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ABSTRACT

The reader is referred to the Llist of contents for a detailed
abstract of this thesis. Following the introductory first chapter.
Chapters II, III and IV contain a detailed analysis of the systematic
errors in high and low frequency acoustic thermometry. By "high" and
"low” frequengy thermometry we mean thermometry where the operating

frequencies are respectively above (usually far above) and below the
~ lowest characteristic cut off frequency of the resonant cavity used to
measure the velocity of sound. A case is developed for using the Low
frequency approach although in the past it has led to apparently
inferior results. Attention is drawn. in particular. to Sections 2.2.3
and 2.3 where two important difficulties for the high frequency
approach are discussed. In the former section it is shown that it is
impossible to tell from the positions of the observed cavity
resonances whether or not there are errors in the measured velocity
due to tne presence of unresolved high order resonances (although as
is shown in the following section these are likely to be small in the
work done hitherto). In Section 2.3 an account of the errors to be
expected from bad cavity geometry is given. This applies only to low
frequency devices, the extension of the analysis to higher frequencies -
being very difficult. Thus: at -the moment, there also remains an
unanalysed source of error in the high frequency technique.

Neither of these two problems arise at low frequencies where the
predominant systematic error is due to the acoustic boundary layer.
The theoretical corrections for this effect are discussed at length in
Chapter III where it is also argued that past criticisms of the theory
are in error. It is, in any case, possible to measure the boundary

layer corrections relying only on a restricted set of theoretical
assumptions.

Chapters IV, V and VI discuss in detail the design. testing and use
of such a low frequency acoustic thermometer. Measurements have shown
that the systematic errors characteristic of this technique functicn
exactly as expected and it has been used to measure the normal boiling
points of helium-4 and equilibrium hydrogen and the triple point of
equi librium hydrogen. :






CONTENTS

ABSTRACT
. FRONTISPIECE !
| CHAPTER I INTRODUCTION.

1.1 Primary and‘Secondary Thermometry in the Range 2-20K.

1.2 The Velocity of Sound as a Function of Thermodynamic Temperature.

1.3 The Velocity of Sound and the Virial Coefficients of the
Equation of State for a Real Gas. :
1.4 The Velocity of Sound and the Pr1nc1paL Spec1f1c Heats of a o
Real Gas.

* 1.5 Existing Acoustic Thermometry.

CHAPTER II THE THEORY OF THE ACOUSTIC INTERFEROMETER WITH IDEAL
BOUNDARY CONDITIONS.

2.1 The Ideal Interferometer.
2.2 The Effect of Practical Transducers.

2.2.1 The Form of the normal Modes.
2.2.2 The General Solution and the Amplitudes of the Normal Modes.
2.2.3 Velocity Errors Due to Higher Modes.
2.2.4 Scme Practical Cases.
2.3 The Effect of Geometrical Misalignment of the Cavity End Faces.
2.3.1 Bad Geometry and Velocity Errors.
2.3.2 Tilted End Faces.
2.3.3 The Flatness of the End Faces.

CHAPTER III THE PROBLEM OF THE BOUNDARY LAYER.

3.1 The Theory of the Boundary Layer.

3.1.1 Towards a Simple Statement of the Problem.

3.1.2 The Existence of an Acoustic Boundary Layer and its
Properties.

3.1.3 Boundary Layer Corrections Associated with the Radial
Boundary Condition.

3.1.4 The Boundary Layer Correction for the End Faces of an
Interferometer.
3.2 Objections to the Boundary Layer Corrections.

CHAPTER IV PRACTICAL DESIGN CONSIDERATIONS FOR AN ACOUSTIC
THERMOMETER.

4.1 High Frequencies vs. Low Frequencies.
4.2 Variable Path vs. Variable Frequency Interferometry.
4.3 The Excitation of the Cavity and the Detection of Resonance.
4.4 Some Remaining Systematic Errors of Acoustic Origin.
4.4.1 The Effect of Finite Sound Amplitudes.
4.4.2 The Effect of Frequency Dispersion.
4.4.3 Approximations in the Radial Boundary Cond1t1ons.
4.4.4 Parametric Oscillation.

" 13

19

23
25

28

29
43
43
31
55
65
74
74
79
81

83

83
86

94
99.

110
114

119

120
130
133
141
141
142
143
145



-5 -

CHAPTER V THE PRAtTICAL INSTRUMENT AND TESTS ON THE SYSTEHM.

5.1 The Acoustic Interferometer.
5.1.1 The Cavity. its Dimensions and Alignment.
5.1.2 The Transducer and the Accelerometer.
.3 The Optical Interferometer.
ontrol and Measurement of Temperature and Pressure.
The Cryostat.
Temperature Measurement and Control.
Pressure Measurement and Control.
Modus Operandi and Tests on the System.
The Measurement of Velocity.
Tests on the Accelerometer.
Tests on the Boundary Layer Corrections.

5.

3

. b all ] L]
VMIHWNNS0 W=

5.1
2 C
5.2
5.2
5.2
5.3 T
5.3
5.3
5.3
5.3
5.3

Testing the Coupling of the Transducer to the Cavity.

CHAPTER VI EXPERIMENTAL RESULTS.

Normal Boiling Point of Helium—4.

Reproduction of the Isotherm Temperature.

The Boundary Layer Corrections at the NBP of Hel1um-4
The Isotherm at the NBP of Helium—-é4.

Triple Point of Hydrogen.

Reproduction -of the Isotherm Temperature.

The Boundary Layer Corrections at the Triple Point of

3
.

The Isotherm at the Triple Point of Hydrogen.

Normal Boiling Point of Equilibrium Hydrogen.

1 Reproduction of the Isotherm Temperature.

3.2 The Boundary layer Corrections at the NBP

quilibrium Hydrogen.

.3.3 The Isotherm at the NBP of Equilibrium Hydrogen.

The Second Virial Coefficient.

The Principal Specific Heats of Helium-4 and their Ratio.
Conclusions i

O WO N0 W0

s T

6.
6.
6

APPENDIX 1.1
APPENDIX 1.2
APPENDIX 1.3
APPENDIX 1.4
2.1
2.2

APPENDIX
APPENDIX

REFERENCES

SUPPLEMENTARY MATERIAL I

Report of Preliminary Work to the 9th Meeting of the CCT. Paris
Also submitted to the 5th Symposium on Temperature Measurement,
Washington D.C.. U.S.A. (1971).

SUPPLEMENTARY MATERIAL II

"Higher Modes in Acoustic Interferometry” (1970).

ACKNOWLEDGEMENTS

NOTATIONAL GLOSSARY

Tests on the Measured Djameters of the Impedance Circles.

(1971).

169

173
182
195
198

201

201 .
203
207
209
215
215

217
217
221
223

223
225
228
231
232

238
240
241
245
246
248
256
259

277

285

286



| CHAPTER I

| INTRODUCTION

In 1967 the HNational Physical Laboratory (NPL) instigated an
investigation into the possibilities and limitations of measuring true
thermodynamic temperatures in the range 2-20K by means of acoustic
thermometry. As a result of this study a low frequency variable-path
'acoustic tharmome:er was designed and constructed which appears to
have met the requiréments of a primary thermometer with some ‘measure
of success. The burden of this thesis is to review the various sburces
. of systematic error in this and other comparable acoustic techniques
of primary thermometry. and to report the results of an experimental
investiqation of the practical instrument. By way of an introduction
to the subject the relation between primary and secondary thermometry
in the range of interest will be diﬁcussed, followed by an account of
the debendence of various .thermodynamic parameters = in particular the
thermodynanic temperature = on thé velocity of sound. It will be
”undarstood throughout that the thermometric medium under discussion is

lifalways hel1um-4 gas. (Noth1ng else apart from the lighter 1sotope of
:{: hel1um. hel1um~3. rema1ns uncondensed over the uhole range. Earl1er '

’
B

acoust1c thermometry is- also discussed. ‘f L'
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1.1 Primary and Secondary Thermcmetry in the Range 2~20K.

Since the conception of this project the relationship between

‘primary and secondary thermometry from 2 to 20K has changed somewhat.

It was not until 1968 that the definition of the International -
Practical Temperature Scale (IPTS) was extended down to cover part of
this range. The previous version of this scale, IPTS~48, defined by
the Comite Consultatif de Thermometrie (CCT) of the Comite
Internationale des Poids et Mesures (CIPM) in 1948, [1] terminated at
the normal boiling point of Liquid oxygen (then assigned a value of
90.18K). This was superceded by IPTS-68 [2,3:,4] whose lowest point 1is
the triple point of equilibrium hydrogen to which the value 13.81K is
assigned. The extension of the IPTS below 90K enabled the confused
situation which ex{sted previously to be rationalised. It used to be
the case that a large number of secondary practical temperaturé.scales
carried on platinum resistance thermometers were 1in use. [5]1 These

scales were defined mainly by the various national standards

. laboratories of the 'world and were related to their own gaé

thermometry; -Published: comparisons of the scales enabled temperature

' measurements  (and other ' measurements based on temperature .
measurements) to be reinterpreted in terms of the scale to which any |
" individual worker happened to be committed. Now any new work in this

‘range may simply be referred to IPTS~68 as may any previous work

through published comparisons of IPTS-68 with the old scales.

rjhe extent to which the old scales disagreed.can be seen clearly
froh figure 1.1 which is taken from referencé.S. At the triple point
of equilibrium hydrogen PRMI-54 (defined by the Physicotechnical and
Radiotechnical Measurements Institute of the USSR in 1954) differed by
as much as 57mK from PSU-54 (Pennsylvania State University = 1954).‘
The other two scales represented in figure 1.1 are those of the

National> Physical Laboratory, NPL-61., and of the National Bureau of
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FIGURE 1.1

The Differences between some of the More
Common Platinum Resistance Thermometer Scales
and IPTS-68.

(a) PSU-54
(b) NBS=55

(c) NPL-61
(d) PRMI-54
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Standards (USA), NBS=55.

