «

is shown in Fig. 9 . We have also shown the corresponding
equilibrium amplitude solution for the unmodulated flow at the
same Taylor number.’We see that , as suggested by (4.4.11))the
effect of modulation vanishes as a tends to infinity , the curves
tending to the equilibrium amplitude solution for the unmodulated
flow . The results of Fig.wg suggest that modulation stabilizes

the flow in the sense that the value of A for any given values of
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T /Ty ,& is always less than its unmodulated value. However ,
unlike the results of Donnelly , our results show no optimum
value of o« , and hence o for given value of € , at which the
enhancement of stability is most pronounced. The enhancement of
stability shown in Fig. 9 decreases as &« increases . In Fig./lO
we have shown the results of our low frequency theory in a form
more suitable for comparison with Donnelly's results. We see
that there is poor agreement between theory and experiment. This
is perhaps due to'K'not being the relevant propertyof A(Y) as |
far as the latter's results are concerned. ‘

Finally we would like to suggest that a more promising
method of exPerimentally checking our theory would be to try and
obtain the behaviour of A as a function of ¥ . This could be
perhaps done by measuring the differenoe of the torque on the
inner cylinder from its taminar value,, a quantity which is
proportional to A? . We have shown Az as a function of ¥
1 in Fig. Il .
cos(t)

In the limit of ¢ tending to infinity with € arbitary

il

for various values of a and T, /T,

High frequency results with f{%)

we found that the amplitude of the dominant steady fundamental
component of the perturbation velocity was given by (4.5. 5).

Suppose that we write

A= &AS

, .
and eliminate Tg from (4.5.15)using (4.5.1). We obtain
/(Q__ ft T~ To — 1? }
g ‘ &4,1:7 o 3
and if we put € , and hence T¢-, equal to zero we can show that
A is then the equilibrium amplitude solution for the problem

without modulation and the same Taylor number. If we denote this
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equilibrium amplitude by AE we can show that
A-Ac g"T’TZ/‘?a,(AMe)J"

and so as T becomes appreciably greater than T, , A tends to AE .
We have shown A asg function of T for different values of € in
Fig. 12 .

Irn contrast to the low frequency results we see that the
amplitude grows quite quickly as soon as the critical Taylor number
of linear theory is reached . Since T wag-in actual fact |
negative , we conclude that in the high frequency limit the effect

of modulation is to destabilize the flow .
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T~
£2A
4 ———— Davey’s equlibrum ampiitude
Ao solution.
08 — -— - Donnelly's experimental curve
/ A given by low frequency theory
/' (All amplitudes are normalized
, by dividing by A, the amplitude
0-6 / at 2 = 5-8 without modulation )
/
04 /
02
oL~ 1 L -
57 5-8 59 60 61 Q4

Fig 9. Comparison with Donnelly’s results for e =0-08,
period =46-1.
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Fig 10: A as a function of % The dotted line represents
the value of A for the unmoduiated problem with
the same Taylor number,
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| 1 1 1 N
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Fig 1): A* as a function of a for % =05 .
The dotted line represents the constant
value of A’ for the unmodulated problem
with the same Taylor number The
difference G of the torque on the
inner cylinder from its laminar value, for
this value of ££,can be shown to be given by

G= {22} {0,037 e .
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Figl2 The amplitude A as a function of T in the high freguency limit.

" The dotted line represents the amplitude for the unmodulated
problem with the same Taylor number ( All amplitudes are

normalized by dividing by Ay, the amplitude at T=3400
without modulation. )



CHAPTER V

THE MODULATION OF THERMAL INSTABILITY-LINEAR THEORY

5.1 Introduction

In this chapter we investigate the thermal analogue of the
cylinder problem considered in Chapter 111 . We consider the stabili
of the fluid confined between parallel planes which ére separated
by a distance d . The temperature of the upper plane is maintained
at zero and fhe lower one has temperaturgFU(i +€coswb) , Thus €
will again be an amplitude parameter and we again introduce a
frquency parameter ¢ defined to be the square of the ratio of d
to the thickness of the oscillatory layer associated_with the basic
temperature field . We assume that the boundaries are stress free
surfaces and we again consider the limits of low and high
frequencies separately . Venezian (1969) has considered this
problem for small € and arbitary o . If o is allowed to tend to
zero and infinity in his work we should expect to recover the
results of our work ~ . However this is not the case and since our
low frequency results have also been obtained by Herbert in some
unpublished work using a Galerkin type method we believe that the
error lies in Venezians work . The procedure adopted in this
chapter is as follows .

In‘/%.2 we dbtermine the temperature distribution of the
basic staté and we then obtain the equations governing the linear
stabilify of this state . We again insist that the boundary
between instability and stability is determined by the disturbance
velocity and temperature fields being periodic in @b,

Inuﬂb.B«we seek a solution to these equations by letting € and
o ténd to zero with o/€ fixed and equal to a say . We then obtain
a solution of the équation? by expanding in powers of € ., In contrast
tolﬂg.B we find that the ordinary differential systems which arise

from equating like powers of € can be solved exactly without using




133

any numerical techniques .

In f"5.4 we consider the limit of o tendiné/'to infinity with
€ arbitary . We again find that , in contrast to the basic state s
the disturbance has a time dependence throughout the fluid . |
However , since we are using the free surface conditions , there
is no need for an oscillatory layer near the upper boundary .

Inwﬁ5.5 we give a brief discussion of our results .

5.2 Formation of the eguations for the stability of the flow

We congider the flow between the planes z = 0 ;, z.= d

with respect to a Cartesian coordinate system ( x , y 4 2z ).

These planes are taken to be free surfaces . We tabe_g , T ,p, t
to be the velocity, temperature , pressure and .time respectively .
We also define the constants ¥, o , v , Te,p to be the thermal
conductivity ,Acoefficient of volumetric expansion , kinematic

viscosity , and averages of temperature and density respectively .

The governing equations in the Boussinesq approximation are

Veu =0 \
3 i 2 (5.2.1)
%o (Ve L Tpe [1-x (R 00g)uaVEE

M = - ({‘_.V)lf + RVQ’I/ /

C————

k

where —2' V = ,u%‘ + V% 4 WJ%

92  o9v L0
Ll—' ———
and VE Je 55’ fg-;
We seek an equilibrium state in which the fluid is at rest and the
temperature is zero at z = d and equal toﬁd( | +€coswt) at z =0 .
The required solution of these equations is
— ’ P
- = £ =

* = Q )’(-’\/(‘z) ) ')(P ?(z/t)

and T is given by



~.;-. ﬂaf [I - Z 4 C[”‘””[’“’ @I"z/‘f ¢ ["”’{’m’ ]/ (5.2.2)
2 CONTIZHTE

Lk 1@)"40(

We now perturb this equilibrium state and Fourier analyse

in the xy plane . Thus we write

i = (.(4./ V) W) 6¥F LLG;X fd_yf/]

e .

=T + Q@b eypilarrta y]

p=P * KP(X,&)&&/JCLQ,&I-%IJ?]
If we substitute these expressions into (5.2.1) and neglect
non-linear terms then after eliminating u , v, p ,9 from the
resulting equations we obtain the following equation for w

272
{9; }gtv;_(l{w)[ -a %'g

K‘V{a fw —-j"‘@‘ -5:7: (5.2.3)
where A& = [a,f + O,J

Following the method of Chapter 111 we seek a solution which has
a time dependence only in terms of WE .Hence we define a new time

variable % by
T= Qb (5.2.4)

and we seek a solution periodic in ¥ , thus defining a boundary
between stability and instability .We now introduce the following dim

-~ensionless quantities

: : . ' 2 4
asfh ek TS B

a,b,c,d




and we define the frequency parameter ¢ by
e = d* Y - (5.2.6)

and the Prandtl number P, by

(Pa 9)/5 | (5.2.7)

and the Rayleigh number R by

R = “j@‘# )?2) (5.2.8)

It then follows that (5.2.%) may be written in the form shown

i

below after dropping the dash notation

M{M-o J{H-28 o = R 5.2

2
" _4?
%2

it

where pq

P
andaf’is given from (5.2.2) , (5.2.5) by
Jz

el - £ {@o)”‘cosA ()'-)e + Conrer / (5.2.10)

Ay Sorh (o) CONTy@ATE

The relevant boundary conditions for the problem are given by

_ A :@2&/ :0 z.-0,)
w = 5;-;. ‘ a—zi}' ) ) (5.2.11)

(See Chandrasekhar (1961) ) In contrast to Chapter 111 we have a
differential system in terms of only one perturbation quantity , w .

