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ABSTRACT 

The work in this thesis is concerned with some unsteady 

viscous flows and their stability. 

In Part 1 the steady streaming induced by such flows in 

pipes of slowly varying cross-section and channels of slowly 

varying depth is considered. A purely oscillatory pressure 

difference is maintained across the ends of each of the fluid 

containers and it is assumed that a modified Reynolds number 

associated with each of the flows is small. The first order 

steady streaming is evaluated for both flows in the limits of 

the frequency of the oscillatory pressure difference tending 

to zero and infinity. 

In Part 2 the stability of some unsteady viscous flows 

is considered. In particular the stability of the flow 

between concentric cylinders when the outer cylinder is at 

rest and the inner one has angular speed Q1{1 + e coswt} 

is investigated. Solutions of the linear and non-linear 

stability problems are obtained in the limits of w tending 

to zero and infinity. The related B6nard convection problem 

is also investigated using the same methods as for the 

cylinder problem. 
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GENERAL INTRODUCTION 

In Part 1 of this thesis we investigate the steady 

streaming associated with some oscillatory viscous flows. 

It is well known that when such a flow is set up adjacent to 

a rigid boundary, a Stokes layer forms near the boundary. 

In this layer the flow adjusts itself so as to satisfy 

the no-slip condition at the boundary. Suppose w is the 

frequency of the oscillatory flow, then if v is the kinematic 

viscosity, this layer will be typically of thickness order 

(2)1  . In some flows of this type, which depend also on the 

coordinate parallel to the boundary, the Reynolds stresses 

associated with the net transfer of momentum in the Stokes 

layer, are such that a steady component of velocity is induced 

there. This steady velocity persists away from the layer 

because of the action of viscosity. The magnitude of the 

induced steady velocity is much smaller than that of the basic 

oscillatory flow velocity, but, since it leads to a migration 

of fluid particles, this steady flow can be important. 

The first theoretical work on this topic was done by 

Lord Rayleigh (1884), who considered the flow in a Kundt dust 

tube. Dvorak (1874) had previously considered the flow in such 

a tube experimentally. When a standing sound wave is set up 

in such a tube any small particles present are carried to the 

velocity nodes of the wave. In this problem the role of the 

steady streaming is to carry the particles to the nodes of the 

dominant oscillatory velocity field where they settle. Using 

perturbation methods Rayleigh was able to explain some of the 

phenomena associated with this flow. 



The next problem investigated was that of determining 

the steady streaming induced near a body placed in a vibrating 

viscous fluid. The first experiments on this problem were 

performed by Carriere (1929), Andrade (1931) and Schliocing (1932). 

In particular they were concerned with the case of the body 

being a circular cylinder, although it should be said that many 

of the results for a circular cylinder are applicable to bodies 

of different shape. Schlichting was also able to verify some 

of the results of his experiments theoretically using first 

order boundary layer theory in the high frequency limit. More 

recent work on this topic has been done by Riley (1965, 1966, 

1967), Stuart (1966) and Davidson & Riley (1972). There has 

also been some work done on the related problem of determining 

the steady streaming induced by a disc performing torsional 

vibrations. (See Rosenblat (1959), Benney (1964) and Jones & 

Rosenblat (1969)). 

A problem which has been considered more recently is that 

of determining the steady streaming induced by an oscillatory 

viscous flow adjacent to a wavy wall. Lyne (1971) has studied 

this problem using a conformal transformation to change the 

wavy wall into a plane wall. 

In Chapter I we use what is often know as 'lubrication 

theory' to investigate the steady streaming induced in a two- 

dimensional channel by an oscillatory viscous flow. In order 

to use this method we require that the channel depth varies 

slowly and that a modified Reynolds number associated with the 

flow is small. We solve the problem by expanding in powers 

of this Reynolds number, RM, and a parameter (5 which represents 

the order of magnitude of the rate of change of the depth of 

the channel. In Chapter II we use the same kind of approach to 
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investigate the steady streaming induced by an oscillatory 

viscous flow in a pipe of slowly varying cross-section. 

Manton (1971) has considered steady flow in an axisymmetric 

pipe of slowly varying radius. In the Appendix we show that 

our formulation of the unsteady problem can be used to reproduce 

Manton's results for the steady problem by putting the frequency 

of the oscillations equal to zero. 

In Part 2 we consider the stability of some unsteady 

viscous flows. Since the experimental work of Donnelly (1964), 

there has been much theoretical work in this field. The 

motivation for Donnelly's work was to see if fluid flows could 

be stabilized by modulation in the same way as can be done in 

other physical systems. The best example of this behaviour 

is that of an inverted simple pendulum composed of a heavy bob 

and a light rod. It can be made to stand on its end if its 

support is suitably oscillated (see Corben & Stehle (1960)). The 

stability of the pendulum is in fact governed by Mathieu's 

equation. This equation also governs the stability of a fluid 

surface in a contour performing vertical oscillation. This 

problem was discussed by Benjamin & Ursell (1954). The equations 

which arise in our work are, unlike Mathieu's equation, partial 

differential equations but we shall see that they have, in many 

ways, properties very similar to the latter equation. 

The particular problem investigated by Donnelly was the 

stability of a viscous fluid between concentric cylinders when 

the outer cylinder was at rest and the inner one had angular 

velocity 0'1{1 	e coswt} . When e is zero the flow first 

becomes unstable when the Taylor number, proportional to al, 

reaches a critical value To. The instability is in the form 
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of toroidal Taylor vortices spaced periodically along the 

axis of the cylinders. The appearance of these vortices is 

predicted by linear stability theory as given by Taylor (1923). 

According to linear theory if the Taylor number, T, is greater 

than To the disturbance to the flow, i.e. the Taylor vortex 

flow, grows exponentially in time. However, this is not 

observed in practice, and for a range of values of T slightly 

greater than To it is found that an equilibrium flow exists, 

and the amplitude of the Taylor vortex velocity is then 

proportional to "{T-T0}1. This can be explained theoretically 

by taking non-linear effects into account. (see Stuart (1958), 

Davey (1962)). If T is increased further the vortices are 

modified by a waviness in the azimuth and become waves travelling 

in that direction (see Coles (1965)). Davey, DiPrima & Stuart 

(1968) and Eagles (1971) have given some analysis describing 

this type of flow. 

With s non-zero Donnelly found that the critical Taylor 

number T, based on the steady part of the angular velocity of 

the inner cylinder, at which instability first occurred was 

increased from its unmodulated value for all e,w . Moreover, 

for fixed 	e , there was a certain value of w independent 

of e, at which this enhancement of, stability was a maximum. 

The first theoretical work on this problem was done by 

Meister & Munzner (1966). They used a Galerkin method to solve 

the linearized differential equations governing the stability. 

of the flow. In their problem the outer cylinder also had a 

steady velocity. They considered the evolution in time of the 

kinetic energy of.a disturbance imposed on the basic flow at 

time wt = 0. For several values of the Taylor number they 
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found that at a certain time after the disturbance was imposed 

the kinetic energy was a minimum for a particular value of w. 

However, they do not say whether this was the case for all time. 

The next and last investigation of this problem was by Rosenblat 

(1968). He found that, if viscosity was ignored, modulation 

tended to destabilize a stable mean flow and stabilize an unstable 

one. However, as stated by Rosenblat, it is necessary to include 

viscosity, to find the increment in the critical Taylor number. 

Since Rosenblat's paper most of the research has been 

concentrated on the related Mnard convection problem. Venezian 

(1969) considered the stability of a fluid between parallel 

planes when one or both of the planes had their temperatures 

modulated about a non-zero mean. The mean temperatures of the 

planes were different and large compared to the oscillatory parts 

of their temperatures. Using a perturbation method he was able 

to show that in some cases modulation could stabilize a flow, but, 

unlike Donnelly's results, the maximum enhancement was always in 

the limit of zero frequency. A similar result was obtained by 

Rosenblat & Herbert (1970), who used a Galeltin method for the case 

when only the lower plane had its temperature modulated. Other 

work on this problem has been done by Davis (1970), Grescho 
yli 

Sani (1970) and Yih (1972). There has also been some work done 
A 

on the stability of oscillatory plane flows. (See Yih (1968), 

Grosch & Salwen (1968), Kelly ? Cheers (1970) and Kerczek & 

Davis (1972)). 

In Part 2 of this thesis we consider theoretically the 

problem investigated by Donnelly and the related thermal convection 

problem. We consider separately the low and high frequency limits 

for both the linear and non-linear stability problems. The low 
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frequency calculations follow closely the work of DiPrima Ej 

Stuart (1972, 1973) who considered the stability of the flow 

between eccentric rotating cylinders. In the high frequency 

limit we obtain a solution using the method of matched asymptotic 

expansions. The type of analysis used is in fact very similar 
7 12-V) ci 6 7) 

to that used for example by Stuart (1966) when investigating the 
A 

steady streaming induced near an oscillating cylinder. 
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PART I 

THE STEADY STREAMING ASSOCIATED WITH  SOME OSCILLATORY VISCOUS FLOWS 
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CHAPTER 

UNSTEADY VISCOUS FLOW IN A TWO-DIMENSIONAL CHANNEL 

1.1 Introduction 

We consider the steady streaming generated when a purely 

oscillatory pressure difference is maintained across the ends 

of a two-dimensional channel which is defined in Cartesian,  

coordinates (x,y) by 

0<"x‘KL 

Thus Do' L are characteristic lengths in the y and x 

directions respectively, and K is taken to be a positive 

constant. We assume that the depth of the channel varies 

slowly in the sense that if we define g 	by 

s= 
then we have that 

(1.1.2) 

(1.1.3) 

We further assume that if we take Uo to be a characteristic 

velocity along the channel, and 	to be the kinematic 

viscosity, then the parameter RM, defined below, is also small 

compared to unity. 

kri=  Uo b 	 (1.1.4) 

We see from (1.1.4) that RM  is just the usual Reynolds 

number based on the length L multiplied by Jr . We shall 
seek a solution by expanding the velocity and pressure in 

powers of the parameters RN, S . The dominant steady streaming 
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will first appear at order RmS o  in these expansions when 

the basic velocity field is of order R°M  S°  • 

We shall find it useful to define a frequency parameter 

00  by 

(1.1.5) 

where 0 	is the frequency of the pressure oscillations. 

81  
Thus cr 2.  represents the ratio of the typical channel depth 

compared to the thickness of the Stokes layer associated with 

the oscillatory motion of the fluid. We shall consider in 

detail the special limits of 0" 	tending to zero and infinity, 

and we shall refer to the corresponding solutions as the low 

and high frequency solutions respectively. 

In the high frequency limit we find that the solution takes 

a similar form to that found by Lyne (1971) if the ends of the 

channel are of the same depth. However, if the ends of the 

channel are not of the same depth, and K is of order unity, 

then the steady streaming velocity field is of larger order of 

magnitude and always directed towards the deepeCend of the 

channel. If, on the other hand, K is allowed to tend to 

infinity, this part of the steady streaming will become 

unimportant and the steady streaming will be dominated by that 

corresponding to flow in a channel whose ends are of the same 

depth. 

In the low frequency solution the steady streaming is 

again characterized by two parts, one of which is zero or 

unimportant if the ends of the channel are of the same depth 

or K is infinitely large. Otherwise this part of the steady 

streaming represents a steady flow towards the deepest end of 

the channel. The other part of the steady streaming gives no 
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net flux through the channel. A aniU ̂ 4-'4'4'26 -40'4 

A 	ti,v1Z0.1-4 (1q7o) 44: &f-, 	/4-444 67  0-4  o-14  

1.2 Equations of motion and the Stokes flow 

We consider viscous incompressible flow in the channel 

defined in Cartesian coordinates, (x,y), by (1.1.1). We take 

(u,v) to be the corresponding velocity vector and p(x,y,t),j 

t to be the pressure, density, and time respectively. We•

assume throughout that the kinematic viscosity, 21 , is constant. 

The momentum and continuity equations for the flow may be 

written in the form 

4.44au, +v?.„t4. = -/ x  + l/S7 244. 
04 x 0j Jo  

4AY 
 4/

t
1 - - .4 4" vV 
1 J

2V 

,),44 4. ay w 
Jr 	C kti 

vz=  
where 	ax%  .11%. 

(1.2.1) 
a,b,c 

We assume that the pressure difference between the ends, 

evaluated at the upper wall, is given by 

p Oa, F00, t) p (oi  r(o), 	Co  sii. t 	 (1.2.2) 

and the boundary conditions on the velocity required to 

completely specify the problem for u,v,p are 

AL  = le = 0 	r(21, ) 	 (1.2.3) 
• a,b 

so that there is no relative velocity at the boundaries. 

We now define dimensionless variables X,Y, 1- by 

(1.2.4) 
a,b,c 

We assumed in §1.lthat a typical value of u was Uo, and so 
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we can infer from the equation of continuity, (1.2.1)c, that 

a typical value of v is 	0011A 	. Hence we define a 

deminsionless velocity vector (U,V) by 

(ui v)= (.u/vo, 	 (1.2.5) 

and we define a dimensionless pressure, P, by 

P= pol 
	

° 
	 (1.2.6) 

We can then use (1.2.4), (1.2.5), (1.2.6) to rewrite (1.2.1), 

(1.2.2), (1.2.3) in the form 

(P. 3 + Rm  UOU 4- V29, 	+ oly 	?Is 
L ay 4DX e)Y1  

44Z4,1 j/O)V-F- Vd2Yl= 	-1-S@IY 4-J itY 

	

L g)( aY' 	ay 	jyt 	e)V7-  

<N1 4- A/ -D 
OX ON 

P(KIF00/1)— P(c)P-14)), 	cke 	
(1.2.8) 

(1.2.9) 
a,b 

where 0' ,Rm, trS 	are as defined by (1.1.5), (1.1.4), (1.1.2) 

respectively and OL is given by 

oc 	co o /2)L, ilo 	 (1.2.10) 

We now determine the so called 'Stokes Flow' which is 

obtained by putting the parameters RM, cr equal to zero every-

where. We first expand U,V,P in the form 

V, + t), Qm  4- 0 (R4)  43") 
Vo  Rm + 0 (0,)  J) 

P. 6„ ÷F;PR, +0 (R ,a) / 	

(1.2.11) 
a,b,c 

(1.2.7) 
a,b,c 



and we then write 
Uo'Vo'Po in the form 
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- .4  
U =ztUe

t 
 +We-,°1'j 

=12.-( V*ei.V4 

pp4it• 

where the functions U*,V*,P*  are independent of 	and Ar 

denotes complex conjugate. If we now substitute for U0,V0,P0  

from (1.2.12)a,b,c into (1.2.11) and then substitute the 

resulting expressions into (1.2.7), (1.2.8), (1.2.9) and equate 

terms proportional to è er  and independent of RM, J , we 

obtain 

ax fiy2...."-] 

ar= o 
av 
out4 av'= 

tyx 	0 v= -±F(X) 

 

 

(1.2.13) 
a,b,c 

and so it follows that P* is a function of X only. 

We can write the solution of (1.2.13)a which satisfies 

(1.2.14)a in the form 

cosi% Y  I 
tosA aF 	 (1.2.16) 

where ). 	 (1.2.17) 

and a dash denotes a derivative with respect to X. Substituting 

for 
OX  
-- 	from (1.2.16) into (1.2.13)c and then integrating 

from y=o to Y=Y we obtain 
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V's(X,Y)—V*0(lo) 

P 4.  fy-sirloy 	iirrs,‘,14164,0/ 
Ler 	cosh ) Le- (1.2.18) 

and by symmetry V*(X,O) must be zero. If we now put Y=F 

in (1.2.18) and use (1.2.14) we obtain the Reynolds equation 

for the pressure 

aI 

437%1A/V1Pt  4- r;447ACP4c= O 
X Gosh ,F 	LDS 

(1.2.19) 

and using this equation we can rewrite (1.2.18) in the form 

o(X,y) 	F.;;:i ivi 	 (1.2.20) 

We can integrate (1.2.19) once to give 

A /Lc_ Lank A F 
	

(1.2.21) 

where A is a constant, which, after integrating both sides 

of (1.2.21) from X=0 to X=K and using (1.2.15), is found . 

to be given by 

„Le, f d (F-- EaniAr)1 
/ 0 / 	A 

(1.2.22) 

1.3 Calculation of the steady streaming  

We now evaluate the order RM  correction to the Stokes 

flow. If we substitute for U,V,P from (1.2.11) into (1.2.7), 

(1.2.8), (1.2.9) and equate terms of order RM  we obtain 

Jp =r,pLjUI  tu,g0 4164, 
ax 

1 
04t- 

Og=  6 
oy 

aY 

(1.3.1) 
a,b,c 
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O Y= F-00 

gloilio,l- f= 0  

and we can see from (1.2.12) that 111,V1,1,1  will have 

components independent of 17 	and components proportional to 

cos2"r , 	If we denote the steady parts of U1,V1,P1  

by Us,Vs,Ps  respectively we can use (1.2.12), (1.3.1), (1.3.2), 

(1.3.3) to show that 

	

= g2pc 	[ovpip irikov#4.0edrik417kszoi 

	

.31,( oy2- 	dAi 0y gri 
c I O 
aY 
Jus 

33-4,  44%,' 

= Vs  = j  y=2T(x) 

13 (K J  Foc)) — Ps  (0, r(o)) 

 

(1.3.4) 
a,b,c 

and it follows immediately from above that Ps  is a function 

of X only. If we substitute for U*, V* from (1.2.16), 

(1.2.20) into (1.3.4)a and solve the resulting differential 

equation subject to (1.3.5)a we obtain 

, 
= 	fy2-Fzi  ./.1--P2iriYfi;7h A V  -  reoshIY  _ 3c0,4 AY 

z 40- 	Aces A /IF 14;14 AF rzeshilr 

where 

and 

- F 04414,Cz;Y 4 corli; )1/  f  compkv 
air;coghArs,;,k1 	4:1.1`15' 411 

13 + (X) + g"a (X) 

I)*Py40t-1. 

SA') = P /47;(1. fe444LIF-rea4a--  
4,0t 	Al 	A 	A 

4 F6coshOF +cosife;c) 
Jig cosAAr 

(1.3.7) 

(1.3.8) 
a,b 
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If we now substitute for Us  from above into (1.3.4)c and 

integrate from Y=0 to Y=Y we obtain the following 

expression for Vs  after noting that by symmetry Vs is zero 

at Y=0. 

fY 3-3Yrf 	Y —8 /y -11/Y 

...1(PifPN) f_3,4;i4,1Y  - 	 Y40.5 h Ay 
,, 

A3 4051, if 	;Tr 	2c4  ri) 

Aink AY 	F 	such 1,17270 Y si;1157  
Ae.,1;;Tai 	40..e.oshAr 4 4%1 AV 

(i*p.  _3 a Ay  ( 	 (  F „..)1 
L A'3 	c MAP-  I 	)1 	t Lthlr" 

,o4 AY 	
'Aic)" co\t"Y coshAd' 

♦ 

6i-rthfferYnt-snfLy) 	  
447-644A4Ccos4A/' 

+ 	Cent ID I re A' CO n) ate- 
-1 

and if we now put Y=F and use (1.3.5)b we obtain 

(1.3.9) 

0_ 
2 	/ 4„// 

pe_4_1')_f _  ban4 Ar 
L 	11 3 	A 	Al  

F-cts„1,4-;ri.c.zr)  
,,,„ 	kareashAf 	 j 

I/ 
PP11.-4-5;nhA r / 	)' $1/-441-l( 
4.0.2- 	(44$4,18 	407A1P 

r"5P`if 	
/ 
 id 

	

- 	 (44p4ositcs,4,03,):1  

	

4 CohAfivr 	COn)4jo-tc 
(1.3.10) 
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If we substitute for B from (1.3.8)b into the above expression 

we find that the resulting expression is an exact differential 

which we integrate once to give 

F-3;- 	pkp+ 	Actailhgr  f,CC 	r2c0607.--  fr-21414,01 

3 	441;2 	A3 	 1 	A 

r (iF4ochull;1 f1asTisf —10;9LhsliTyl—rzo--)5017 4;F:j 

4. COmptex Con:...ictte 

(1.3.11) 

where D is a constant which can be determined using (1.3.6). 

Suppose we define a stream function,N[ s'  by 

\4 (1.3.12) 

5 7( 5 	 a,b 

then we can use (1.3.7), (1.3.9) to show that4 	is given 

Us -LT 	 ,1)4  
ay 

by 

= if)/ —3yF 2} +8Y 	g 
6 

P*P*[
— siAA AY —  Fs:am IY  Y cosA 
13ceoh A r "A2 	 sh f 

—F (5.4;ihs1:5Y 4 suLZ-Y) 

4o-cosh /IC .54:1AV 
4 (071(4 Co4)(4.943,4. (1. 3.13) 

wherel ,B are as given by (1.3.8)a,b respectively 

The high frequency limit  

We now consider the nature of the steady streaming in 

the limit of 0- tending to infinity. This corresponds to 

the Stokes layers associated with the oscillatory motion of the 

fluid being thin compared to the typical depth, Do, of the 
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channel. When 6- is large, we can use (1.2.21), (1.2.22) 

to show that P* is then expressible in the form 

	

p)f LeLt 'f 	 Ae 	 0 id:  9] 

	

F L 	AF 
(1.3.14) 

where 

3 	2 	
47-2 

	

J° = {So 614 	1/4r3, =13  F 	° { fo# (1.3.15) 
a,b 

and in order to simplify the following algebra we choose 06 

such that 

oC. .. fi5O I  

This is equivalent to redefining the typical value of the 

velocity along the pipe, Uo, in terms of the amplitude of the 

applied pressure difference. With the above choice of 	oc 

we can write P* in the form 

I + 	 ffit  +0(6-`)] 	(1.3.16) 

AA 
We now define a Stokes layer variable, Y

/
, for the upper 

Stokes layer by 

•/1  = fF 	3.4-F 	 (1.3.17) 

and so Y 	is of order unity in the upper Stokes layer. We 

can use (1.2.16), (1.2.20) to show that for large d—  U*,V* 

have the following form in this layer 

—(14L)V°.1 
U*= 	e 	4 0 (i3/2) 

a- F 	, 	 (1.3.18) 

F 	.-41+1)Y 	1-  0 (Ph) a,b 

ge,-F 
and as we might expect the dominant terms of these expressions 
represent a velocity parallel to the channel wall. If we put 

F equal to zero in these expressions the Stokes flow in the 

upper layer reduces to Stokes shear wave solution for oscillatory 



23 

viscous flow adjacent to a plane wall. 

Suppose now that we let ot-  tend to infinity in (1.3.11) 

with 	as given by (1.3.8)a. We thus obtain 

D 	— 	 43 Co 5a) 
ca c4F-7 

and if we integrate both sides of this equation from X=0 to 

X=K and then use (1.3.6) we obtain 

F-2(K) — F-4(0)/2 07: K41(  + (0:• fit) (1.3.20) 

If ends of the channel are of the same depth then the dominant 

term of the right hand side above is zero. In fact, it can be 

shown that all higher order terms also vanish in this case. If 

the ends of the channel are not of the same depth then the 

dominant steady streaming, as given by (1.3.13), has no Stokes 

layer type of behaviour and we can use (1.3.8), (1.3.11), (1.3.13), 

(1.3.20) to show that 	s  can be written in the form 

*5 :..F 2(K)-r 2(0)if y3-3yrzi 24,01F-3dX 	0(i-C) 	(1.3.21) 
a 7' 

and this represents a steady flow which is always directed 

towards the deepest end of the end of the channel. When the ends 

of the channel are of the same depth the dominant steady stream-

ing does have a Stokes layer type of behaviour and we can write 

the following form for 1+ in the upper Stokes layer 

T - 	3 	
12cosYeY- gsuMe-1  OsfiVey ° (1. 3.22) s 4r/F  

and a similar expression can be obtained in the lower Stokes layer. 

The appropriate form for yis  away from the Stokes layer is 

+=4-57-(,3-YFti O(P ) 
	

(1.3.23) 

and so we see that the steady streaming persists throughout the 

channel. 

Lyne (1971) has considered oscillatory viscous flow adjacent 

to a wavy wall, the amplitude of which was small compared to the 

thickness of the Stokes layer formed at the wall. If we take our 

(1.3.19) 
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channel walls to be wavy with amplitude small compared to the 

Stokes layers' thickness, then the expression (1.3.22) is 

identical to that found by Lyne in one particular limit. Our 

results correspond to the wavelength of Lyne's wall being much 

greater than both the Stokes layer at the wall and the amplitude 

of oscillation of a fluid particle far from the wall. The 

steady streaming found by Lyne persisted a distance of the order 

of magnitude of the wall's wavelength away from the Stokes layer 

at the wall. Since the depth of our.channel is small compared 

to the typical length, L, a similar decay is not exhibited in our 

problem. 

The low frequency limit  

We now consider the limit of dr* tending to zero. 

In this case the Stokes layers associated with the oscillatory 

motion of the fluid completely fill the channel. When de is 

small we can use the series expansions sinh, cosh in (1.2.21), 

(1.2.22) to show that Pi* can be written in the form 

- f ?ro 2 70 XI 	+ O 61 
67 	 (1.3.24) 

r d 7 
where r6 	

70  C 

I 	

Ar 

tj0 	) 	= 2;3 	F 	
(1.3.25) 

and for convenience we choose 06—.  0-1  which is again equivalent 

to redefining U0  in terms of the amplitude of the applied 

pressure difference. We can then write P* in the form 

I 4' ZAt  — 701  
7 	37 	ro  (1.3.26) 

and so it follows that for small d-  we can write U*0V*, 

given by (1.2.16), (1.2.20), in the form.  

- .1. N/ix-FL] +Jed-) 
aF3  

Vk= ....irity5-yril f 0(0-) 
02r* 
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We see immediately that in the low frequency limit the dominant 

terms in the Stokes flow pressure and velocity are in phase. 

This contrasts with the high frequency limit where they were 

1112. radians out of phase 

If we let 0- tend to zero in (1.3.11), where 	is 

as given by (1.3.8)a,we obtain 

3"P 	ps1  —/0- 	f 40(0-.) 
2.Ver3 (1.3.27) 

which we integrate from X=0 to X=K. If we then use (1.3.6) 

we can show that 

= 19 IF"(k)-r2(1)V69411. cit 4 0 ( 
0 73  (1.3.28) 

and so it follows that the dominant term on the right hand 

side is zero if the ends of the channel are of the same depth. 