‘ .
The IPTS-68 is defined by assianing carefully chosen values of

. thermodynamic"tempérafure;to the various reproducible fixed points in
" the- range of interest (see Table 1.1). A convention is then stated for-

'interpolation using the specified interpolation device calibrated " at

the fixed poiﬁts so that any intermediate temperature may be measured.

| From 13.81K dp to 903.90K the interpolation instrument is the platinum

resistance thermometer. It is the loss of sensitivity of pure platinum
which limits its use as a thermometric element below about 14K. In
this region its residual resistance (largely attributable to
impurities and lattice Iimperfections) begins to mask the thermal
resistance arising from the scattering of electrons by phonons. Thus,
in the absence of a new interpolating instrument, the IPTS-68 cannot
be extended far beiow the triple point of hydrogen. B
However. the CCT of the CIPM has recommended the use of préctical
helium vapour pressure scales between 0.2 and 5.2K. The helium-4
vapour pressure scale of 1958, T7-58, is defined by a set of published
tables relating saturated vapour pressure to temperature from 0.5 to
5.2K. [6,7] These values are derived from the integrated
Clausius—Clapeyron equation for a first order phase change. Since the
thermodynamic temperature appears in this equation it might be asked
why it should not form the basis for a primary thermometer — an
exceptionally simple one to use by the standards éf other primary
thermometers. Unfortunately the basic relationship involves certain
temperature~dependent thermodynamic quéntities such as the latent heat
of evaporation and the molar volumes of the two phases present at any
given tgmperature. The determination of these will therefore
presuppose some independently defined temperature scale. In fact .the
CCT evaluated thém on the basis of several sets of gas thermometry

measuraments. A similar secondary vapour pressure scale, T-62, was
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IPTS-68 .

IPTS-68
IPTS-68
IPTS-68
IPTS-68

T-58j7
and -
T-62 .

T-58
and
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TABLE 1.1

’

Fixed Points in the Range 2-20K.

Status of
Point

Secondary'

Primary
Primary
Seconaary
Primary

Tabulated
' Value

Tabulated
Value

Assigned

Temperature

(K)
20,397
20.28

17.042

13.956

13.81

4.215

3.190

Fixed Point

n.b.p. of normal hydrogen.

n.b.p. of equilibrium
hydrogen.

b.p. of equilibrium "2
hydrogen at 33 330.6 N/m .

triple point of normal
hydrogen.

triple point of .
equilibrium hydrogen.

n.b.p. of helium=4.

n.b.p. of helium=3.

Primary fixed points are the defining fixed points of IPTS-68.
Secordary fixed points are additional fixed points whose temperatures
are given on IPTS-68 as defimed by the primary points. Thus the
secondary temperatures are ultimately traceable to the temperatures
assigrned to the primary points rather than to direct thermodynamic

measurements.

The n.b.ps. of the two isotopes of helium are not properly
called fixed points of the scales T-58 and T-62 sirce they are
tabulated values of equal status to any other value in the tables.
However they are widely used as fixed points in the calibration of
many simple secomdary thermometers such as carbonm resistors or
thermocouples. The valaes assigned are usually those shown.
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defined in 1962 relating temperature to the vapour pressure'of
helium-3. [8,91 Thé‘ upper limits of T-58 and T-62 are set by the
critical temperatures of the two isotopes of helium and the lower by
the diminution of their Qapour pressures. These three secondaryv
scaless IPTS-68, T-58 and T—62..still leave a gap from 5.22K up to
13.81K in the present range of interest for which no established
secondary practical scale exists. At the moment workers may use
various thermocouples relying on such information as is available for
their calibration or calibrate them themselves at several fixed
points. Some electronic circuit devices have also been wused as
temperature sensors with varying degrees of success. [19.11] However,
none of these methods can easily offer the precision, thermedynamic
accuracy and. in particular, the reproducibility of thevthree approved
secondary scales..fhey do: on the other hand, have the advantage of
simplicity uhicﬂ. is always important in secondary préctical
thermometry. Fortunateiy. for more demanding requirements., there

remains the doped germanium (or. occasionally. silicon) resistance

“thermometer. [10] Over the last ten years this has been developed to

the point where its reproducibility on thermal cycling is good enough
for it to function as the calibrated carrier of a primary scale. Its
range and sensitivity are widely controllable thréugh adjustment of
the doping impurities. But. unlike the pLatinum resistance thermometer.
or the first order phase transition of a pure substance. there is no
sufficiently accurate theoretical descriﬁtion of .its resisfance-
temperature dependence to enable it to function as a conventional

secondary ' thermometer. Instead of determining a few constants in a

‘simple theoretical relationship, it 1is necessary to calibrate it

against a primary thermometer at many points over its whole range
(typically twenty points between 2 and 20K) and to fit, for example, a

high order polynomial to the points for the puépbses of

N
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It is clear, therefofeo ihat‘primary thermometry plays a dual role
in this region. Iti provides., as at higher temperatures, values of
thermodynamic temperatures for the readiiy accessible fixed points of
conventional convenient secondary thermometry. In addition, in the
absence of a simple interpolating secondary device for part of the
range., it provides direct closely spaced thermodynamie calibrations.

There also remains the possibility of using an instrument
conventionally operated as a primary thermometer =-— that is an
independent thermometer measuring accurate thermodynamic temperatures
in the usual sense - as a secondary thermometer. It could be
calibrated at one or more fixea points or it could be
self-calibrating. - Subsequently it could be used as an interpolating
thermometer over the whole range of interest. Hitherto no éqoustic
thermometer has been used in this way., but it has become commonplace
to calibrate a gas thermometer at ‘a single or a few temperaiures
rather than to plot a full pressure-volume isotherm at any temperature
+to be measured. If such thermometers are self calibrating they still
do not merit the title of primary in the strong sense. however. since
they will not. measure thermodynamic temperatures entirely
independently. This arises beacause corﬁections for the non-ideality of
the thermometric substance will generally be required from another
instrument. For example virial coefficients will be needed for this

-type of gas or acoustic thermometry. —

Mention should also be made of the~ unique status of magnetic
thermometry in this range. Too complex a technique for general use as
a secondary scale, it does however cover the whole range 2-20K

~(remaining useful down to much lower temperatures as well). And: like
vapour pressure thermometry, it is based on a theoretical

relationships the Curie~Weiss Llaws in which the thermodynamic
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temperature appears as a function of the magnetic susceptibility of a
paramagnetic salt. But again, it is unsuitable for use as a primary
thermometer since 1t depends on the independent evaluation of several
(three or four) constants in the basic equation. Nevertheless. 1t has
been found worthwhile to use magnetic thermometers in the past to
check the internal consistency of‘ the purportedly thermodynanic
temperatures.of other primary thermometers and of the three approved
secondary scales. [13,14] They are also used at lower temperatures (as
low as 0.006K using cerium magnesium nitrate as the thermometric salt)

where the choice of thermometers. primary or secondary. is very

" narrow. ‘

1.2 The Velocity of Sound as a Function of Thermodynamic Temperature.

For a wide range'of freeuencies the'prbpagation of sound in a gas

| is almost perfectly adiabatic so that the veloclty of sound, cs in the

-unbounded medium will be glven by'

}

Ca'\- Bs/e C(v.aa)

where B is the adiabatic bulk modulus of the gas and e is the
S
density. Since

s ———

3 = —V(Ss)s S L)

where P and V are the pressure and volume of the gas respectively. and

since for n moles of gas
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q
i

nM/V | (1.2.3)

where M is its molecular weight. we obtain for an ideal gas

¢” = rRT/M‘ | Goa.4)

Here o~ is the ratio of the principal specific heats, C /C R is the

L p Vv
gas constant and T the thermodynamic temperature. Conversely .

OER:' o | (i.2.5)

thus enabling the thermodynamic temperature to be established in terms
“of the velocity of sound in an unbounded jideal gas. This is the basic
principle of acoustic thermometry in gases.

The claim to measure true thermodynamic temperatures will stand or
fall in the first place on thé justification for our interprefation of
f in this equation. We take as the fundamental definition of
’thermodynamiq temperature that conventionally given in terms of ideal
Carnot cycles in most formulations of thermodynamics. That_ the
temperature appearing in the equation’' of state for an ideal gas

(Boyle's law) is the same thermodynamic temperature of the fundamental
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definition follows from an elementary theorem of thermodynamics. Thus,
given the basic’widely confirmed relation, 1.2.1, of fluid dynamics,
we may interpret the variable. T, of equation 1.2.5 as the
thermodynamic temperature' with  full confidence.‘ The same |
f interpretation holds gven more directly for primary gas thermometry
‘where Boyle'si law"ié‘applied without the intermedia;ion‘of equation
120, oo R | | |
‘ As Hith primary gas thermometry. however. allowance must be made
for tﬁe noﬁ-ideality of the gas aﬁailablé for USe:asla thermometric
fluid. Expressing the‘sqqare of the acoustic velocity as a virial

expansion of pressure terms we obtain:

. a , . ' L
¢ = RAT)+ A(TIP +A(TIP +-- (1.2.6)

where

A(T) = «R T )

- Equation 1.2.7 follows from the increasingly ideal behaviour of real
gases at progressively lower pressures where equation 1.2.6 must
ultimately conform.with equation 1.2.4.