However this does not change our approach to the problem and we

see that this in actual fact makes the problem easier to solve .
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5.3 The low frequency limit

We now consider the nature of the solution of (5.2.9) , (5.2.11)
as € and ¢ tend to zero , Using (5.2.10) we see that we must

solve the following differential system
o2 1[M-o & Iu
MIM-og ][ gs a*] w
- _alg [I +€éwst~ -4‘60"525’5@%4»-~-]W (5.3.1)

with boundary conditions

oo 2oL M g 2 =0 (5.3.2)
J x* L /

where ?l{’ ¢ , etc. are as defined inﬁj . If we let o tend to zero
L )

with o/€ fixed and equal to o we see that thev dependences of the

right and left hand sides of (5.3.1) will balance in some sense .

Thus we write

& = o€ (5.3.3)

and let € tend to zero with a fixed . We expand w,R in the form

W= Wo + €w, + €2wy+.. ..
2 e e
R'—"— Ro""eQ\ f€R2+
in which case (5.3.1)can be written in the form

M{M- “é%}{M*%%}[\/\’oi'ém +',"]

- _.az['go tERA--- ] [l +éf40n—.,,.‘][w,+éw‘.-_] (5.3.4)

and it follows from (5.3%.2) that the relevant boundary conditions

are

,22010 ,c=002. (53,5



If we equate terms of order in (5.%.,4) we obtain
g «
M W@ 'IL al?g WO .:;'-.d (50306)

with boundary conditions given by (5.%.5) with i = O . Thus¥ does
not appear in either the differential equation or the boundary
conditions and so we have an ordinary differential s:}stem for

W o Whose solution will contain T only as a parameter . The appropriate

solution is given by
Woe = 30 {E-) sinWy | (5.3.7)

and the corresponding values of a and Roare
",
a= '"/2 *
Roz A/

and Be () is an as yet arbitfary function of* . Thus we see that

(5.%.8)

the order Eavelocity is Jjust the usual velocity for the problem
with zero € multiphed by a function of ¥ . If we equate terms of
order € in (5.3.4) and use (5.3.7) , (5.3.8) we can show that

M*Wl y 2717‘M = 9,74'*[/*7?4 Za.dff’., AT — a%mﬂzfz?
oo Q
g A P+~ d¥

- Q;F‘K,awm?r'z (5.3.9)

with boundary conditions given by (5.3.5) with i = 1 . It is an

easy matter to show that the required solvability condition for l

Save

right hand side of (5.3.9) multiplied by sinmz is zero . Hence we
Q¥ {l Jrgn} «dF, _ 270"80 cos¥ |
A P

A Jdr =9a%Q, 84. : . I

which is an ordinary differential equation for B, (*) which has

such @ system is that the integral from z = O to z = 1 of the

a periodic solution if R,= O and Be(v) is then given by

B, = A exp [pasir/204p]  (5.3.10) |

I
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where A is a constant , dependent on the parameters of the problem ,
which can only be determined by considering th= corresponding
non-linear problem . Having determined B, we can suyftitute back
into (5.3.9) and solve the resulting differential equation

subject to the appropriate boundary conditions to give

= B &) sz (5.3.11)

In order to find the unknown function of % , B‘(‘b) , we equate terms

of order €in (5.3.4) and if we then use (5.3.8) , (5,3.10) ,, (5.3.11)

we can show that

2 3717é - 4/7 ¥ {I"L/) dg » 02‘7)76i )
W, + 5w, = ?] & ainky - Cos dQunlTZ
o g P-3 T » 5—- ?- f] g

- %A, é’zamr; + L7 Zﬂ ‘B (-/Can?z-)/zwﬂ'z
/é [/f/ﬁ/z

kpoo 2 | |
—%Z {1777 *-i—’.fée/« o Lol Lz 5.3.12)

with boundary conditions given by (5.3%.5) with i = 2 . If we impose
the solvability condition on this system we obtain an ordinary

differential equation for By , which has a solution periodic

invif
&
Ry = V7 (5.3.13)
g1+ pa)?
and B, is then given by
QB‘ = —’B Palil 43pa) cost- + 30°pa 4«9*} (5.3.14)
Fhepart F(1tpa)’c J
and so it follows that we can write
Z
= -B, {Pﬂ‘””/’ﬂ""” *377”"‘"""?"} (5.3.15)

&1 +pa)? 8 ((tpa)’x



129

Having determined B, we can substitute back into (5.3.12) and
solve the resulting differential equation subject to the aqropriate

boundary conditions to give

|

wy = & B sinvw,, 4B, cunmz (5.3.16)

where W,

Wy %{eesrrz %4 32~z —-?z)} 5urz,7(’u (- 7}

=32 [ cosfr ~coshczcesdy

ar
71 4 (snldéoska.s.ndz+s»hic.rmkczéosdz)}} (5 ., 1.7)
where = (e fia ) are the complex roots of the auxildiary equation

3 <
(J“Q _2!’?' -+ ng! = 0
3 §

is given by

and B, is an unknown function of4 which can only be determined by

considering the order €3 system . If we equate terms of order 6.3

B, etc. already calculate

in (5.3.4) and use the expressions for w, , B,

we can show that

/‘fzwg 1‘»27”‘;«/_; = "”/}MQ/&. 72~ X770 f &t 772
K3 g

_a‘,@ é’,,ami)x 46’[ aeor s #/ o+ o 2 Hy
+ cosdv Hy + cosr Hp + ﬂ—";‘“‘ Hf] (5.3.18)

with boundary conditions given by (5.3.5) with i = 3 . The functions

H,, H ,etc. appearing above are defined by




H = .ﬁtfj'fl/yzw _ Q;ﬂ % dints 4 30" (1143p0) dens 140

16 (1+pq)?
Fla ?” M, + 270 ;j/*”/” *ﬂzﬂfmrz + DI py (494 9‘/7 ) A4n7 2
/128 (i+pa) A (N/;,,)
Ly = -8 w4 g Am:fz .97 ¢ /ﬂ (8 4305 ) 11 10772
128 2 (1tpa) L56 (L +pa)s
o $15% BT < T (A 1 16)
Q "‘Vﬂ/ L5é L'/'/”)

TP 1 A un T2
S A 140

If we now invoke the solvability condition on the system defined by

(5.3.5) ,- ( 5.%.18) we obtain an ordinary differential equation
for B, which has a solution periodic in®.if BRy= O and B, is then

given by
@ {MVJM\' 47{6052? 4t{3,&m3'z' ¥ _ﬁ,ma“r% H;mk} (5.%.19)
o

where fI ,T“etc. are defined by.
I a2 ! f

I
f‘: = -8} fu,m,udz (‘f 4 fa /)Hlainﬁza(z
a4/ 14n)o G (rep4)

/
- gf,q Hg/o.;th’l}'x dz/ p == 8 A fﬁ/q_/nrz dz
Qyne(11pa) *° % v 14a)

-

! .
t-(s.: 2pa H s iniiz dX
G (1)

Hence W, may be written in the form

W, = M? At (w.z.+ “/La»az) 48 [f’;cos.?}. N| ! Suldv

1y aur *zi cos v Janire  (5.3.20)