It can again be shown that all higher order terms vanish in 

this case. 

• If we let 	tend to zero in (1.3.13) and use (1.3.8)a, 

(1.3.27), (1.3.28) we can show thatyr s  is of the following 

form for small 

Nild Fi 	(V 43(Y/ff.-96(yff 	N.)] 

100g0 

pi  (F-loo-galf ()/pf-304f 	0(40 
33 bo L 	 0 F5 	(1.3.29) 

If the ends of the channel are of the same depth we can write 

mid = 	o NO' 4- 6 3 (i;.) -(74 (Y/di43M).1 1- 00 (1 . 3.30) 
S  /0050 

Since Nps, given by (1.3.30), is zero at Y=0 and at Y=F 

there is no net flux associated with this steady streaming. 

However this is not the case with the steady streaming specified 
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by (1.3.29). The extra term in this expression corresponds 

to a steady flow towards the deepest end of the channel. 

1.4 Discussion of results  

We have seen that in both the low and high frequency 

limits the geometry of the channel is crucial in determining 

the nature of the induced steady streaming. In particular 

the difference between the depths of the ends of the channel 

has an important role. 

When this difference is zero the steady streaming is 

specified in the high frequency limit by (1.3.22), (1.3.23). 

If the terms of order 0- ' in (1.3.23) are evaluated 
explicitly it is found that .# s  is zero up to order 0- - 
at Y=0. Thus, since lts  evaluated at Y=F is also zero at 

this order, there is no net flux through the channel up to 

order 0,- 	. However,we can easily show that there is no 

contribution to the flux from higher order terms by returning 

to the expression (1.3.13) for 4' s. Using (1.3.8)b, (1.3.11) 

we can show that { 
	

),11y.zoi 	is equal to -D, 

and in the high frequency limit D. is identically zero if 

F(0)=F(K). Similarly there is no flux through such a channel 

in the low frequency limit. In both limits the steady streaming 

is confined between the points F1 =0 of such channels. In 

Figs 1, 2 we have shown the steady streaming in a wavy channel 

for the high and low frequency limits respectively. In Fig 1 

there are four regions of recirculation, one in each of the 

Stokes layers, and one between each Stokes layer and the line 

Y=0. In Fig 2 there are two regions of recirculation, one 

either side of the line Y=O. 
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When F(0) and F(K) are not equal the steady streaming 

described above, which is induced directly by the Reynolds stresses 

associated with the Stokes flow, gives a resultant steady 

pressure difference between the ends of the pipe. In order 

to balance this pressure difference a suitable multiple of 

the flow velocity given below is required. 

0-10 = EY 2-4:9 (01F'1 ) 
F.3 	F 

In both the high and low frequency limits it is found that this 

component of the steady flow is always directed towards the 

deepelt end of the channel. In the high frequency limit the 

steady streaming is in fact dominated by this component. If 

the ends of the channel are not of the same depth but K tends 

to infinity then we can show that D as given by (1.3.20), 

(1.3.28) tends to zero like K-1. The steady streaming is 

then dominated by that corresponding to flow in a channel 

with F(K)=F(0). 
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Y = 0 
X . 0 
	 X . 27-c 

Fig. 1 : The steady streaming in the high frequency limit for 

a two—dimensional channel of the form Y -;( 1 + y cosX ) 

0‘X:5: 
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Fig. 2 : The steady streaming in the lthw'frequency limit for 

a two-dimensional channel of the form Y 	( 1 +1,cosX ), 
14"X 1;7.1 
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CHAPTER II 

UNSTEADY VISCOUS FLOW IN A PIPE OF SLOWLY VARYING CROSS-SECTION 

2.1 Introduction 

In this chapter we use the methods of the first chapter 

to investigate the unsteady viscous flow in a pipe of slowly 

varying cross-section when a purely oscillatory pressure 

difference is maintained across its ends. In order to use 

lubrication theory again we also require that a modified 

Reynolds number associated with the flow is small. 

Suppose that the radius of the pipe in cylindrical polar 

coordinates (r,e,z) is given by 

.1° w 	fiR(E) 4 CSZVcos1111191 	 (2.1.1) 

where M clearly must be an integer which we take to be 

positive. We define the parameter e by 

(2.1.2) 

so that if the radius of the pipe varies slowly we require 

that 

I 
	

(2.1.3) 

and if Uo 
is a typical axial velocity of the fluid, and 2 

is the kinematic viscosity, we require that RM, defined below, is 

also small compared to unity. 

Qk 	 
L V 

We see from (2.1.4) that RM  is just the usual Reynolds number 

multiplied by S . 

If the frequency of the pressure oscillations is 6.), we 

(2.1.4) 
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define a frequency parameter, d' , by 

/2) 
	

(2.1.5) 

and so 	represents the ratio of a typical radius of the 

pipe to the thickness of the Stokes layer associated with the 

oscillatory motion of the fluid. We again consider the special 

limits of d- tending to zero and infinity. In the latter case 

we consider the Stokes layer at the pipe wall and the region 

away from this layer separately. We solve for the velocity in 

each region and match corresponding components where different 

regions meet. 

We assume throughout that the perturbation of the pipe wall 

in the (fr ,8 ) plane is small compared to the thickness of the 

'Stokes layer at the wall. Thus we require that 

(2.1.6) 

The procedure adopted in this chapter is as follows. 

In §2.2 we derive the non-dimensional partial differential 

system and solve for the so-called'Stokes flow' by putting RM, 

s equal to zero everywhere. In §2.3, 2.4 we evaluate the 
first order steady streaming in the high and low frequency 

limits respectively. This first order steady streaming first 

pears in the order RM  correction to the Stokes flow in 

both limits. In §2.5 we discuss our results and their relevance 

to some physiological flows. 

2.2 Equations of motion and the Stokes flow  

We consider viscous incompressible flow in a pipe defined 

in cylindrical polar coordinates, (r, 0,z), by 
4, 4° 2). [ R ) E SQ. )cos461= J-*(0,4 

0 	10- 
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We define p,2) ,f ,t to be the pressure, kinematic viscosity 

density, and time respectively. We assume that the pressure 

between the ends is given by 

	

fo(" i9;k4)--1,(J); 67, 0) z: 	.lux. (56 	(2.2.1) 

and we introduce dimensionless variables t- ,t ,) 	as follows. 

r. 	j t = frgo 	 (2.2.2) 
a,b,c 

If Uo is a typical velocity along the pipe then the equation 

of continuity shows that the other components of velocity are 

of order 
	14171., 	. We therefore make the velocity vector 

(u,v,w) dimensionless by writing 

(A )v, W, = (J 	 f ) 
	

(2.2.3) 

and we make the pressure dimensionless by writing 

AN.110-p4/00 9- 	 (2.2.4) 

We can then write the momentum and continuity equations in the 

form 

era Hz., f, Rpft  

	

et.orlh, 4- a uf  43 94 4 k'& fefi_. + 	 t 	_ 14 

2.6 	= 
901  1 v 	a9- 	u df 

9791, gi 	4' 44 4' Er 	-2/4orriley — 	#1241,  

Ti,Lo 	 6 	Ot 

92 /I/ NP 	a Ti; 	f 4 	7 2-76# 	es 

201- ft 4a 

a,b,c,d 
(2.2.5) 

2 )7- 	19 4. I 	t  
where 	E 	rgi p- le 

and Gr,„,Rm  are .as defined by (2.1.2), (2.1.5), (2.1.4) 
respectively. These equations must be solved subject to there 



33 

being no relative velocity at the pipe wall. Thus we require 

that 

	

F.1.&c.cs 	e slos 19 	 (2.2.6) 

and from (2.2.1) it follows that 

	

14  (4'4 aecos.4, 	acarhe9)  om 	4G.44,41. 	(2 . 2.7) 

-12° 
where 	CIL 	a .1 Jo 	 (2.2.8) 

Cc--  
The remaining conditions required to completely specify the 

problem are kinematical in origin. At the inner boundary, t =0, 

we require that p,f must be independent of 49, whilst g,h 

must vary with cosO, sing there. A useful reference where 

these conditions are discussed in more detail is Gill and 

Batchelor (1962). 

We now assume that the parameters t:,Rmj are all small 

and we seek a solution by expanding g,h,f,p
+ 

as follows 

i= 600 4e6:1 -1Aelo 1- 66,, a da,i2i 61; 6.7 

r. 1.140 t 6 7401  +1),.,160466, 	0041101; E 

 

F;0  4- ero, 6, 	c'e,t,g IL CI  (61114 

p  c 	I- ce, 4a0 4-0,11P0 	4;c1; 62 

 

(2.2.9) 
a,b,c,d 

  

The so-called 'Stokes flow' is obtained by putting the parameters 

RM' dr.  equal to zero everywhere. We now solve for this flow up 

to and including terms of order C . We first write 
f 	're art, r 510. e 4100  e 

woo  ff 11./0 4 

roo "-cS d e6-+ 	it°r.1 	
(2.2.10) 
a,b,c,d 

"'Poo ±:ctCP 0 C t Poo 427 
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where ' 	denotes 'complex conjugate' and the functions goo, 

hoo' foo,  Poo are all independent of '- . If we substitute 

for Goo, etc from above into (2.2.9), substitute the resulting 

expressions into (2.2.5), and equate term's proportional to ell-

and independent of 6 ,Rm, c5' we obtain 

O

ro 

fi ef  ::: 0 

2es,2 = 
'af 

.1647 goo) Lese, 	260  = 

(2.2.11) 
a,b,c,d 

Thus p - oo is a function of I only, and we can use (2.2.11)c 

to show that, if solutions of Bessels equation which are 

singular at 1)=0, are rejected, foo is given by 
154 r. 

--/90 4 EL4AicalhAA1444Aoy(sn) 

and s 

■ 01.0.1111. 

\41. 	 (2.2.13) 

The coefficients Am., Ax2  appearing in (2.2.12) are in fact 

functions of 5 and will be determined later. If we substitute 

for foo  from (2.2.12) into (2.2.11)c we can show that 

1.100) 42172,)  al' 0 = 	LA A, ems 49 411A/troll 0;61) 
(2.2.14) 

L 	 :O 

In order to solve• for a 
	
hoc we clearly require another 

equation linking these quantities. 

(2.2.12) 
Lep. 	X=O 

where a dash denotes a derivative with respect to 

is defined by 
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If we eliminate the pressure p
i- 

from (2.2.5)a,b, substitute 

for g,h,f from (2.2.9), equate terms of orders 	and take 

Goo' Hoo as in (2.2.10), we can show that 

cV1  — c&J [40 to0 	20041 
t ae 

which we solve to give 

lb f-7) 
(1640) -Woo = EUAlcos AV 	07 tv:-/  s 

JO- 	 , (2.2.15) 

where BAl' BX2 are functions of I to be determined later. 

The solutions of Bessels equation which have been neglected 

above lead to terms in hoo' goo which are singularatt=0. 

We can eliminate goo  from (2.2.14), (2.2.15) to obtain an - 

equation for hoo  whose solution which is regular at V =0 is 

ace = 	51410-A ;2.40$ 	;.(5.1)  

I cos A 0 fiALA4lij d461) 
1.0-L 41 

--f- 
I= I (2.2.16) 

where the coefficients Cm., 	are functions of f . If we 

substitute for hoo from (2.2.16) into (2.2.14) then, after 

multiplying by q , , we can integrate from 1 =0 to tt =ft to 

show that  
/ 

foo = -  4071AAI  us AO 4A:1444 0106o 
LI..0 	 lb 
iv 

4. 7 ,...?!.{s,,,,4),  9 -9cds Al 6...(1.2.2  

Agi 	 li 

—cAt e0,1011 4.211..  L. 	Al (2.2.17) 
Azi 	' 	 2ia 

where we have used the fact that g
oo 
 is regular at t =0 to - 
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show thatgoo A 	is zero there. We can repeat the above b  
calculations to show that the order E. terms in the Stokes 

flow are given by 

to6A0 fa,C, 4.14A0 
A z 0 	 ‘".1) 

	

4:41 	cos  Aq c-A  60 
L.. 

a'r 

	

f EC A/Ale 	COS Atilt lAtI4 Ai 
A r. 1 	 Vcr. 

5: I ra,C 
, 1r 47.1 c - .dal 	+,it  Ss, 16 	61) -0. Ai  
AMA 	 11/ 

+ 	4cm.s.„Aetiit- i 
A=1 

(2.2.18) 
a,b,c 

cosA0  oAts:4112 4(1) 
10. Az o 

where am., etc are arbitrary functions off to be determined 

g01, hol' fol later and g 	are defined by 

aei  

Hot
Di E  •Jai iiti 

T 
— pie  d*.  al G . A  

n. 
tt  1 • ot 	,e ai + l e  

11 z POI e 'PM e 

(2.2.19) 
a,b,c,d 

In order to solve for the unknown functions of 	in the 

expressions for foo,  fo1' etc we must consider the boundary 

conditions on the velocity and pressure. From (2.2.6), (2.2.7), 

(2.2.9), (2.2.10), (2.2.19) it follows that these may be written 

in the form 

do, 	= hoo Ehos + 6 fog = inet)t litcRfeLitik2 .2 - 20),  
a,b, c 
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04) — Toe (0) =-. 

/fp„, (k) 	TO, 69 	 (2.2.20) d,e 

We can use (2.2.12), (2.2.18)c to show that the condition 

(2.2.20)a gives 
45 

OW) Tco 4 f po, 	Pm 4 Cam) esS 4.  (14124  ea,0Swiej  
GC 

Ash 	 4: s 5.-c0)16464  

where from now on a dash on a Bessel function denotes a derivative 

with respect to its argument, and we have replaced Jx(se+EsScaA6) 

by its Taylor series expansion about sR. The validity of this 

expansion is ensured by (2.1.6). The coefficients AA1, aAl, etc 

are then found by equating terms proportional to cos le 

Ccos AO 	, etc. We find that 

	

/40, 	► DO 	)phi — — scR Vralto/  
icr (SO 	cacCSR) 

and all other coefficients are zero. Thus we can write 

	

10.= 	 rt -  Vol  
moo- f; 01 

(2.2.21) 
a,b 

?o, 	7_  da604(0,.,ko 
' 	(feLi 	J-;,(sej 0-„, 60 

(2.2.22) 
a,b 

If we now use the conditions (2.2.20)b,c and take goo, hoo' 
gol' hol as given by (2.2.17), (2.2.16), (2.2.18)a,b respectively 

we can show Lhat 

O(69:-- 	{(A,,# eaL)co$ 4  (1,4/1 Ea41,) 	s R A l(sk) 462.siti5( 

1 	 , 	416R) 4 cri2g cfAiles4 izo 

f 	Ar(gAi4C-6)4in At94,•($41 ,-  64Ax).coseidt(dsk) f E's 	ctiS 11163 
A=I 

L (at 4  CcA04430 - (614 ‘cA,)c.0.5ACIRA4 E A SWA.cos Ate] th 

161 
1T  r El.: 6p4:,/ E V+ 2 
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to 
NO .1 )114‘, + 	— (AA: -60 ) 40-06][460 4 6540 

):: I 
r (4, 4.c- A,) &AM (gAt4c4A2)444All[s-RA I  60 4 652  iii2S-Zie)av 
L 

A r 	 -I- -6 6:1,1 6 ca ke] 

(cm  i_CeAs)anile 4 (CAz CcilipAkriAt9jPA# ESkaokej 4 I, 

(2.2.23) 
a,b 

where we have again expanded the Bessel functions in Taylor 

series. If we equate terms independent of e and o in the 

above expressions we obtain 

C:R)1P4Z  

and Rw = 0 )

0,-26 /Z) ___ 0 
(2.2.24) 

a,b 

where we have replaced A01  in (2.2.24)a using (2.2.21)a. 

The equation (2.2.24)a is the so-called 'Reynolds' equation for 

the pressure and can be integrated once to give 

Teo 	 (2.2.25) 
Rt... gif6c).] 

17.7: 5 To g) 
where E is an unknown constant which we determine by integrating 

both sides of the above equating from).  =0 to3 =K and then 

using (2.2.20)d. We thus obtain 

(2.2.26) 

" f 	 ° fRa 44(soi  
s gook) 
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The remaining unknown functions of 7 , i.e. BAl, 	b Al' B  A2' Al, b42) 

Cx1, C12, c11, cA2, for A 	1, are obtained by equating terms 

proportional to sing, cosW, 	sinkecos 	, in (2.2.23)a,b Ai9  

The order 	pressure , pol' is found by equating terms of 

order C in (2.2.23)a. We find that 

/n 

T- 
Rg(SR 	

(2.2.27) 
.) 

	

L 	s J.0 Cs J 
and using (2.2.20)c it follows that P is zero. The only 

remaining unknown function of 5 is ba. If we equate terms 

of order (:, independent of eit,  (2.2.23)b we find that b
ol 

is in fact zero. Having determined all these functions of 

we can *rite g00' gol' etc as follows -  

EP:4!  r 	R elt 64)  

	

.21„- 	0'7 CsRl 

= [ 	(rar,,‘I 6e) 4 40's s'17(iiv-sR.C6R2 41(fie) 
R 4,,,6  

,Cs /  ) 1  4; s s14/60---siteo iel  itto  /i t s4 Pi- 	 —L- 
TG 

Aoe 

N-I 

-A*1  = 	
(PAO (Saot ly (se) 11:is. Spote).-sg-argy fit-1161e) 

8.777;:d 
4 aA, s 61 ) 4 Zs SP:OPV-sql:/642/=.14aVi Aa  

Z 	Z, op 

(2.2.28) 
a,b,c,d 

where Aol'  aMl are as given by (2.2.21)a,b. 



2.3 Calculation of the steady streaming for large 4'  

When 0- is large the Stokes layer associated with the 

oscillatory motion of the fluid is very thin compared to a 

typical radius of the pipe. We first discuss the nature of 

the 'Stokes flow' for large d' . If we use the asymptotic 

expansion of a Bessel function of large argument in (2.2.25), 

(2.2.26) we can show that 

rpt,Z04- 	 IC aj 
(RI 1. 	Ask"- 	%.1 ter 

z 

where  .00= {1041 )P=Pdfo 
and for the sake of convenience we choose 	= 

This is equivalent to redefining the typical axial velocity, Uo, 

in terms of the amplitude of the applied pressure difference. 

We can then write poo  in the form 

etbO 4 061 
42 	R4 it,. 	 d, 

If we define a Stokes layer variable 	by 

II = 	'174? 

(2.3.3) 

(2.3.4) 

then if we expand the Bessel functions in (2.2.22), (2.2.28), 

for large 	, 	and use (2.3.3) we can show that in the 

Stokes layer 	(geo • 

'Soo 0. 1,-  4-06;1'9 
+044,73, Rf 	e 	

9 
 doo 

ac,, 	("111  f OCO") 
47:0 Rz 

de, 	e" 
 
t1+ 0(;`) 

AZ; R2 
110, 40) 

(2.3.5) 
a,b,c,d,e 



(2.3.7) 
a,b,c,d 

1 

L1 

If we put S=R/=0 in (2.3.5) we see that the 'Stokes flow' 

in the Stokes layer reduces to Stokes shear wave solution for 

flow in a circular pipe. We can also see from (2.3.5) that the 

order C corrections to the axisymmetric flow have a dominant 

term which decays to zero at the edge of the Stokes layer. We 

shall refer to the region away from this layer as the 'outer' layer 

If we substitute for g, h, f, p+ from (2.2.9)  into 

(2.2.5)  and equate terms of order R we obtain 

26.0  6 
11) 
gRo  v. 0 
?t54- 
ivz._ 44/4c:0:1# 1,,,p41-1_40? rio # ZoWoo 

gq 

a (t ato) 4 	 ti30 ■0 .14 	= 6 
at?, 

  

 

(2.3.6)  
a,b,c,d 

 

 

   

and similarly by equating  terms of order ERM we have 

al, 
dA4 
?■CY 
07Z— °-tri — VI f QE, 

° 
Roa ?let- 

- 	" )7" 	 7t9  
Wei 	VCD/ 6-1,96: 

2(LZ) 211 4c"; O  

We recall that in 	It(2.2)  Foo, Goo  represented the axisym- 

metric solution and Fol' G01' Hoi gave the order 4: non-

axisymmetric correction to this solution. Similarly Flo' Glo 

will represent the order RM  axisymmetric solution and F11' 

G11' H11 will give the order 	 RM  non-axisymmetric correction 

to this solution. Thus we drop the 6 dependence of (2.3.6)  
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and put H10=. 0. The relevant boundary conditions for F/0, 

Glo are 

Fro = 610 0 J (2.3.8) 
a,b 

and the conditions for F11' G11' H11 are 

f,-0 # ec-i; 	 0(69 	R S1.s lea 
(2.3.9).  ft- 

a,b,c 

where Flo' Glo are assumed known. We also require that Flo' 

F11, Plo' P11 are independent of 	at 7)=0 and that Glo, 

G11' Hlo,  H11 vary with cos& sine there. 

We first solve for the axisymmetric solution. If we 

substitute for Foo' Goo' Poo from (2.2.10) into (2.3.6) we 

can see that Flo' G10,  Plo will have both steady terms and 

terms proportional to cost 1:, sin 2k,  . Suppose that we 
denote the` steady parts of F10, G10, 

respectively, then we can use (i'..10), (2.3.6),to show that 

f

.4: +i4jcs,tsi+ffcafft, 4 ?0,2  9st 0 .+a4O gotqt 241\  

) 4 It 	6  
s 	)5 

(2.3.10) 
a,b 

We shall obtain the solutions of (2.3.10)a,b in the Stokes and 

outer layers separately and match the solutions where the layers 

meet. We denote (gs, fs) in the Stokes and outer layers by 

(gl, fis-) and (4, fcs)) respectively. We can use (2.2.22),(2.2.28), 

(2.3.3), (2.3.4) to show that fis", f(s)  satisfy the equations f 	- _L. 9_ f 1 _ 2, 4147f co  ) 
(R424311 s ;Ttz  

(2.3.11) 
a,b 

Plo by fs' gs' Ps 

1r 	-Pt ? Lcoyl  fJoij e1  fAi.costie 	t 

-2e-140a, 
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where ig d-) 	is as defined below and has no Stokes 

layer type of behaviour 

".• C31.) fr) = 	I +-2- TooTeo +Torrpooi 
4 ou 

and it follows from (2.3.8) that we require that 

= O 	= 

and from (2.2.7), (2.2.9) we see that 

pp.s60 --ps(0) 0 

(2.3.12) 

(2.3.13) 
a,b 

(2. 3.14) 

and we also require that es, f:, ps  are regular atit =0. 

We can write the solutions of (2.3.11)a,b in the form 

= {112- 	# A ao.) (3;4 Ltoi RI? 	Aljp 
10- 
+ 	I 	 n'Eczysil- sill 	_ &cid% 	c.„571 4;11_4111+0(691.1 

	

ol 0-3 R 	I 

(12--eRzi 	ces y;o) 
4 

where A,B,C for the moment are unknown functions of r 
and we have rejected solutions of (2.3.11)b which are singular 

at Ij=0.  If fS, f(1 are to match at the edge of the Stokes 

layer it follows that 

Ar:c, 73•=o 	 (2.3.16) 

and using  the boundary condition (2.3.13)a on fl we find that 

A oo.---7/2) 

oRs- 

(2.3.15) 
a,b 
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and so we can write fs
i 
' fs

o  as follows 

= —47;R l l +2' 	) 	
„, 

e ' 	1.1  - 4 „ 
4/C 0 J 

20 	 ditr7R‘ t  

fc°411z-liZzl 	- 607'2) 
(2.3.17) 

a,b 

Suppose now that we denote gs  in the Stokes and outer 

layers by gs and gs respectively. In the Stokes layer 

the equations of continuity (2.3.10)b can be written in the form 

(2.3.18)a 

and in the outer layer we have 

 

(2.3.18)b 

If we substitute for fi  from (2.3.17)a into (2.3.18)a and 
I 

integrate from 11,  =0 to a point I
I 
 =1 	in the Stokes layer 

we obtain 

,174—  11)1$4: 
= 	 f( 1"--1194-2R2(R4192'+WY 

4- 	l+g  (2-757.1e?)ti +call p..goz_ey 

4'07'4  614;41,11,) 	91+-4.ca s 	'4-35;41'e411111j 

	

(R I  ER-H.11[1' [cosql- 	— 
02o3Rc 	 11  -.;21'4-2} 

4 607.712) 

(2.3.19)a 

where we have used the boundary condition (2.3.13)b to show 

that (R-E)' ;) 4; 	• is zero atil =0. If we substitute 

for 41  from (2.3.17)b into (2.3.18)b and integrate from 	=0 
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to a point 	=1 still in the outer layer we obtain 

4% -272 k1} 4 [I  - 	r 	J.-06,1e (2. 3.19)b 
/ 6 	s 	4 	20.3k.c 

where we have used the fact that gs is regular at 1. =0 to 

show that ligs  is zero there. We now give an explanation 
s-.7/2  

why we have evaluated only some of the terms of order P- 

in (2.3.19)a,b. The terms of this order which are given 

explicitly are those which arise from the order 0- -3 terms in 

fs
i 
' fs

o  through the equation of continuity. However, terms 

of similar order will arise from the order 0-
WA 
 terms in fs ' 

fo again through the equation of continuity, and these are 

the terms which we have not given explicitly. 