From eduation 1.2.6 it can be seen that the value of A (and so of

i 0
the thermodynamic temperature) may be obtained by plotting isotherms
2 2 -
of ¢ as a function of pressure and obtaining its valuerc . at the
: , 0

intercept with the ‘line P=0. At sufficiently low pressures when the

-



 simply. it may be calculated from equation‘1.2.5 where the wvalue, ¢
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quadratic term of the virial expansion is negligible, the slope of the'

jsotherm gives the second acoustic virial coefficients A .
A 1
In principle a "density” expansion:

¢ = AT FAM(E) ¢ AM(RYe
| | ] i v (1.2.8)

- could be used instead of equation 1.2.6 and the corresponding isotherm

plotted as a function of reciprocal molar volume. But in practice the
pressure expansion is always used since molar volume is far harder to
measure than pressure. In primary gas thermometry on the other hand.
both expansions ;fe found . But there the molar volume has to be
determined in any case. It is the avoidance of this measurement with
its necessity of estfmating satisfactory dead-space and adsorption
corrections which is deemed to be a major advantage of acoustic
thermometry. However, it sometimes appears that these errors are not
markedly more difficult to deal with than the systematic errors
characteristic of the latter method which wili be discussed at length
in the following chapters.
In order to determine the thermodynamic temperature from an
acoustic isotherm two procedures may be adopted. Firstly, and more
. 0
is substituted for ¢ and accepted values for M and R are used.,¢" taking
the exact theoretical value for an ideal gas (5/3 for monatomic
helium=4). The constant of proportionality, ¢"R/M, between c2 and T
plays the same role as the constant nR in primary gas thermometry

which relates the directly measured quantity PV to T. This quantity.

nRs s wusually evaluated experimentally by measuring pressure and
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volume at the .tfiple point .of water where the thermodynamic
temperature is defined to be 273.16K - a convention which determines
the Kelvin. Thus there is an.essential di fference between primary gas
and acoustic thermometry here. The former is unable to function
without a calibration at the triple point of water. Knowledge of the
gas constant is of no use in this respect since, to apply it. one
needs to knoﬁ how hany moles of gas: ns one has in the thermometeb.
But to determine this requires either an application of Boyle's law at
the triple point of water in any case, or an even more difficu[t
‘measurement of the mass of the gas used. (*1) Acoustic thermometry. on
the other hand, does not require this triple point calibration since
it is independent of the amount of gas used. This 1is because the
velocity of sound is an intensive thermodynamic quantity whereas PV is

not since V is extensive (Cf respectively, the quantities oRT/M and

Howaver, this is not to say that an acoustic thermometer may not be
.directly calibrated at the triple point of water = this being tﬁe
second operating procedure mentioned above. Since o- and M are
independently known to a high degree of accuracy this would in fact:
offer a new method of determining the gas copstant. (x2) It may easily
be - shown that the fractional error in measured temperature. T.

associated with an acoustic calibration error at the triple point of

(1) The combination of these two measuréments enables the gas
constant to be measured;’ It is, 1in fact, the basis of the
conventional technique of limiting density (See., for example., T.
Batuecas:. Proc. Sec. Intl. Conf. on Nuclidic Masses, Vienna
(1963, Ed.‘w. H. Johnson (Springer—Verlag, 1964)) |
¢2) Such an acoustic determination of the gas constant is about _

to be undertaken at tha NPL.
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water is
AT = DBbTe - 2 Dce (via-a)
T 2'73.16 Ce

where the subscript. c. refers to the calibration values. AT may be
c

"expected to be less than .01K and Ac¢ /¢ one or two parts in 104.
Thus the second 'term. is the predgmiﬁant one. The comparable error
arising from using the existing value of the gas constant is a Llittle
less being equal to the fractional error in the gas constant itself
since o and M are known much more accurately. The standar§ error
usually. quoted for R is 45 parts in 106 . Taking the previous figure
of one or two parts in 104 to be three standard errors it can be ;een
that there is a‘marginal advantage (based only on rough figures) in -
using the existing value of R . This is further recommended by the
experimental simplification brought about by adopting the orthodox
value. In particular. operation of an acoustic thermometer at the
triple point of water would entail rigerous precautions against
gaseous impurities in the thermometric helium which are not necessary

at very low temperatures.
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1.3 The Velocity of Sound and the Virial Coefficients of the Equation

7'of State for a Real Gas

The aforement1oned v1r1al expans1ons of gas thermonetry are the:

pressure . and den51ty expans1ons of the product PV wh1ch form the most'
© familiar alternat1ve statements of the equat1on of state of a real

.. gas:

PV =
nRT &,I + B(T)(_\L\./.) + C(T)(_?_/_)lar--'} (1. 2 )

and

PV

nRT {1 +B (TP + (TP re e CEEY

The virial coefficients and the thermodynamic temperature may be
obtained by plotting pressure-volume isotherms in the usual way and
extrapolating to =zero pressure or density. Values of virial

coefficients obtained from the different expansions may be compared

~ through the following relations:

(T) = B(M/RT © (13.3)
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and

M = (e ~B“('T>}/R“T’“ (1son)

(sce Appendices 1.1 and 1.2 respectively).
Values of acoustic and pressure-volume virial coefficients may be

compared as well:

A (T) = _OL{J,B(T) y b BT
M

3 AT
—2 2
y 4 T 4 Bml (1.3.5)
TS O L

and

A, (T) = _o {_nza_ C(T) + 1o T LT
MRT L & 5 T

| L .
15 e 5 45 N L
+,8_T“(daec7> * & ai' TB LB
4s Tt 15 LT
+_8 T&B(T)(cLaB(T) + _5}_73(&8(7))(01"'517)3
s AT 45 T AT
(1.3.6)

(See Appendices 1.3 and 1.4 respe&tively)
Since it is unnecessary for the purposes of primary thermomefry -

gas or acoustic = to ‘work at pressurés high enough for the third
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virial term to become important, there is very little information on .
the form of A (T) or C{(T). B(T) on the other hand may be roughly

2
represented by the form:

B(T) = o+ b /T (13n)

"which is suggested by the Van der .waals two constant equation of
state. Since this equation has only the simplest of theoretical
justifications the limitations of equation 1.3.7 are not surprising.
Experimentally measured values of B(T) may be represented to within
: several per cent in our present range of interest which 1is somewhat
less than the disaéréémeht found in the results of different wérkers.
. The exact formléf the témberatyre Vafiétibn of B depends upon the form_‘
of the intermolecular potenfial of‘helium—4. It is uéual to postulate
a plausible form for this potential and to derive a relation between -
"~ B(T) and the chcsen fﬁnction. Measured values of B(T) may subsequentiy
be used to evaluate constants in the intermolecular potential. The
successive terms in the 'virial equation of state are then seen to
éorrespond to interactions of increasingly’ higher order between
molecules. However. whilst this procedure constitutes an imnortant
- theoretical justification for the virial equation of state, it will be
appreciated that it cannot offer a theoretical description of‘the form
of B(T) in the absence of a prior and iﬁdependent definition of the
intermolecular potential. It is therefore necessary to approach the
problem experimentally and to obtain B(T) from such data as is
available. Since the‘disagreement batween the various measured‘valueé

of B is as large as it is, it is felt that there is Llittle point in
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attempting to represent B(T) with a many-constant numerical
approximation so that pressure-volume and acoustic virial coefficients

may be compared accurately. Taking equation 1.3.7 and substituting for

B(T) in equation 1.3.5 we obtain

A, (T) lﬁ\ﬁ{la+.§__b|__l (1 3-8)

or

i

'H‘(T;) o+ e/T (1.3.49)

where

0

6o b (l;l.lo)
5M

d = o o;.cun.d. e
IV\ :

thus deriving a similar funétional‘dependence on temperature»for the

second acoustic virial coefficient.
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1.4 The Velocity of Sound and the Principal Specific Heats of a Real

Gas -
Expressing equation 1.2.1 in terms of the isothermal bulk modulus.,

B =B /fory, we obtain
T S

.C,v‘L v 7=V_'o'.- (31\)/)-‘. x: F“L*")'

.~ which is easily evaluated from the virial eqqation of states 1.3.1: to

give

o E;.-J CP/CV
‘{, - aB(M() +(a‘51(ﬂ-3c(ﬂ)ﬁ_§
V PRy
R
(l'.h.l) |

A second relationship between C and C may be obtained from the
P - v

15

familiar equation

e = G TRE Y )
l;- |

uhaqca
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CP—CV-'-

R'E‘ + 2 dB(T)P ,L(g*(-r) - LTB(T) BT
12: AT ' LT

a ' 2
+ T A28 - (7)) + chLC(T)) P IS
aT? CaT JRT?
(1.n.4)
Equations 1.4.2 and 1.4.4 enable 6, C and C to be calculated from a

P v o
knowledge of the virial coefficients and the thermodynamic

temperature. To measure the latter acoustically it will be necessary

to assume thato=0"=5/3, the ideal gas value, at vanishingly small
0 .
pressures. Given this., values of . C and C may be calculated at

. o] v
higher pressures.

It would. however. be useful to check that & = 5/3 at lihitingly
low pressures. Such a check could in principle be made if an

independent measurement of temperature was available. This value might

then be substituted into the limiting form of equation 1.4.2:

o, = Me (on.5)

to give ¢ . In the range 2-20K this would require a primary gas
0

thermometry determination of T which needs make no assumption as to

the value of 0~ . However, the experimental error in such a value would
0

exceed the error expected in the assumed theoretical value of o .

) : 0
Thus, in practice., the suggestion is not very helpful. Moreover. the

status of acoustic thermometry as a technique of primary thermometry
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hangs upon the independence of its measurements. To use a measured
value ofo would be tantamount to doing secondary (but hardly
praétical) gcoustic thermometry. In any caser systematic errors in
acoustically measured temperatures attributable to cb should become
apparent in direct comparison with temperatures measured by primary
gas thermometry provided that they ‘can be disentangled from othef
sourcés of error. This would not be made any easier by the above

approach.

1.5 Existing Acoustic Thermometry

In recent years several interferometric investigations have been

made into the propagation of sound in helium gas in the range 2-20K.

These have been directed mainly = at measuring thermodynamic

temperatures. but have also served to evaluate the other thermodynamic
parameters dealt hith in the previous two sections. Standing wave
techniques of sound'velocity measurement have invariably been used

since it is far simpler to house resonant cavities in a liquid helium

cryostat than any conceivable time of flight device of comparable |

accuracy. Due Llargely to a naive approach to the design of acoustig
interferometers the earlier measurements fell far below what could be
currently achieved by conventional gas thermometry. Accordingly our
attention will be directed to more recent measurements [15-25]1 of
greater metrological usefulness.

Two different approaches seem to have emerged in  acoustic
in;erferometry in general (and in acoustic thermometry in particular).
Firstly‘there are high frequency methods with the attendant risk of an
ill-defined wave field in the resonant cavity [15.,16,21-24]1 and
secondly low frequency methods [17-19,251 where this problem is

avoided at the expense of incurring difficulties with boundary Llayer

effects for which rellibLe theoretical corrections may not easily be'

:made. These two d1fferent types of systemattc error will be dealt with

AR o
Lol v
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in detail in the following two chapters. It suffices to point out here
that in the event of agreement being reached between high and low
frequency acoustic thermometry it would be difficult not to conclude
that their characteristic systematic errors were accounted for
correctly and that, all other things being equal, true thermodynamic
temperatures were being measured. Moreover, should both methods then
agree with tﬁe results of primary gas thermometry then we might say
that all primary thermometry in the range 2-20K was basically sound
and reliable. The internal consistency of the measured temperatures
(but not , their absolute values) could be further checEed by magnetic
thermonmetry.