Substituting for B, from (5.3.19) into (5.3.18) and solving the -

resulting differential equation subject to the appropriate boundary

conditions we find that the solution is of the form

Wy = {dce‘;\"w_“ busaly Wiy 4 cos3thyy A Cosr Wsa..;

+ By (1) sz
where By is an unknown function ofv and W, are solutions of

(5.3.21)
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o= a,’_,_% e i =d w0

Wie = d‘z'f‘ dx )=,

b= Hs Gkl )

K, = My —‘irf //"“‘)A“‘”

Ny = Hh mfr*/’ (11, ) 4nTs
;=

Wa= Ha ‘/‘?ﬂ{[ ”}/%’7

If we equite terms of order E#in (5.3.4) and use the solvability
condition on the resulting differential equation with boundary
conditions given by (5.3.5) with i = 4 we obtain an ordinary
differential equation for Bz which has a solution periodic in® if

we choose R4 as follows

B = hyo +Ruz (5.3.22)

where Ryois given by

g Jo

- 3?’ /71[%, -lﬂa&z),mﬂtft
aq,(lrla)

47n /pﬁ[ltf?pﬁ{/‘§£04r143 (5.3.23)
128 (1+pa)* Vg

/ 1 ! : . \ /
aZ ﬁ‘la,/a’ /-’-;nzﬂ’b AL = %//‘/?V /Lmﬂla/r- - -‘Uﬂfy] Aummrdz %Zzyg/“fu "Z’fu?l’l/ﬁﬁx’;

.’

If the terms in the above integral are evaluated we find that

2
— _goeisnt =3 [/-/_‘7 (1+fa)
2 » 2pa)tl e

( The contributionsto Rgefrom the terms involving ws, in fact
cancel and so there is no need to~calculate'wh if we do mot wish
to calculate higher order terms in the expansion of R )
If we now write a = o/€ in (5.3.22) we see that the Rayleigh
number is expressible in the form
R< DT 14 P ]~ Jousa™ e 202 (1 Jarmjfee

& Q(N»/M) 2dtpa)’ p
S Y Y2 Y% (5.3.24)
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and this expressicn is identical to one obtained by Dr. Herbert
at Imperial College in some unpublished work using a Galerkin type
method .

5.4 The high frequency limit

Suppose now that we let ¢ tend to infinity in (5.2.10)

obtain

af,.,-l—c
T

Thus for large o the. time dependence of the basic state is confined

(7 qfww LonPEY (5.4.1)
{ ¢e t comsvgnce

to a thin layer at the lower boundary . We shall refer to this

layer as the 'inner' layer and the region away from this layer will
be called the 'outer' layer . The interaction of the basic
temperature distribution with the disturbance in the inner layer
causes the latter to have a time dependence which persists throughbut
the flow . However , in contrast to the cylinder problem , there

is no need for a Stokes layer at the upper boundary in -order to
satisfy the required boundary conditions . This is because we are no
using the rigid boundary conditions but the somewhat artificial
'free surface' conditions .

We define an inner layer variable 7 by

= | .
and we take w o, W to be the velocities normal to the boundaries |
|
in the inner and outer layers respectively . It follows from (5. 2‘1)#
(5.4.1) that the relevant differential equations to determine !
these functions are

-2 ] v _252-28 9"'-24( -29
St "’} ot T 5'?}{91" ra ’}’43?}w
q(u—e/-n}- whicx

= "S’_azf?wo“g{ | 4%(& t coyrcare )f (5.4.3)
e s AL (5.5.4)
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and it follows from (5.2.11) that the required boundary conditions a

we S = I :_-0}.1::0

a“ Qq (5,4.5)a,b
= W O 2= |}
W- EPEEEY S

and we stipulate that w and W must match where the different regions
overlap . Since we are seeking solutions which are periodic in%* we

expand w , W in Fourier series as follows
A '3
K Y PO TS, 4
W= w,-.t—l-z (M,e.’“ tWoe ) (5.4.6)a,b

W= W, +.L§ (W, LAVA 'w‘)

Hence Wy o WS represent the‘steady parts of the velocities normal

to the boundaries in each layer . If we substitute for W from

above into(5.4.4) and equate terms proportional to einr we obtain

{CD" "} Dr: Ld—n}{fb -a -L.d- }W
= “QQRM (5.4.7)
where @ Ed/dx

We solve the above differential equation by expanding W,, R in the

form
mz/}zo +_g1_4 ﬂﬁ. ‘l'" .

7 (5.4.8)ay
Wi =_finlo) § o u/,, AR -} |

where pn(c) is for the moment an arbitary function of ¢ . It follows‘

from (5.4.5) , (5.4.6) , (5.4.8) that the required boundary

conditions are

Wo 2DWh = DWin =0, 2=1, n=lj,i=0 (5.9

If we substitute for wn , R from above into (5.4.,7) s equate like
r . . . .
powers of 5‘: and solve the resulting differential equations

subgect to (5.4 9) we can show that
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M _/ {,4 171#’?'{/5?6’ z) ‘1"4;/'44”'4@[/*2} '{'0(0‘.:’/)1 (5.4.10)

where Ab’ A'are arbitary cpnstants . If we expand WS in the form

W = P(r){w+%+g+ ...... }

we can similarly show that Wg are determined by

[ (0 a4 JWe =

. 2:' P (5.4.11)
{ (/D?:-atj +a¢ﬂojWgL: '92 {‘\/‘ ﬂ(‘,-,-‘() L:I,Q-.. )
kzo
- with boun&ary conditions
. & .. o .
WESDW=DWE=0, %=1, 8= 0,1, (5.4.12)

We now consider the flow in the inner layer .If we substitute
for w from (5.4.6) into (5.4.3) and equate terms proportional to et 1R

for n =0 1 essesss We can show that

{0 24}”w - ,,__2_3_{;«,,; e(nw, N8 L Cammey )} (5.4.13)

CoNsUGATE
() -Laf (0 2a- L J(D7- 24 211,

- - (-a) ’
= -~ 8aR {w, +é~f5’Ws¢W +..€.J‘Ir q‘j (5.4.14)
5 |

and fOl‘D.:—‘?_, 3 ) geecscscces

{/Dﬁm‘_%e:}{?qz"'za 2""}{?71-4" ~2in} Wa (5.4.15)
- o

d—

. - [('ft - (’ &) . "
:'—8a£{w,,4é~ff;€v Wim-+ 4+ EVoig € %ﬂ}

where <D C*QJQ
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A consideration of the problem with € = O shows that near z = 0O

-,
Ws ~ % ~ O

and it follows that , by using (5.4.14) , (5.4.15) , that if w_

has this scaling then

—(6n+1)/2
an‘r 0—' Jﬂ:’JG‘ZI'. P « o e
Hence we expand w, , w_ in the form
ws = & fwis i 4}

ol

wn = & Wh tWa
o

forn = 1,2,3,4,5,ce0cenene

(n+t/2
O WAt .. }

¢ _
If we take R as given by (5.4.8) we obtain the following eqytions

to determine Vg

{’.D Q“}{W, -Hr; b oo ]= -8 {Ro’l‘g«f }{'@' (WHW'H----)
wsi),
&, °' P“"q (s ') ci‘)::?zrjj(ia.le)
T RIS

- -s’;{mgx....}{&m--w)

+ §(M}¢.”‘“U(w,94.....)