The essential 'physical' difference between the terms is that 
71z 

the latter, when combined with the order 0V 	terms in fi s' 

give a resultant velocity parallel to the pipe wall whilst 

the other terms lead to a component of velocity normal to the 

pipe wall. We shall in fact see that in the evaluation of the 

stream function in the Stokes layer up to order CP- 	the 

terms not shown explicitly are not required. If we use the 

condition that (2.3.19)a,b must match at the edge of the Stokes 

layer we obtain 

	

"IlleP •  /Pet (9L,7 	 ()1  d  -74) 
ho-}n 	all- 424 074  n 	1. 	( 2.3.20) 

which we integrate once to give 

/6 	lobe/ 	j 4 ti(ei-76) 	(2.3.21) 

where Q is an arbitrary constant which we can obtain by 

substituting for 	from (2.3.12) into (2.3.21) and replacing 
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p/  by its asymptotic form given by (2.3.3). If we then oo 

integrate from y =0 to y =K and use (2.3.14) we find that 

raq 'OM 	
Kois, 

RA4' 061s19 
o 

 

Thus if the ends of the pipe have the same mean radius the 

term of order d--2  in (2.3.22) vanishes. In fact it can be 

shown that all the higher order terms also vanish. For Q non-

zero we can see that there is no need to distinguish between 

the Stokes and outer layers as far as the dominant term in the 

velocity field is concerned. If we take 	,Q as given by 

(2.3.21), (2.3.22) we can use (2.3.17)a,b, (2.3.19)a,b to show 

that we can write fs' gs as follows 

= Ao [44 (0c19.7 

s.r,.A0E:R1/1(q-/f2)  ia(SCII4 

rj(  cisr 
where A 0 = {R-40() RVO j 	jo-17-: 

and if we introduce a stream function 16 	by 

Ilc 	) 

then we can show that 

a 0(5"-‘19 s 	
0,2 Rik. 

(2.3.23) 
a,b 

(2.3.23)c 

(2.3.24) 
a,b 

(2.3.25) 

and this represents a steady flow which is always directed 

towards the widest end of the pipe. 

	

When 	is zero we can use (2.3.20), (2.3.21) to show 

that 	 ' fi 	given by (2.3.17)a, (2.3.19)a may be written in s 
the form 

= 	soil) j9_6sogliri-cestil,e-411- 2/14 40(cTiv )) 
-1077r 

(2.3.22) 
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e=_LT  r(6011-54,11 )e-(Y - Ss(Vel l- cos11 .24--e 21 # 2 406i ii9 

+ I  ( °' 1 . 1.(11/10111e114-11-coslial  4 gsiiiq ii ll  4 i"-- g  ,1  
"R 4-2(7" R̀#/  

0(0:7741) 	 (2.3.26) 
a,b 

We can see from (2.3.26)a,b that the order 0- -3  term in (2.3.26)b 

is just Pl times the order 0- -3  term in (2.3.26)a. Thus 

at any point in the Stokes layer the dominant velocity is 

parallel to the wall of the pipe. We c'an also show that the 

order 0- 	terms not shown explicitly in (2.3.26)a,b similarly 

represent a velocity parallel to the pipe wall. We define a 

stream function id` 	in the Stokes layer by 

2__+4  	 ,324  4 RI  
	 2qt 	

a 1 	 (2.3.27) 
PR 	 . 

1 	P 	

a,b 

and we can then show that )/4: 	is given by 

2 	(1) 1 	i 
Ai -  - M 	 i e -I sub? e 4 e 441 - , 4 1.1 c  ,24.2,17/2R,  2 's" le-14 Kos s --q' 6 • i -fe -21'  , or A/:: '1 1 	 (2.3.28) 

and with Q equal to zero we can show that the stream function 

4/10  in the outer layer is given by 
TS 

4: .. 2 R. 1  f 7 it gr ie 21 f I 1- 66;-'19.1 7,,,,c7  f ,,' es.  fy it 2,1127-1- 0 67-4) (2.3.29) 

Thus has only been evaluated explicitly up to order A's
° 

d--3. However this expression matches up to order 	0-  

with (2.3.28) at the edge of the Stokes layer, the term of order 

7/1 not shown explicitly giving a contribution of order 

0M

4  there. The flux through the pipe associated with this 

steady streaming with Q zero is clearly zero (at least up-  to 

order 0-  ) since 

. J a i 

	

6;49 	 (2.3.30) 
li'=0 
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We now determine the order C correction to the axisym- 

	

metric solution. The order 	R term in the expansion of the 

velocity was found to be determined by (2.3.7), (2.3.9). 

Suppose that we denote the steady parts of G11,  H11, F_-, P11 

by Gs, Hs, Fs, Ps  respectively, then we can use (2.2.10), 

(2.2.19) to rewrite.„(2.3.1), (2.3.9) in the form 

v26=76-'4) ffoo Oro, Late 4 g o© DI" 4 j (Woo 00 	 a 

qe,1 	 iv, 	(1  
4 J00(941 	f:yg 49430 4 hoe Sco)  4 h,,, 

Ta= q 
COMei.ek ‘041.7-0Q4-fe 

(a)  6-05.) 	09 its 4- 
71' I 	e 	3? 

;5.4-ers, =g4.4ec;-c his 	 fiC,CcesNO (2.3.32) 
a,b,c 

where fs' gs are now assumed to be known. From (2.2.7), 

(2.2.9) we can show that 

TOO -?s(6)= 	 (2.3.33) 

We also require that Ps' Fs are independent of e9 at 	=0, 

and that Gs' Hs vary with cos es 	sin 9 there. If we 

eliminate pi' from (2.2.5)a,b and substitute for g,h,f from 

(2.2.9)a,b,c into the resulting equation and equate terms of 

order 6Rmec we obtain 

(2.3.31) 
a,b 

{Yr 	12L12 I.

I 1:JOG'  C9(1145B 

1*-  
AWN.. 

(2.3.34) 

C76- I 	"L 
	o "1" 41 400 

Ao rc  
- 	ei°'  4  

where .1Pd  496-m  4.816'119°  4  

3311 	t 	ag*, 4i;0101 41441+4    

.1.1100 fitos 	ho, 2L00 	hoo408 46,3041.1j 



49 00 	efo, 	#;09 i2g #.1.0 0, 4-7„ _sg „1  
14- 70 	1 	 'k 	

Cl 

	

—2 113; 0 	1. 2  '1:„ 96. 	,;„ 514, 	Zalh,,, 

	

ge 	 dB 
Wo, 3,1ya i,41';:oero‘ 7.01 

(2.3.35) 

Suppose that we denote (G5, Hs'  Fs) by (Gs'  H Fs) and i s' 

(Gs, H5 , Fso  ) in the Stokes and outer layers respectively. 

We can use (2.2.22), (2.2.28), (2.3.3), (2.3.4), (2.3.31), 

(2.3.34) to show that these functions are determined by _ 	2  4 tp..*T72,702 cher:=1?2:11F 	+. 	s: :i:1:41' ;;;;3541.cl! LTTL  77-111,171 

	

V 2  Fs°  z-L- 75' 	

1 

 
a7 4- 4-f gic• 	 976i,* Rigy. 

	

641  6350) 	caki se 4. al e a = 0 
20 	di 

Kit  	\rig. 	4_h;023.; 7, 4. 	te/  

 

0(,;,civ 

(ft 1-0.1 
1C1,-fr —Pr?. T,I7P 

(2.3.36) 
a,b,c,d,e,f 

The non-linear terms on the right hand sides of (2.3.31)a, 

(2.3.34) are all exponentially small away from the Stokes layer. 
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The boundary conditions (2.3.32) become 

4;40; yi4 cos'. 04 =74)a!), 	jes1-,s/119 (2.3.37) 
a,b,c 

We can easily show that the solutions of (2.3.36)a,b which 

match at the edge of the Stokes layer and satisfy the above 

boundary condition are 
-211 	I 

-1.27 Ril l 1 	5' CZ e 	3549 e 	2cesq 	earl, ash& 

air I, L 	co>2.427 
Rs' c - 4171'i meeime Q(Q-) 

r.:=-;Rs N Iptie 6y,---3) 
(2.3.38)a,b 

where 00 is given by (2.3.21), and solutions of (2.3.36)b 

which are singular at it =0, have been rejected. Similarly the 

solutions of (2.3.36)e,f which match at the edge of the Stokes 

14104  

(R 	11) 14.1 f D6: = ':10; 0') 6 	)2„,)/E9 ,Lo6;59 
7, 	 Tr.  

hp '2 	 — 96,  -7. 3 (3;4 	/4-1 frig 
7/t 

(2.3.39) 
a,b 

where B(y, 0-) is for the moment an arbitrary function of 1, n-

and solutions which are singular at q =0 have been rejected, 
since these solutions would lead to G' s  H°  being singular at GS,  

11 =0. We have assumed for the sake of convenience that only 

terms proportional to sintie need be retained in (2.3.39)a,b. 

(The vanishing of the other () dependent solutions would 

otherwise be found when the boundary conditions were applied). 

If we substitute for Fs from (2.3.38)a into the equation of 

continuity (2.3.36)c, and eliminate Gi  from the resulting 

layer are 



OC;-:711) 

and we can show that the corresponding equation in the outer 

) 2 	'3 2  9281 	 (e1;1)  y v i  
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equation and (2.3.39)a we obtain 

layer is 

() f, /4-E1 b1;73 	
OC  

EJ-1(-141 *og 
//4,1.Ait9 4 o=3) 

1- 
and the solutions of these equations which match at the edge 

of the Stokes layer are 	Nit 

1-15 E- 	y 4 2  (44•2 )13 ] 	-H7) Amid 4 C -10) An 	-1-0(a.'3) 
R-4  

	

(4) /  a("1")* 	 h4.1144,819 	(V614/4'19 4- 0(6") 

41, Of4-1) 

r-egcQs he functions into (2.3.36)c and integrate from t =  

to a point t 	still in the Stokes layer. We thus obtain 

[(R -5100:12%ix  ;iescosme 
= 	{ oz. 	2/R2(g-sill ) gel -1-Ts:R:g 04.722-- R/ 

4 	(1.1 2114gll 	914".2._ g'ut) 
R i4" 	,RAt, 

4- Se  2eleof 

t 0 (03 E)  

(2.3.40) 
a,b 

where C is for the moment an arbitrary function of 	/ 0' 
and solutions which are singular at 1=0 have been rejected. 

We have again assumed for convenience that any 0 dependence 

of Hi' s  H°  is with sidle HS,  
Having determined FS, s  H I'  we can substitute for these 
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However, using (2.3.37), we have that 

(R—fig i)(ys' 	 11. 	= oc0 
and so using (2.3.19)a, (2.3.20) we obtain 

62-50 =4/..-  [
(

-11.2 1)t2V(R•g-1/27qey- gi(e-,6727:ieti 

S /t V 

( gi") 2;81friii (Nil!) 6-4-zie812/Coihe 

F(itfH) 

IOZairgleos He 

‘111(g .871)1-i211#3ipui lelL 	740.5911A 

(2.3.41)a 

and if we substitute for F ' s  H°  from (2.3.38)b, (2.3.40)b into F5,  

(2.3.36)c, integrate from 1=0 to 	= it 	still in the outer 

layer, and use 	the fact that GS is regular at It =0 we 

obtain 	 An; 
010211.54Z 	/a ly Gos d 

600 	 2,12Ry +7,fg/714  
s  = 	16 	

111-1 	4 1 

47 n 	#4)6) *1) Cos   
(2.3.41)b 

and if (2.3.41)a,b are to match at the edge of the Stokes 

layer we require that 

(c y-3)._— Is  

and Ow) = p2s e [2 new -041} 	12 7 
2 it-7747—  

We can integrate (2.3.42)aonce to give 

0(o:3) 

(2.3.42) 
a,b 

where Z is a constant, which after integrating from Y =0 to 
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7 =K and using (2.3.33), is found to be zero. If we put 
-11  = -ft CS'es MO in (2.3.40)a and use (2.3.37), then equate 

terms proportional to 6 sin M e we obtain an equation for B,C 
which we solve together with (2.3.42)b to give 

I /sj 	(l _ ASR + 667-3) 7/77/ 

— 011.2)1,PR + 	- 	4  0 6;3) ..,  
and then we can show that GS,   s Hi  F

i will be given by  

Gri  = 4gLarin  WIC 542  1g I 

4 SR 12  11—e-211  2 	1.10 

42.  0.4. R 	"544qe - 2 cos 	11!.. 	-II 7 
c©1e di Cal lie +Q6;3) 

145Lz 	E(97011t corl - .1.3 Aio 4 0 co-3) 
2-  

(97,c) g 3 7  ; R  fill s  3-stiq 291-2cos q fil°-11Cog iel] cos AO 
tti 

4 0 CO 	 (2.3.43) 
a,b,c 

and G°  H°  F°  will be given by 	pus S S S 

{49E ORrC/grIfix 	FQA) -Peos609 06--9 

P4-91:040"- (9404.1 	-4714440 0c0=) 

F-st)-= 	yeti. h0 0 CP) 

(2.3.44) 
a,b,c 

where we have replaced 	by (2.3.21). We have deliberately 

written the terms in (2.3.43)a b,c which are porportional to 9 

in terms of 1/  since they do not have a Stokes layer type of 

behaviour. Moreover, if the pipe is such that R(K) and R(0) 

are not equal, we can see from (2.3.22) that Q is of order 

-2 0- 	and so the dominant steady streaming of order 	is given 

8  Cgri 	f?e; 



54 

by the terms proportional to 0 . In this case there is no need 

to distinguish between the two layers and we write 

ds =4{.  LS a- (//ofti-‘][4'i- fif.4] 2  (Uf14!)w 

4.02- 
14-1 

F; = - 24 05 (970 cedte 4 667c) 
crtk 3  

I lie 4 (3-0 

(2.3.45) 
a,b,c 

where Ao is given by (2.3.23)c. However, if R(K) and R(0) 

are equal, then Q  is zero and we can write (2.3.43)a,b,c, 

(2.3.44)a,b,c as follows 

G c_  SR I  [e7  gia? fe-t 2 409 ie.°411cosi l  j cos. /lie if-  60) 
57-71.  

f7 	.CR 1 	fe 211  3s. 	 ri cop; 	c -di + 49  60.) 

H 	

472 O.C/i 
-

-= 
0 	0 

= 	= 	i.C-3) 

and so in this case the dominant steady streaming of order E 

is confined to the Stokes layer and has no swirling component 

of velocity. Similarly, if we choose S ---Z(R 0  where -ar is 

a constant, then the dominant steady streaming of order C 

given by (2.3.45) will also have no swirling component of velocity. 

This particular choice of S, R corresponds to the pipe having 

a uniform cross-sectional shape. 

2.4 Calculation of the steady streaming for small°,  

When or is small the Stokes layer completely fills the 

pipe and there is no need to split the flow field into separate 

regions. We again solve for the order RM  axisymmetric steady 
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streaming velocity, (gs,0,fs), and then for the order C Rm  

non-axisymmetric correction to this solution. We first consider 

the form of the Stokes flow for small 0 . If we expand the 

Bessel functions appearing in (2.2.25), (2.2.26) using the 

series form for Bessel functions of small argument we obtain 

poo 

where 

.2,14 	To  4- 4i6,-T2  4.2cia,  4 0(c-2 )/ 
—K.—  

1.64-4 
and for convenience we now choose • 

9 in which 

case we can write 

1700 = 	I i" adz  +21. Z.0" a d (01)} 
7TZT4  

We can then use (2.2.22), (2.2.28) to show that 

(2.4.1) 

40  fiLav  4,R4 i Ote) 

400 	,„L-1 	12 / 4. OCcr) 
At-Rs 

10, 	S (9e reos K -4-06■9 
3k 

ti
(/1 

ostie 	f0g )16114 // 1/..543  —4.:16:10Y0 4. 06r) 
ga  

nos 	(174)144°–  (9/04.7{. 	— 140},‘i he,  4 (1(0) R ' 
Using the notation of §2.3 we can see that gs , f s ,  p 	are s' s' s 

determined by the equations (2.3.10) together with the boundary 

conditions 

4; 	4 ; = 0 

'J's  O) —74(0 (2.4.2) 
a,b,c 



(2.4.3) 
a,b 
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We also require that ps, fs, gs  are regular at it =0. 

If we now let 0 tend to zero in (2.3.10)a,b and use (2.2.22)a, 

(2.2.28)a, (2.4.1) and the series expansions of Bessel 

functions, we obtain 

121  

T 6Tel 4s —  
110 

The solution of (2.4.3)a which satisfies (2.4.2)a is 

JS  11 1411.- g1-1 	f 21 4  9l 4W 4 	'qt.- Mei 4 0(4) (2.4.4)a 
i/C2 4  

We can then substitute for fs from (2.4.4)a into (2.4.3)b 

and integrate from :0 to 	=f1 to give 

15, 	2729 	IC] t  
16. 

(441toieR4)117f-ciPein141Vt 22  fg  

ael÷; ,{164 41412  IC RI#31 +069 
(2.4.4)b 

where we have used the fact that gs  is regular att =0 to 

show that ills  is zero there. If we put t' =R in (2.4.4)b 

and use (2.4.2)b we obtain the Reynolds equation for the pressure 

which we integrate once to give 

I. + 0(&) 
eR4 	32.R C  (2.4.4)c 

where C is a constant which after integrating both sides of 

the above equation from 1 =0 to )"=K and using (2.4.2)c is 

found to be given by 	• 

fi—LW - r—r  I'd 
J o  g4. 

(2.4.5) 
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and C is zero if the ends of the pipe have the same mean 

radius. (It can be shown that all the higher order terms in 

(2.4.5) also vanish in this case). If we introduce the stream 

functiono/ 	defined by (2.3.24) we can show that 

4,s  = 	c 00  4' 2 ,1 ,e  2 	4  
C/ie) 604 4V4 0411 Van — 

Thus we see that, as in §2.3, there is no net flux through the 

pipe if the ends have the same radius. 

We now determine the order E..RM  correction to the axisym-

metric solution. If we again denote the steady velocity of 

this order by (Gs, Hs, Fs) and the corresponding pressure by 

Ps then these functions are determined by (2.3.31), (2.3.32), 

(2.3.33), (2.3.34). If we now let GP- tend to zero in these 

equations we can show that 

n  SW 10 c7 2  = "Ps' 4,7..{(9,gy*l_o/R )./7-4  Cag 	4 6(a) 
6Gs) All 4 7  

art 	as 
9-4 	,4 	Otis) -q.11  
vq 11" (r-i 1 (2.4.7) 

a,b,c 

(2.4.6) 

where ,.(c) 

Miarl 	4 6(y) 

*/) 	69-0  " f ASR`  (2.4.8) 

and the boundary conditions are given by (2.3.32), (2.3.3) 

where fs' gs are taken as given by (2.4.4)a,b. The method 

of solution now follows the methods used in §2.2, 2.3 and so 

we briefly explain the various steps used and give the final 

results. 
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We first integrate the equation (2.4.7)a and after using 

the boundary condition on Fs  at q =F the only unknown 
function in Fs  is Ps. We can then substitute for Fs  into 

(2.4.7)b and after integrating (2.4.7)c we can eliminate Gs  

from the solution of this equation and the equation of continuity. 

This gives a differential equation for Hs which is easily 

integrated. We can then substitute for Fs, Hs into (2.4.7)b 

and integrate to give Gs. The boundary conditions on Gs' Hs 

then give all the unknown functions in Gs,  Hs  and the Reynolds 

equation for Ps. After integrating the Reynolds equation twice 

we find that Ps is just a constant. The expressions for Fs, 

Gs' Hs are found to be as follows.

•  

6)s 	-ENr- Nr][(174.6)d1+‘(-1,2-06 „)-7,41/1 3g4. 0142)014-3) 

tem ir  
4  (%)"- (4) it (111+4) (V") 47 5-4.1 /2 9 014-06402,) 

444-1  /9, 16411...mse  MSIZR IF; 	04145. 14  le  
{ (94 	 192 	/4. 	2 5-6 (141)(141-06413) 

_ Reol(  r÷ )1_ 	r#501 ir- 641 5 cg 

4. (-0g  '44  r 6RPIL  L V/ 1-7470- 

ks7V f (gad' 
i6 K4 L zatto 

'R 	 jicosA0 4 0(&) 

- 	r Olgc "S' he 
(Ivor 

2 	414titt#2 .104  	I 
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ft 	14-17r Attr / se \I  
s 	[ (9/3 	(Mitt  ) ti h4 	/36 t/114204 43) 

-10/A)ttitl 	
Q0101100 

1 

4 { 	(9/gri  .1[4"  (4:+7)1* 24:14,'"Ao:)0214-z(64://tliik,3) 

E Am"  ( *Cg1ZItc`)  — 	sticre" .'"F I 644,:die +co) 
a (A.03 ) 

where p/s,/,., are as given by (2.4.4)c, (2.4.8) 

and 	is given by 

FRK 4.  SR  r N 21- ‘At 111 
d g L Ow) (itt-a) )  

2.5. Discussion of Results  

We have again seen that in both the low and high frequency 

limits the geometry of the fluid container is crucial in 

determining the nature of the steady streaming. In particular 

the difference between the mean radii of the pipe ends has an 

important role. If this difference is zero then the steady 

streaming is confined between the nodes of the pipe (i.e. where 

R' is zero) and this steady streaming is produced by the 

Reynolds stresses associated with the oscillatory Stokes flow. 

If the ends of the pipe do not have the same mean radius these 

Reynolds stresses induce a steady pressure difference between 

the ends of the pipe which must be balanced by the pressure 

difference associated with the axisymmetric flow 

(2.5.1) 

(2.4.9) 
a,b,c 
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which is merely Poiseuille flow in a pipe with radius equal 

to the local radius of the pipe. This effect is particularly 

important in the high frequency limit where the steady 

streaming velocity field is dominated by the component of 

velocity given by (2.5.1). In contrast to this we find that 

in the low frequency limit the steady velocity field is 

affected at the same order in o- by the component of velocity 

given by (2.5.1), and that induced directly by the Reynolds 

stresses. We can easily show that the stream surfaces associated 

with (2.5.1) are given by 

- 
(2.5.2) 

In Fig. 3 we have shown the steady streaming in a wavy 

axisymmetric pipe whose ends have the same mean radius. In 

Fig. 4 we have shown the steady streaming in the Stokes layer 

at the pipe wall in more detail. The steady streaming shown 

in Fig. 4 is qualitatively similar to that found by Lyne (1971) 

who considered oscillatory viscous flow adjacent to a wavy wall. 

Our results correspond to the wavelength of the wall being much 

greater than both the thickness of the Stokes layer at the wall 

and the amplitude of oscillation of a fluid particle far from 

the wall. We recall that in Chapter 1 we considered oscillatory 

viscous flow in a two-dimensional channel of slowly varying 

depth. If one of the walls of the channelwas taken to be wavy 

then the steady streaming in the Stokes layer at the wall was 

found to be identical to that found by Lyne. 

In Fig. S we have sketched the steady streaming given by 

(2.4.6) for a pipe defined by 

I - 	ck-p (-C1-4.1) 
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The ends of this pipe have the same radius and so C in 

(2.4.6) is zero. 	In contrast to the high frequency limit we 

see that there is no region of recirculation near the pipe wall. 

The flow in such a pipe might be of some interest as a model for 

oscillatory flow in a narrow constricted blood vessel. However, 

in such a flow the condition that the pipe radius changes 

slowly would be violated and so dr)  defined by (2.1.2),I would 

not be small. 

Finally we compare the order of magnitude of the high 

frequency steady streaming given by (2.3.28) and that found 

by Lyne (1970) for oscillatory flow in a curved pipe. A 

calculation shows that in the Stokes layers of these flows the 

ratio of typical axial steady velocities for flows with similar 

order basic velocities and pipes of similar radius is ' where 
o 

Ro is the radius of curvature of the curved pipe. Thus we 

might expect that for flow in a curved pipe of varying radius 

the effects of curvature and narrowing are equally important as 

far as the Stokes layer type of steady streaming is concerned. 

The steady streaming of the form given by (2.5.1) would clearly 

be more important than both the latter contributions since, 

as shown by (2.3.23), (2.3.26) this effect appears at lower 

order in 	oh- . Lyne (1970) has discussed the relevance of 

his work to the flow in the human aorta. The parameters (fl  

and 4-  for such a flow are typically of order, 10-3 10.0 but 

the parameter RM  is of order 102. Thus our theory is not 

strictly applicable but it is likely that the effect of narrowing 

of the aorta is at least as important as the effect of curvature 

as far as the steady streaming for such a flow is concerned. 
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Fig a Steady streaming in a pipe defined by 1= 1-5 sin c , 0< C < 2n with C6<<1 and o>>1 

C=2Tt 



= 

Fig.; 	Steadys,  streaming in the Stokes layer in a pipe defined by 1=1 - 6  sin 	45. 
with 0 2 6<.<1 and (31. 



Fig, r Steady streaming in the pipe defined by 1=1-2e --( - 4)2  
,O<C48with 0«1. 
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PART 2  

THE STABILITY OF SOME UNSTEADY VISCOUS FLOWS 
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CHAPTER 111 

THE LINEAR STABILITY OF UNSTEADY CYLINDER FLOWS 

3.1 Introduction 

We consider the stability of the flow between concentric 

cylinders when the outer cylinder is at rest and the inner one has 

angular velocityRi Necotai. This problem has been considered 

experimentally by Donnelly (1964) who found that modulation 

enhanced the stability of the flow . Moreover,, he found that for 

all C this enhancement was a maximum for a certain value ,.27 

of a frequency parameter , d ,defined to be the square of the 

ratio of the separation of the cylinders to the thickness of the 

Stokes layer associated with the oscillatory motion of the inner 

cylinder . 

In this chapter we examine the stability of this flow to 

disturbances which are small enough for linearization to be a 

valid approximation . The procedure adopted is, as follows . 

Ini3.2 we determine the nature of the basic flow and 

derive the partial differential equations governing the linear 

stability of this flow . These equations are solved subject to 

there being no relative velocity at the walls of the cylinders . 

We follow Venezian (1969) and Rosenblat&Herbert (1970) and use 

the so-called 'periodicity' criterion to define a boundary between 

stability and instability . The above authors considered the linear 

stability of the thermal analogue of this problem . The results of fh 

former and latter authors corresponded to taking parameters corres-, 

ding to C and 0 respectively to be small 

Inj3.3 we obtain an asymptotic expansion of the Taylor number 

in terms of C and 0 when the latter are both small . In actual fact 

we seek a solution to the partial differential system by letting 

C tend to zero with 0/C fixed and equal to a say 
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This is done so that the dominant time dependences of the partial 

differential equationsbalance in some sense . A similar idea 

was used by Di Prima &Stuart (1972) who considered the global 

stability of the flow between eccentric rotating cylinders when 

the cylinders move with constant angular velocity . We expand 

the perturbation velocities and the Taylor number in powers of C 

and replace 0 by aC everywhere in the partial differential system. 