There exist two important sets of low frequency measurements due to
De Laet [191 (following earlier work at Leiden ([15-171) and to
Grimsrud and .Herﬁfz. [25]1 De Laet used a cavity of fixed length and
determined sound velocities from neasurements of its resonant
frequencies. Grinmsrud énd Werntz' used a cavity of variable path
excited at some constant frequency and measured the separation of the
positions of resonance., With the exception of a measurement close to
the bo%ling point of hydrogen from De Laet neither of these -4
investigations extended beyond the region between 2 and 4.3K in the
present range of interest. Temperatures determined by De Laet were.
higher than temperatures measu;ed on the helium~ 4 vapour pressure
scale, T-58, by as much as 22mK at 3.2K and 12mK at the normal boiling
point of helium-4 . This last figure compared with a 32mK discrepancy
found. in the earlier Leidén work using ultrasonic techniqﬁes. The
acoustic temperatures of Grimsrud and Werntz determined using both
helium=3 and helium—-4 as the thermometric gas exceeded temﬁeratures
measured in the T-58 scale by between 1 and 7mK over the range 1.2 to
3.8K. - |

These results of Grimsrud and Werntz are in general agreement with
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the ultrasonic thermometry of Plumb and Cataland [21-24] in the region
in which they may be compared. The temperatures determined by the
, latter using a variable-path interferometer excited at a frequency of
1MHz  were higher than T-58.temperatures by between 5 and 12mK in the
region 2 to 5K witﬁ a 10mK difference at the'normal boiling point of
helium=-4. However., the results of Plumb and Cataland extend over the
whole range 2-20K at intervals of roughly 1K thus forming a - detailed
ultrasonic temperature scale over a wider range than has yet been
achieved with low frequency acoustic thermometry. This was a major
factor 'iq our 'deciding to pursue low %requency acoustic thermometry

rather than the high frequency method.
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CHAPTER II

THE THEORY OF THE ACOUSTIC INTERFEROMETER WITH IDEAL

BOUNDARY CONDITIONS

There are many possible forms of acpustic interferometer which
might be adopted for the measurement of wavelength and hence acoustic
velocity. The most familiar devices are those where the sound
propagates axially in a cavity of rectangular or circular cross
section between two reflecting end faces. But in principle any'.cavity
might be used where reflected waves have a constant phase relationship
with incident waves and where the wavefronts are coextensive thus
allowing interference to take place. For example a sphere excited at
its centre or the region between two concentric spheres would suffice.‘
In p}actice. however. only the two familiar cavities mentioned above
have been widely used. This arises firstly because the wave -equation
for an inviscid fluid is easily stated and solved in the appropriate

coordinate systems: and secondly becauses unlike the spherical

interfarometers:, they are easy to construct with a high degree of

accuracy. Here only the cylindrical resonator is discussed since it is .
universally used for low temperature acoustic thermometry. It is not

feasible to manufacture a rectangular cavity with truly squared

vertices other than by assembling four separate flat walls. These have

then to be effectively and reliably sealed and to remain so at the
lowest temperatures. Such practical cryogenic problems are less acute'

with the cylindrical cavity and so it has always been the preferred
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alternative.

The cylindrical interferometer may be. used in several ways. It can
be excited at one end by a suitable transducer which may also serve to
monitor the resonances in the cavity. Alternatively a separate
receivers commonly the opposite end reflector. may be employed as
well. Wavelengths may then be determined either by measuring the
resonant freduencies of a cavity of fixed length. or by measuring the
lengths at which a variable-path cavity resonates at some constant
frequency. The results about to be derived will apply equally to
variable-path and wvariable frequency instruments. But for the most
part we shall restrict our investigation to interferometers where a
single transducer is used both to excite the cavity and to monitor the
sound., This better suits the type of experimental instrument_
ultimately adopted:for our measurements . Generally the extension of
the theory to the other case will be obvious.

2.1 The Ideal Interferometer

In the absence of viscosity and of effects attributable to the
thermal conductivity of the boundaries of the cavity, the general -
problem of deriving the acoustic field within the cavity (Figure 2.1)
becomes very simple. Following Hubbard (26,271 we assume that the
transducer at z=L vibrates like a perfect piston: i.e. the amplitude
of 1its vibration at any instant, t; 1is the same over the wéole

radiating faces

g(+,0) = %o e (a. 1)

‘wherewis the angular frequency of the vibration and i 1is the
imaginary unit.
It is assumed that plane waves travel in both directions in the

cavity suffering attenuation on reflection at the transducer. T. and
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r=

FIGURE 2.1

The Acoustic Interferometer Cavity.
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the reflector: Rs and in the body of the gas itself due to the usual
mechanisms of acoustic absorption. The respective reflection
coefficients: R and R . are taken to be real and only slightly less
R T : . ,
than one so that 1-R <<1. If 1-R =dl ‘wheredis the acoustic
ReT ReT
absorption coefficient and | the length of the cavity then we may say
.that losses by reflection -and absorption are comparable. Practical

values will be discussed at the end of this section.

Summing the negative and positive going waves we obtain

iwt, o n r\'. -(tiR)Y(Lann1lL -2)
g(Z) '-': Eoe. {E RRRTe
n=0o

-ZRRRTG',

n=90

® e n _(ou-m)(tamal.fz)l

tot - 41k L-2) = (4 1R) (L 2)
= % e e - - Rr e
- ° =2{d+1k)L

(a.1.2)

where k=2@/A>>dis the wavenumber. A being the wavelength of the
sound. This equation enables us to calculate the acoustic reaction on
the transducer from the following relation for the acoustic (i.e.

excess) pressure in the cavity:

p(e) - - ec.a'bg('z) [ox

2 - (deik)(2-2) = (d+ik) (L4 %)
z ipc R _e + Rr e
.' "l - RR ,RT e"“g:(dd- 1R)d4
| (a-1-3)

where @ is the density of the gas, ¢ thg velocity of sound and where

we have made the approximation ik for the factor ®+ik). Thus at the
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face of the transducer (z=l) this becomes

~a {asik)L (2 1-4)
‘P(i_) = ieclh 1+ Rr e ) )

| - RRRT Q,— 1(ﬁl.+{.k)-l.

or

P(Q = ieclk {Rq (L) - i Xq(l)} (1-1.55_

_ where.
. 2 - Ldd -4
Re() =_1 -RaRre  +Rali-Rede cosdkd
' — 24 -
l-— LRaRre cosdkde +'RRR., H&‘Q. .
o (xe1ee)
and 4
Y
Xq(-l) = RR('*'RT) e sinlkd .
~24.4 ~Ld
I - dRaRre  cosdke +’R§'R.ﬁ3f LL

(2-1.4)

Since over the face of the transducer both transducer and gas have
- the same particle velocity their respective mechanical impedances, Z

: T
and Z (1), may be added to give the total mechanical impedance

L) = Z_ 4 Z ¢ (4) | (a 1.8):

uhere \

Z (Q) H P(2) -Hec YRC,(@)-'L Xq(U}
- 0 . |
‘§ (Ler-9)
and A iS'the‘area‘of»the rgd1at1ng face of #he transducer. L

-
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Equations 2.1.6 and 2.1.7 are 1in agreement with the relevant
results of Hubbard if we substitute ¥=R =R =(R +R )/2 for R and R .
R T R T R T
Our expressions have the advantage that R and R have not been

. R T

assumed to be equal = an important consideration when one or both of
the coefficients is véry low. However, with the current assumption

that 1-R  <<1 Hubbard's approximation can be seen to be very accurate

in the S;Iihity of_a resonance when R (1) takes its maximum value and
X (L is zero.'This arises because gos(Zkl)51 near resonance and
bgcause the (identical) denominators of R (L) and X (1) are
symmetricql in R and R which appear only in powgrs of theG product
R R . Since thgy app:;r as a factor R (1+R )2 in the numerator of
X:(I).XGCL) may be regarded as well Rrepr:sented by Hubbard's

approximation for all values of kl and &dl. It 1is exact both at

resonance and aﬁtirésonance. R (LD, on the other hand:, ,Lhas an
approximate minimum value of f+(1-R )/2 at antiresonance which,

’ hay not necesszrily be equal to Hubbard's
corresponding apprgx}mation, +¢1-%)/2. HoweQer, it is nearly always

depending only on R

possible to regard this quantity as being negligible in the
measurement of the velocity of sound in the present context. Thus for
our purposes we shall consider any interferometer with which we may be

concerned as having end faces with equal reflection coefficients,¥.

Then with Hubbard we have

_. . -hdd - dd &
“Rq() = L - Xe + ¥(i-¥)e cosahd
,. i ]
| - lX&e ucoslhﬁ +¥% hd d
(l.l.lo)

‘and
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X () = ¥ (¥+1) sindkd (21

' ~add -
1 - a¥te M es ake # Yt M

Figure 2.2 shows the form df the functions R (L) and X (L) and that

G G
the locus of Z (1) is a series of circles in the complex plane which
. G : :
are approximately touching when Z (1)=0 if 1-¥<<1 and Al<<1.The ratios

G
of the diameters of the impedance circles are shown as being 1 : 1/2 :

173 : 1/4 : ... diminishing as the order of resonancer N, increases.
This is characteristic of the situation where reflection Llosses are
B negligible (1-3k<dl).‘1n this case equations 2.1.10 and 11 simplify to

give . 0

R s kil Gaa)
e | ook 24— c.;s‘ik-i\‘? ,

and

Xg(e) = sin Akl C(a.1.13)

' covh 2L~ cos Lhd

From equation 2.1.8 it can be seen that the point Z (1)=0 on the
impedance circles will be located at Z in the compleprlane and that
Z(L) will be the vectorial resultant atT Z +2 C(l). For the familiar
case of an ultrasonic quartz crystal tansgucer driven at“;esonance
3.50. and the circles Z (L) would lie symmetrically about the posative
'rZal axis touching the grigin. In that case ZC(l),» the experimental
function generally measured, would have the approximate form of R (1)

. G
with exact agreement at resonance and antiresonance i.e. when L=NA/2

or (2N=1)A/4 (N=1,2:3, ...). The form of Z(l) for the example of
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figure 2.2 is shown in figure 2.3.