¥
- —h{i-L)
et (Wl )} (5.4.17)
| A2
and for n = 2,3, 4‘5 Beooccans
{p ~2a )}{'p Qa Q.n}{foﬁ— 9q% . Zm}{w,‘.,--“}
- -8a° {Robw}{a (wins -
-»"(l *)
et (rat=-)  (5.8.18)
2
(-1}
v €1 €T lwa)
‘ a7z
and it follows from (5.111r 5)a that the relevant boundary conditions en
&4 :
wi s Wa = Biwi =Dlwit = D = D4 =0,9:0 (5.4.19)

::’volllgbac "-:",2,3"“4/.._
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It follows from (5.4.16) , (5.4.19) that the first ten wé can be
y D
obtained without any knowledge of W:, w,, etc. Thus equating

[ wihy, ~ Y . - .
terms of order 0, O Heeoacecevesss O in (5.4,.16) and solving

the resulting differential equations subject to (5.4.19) we can show
that

k@°=={2¢z
ws =7 B
w}:/g_,’/.;.gjoqz
wyz Pon + Q7
gl 4%;2+-Q?353 +‘S}'1{
w= Ty, + QP+ S0¥

W's -/VML -LQ{,;Z +57 + ‘O‘p (alpg)-a“@o*cz f}z
W %*6’%*5’% (o (5" 28R e 05T
= Ten, +6?6|1/ 45 S, {eso( t 0,-0R -1, K) ‘*6&:%»"&}1

b g (av-ke)~2Go (& *a)'-.ef&}f’

48753 4753 .
Wg = pgrl/ -}'(5)7 ,fy/ .},{bgo(a‘f PoQS (I« ?g, -73 ) 0@3“"0 S}Z

& (a0 - Ro-Ruf)) = 'LL._éz’wf? o+atQ, ]
{qeﬁaﬁ ‘?«‘?33 739_4
a*§ }VL

9.4

where F , Q,, etc. are arbitary constants . We have choosen

. . . v 3
certain arbit@ry constants in Wo s w; , w;', WS o

for the sake of convenience . The reason for this choice will

wg'to be zZero

become clearer later

. . '
We now calculate wf which will enable us to calculate wq

[+
Equating terms of order o in (5.4.17) and using the expression

for w: shown above we obtain
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@/z {/% /[7 ij'” = ~AV2a"R7 oé’(l;ﬂ)i"’(’(”‘

with boundary conditions given by (5.4.19) with i = 0 , n = 1 .

The above system has the following solution if Py A1 .

W;o_ - \/’Z'a&)e T"I 2“], + (?/’n"s){l-c) 7] /7[”‘/ ¥ "—’2"'“/’/]

lps-1)

+8% & P ]j (5.4.20)a

If P, = 1 then the solution is of the form

Mo._.._ ‘J—-QQ'K A €(!n){[}27 4 921[/"27 Wil
_,(_A )'["e 7(“—«!) /‘7_}5 -—7((-#4)]
A @: 'IL (5.4.20)b

¥ ¥ .
where A , B when p_ £ 1 are given by

¥ _ Al (300 -3 L-l')
A" = P"F P{)}"" (5.4.21)a,
A" ‘ >
*=_ Aoph
g Pa-t)
and otherwise we have

A¥ o ~R4(tee)
(5.4.22)a,

B* = 33 | | ?

: X
and the unknown constant G,will be determined by the matching

conditions . We can similarly show that

(1% )
_ z P ( '-{}[/*c} -1
Fpafl = ,/'aMf e%[z* iend 1 [
e e
7[”1) ,

ifrpa= | = J24 f< 77 (i) {[Fg ™ q,]ig-,)je pltsig
Tl e
+ &, (5.4.23)z,
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X ¥ .
where A , B are as above and G will bte determined later . It

follows from (5,4,17) that we can continue in this way to determine

t 3 9 i
Wisg Wigeooaneas ....W, and then we can calculate more of the w, and

the first few terms in the expansion .of w,. We are then in a

position to calculate more terms in the expansion of w; and so on .

It can be shown inductively that the terms independent of 1 in
9 &
(5.4.20) , namely VIR Tol W48 /€ "‘j"‘? ’e’ ,C(Im),é’ lead to terms

[
N2a'Ro 4(4*‘+6’*} 2227 x/g a*k, ?"%a (DA 27 respectively
A . c? . ’ L€ 2n!l
in w¥for n = 1,2,3, 4...... Similarly the term & M in (5.4.20)a,
3, ‘L"H n
leads to a term o inw forn=1,2,%,4.0.000eec.s If we
In+l o

consider the asymptotlc form of wiat the edge of the inner layer

1
and write n = 2z(0/2)? we can show that at the edge of this layer

W, A {@as’mﬁez Iy Sé’lfuhaz +H4t.asl:azj -M(&’/} (5.4.24)
ANZ

aJz
where Hj = \[i@lﬁ‘,?oé(l4#¢g¥} I# ?a# /
A
X e = JZ Rt AT I fa=]

A8

We must mateh (5.4.24) with W, given by (5.4.10) with n = 1
-4, X
at the edge of the inmer layer .Clearly we must take W = gf%% =0

and the first terms of the series will then match if we choose

é‘* = ’G\I-Zeon Ha*
(5.4.25)a

- N |
/40 = #1° | K
Suhq

Higher order terms in the expansions Of'g, W, can also be matched

by a similar procedure as can also theexpansions of i, Wiﬁzéc,
; 2
However we have enough information already about the expansions of W,

Wy for the determination of the first non-zero correction term
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to R4 and so we do mot pursue this here .
Having determined w’"’ we can use (5.4.16) to obtain a -
differential equation for w:which when solved subject to (5.4.19)

glves
ﬂ,_@ t e’ m;?ﬂ = ("/?ﬂf? ~RB-f P ;w’ XA :
_....Qe”..,.-?_& 7’
{ (a"p = A /?,/?-A’I)
28753

~a*S, - a* A @M@%@o 4o 9)}@

9. 74 q7$3\
ala*-R.) _ a“@p({a +Rs) - a>S, (ngg°}’z,"~

+

1
L 1.10.49.7.6.5 e .9.7.5.4 11.9.7.68
""é (5.4.26)

N
where for p, £ 1 ,¢is given by

P [y6y 4277 4 (%a S)peifp43]€ 1

’-n

a“Ro €% ’
‘§ 738 (P! (pa-1) -
4 (Hc}/l e”iv"‘é’ﬁﬂ)/fi ﬂ?"} el

-lLLt-#.L Y

b

3 Che (,‘“)@ NPa 7,

{_(l-r )-fc(;_vpa)j
! X"”"? *Zo 1/4}6"22%%”5 (5.4.27)a
and if p, , ¢ is given by 17
f" "“ﬁb’e 62’7 {[2’17*’% +6%9 "&}ch-f?f/u)[%wﬁz/] \
1536 A*“Z'I g‘ 44’ “Hlesd) g;‘z?{gjc ‘

b, 127 b {:‘, o *Y"’L -‘201_?} 4+ CoMPLEX
« Co NTUGATE (5.4.27)b

' . 10 2 ‘0
where X,, Y , Zjare choosen SO as to satisfy wig :’B,Ws ‘:?7 gz 0 at N =0

In particular we note that Zp is given by



150

= - lﬂa (r4) 4 &?’/‘7*(//»?@} —7‘3’4“_[{ ‘*i)‘?f )% 5//

a7 (5.4.28)
—f ~ ?)ﬁ' as'b
é Pz 4Ss . AT - ‘%—- ) fa =l
adl 'Zo— —_Q 3

If we consider the asymptotic form of Vg at the .edge of the inner

1
layer and write 7 = z(0/2)% we can show that

T SO, 95,0, R) + o papibinalte R ocksy

, c;:m.{' a‘"’ﬂf (Za *Za)zéb*o(z?f +0( (5.4,29)
512 ’

where S is defined by

] 3 2 -
S /P)quaz(a )zj-f»du{x az}

5’04.0 2%

So [x5+ + dx7)
5 s

We recall that in the outer layer

)@(ov) {Ws + M ‘-M,} (5.4.30)

where the WJS‘ are determined by (5.4.11) , (5.4.12) . It follows from
(5.4.29)1 (5.4.30) that we must choose ﬂ =1lif w, , W, are to
match at the edge of the inner layer . We must then choose a , Ry,

E, 5 Q5 8 such that W_ as determined by (5.4.11)a , (5.4.12) satisfie

M = S(%, Qo)so, Q,QO)I)‘ (5.4.31)
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at theedge of the inner layer . However it can easily be shown that
S is Jjust the small z series solution of (5.4.11)a with the

following boundary conditions

Wsa = @2%0:: ‘-.D#‘Mo-_- O ) 1:0 (5.4.52)

Hence if we determine a solution of (5.4.11)a satisfying the
conditions (5.4.,12) with i = O and (5.4.32) then this solution
will necgessarily satisfy (5.4.%1) at the edge of,the inner layer .