We then equate like powers of E and obtain ordinary differential 

systems which contain the time variable only as a parameter . We 

find that the order C system gives the ordinary steady velocity fie 

multiplied by an arbiti&ry function of the time variable . This 

function is determined by solvability conditions on the order C 

ordinary differential system . The order E teim in the expansion 

of T in powers of C is then specified by insisting that this 

function ofais in fact periodic in Wt. Higher order terms in 

the expansion of T are determined by considering the higher order 

systems . 

In i3.4 we consider -the limit of c tending to infinity with 

C arbii(ary . The time dependence of the basic flow is then 

confined to a thin layer near the inner cylinder We shall 

refer to this layer as being the 'inner' layer . However,the inter-

action of the basic flow with the disturbance in this layer causes 

the disturbance velocity field to have a time dependence which 

persists throughout the fluid Hence a second Stokes layer 

is required at the outer cylinder to satisfy the relevant boundary 

conditions there . We shall refer to this layer as the 'outer' 

layer and the region between the Stokes layers will be called 

the 'central' region . In each region we expand the disturbance 

velocity in Fourier series in time and then expand the coefficients 
114  . 

in the series in powers of 0 The Taylor number is also expanded 

in powers of 0 . The disturbance velocity is then determined in 
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....h 
each region by equating like powers of 0 in the relevant 

differential systems . We then 'match' velocities where different 

regions meet and the terms in the expansion of T are essentially 

determined by matching the steady parts of the perturbation velocity 

In /3.5 we describe the numerical work required to solve the 

ordinary differential systems appearing in /3.3 , 3.4 , and 
JP  

in .6 we discuss the results of our work and their relevance 

to the work of Donnelly (1964) . 

3.2 The basic flow and the disturbance equations  

We consider viscous incompressible flow between concentric 

cylinders of infinite length and radii 141 , 132  ( 10.4 We assume 

that the separation of the cylinders is small compared to the 

mean radius of the cylinders . Thus we have that 

and we shall therefore neglect te.uns of order d/R, throughout . 

We take cylindrical polar coordinates ( r 4) 1  z ) with the 
z-axis along the axis of the cylinders . We take ( u , v , w ) 

to be the corresponding velocity vector . We also take p , p , v , 

and t to be the pressure , density , kinematic viscosity , and 

time respectively . We can easily show that the basic velocity 

field will be given by ( 0 , V(r1t) 	0 ) where 

are +44" .-5IJE Vz D 
v. AS, C' ecosai , 	RI 	 (3.2.1) 

and the pressure distribution associated with this velocity 

field is then determined by 



v = 	..11.,R, v41  (3,t) coski. 
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(3.2.2) 

We now introduce the dimensionless variables C 11- by 

= 	 
= 

(3.2.3)a,b 

and a dimensionless velocity by 

-..- 

V.-7-S_ 	. 	 (3.2.4) 

J41  and the frequency parameter 0 , mentionAed in 3.1-, is 
defined by 

J- 	(.64i 	 (3.2.5) 
2) 

If we now write (3.2.1) in terms of the dimensionless quantities 

introduced above we obtain a differential system which we can 

solve to give 

e[iinh(fra-D-31)el?  4. CO MPLer 
(3.2.6) 

sinh 	co tv irj 

We do not require any knowledge of p/p in the following work 

and so we do not solve for it here 

Suppose now that the basic flow is perturbed in such a way 

that the disturbed state may be charectqrized by u,vi-V,w 2  

by . We make the usual assumption that the flow is periodic 
along the z-axis with wavelength 2n/k . Thus we write 

A. = 	V 4,4*  (1)  1-) cos kz 
-.177 

(3.2.7)a,b,c 
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This is the usual scaling for the problem and the minus signs 

have merely been introduced for the sake of convenience . We 

can show from the momentum and continuity equations by 

linearizing and the usual manipulations that u * 1  v are determined 

by 

[ frl - c- ) 3 M u* = ... a 2  "iv * V 

E M - 0-2. 1 v* - 	4( i/ 
at 	. yi,. 

33' 	 ) 	J 

(3.2.8) 

These equations are valid in the limit d/R1  tending to zero 

with C 	, etc. held fixed . ( For details of the derivation of 

the above system the reader should see for example Chandrasekhar 

(1961).) The quantities appearing above which are as yet undefined 

are given by 

(3.2.9)avb,c 

Thus a, is a non-dimensional wavenumber and T is the usual Taylor 

number . Clearly (3.2.8) specifies an eigenvalue problem for u Ar 
1  

v which leads to an eigenrelation of the form 

F(1-.)-o, 6, 	^ 0 	 (3.2.10) 

We now stipulate that u 1  v must be periodic functions of Z'. 

This serves to define a boundary between stability and instability 

and the corresponding smallest value of the Taylor number will be 

called the critical Taylor number and we shall denote this value 

of T by To 



3.3 The t..  

We now determine the nature of T as E and cs tend to zero , 

in which case the Stokes layer associated with the oscillatory 

motion of the inner cylinder completely fills the gap between the 

cylinders . If we expand V given by (3.2.6) for small 0 and 

substitute into (3.2.8) we obtain ( after dropping the star notation 

EN- 4 5i1-1MU, = — 02  -v (X0+ C Yt  cos t 60-iC5Lil -t 4 E4:)-7.K3625.1--4...:1 

[ M 6-1] V = 	Los t- 	6o- S4;i1. 	 - • .} 
	(3.3.1)a 

V ) 

where the first five 'C.c  are given by 

)Co  TA; = I — 5 
)6„ 03 _33 2  i-25} 

6 
= 355  --15-54'+ 2o 53 —g31  

360 

co1156 -3r-12,r+6-63-3 325-1  

and for convenience we have defined sch-cIZ, . 
crf 

We now constrain E and c to tend to zero in such a way that 

the it dependences of the right and left hand sides of the two 

differential equations appearing above 'balance' in some sense . 

If we assume that T varies little from its unmodulated value 

we can see that the responses of the j; terms of the left 

I (3.3.2)b 

hand sides of theSe equations are proportional to the dependences 

imposed by the Ecost terms of the right hand sides if we have 
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Hence we write 

(3.3.2) 

and let C tend to zero with a fixed . This corresponds physically 

to letting the frequency and velocity amplitude of the inner 

cylinder tend to zero in such a way that the oscillatory 

displacement of the cylinder Itt(Td/2R1 )1' , remains constant if d 

RI  are held fixed . 

We now expand the perturbation velOcities in the form 

CAI  + C1,144 	.. 

V = 	Evo  4- 	yt • • 

• • I (3.3.3)a b 

and the Taylor number is expanded in the MITI 

-rt: 7; 4-6*-062-c# 	 (3.3.3)c 

WeshallinfactseethatTi1  m0 for i odd which is only to be 

expected since changing C to .0 does not essentially change the 

physical problem under consideration . If we substitute for u v 

T from above into (3.3.1) we have 

[M.Icei0P/E4,4-ati -PE2414- 

[M - e4 fro + Evi C-is 4- 

I 4 E co s't - 4 • • • j1:14 0 4- Cu 	• . 

r4. 4 et4i 4. 	. j 	EV04 Evi4itv,...] 	DAD+ CIS', 64- = 317 4 II 
6, 	Di 

where we have replaced d by cce everywhere . If we equate telms of 

order ein (3.3.4) we have 
1114,40  + a' 1.; X 0 v. 0 

(3. 3,-5) 

\ (3.3.4) 

A.t o  Mva  

140  = 	_O , f=o, 



(3.3.6)a,b 
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We notice that At does not appear in (3.3.5) and so we have an 

ordinary differential system whose solution may be written in the 

form 

Ao = .306') co 

Vo 	cJr o  6-) Jo 6-) 
where fo(0 , go(0 are determined by 

Cit — alfrio a2 e, Yo  o dp.  

[12,-412 	0 

= 	 0, 5=41 
sir 

(3.3.7) 

and Bo(1') will be dete:rmined by the order E system . In the 

following work we shall find it usefult to define ,ark  

as follows 

2 
Oil (.4.4.)v) = M 24. 4- 021:, Vo  V 

(AA = .2& — M v 

di t M Ts& `a 

(3.3.8)a, 

If we now equate teems of order E in (3.3.4) and use (3.3.6) 

we have 
(.44.,0=  DC A2'!"N o —Be  cost: Q2  riz; 

dt 
13. 

Ce2  CI)  V) —= 	— -04 	C 0 it.' co  
dr 

vi 	- 0 S= 0 )  / 
After solving the order system the only unknown quantities 

on the right hand sides of the above differential equations are 

(3.3.9) 



74 

4. 	4 
Bo  and Ti . We now introduce the adjoint function pair , ( 	go) 

is 

which we define by 

NV 4-e = 0 
42 i0 

4,4  --- 	= 41, = 0, j•=0,1 
dS 

(3.3.10) 

The eigenvalues a T, of (3.3.7) 	(3.3.10) are the same but 

as the form of the equations shows the function pairs ( fol go) 

( f:1  g:) are not the same . Having defined the adjoint function 

pair we can show,that the condition that the system (3,3.10) has 

a solution is that the integral from C  = 0 to c  . 1 of the sum of 

f: times the right hand side of the first equation in (3.3.9) 

and go times the right hand side of the second is zero 	( See 

for example Ince (1927) . ) Thus we have that 

+7 	g 	rcw2T;I:4144 Ytaci ctr dee f f [ fo+ 	- g, i f, 	- ,cost 
•A dt- 

2T t,f04 ic, cdf 
0 

which is 	ordinary differential equation for Bo  and has a 

periodic solution if Ti 	O,and Bo  is then given by 

o (1.) = Aehf• {2 	 i 	 (3.3.11) 

where 

rod 

102  t fo+10 go4 roic4r 
[ 4.1,„ — i:Nf o ] ctf 

and A is a constant dependent on the parameters of the problem 

which can only be determined by a consideration of the corresponding 

non-linear problem . Having determined Bo  we can substitute 

back into (3.3.9) to show that 

(3.3.12) 



75 

) ) a 30  6-) cos. 	g1 ) 4 	( ) (j:; 90) 

where ( fil  gi) is determined by 

tv 2 f, 4. 0Q-ix, I 	tifp— 021Ce 

= g, =4 o j  y=0,1 

(3.3.13) 

(3.3.14) 

The solution of (3.3.9) is clearly unique only upto an 

arbitrary multiple of the basic eigenfunction pair ( o, go) . 

Hence the inclusion of the as yet arbii'ary function of lr , B1(1.) 

times this eigenfunction pair in (3.3.13) . The deteEmination of B, 

requires the consideration of the order 	differential system , 

which from (3.3.4) , (3.3.6) , (3.3.13) is found to be 

(411,vz 	dg, 	co 021; 	c<73,541, c; (5) 
dT 
14, [2 az 	gc, 	p 4 coal]] 

_4  60  f 	cos Vt.] 012. (r) 

	

a r 	) 

	

where the functions- Fo  , 	, G 11 I GIIL are given by 

(3.3.15) 

f: CS) = NI, 4- 02-ro 'ki go 
F-12. (3') 

ail cv= itfo 
GI z-  -1J1 

 

(3.3.16) 
a,b1 c,d 

 

  

Having solved the order Ems , E
i 
 systems the right hand sides of the 

equations in (3.3.15) are known except for B1(1) and Tz  If we 

now invoke the solvability condition on this system we obtain 
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an ordinary differential equation for B1(1-.) , which has a 

solution periodic in if 

- 	[co'  r12 y!67,1dy 	 (3.3.17) 

tre"f xo -co"4.01 cif 
and 131(1.) is then given by 

=ziricost 4kszn 21.j 

1 
tf

... 
-  fo  fo-'f.-1,  44;volar  

fog I I:go -44.1044 

if = 	 :, fo.fri2 . 5‘ .:60,21 cli° 

4fog il:40 - eN401 Gq 

where 

(3.3.18) 

(3.3.19)a,b 

and the functions 	, etc. which appear in the above integrals 

are as defined by (3.3.16)al bl cl d respectively . If we now 

substitute for 13,("t) from above into (3.3.13) we obtain 

6.t„vo)= 	CdS r k+tr f ) yo41&c,) 	a.in,2t- tf,t  
57 (3.3.20) 

Having determined BI(T) we can substitute back into 

 

(3.3.15) to show that (.u21  va) is of the form 

(ti2tvz  ),. geiet eurt az ;12) + cos21,  (1; ) 43 ) 4. (4.1,1  y,f)  4 4t: 0;,,y4-) 

Sitti‘ (C‘)1S).] 482 (Co yo) 	
(3.3.21) 

04 

where the function pairs ( 	g2.) , ( f3, g3) , ( f4, gig,) 

( 	gr) are solutions of (3.3.22) with Hz  , etc. as given by 

(3.3.23) . 

a 21; L I , e 144 

h/.1;, (3.3.22) 

= cift r. 51.4, 	o 	o ) 
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H, = — 	N fo  + F",] 

14 2 	(21,,N,c0  _4, - tr,(tritif0  +.21;zioy 
CC 	

k clo F; .q triVfo f 	kijo)) 

	

° 	gi2  < it  2 	0 Nfo  

	

1(2 Tz 	tri)0  

f 2 tf2.10  4. 6; 2 4 4 6444901 

k'= 	 4f t, w, —fob1 

1(s 7--k-cIrtt24° Ira  C fcvi 

(3.3.23) 

alb,c,d v el fl gl h 

It follows from an inspection of (3.3.14) , (3.3.23) that the 

function pairs ( f$1  gg) 	, gi ) differ only by an arbitary 

multiple of the basic eigenfunction pair , ( 	go) , and this faci 

will be used later . The arbitary function of t- , Bl(r)  , 
3 

appearing in (3.3.21) is now calculated using the order Esystem 

of equations . 

Equating terms of order E in (3.3.4) and using the 

expressions for ue  ve  , etc. already calculated we can show 

that 

fi-   	 1;v)= 	 2 	- Cost 4 X, a cLr;rog, 
dt 

176,(.4.2401 t. ra j  046iat rizt 4- coat- F-23 

4-C 011- 64  + 5K14,t 65'4- 54 2r r2bj 
ern 

	

st2.613/V31):: — 64481 	Cost co  

faClcori- 04, 4..tsi-a2t-,,t  4 cos3 )-e43 
4-cos t- qg I+  4- stii itt-a2s.  st.„ .41_-  461 

  

 

(3.3.24) 

  

  

  

= V3  CC,445 
1.0 	 Mar 

Jr  

where Fzi  , Fzt  , etc. are given by 



▪ 41, -ILO. (4;4 fr'1°) 4- 2d'.3 + 1 ttg 3  

4-146 	3 	+ I frei3  

- (14. f±A) 	csxrz — 	4 -I- tr#3 
—.1171c fri#f 

G24= 2G2. 
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F22.  = 	 (ioctilo) — ia21;Z,12 —11/ P644114 
= lat-Cr2g0 	 iVi 3 fr 161 

-1-012.1%1712. 	 y 3 —42/ilgoti 	/to 'Tito fej 
4- IV 	- 11; 

= 	 7-</ 

2r1r 02 r2 /tp 

(3.3.25) 

Having solved the orderC I C,Csystems the only unknown 

quantities on the right hand sides of (3.3.24) are Bz and T3 

which may be determined by invoking the solvability condition 

for the system in question .We find that T3= 0 if Bz(r) is to be 

a periodic function of t The function Ba(t-) is then given by 

„ 13 -1 fg.3  Jot tr cost- *anal- 4 )rg Pitt •1-).7 Cos0 1 rig. cos 2Z-] 
— 	 aL 	c7r. 	 ef-rr 	

(3.3.26) 

where if  3 114._ , etc. arb determined by 
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and  ),„ = icii.2Y,‘2%,icif 
,e.wacir 

i = 3,4,5,6,7,8 

However we recall that ( f
5
" g6_) and)( fD , g,) differ only by 

an arbiteary multiple of the function pair ( .1'00  go),,and so by 

using (3.3.17) with illy as above we can show that is in fact 

zero . Having determined B& we can write.( u2 , v2  ) as follows 

(42  ) yz) 	Fa scn 	#44- ) ff24 .10) cos 2' (C3411.71; 

(4; 	st3t 	its 	175.-p 
421 (f,c -1-ir6  o , 	) c .4 (t1  ) 7103 

04 

(3.3.27) 

If we substitute for Bz.  from (3.3.26) into (3.3.24) we can 

show that ( u3  v3 ) is of the form 

(43)Y3)= So  roc2cost (i6 y 4.0z sidt 	1- cos 3.b. 	f  

IL cost- (ifq , I,) 	44014,t- 	)910) 	(3.3.28) 

+ 3;12' (‘11) 	 cos6'4 - (1;2. /ix) 4'CL5-  Xj//33 o_ 	4 iz 2 	oZ 

4 03(1-) N)j°) 

	

where B3 is an arbit(ary function of 1.- and ( fo gs) 
	

g'1) 

etc. are solutions of (3.3.22) with 



= )139‘0 # Q2, 

7= (tar14.+IP5. -1'14 4Q2, 
1(8 = (174---3115- )/0 72.11410 4  qt 3 

1(ci  = (1—L4, - 776)0 -Ili 4- Qvi_ 

(10c .  4 7_117 f) 1, -74- co  4 61c. 
= (tip  +1129  36 - 01( 4' 714 fo Q16 

yo 17/4')  

We can obtain 131(1-) by equating terms of order C4in (3.3.4) 

80 

114 A/41 1;1 
117  - (2114. 4)4.21.9 	;21-a z ro VI go rZ  

He= 	-4730iVTo - 1a2  3.4 /tiro -/ 

H9 = ,1G -nc) /1/f6 	a 	%ff 4 -/ 
2 

- (017 4 72115) Nfo 	Its k,g, 116c 
tr-1)/1/16—,f 014 (frs- 4Witgo W26 

1177 

and invoking the solvability condition on the resulting 

differential system . If B3(t) is to be a periodic function oft' 

we find that T4 is 9f the form 

I(; 	0Z 	i 74:2_ 	 (3.3.29) 

where 0 2  !IL° 

 

1-7;410z(r/16 f V2 1-"z 7.rf,..74,1/3 

4-40) -1)a-til.:1 4407 

    

and 	g 
fika 

21;  
r/; 	

eca4go cif 
r : -.CZ t< 6r/5'9 wit 7 4./0,741w6 

atf; (.2 AV*  Y i r p ijrjoji 

L-C( 	-lry.91 

   

2_ f )(0  4;4  910  C17 
	

(30.30)alb 
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S" 	4 
If the order C 	C differential systems are considered we find 

that Ts-is zero and T4 is of the form 

2./ 
(3.3.31) = N., 1k-rid 	ae 1‘2 

and so it follows that we can write T in the form 

-r• _z-r-c: 	c-2-r2  4 ciLlei(i<0 
4 g6[0z4ro:, ,i-oz2<z-kri47 
	

(3.3.32) 
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3.4 /1212iEhliaLlencasolution 
We now consider the limit of 0 tending to infinity with C 

arbibt.ry . In this case the Stokes layer associated with the 

oscillatory motion of the inner cylinder is thin compared to the 

sep4ration of the cylinders If we let 0 tend to infinity in 

(3.2.6) we can show that 

V At - 	e e,--1134 444' 4. e
F5S-LI 
	

(3.4.1) 

We can see from above that the time dependent part of the basic 

flow is confined to a thin region near the inner cylinder . In 

contrast to this behaviour we shall seethat the disturbance 

velocity field has a time dependence throughout the fluid . 

Hence the'disturbance velocity field must have a Stokes layer 

at the outer cylinder in order to satisfy the no-slip boundary 

condition there . As stated earlier we shall refer to these 

layers as the 'inner' and the 'outer' layers respectively . 

The region between these layers will be referred to as the 

'central' region . 

We first define the following new variables 

°C. 

341 
tt = 5 Nif 

(3.4.2)a,,b7,  

V 
Thus ri , n are Stokes layer variables for the inner and outer 
layers respectively . We now define ( u ,v ) 1 (11,V) , 

( uit  v1) to be the disturbance velocities in each region beginning 

with the inner layer . We can use (3.2.8) , (3.4.1) , (3.4.2) to 

show that the relevant differential equations to determine these 

function pairs in each region are given by 
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f 	2a2. 	7r 	—2611 j.4,4, Lk% 	crin  -17 -0040-wt _4  4z.rif ,+‘_Ere t 	4 c.c v 
cp=r"-.  

f 	}1,/,.. Zfl C Pro 	c.cji 
tailt 0-  @et-  3-- 	24T. 

 

(3.4.3)a,.b 

  

dei (u v)= M erc: 
(u ) y)= - 0-3v 

az  _Mb_ 2 g ? f2 a t 
1-41 z  a- DOLDtr —rt. 

-4.4tr,ierv'v  

elt  —9.41  —2 c9 v = 244, L-5-42 —a; 	"ZiTi 

 

(3.4.4)al b 

(3.4.5)a,b 

,flaTse as 

from (3.2.8) 

where C. C denotes 'complex conjugate' and M 
,w,d4,1-0414ca T 

determined by (3.2.9)b 	(3.3.8)al b. We can see 

that the required boundary conditions are 

114, = V = 	 0 ) = 0 

V :111  = La"' 	
* 

z- r)  

(3.4.6)al b 

and we also stipulate that the perturbation velocities must ' match' 

where different regions meet . 

We now expand the peiirbation velocities in each region in 

Fourier series in time . This is possible since we are seeking 

solutions which are periodic inT .Thus we write 
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v -= Vs

V= ~

(3.4.7) a"b
\

(3.4.8)a,b

(3.4.9)a,b

(3.4.l0)a,b

where ~ denotes 'complex conjugate' • The expression ( Us ' Vs )

represents the steady part of the disturbance velocity in the

inner layer • In the other two layers we can denote the steady

part of the perturbation velocity by the same expression ( Us ' Vs )

This is because there is no Stokes layer type of behaviour for the

steady part of the perturbation velocity in.the outer layer.

However , in the inner layer t hi.s is not the case since the

interaction of the basic flow and the dis~ance causes the steady

part of the disturbance velocity to have terms proportional to

decaying exponentials • Thus it is ne~/essary to distinguish

between the steady parts of the perturbation velocity in the

inner layer and away from it •

We consider first the outer layer and if we substitute for

u , v from (3.4.7)a;b into (3.4.5)a,b then equating terms

proportional to ei~ we obtain

{
] 2_ 2'11. ._~':"}[J);-~1.J«~= - 4a'l-1:t~IVf\!f }

.., o- C' 0- 5'iz.

{a>",'\--~~ - 211\} vt - ~ u~

___W1J.ElI'e_':P...
d- -=dn.
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and from (3.4.6)b it follows that the relevant boundary conditions 

are 

(3.4.11) 

We seeka- solution of the system specified by (3.4.10) , (3.4.11) 

by expanding uA
*  

l 	T in the form 

[ La:*  U 	 • -1 
0-v% 	er 

vn z 	sVi to-) vf, 4 VA 4.  Vti 41 	• 
44   

I/ 	0 

14. 	°- 

where \],,(0) is for the moment an arbitrary function of a . If we 

substitute the above expansions into (3.4.10)  , (3.4.11) and 

equate terms of order cafter dividing throughout by v,,(c) we obtain 

t3 	j 31  ‘4,41" 17  IT:- 4;1 1 V  y 	0 

Og 

V 	= Ass Li A 	Z5  

which we can solve to give 

t..,„ ow 	0 	fres'h (I 40 
(3.4.13)a,b 

Vn 

where C 6  is an arbit6„ry Constant and exponentially increasing 
n 

functions of 11  have been rejected . If we equate terms of order 

C after performing the substitutions described above we obtain 

a differential system for u n
1*  
, vA which we solve to give 

* 	•• 

hi A 	Crt  e I 	 4- 	L(1.ft ) 	-1  

4 
V4

* 
 = 

(3.4.14)a,1 

where C
n 
is another arbiiary constant Similarly we can equate 

A 
terms.of order c and use (3.4.13) to obtain a differential system 

244 	2.if 
for uA  , vA  which we can solve to give 

(3.4.12)alb 

C 



(3.4.18)ajt 
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4/114(14t• ) 	1 	if 

24(  T. cA t  "e-. (1 	+ Rh' (114) t - I 
Jan   14 

n
iii,tti.1) 

• + it, 	— 1 4.1L22.11_ 7/ 

-envt(t-to v no, ..: 	no 	1,10 ; 14 i  ial  ft  (i 4  t) - e 
swlsomemews, 	

4 I  
aNOSINIOr 

I1,4 	

Wd, 

I 

nt4(14-1) 	 u% 

i where Cn  is yet another arbiVary constant . We can continue in 

this way to determine any number of terms in the expansions 
ir. 	w 	1 

of 4 , Iri, . If we then write 11 = C(0/2)2 wc can show that u:, v:' 

have the following asymptotic forms at the edge of the outer layer 

0 	. 	. 	,v2.1-._  ..-) 0 	h  ,...,,v 
ii 2i-. v2.1 en  [4(14.051,1W +. 0- 	L. il cos ctS 

4 A 4,  r, o' 1.—  T 
a 	

L 

1- ens  sif 614) 5 ohac+0 k) 
Al ..1 

V 

vri 	" A [ 	° 6:1  

( To help understand why the hyperbolic functions appear above 

it is helpful to know that 

C°  n 	CA°  (140 24  

t42)a'1 	Alt% 	in 
a C 

in vr respectively . ) 

We next consider the 'central' region and if we substitute 

for U , V from (3.4.8)a,b into (3.4.4)a,b and equate terms propor-

tional to e111 we obtain 

(3.4.15)a 

a 
(3.4.16)alb 

we can show inductively that the terms 
00 	 44°((3.1,14̀ 22)." 

in un  lead to the terms ----17,,!---  

after 	 0/10 
to 	ro0.42-  eit 	i 

u n  and the terms+Cntaq  a)  ,7±1_21222.1±1, 
t,r n P.m ! 	 a 0- •Oz(3 rt..41 )! 