It can easily be segﬁ that if an experimental plot of Z(l) such aé
this is obtainéd;sthén‘oﬁe has all the information necessary to draw
the impedance éfrclés'of ffguﬁe 2.2. The” diameters D , of the MNth-
impedance circle is 6btainablé from the difference betﬁeen the maximum'
and minimum values qf z for- the resonance. Thus all the impedande
circles may be drawn on collinear diameters toucﬁing at one point on
their circumferences. It is then only necessary to locate the origin
of the complex plane. It will lie at a distance Z from the point of
contact of the circles. It will also lie at t;at distance from the

-centre of any one circle givén by the mean, Z .+ of the maximum and
minimum values of Z for that circle. Thus, ﬁZving drawn the circles,
one may draw two arcs to locate the origin = or rather the two
possible positions:of the origin. Which is the true position is easily
determined by seeing from one's experimental Z(l) curve whether z(L)
must increase or decreaée as the circles are traversed in a clockwise
direction from antiresonance to resonance.

Having drawn the complete figure from the measured function. 2Z(L),
the values, Z , of Z at resonance may be taken by measuring the
distance from tgisorigin of the extreme points on the circles for
which Z (L) is entirely real. The corresponding valuess 1 of L at
resonancg may then ba read from the original experimental Riirve. As
can be seen from figure 2.2 the functions R (L) and X (L) are changing
very rapidly at resonance in such a gay that Gnearly the whole
circumference of a circle is traversed‘fbr only a small change in L.
It should be possible using this type of dinstrument to measure
velocities to several parts in 104 and sor all otherA things being
equal., to measure temperature to within twice this fractional error.

Some idea of the relative importance of the expected absorption and

reflection losses may be obtained from Tables 2.1 and 2.2. The
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Imaginary
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FIGURE 2.2

Showing the Combined Complex Mechanical

Impedance Z.of Transducer and Gas Loading.
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FIGURE 2.3

The Experimental Trace of Z(lL) from which

Figure 2.2 may be Constructed.
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reflection Llosses have been calculated from a formula due to Herzfeld
[28]1 which allows for the losses Aarising from the existence of a
“temperature” wave which occurs 1in° the gaseous medium when a
compressional adiabatic wavé is reflected from a solid reflector. The
combined temperature Lave ampljtude and the normél~ reflected wave
amplitude must equél the amplitude of th? incident acoustic wave. i.e.
the particle.velocity must be zero at the boundary. Thus the reflected
acoustic wave must be diminished to an extent beyond that to bs
expected solely from the impedance mismatch of gas and wall. The Lloss
does not _ arise from the propagation of heat into the wall since it
periodically flows in and out of the wall, but is due to the
temperature wave causing the excess temperature of the gaé to be
slightly out of phase with the acoustic pressure. Only when they are
in phase will the Qorg integral per cycle vanfsh. | .

In the derivation of Herzfeld's formula, which we prefer to write

N-¥

- (K )l“ (10)2 (a.11y)
c eCp

where K is the thermal conductivity of the gas and ¢ the specific
heat - per uni; mass at constant pressure, it is agsumed (entirely
justifiably) that the thermal conductivity of the solid reflector may
be regarded as being infinite in comparison to that of the‘gas.
Thus ¥ should depend only upon the transport properties of the gas in
the interferometer cavity and not upon those of the end faces; This is
fortunate in that the opposite ends of an interferometer cavity often
require to be made of different metals (e.g; when one end is to be the
diaphragm of a transducer and the other a movable reflector of the

sane meta(‘ as that of the cylindrical bbre). Thus if Herzfeld's

mechanism of reflection loss. could be guaranteed to be the only one
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TABLE 2.1

-'Ref[ectidn Losses. and Absorption Losses.

Frequency

;:f»': 1.,-,.3"

. (Hz2)

10
10

~ow o

10
10.

o

10.
10

The rough values of 1-¥, bl

and a temperature of 4.2K are shown. They have been calculated from ‘
- equations 2.1.14, 15 and 16 using the following_values for helium=4 gas: .

4.,3x10

-5
4.8x10

_4'

1.5x10
-4

. -3
1.5x10
-3
4,8x10
=2
1.5x10

UK

-5
9.2x10
-4
2.9x10
-4
9.2x10
-3
2.9x10
=3
9.2x10
-2
2.9x10

KH

3

R=2.079x10 J/K.kg

3

C =3.917x10 J/K.kg

p

o-=2,05

¢=120.8m/s

-6 )

‘]=1 .27x10 Pa.s

K=0.009u/K.m -

3

©=11.9%g/m

o(‘.

=
cm

4,2x10
4,2x10
'4.2x10
4,2x10
4,2x10

4.2x10

and { at a pressure of one atmosphere
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TABLE 2.2
Reflection Losses and Absorption Losses.

Frequency 1-3 bol A

(H2) KH
, -1
cm
2 -4 : -4 -10
10 3.0x10 3.3x10 5.1x10
-3 -4 -3 . -8
10 9.5x10 1.0x10 5.1x10
4 , -3 -3 -6
10 3.0x10 3.3x10 . 5.1x10
5 -3 -2 -4
10 9.5x10 - 1.0x10 5.1x10
6 =2 -2 -2
10 3.0x10 3.3x10 5.1x10
7 -2 -1 .0
- 10 9.5x10 1.0x10 5.1x10

The rough values of 1-¥, bd and K at a pressure of one atmosphere ,
and é temperature of 273K are sﬁgwn. They have been calculated from
equations 2.1.14, 15 and 16 using the following values for helium-4 gas:
L :.ﬂ_fx:.}-R=2.0?9x103J/K.kg
:ff;y?iﬁ =5.297x103J/K,kg4 ,, ;. ~ ,:‘fﬁ';;v‘
i ePa e o N

e97iomis
: ’)=1.86x10-i;a.s
K=14.15x10 J/K.m
e 30.1785kg/m3
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present, then there would be a sound theoretical justification for
adopting Hubbard's approximation.
Two absorption coefficients are shown. The first:l . s
caLcuiated from the formu15 for the absorption coefficient fgg sound

in an infinite tube which was derived by Kirchhoff and Helmholtz

[29,301:

Lk =__l__{v'1’ + (=1} K -Z‘T.S{_C_o_ki’ (2-yas) -
e <p 1) |

where ¥ is t@e kinematic viscosity and b the radius of the
interferometer cavity. Some obvious points of comparison with
Herzfeld's formula for reflection losses are'apparent here, notébLy
tﬁe dependence on.fhe square root of the frequency of the sound. Such
a dependence on freguency commonly occurs with boundary Llayer

corrections to a first order analysis of an acoustic problem based on.

‘the assumptions that all propagation is both adiabatic and

frictionless. It is not suggested here that fhis formula is anything
other lthan a dévice for rough approximation in this éituation. A
fuller disﬁussion on the problem of boundary layer correcfions will
follow in the next chapter. It does., however, give some indication of
the relative importance of this mechanism of absorption compared to'
losses by reflection. .

The second absorption coefficient, ., 1is calculated from the
familiar equation [31] for the effects of viscosity an& thermal

conduction within the:body of the gas itself:

d = | '{_ﬁ_v S+ (o) K lma (21010
- i

act €Cp
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This mechanism debends on the square of the frequency of the sound
and so may be expected to predominate over both the aforementioned
boundary loss mechanisms at sufficiently high frequencies. Tables 2.1
and 2.2 show this. The vaLue§ used for the various parameters occuring
in equations 2.1.14 to 2.1.16 are also given. Since they are only
roughly known the values of & ,A and 1-¥ should be regarded as being
comparative }ather_than absolﬁge.

In the equations for Z » R and X the argument of the functions
has been the length of tge cgvity. f. It is equally valid to regard k
(=2Kﬁ\=6¥g) as the variable and to apply the equations to the
aforementioned fixed path interferometers operated at variable
frequency. There is, however. cne practical prcblem which arises in

the Llatter case when drawing'the impedance circle diagrams. For the

fixed path cavity it is possible to assume that Z is a. complex

T .
constant whereas this 1is unlikely when the frequency is varied. It

would be expected that Z might remain approximately constant over the
narrow bandwidth of a si:gle resonance, but not that it would be the
same at successive orders of resonance. This would result in the
corresponding impedance circles of figure 2.2 ceasing to Llie on
collinear diameters.so that for each circle a new determination of g

would need to be made. More important, however, it would be impossiblz
to infer anything aboﬁt the relative magnitudes of the absorption' and
reflection Llosses since theses, toor change with frequency and require-
at least two circles to be taken at any one frequency for their

determination. The full significance of this will be discussed at

length in Chapter IV where practical designs are considered.
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2.2 The Effect of Practical Transducers

The assumption of section 2.1 that a transducer behaves Like 'a
perfect piston vibrator is obviously implausible in practice. At low
frequéncies driven diaphragmg of stiff metal sheet are frequently"
employed. These diaphragms are clamped at their edges and so must flex
if they are to vibrate at their centres. The Eonvehtional quartz
crystals of ultrasonic interferometry may also fa%l to approxinate to'
the ideal in many cases.

The effect of such vibrations is to excite the hiéher modes of _
propagatiog in the cavity which ares in addition to the zero order
(plane wave) mode, allowed solutions of the wave equation. Each of
these higher modes can be shown to have a unique phase velocity wﬁich
is higher than that of the plane wave mode, and a characteristic
cﬁt—off frequency Below which it is severely attenuated. Often.workers
with the acoustic interfergmeter have §perated at frequenciés well
above ‘many of these cut;off frequencies and have observed “satellite”
(sic) peaks corresponding to resonances of the higher modes. [32-34]
When unresolved theseAparasitic resonances can lead to errors in
measufing the velocity of sound due to the increased phase velocities
of their parent modes. Measured values of absorption coefficients are
also too high because of interference between the plane wave
resonances and those of the higher modes.