Thus we write

o .
= Sl
Wi'= sy (5.4.33)
QA < ?V/\’Z \
a,b,c
4
(Qoz 2'7"’ /A"
and the corresponding values of Ps, Qg,¢Seare found to be
/Po ::WJZ ) .
Q -~ -%?\’7 /3 (5.4.54)
so'z 1},5&/30 a,b7,'c
Similarly if we put B, = Re......=Rg=0 , W. =B W /B, i=1,2.....6

3

then (5.4.29) will match upto order ¢~ . With the above choices

\1
of a, R,, etc. it follows that WS is determined by

9?
7

[{Dl_a"' 34-2377!'6]\!\/4 = -_’D_’QQ7M?PZ -

{ ] = 2 (5.4.35)

with boundary conditions

W =W = D%, =0 | ==1 (5.4.36)

and at the edge of the inner layer we require that

\/\/;’: 5(77,Q7,§7/a, c/z)?I—Qa Kolélﬁ (Z‘r/%c)z«
] P2

(A
+0(%7) (5.5.57)
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However it can easily be shown that (5.4.37) is the small z series

solution of (5.4,.%5) with the following boundary conditions

T DT D B RR Zw‘Z/ 0 (5.4.8)
We = DW' =0, DWs "ﬁ.',q, f , %0 (5.4

Thus the problem reduces to SolVing‘(5.4.55) with boundary conditions
(5.4.36) , (5.4.38) since the solution will neceessarily satisfy /
(5.4.37) at the edge of the inner layer for some P,, Q,, S,.In
actual fact we do not determine stut merely use the coﬁdition.
that the system specified above has a solution . This reduces to

by — - Snz® Z ,IZJ(

OQG 456

and using the expression for Z,already calculzjed we can show that

207 )

+ 16[2[
mgqﬁz 160 = 6%3 +66pa ~21p, W T
fRa M(M { ? qp e W}”P

27.3%
Ry = Z2EY  gac] (5.4.59)
Re Q56 a,b

5.5 Discussion of results

We have seen that the method of Chapter 111 may be applied to
the thermal convection problem when the temperature of the lower
plane is modulated about a fixed value . The critical Rayleigh number

associated with (5.3.24) is given by

‘.(EG _ ,gywil 4 pae"' gmp) (15 4’(/%)/1444/6 €S

&(H’()a)
+J(€3e%Y (5.5.1)
The dependence of @ on € first affects the critical Raylelgh number

4

at order €', This result has also been obtained by Herbert by a Gal- "

er kin type of method .
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The work of Herbert was in fact done without relating thé
parameters € , ¢ and in view of the well, known siﬁilarity between
the thermal convection problem and the cylinder problem‘discussed
earlier we have some Justification for assuming that the parameters
€ 1 O in'(3.5.7) are independent .

The result of Venezian (19695 corresponding to (5.5.1) differs
in the order Ezélterm . Venezian obtained a sblution to the
problem by letting € tend to zero with ¢ arbibvéry . He éxpanded
the perturbation velocity in powers of € . We feel that the
discrepancy between our results and hislmay be due to the fact
that the latter does not allow‘for any time dependence in the
order €°velocity field . It follows from (5.5.1) that the flow
is destabilized as ¢ increases with € held fixed . In contrast
to the cylinder problem the order e*term i1s positive thus
stabilizing the flow .

For large ¢ with € arbitlary we found that

R= R, + Ry +0( - s

0-713.

where Rpand Rpare given by (5.4.33) ,(5.4.39) respectively .
This is in fact the critical Taylor number at which instability
first ocecurs since taking the variation of a with ¢ into account
shows that the critical'Rayleigh number is first affected at.
order ;7by this effect .

Venezian éays that the first correction term in (5.5.2) is of -
order 645ut the reason for this statement'is not clear . A
calculation for the rigid boundary problem shows that the .
corresponding correction term there would be of order o—"

if we were to repeat the method of solution desribed inJ{g.4
for that problem . Thus it seems that the nature of the boundary

conditions is important in determining the order of magnitude of the
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correction term .



TABLE 1

+ +
g go<c) fo<a)

0.00000 0.00000 0 ,00000
0.02500 -0.02502 0.00000
0 .05000 -0.,05010 0.00001
0.07500 -0.07519 0.00003
0,10000 ~0.10015 0.00005
0.12500 ~-0.12474 0.00008
0.15000 -0.14871 0.00010
0.17500 -0.17178 0.0001%
0.20000 -0.19%64 0.00016
0.22500 -0,21402 0.00019
0.25000 -0-,2%265 0.00022
0.27500 -0.24929 0.00025
0.30000 ~=0,26376 0.00027
0.32500 -0.27589 0.00030
0.3%5000 -0,28556 0.0003%2
0.37500 -0.29271 0.00034
0 .40000 -0.29731 0.0003%5
0.42500 -0.299%7 0.00036
0.45000 -0.29896 0.00037
0.47500 - =0.29617 0.000%7
0 .50000 -0.2911% 0.000%7
0 .52500 -0.28%99 0.00037
0.55000 ~0,27494 0.0003%6
0.57500 -0.26419 0.00035
0 .60000 -0.25194 0.000%4
0.62500 -0.23841 0.000%2
0.65000 -0.,22%83% 0.0003%0
0.67500 -0.20842 0.00028
0.70000 -0.19239 0.00026
0.72500 -0.17594 0.0002%
0.75000 ~0.15925 0.00020
0.77500 -0.14247 0.00018
0.80000 -0.15274 0.00015
0.82500 -0.10916 0.00012
0.85000 -0,09281 0.00009
0.87500 -0.07673% 0 .00007
090000 -0 .06094 0.00005
0.92500 -0.04543 0.0000%
0.95000 -0,03014 0.00001
0.97500 -0.01503 0.00000
1400000 20 00000 0.00000!
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TABLE 2

0.00000 0.00000 0.00000
0.02500 -0.01231 0.04215
0.05000 -0.02467 0.15874
0.07500 - =0.03708 0.%3572
0,10000 -0.04950 0.56013
0.12500 -0,06187 0.81997 -
0.15000 -0.07411 1.10426
0.17500 -0.08611 1.42098
0.20000 -0.09775 1.70706
0.22500 -0.10893% 2.008%4
0.25000 -0.11952 2.29961
0.27500 -0,12940 2.57454
0.30000 -0.1%846 2.82766
0.32500 -0.14660 3.,05436
0.35000 -0.153%73 3.25087
0.37500 -0.15977 3.41419
0.40000 -0.16465 3.54210
0.42500 -0.16833% 3.0%311
0.,45000 -0.17077 3.68643%
0.47500 -0.17194 3.70191
0.50000 -0.17186 3,68003
0.52500 -0.17052 3.62183%
0.55000 -0.16797 3.52890
0.57500 -0.16423% 3.40331
0.60000 ~-0.15938 3.42756
0.62500 -0,15347 3.06458
0.65000 -0.14658 2.85766
0.67500 -0.13%880 2.63004
0.70000 -0.13023% 2 .38686
0.72500 -0.12096 2.13114
0.75000 -0.11109 1.86778
0.77500 -0,10074 1.60155
0.80000 -0.09001 1.%3745
0.82500 -0.07898 1.08076
0.85000 -0.06776 0.83702
0.87500 -0.05644 0.61209
0.90000 -0,04507 0.41213%
0.92500 -0.03372 0.24370
0.95000 -0.02242 0.11379
0.97500 -0.,01119 0.02987
1.00000 0.00000