(3.4.17)a, 

  

awe 

where N is as defined by (3.3.8)c . We,now expand Un  , Vn  in the 

form 

Urn =(&) t Una 4  U Al I - • 
0-111_ 

Vri /(AA, (0-) c 
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where p.n(0) is for the moment an arbitary function of cs , Taking 

as given by (3.4.12)0 and substituting for Un  , Vn  from above 

into (3.4.17) we can equate terms of equal order in ci'to give 

differential equations which are easily solved to give 

tieL 	ffiti°&zart-P,76.r.plkartva:111[4 eceliarrefi's7Ahar7 
o(i:- "2-1 (3.4.19)a,b 

V4 	Un f OCO--( )] 

tArr 

where An , Bn , etc. are arbitary constants . It follows 

immediately from (3.4.16) , (3.4.19) that if the perturbation 

velocities in the outer layer and the central region are to match 

where the'se regions meet then we require that 

0:11  

40,0 

" C 4-z wt 
a 

4 01  

.2"z ct 
Hence Un , Vn in the central region may be written in the form 

u„ 
colha.T*11  

(3.4.20) 
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It now remains for us to consider the steady part of the 

perturbation velocity away from the inner layer . We can show from 

(3.4.4) , (3.4.5) , (3.4.6) , (3.4.8) ,:(3.4.9) that ( Us , Vs ) 

is in fact determined by 

A/ Vs 4-cl(Zov; o 
us — NVS  = 0 

Us 	 Vs  -z; cd_u_s o ) r 

(3.4.21) 

which we solve by taking T as in (3.4.12)c and expanding Us 1s 

in the form 

o 
Us v... -21/0,-) f us ÷ Us 4 - - • 1 

COT (3.4.22)a, 

Vs = 	d'L Vs  °+ Vs! 
cf. tv,  

 

where y(0) is for the moment another Arbitry function of C . 

Substituting for T and Us  , Vs  from above into (3.4.21) and 

equating terms of order a c)  , cl 	etc. after dividing by y(i) 

throughout we can show that 

Nztls 4- az  I C0 VS = 0 
Us' - Vs =0 

= V3° (Es 0 , =. I 
dc 

and for 4,t, 1 	k-i 

(3.4.23) 

Trk —5- ailto i-  71; 5  clods= -- rzo 
(3.4.24) 

Vs:k 	40.5%. 	f 
ci r 

We must now solve for the perturbation velocity in the inner 

layer and ensure that it matches with the perturbation velocity 
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in the central region where these regions meet . Substituting for 

u , v from (3.4.7) into (3.4.3) and then equating terms 

proportional to einY 	n =011,2,31415 ...... 	we obtain 

[92- 2,0,42.1 ;s 	4"a.a,11-.  frs - 	1+ 	 CI C.)] / (3.4.25)a l b 

y 	u  5  4 :4;5:7 oz 04. 	64.04. c. 6.4  

t 	7Fr f 5 	o-- 

f TT_ agt_ 

fv, ( 1111-;) 
0-2  (3.4.26)al b 

lvs ;,.; v2. 

teDt-12.-2i3 . or 
q 2 	

Ci-to 
- 	2 

and for 	2 

fvn 6-141) tv_112-  vn ifez   2 all u  
1 17.--) •As 4a2  

t 

(3.4.27)a,b 
4- E(vs  ;1( ".̀4.. ' v,_ -cP -I1ii 

A 

21:A Vs% 	fLin 4- . 111;. it,44-1 (11-0 -1(1-ti)  
0- 	0-  L 	0-47 

where D.rid 

In- orderto find the relevant scaling for ( us 1  vs ) in the 

above equations%we consider the basic eigenfunction pair ( fa' go) 

, determined by (3.3.7) , which represents the steady perturbation 

velocity for the problem with E = 0 . We can show from (3.3.7) 

that near C = 0 

2  1, ad (3.4.28)a,b 

 



r 14a11-2■1 [16° 4 VI I  4 • -3 1. 	dr -e-T- 
2.1C 4 . 	+ 	(tt Etits -.:18 	 e . 	.7641.) 	 (i-z) 

v 	 woo 

00 .1 

Since we are seeking a solution which is in some sense a pertur-

bation from the problem with zero C 7  we assume that the correct 

scaling for us 1  vs  follows from (3.4.28) Hence we have that 

44.5 	0C1  

1/2. 
Vs 	ft- 

and the above scaling for ( us , vs ) , together with (3.4.25) 

(3.4.26) , (3.4.27) , suggests the following scalings for u s  ,. v#  

u2  etc. 

'hart -1 1.1 0-• (-41,-, 
-(6*Pt 4/.2. 

Ar a- 

..(6.11.4)/2, 
VI 19'1 	 V2 ,1 

n I) 2/  3,  - 

(64-fit )/l 
' a- 

Hence we expand the above functions as follows 
r 0 I -45 	t (4 S 4 Lt s 4 - -,1 

v5 :1 

&i t 	■•••• 

V — I — 

elEc 

If we now substitute the above expansions into (3.4.25) , (3.4.26) 

and take T as in (3.4.12)c we can show that 
t 2 • j [us  +us 	-4at  i'ra t 'e +....jc (1-risni s v 0- 

o.3/2. 	er".. 

( 3 .4.29) 

%(3.4.30) 

alb 

	

4- E (E51;',4̀  +it': +,-jt' 	4  C.C)1 

	

i 	Z 	
47" L 	742-$, 	

"it41) 0)2- 1[4 4- VS 4 — 1 = —0.41Ltf 4.U: A --3 4-g r_ (LPLZ°4 ' ''j ( lti:)e 37 	..--... 
els- 	 ....-71 

	

a" 	14.4.4 x 

fcD1  - - Qat  -2Z I Or"- 2, j [1.4  P + L4 4. - . • j 
le 	0- 	 ct I is 

0  aui.o.al. 	ail „. 4) 	-I _not; ) 
— -ipat.trcYr6 4  ' -1 [ (LA) &law: 4._ .] 4. £ Es +--- je t _ 

00,.. 	0- 
(3.4 .31) 
a4b 
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It follows from (3.4.6)a , (304.7) , (3.4.29) that the relevant 

boundary conditions are 

= 0,14.5 z _ 2(44 	0, 	 /A.-, 745/1'?' ' 	(3.4.32) 

We can see from (3.4.30) , (3.4.32) that the first five ( u , vs 

can be determined without any knowledge of the expansion of ( uilvd 

Having calculated these terms we can see from (3.4.31) , (3.4.32) 

that the first five terms in the expansion of ( u1, v1 ) can then 

be determined . We can then return to (3.4.30) and calculate the 

next five ( us  vi  ) and , if we write down the equations for 
 s 

( u z, v 2.) 	we find that we can also calculate the first five 

( uji 1  vi ) Continuing in this way we can calculate any number 

of terms in the expansions of ( u
s  vs 	' 

) 	( ull  vi) 1  ( uz, v 

 
etc. We first equate terms of orderc 

0 
 a  4  O 	lllo l oin 

(3.4.30) and solve the resulting differential equations sAect to 

(3.4.32) . We obtain 

241= 	 2" 

Ail= 734 2.4. /1013  

-Lisa= 13.1 1,1  # Al 7 	a2  go 1*  
4,1 4,12  4. A21,3 'k ;28/  44  sat (4°— Ce''  3 A45 84114.A3713 4.  at 8z  741.2y6_  41 .-C:f; -461;  

3 
ea  

Qt) 3 
Vsl" C.21/1-a rt 

Vs3= C31 4 &Co 3  .÷  616'1" 3 	6 	 
4r) Vs---- C4.1 astC/ ti 5  4-  gi 	(4 	a 
3 

 3 	I 

where A 0 , B0 , etc. are arbibbry constants and an arbitrary constant 

in u
s 

has been set equal to zero . This is not strictly 

neccessary at this stage and has been done to save a great deal 

5; 0 '02 8d Ism-co-V.1  
30 
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of tedius algebra . The reason for this choice will become 

apparent later . 

Having determined the 
-112, 	- 1 

terms of order  

first five ( us vi ) we can equate 
--PI  -1. 0 y 0 in (3.4.31) and solve the 

resulting differential equations successively subject to (3.4.32) . 

The first few terms in the expansions of u, vs are found to be 

as follows 	100  

AAA= Po  (el — / 1(1,ey 
— at6 col; .20#0,12e- fria+0 

.4,1. 	e.-2/14o 
_ oze 	e, ,,012,,,,12i_lette!".zi  2-yet #0+ s_L2 	e- 1(02 l y 

v,0  _%/Tie ite 	114134 36-il
2 
	1 

,z4. 
= 4-2 	 31  

44 	U44., e  A c,'" 	 flop* 4- 	64.11-i-3A401 
3 2. 

where Pit  PI  , P, are arbiliary constants and exponentially 

increasing functions of 11 have been rejected . We notice-

immediately from above that , in contrast to Lil l  la: , the terms 

of , vol  consist solely of exponentially decaying terms , thus 

giving no contribution to' the velocity field at the edge of the 

inner layer However the appearance of the terms 14 7  u: etc. 

on the right hand side of (3.4.31)b ensures that this not always 

the case for higher order terms in the expansion of v,-  . Having 

calculated the first five ( 	, vt ), we can calculate more of 

the ( 	 , s  us  vi  ) and the first few of the ( u3-;LI  vl ) . This s  
enables us to calculate more of the ( 	) and so on 

If we then write r  c(a/2)/-  we can show that u9  and v, have 
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the following asymptotic forms at the edge of the inner layer 
0:21( R, CI 4 ia suzha 	6-"/"2  [5a16 C01-0  40s hal'  —Pe  coshaS Q41 	 4414i) 

-I- 'Pt  
ot,11 

4. JO [1'2, (t ) S4nh y 	cosbet-3 4- S-141- 	fc,f0  4.03 h 44) tifiaN 
caa.rz 

occi-7/z)} 	 (3.4.33)a l , 

We must now match (3.4.33)a,b with the expressions (3.4.20)a„b 

( with n = 1 ) at the edge of the inner layer . Clearly we must 

choose 	a and Po  = 0 . The first non,zero terms in the 

these asymptotic forms will then match if we choose B7, Pi  as 

follows 

(3.4.34)a,b 
sale Co<  

4(144)sinha 

eCo-ro  cobta 

Before matching the next terms we redefine CI  as follows 

G'i - 	 eFf (/ 4)  4 C*  
SaLE10  

CI  now being an arbib‘ry constant . The next terms in the expan-

sions will then match if we choose pa, , Bsi   as follows 

(c01;+Ci'r°) 
1* ( 144.)44;1 k4 

ep.1 „ _,J;t5r4336Ecol'Jvc*flz kg  __a\rat-et,thq 
to 	11  

and higher order terms can be matched by a similar procedure 

Since we are primarily interested in calculating the first few 

terms of the expansion of the Taylor number and the information 

already calculated will suffice for that purpose , we do not 

pursue the determination of ( U2, 	) , etc. here. Taking pl  13:7  

as above we see that the dominant unsteady velocity in the central 

1 (3 .4 .35) 
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region is given by 

5:2 	,5-14-7 ,h s 0 -3' ) (cos 

a a-54  

Having calculated uilu: , vi0  , 	we can equate terms 
-3 

of order d , d in (3.4.25)al b and solve the resulting 

differential equations subject to (3.4.28) to give 

=;117.44/1  413  l+ 44[42.- ECdf2 	4 c,r031t7  4. 3g, f 	4 sr?" (-C4;1'6074  
3 

1-ci 4T40 -Co;r;31,7  o 26180,1;41 	L4174- 27124-72 	-76I 70 072 

aist.= 336re +A934.,;tg„..„4.+QtrA„-ty.,--6.46,-.K.,74-e3-6,3 
3 	S' L 	6 3 

Al — CC0  ft  4-  Ccro2i it7  
70 

4 
a2 go  1014- rq 
403c, 

di-C  2A cCio  J 2 .e721171•1411.-1-  3  WI" 1441242q71 4-2643 #2311-26 
25-4 

o2  611:60'11 4-41.0] 	elEkr+- 	-i-7Sj+ 7 ffri 

	

V5 5-1: CsA 	 3 	-1 a2c /P 

	

v 	3 	
a 	I go  f A + a #439 IC 4. 4-La n  6 

30 
lco-r; i-̀2)1E21"2-+ qi 	lc cor, ;11 

s 	(' 

	

6 ... col  4  et IC4 ri -1-33 ri 	{Agi cie. —00/3-1/ 7  a 	 lo  

_ 4,3 2c llEco-r; tCC TdJ f j 2i [211-1- ,41+8] -tocos, 	+*1 
	32 

4 SGLIC 2ro coft,4 fj2" 4 2Cl 	cosq]e 141 el  cos' 

32. 

If we calculate a few more terms in the expansion of ( us  2  vs  

we can show that us and vs have the following asymptotic forms 

at the edge of the inner layer 

	

% S; (4Z I ez, a;ro, 5) 	s e roes/4;4o/ to C 

	

J 	0 C kEtli 
L=0 

c7-If °kir 	Cfj 	Al* +  0 2' a 	00-4)} 
..4o 	 ilo 

f;:w2fvf-.5-zq 9-1-rs4  2- 	0-4-4)A4k&*0‘;" 4 	, , 
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vs % E 0: 1  il 1451 A, e;, (2,4A0 4 Emits pi a  . to - r I : 1  0 < k.< i } 
 4- 0.-1 p-‘■ I:5 - 0+54 ' j - 02  1-0 71 5 ife + a (393 + cr f,.,---EC-a4.1"(:] 4-2 	I 2 	f 2,0 	vl. 	i2o 

+ alai cc  _0 	51-  + /3, () —4214.3") +0 (3-  91 446;4) 1 20 	 4_, 	77-4,  
(3.4.36)al b 
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where 
aZ  C galO Nr2- 13 	034A 	(V I  +a 64/4o'fi 23/ 

s-‘ 

isi= -4aelet;i:2 2‘ 	a2CCo'rorz 
4 

7.t  z- el At + 4 9e1Co`t a  Cdk 4  

and SI , Szrepresent the following series 

SI, 	{ I + 013'4'401'6  + Sig 	a'ro 14 cilCi 	alq 

	

120 Com.o 	mo.ri 144. 

(3.4.37)a,b, 
c,d,e 

AL {53+ 4g3r÷alT7 } + 0(3-47) 
2,17z To 137 

	

g4L= gz I 3" 4  4- ‘1.3- 	4- 	 c+cits'34aTft 57  Co  4."17 	(3.4.38) 

	

77; 	 (2 a CO40 

	

4-Az  15Clf TC71 	c7  (S 
kofe lu 

It now remains for us to determine the constants A0  B. etc. 

such that the above asymptotic forms match with (3.4.22)alb 

where the central regionland the inner layel,  overlap . We first 

note that ( 1'0  , go  ) , defined by (3.3.7),have the following 

form for small C 

s; (4, 6, co, S)) (3 .4 .39) (c,,30) = (-S,(4.g,C)0, 

where A , B , C are given by 

A .7  41 4:463) 8 4::(o))  C'= 47.7 ,9„1,(0) 
a 

(3.4.40)a b 

where a dash denotes a derivative with respect to C and S 1  , S4  
are as defined above . Hence if we choose y = 1 and ( 	. 

( ft)  , go  ) then (3.4.23)-io automatically satisfied and the 

first terms of (3.4.22)a,b and (3.4.36)alb match if we choose 
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A © = A, Bo  d B, Co  C Similarly if we put 

<= 

	

(054 )W) fi (I? Jo) 1t 	• ' • 

then the next five terms of (3.4.22)al b and (3.4.36)al b match 

at the edge of the inner layer ft With the above choices for Ti , 
4 	4 

T21  etc. we can see from (3.4.24) that ( Us 1  Vs  ) is 

determined by 

i;'e N2Us6i 42'1 	4"-- 	67-  0 	a -- ofd 
V 6  — A475.4  .= 6 

with boundary conditions 

	

1/5 4= vs6= dos = 0 ,1= I 
	 (3.4.42) 

and if the order c tevmA in (3.4.22)al b and (3.4.36)a,b are 

to match at the edge of the inner layer we require that 

Vs6",  (46,c/36,06, a, .9 441,a-a 441 — 0 .2  TO; .11̀  
12o 	4114  

1(.3-6) 
1.2 

vs.6,t_s,(A6I zi.4,a ) 	6:;1 	al
+70 6 2 

) 4 Oc-6) 

(3.4.43)a, 

at the edge of the inner layer . However the above series are 

the small C series solutions of (3.4.41) with boundary conditions 

if, co, 	ozi 	S- ag (3.4.44) 

Therefore if we consider (3.4.41) with boundary conditions 

(3.4.42) , ( 3.4.44) then the solution will automatically 

satisfy the requirements on ( Us
6 

V:) away from the inner 

layer and for some A()  B61  C 4  will be of the form given by 

(3.4.41)a,b 
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(3.4.43) at the edge of this layer . Thus the problem reduces 

to solving  the system specified by (3.4.41) 	(3.4.42) , (3.4.44) . 

In fact , since we are only interested in finding  T g , we 

merely use the condition that this system has a solution which 

gives 

   

cr, ° 1:4 	jc  

where ( f
d 
 , g

o ) is the adjoint function- pair defined by (3.3.10) . 

Using  (3.4:37) , (3.4.40) we can show that the above expression 

can be written in the form 

el-ro• f  /3 fc7(0) f:(0).-ity.(0)g'i(0) 

3.24' ,i:D4-91. acs 
and a similar procedure for the order 8" terms in the expressions 

(3.4.22)al b , (3.4.36)a,b shows that 

1 	 .„ 
.2'r CLOaco(Let go (co go  t 14  /0 0 4: coy,;,(0) 

-,-77nvIg4iw (3.4.46) 
4s6,4„ 

and Tg , Ti  , etc. can be obtained by a similar prOcedure if 

higher order terms in the expansion of the perturbation velocity 

are considered . However we have seen that to order 4=
T may be 

written in the form 

0:3  T 077/2 	62:4  ) (3.4.47) 

where T6  and T7  are determined by (3.4.45) and (3.4.46) 

respectively and To  is the Taylor number for the steady problem 

with C . 0 

(3.4.45) 
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3.5 The numerical  work 

If we wish to obtain the critical Taylor number , Tc2  

associated with (3.3.25) we must take into account the variation 

of a. with E near its critical value for the problem with zero C . 

A calculation similar to the one given by Venezian (1969) shows 

that if this effect is taken into account then Te_ is given by 

is Tr. <0 4  4 C1-<c-  CA  011'6 6:1 3-6f1 (6 6) 

(e2 We 
L., ft? 

(3.5.1) 

where Tco  is the critical value of To for the problem with zero 

C , and T.z.c  1  T, 	etc. , which are functions of Q , T. denote 

T4  etc. evaluated with Tr. T and Q equal to its critical 4. 	 0 a 

value , ac 1  corresponding to Td = T. 

Similarly if the variation ofawith 0 is taken into account 

we find that the critical Taylor number associated with (3.4.47) 

is given by 

4. 	 4- 6 	i 	0 (ill = 1.: C  
■■••••• 

	

0.3 	-74 
(3.5.2) 

where To is as defined above and T6  , T 7  represent T(0  T7 

evaluated with T. = Ta and ek = a(. 

All the computations were for the critical case and as a 

starting point we assumed the following well-known values for 

410L 2  To  

a. 	3.1266/ 	
....---- = 336'9-F 	 (3.5.3)a,b 

We then solved the ordinary differential systems (3.3.7)2(3.3.10) 

by a fourth order Runge-Kutta scheme with 40 steps The method 

of solution followed that described in detail by Eagles (1971) 

and so we do not describe it again here The solutions obtained 
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were in good agreement with the corresponding solutions 

obtained by Di Prima&Stuart (1972) when normalized in the same 

way . Having determined the function pairs( 	go) , ( f01  go) 

we used Simpson's rule to evaluate the integrals in (3.3.12) 

and we were able to show that 

( 3 .5.4) 

We then solvedthe system (3.3.14) again by using 	the method 

described in detail for such systems by Eagles (1971) . We then 

evaluated (3.3.17) and obtained 

-20x• 6 	 (3.5.5) 

We then solved the systems (3.3.22) for i = 2 , 6 and used the 

results to show that 

"r1+0 -= 1 .7 
	

(3.5.6) 

This value is correct only to two significant figures wheras T2 

is correct to four significant figures . If we now substitute for 

To Ti c
0  from above into (3.5.1) and eliminate a using (3.3.2)  t 4 

we obtain 

338f.9' 	 /-76%-1  f4CFFj E!fr-1•4f 
	

(3.5.7) 

For details of the function pairs ( fp g 0) 	( fa  g ) and 

some of the more important higher order function pairs see the 

Tables at the end of this thesis 

The high frequency critical Taylor number requires only the 

knowledge of the basic eigenfunction pair together with the adjoint 

function pair . After evaluating the integrals appearing in 

(3.4.45) , (3.4.46) using Simpson's rule once again we found that 

T. was expressible in the form 

33 gl -q 	E 22 / 4:e9e Fivvi  la  # 6(0-x) (3.5.8) 4p- 0-3 
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3.6 Discussion of  results 

We first discuss the nature of the velocity field associated 

with the disturbance imposed on the flow In the low frequency 

limit the order Co velocity is just the usual steady velocity 

multiplied by a function of,r,  9  130(t) , this function being 

determined by (3.3.11) . Since 1 is in fact negative it follows 

that the order C velocity has maximum value when %- has the 

following values 

'ten 	(4.kil +I) 112 j 	oi  (.1 2 _ 
(3.6.1) 

This is surprising since we would expect that the maximum 

velocity would occur when the inner cylinder was moving with 

its maximum velocity rather than when it had its maximum 

deceleration' as is suggested by (3.6.1) . A related result was 

found by Ti PrimakStuart (1972) when they investigated the global 

stability of the flow between eccentric rotating cylinders .. 

Suppose we wish to determine the position in a cycle when the 

the Taylor vortex activity is a maximum when terms of order E 

are taken into account . The above authors have suggested that a 

relevant Thssical quantity to consider might be the axial velocity 

component near-i,t1:outer cylinder . However , since the latter is 

in fact zero at the point in question , a Taylor series expansion 

of the axial component near C = 1 shows that the axial velocity near 

C = 1 is proportional to its derivative with respect to c 

evaluated at C = 1 . It follows by considering the equation of 

continuity that this is equal to —(tc 1 	. A calculation using. 
dS 2  

(3.3.11) , ( 3.3.20) shows that , if terms upto order C are taken 

into account,then this quantity has its maximum value when 

t  efe4E4:f2 6)/C070-01]+2`til toa2) 
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and the computations show that this becomes 

1.7 	C E  a- 	- 0-031f ca') 	(3.6.2) 

Thus we see that the position of maximum vortex activity in 

a cycle is before or after the position of maximum deceleration 

of the inner cylinder depending on whether or not , a , u. rich we 

recall is proportional to the angular displacement of the inner 

cylinder , is greater than 14.7 . With T--3390 this value of a 
A 

in fact corresponds to an angular diplacement of the order 600(d/42  

In the high frequency limit 	it is possible to isolate the 

steady and unsteady parts of the disturbance velocity by Fourier 

analysis . The unsteady flow is dominated by components with the 

same frequency as that of the basic flow . The presence of the Stoke 

layer at the outer cylinder means that the relevant measure of 

vortex activity is not necjessnrily the same as the one used 

above . Howeirer if we use the one described above and just 

take the first term of the expansion of u into account together 

with the dominant steady component , ft)  , we find that Dr,1 
fzi 

has its maximum value when the inner cylinder has its maximum 

velocity . 

It is of interest to know that the quantities 1 '1a  

which we derived in /3.3 are related to the coefficients in the 

expansion of T in powers of a small growth rate 	for the 

problem with zero E .Essentially the latter problem is to solve the 

following system 

(3.6.3) 

where.(140  N are as defined (3.3.8)a,b1 c The above system can 

be solved by expandingu l v liTin the form 

!.t o  f (rout 	7  
I 
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and the system can then be solved by usingthe method 

The results of such a calculation show that 

(AG]  Via) (-fa1  ya) J (4̀ 4/ 1/r) 	-14-0/1-fai yi) 

Qrclir -C170=-- rt 

3.3 . 

(3.6.4)al b 

(3.6.5)alb 

l  
where ( fol  go) 0_ ( fl  , gi) , T.p if are as defined in 

i 
 3.3 . 

The ratio TI /Towas computed by Davey (1962) who found that 

rt  Vrc: = I /13.  i 

wheras , taking if as being —26.18 , we can infer from above that 

r' 11(c, r- r 7 ( 3 -0i 
Thus we have reasonably good agreement with Davey's work , the 

slight error possibly being due to the fact that he used a slightly 

different value for the Taylor number To. Unfortunately Davey 
I 

did not compute TA in his work but a rough estimate of T2 can 

be obtained by interpolation from Table 3 of Davey , Di Prima g1._ 

Stuart (1968) . The resulting value agrees witbin50 of the value 

which we can obtain using (5.6.5)b . 

We have seen that the critical Taylor number at which 

instability first occurs is given by (3.5.7) in the limit of 

E and a tending to zero . Thus we see that the dominant correction 

to To  from its unmodulated value is negative . For fixed C the 

critical Taylor number increases as 0 increases from zero , 

but , unless 0 is taken to be greater than.-IZ , To  will 

always be less than its unmodulated value . In Fig. 6 we have 

shown the variation of Tc with 0 for fixed values of E . We have 

also calculated the order c4P, d'#-0-  correction terms in (3.5.7) 

These terms include corrections to T. through A being dependent 

on E . 
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14. 
We found that the order C term was -1303 and the order C 0 to 

was zero to two decimal places . 

In the limit of 0 tending to infinity withgarbittary we found 

that the critical Taylor number was given by (3.5.8) . Again it 

seems that the dominant effect of modulation is to destabilize the 

flow since the first correction term of T from its unmodulated 

value is negative . For fixed C we see that T increases as a 

decreases but unless 0 is greater than &-Z.0 T is less than its 

unmodulated value assuming of course that the next term in the 

expansion is negligible for a of this order of magnitude . We have 

shown the variation of T with a for fixed C in Fig.7_. 
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CHAPTER 1V 

TITE NON-LINEAR STABILITY OF UNSTEADY CYLINDER FLOWS 

4. 	Introduction  

In view of the results of the previous chapter with regard 

to the work of Donnelly (1964) we now see if better agreement 

between theory and experiment can be obtained by taking non-linear 

effects into account . The procedure adopted in this chapter is 

as follows. 