The purpose of this section is to show how the amplitudes of the
higher modes may ' be calculated from the way in which the transducer
vibrates. Knowing this it should be possible to decide in advénce the
suitability of various possible Qesigns of transduger for wquing at :

high frequencies.
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2.2.1. The Form of the Normal Modes

I

In order to establ{sh the form of the normal modes we follow a
similar method to that used by Xrasnooshkin[35] exéept that we shall
a}low for the angular dependeﬁce of the modes as well as for their
radial dependence. It is assumed‘that a velocity potential

. 1ot '
o' (v,0,2,6) = ¢ (ro,x) e (2.2.1)

exists such that

Vlce (T,‘e,s‘z)'-t- cl.tocf;(v,_e,z) = o (a.2.2)

" where g =k =-id is the complex wavenumber for propagation in the
- 00 "00 00. '

unbounded medium. Thus & is the free gas absorption coefficient and
00

k the corresponding wavenumber (previouslyd and k respectivelys.
00

Expressing equation 2.2.2 in cylindrical coordinates it becomes

2% "-+.J_'3 P Sl S P =0
{bf" N dT YN det st ? +c"°°(()
(a.2.3)

Assuming a solution of the form

p(v0,0) = REOOZGE)  (2.2.4)

this separates into the three equations
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d*/ + %l = 0 h | (2-&.‘5)
d z? '

a 2 | : |
d°0 + mB® = o (2.2.6)
o _ | |

FY s lA A
AR+ 1L dR 4 (“k.b"i '%)R -0 (2.2.4)

where =-q and -m are the respective z and e separation constants.
Solving 2.2.5 we obtain

- __ iq= ~igx | '

Z)Yo Je "+ Ke {aas)

where J and K are constants. Assuming perfect reflection at 2=0

(i.e. ¥ =1) we have

d¢ s o | (2.2.9)
E)z. £=0 |

- so that

K = J (2.2.10)

and
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Z(2) o cos qE | (2. 2.11)

We prefer to write the solution of equation 2.2.6 in the form

B(e) £ Acosme + Bsinme (2.2.12)

m will be restricted to integer values so that
elsy0,2) = @ (x,0+2%,2) -~ {2.2.13)

Equation 2.2.7 is Bessel's equation with solutions

RG+YK L Tm.(chl;’go—c]_") + Mym (Thfo’ cf) gl. 2. nlﬂ

where L and M are constants and J and Y are Bessel functions of
. m m
order m of the first and second kind respectively. Since

ym(o) : - o (1,‘.1.l5)

_ We require that M=0 giving.

RHY € \Tm(\chf 'ACLIS (2-2.16)

0o

We shall assume that the wall of the cylinder is perfectly rigid so

that the radial component of the particle velocity must vanish‘i.e.

D T lxlal-9%) -0 (2.2
ov | : . t=b . |
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for a cavity of radius b, or

d_ 7. (x) | -0 (.29
A X | X:bJ EO:O—C’,_. o

2 21/2
where X=r{q =g ) .
00
The (n+1)th solution of this equation is given by

X - Xen = biqgr - 9" 7 (2.2049)

Some values of X which are always real (see Appendix 2.1) are
mn
given in Table 2.3. It will be noticed that since b and g are
00
constants, equation 2.2.18 gives rise to a series of complex

wavenumbers, q=q . for the modes corresponding to the various values
mn
of X . q may be calculated from
mn mn : -

Fran ‘ i &‘11 - (—lgm)lgi N (1.1.10).- ‘

. whose real and imaginary parts, kK and -A respectively, are given

by | mn mn |
‘ 1 2 8 2 Loi
I R SR\ v/ o\ ot P o
Ja- Af b b 00 00 |
] (Ll.i.t\
and } T o B
A~ = oo koo/kw\n ' (a2

k /k andd /o are plotted in figure 2.4 as a function of
mn 00 mn 00 .
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TABLE 2.3

Scme Values

2 3
7.01  10.17
8.54 11.71
9.97  13.17

11.37 14.54

of X .
mn

4 5
13.32  16.47
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A A
k /k . . S S~ S
mn 00 : ' - ~mn 00
1
>
0 . - 1 X
. mn
A .: bk

FIGURE 2.4

The Dependence of the Wavenumber and Absorption Coefficient

upon the Order of the Mode.

The cut off condition for the mnth mode is seen to be k =X /b.
‘ 00 mn
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X /bk . Although- full curves are drawn it will be appreciated that
t::y Egpresent the general distribution of discrete boints each
corresponding to a value of X . At X =bk =2rxb/A (where b/A .
: “fn mn 00 00 00

like LU/A + is to be considered as a fundamental scaling parameter of
the interggrometer) it can be seen that the wavelengths, A  =2@/k .
of the higher modes become very large as do the cor?gspond?:g
absorption coefficientss A . This gives the cut—-off condition for '5
high order mode. Ths Larggr b/A . the larger is the value of X at
this point and the greater the ggmber of higher modes whichmncan
propagate in the cavity.

The dependence of the phase velocity of the mnth mode upon m and n
arises from the 2z and e separation constants of the wave equation
remaining in the radial equation 2.2.7. The necessary imposition of
the radial boundéry condition 2.2.17 then puts the constraint 2.2.20
upon the wavenumbar., q. requiring it to take only the values. Q.

. : ) mn
Consequently the phase velocity of the mnth mode will be

Cmn = ©w / Rina

which must also take a set of discrete characteristic values different
from ¢ =o/k . COmbinfng the expressions for R(r), 8(e) and Z(z) we

00 00
obtain

fpmn = Jm (_Xngﬂ:) (Q.,m comé +’\Smsﬁam)'us o}m nz

(2.2.23) .

for the form of the mnth mode. Its amplitude will be

2 2172 -1
A +B n%(A +8 ) with a "phase lag™ on @ of tan (B /A ).
nn m mn mn mn mn
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2.2.2. The Geﬁeral(éolution and the Amplitudes of the Normal Modes.

The general solution. @ (rie.2), of the wave equation in the cavity

will be a superposition of the normal modes.qa (reosz):

¢ (<02 -
Z }: J—m( Xr_m.rﬂ") (Amn CoSme +Bm,\ Sinme) c,csot 7
b mn

m=0 n=0 .
..
Applying the one remaining boundary condition ( - ;Ll*\
‘ : it N
- BE‘Z = %o(f‘e) e (2 -1-25)

dOx [z=4 ot

~ we obtain

g (~,0)

10

: Z Z CL Jm(anT)(ﬂm“ CcSMei-anSinme) Smcl_mn.,l
m n mn b
(a.2.2¢6)

where 'g (rs0) 1is the amplitude of vibration at (r.e) on the face of
the transducer. Equation 2.2.5 thus asserts the continuity of particle
" velocity at the transdycer (assuming that no temperature wave is

" present i.e. that ¥=1).

The amplitudes A and B where m>0 are simply obtained from tﬁe~' :

. : mn  mn. .
orthogonality relations for c¢ircular funct1ons and Bessel functions. .

Multiplying equation 2.2.26 by cosje or'(sinje),,where 1=1+24eu. .and -

integrating from e=0 to e=27 it becomes -

(e (,0)
Jo S“\Jeg X, de' =
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since
1 . —
J Cos\}e CoS w0 I SJm
Jo QoS)e SN MO 4.9 = 0
S'Lnje CoSmpo (o}
SN0 sinmo ﬁ‘%m

where & is the Kronecker §.
im i

Now multiplying by rd (X r/b) where k= .1,2:.... and integrating
J ik o .

from r=0 to r=b we obtain for m>0

nm_n = AU

Bmn |
| wb* %mn (1~ mg/Xre{n) Tml(xmn) sinﬂ_mn-l.
' b raun T ' |
XJO_JO T m(XnLnT) ggj’tme go(f,g)dvde

(1.2.28)

Here the following relations for Bessel functions have been used prior
to changing the subscripts j and k back to m and n respectively:
b

[ B B - un [ S ) o

= Sk b (57X T %)
) |
(2-2.23)

¢

For the case where m=0 the answer is ‘only. slightly different.
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Integrating equation 2.2.26 from e=0 to o=2w one obtains

YR+ ' —_
go(f‘e)de = T_."._ }; ol'on JO(XO‘I:\’) ﬂon Sinﬁ’on‘i

o gWA) .

(1-2-30)

"and from the relations 2.2.29

Ry = i IBJ ;3—;( &nv) € (x,0) dcdo
, o b
' = b‘e,mT:(Xon) sing { |

(2-2.31)

In particular, since J (X )=J (0)=1, the amplitude of the plane wave
0 00 O0° .
mode will be

b %
Hoo = 1w ' ' J J T §°(Y,e) drde (1'-1-31)

-2 :
B S ™

The amplitudes B  cannot be derived, but are not required since
On
when m=0, sinme=0 and the second term 1in the expression forq:
0

n
vanishes.

We prefer to restate these results in the following form so that

the amplitudes A and B  cease to be functions of L, and so that an
mn mn

obvious analogy may be drawn with the analysis of the ideal case of

section 2.1:
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ic"',e,..h = Z z‘; {(hmn + iOL.mn) X

m

Jm (_&ngn;}'_) (Cmr{ Costm® +:Dm“$inme\

X (Rmald) =t Xma()} - G

where generally

(:hnﬂ. = | Aiw

Dwmn
'ﬁbl(h%nu ‘!-im):\)(‘-mz’ mn) (an)
' xmv) coswd € (46 drels
b Sthmd , '
| | (1 15&0
o . ' 2 2 |
(2 being replaced by 1 if m=0 where m /Xo =0 also),
- n
Rmn (\Q) = sinh Admed (1.1.35\‘
covh Ldwnd ~ cos Lhun d
and
K (L) = sin A Rmu d (%-2.36)

coch Ldmad - Cos Lhmu

The functions R (L) and X (l) are of the same form as R (l) and
mn mn G
X (1) defined by equations 2.1.12 and 2.1.13 in the ideal case. (The
G
latter now become R (L) and X (l).). Since k <k when m.n>0 the

00 00 mn 00
maxima of R (L) wilt be more widely spaced as will the corresponding
mn ’
points on X (L) and the increase in the absorption coefficients wilL
mn

cause both functions to decay more rapidly with 1ncreasxng order. For

[}
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evanescent modes . >>k and the functions R and X are of
mn mn mn mn
negligible value even at resonance (L=NA /2, N=1,2,3:...). It is then
mn

only necessary to perform the summations of equation 2.2.33 over those
modes whose cut—off frequencies are not exceeded. For transducers of
good design the amplitudes C and D of the higher modes are in any
case only significantly largz for tgg lowver values of m and n as will
be shown. In practice, therefore, it may only be necessary to take the
first few modes into consideration even if others may propagate in the
'cavity. For such modes & may still be small in comparison to k and
mn : mn

so may be removed from equations 2.2.33 and 2.2.34.