-0.,00000
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TABLE %

4 g1(z) £,(g)
0 .00000 0.00000 0 .00000
0.02500 -0.09814 0.%5985
0.05000 -0.19680 1.35263
0.07500 -0.29609 2.85589
0.10000 -0.%9578 4.,75703%
0.12500 ~0.495%6 6.95296
0.15000 -0.59410 9.34970
0.17500 -0.69115 11°,86212
0 .20000 -0.7855% 14 .413%59
0.22500 -0 .87623% 16.93577
0.25000 ~0.96224 19.%6837
0.27500 ~1.04254 21.65883
0.30000 -1.11619 23%.76218
0.3%2500 -1.1823%1 25,64069
0.35000 ~1.2401% 27 .26365
0.37500 ~-1.28898 28.60708
0.40000 ~1.%28%2 29 .65%39
0.42500 -1.35773 30.%9113%
0.45000 -1.37694 30.81454
0.47500 -1.38580 30.92%30
.0.50000 -1.384%1 30.72211
0.52500 -1.37261 %0 .220%2
0.55000 -1.3509% 29.43155
0.57500 -1.31967 28.%7338
0.60000 -1.27931 27 06694
0.62500 -1.2304% 25.53658
0.65000 -1.17372 2% .80961
0.67500 -1.10991 21.91599
0.70000 -1.0%981 19.88815
0.72500 ~0.96428 17.76077
0.75000 -0.88418 15.57067
0.77500 -0.80041 13.%568%
.0.80000 -0.713%82 11.16029
0.82500 -0..62525 9.0243%7
0.85000 -0.53%547 6.99475
0.87500 ~0.44517 5.,11982
0.90000 -0.35492 3.45099
0.92500 -0.26514 2.04316
0.95000 -0.,17608 0.95531
0.97500 -0.08778 0.25118
1.00000 0.00000

0.00000
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TABLE 4

g () f (r)
g 5 q 5 z
0.00000 0.00000 0.00000
0.02500 0.02502 ~0.08037
0.05000 0.05011 ~0,30259
0.07500 0.07525 ~0.63979
0.10000 0.100%6 ~1.06705
0.12500 0.12527 ~1.56140
0.15000 0.14078 ~2.10174
0.17500 0.17368 ~2.66886
0.20000 0.19673% -3 . 24540
0.22500 0.21868 ~%.81581
0.25000 0.23930 -} 36632
0.27500 0.2583%7 -4 88492
0.30000 0.27566 -5.36131
0.%32500 0.29100 -5.78682
0.35000 0.30424 -6.15442
0.37500 0,31524 -6,45859
0.240000 - 0.%2389 -6.69530
0.42500 0.33014 -6.86192
0.45000 0.33394 -6.,95712
0 .47500 0.33529 -6.98085
0.50000 0.%3422 ~6.93418
0.52500 0.33076 -5.81928
0.55000 0.%2500 -6.63927
0.57500 0.3%1705 -6.%9819
0.60000 0.%0702 -6.10001
0.62500 0.29505 -5.75303%
0 .65000 0.281%1 -5.3608%
0.67500 0.265%6 -4 .,9311%
0 .70000 0.24919 —4 47152
0.72500 0.23119 -%.,9898%
0.75000 0.21214 —% 49452
0.77500 0.19223 -2.99450
0.80000 0.17166 -2.49912
0.82500 0.15058 -2.01821
0.85000 0.12918 -1.56208
0.87500 0.10759 -1.14158
0.90000 0.08503 -0.76817
0.82500 0.06431 -0.45%95
0.95000 0.04277 -0.21182
0 .00000 0 .00000

1.00000
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TABLE 5

C £5(L) £5(2)
0.00000 0.00000 0,00000
0.02500 0.02505 -0.11128
0.05000 0,05032 -0.41738
0.07500 0.07593 -0.8793%9
0.10000 0.10182 -1.46175
0.12500 0.12789 -2.13216
0.15000 0.15304 -2.86142
0.17500 0.17971 -3.62%23
0.20000 0.20492 -4 ,29418
0.22500 0.22927 -5.15354
0.25000 0.25244 ~5.88319
0.27500 0.27414 -6.56749
0.30000 0.29406 37.19321
0.32500 0.31194 =7.74940
0.35000 0.32754 -8.22726
0.3%7500 0.34067 -8.62007
0.40000 0.35116 -8.92305
0.42500 0.35888 -9.13%24
0.45000 0.36%76 -9.249%9
0.47500 0.36575 -9.27183
0.50000 0.36487 -9,202%3%
0.52500 0.36117 -9.,04401
0.55000 0.35471 -8.80120
0.57500 0.34564 -8.47931
0.60000 0.33411 -8.08475
0.62500 0.32031 -7.62480
0.65000 0.30444 -7.10754
0.67500 0.28675 -6.54179
0.70000 0.26749 -5.93700
0.72500 0.24692 -5.%30%26
0.75000 0.22530 -1 ,65126
0.77500 0.20290 -%,99231
0.80000 0.17999 -%.3%835
0.82500 0.15680 -2.70200
0.85000 0.13355 -2.09668
0.87500 0.11044 -1.53667
0.90000 0.08761 " -1,037%2
0.92500 0.06516 -0.61515
0.95000 0.04312 -0.28814
0.97500 0.02145 -0.07589
1.00000 0,00001 -0.00002
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TABLE 6

r (g)
4 84(€) A

0.00000 0.00000 ' 0.00000
0.02500 0.02505 -0,113%31
0.05000 0.0503%3 -0 .42497
0.07500 0.07595 ~0.89528
0.10000 0.10187" -1.48802
0.12500 0.12797 -2.17029
0.15000 0.15405 -2.91233
0.17500 0.17987 ~-3.68741
0.20000 0.2051% -4 47167
0.22500 0.2295% -5.2440%
0.25000 0.25275 -5.98608
0.27500 0.27449 -6.68191
0 .30000 0.29445 -7 .31808
0.32500 0.31237 -7 .88346
0.35000 0.3%2801 ~-8.%691%
0.37500 0.34116 -8.76826
0.40000 0.35166 ~9.07601
0.42500 0.3593%9 -9.28938
0.45000 0.3%6426 ~9.40713%
0.47500 0.36624 -9.42959
0.50000 0.3%65%% ~9.35859
0.52500 0.36159 -9,19731
0.55000 0.35510 -8.95015
1 0.57500 0.%4598 -8 .62264
0.60000 0.33440 ~-8.22127
0.62500 0.%2054 =7 75346
0.65000 0.30462 =7 .22744
0.67500 0.28688 -6.6521%
0.70000 0.26756 -6.03717
0.72500 0.24693 ~5.39280
0.75000 0.22527 ~4,72989
0.77500 0.2028% ~24 ,05990
0.80000 0.17988 ~3%.39498
0.82500 0.15667 -2.74795
0.85000 0.13%41 -2.13%243
0.87500 0.11030 -1.56297
0.90000 0.08748 -1.05514
0.92500 0.06505 ~0.62577
0.95000 0.04304 ~-0.29313%
0.97500 0.02141 -0.07721
1.00000 0.00001 0.00002
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TABLE