1n14.2 we formulate the non-linear differential system 

governing the stability of the flow. This system is just the 

system (3.2.8) of the previous chapter together with the non-linear 

terms neglected in the derivation of the latter. 

In/4.3 we consider the low frequency limit and obtain a 

solution to the differential system by the method of multiple 

scales. We again balance the dominant time-dependences of the 

system by letting E tend to zero with o/C fixed and equal to a 

say. The Taylor number is perturbed by an amz'ount of order C 

frbm its critical value for the problem with zero E. The perturbat 

velocity is then expanded in powers of C and we find that the 

time-dependent amplitude of the leading Fourier mode satisfies 

the following differential equation. 

- 	117 + 	; coccatiA 	 (4.1.1) A7  
d(a) 	21-0 

Here Ti  is the order C alteration to the perturbed Taylor number 

and a, ,r are negative constants. The non-linear effects are 
3 

represented by the A term above ,and, since al  is negativei it 

'follows that the effect of the non-linear terms is to stabilize 

the floW. If we suppose that the speed of the inner cylinder is 

nQw given by rzi14-64(041 ,where OA) is a slowly varying function 
ofcbt, \ we can show that the corresponding amplitude equation is 

given by 

--r  tr; 4 2.1"; Yap -I- a, A3 	(4.1.2) 
d(c4t) 	21"0 
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If we put f identically equal to zero above and rescale certain. 

quantities appearing in this equation we can obtain the third-or 

truncated amplitude equation given by Davey (1962) ',,and 11 is 

then proportional to the growth rate of linear theory. Moreover)  

if we define an instantaneous Taylor number ,TE, by 

 

• 

 

c 

then it follows that, since I; 1-21: 	is the order E alteration 

of T4  .from T 	Davey's amplitude equation may be regarded as 

being valid for this problem if we replace the Taylor number T 

used by Davey by Ti definivited above. 

InjP4.4 we consider the nature of the solutions of (4.1.2) 

for various functions f(c4t). In particular we consider the case 

of f(tot) being cos(a) and examine the possibility of OA) 
being a periodic function of(A. We find that such solutions exist 

if T is positive. 

In/4.5 we examine the limit of 0 tending to infinity with 

C arbiifary. We assume that the Taylor number is given by 

LC-3 r6 	° (4779 	 (4.1.3) 
and it follows from the high frequency linear theory of the 

previous chapter that the flow is unstable to infinitesimally 

small disturbances if 

fc: >"48580 -r; E2 
when 1(0 = COSGA. 

In fact we consider only the case when f(Wt) = cos(a) so that 

we can use the method of /3.4 which requires that the 

perturbations are periodic in Wt. We find that to the order of 

magnitude in 0 which we work the non-linear effects are only 

important through their effect on the steady part of the 

perturbation velocity. The latter is assumed to be of order 044  

in the central region and we find that the amplitude , Arl  of 
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the leading steady Fourier mode is given by 

ts +12]  
s 	 (4.1.4) ro 7-; 

where %is given by (3.4.45). Putting C equal to zero in the 

above equation we find that , after eliminating Tb  using (4.1.3) 

that Axis then the equilibrium amplitude solution of Davey's 

truncated third-order amplitude equation. 

In/4.6 we discuss the relevance of this work to the 

experimental observations of Donnelly (1964) . We find that the 

low frequency calculation explains some of his results but our 

theory does not predict an optimum value o for the enhancement 

of stability. 

4.2 The basic flow and the disturbance equations 

Using the notation of the previous chapter we recall that 

the basic dimensionless velocity, (0, V, 0 ), for the flow 

between concentric cylinders when the outer one is at rest and 

the inner one has angular velocity .(21i1+6Cosa3 is 
v  f 	 jsirdt,1;(1.0  # comwr 

L Son h 47- 	COWYV6A3 	(4.2.l) 

Suppose that we again perturb the flow such that the 

disturbed state may be chargcterized byu l v+V,w, 

p/p + by , where p is the basic pressure distribution then 

if we rescale u , v w as follows 

AL = -VA.2/2 d V 	RI V 9/2 	w 	Vt.*/ *72c1 

and define the variable () by 

= Z/c1- 	 (4.2.2) 

we can show that u 
* 	11 

1  v 1  w satisfy the following equations 

L_ 2.  jot t: -rC/ 44: 	 P.  4- z 5lz7 

- 	= -Eke -i-Q3 
a 1 2- (4.2.3)alb,c 

J"5 
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where 
(4.2.4) 

and 
	= U*°44  VV4se e)': —I

V2 

ac 

and T is the Taylor number defined by 

Q . .44 .)bv*  1A/ k4) 

G - .1.1.*glf 4 tv* 
J5 	4 

	

I(4.2.5)al bl e 

21212  R, dy.vz 
The boundary conditions are determined by there being  no 

relative velocity at the boundaries. Thus we require that 

.1.2‘=.- V* W*1 = 0 ) 5 = 0, 	 (4.2.6) 

Finally we note that the equations (4.2.3)a,b,c are the 'small 

gap' equations obtained from the full equations by letting  

d/R)  tend to zero with the variables j):,#)44i vI VV and the 
# 

parameters T , c , E held fixed. 

4.3 The low frequency limit  

If we replace V in (4.2.3)a,b,c by its asymptotic form 

for small 0 and drop the star notation we obtain 

- efrit  cf“. 1" fro f ;COS 14,  I- 60. k:a 	v Tip _g ate, 4 	CP2  
2-7 2a05 

fl-o-2  be — fi fEcos.e. 4 60.1sio-4..314, *71- 	- 	 (4.3.1)a,b,c 

4!) he 	0 

cr5 	I) 

where the functions 	are as defined by (3.34). The 

relevant boundary conditions are 

r V Ver = 0 j 	a0) 	(4.3.2) 

Following  the method of the previous chapter we seek a solution 

of the above partial differential system by letting  C tend to 

zero with 0/C fixed and equal to a. We then expand u 1  v 7\ w 1  T 

in the form 



(4.3.5)a,b, c 
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= E fuo‘  cosa/ +Es4E/io uoL  cos2411- Eli/Li cosa/ 
filittO534d4eal 

-eh Voi Case,/ -1- ElfzEto 4Vizeos 24j+ EIVIICaS4 
4vircos3,,q+o(il 

w 	iwe, 	ai4elivg. +1.47.6‘.iataisi 4  E Etv.z , 54/14 

4 wi3  in 341f01e 

1-TD 	+ oce) 

4.33 )a,b,c,c1 

where ct is again a wavenumber. This expansion procedure is 

similar to that used by Di Prima and Stuart (1973) who were 

considering the stability of the flow between eccentric rotating 
1 

cylinders . The C scaling factor in (4.3.3)a,b,c follows from 

(4.3.3)d and that if T is slightly greater than To  then the 

amplitude of the disturbance is proportional to ( T T6) 

IP we replace c by aC in (4.3.1) and substitute for u , v 

etc. from above into (4.3.1) , (4.3.2) and equate terms of order 

C we obtain 

tle, ag ro-Xvol oco 
Atot 	Vet 	 (4.3.4) 

0.0# 4. at tvo •z--  
= 	W., :raj= ail 

where M is as defined by (3.2.9)b. The solution of the above 

system is given by 

,40, :7 A4)-1, if) 
v., = AM 51®(3-) 
wd , 	A (1-) dfsvcr) 

cps. 
where f 	, go(4)are as defined by (3.3.7). If we now substitute 

for u,, v , etc. from (4.3..3) into (4.3.1) , (4.3.2) , equate 

terms of order E and then use (4.3.5) we can show that 



4,14, 
a V` 

(4.3.6) 
.)s 
A' ('°u°)  

IA I 0 Tr.: Vi o 

and 
At 2. 1- 

=ri o 4Avcifoc0i:. 
7- Leis ;Fis- t 	+ 44f; Tottot 

fL 

92- 

U.11. 	wt 
and so we can write 

JA.10 = htio  = 0, Vro 	flg.2 

where ga. is the solution of 

-1 t (f°5c)) 
= 	= 

in the form 

biz  

VI 

4'4 Cr) 
4'13  () 
113 

(4.3.10)al bl e 

°it  - 
S 

4 20,...h 3 
01 'S 

(4.3.11) 

where f3 
-L 1 g 

14-4a13 ,., 
g 3  h 3 are defined by 

I C 410  cljo rz a- lcis  
ss 

c30 C1-5P414} 
dS 	 d 

111 

- 	= 
tvik=0 

We can also write u12,744. 

oltit 551:2ct 
s 

0 3'=4  
If we now substitute for u , v etc. from (4.3.3) into 

(4.3.1) , (4.3.2) and equate terms of order C and then use 

(4.3;5) , (4.3.8) 	(4.3.10) we can show that 11/1 I 

are determined by 

Add," 4- all: it V= oc cig /141:, —,4 a ; /rip cot- 4 a2  02- 
11 3 (,c) 

Lu c I — 44, c-022- A 367,(5) CZ- 

I 

Ai.% --- Ai V.✓21 

?AA; 4- Ct. Wjcz.... 0 
ZS 

411 1" CV2.t ot 

fo,21,4— fo'diff 
d 

(4.3.7) 

(4.3.8)a,b1 c 

(4.3.9) 

1 VA. 	W  

(4.3.12) 
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where Y1  (C) , Gi (C) are given by 

Wc) 	cf-6' .201  if jig 	ci-cr -47  as.  3  al 47:2 J7.2  c/7 473  
4 ,i97-1C df 4_.2afc: 4./ - Lit; f' oe.5 4 lapj 
6 • 	cfriS 	oTS" 
fact 4-L'if, 4 /84 +10 113 +.2-g 04 

45' 
and the operator N is as defined by (3.3.8)c. If we now use the 

condition that the above system should have a solution we obtain 

the following ordinary differential equation for 
oL CL4 = -11Tcos 1°- -t1r. 	4 	62-1 4 	 (4.3.14) 

431 	 rd; 

where If is given by (3.3.1 2) and has the numerical value -26.1 8. 

The constant Of is defined by 

76,0-igico° 	 (4.3.15) 

f'.1-?0- "4:4 A/fafcir 
where (fog, go) is the ad joint function paiife defined by (3.3.10) , 

and F1, GI are as defined by (4.3.13)o,brespectively. The constantal  
is in fact related to the constant qt, introduced by Davey . We 

can easily show that 

cti 17Z a $ 

if we choose the function pair (f01G,) equal to the function 

pair (u, ,vi)of Daveys work. The functions F9 	, v4  introduced 

by him are then given by 

cr; = 473 
44.2 = - 4. (3  

The numerical calculations performed by Davey in fact showed 

that with g (1) . 1, a, has the value - 10.05 . 

(4.3.13)a1 b 
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Finalsly suppose now that the speed of the inner cylinder 

is given byfil(11-C-f440 .The dimensionless velocity V is then 

as shown below for small cs 

7= ft 4:fcd- Lto—.1 

and the method used above leads to the following  equation for 

the corresponding  amplitude function 	A(*(-). 

c_ca = 1E6-) 4 J + A3 	 (4.3.16). 
calf mid 

where a1 	are as defined earlier. 

4.4 The solution of the am litude ectuation. 

The equation (4.3.16) is a 'Bernouilli ' type of equation 

and if we use the usual substitutions for such equations and 

write 

( 4 .4.1) 

we can subStitute for A from above into (4.3.16) to obtain a 

first order linear differential equation for B whose solution 

is given by 

0 - 

a 
	 ( 4 .4.2) 

where 
cva  514 	 f fOe)c(A,  4 irtril 

r L 	-1= 

We now consider the nature of the solution of (4.3.16) 

when f(-) = tanh(1-)„ In this case the speed of the inner cylinder 

changes slowly from-af (1-  6) 	at !e- 	to -71 	) at 

c,Sa  , We can then write the equation. (4.3.16) in the form 

tavtici- 41 14 -I a  4 3  at-r, (4.4.3) 
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and so as tends to infinity A tends to the following equilibrium 

amplitude solution 

4„ [ (11 62-641-1) /2ai -caj 
/42. 	

(4.4.4 ) 

which is no more than the usual equilibrium amplitude solution 

for the steady problem with the Taylor number based on the final 

speed of the inner cylinder. 

Suppose now that f is identically zero. We can show that 

the time-dependent amplitude , A, of Davey's work is related 

to A(t) by 

Ai) 	c''LA 
	

(4.4.5) 

and that Davey's time variable I fp, is related tony by 

= (4.4.6) 

and so with f identically zero we can write (4.3.16) as follows 

ON' 

ditv 	jA, - go 2 AD  
A3 

(4 .4 .7) 

where we have replaced T by T - To  and a by c/E. This amplitude 

equation is identical to the truncated third-order equation 

found by Davey. 

The  

Before examining the special case f(k) = cos(t) we wish to 

point out that the following analysis is similar to that given by 

Di Prima and Stuart (1973) who solved an amplitude equation 

similar to (4.3.14) which arises in the non-linear study of 

the eccentric rotating cylinders .stability problem . 



Taking f(t) as being cos(~) in (4.4.2) we have

[t]('t'J?{1"J; == -:la, (}{'t")olt'
~ Jo
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(4.4.8)

(4.4.9)

(L~.4.10)

The equation (4.4.8) contains an unknown constant ,. B(O) ,

which is specified by insisting that B(}) is a periodic function

of ~ • If we solve for this constant and substitute into

(4.4.8) we find that .

c] t'" {Jc'!l~N)d'l:'t+f)(1riJ-Vr~(rJ) d't-'j
I~):. - '-,a, 0.
li - _ ~

oL li [:2.11) -,~ ~ (~)

and in general this form· can not be simplified further. However,

in the limit of T,/To tending to infinity with ex fixed,we can use

(4.4.1) , (4.4.9) to show that

A (~) 1\-/_\1 r; )'IJ.. (\ t 0 c:f)'J
~al~ . "to

and the dominant term on the right hand side of (4.4. 10 ) is

just the equilibrium amplitude solution for the corresponding

problem without modulation and the same Taylor number.

Similarly if we let ~ tend to zero with Ta/To fixed we can use

(4.4.1) , (4.4.9) to show that
.~ -

A(~) ~(!!Jj ) {' f- o(oZ'))
~A.~ .

(4.4.11)

which shows that for d small but large compared to € modulation

has negligible effect on the stability of the flow. ,This is

consistent with the experimental observations of Donnelly (1964)

which showed that ,las the period of oscillation of the ,inner

cylinder tended to zero, the critical angular velocity at

which instability first appeared decreased to its unmodulated value

We recall that we obtained (4.4.9) by letting € tend to zero
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with a TI /TO  fixed.Suppose now that we let T,/T0  tend to zero 

with a held fixed (4.4.9). We find that 

geo,  oil (0 el 	 --svt ) TO 	1) 	(4.4.12) 

where If" is the modified Bessel function of zero order. We now 

let a tend to zero in (4.4.12) and it then follows using (4.4.6) 

that A(-) is given by 

Amnv [—TT-03'.(-21910:11A'ev O. to(%9] (4.4.13) 
ati 

..,_
o 

and so for small aITI/To it follows that A(1-) behaves somewhat like 

a 6-function , being exponentially small away from the regions 

near Z = ( 2n ± art 	n =0,1 1 2,314,516, 	 However the 

factor (TI/T0) multiplying the exponential above ensures that ACV 

does not become infinite at these points. A sketch of AO") in 

this limit is shown in Fig. 8. 

4.5 The high frequency solution  

We now investigate the possibility of the existence of 

equilibrium perturbations of small but finite size in the litit 

of c5 tending to infinity with E arbib6ry. We consider only the case 

when the inner cylinder has angular velocity-AdriCcosai-). Thus 

we seek periodic solutions from the outset and can therefore use 

the method of/3.4. 

We recall that in the latter section the effect of 

modulation in the bulk of the fluid first appeared in the order 

'term in the epansion of the steady component of the 

perturbation velocity in powers of 	when the dominant term 

was of order c®  . Hence we perturb the Taylor number in the form 

-re 	-7-6 I  -I- (0='/2) 
7)-3  (4.5.1) 
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in order that the effects of modulation and non-linearities 

appear at the same order when we expand in powers of 0 	It 

is important at this stage to distinguish between T6 given above 
-3 • 

and T6 introduced in/3.3 . We recall that the To is the order 0 

correction term in the expansion of the critical Taylor number in 

powers of 0 for the linear stability problem . On the other hand 
_ 

T
/6 is determined by (4.5.1) for any given value of T and the flow is 

stable or unstable according to Linear theory depending on whether 
1 

or not TOT. 

We saw in /3.4 that the effect of modulation in the central 

region was to cause the perturbation velocity to have radial and 
71 -7/1 

azimuthal components proportional to e  ' 	
- 

 of order 0 7, o when the 
0 

dominant steady velocity was of order 0 . We could also show that 

the corresponding terms proportional to e2it:. were of order 0
7/4_ 

1  CI 
90 

 

respectively . Suppose that we choose the dominant steady velocity in 

the central region to be of order 0 then the linear theory of the 

previous chapter suggests that we expand the perturbation velocity in 

the form 

jot r66 4
[ 

US  4- _vs I- - 0- • • -. " fe 	VI
0 

 +014.-3 4. C. C -74  4 	/ 	ocr  ,   

A au! 

= 0. --vzvs€'+ vs 	cir rviotvf 4 	f C_C, 

04(2- 	ty:s1t-t 	cr,t, 
2■1- 

L 04,4\41  4- - 4. c.(3 coca/ 
erg' It 

6 512  c Ids? t44 4 - 	Dettioi WI/  4 	c. c 
crlii‘11.. 	cfri/7  

• - e2:tE 144'4 4 4  " 
571 	-7377"j. 

(4.5.2)al b 

a"2. 
e21111.1 	C..c.jecsay(  2 

0:74  

where C.C. denotes 'complex conjugate' and the choice of scaling 
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for the steady component of velocity was ,made so as to be 

proportional to ( T To  ) , which from (4.5.1) is of order  

However if we let 0 tend to infinity in (4.2.1) we can 

use (4.2.3) to show that in the central region the perturbation 

velocity is determined by 

-rcn. gQ, 20, 
qz a 

a02 st-  grj,1 

DA,- 4 Ow = O 
as (376 

where 	Qi Q.L; Q ; are defined by (4.2.4) 	(4.2.5) . The 

expansions (4 .5 .2)a,b, c are clearly no longer suitable if 

we wish to retain the non-linear berms above . In order to 
take the 'non-linear effects into account we modify the 

expansions (4 .5.2)a, b, c to give 
0 31qU ° 	4-• 

47
et*

.."F 
0,°4(),'

4 
.-1+(.c. 

zr
c 
	

4
57
1
„ 

+ 
2 4c.cicos 

a0 4o 
+ & 	S C Us 4 	4 (r+ CIP-4 - ) cos 2c, 4  000-1) 

o'lz 	 &14 

(4.5.3)a,b, c 

V 0- 	_0- 	.--- 4-e iv, 414' 4LT t.c,t e vo-vo-TtC.C.jcosay‘ -114 fle V 	
—, to . 	 2.11-E, 

firk 	odis 	
eiz 

a 	3 .1- 	- 4 0(5412-1-  V511+ - co s 2a 	_4 (i9 -7  [V00  VG  
17 
	If 

IA/ =, ii:311  WI-1*W el Su; oi 
{ 

74, ;37L, a ilv 	 71  

	

Cr t 	6-41- 

4 -) f 14°4- _,:
o
-1_- 4 (Iels°24 V414 . - C.4 2c1} +d(d; f) 

' 

(4.5.4)al b,c 

where the terms in the expansions with the triple index 

notation are produced by non-linear interactions. 
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From now on we shall use the words fundamental , mean 

first harmonic ,etc. with reference to thee-dependence only. 

The ,non-linear interaction of the steady fundamental components 

of velocity with themselves leads to the steady mean and first 
-3 

harmonic terms of order d in the above expansions._ The non-

linear interactions involving the unsteady fundamental terms 

produces steady and unsteady mean and first harmonic terms 

which are at most of order 0 . Since we shall consider terms only 

upto order 0 these ;terms are negligible for our purposes. The . 

dominant steady mean and first harmonic terms produced by the 

interaction described above interact non-linearly with the 

dominant steady fundamental terms to produce steady fundamental 
-9&  

terms of order 0 . Similar terms are produced by the non-linear 
-nh 

interaction of the order.0 terms with themselves and the other 

terms,-in the aboveexpansions , ,but these terms will be at most of 

order d-gand so negligible for our purposes. Thus we see that 

in the central region the steady fundamental terms upto order 

are are unitaffected by any non-linear interactions involving unsteady 

terms. 

We recall that in the high frequency linear theory of/ 3.4 

the steady part of the perturbation velocity in the outer 

layer exhibited no Stokes, layer type of behaviour. However 1  

in this section the steady fundamental component of the 

• ''' 	
(4 

perturbation velocity inherits such a behaviour through the 

the non-linear interaction of the unsteady components of the pert,- 

urbation velocity which of course does have this type of 

behaviour. Hence we must distinguish between the steady 

fundamental components in the central region and the outer 

layer. However we can show that in both the inner and outer 

layers, the residual steady fundamental components of velocity 
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at the edges of these layers is first affected by non-linearities of 
-tz  

order 0 ( when the dominant steady fundamental component is of 

Order ez) , and the effect is independent of any non-linear 

interaction of the unsteady parts of the perturbation velocity . 

Thus the first order non-linear correction to the linear theory 

of 13.4 is independent of the time dependence of the basic flow . 

Having said this we find that the solution of the problem is 

trivial , since all the information Which we require is embedded 

in p3.4 and 4.3 . If we substitute foru l v,win the central 

region from (4.5.4) into (4.5.3) and take T as in (4.5.1) we obtain 

the following after equating steady fundamental terms of order 03'1. 

At 2U.:-/-al<t,,Vs°-= 
(..4°  - 	- d 

Here N is as defined by (3.3.8)c . The method of,A.4 shows that at 

	

0 	4 
the edge of the inner layer Us  , Vs must match onto the small C 

series solution of (4.5.5) with boundary conditions 

of = 1(4° cUis°  = 
) ,
r- o 	 (4.5.6) 

and at the edge of the outer layer we require that Us 1  Vs  match 

onto the series solution of (4.5.5) with boundary conditions 

(150 :: V° 	Of°  = 	j-  / 
	 (4 .5.7) 

dr 
and so we write 

LW/ VI) = As. (n,5h,(i) 
	

(4.5.8)a,b 

where As is an amplitude constant to be determined and f , g are 

as defined by (3.3.7) . Similarly for n=1,2,3,4,5 we can show that 

A 
WI]  VS1) 	rl s-  .( vroy 0) 

(4.5.5)a,b 
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where As are unknown amplitude constants to be determined. If 

we substitute for u ,v , w from (4.5.4) into (4.5.3) and equate 
-3 

steady mean and first harmonic terms of order 0 we can show 

that ( U;7 VT; w and ( 	Arn" Wn satisfy the differential 

equations in (4.3.6) , (4.3.7) with these vectors replacing 

the vectors ( uw, via , ww) and ( ust„ 	wr)respectively , and 

A replaced by 4. The matching conditions at the edge of the 

inner and cuter layers have no 	dependence on the time 

dependence of the basic flow and merely.  require that at the 
yv 04) 00 

edge of the inner layer ( U5 , Vs,,Ws) matches onto the small C 

seiles solution of the differential equations determining this 

vector in the central region with boundary conditions 

s Vs 	 0) — 
and at the edge of the outer layer we require that the vector 

matches onto the series solution of the differential equations 

for small ( 1 - c ) with boundary conditions 

uso vs0o Ws007.7 0_)  = 

and so we have 

V"— (4 	„, (49°.,- 	c'.27 	— 	5) y (4.5.9)a,b, c 

where ,g2.(T) is defined 1r  (4.3.9). Similarly we obtain 

s.02)  ys0. Ws()) 	 Fly' 

V 	 CS ) -j3) 3) 493) (4.5.10)albl c 

where f3(f) , %(J5 , h3(3.) are defined by (4.3.0). 

If we now substitute for u , v , w from (4.5.4) into (4.5.3) 

and take T as in (4.5.I )and equate steady fundamental terms of order 
9/z.. 
w C we obtain 
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Vs9  f 9,4:ro l49=- 	;(64;" 7-4f, 30)1 
A,c1 	 :A30) 	(4.5.11)alb 

where F1 , G I  are as defined by (4.3.13)a,b. The matching condition 
at the edge of the outer layer requires that Us  , Vs9   there match 

	

onto the series solution of (4.5.11) for small (1 	C ) with 

boundary conditions 

Us9  Vsq 	0 ) (4.5.12) 

Without modulation the corresponding conditions at the edge of 

9  the inner layer would be that US 1  vs there match onto the small 
c series solution of (4.5./1) with boundary conditions 

U 3  7:  V3 4/29  --=" 0) r=.0 	 (4.5.13) 
os 

However , with modulation the non-linear interaction of the basic 

flow and the disturbance in the inner layer affects this matching 

in an identical way to that observed in .4 An analysis 

similar to that given in the latter section shows that , if 

modulation is to be taken into account , then the conditions 

(4.5.13) should be replaced by 

IA% 0)  Vs9..:  _ay 2  4:1 )(11:-.7 	f— 0 	ast (4.5.14) 

and so Us q  , Vsq are given by the solution (4.5.11 )with boundary 

conditions (4.5.12) , (4.5.14). The condition that this system 

should have a solution can be shown to be given by 

a2 41 5)0  P3 	—otro'ff:4(.4y;1100- 
Q2-6.2-6  13414.cri: 

2_ 	ards". 	5=0 
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where (-1  i ) fei l  go 	s the adjoint function pair defined by 

(3.3.10) and .1 c . The terms in this equation are more 

recognizable after a few substitutions. We can use (3.3.12) 1  

(3.4.45) 	(4.3.15) to show that the above equation can be 

written in the form 

(A ° 	 '(61 -7q 5*/ (4 .5.15) 

We recall that T6  was in fact the order c correction to the 

Taylor number ,T, expanded in powers of 0 for the high frequency 

linear theory. Thus if (4.5.15) is to have a real solution we 

require that T4> T4 ,and so finite amplitude perturbations cane 

exist only when T is greater than its critical value of linear 

stability theory. 