2.2,3. Velocity Erﬁors Due to Higher Modes

vThe_effect of the higher modes on the measured impedance of the
transducer may now be calculated. The power dissipated in the

interferometer cavfty‘will be given by:

Wq(8) JI T‘Re pu)lv\e{gw} c'\f-de ( |
2.4.3%

From

pla) = i@(v 6,8)e

1ot
€ 5 %

we have

’Re{’p LMI = = ; ; gemhm

Jm (anr)(Cm Cosme +:Dms~znme) X
b .

(Roun (4) sincst = Xema () cmt\}
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and from
1wt

g(@ = iogo(f,e) e
we obtain
Re{’é(&)} : - wg (ve)sinwt

. Thus. substjtuting these expressions into equation 2.2.37. it becomes

We@ = DL R {Rmm st 0t = Xena (4) smutuwtl&

(2.2..38)
where '
&&ECmD /(ub (l‘ 3»/an) (an))}
X b . . x
v Ju r) cosme g (f,e) c\rds
. o -
b adi 5 &
(ﬁmf)smmeg(v)e) dcde
e lD' "'; e o '
(2.2.39)
. if m>0 and half this if m=0 (where m /X =0).
mn

We row suppose that we may write g (r.e) in the form
0

‘go(.r,e) =§oc3(?,e) ) . (a.2.40)

where g js the amplitude of vibration of that point on the radiating
0
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face of the transdﬁcer.at which the amplitude‘is measufed - usually
the centre. This is always possible in practice and would only cease
to be so were different parts of a transducer able to vibrate entirely
independently. Since such deQices'are not used to excite acoustic
interferometers the treatment remains entirely general for all
practical purposes.

We prefer to write equation 2.2.38 in the form

\:/q (&) = colgj & (}“_:', ; C,m?\m(i)) sin‘ok

Y (§§l t\ﬁn an(i)) Sinmtwswt}

(.2.41)

qm_n.,: s

where

Given equation 2.2.40 it may easily be seen from equation 2.2.39 that
G is independent of ; . Thus the right hand side of equation 2.2.41
o .

mn
has the familiar form for the power dissipated on a damped harmonic

system of impedance Z=R-iX:

kA
]

W = m"f):’ {Rsmlc.;t - X sincof:ms:.ol:}

We may therefore assign some effective impedance

L) = Rgld) - 1Xq Q)
= ;: @ qmn;P\mn(vé) -1 iﬂ;;anan(&)

(2.2.42)
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to the gas loading which may be conceived of as an impedance
associated with a vibrating system which has the saﬁe velocity as the
centre of the transducer, —w§ sinot.
Some bouer. W s Will alsé ge expended on the transducer itself. If
we regard thisTtoo as a system to which the same unique velocity may

be assigned then we may write

where R and X are constants chosen to give the correct value for W ..
T T : T
The total power dissipated will then be

W) = Wr o Weld)
= Ulgj g(rp\]— ""RQ(-E)) S;i-nabt

+ (X'T - XQ(J:)) stnot wsc.)l:}

which enables us to regard the éombined system as a system having a
‘resistance R=R +R (l) and a reactance X=X =X (L) vibrating with a
single easily mZasSrable velocity. —1a§$inwtf it constant driving .
force this combined impedénce could ge measured in arbitrary units. ’
from the reciprocal of the velocity or displacement amplitude at the
centre of the transducer. |

This recourse ;p first principles for a definition of the. combined
mechanical 1impedance 1is forced upon us because the particle velocity
and acoustic pressure are, ex hypothesi, no longer constant - over the‘
face of thé‘ transducer. Consequently a simple application of the

electroacoustic analogy cannot be made here as in section 2.1.

Reduction of a .system . electrical or acoustic, to a lumped circuit
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has to be possible if the electroacoustic analogy is to functions and
this presupposes fhat currents or _particle velocities may be
considered to be constant over the cross sections of the circuit
elements. -
It is possible to define the state of resonance of the gas in

several ways which. prima facie, may not be equivalent when higher

modes are present in the cavity. The cavity might be said to resonate;
when the impedance Z (L), is entirely real or, alternatively. when the
real part of Z (1) is greatest (that is when the maximum time averaged
power is _disgipated in the cavity at constant amplitude). These
alternative definitions are. however, shown to be equivalent in
Appendix 2.2 provided that the frequency is high enough to ensure that
the higher mode resonances are far from being resolved. COnsideration-
of some practical.eases in the next section will indicate that it is

generally only the Llower modes (small m and n) that have amp Li tudes

comparable to that of the plane wave mode. Where calculation shous

this not to be the case it is assumed that the transducer design in ..

question would not be adopted. Furthermore. if such higher modes as
are present 1in strength have their cut—off frequencies exceeded to a
,;large degree then, as may be confirmed from equations 2.2.21 and
;ff:Z 2.22, k - and d _wuLL vary only slowly with m and n thus leading to
- the bunzgxng 22 these 'major resonences responsible’for‘the peer
Iresolut1on at h1gh frequencues. In this situation the derivation of ani_
expression for errors in measured velocity is comparatively simple. At
-somewhat lower frequencies where‘one or more of the higher modes méy
be almost resolved:s a correction to the simple case may be derived.
However, the form of this correction will be slightly different for
the two definitions of resonance. We shall pursue an analysis in terms

of the second cr1ter10n for resonance, and. should it be requ1red. the

other case may be dealt with in an exactly analogous way. Such
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differences as will be found are briefly outlined in Appendix 2.2 and
do not in any way affect the validity of the general conclusions which
the exbressions for the velocity errors lead us to. |

It is thus possible to make a general analysis of the effect of
practical transducers on the measurement of the velocity of sound by
considering only the simplest definition in terms of the maximum
average power dissipation. Taking a time average of equation 2.2.38 we

have

2

Weh) = 88 DL GuRuald)  (2.24)
L

for the . power dissipated in a cavity of length.‘l. It is clear from
this that an experimental measurement of W (L). would produce a
sﬁperposition .o%d resonance  curves eacﬁ ° of the form R (L)
corresponding to each of the modes present in the cavity.mnThe
situation 1is shouwn in.figure 2.5. Two effects are apparent. Firstly,
because the higher:_modes have increased phase velocities their
resonances become increasingly displaced from those of the plane wave
mode as the order of resonance: N, is raised. This results in the
maximum of the resultant (group) resonance being increasingly
displaced from that of the plane wave, so that the measured separation
of the resonances is too large. Wavelengths and velocities are
consequently overestimated. Secondly the group maxima appear to die
away more rapidly than they should because of the increasing
separation of the phase maxima. It may be seen from figuré\Z;S that
this comes about because the decay of the group maxima is larger than
that of the plane wave maxima. Thus measﬁred values of the plane wave

1y

absorption coefficient: &k » will be too great Llike the measured o
. 00 ‘ .
velocity. 'An estimate of the magnitude of the effect may be obtained

by differentiating equation 2.2.43. We have:
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Measured
Attenuation

True Attentn. ’//////,
of 00th Mode/

00 - mn 00

/S

£n

00 » 00

FIGURE 2.5
Showing the Effect of a Single Higher Mode
on the Measured

'Positions of Resonance and the Measured Attenuation.

v
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RAwma (L) = sinh Llwn 4

(OS"\ 1&!1\1\& - €095 1hmn.2

= dmr\l
PR 1 1 |
. olmr\.-’. + hm.n (i"émr\) (llk).,)
in the vicinity of a resonance where ® =& <<1, k =k  and

' mn 00 . mn 00
L =NA /2. We require that . '
mn MmN :

A L L GuaReal8) = 10 23 Grua b Rennld) = 0
dd " ™ n AL .
| (1ams)

which to a good approximation gives

;.‘ ; C\mu I (J‘an) T ' (1.'1.1.;_6)
R et

where A =4 L/k is the half-width of the mnth mode resonance at
mn mn MmN
half the height of the resonance.[\ will be roughly constant and
mn
equal to A for cases of interest sinced =d and k =k . At
00 , mn 00 mn 00 '
sufficiently high frequencies it becomes unlikely that any modes of

significent strength will be resolved since

2 4 .
.. > (d-8ma) (2.2.4%)

Then. since the A are constant, we have
mn

DL Gun (L) = 0 (2.2.m0)



so that

d = Xm:};; csmn-an. - N E};:Gmnkmn (i-l-kq).

m

72 0Gma tﬂ;;qmn

»|

leading to a fractional error in measured velocity of

: ._[}_E.: ;._;l QMn(?\mn-.l\.ao)";-' Z;‘L;L\ ermxr:n (Qvl"ss) |
© } Z Zn:,c"““ aﬁkzoo};}—;‘:qm"

n

It may be ‘seen from 2.2.49 that L at resonance depends only on the
6rder of resonanéé. N, as would be the case if only the plane wavé
mode were present. Thus for situations such as thése there can be no
check from the observed separation of the resonances that errors
resulting from paraéitic modes are hot occurring. Only if an
examination of the symmetry of a resonance is made may such a
situation become apparent. but even then it is uncertain since sets of
amplitudes, G , may easily occur which preserve the symmetry of the
peak whilst st?TL causing it to be displaced. For example., if a s%ngle
unresolved mnth mode is present in the same strength as the 00th modes
resonances would remain almost perfectly symmetrical.