.
z & L2) 5(z>
0 .00000 0.00000 0.00000
0.02500 0.02501 -0.0808%
0.05000 0.05009 -0 .,30487
0.07500 0.07521 -0.64577
0.10000 0.10031 -1.07899
0.12500 0.12525 -1.58172
0.15000 0.14986 -2.13292
0.17500 0.17395 -2.71%28
0.20000 0.19729 -3%.,30526
0.22500 0.21967 -3.89299
0.25000 0.24086 -4 46235
0.27500 0.26062 -5.00089
0.3%0000 0.27874 -5.,49781
0.3%2500 0.29504 -5.94394
0.%5000 0.309%% -6.33172
0.3%7500 0.32145 -6.65510
0 .40000 0.%3128 ~6.90955
0.42500 0.3%873 -7.09196
0 .45000 0.34%72 -7 .20057
0.47500 0.3%34621 ~7.23496
0.50000 0.34620 -7.19591
0.52500 0.34370 ~-7.,085%%
0.55000 0.33877 -6.,90623
0.57500 0.3%3149 -6.66258
0 .60000 0.32196 -6.35928
0.62500 0.310%0 -6.00203%
0.65000 0.29668 -5.597%4
0.67500 0.28124 ~5.15236
0.70000 0.26418 -4 ,67491
0.72500 0.24568 -4,1732%9
0.75000 0.22594 ~37,65672
0.77500 0.20517 -3.1%43%7
0.80000 0.183%56 -2.61628
0.82500 0.16131 -2,11293
0.85000 0.13860 -1.63528
0.87500 0.11559 -1.19486
0.90000 0.,09243 -0.80376
0.92500 0.06924 -0.47478
0.95000 0..04609 ~-0.22142
0.97500 0.02301 -0.05805
1.00000 0.00000 0.00000
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TABLE 8

0.00000 0.00000 0.00000
0.02500 0.02502 . -0.08646
0,05000 0.,05014 -0.%2555
0.07500 0.075%5 -0.68847
0.10000 0.10060 -1.14857
0.12500 0.12576 -1.68125
0.15000 0.15066 —2.26%96 -
0.17500 0.17508 ~2.87615
0.20000 0.19880 -3.49921
0.22500 0.22157 -4, 11644
0.25000 0.24317 -4.,7130%
0.27500 0.263%%4 . -5.27600
0.3%0000 0.28186 ~5.79418
0.%2500 0.29852 -6.25811
0.35000 0.%1313 -6.66008
0.37500 0.22552 -6.993295
0.42500 0.343517 -7 44081
0.45000 0.354824 -7 .54915
0.47500 0.25075 =7 .57996
0.50000 0.35068 ~'7 55424
0.52500 0.%4806 -7 41416
0.55000 0.34295 =7 .22299
0.57500 0.35542 -6,96498
0 .60000 0.32559 -6.64551
0.62500 0.%13%60 -6.26999
0.65000 0.29960 -5.84579
0.67500 0.28%78 -5.38017
0.70000 0.2663%2 -4 ,88121
0.72500 0.24743 -4.55758
0.75000 0.227%2 -5.81850
0.77500 0.20620 ~3.27371
0.80000 0.18428 —-2.75544
0.82500 0.1617/8 -2,20848
0.85000 0.13887 -1.71015
0.87500 0.11574 -1.250%9
0.90000 0.09253% -0.84179
0.92500 0.06935 -0.49770
0.95000 0.04628 -0.2%2%6
0.97500 0.0233%4 -0.06099
1.00000 0.00051 | 0.,00000
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TABLE O

0.00000 0.00000 0.,00000
0.02500 0.02507 -0.10589
0.05000 . 0.05048 ~-0.%9273%
0.07500 0.07637 -0.81866
0.10000 0.10270 -1.34705
0.12500 0.12930 -1.,94599
0.15000 0.15594 ~2.58774
0.17500 0,18229 -3,24829
0.20000 0.2080% -3,90702
0.22500 0.2%278 =l 54636
0.25000 0.25622 =5,15150
0.27500 0.27801 ~5.71019
0 .3%0000 0.29785 -6.21249
0.32500 0.3%1548 -6.65059
0.35000 0.33066 -7.,01863.
0 .40000 0.353%01 -7.,52082
0.42500 - 0.35995 -7 .66954
0.45000 0.%63%99 -7 .7%202
0.47500 0.36512 - ~7.71880
0.50000 0,.%6338 ~7.63244
0.52500 0.%5885 =7 JLTEUD
0.55000 0.%5163 -7 ,25503
0.57500 0.34187 - =-6.97321
0 .60000 0.32974 -6.6%647
0.62500 0.31544 -6.25083%
0.65000 0.29919 -5.82269
0.67500 0.28121 -5.35883
0.70000 0.26177 -4 86632
0.72500 0.24112 -4 35260
0.75000 0.21952 -%,82541
0.77500 0.19723 ~3.29292
0.80000 0.17452 =~3.76379
0.82500 0.15162 -2.247%0
0.85000 0.12877 -1.75352
0.87500 0.10616 -1.29%58
0 .90000 0.083%95 -0.87985
0.92500 0.06223 ~0.526%7
0.95000 0.04105 -0.24915
0.97500 0.02035 ~0.06671
1.00000 -~ 0.00005 -0.,00053
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APPENDIX
STEADY FLOW IN AN AXISYMMETRIC PIPE OF SLOWLY VARYING RADIUS
We now use the method of the first two chapters to consider
steady flow in an axisymmetric pipe of slowly varying radius . If
Dp is a characteristic radius of the pipe and and L a characteristic

length along the pipe theawe defihe a parameter § by
§ - 9F/1° | m

Since the pipe radius varies slowly we assume that & is small . If
U, is a characteristic velocity along the pipe we define a modified

Reynolds number , Ry , by
Q= U, D2 LY o

where v is the kinematic viscosity . We assume that R 1is small

and we shall seek a solution by expanding the velocity and pressure
in powers of RM and® . The pressure difference which we maintain
between the ends of the pipe is steady . If the pipe is defined

in cylindrical polar coordinates (r,o, z) by

0z sKL , 0srsDR(F) 13

AN

then we impose a pressure difference such that
P(RU),K) ~p(R(0),0) = G,

The order § pressure term is found to be a function of both the radi
and axial variables in contrast to the pressures evaluated in the
first two chapters which were only functions of one variable . It is
for this reason that we prescribe the above pressure difference
evaluated at the pipe wall .

Manton (1971) has considered the steady problem for an
infinitely long pipe . However he based his Reynolds number on the
flux through the pipe and hence insisted that there was no net

flux through the pipe associated with the order RM,@ehgvelocity
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components . Having done this the pressure difference between
any two points is fixed . This is in contrast to bur work where
we first impose a pressure difference , on which we base our
Reynolds number , and the flux through the pipe is then fixed .
We shall see that the methods are in fact equivalent .

Using the notation of Chaptef 11 we can write the momentum

equations in the form

19 7}
wilily )= 5 ' 7)7“%

_ _9P4 7 +179 40r
@“[‘;ﬂ)*m [?TLT//M)

Ay

and the equation of continuity is
@[W JZW =0 .

The required boundary cenditions are

a. There is no velocity at the surface of the pipe , ie f and g

are zero at ) = R(Z)

b. The pressure difference , P(R(X),K) -P(R(O),O) , 1s independent
of Ry , 5 and is equal to a say .

c. The velocity is regular at n = O . A6 a,b,c
Suppoée that we expand £ ,,g ,~P in the form

Lo & +dL 1R %, +£Hzfﬂh+0(ﬂh/05“(mJ}
A7 a,b,c
- ete. |
If we substitute these expressions into A4 we obtain the following

systenm of equations after equating terms of order 1,8, RM,R§

0%, =% ,igz Y
DY, = @P (_a__é P (@2 1/7)j ] |
Dm =-3_Cl 5_9,64’30 )%‘0 ) A8 a,b,c,d

J;H_'QFLM4+5 m i?”%£'+{06¥"¢d? gﬁé %?Lﬁa
=%
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and the boundary conditions from AG are
3‘;:’{/{.&-.-» jaggl,;_,... :.'Olv}l’ ‘.;.CIIZ-

( -A9 a,b
A, (k) -P,(0) = <, TRKIK) -F.(R0))0) = i IRA [0):%(1-8%0):0

where we have used the fact that from A8 , P, alone is a function &f
both 1 and ¢ . If we substitute for f and g from A7 into the equation

T
of continuity and equate terms of order l,&,RM,BM. we can show that

%("{ﬁﬁ*@%zo | - A10

for K = 0,1,M,M1
If w is the axial velocity along the pipe the flux through any

cross—section of the pipe is

/J)"R ' :
o |

But w = Upf , 1 =jr/g and so @ is given by

@ = An j; RUo/.D:-»L‘tch(/

Suppose that we define a stream function.,?L, by
‘f: O‘L j = —...._.__@‘)L
V= ! 75

then it follows that Q is given by

RERTRY

If we chooseyL to be zero along the axis of the pipe and then use

A7 we have that

@zg»UoZDf{«éugé‘Jﬁﬁm ..... ];Q

where 71 correspondé to £, , g,etc.
o .