4.6 Discussion of results 

We first discuss the experimental work of Donnelly in 

more detail. As stated earlier he considered the flow between 

concentric cylinders when the auter one is at rest -and the 

inner one moving with angular velocity./1/046(0309. Before saying how 

Donnelly defined the critical Taylor number for the flow we 

first discuss the important features of the stability of the 

unmodulated flow. 

When the outer cylinder is at rest and the inner one mving wit 

angular velocity, it can be shown by linear stability theory 
that the flow first becomes unstable when the Taylor number 

reaches the value 3389.9 . For T slightly greater than this 

value the non—linear theory of Davey (1962) shows that 

equilibrium perturbations to the flow can exist. The amplitude 

of the Taylor vortex flow is then proportional to ( T %)1  

It can also be shown that equilibrium amplitude flows can not 
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exist for T less than T6  Thus for T less than To  the 

amplitude of the Taylor vortex flow is zero , and then when 

T reaches the value To  the amplitude begins to grow like 

( T 	To )1  

With this in mind Donnelly defined the critical Taylor 

number to be that value for which a slight increase in 

caused the amplitude of the Taylor vortex flow to increase 

rapidly. With this definition of the critical Taylor number 

he found that the flow was stabilized for all C , o in the 

sense that the critical Taylor number was always greater than 

To  . The maximum enhancement for all vaues of C was when o 

took the value .27 . 

Low frequency results with f(Y) = cos(')  

The first difficulty which we must overcome is to decide 

what property of the time dependent amplitude , A(Z-) , Donnelly 

actually measured in his experiments. We feel that the most 

relevant property of A(1) is its mean value , A, defined by 

2a 

A id rz,- 

We saw in .4 that A was in general only known in integral form . 

Thus A must be evaluated numerically using an integration 

routine and then A can be evaluated using the same routine. The 

result of such acalculation for various values of TI/ To  , a 

is shown in Fig. 9 . We have also shown the corresponding 

equilibrium amplitude solution for the unmodulated flow at the 

same Taylor number. We see that , as suggested by (4.4.101 the 

effect of modulation vanishes as a tends to infinity the curves 

tending to the equilibrium amplitude solution for the unmodulated 

flow . The results' of Fig. 9 suggest that modulation stabilizes 
WORM& 

du 
(4.6.1) 

the flow in the sense that the value of A for any given values of 
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TI /To  ,a is always less than its unmodulated value. However , 

unlike the results of Donnelly , our results show no optimum 

value of a and hence c for given value of C , at which the 

enhancement of stability is most pronounced. The enhancement of 

stability shown in Fig. 9 decreases as a increases In Fig. /O 

we have shown the results of our low frequency theory in a form 

more suitable for comparison with Donnelly's results. We see 

that there is poor agreement between theory and experiment. This 

is perhaps due to A not being the relevant proper] of A(') as 

far as the latter's results are concerned. 

Finally we would like to suggest that a more promising 

method of experimentally checking our theory would be to try and 

obtain the behaviour of A as a function oflt . This could be 

perhaps done by measuring the difference of the torque on the 

inner cylinder frot its laminar values , a quantity which is 

proportional to A . We have shown At  as a function of 

for various values of a and TI /To . 1 in Fig. H 
High frequency results with f0-) = cos('-)  

In the limit of 0 tending to infinity with C arbitary 

we found that the amplitude of the dominant steady fundamental 

component of the perturbation velocity was given by (4.5.1 5). 

Suppose that we write 

A = 6-3  A 

and eliminate T4 from (4.5.15)using (4.5.1). We obtain 

and if we put C , and hence T6- 1  equal to zero we can show that 

A is then the equilibrium amplitude solution for the problem 

without modulation and the same Taylor number. If we denote this 
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equilibrium amplitude by AE  we can show that 

A- = 4-C 2a, (A 4A4.)0  

and so as T becomes appreciably greater than To  , A tends to AE  . 

We have shown A asa function of T for different values of. € in 

Fig. 12 . 

In contrast to the low frequency results we see that the 

amplitude grows quite quickly as soon as the critical Taylor number 

of linear theory is reached . Since T was in actual fact 

negative we conclude that in the high frequency limit the effect 

of modulation is to destabilize the flow . 
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A(T)t 

Fig 2.-  4 	litude as a function of I for small a, --Tr•-,-; 



Davey's eqUilibrium amplitude 
solution. 

•■..■•••••11Mi 

...EMMA .. .MEM as 

0.8 

0.6 

Donnelly's experimental curve 
A given by low frequency theory 

(All amplitudes are normalized 
by dividing by A0, the amplitude 
at Q = 5.8 without modulation ) 

02 
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5-7 	5-8 	59 	e, c.) 	61 	Qi  

Fig 9: Comparison with Donnelly's results for E = 0.08)  

period =46.1 . 
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Fig 10: A as a function of Ti . The dotted line represents 
the value of A for the unmoduidted problem with 
the some Taylor number. 
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Fig I!.. A2  as a function of a for T.T.T10  = 0.5 • 
The dotted line represents the constant 
value of A2  for the unmodulated problem 
with the same Taylor number. The 
difference G of the torque on the 
inner cylinder from its laminar value, for 
this value of t ,can be shown to be given by 
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F/9/2. The amplitude A as a function of T in the high frequency limit. 
The dotted line represents the amplitude for the unmodulated 
problem with the same Taylor number: ( All amplitudes are 
normalized by dividing by A0 , the amplitude at T= 3400 
without modulation. ) 
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CHAPTER V 

THE MODULATION OF THERMAL INSTABILITY-LINEAR THEORY 

5.1 Introduction  

In this chapter we investigate the thermal analogue of the 

cylinder problem considered in Chapter 111 . We consider the stabili 

of the fluid confined between parallel planes which are separated 

by a distance d . The temperature of the upper plane is maintained 

at zero and the lower one has temperaturepd(I -e-cesc) . Thus E 

will again be an amplitude parameter and we again introduce a 

flaquency parameter 0 defined to be the square of the ratio of d 

to the thickness of the oscillatory layer associated with the basic 

temperature field . We assume that the boundaries are stress free 

surfaces and we again consider the limits of low and high 

frequencies separately . Venezian (1969) has considered this 

problem for small C and arbitary a . If a is allowed to tend to 

zero and infinity in his work we should expect to recover the 

results of our work ' . However this is not the case and since our 

low frequency results have also been obtained by Herbert in some 

unpublished work using a Galerkin type method we believe that the 

error lies in Veneziaris work The procedure adopted in this 

chapter is as follows . 

In .2 we determine the temperature distribution of the 

basic state and we then obtain the equations governing the linear 

stability of this state . We again insist that the boundary 

between instability and stability is determined by the disturbance 

velocity and temperature fields being periodic in wt. 

In 5.3-we seek a solution to these equations by letting E and 

0 tend to zero with a/c fixed and equal to a say . We then obtain 

a solution of the 6quations by expanding in powers of C . In contrast 

to /3.3 we find that the ordinary differential systems which arise 

from equating like powers of C can be solved exactly without using 
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any numerical techniques . 

In/5.4 we consider the limit of c tendineto infinity with 

C arbitfary . We again find that , in contrast to the basic state , 

the disturbance has a time dependence throughout the fluid . 

However , since we are using the free surface conditions , there 

is no need for an oscillatory layer near the upper boundary . 

In J5.5  we give a brief discussion of our results . 

5.2 Formation of the equations for the stability of the flow  

We consider the flow between the planes z = 0 

with respect to a Cartesian coordinate system ( x , y , z ). 

These planes are taken to be free surfaces . We tale_ 11,  11  1 ,p, t 

to be the velocityl temperature , pressure and time respectively . 

We also define the constants ){,ot I v I Tolp to be the thermal 

conductivity , coefficient of volumetric expansion , kinematic 

viscosity , and averages of temperature and density respectively . 

The governing equations in the Boussinesq approximation are 

sC7  ve r: 

4S,  = O., • 17) Aet 	Vp 4 .11 GC. (1-9 J0,-0 4- 2) VIC 
a,t 

a-r 	(zi..vyr + vY 

) 

 

  

(5.2.1) 
atbl c 

   

where 	Al 4.43 .}W 

— 	91' tisr' 
and 	= akt 7i1  337  
We seek an equilibrium state in which the fluid is at rest and the 

temperature is zero at z = d and equal top( I fecos4,76) at z = 0 

The required solution of these equations is 

-1st — 0 	
'°((4A) 	cP:- T(2/6) 

and 'Iris given by 
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I I I 

etuv44) (d-t) e ¢ 60,tour 

A41043)/44 
(5.2.2) 

We now perturb this equilibrium state and Fourier analyse 

in the xy plane . Thus we write 

0.471/)11/) ey 	,4a y  

r  + Czit) rcir)4 " x eve rat x-ta, 

If we substitute these expressions into (5.2.1) and neglect 

non-linear terms then after eliminating u v , p ,e from the 

resulting equations we obtain the following equation for w 

- 	2)) 10 2-  C 121 2  ° Ti 
— 47 3 	 0Q 1-9  w ° 

tpt l- 

2  where 	= L ax 4.- a y] 

Following the method of Chapter 111 we seek a solution which has 

a time dependence only in terns of Ot.Hence we define a new time 

variable t- by 

cob 	 (5 .2.4) 

and we seek a solution periodic in , thus defining a boundary 

between stability and instability .We now introduce the following di 

-ensionless quantities 

-1. C. 7.7c1 ) 	= cl 	I"' T-7.igJ 1  w I _ 2,w /020 
 1 	(5.2.5) 

a,b, c,d 

(5.2.3) 
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and we define the frequency parameter 0 by 

4- 	COCII/A) 

and the Prandtl number pa  by 

(d V7) 

and the Rayleigh number R by 

(5.2.6) 

(5.2.7) 

(5.2.8) 

It then follows that (5.2.3) may be written in the form shown 

below after dropping the dash notation 

MfM-  qh-  IW Gt 2I? ?T ver pa .r (5.2.9) 

where M 	c9' ez20 

a.zt 

andris given from (5.2.2) , (5.2.5) by 
J*1- 

7 
0-  )"t 	P( gr= 	e 114,_ C.41 	

ear 
 4- eMikle 

53 	 scrik 6494 	cOA/laalitliE 
(5.2.10) 

The relevant boundary conditions for the problem are given by 

47;9- 	c)71-. 
	) 	) 
	 (5.2.11) 

(See Chandrasekhar (1961) ) In contrast to Chapter 111 we have a 

differential system in terms of only one perturbation quantity , w 

However this does not change our approach to the problem and we 

see that this in actual fact makes the problem easier to solve 
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5.3 The low frequency limit 
We now consider the nature of the solution of (5.2.9) , (5.2.11) 

as E and 0 tend to zero . Using (5.2.10) we see that we must 

solve the following differential system 

mrm ct- 	 w 
(5.3.1) 

with boundary conditions 

M.. 
gl  tle 	 Ati'V 	 0 	% = 0

J  / 
	 (5.3.2) 

	

.........1110 	Ow* 
a* 	 b 	0.1.61•01■74= 	fta, 	 J  

	

a 2.2. 	el.%44. 
where 	

A, 
f‘ , etc. are as defined in J3.3 . If we let c tend to zero 

I 
with c/6 fixed and equal to a we see that the't- dependences of the 

right and left hand sides of (5.3.1) will balance in some sense . 

Thus we write 

d-  . 	°L C 	 (5.3.3) 

and let E tend to zero with a fixed . We expand w1R in the form 

= We  + e 	+ C2  viz + • • • 

= Roo- ER t c' Rif • 

in which case  (,..,.-/11  can be written in the form 

N PVi - 	ffri 	G7 }Iwo 	4 • I 

= -02- ERa 	-JD tqcost.....31-wo+64.4...] (5-3-4) 

and it follows from (5.3.2) that the relevant boundaly conditions 

are 

arc = 02wi 	0 z.:6,1 ) (.4 	CP)2.- (5.3.5) 
a%2, 	e-xit 



, 
If we equate terms of order C

0in 0.3.4) we obtain 
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(5.3.6) 

with boundary conditions given by (5.3.5) with i = 0 . Thust-does 

not appear in either the differential equation or the boundary 

conditions and so we have an ordinary differential system for 

w o  whose solution will contain' only as a parameter . The appropriatE 

solution is given by 

Wo  = 	e 	 (5.3.7) 

and the corresponding values of a and Roare 

Rtl 2$12. 	 (5.3.8) 
1.= ritrY 

and B (1-) is an as yet arbie5.ry function oft- . Thus we see that 
0 

the order C velocity is just the usual velocity for the problem 

with zero C multiIied by a function oft . If we equate terms of 

order E in (5.3.4) and use (5.3.7) , (5.3.8) we can show that 

t'ilw 4  27tic 	9n 11 	4A41772 	vadart 4,,4  

2ifir‘gaast-/kort 	 (5.3.9) 

with boundary conditions given by (5.3.5) with i = 1 . It is an 

easy matter to show that the required solvability condition for 

such a system is that the integral from z = 0 to z =, 1 of the 	g lade 
right hand side of (5.3.9) multiplied by sinitz is zero Hence we 

4'1)4 pAl  ccao ...244-4 8cosv 
'4 	rpa 	d t 	g 

= az Q, go  

which is an-  ordinary differential equation for B0(1-) which has 

a periodic solution if Rt= 0 and Be(') is then given by 

13a .7.• eke 2frif itada;st-  / 2 04- pAq 	 (5.3.10) 
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where A is a constant , dependent on the parameters of the problem , 

which can only be determined by considering thlkcorresponding 

non-linear problem . Having determined B0  we can suktitute back 

into (5.3.9) and solve the resulting differential equation 

subject to the appropriate boundary conditions to give 

(1)4,44trz 	 (5.3.11) 

In order to find the unknown function of t 	B1  ('s') , we equate terms 

of order E in (5.3.4) and if we then use (5.3.8) 	(5,3.10) 1, (5.3.11) 

we can show that 

6 A 	21/7 	ge fr 1Vir) oz 4;42 	4 Cc 14147 
Z57 

/12 1, ianfiz 	g 711" 49,4 	co.c,71-)4,;krii 
(/,4,4  jz 

ell 	l 4  g12  j 04  44.4,- 27 

with boundary conditions given by (5.3.5) with i = 2 . If we impose 

the solvability condition on this system we obtain an ordinary 

differential equation for Bo  , which has a solution periodic 

intif 

 

0217 ir 4474  (5.3.13) 

  

  

5.3.12) 

and B1  is then given by 

CB, = 	" 4-3 4*- 4 2ep,12.40211  
f )2 	et tph) 30e 

and so it follows that we can write 

Pp(It#3,4 )600- t  af,4414°2?-1 

c  *(11-p4)2 	(t tr,0 30( 
I = 

(5.3.14) 

(5.3.15) 
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Having determined B1  we can substitute back into (5.3.12) and 

solve the resulting differential equation subject to the airopriate 

boundary conditions to give 

04 .  4, Tin 	4 3.2 	 (5.3.16) 

where w,21 is given by 

8,1/4 w  71,  e#strz  r3 7.  4. (32-- Z -34 
L 	L- 3.7 0- 	 ,Tir 	a- 

- 32 scosrti -coshczcosdh 
J711' I 	4 &Cad cos Itz.z. locit f s.,11 .64k42-"54121.1 (5 .3 .17) 

AMM7Xj- 
where ± ( c ± id ) are the complex roots of the auxiliary equation 

2  1,4)3, 270
4 

(viss 
S 	8 

and B1  is an unknown function of'' which can only be determined by 

considering the order 0 system . If we equate terms of order E3 

in (5.3.4) and use the expressions for w0  , B.0  etc. already calculate 
we can show that 

t 1;1'3  a27>rw.? 	1(.4  (I 414 ) oi 192. 	- 	c.a. -asosrZ  
44. 77- 	ff 

cre,e,y 4:4„))-x. 	80  fo41:em 	-/GeA421. 1/2  

cos3r,- 113  CO St-  14 74  Au' 41' "1 	(5 .3.18) 
0‹ 

with boundary conditions given by (5.3.5) with i = 3 . The functions 

H I  H4 ,etc. appearing above are defined by 



— f A 

0,27o-Orpo 

(it/A1 Af q 	.47n H 
	174 " Is2-° g 3 

,44...o-P fit -/ 3r/ 1- (// 3/94/ ALL#7  fit 
/6 (/./A4) 

37/`" 	g2 76 	it 43,/414.4., /7z, 	q 4- /674 (49,i 47,0, 	71 7 
- 7G- 	 p,77-72— 	6iir 	+/A 

2 _ff1 77 .90 po42 ,44"-riy 	274 - / 	
-994) 

5"6 

$. 	f'it 4 /4Parz 	2717 	 ( z!504 4- /) /so /7 1 

/ 2ff 	°LP) 	02 5-6 	
64/4) (‘- 

fiS 	
Vasn 

If we now invoke the solvability condition on the system defined by 

(5.3.5) 
	

( 5.3.18) we obtain an ordinary differential equation 

for Bz which has a solution periodic 	R3 = 0 and Bx is then 

given by 

_S fort(,),..,%. 4 r eas 21. 41(3,4,1.31- le, 	Ns4.041 .z 0,_ 	04 	0- 
where ti 

'.
If•etc are defined by.  

(5 .3.19) 

1.1,44;07-1.dx 	(rt.= 4- PA  ir 	dy
rr /1-0 44,4 	 711771(W7 
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J-13 — 126' AL tttpalr 

— 

2eA 	f 	44nriz dX 
g114'(11,4) ° 

/ 	. 
Ili- 	

fi 

i" g 	1141474 
dZ 

910-014 9 

Hence w2 may be written in the form 

w.t ado A.A4- 6v4, 4 114,1z) 4 84 r rfa cos .21- -4 3 

-1 ills- ccs4 JA A.71- t 
04 z (5.3.20) 

Substituting for 132 from (5.3.19) into (5.3.18) and solving the 

resulting differential equation subject to the appropriate boundary 

conditions we find that the solution is of the form 

=1.folcoSt-wy, 4 0156421' W:12. 4 c0511. ;vs) -4 cost ,- W34. I 

( S4412 

where B3 is an unknown function ofl, and w are solutions of 

(5.3.21) 



( 	, 
" 	w  
%vie 	din/7 4  ,,„ 01_11(.4. 	d ) 	cj i 

d-zt- 	cyz4 
with 

Xi  = 1-4 .k 9n 4 41(7 ),d- 
,-: 	- 514- 

k 	14 4  xkiff  4  " f/ 	44 A ' 
 

3   
74: 	Ai4 17y 

If we equte terms of order E in (5.3.4) and use the solvability 

condition on the resulting differential equation with boundary 

conditions given by (5.3.5) with i = 4 we obtain an ordinary 

differential equation for B3 which has a solution periodic in t. if 

we choose R4 as follows 

= ci‘ 41?4,0 CAI. 2 	 (5.3.22) 

where RAtois given by 

1 

02  Rit o 4.7401217%,  cit 	illf/if lm Afrividy. —Da 4  w21.4.4ori-az ..,7261f9(6$5,4ri.,4v2if4024 
o 

)(°,1 411(4,"4'0,44.0y4fIr. 
40-14) 

A7ri  64A  or 470,4 	 ch 
Q 

44441It 
!2B ( 1 p01 0 

If the terms in the above integral are evaluated we find that 

q40 	— 1).615- 7r -4' —  31'14  	f 	9 a0-,i4 
olgeAil-  

( The contributions to R4ofrom the terms involving w3, in fact 

cancel and so there is no need to calculate w31  if we do not wish 

to calculate higher order terms in the expansion of R ) 

If we now write a = 0/C in (5.3.22) we see that the Rayleigh 

number is expressible in the form 

oiro4"  4- 	 (1't --YO*I'Aqe(7- 1  
au tz9,412 4 	L 	( 14-14)2  

4 /_( 	lik4) 	
(5.3.24) 
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(5.3.23) 
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and this expression is identical to one obtained by Dr. Herbert 

at Imperial College in some unpublished work using a Galerkin type 

method 

5.4 The high frequency limit  

Suppose now that we let o tend to infinity in (5.2.10) . We 

obtain 
•1711+1)41V 49MPLEW 7 	 (5.4.1) 

te - 	C frtote` 	4  co/Viva/Wel 

Thus for large o the,time dependence of the basic state is confined 

to a thin layer at the lower boundary . We shall refer to this 

layer as the 'inner' layer and the region away from this layer will 

be called the 'outer' layer . The interaction of the basic 

temperature distribution with the disturbance in the inner layer 

causes the latter to have a time dependence which persists throughout 

the flow • However , in contrast to the cylinder problem , there 

is no need for a Stokes layer at the upper boundary in order to 

satisfy the required boundary conditions . This is because we are no 

using the rigid boundary conditions but the somewhat artificial 

'free surface' conditions . 

We define an inner layer variable T1 by 

s= z 
	

(5.4 .2) 

and we take w W to be the velocities normal to the boundaries 

in the inner and outer layers respectively . It follows from (5.2.41) 

(5.4.1) that the relevant differential equations to determine 

these functions are 

f,ier — 241 f - ace' - )02'-Zit- 22. w 
Fi-1 

-4422kwor){ I f(410;1"4-11";(1- (clitkek 
44y fid‘Alt 	(5 .4 .3) 

02-  1,41-  
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and it follows from (5.2.11) that the required boundary conditions a 

(5.4 .5)al b 

and we stipulate that w and W must match where the different regions 

overlap Since we are seeking solutions which are periodic in' we 

expand w 1  W in Fourier series as follows 

hr 	
_ott. t  

	

= vv5  4
a 
 6vne 	ilwt) 	 (5.4.6)al b 
iv  

	

(tAi 	14/ n  42. 4 	e 

Hence ws ' Ws 
represent the steady parts of the velocities normal.  

to'the boundaries in each layer . If we substitute for W from 

• above into(5.4.4) and equate terms proportional to eint-  we obtain 

tr- CT- d-n.}(1.- 	lAtn  
(Pa  

(5.4.7) 

where 	ET d/Ci!C 

We solve the above differential equation by expanding Wm , R in the 

form 

erlia (5.4.8)a 

cit 4.'0) awn' iil41  4 Wfst-1 	 .1 
0-412 

where µn(o) is for the moment an arbibtry function of o . It follows 

from (5.4.5) , (5.4.6) , (5.4.8) that the required boundary 

conditions are 

Wn  (2)1- 	= 171  114 	Q  x 1 , n 	 (5.4.9) 

If we substitute for Wn  R from above into (5.4.7) y  equate like 
Qt). 

powers of o'  and solve the resulting differential equations 

subject to (5.4.9) we can show that 
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4444 	-i- A,  ,i1444 4b-z) 4-  061 
37 (5.4.10) 

where Ao, Al  arearbitrary constants . If we expand Ws in the form 

Ws  P 6,0 	Ws!  4 Ws 24 
0,16 ("- 

we can similarly show that Wi are determined by 

atR j kis° 0 

02:  Cii  all ojtVil  = all tvikei,_,..k)  
kto 

(5.4.11) 

• with boundary condition 

(5.4.12) 

We now consider the flow in the inner layer .If we substitute 

for w from (5.4.6) into (5.4.3) and equate terms proportional to ein  

for n = 0 , 1 , 	 we can show that 
VA. 

 li
241:rws  = .. galk il.is  4, c (.11; Zi, il l̀ 41  4- Ciftili.E4* )1 
° 	 Fy + 	comA14,trz 	

(5.4.13) 

c? ,IL--221fIl...2.4a.-a-jc.31--.2a7 - - 2ii het  
0- 	1  7F. /pa

1 -Yr  

tr,  ' 8':1Z cw, ÷egirwsil6" 	-n6-0 

and for for n . 2, 3, 4 1 	 

a- 
aa-tifT 	— 21_41 fT ac,L  2t4j u°4 

iti•&) 
•:.- -g ale {1441  4 6 •15- :711.1-4' .......x...-.. 	eri 4 	.-fir e w vpis —77— 	 --.4.--- 

(5.4.15) 

(5.4.14) 

where 97  
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A consideration of the problem with C . 0 shows that near z 0 

and it follows that 	by using (5.4.14) , (5.4.15) ,, that if w,  

has this scaling then 

Wet 4' 

— (5a 0/2. 
J 

rit 	„ 

Hence we expand ws  , wn  in the form 

-111- 	I 0- 	Ws 4 Ws — • 

Oqz. 

, 0 	I 
Wts Wrt 

(ph 

for n = 1,2,3,4,5, 	 

If we take R as given by (5.4.8) we obtain the following eqVions 

to deter 	nine ws wn 
mi. 	- • a: a ill (ws 4 	-gal fgo-114 • ..}(6:3644 Ws! 	..) 

h "'17  e 0:CEI*Oilti"j( ° Iva 	AMPLE''‘ 

461/11)441'ell(5.4.16) 

 

..fafoi t,44“/  
4/ 	

+,16 4- --) 
t;(t-4)il(i4), 

4.4E 
and for n = 2,3,4,5,6 	 

(5.4.17) 

Ws 

Wet 

a••• 

gal Q.1;1 24xzzoliw:# 
,r4 4  1  - 

= gal  iRe 	f e")(tses4°4 • ) 

4 4 Cl+I ) 406*(1  6V4fi f • 

6AI 4  
et :  f(4 ) e 	(es,  44 , 4  • " 

• 
from (5.4.5)a that the relevant boundary conditions 0 

) 

and it follows 

(5.4.18) 

ot Te: 	Wf 	411'144 
i 

s.̀ 	I 

eb 	7,4 
wst  'vs = 	WA 	 h -«* 0 

I 4 3,„, 4 " • • 
(5.4.19) 
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It follows from (5.4.16) , (5.4.19) that the first ten ws can be 

obtained without any knowledge of w,4, w2, etc. Thus equating 
... 

terms of order o
0 

 c 0„  	 0 in (5.4.16) and solving 

the resulting differential equations subject to (5.4.19) we can show 

that 

0 - _ ep 

=T,11. 
wit  = /Pa.  ri, 4- 413 
vv; y%)-1 	11, 

( 
ws 	Tql -r 	4-- .50 fri 

wsc/Pcl, 4  A Pe gl tt:(  
Q.) - Q14 	41 Ws6 	1. 4 	73  4- s., 15-  -F 	t a 	

21 

W;/  = 11, +Q6-1!-1- S; e4 c21:(04 -Pak,-P,R0) -0V,  4-046;3,77  
63O 	 / 7o -7  

4- Q4 4 	 c o.S15+ 	 l (at PX2-ei RI  - I go ._, alto z ta..1 i?  

63a 	 -TT- _7 

4 c 044 (cl i-'- go) —  al qo  ( go 4041) — a:::,_zr } tq  

	

q .1 g ,7 4:3 	 c r .-- 1.  -3 	. 	q.7.//- 

vvP= Po it  4- C9, 3 .4  gof 4- iiWatif-Po e34 g; -TI. R , -73 i?,,) -04Q3 4-11-3.? il  
/ 70 

-F 014  (34' P,- Pi g 0-PA) - al-  r, LI 4- Reg',  4- o'fr9,j 

Sivi,t1  
q .1, ) 

where P0 01  etc. are arbitrary constants . We have choosers 

certain arbib&"ry constants in ws wsl '  ws  ws  , s  w'lfr to be zero 

for the sake of convenience . The reason for this choice will 

become clearer later . . 

We now calculate wi  which will enable us to calculate ws  

Equating terms of order d5 in (5.4.17) and using the expression 

for w6 shown above we obtain 

c771. 	f5' 



W 
where A , B when pa  ' 1 are given by 

at,* 1, 

01 P 
a 

P IA4  
and otherwise we have 

A = 	pm  Op° -3(4-  - )  
(5.4.21)a, 
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7 	7 	1)4 	I 	4 WI° 	 a 2/ ic o 	;pole 
kietAt. 

with boundary conditions given by (5.4.19) with i = 0 , n = 1 . 

The above system has the following solution if pa  / 1 . 

= 47 2 a4  14- (fla..5)(1-07e16#47) 44(  "Tel")  .1  
4. 	— 

02(1,4_1) 
4  g* 	66' EA

wa  /jp_ 4Z*,[2,  
(5.4.20)a 

If pa  = 1 then the solution is of the form 

—,0  my, 	42424,10 66 rray 3i  49 zie7 ivi2a#0 
4 	4. 4 *Ei-  7 4 	,7' if e-  Ye" I 

(5.4.20)b 

(5.4.22)a, 

and the unknown constant %will be determined by the matching 

conditions . We can similarly show that 

r -javgA, e  /4  4-  (q±:12(L-i)(; 
'A-I L-4,- 	cz‘Pa-ii 
Aire-7( 	4.13  L-zit/Iv/Aut 4, /If 

if/PA I wil r- t.= 1 z 	6040 [E4T 3V- 9.7 1.(1-0.7;1  *1  % 
ece-v/4,2 fj   

6-1)*eli 	(5.4.23)a, 
4 
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where A I.  Bare as above and G will be determined later . It 

follows from (5.4.17) that we can continue in this way to determine 
I. 	7 

VT 4 
i 

	w and then we can calculate more of the ws and 

the first few terms in the expansion of 	. We are then in a 

position to calculate more terms in the expansion of wi  and so on 

It can be shown inductively that the terms independent of al in 

(5.4.20) 1, namely   atR014;(414"8
) 	, —17424 6-  04-0 PI '1 	lead to terms 

41' 2n 	z"* in w Infor n = 11 2,31 4 	 Similarly the term (.7-0 	in (5.4.20)a; 
f I n 	 24 

leads to a term 	 in wi  for n = 1,,21,31 4 	 If we 

consider the asymptotic form of w1  at the edge of the inner layer 

and write = z(o/2)1  we can show that at the edge of this layer 

fd:s.,411,2x 	ahcvz +iircoshaz5 4*(71 	(5.4.24) 
a 	 GI 2 

where I 01  '4 \r' 6401P°'; 6tW9  p 12 4 / 0 

and 	lie al  got. 604-0e 1/ f a= 

We must match (5.4.24) with WI  given by (5.4.10) with n = 1 

at the edge of the inner layer .Clearly we must take 12= cs,iZ % = 0 

and the first terms of the series will then match if we choose 

le° Pet 4( /4-1' 	2') 4241 	710 i-)A* respectively 

gt* 

A° 	 
(5.4.25)a 

841 h 

Higher order terms in the expansions Of ill  WI  can also be matched 

by a similar procedure as can also theexpansions of w2.1. W2 .eLc. 

However we have enough information already about the expansions of la/  
WI  for the determination of the first non-zero correction term 
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to R 6 and so we do not pursue this here . 

Having determined wi4/  we can use (5.4.16) to obtain a 
s 

differential equation for ws
o 
 which when solved subject to (5.4.19) 

gives 
10 
.) Tx: 1.c+ ---522:z4t 4 0-2.5j2 

4413 45'6 

r 	 (a111)  —0(A—  gx—R2-Pc) 
9.5 	 %. 

R(1 9A. 	44.0o 1014 

4P„ c 	 o)  Qv© 	 — 42-so tv4N-e)1 
11.10.41,7.6' 	11.1©. 

(5.4.26) 

where for pa  / 1 4is given by 

4162C2eo .,1,,t7il:14t 117 	
&Pa-  P0D-1  

—7-27—  94-i 	 P4 •-• 

i'(:);11'4i2114  

4-  C4 (14.1)17Pl'itEt. ,12-414  
£ (i -f 15, ) 4 i( -1 )3 ypc, 

4 Al 0 	liti- 	4ct  tfirf64. ceAftek comi„aitre (5.4.27 ) a 

and if pa  = 1 	is given by 

el= 	4-  402c 2P. ‘. 4‘2e-f-1  gal! t6?/ 	-f 04‘)Pf6p42.17e-17  

;frie-Vg+"  4- Pr? 1  45-36 	L 

6 	)(41 4- Y01,1 d toi 	4 Co 1 4 	k 
NovCo a re 

6 , 12 g  

(5.4.27)b 

10....2 	'1141  _41 O 

where X0, Yo, Zoare choosen so as to satisfy Ws 	v' evszy at q  =0 

In particular we note that Zo is given by 



0 —14 0110 4 321/-7,i) 

A* 0-142i) 

1-0S--te 

.76aP ) /100. ( 
3 

(5.4.28) 
a b 
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If we consider the asymptotic form of ws atthe.edge of the inner 

layer and write 	z(o/2)2 we can show that 

ws 	cfr 	sY!P;, Q ; SLa, go, z.) 4 (r.sii:i4 poroat;Aoi 1-0 Rk. Cr< 

 4, 	alf  0.. 	o 	0 	a 	 (5.4.29) 

where S is defined by 

6 .=  120  ck. 4 a zcgt go-2 	Qo x3 	 z 

.3-0 4.0 	02 	o2 5c) 

4. S. x 54 a2z.7 4 a (0,1 
4:45: 	 J 

We recall that in the outer layer 

vvs z- p(0-) .fivs°1-wist t ---_] -7;7 
(5.4.30) 

where the W1 are determined by (5.4.11) , (5.4.12), . It follows from 

(5.4.29),(5.4.30) that we must choose 	= 1 if ws 7 Ws 
are to 

match at the edge of the inner layer . We must then choose a , 

Po , Q0,,Si,such that Ws as determined by (5.4.11)a , (5.4.12) satisfi 

S ( Po, 9o.) So, Q /IL 7.) 
	

(5.4.31) 
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at the edge of the inner layer . However it can easily be shown that 

S is just the small z series solution of (5.4.11)a with the 

following boundary conditions 

olvvs° =r 	
µ kis° o 	x z 

	
(5.4.32) 

Hence if we determine a solution of (5.4.11)a satisfying the 

conditions (5.4.12) with i = 0 and (5.4.32) then this solution 

will necessarily satisfy (5.4.31) at the edge of,the inner layer . 

Thus we write 

\A/5°= ialr 
le/J 2 

„ 2.'7f4/4- 

and the corresponding values of 	Qel1S0are found to be 

4,0  ?esti 
Qo = -10.1-2-  /3 

ir5.5 /30 

(5.4.33) 
a,b1 c 

(5.4.34) 

a,b,!c 

Similarly if we put R RI 	.R4-0 W1 =Pi  W: /P01  i-11 2 	6 

then (5.4.29) will match upto order 3  . With the above choices 
ti 

of cL, Ro, etc. it follows that Ws  is determined by 

aar_ 4'433 	Vs7  = -1-2(271tort 	
(5.4.35) 

with boundary conditions 

\Aisi Tws7  = 041A47 	 I 
	

(5.4.36) 

and at the edge of the inner layer we require that 

cl 2_ 

0(-6) 	 (5.4.37) 
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However it can easily be shown that (5.4.37) is the small z series 

solution of (5.4.35) with the following boundary conditions 

1,47 vi./7, tZi x:o 	(5.4.38) ()) 64, 
Thus the problem reduces to solving (5.4.35) with boundary conditions 

(5.4.36) , (5.4.38) since the solution will neceessarily satisfy 

(5.4.37) at the edge of the inner layer for some P,, Q, , S, .In 

actual fact we do not determine Wsbut merely use the condition 

that the system specified above has a solution . This reduces to 

627 	5/•12716  Zo Zoj 
o 	egO—O 

and using the expression for Zoalready calcula ed we can show that 

s 	 t 	 /,‘ 

a /Si 

(5.4.39) 

a, b 

5.5 Discussion of results  

We have seen that the method of Chapter 111 may be applied to 

the thermal convection problem when the temperature of the lower 

plane is modulated about a fixed value . The critical Rayleigh number 

associated with (5.3.24) is given by 

cp 	6277r I fil  paC ti  ,6 )  &Pet 4.S No), D-D/(ri 6et  ® 
#(702 	Ii-pafi 

II- 	6 "6 10-42 (5.5.1) 
The dependence of a on C first affects the critical Rayleigh number 

at order E. This result has also been obtained by Herbert by a Gal-

er kin type of method . 

Or raname. 
q‘7 = 021TA,0617: 	 ‘‘ -21p. 

(go 	
.25.4 ePA 

=

2.7.3‹  

1/6114--. 

la= ' 
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The work of Herbert was in fact done without relating the 

parameters C c and in view of the well, known similarity between 

the thermal convection problem and the cylinder problem discussed 

earlier we have some justification for assuming that the parameters 

C 	0 in (3.5.7) are independent . 

The result of Venezian (1969) corresponding to (5.5.1) differs 

	

tzt. 	 
in the order C 0 term . Venezian obtained a solution to the 

problem by letting C tend to zero with c arbitKry . He expanded 

the perturbation velocity in powers of C . We feel that the 

discrepancy between our results and his may be due to the fact 

that the latter does not allow for any time dependence in the 

order C
o
velocity field . It follows from (5.5.1) that the flow 

is destabilized as 0 increases with C held fixed In contrast 

to the cylinder problem the order Etterm is positive thus 

stabilizing the flow . 

For large c with C arbitrary we found that 

	

10  R.7 
	

(5.5.2) 
tr712. 

where Roand Rare given by (5.4.33) 1(5.4.39) respectively 

This is in fact the critical Taylor number at which instability 

first occurs since taking the variation of a with a into account 

shows that the critical Rayleigh number is first affected at 
-7 

order a by this effect 

Venezian says that the first correction term in (5.5.2) is of 

order a but the reason for this statement is not clear . A 

calculation for the rigid boundary problem shows that the 

corresponding correction term there would be of order 

if we were to repeat the method of solution desribed in /5.4 

for that problem . Thus it seems that the nature of the boundary 

conditions is important in determining the order of magnitude of the 



correction term 
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g
4 

 (C) 
	

f
4
(C) 

0.00000 ' 0.00000 " 0.00000 
0.02500 0.02505 -0.11331 
0.05000 0.05033 -0.42497 
0.07500 0.07595 -0.89528 
0.10000 0.10187 -1.48802 
0.12500 0.12797 -2.17029 
0.15000 0.15405 -2.91233 
0.17500 0.17987 -3.68741 
0.20000 0.20513 -4.47167 
0.22500 0.22953 -5.24403 
0.25000 0.25275 -5.98608 
0.27500 0.27449 -6.68191 
0.30000 0.29445 -7.31808 
0.32500 0.31237 -7.88346 
0.35000 0.32801 -8.36913 
0.37500 0.34116 • -8.76826 
0.40000 0.35166 -9.07601 
0.42500 0.35939 -9.28938 
0.45000 0.36426 -9.40713 
0.47500 0.36624 -9.42959 
0.50000 0.36533 -9.35859 
0.52500 0.36159 -9,19731 
0.55000 0.35510 -8,95015 
0.57500 0.34598 -8.62264 
0.60000 0.33440 -8.22127 
0.62500 0.32054 -7.75346 
0.65000 0.30462 -7.22744 
0.67500 0.28688 -6.65213 
0.70000 0.26756 -6.03717 
0.72500 0.24693 -5.39280  
0.75000 0.22527 -4.72989 
0.77500 - 	0.20283 -4.05990 
0.80000 0.17988 -3.39498 
0.82500 0.15667 -2.74795 
0:85000 0.13341 -2.13243 
0.87500 0.11030 -1.56297 
0.90000 0.08748 -1,05514 
0.92500 0.06505 -0.62577 
0.95000 0.04304 -0.29313 
0.97500 0.02141 -0.07721 
1.00000 0.00001 0.00002 
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g9(;) 
	

f9( c) 

1 	0.00000 ,  0.00000 0.00000 
0.02500 0.02507 -0.10589 
0.05000.  0.05048 -0.39273 
0.07500 0.07637 -0.81866 
0.10000 0.10270 -1.34705 
0.12500 0.12930 -1.94599 
0.15000 0.15594 -2.58774 
0.17500 0.18229 -3.24829 
0.20000 0.20803 -3.90702 
0.22500 0.23278 4.54636 
0.25000 0.25622 -5.15150 
0.27500 0.27801 -5.71019 
0.30000 0.29785 . 	-6.21249 
0.32500 0.31548 -6.65059 
0.35000 	. 0.33066 -7.01863 
0.37500 0.34322 -7.31252 
0.40000 0.35301 -7.52982 
0.42500 - 	0.35995 -7.66954 
0.45000 0.36399 -7.73202 
0.47500 0.36512 -7.71880 
0.50000 0.36338 -7.63244 
0.52500 0.35885 -7;47642 
0.55000 0.35163 -7.25503 
0.57500 	- 0.34187 -6.97321 
0.60000 0.32974 -6.63647 
0.62500 0.31544 -6.25083 
0.65000 0.29919 -5.82269 
0.67500 0.28121 -5.35883 
0.70000 0.26177 -4.86632 
0.72500 0.24112 -4.35260 
0.75000 0.21952 -3.82541 
0.77500 0.19723 -3.29292 
0.80000 0.17452 ---3.76379 
0.82500 0.15162 -2.24730 
0.85000 0.12877 -1.75352 
0.87500 0.10616 -1.29358 
0.90000 0.08395 -0.87985 
0.92500 0.06223 -0.52637 
0.95000 0.04105 -0.24915 
0.97500 0.02035 -0.06671 
1.00000 . 	-0.00005 -0.00053 
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APPENDIX 

STEADY FLOW IN AN AXISYMMETRIC PIPE OF SLOWLY VARYING RADIUS 

We now use the method of the first two chapters to consider 

steady flow in an axisymmetric pipe of slowly varying radius . If 

Da is a characteristic radius of the pipe and and L a characteristic 

length along the pipe theitwe define a parameter bby 

Al 

Since the pipe radius varies slowly we assume that 5 is small . If 

U0  is a characteristic velocity along the pipe we define a modified 

Reynolds number , Rm  , by 

00  00 A 2) 	 A2 

where v is the kinematic viscosity . We assume that R is small 

and we shall seek a solution by expanding the velocity and pressure 

in powers of Rm  andb . The pressure difference which we maintain 

between the ends of the pipe is steady . If the pipe is defined 

in cylindrical polar coo.zdinates (r,d, z) by 

0 z 

 

Ka 1  0 1.-‘91) 	A3 

then we impose a pressure difference such that 

ef)( RCS  ) 	(1)(k(0);  0) 2= 6; 

The order 5 pressure term is found to be a function of both the rad 

and axial variables in contrast to the pressures evaluated in, the 

first two chapters which were only functions of one variable . It is 

for this reason that we prescribe the above pressure difference 

evaluated at the pipe wall . 

Manton (1971) has considered the steady problem for an 

infinitely long pipe . However he based his Reynolds number on the 

flux through the pipe and hence insisted that there was no net 

flux through the pipe associated with the order RMbjetc.velocity 
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components . Having done this the pressure difference between 

any two points is fixed . This is in contrast to our work where 

we first impose a pressure difference , on which we base our 

Reynolds number , and the flux through the pipe is then fixed . 

We shall see that the methods are in fact equiValent . 

Using the notation of Chapter 11 we can write the momentum 

equations in the form 	civi4 IQ  	 0  7#45,z  
071 	( '17 	 2) 	t of 	—V 1 	P•s 

2 J. or 87 
tifeLe? 	TsT gc 

and the equation of continuity is 

__,,(2_0") 2gt=6 
	

A5 

The required boundary conditions are 

a. There is na velocity at the surface of the pipe , ie f and g 

are zero at 	= R(C) . 

b. The pressure difference , P(R(K),K) —P(R(0),0) , is independent 

of Rm  , 6 and is equal to a say . 

c. The velocity is regular at 1] = 0 . 	A6 allp,c 

Suppose, that we expand f I ,g F in the form 

• etc. 

)c, ic, 4-or, 4- Qmfm # eml fpfoi -r 0(44, tos-fg  Ai)] 	

A7 a,b,c 

If we substitute these expressions into A4 we obtain the following. 

system of equations after equating terms of order 1,6, Rm,RA 

= 	?P0  = 0  

02i, 17 R__eaalf, )vt p_volo 

Iffi  _ft 	yoi 	 Ipti/ 	 A8 a,b,c,d 

(rfftiwzr 2e204  10 9.61 4,9frtS 4--ro  tfis 	." 

9S 	IT U 04 	qf 	Cli=c 
Vie.; 	Va leg/awl 



and the boundary conditions from A6 are 

=ffi 	
= ° 141'-Cla 

10 (k) -- )1, (il(kiliq -e,(C‘oio) 	do. PM (4)-.. 15 I - 	"." 6  
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.A.9 alb 

where we have used the fact that from A8 , PI  alone is a function Of 

both 11 and c . If we substitute for f and g from A7 into the equation 

of continuity and equate terms of order 1 ,o,TRII,Rm. we can show that 

94( 11g) 	° A10 

for K = 01 1,M IMM 

If w is the axial velocity along the pipe the flux through any 

cross-section of the pipe is 

Q
lo 

.= 0,277- 

0 
But w=, U0f n= r/D and so Q is given by 

Q. g.. f0 0090,V'ci f, 
Suppose that we define a stream function 4, by 

then it follows that Q is given by 

6) = 71-40 a . V ' 
2 	/ g,  

0 
If we choose to be zero along the axis of the pipe and then use 

A7 we have that 

Q
— ,21). u0 a2  Q 4 *84 1114( 4,1----.1 

tr-  12. 

where AIL corresponds to f®, go  etc. 
o 

Evaluation of fo, g., Po , etc.  
Using A8 , A9 we can show that 
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All 

and from A10 with K = 0 we can show that 

_2(4/wrz —__Lioayi!vej 4/4/gq,  
where a dash denotes a derivative with respect to c . We now 

integrate both sides of the above equation from = 0 to n 

and use the fact that go  is regular at T1 = 0 to show that 

— —1 VI* if i ge,1  t i  
7 	 Alp 

and if we now put 1-1= R and use A9a we have that 

0 	Vt: 440 141  
which is the Reynolds equation for the pressure which we can 

integrate once to give 

11  - 
4Z 

where A is an arbii(ary constant , which may be determined by , 

integrating both sides of A15 from C .,p to c = K and then using 

A7b,thus giving 	K 

a /I 002  
0 

o, 4. 
and for convenience we choose a 164.5b/le . Using A15 we can then 

show that 

	

-4  ilt-e2I 	 411ft--cell 
	

Al7 al b 

from which we can deduce.that the corresponding streamfunction 11 
is given by 

(f/x19--  a  07421 

K iff 
and from A15 , A16 , with oc.-16‘4/4 we can show that 

Al2 

A13 

A15 

Ao A16 

A18 
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Al9 

We now evaluate the order 5 pressure and velocity . From A8b 

with fo ,go as given by Al? , we can show that 

/1/

ti 

= 	 A20 

and 

7 itird 	 A21 

Integrating A20 once we obtain 

A22 

where Q/is an arbitary function of ? . If we substitute for P, from 

A22 into A21 we have 

which we integrate to give 

7":" 14Q(1-1 	 gq:-/k42'elY 

and if we now substitute into Alljwith K = 1 , integrate from 

= 0 to 11 = 	, and use the fact that g is regular at 11 = 0 we 

can show that 

L-LCA141(130C7 	1.--(;?°4-  4:),71 	I.  

4 o (4,10  372'1(7 — 4 (g,)'elqs 	A24 6 	*--0 
If we put ri R in A24 and use A6a we obtain the Reynolds equation 

for Q 

0  = g0.1-44:,)1 _1e7j- f(',,Vie7 
We integrate this equation once to give 

371 : 	gY/3,) 	
A26 

A23 

A25 
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where Bl is an arbitary constant . Using A22 1 ,1126 we can show that 

	

f g 	 2 	! .c 214/e/(0Jii  fil(01,9 

	

14,p. -16/4Q 4 ifrz  	e l: 600ii 
A27 

from which we deduce that 1, after using.A9b ,B, is determined by 

a 114 0 
-"Jo a. uoilo qz3(0), 3 	ffs- 

A28 

The associated stream function 4, is seen from A23 , A24 , A26 

to be given by 

, (9/44— aeril +(5—e.  eel A29 

We shall now calculate the order RM  velocity and pressure . If we 

substitute for fo and g eifrom Al? into A8c we can show that 

2.eps 	32.41 	4'_ ./ 1- X 
S 771.  

and 	 A30 al b 

_cdt 

The solution of A30 which satisfies the boundary condition Aga is 

Substituting for fil in A10 with K = M and integrating from 11 =f  0 to 

= 11 and using the fact thati gol is regular at 11 7  0 we can show that 

1_614 11+- Li4-Alf/p„, ?fire 	 ..3.2gry 

+ f tzt % s r  n i._ 4„t g .61 8  gigrA ygi 	at cA 6 ? -y41 

4 V ( ) tt k' 
	

A32 
If we now put r1 = R and use A10 we obtain the Reynolds equation for 

Pm 

0 = c lok  gA4] A33 

which we integrate once to give 

A34 

and now if we integrate both sides of A34 from C = 0 to = K 

and use A9b we find that the constant cri  is given by 



-ALM-3:0 gq 

with the order Rm  velocity field is 

c 	2N)21 A36 

104 

Mh 

172 

eitt = f .-f" 4-00 -1461 	
A35 

dY 
s4,  

It is an easy matter to show that the streamfunction associated 

The order Rm  velocity and pressure can now be calculated in 

the same way as that just described for the order Rm  quantities . 

After a great deal of algebra we find that 
161 	(HP-119 ,SZ4E 

6 
441 	Lie* /p 	et r(f,„) 	 ;1] 

(.70 onoo) 	ti -w •%;-- • 

4  Q. ON 	hP(/// 	pothf-2ackilfp+- 

	

q i7" A  A 	 g 

where Q and P are defined by 

A37 a,b 

g= hae1  ZO 11' /P= MR"' 
-7(7-  

and 
I4P 29 4 //? 

1  -4-64-A • 

I (to 4. as 
/ 

) 	a 	(P43q) 
a 	7 	*4+ 41- 44. 

The constant Dm  is determined by the following equation 
k 	It 

mitt 	- 
o 

A38 
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The recovery of Manton's results  

We have shown that the streamfunction may be written in the 

form 

= f e7,4* _0) 2)&1 +31 433 ci , 	+,3)1.11,112:41 

sfsz t- Rg uifi e27/06  3--(9704 41 MI 
+RNivf-4074g+tfkt -04x-46)7P-2c-1Y/4J 

G  v 2 

4 	&if an 04) 	(Rz, 	sz) 
nzi 

This is exactly the same form as that found by Manton if we 

put 131 = Cm= Dmoi. 0 . If we redefine the Reynolds number in an 

equivalent way to that used by Manton we see that our results 

are the same . 

Using A39 we see that the flux through the tube is 

= 2*-003: 	- RAI -10112p, -I-  0 (4, ra‘  

and using A2 we have that 

U0307/ 	-  U0 Tot  -3 A, U021„4:i- (gP4, c)i, 	A40 

If we define a modified Reynolds number , Rm  , based on the flu] 

by 

c,2 Troi 
and invert A40 to give 

 2  ti  =1. 	S 	c! + 	4.26t) 4o (1,1ii;R:f) r   

then 

ppi 	g f‘i i( +g, 4 C144  Q 4- 	CM) 
	

A41 

4- o(f;eitr,eZs) 

A39 



Suppose we define a streamfunction 

JL Pi = 
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2 1- 
where u v are the velocity components correspondingto the 

coordinates r ,Z I  then 71/ and 	are related by 

= (101,z)G 

If we now use A39 , A40 ; A41 we can show that 

01? ) Meig) +c "k liqielg)6-48,d tiN )) 
cUr 

R*  140/gr4÷046-(9/(4),4-ci-y-Wif 
la rt Pr4;14 Oat  4 0( Y.; eZC1; eZ3)] 

which is the result obtained by Manton . We notice that A42 was 

derived without any knowledge of B1  , etc. Thus A42 is valid for a 

finite or an 	infinite pipe . We have merely considered a pipe 

of finite length and based a Reynolds number on the pressure 

difference between the ends . Hence we were able to find explicit 

forms for B1 ,, etc. by stipulating  that the pressure difference 

between the ends had no contribution of order 6 1• etc. 

A42 