.Evaluation of fo, Sey, Po, €tcC.

Using A8 , A9 we can show that
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and from A1Q0 with K = O we can show that

P . !
%[%79: "_"_"Z/Tf% 2/722’?}( _%L@Z/e/e A12

where a dash denotes a derivative with respect to £ . We now
integrate both sides of the above equation from n = O to 1 = 7

and use the fact that 8, is regular at 1 = 0 to show that

.1/?, = IP{T"’ 2, f’ijwf‘kp’z AllB

and if we now put 1 = R and use A9a we have that
4 97 3,007
O =~ Q /i;- 'f/Lﬁ E E’ Aln

which is the Reynolds equation for the pressure which we can

integrate once to give
/
2 = A, e

where Aa is an arbit¥ary constant , which may be determined by .
integrating both sides of Al5 from g =f‘O to £ = K and then using

A7b, thus giving
o = o / f Oéf Ale

. 4
"
and for convenience we choose a = l6édf/f . Using Al5 we can then

show that

,’l_; = -4 {1%57 ) ia .~~¢*’(/[Z;ZI€Z(‘ Al7 a,b

from which we can deduce. that the corresponding streamfunction ‘)é
o

is glvenby .
- ~{)* _g[%,/ - ms

. 4+
and from Al5 , Al6 , with oc;-_l6£cfl7/? we can show that
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ORACE /% | .

We now evaluate the order § pressure and velocity . From A8b ,,

with f,,g as given by Al/ , we can show that

YW= =31, K | 420
M RE |
and
DY = ?f.. /JZ g[./g;) o
Integrating A20 once we obtain ‘
2 P/ |
¥ = Q "/KZ—;T | . A22

where Q’is an arbitary function of r . If we substitute for F, from

AP?2 into A21 we have
?{,Q—l? ) 3,72/14)

which we integrate to give

- [G.4 8L ) e - ﬂ@r){f"f 3

~and if we now substitute into All,with K = 1 , integrate from
n=0%n=mn, and use the fact that g is regular at n = 0 we

can show that

4 - LG 4SBT U R[G5 ARy
va (f) 18 - w (8) 00y
If we put n R in A24 and use A6a we obtain the Reynolds equation
“a’ f ! I\ | \
([g'+508,)T6%0 - £ { ()¢ .

We integrate this equation once to give

’ ¢ el
%3:@,#8(%})_32[(%)] 426

for Q .
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where Bjis an arbitary constant . Using A22 , A26 we can show that

$148 / / 2uRle) , P (i)
4,(“)__,614/,9) 7% "5'77{49‘”2 g7 fé’)o(; L A)27

from which we deduce that ,. after u31ng ASb ,B,is determined by
d;f u/ R ~(2‘fo)) 32’ @ Ry A28
.r (QS(K) R 3¢0) 3 5 ({JO(T -

The assoclated stream function.,YL, is seen from A23 , A24 , A26
{

to be given by

R R I L LR L) B

We shall now calculate the order RM velocity and pressure . If we

substitute for f;and g‘;rom Al7 into ABc we can show that

DA« I _32R [0 R HRM
and ’ ‘ A%0 a,b

%@i:o
4%

The solution of A%0 which satisfies the boundary condition A9a is

= 73{/’? 3“)”’1« R qkﬂ ﬂfuﬂ’[ﬂf} A31

Substituting for %‘in A10 with K =1 and integrating from n = O to

1 = 7 and using the fact that is regular at 1 = O we can show that

PRREL L TR A Ly R {7,:-320

%4 (o H'l “1‘“} 3R ERa) -3 &) 0=

If we now put n R and use Al0 we obtain the Reynolds equation for
Py - : '
f ! {
O = {ﬁ. ’(‘)“} - ’é{%f A33

which we integrate once to give
‘ .
4 16 ﬂ-{—.(.érg§~ A4

and now if we integrate both 81des of AZ4 from { = O to L =
and use A9b we find that the constant QM is given by
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A35

It is an easy matter to show that the streamfunction associated

with the order BM velocity field is
g Gl (- 2007 -SG50 00 )] e

The order RM velocity and pressure can now be calculated in
the same way as'thét Just described for the order RM quantities .

After a great deal of algebra we find that

"P- I 3 £
ﬁDH = 4%%%&."2255&(/ ?y :1€Z}§s

it 6 2
“fom LC'} an(”/,e)w~ '%p‘@“‘gl (e "3(7/@))(

nt

264 {() YK + (Pt 2GR (1) 2(%)’}57 b
where Q and P are defined by |

_ - 4uR" " ps IR
Q= S +ew§ ) Al

and

29 Q@ 41/P
a, =_5&_(!Q?+}39), a, """""72{0( 9 ue)
P P43
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The constant DMM is determined by the following equation

c:omf fg.f (ye-n0) @ AL sQRO-R%) e
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The recovery of Manton's results

~ We have shown that the streamfunction may be‘written in the

form
12

¥ = {{%) I]/K”[“’"""(3<S+C’M£M+?Mpﬁ}
+§{5/z’—mzj{3[ z(/R 4,(%}
{ ﬁﬁﬁ%(% (/K "1 0p) f1-2GRu)

R Z(u) a, (0/,? + O (R, Rud 8 1

This is exactly the same form as that found by Manton if we
put B, = C,= Dyy= 0 . If we redefine the Reynolds number in an
equivalent way to that used by Manton we see that our results
are the same .

Using A39 we see that the flux through the tube is

Q = U2} {138~ GRn DR + ORI, 4nd)]

and using A2 we have that

d
Q QTUJ [: ’BJ Cm U'Do -’.DMVI? +0(€5XNJJ] AnO
L‘l— P
If we define a modified Reynolds number , RM , based on the flu:

L TLY

and invert A40 to give

_Q{! %’3§+CMKH + (Dmum 42(,*,)& +0(J7,:jﬁm J)

then

o
Ru = Q:{_' 3, 4Cukat +(Tunt26G2) R anl

FO(I3RRT) }
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Suppose we define a streamfunction;ﬁ'by
J’JLKQQ ) J“W:"gl?’
9~ D%
where u , v are the velocity components correspondingto the

A
coordinates r , 7, then %’ anddé are related by

L= U2
Tf we now use A39 , MO ; A4l we can show that
L= c—%t(V/K)‘f”["/ﬂ)w({ﬂ"/’e)é(é’/%) ~4( %)H“’“f(”/ﬂf)
*—g%:{'?’a‘(%)g* 300" 4-(%)
RS e 10T e

which is the result obtained by Manton . We notice that A42 was
derived without any knowledge of B, , etc. Thus A42 is valid for a
finite or an infinite pipe . We have merely considered a.pipe
of finite length and based a Reynolds number on the pressure
difference between the enas . Hence we were able to find explicit
forms for B,, etc. by stipulating that the pressure difference

between the ends had no contribution of order & , etc.