The range of applicability of the approximations 2.2.48 and 4?- )
depends upon the wvalidity of the inequality 2.é.47. If
AL =L y/2=L({X /bk )2/4 is taken as a fough estimate for (L-Llj)

00 mn mn 00 . : , mn

" then the requirement 2.2.47 becomes

Ry Y Ken Sreb (2aas)
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The values presentéd in and wuwith Tables 2.1 and 2.2 enable the
2 2

quantity A k to be evaluated for various different frequencies.
00 00

At a frequency of 1MHz in a cavity of 2cm diameter the approximation

2.2.48 is wvalid .for modeé where X 4<:<.10.34 at the normal boiling
| . 4mn

point of helium—4 and where X <<8.2 at NPT. Should higher modes be

present in comparable streng:: to those satisfying these conditions a

better way of estimating the error is required. Rather than attempt a
solution of equation 2.2.46 it would be preferable to calculate a ~
first excessive approximate value of | from 2.2.49 and use it to

.

recalculate a new set of amplitudes, G* .+ thus

mn
!
G ran

e Y

e i‘ vy b'*( Zg?h xm)n
(2.2.52)

which could aga1n be used in equation 2.2.48. Th1s could be repeated

until the values of the amplitudes converged. However, it is  not

anticipated that more than one recalculation would be necessary in

.

most practicél cases.
Inspection of the denominator in equation 2.2.52 reveals that the

corrected amplitudes, G° , will very rapidly become negligible once
mn :

‘ 2 2
the order of the mode is high enough to ensure that (l-L .) >A

mn mn
Thus it is possible to ignore these modes which, in any case, may be

expected to be resolved. It is the case. therefore, that the above

procedure offers a method of assess{ng errars due to higher modes

whether they are far from being resolved or are, in fact, wvirtually

resolved. The recalculated amplitudes, 6° . are not dependenf on the
: mn

value of | or the order of resonance, N so that our previous remarks

on the dimpossibility of ensuring that higher modes were absent are
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still valid when modeé are present which are nearly resolved. The
difficulty is thus seen to be entirely general at all frequencies
where it is possible for at least one higher mode to be present. In
particular, 1t applies to.the instrument used by Plumb and Cataland
[21-24] for their écoustic thermometry. If this is correct then it
" would appear they were mistaken in arguing that the constant
separation of the resonances in their instrument as the order of
resonance increased 'proved that only a single wavelength (assumed to
be A ) was present. However, examination of the amplitudes. G .
whicgo cou@d be expected with their typé of instrument at a freque:2y
of 1 MHz will show that errors from this source are Llikely to be
negligible. The possibility of detecting higher modes from the
increase in absorption coefficient is dealt with in Appendix 2.2, but
is found to be unreliable also.

2.2.4. Some Practical Cases

The first case to be considered is that of an ideal transducer
executing perfect piston-like vibrations. Values of G will be
calculated for various diameters of transducer up to and in:?uding the
cavity diameter, 2b. In the latter case we would expect to obtain the
result of' section 2.1 where only the 00 ofder mode is propagated.
Initially it might be expected that any transducer executing such
vibrations could excite only plane waves in the cavity. However it
should be remembered that only modes characteristic of the cavity
| which satisfy' the wave equation enter into\the expansion of g (r.e),
and that 1if the transducer has a radius a<b there willo be a
discontinuity at r=a which cannot easjly be approximated to with a
plane wave. This is one more manifestation of a general feature of
approximation by orthogonal = functions - namely that when there are

discontinuities present in the function to be represented. the higher

terms in the expansion are required in greater strength. It is the
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increasing number of maxima and minima usually found in the range of
definition of the higher order functions which enables them to
represent discentinuities more readily than the lower order members of
the éet. | .
The present case is shown in figure 2.6. From the definition of

piston=like vibrations we have

g, (+,0)

1

o (» 2 a)

E.lx,0) = & (vr< o) (2.2.54)

:vFrom 2.2.39 and 2'2'42;‘

Gon = (2 E’c (260K T (Kne)] )

X U:e T (&ﬁg_-_) ay)%
| X { (J-o T‘wsm.e de )2 + (J'::;inme' de )l} (2.2.55) |

or half this if m=0. Thus

Grn = o (m>0) (2.2.56)

o otz (7))

T P (3‘,()_(_3@. M)a - (2.2.59)
XOH.JO(XOY\.) o A

where n>0, and
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2=0 ~ -2=1

FIGURE 2.6

Showing an Ideal Transducer of Radius a Less than b,
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) | .
Goo = kAo @ co _t__o;":_ (x.2.53)
b

Several points of interest arise from these results. Firstly, as

" expecteds 6 =0 if m>0 or n>0 and a=b. All amplitudes are zero if m>0
mn

due to the e-integrals of equation 2.2.55 and our not having specified

any e-dependence for the transducer vibrations. G =0 for n>0 when a=b

On
because 4 (X a/b)=J (X ) is dJ (X J)/dX which is identically zero by
1 On 1 On 0 On
definition of X . Thus only plane waves may propagate in the cavity
On '

. when a=b concurring with the results of section 2.1. We have from
equation 2.2.42 - :

L) El.iﬁbacoo' {P\oa(i) '~1'X<,o(i)§ (2.a.59)

in exact agreement with equation 2.1.9. If the plane wave amplitude,

G . is expressed in terms of its value when a=b we find
00

Goo (£ b) o o (2.2:60)

Goolo=b) b

showing that the amplitude of the plane wave falls off very rapidly as
the diameter of the transducer decreases. This is attributable to two
causes = the decrease in the power radiated due to the diminishing
area of the transducer and the loss of that power which goes to excite
the higher modes of vibration . The former effect applies equally to
all modes of course, but nevertheless represents a practical
difficulty in thatlthe overall sensitivity of .fﬁe interferometer is

reduced. Expressing the Onth émplitudes in the same units we have
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q.on(‘lé‘- b) = L,. O«.& -J_I(Xon_ck b\ %
Goo (=) 5%\ Xon To (Xon)

(z.2.q)
The amplitudes G to G are shown in Table 2.4 for a/b=1, 3/4, 1/2

: 00 05
and 1/4. The fractional errors to be expected in a velocity of sound

measurement have been calculated from equation 2.2.50 and are also
included together with the resulting error iﬁ a temberature
measurement made at 4.2K at a frequency of 1 MHz in a cavity of 2cm
diameter. -It can Be seen that they are tolerably small even when
a/b=1/4. When a/b is small the transducer behaves something like a
point source in the cavity and the plane wave mode is barely exciféd
at all. This situation is representative of interferometers where the
cavity is excited by entering the sound through a small ‘circular
central port in one end Tface. Both De Laet [19] and Grimsrud and
Werntz [25] used such a technique.'but since both instruments were
operated below the first cut—off frequency, f , they would not have
led to experimental errors. However the value oloG ~ for a/b=1/4 shous
how very inefficient a method of exciting plane waegs this must be.
The second model to be considered is perhaps of more general
application. Many transducers are unable to vibrate at their
perimeter, but may flex to provide a useful amplitude at their
centres. At frequencies below about 1OQKHz stiff metal diaphragms
clamped at their perimeter and driven by a moving coil are frequently
employed whilst at ultrasonic‘ frequencies the conventional quartz
crystal is often mounted in such a way as to restrict vibration at
r=b. Some typical cases are shouwn in figﬁre 2.7. In order to estimate

the consequences of using such transducers we shall assume the

following form for§ (r.e):
. , 0
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TABLE 2.4

Amplitudes G for an ldeal Transducer.

n a/b

3/4

Ui O umpPpNlnn-—2O

172

v~ Who-2 0o

174

WO

ALl amp[itudes G

1.
0.
0.
0.
0.
0.

0.
0.
0.
0,
0.
0.

0.
0.
0.
0.
0.
0.

0.
0.
0.
0.
0.
0.

nn

mn

2 2 : :
G . 2b k RDe/e - AT at 4.,2K
On 00 ) (mK)

000 * 0 0
000
000
000
000
000

317 16.8 0.26
249
061
010
006
008

063 29.5 ‘ 0.45-
164
061
017
001
007

004 46,2 0.71
019
019
009
001
000

* By Definition

where m is greater than zero are zero.
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:

(a) Stiff Metal Diaphragm with Radius a Greater than the Cavity Radius b.

l\

2=

} Te—

(b) Stiff Metal Diaphragm Clamped against -Mouth of Cavity.

A

}

(c) Quartz Crystal Transducer Clamped against Mouth of Cavity,

FIGURE 2.7
Three Common Transducer Mountings

Where no Motion is Possible at the Perimeter of the Transducer.
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(v

1]
e
v

. %o_‘(*‘)e}"g : o)

g (\‘ e) f) eT/ °~ Y (~r>'c~.)"v
| | er.z.ve;L) e

Thus away from its equi librium position the face of the transducef is

conceived of as being bell-shaped with a maximum displacement. § : at

0
- its centre. Calculating the amplitudes. G , as before we have:

mn

G = © (m>o),

o, L -5 (1-s%) 2
Gon = A85Céon o' J’ se J, xggqs)c\s
| b .

Jo' (Xon) b* \’o

and . | ' : | ( A -;1‘63)
2 K} a .
Ceo = kxp Coo S NLERELYI(CRY (n:2.ck)
- s e ds
L
o

where L=b/a if a>b and L=1 if a<b. The variable s has been substituted

for r/a. The integrals have been evaluated numerically and the results

are shown in Table 2.5 as before.



Amplitudes G

mnn.

n a’lb - G

on

4 5.752
0.002
0.000
0.000
0.000
10.000

NP UHN-—O

© 2 14,582
0.037
0.004
0.000
0.000
0.000

MHUWHNNO

1 7 1.000
0.658
0.043
0.002
0.000
0.000

NPHUHUN=2O

0.609
0.012
0.018
0.000
0.001

VMU N-=2 O

172 0,063
0.235
0.113
0.007
0.004
0.003

N UWHN-=O

174 0.004
0.021
0.029
0.026
0.016
0.007

MHUWN=2 O

374 0.316
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TABLE 2.5

for a Clamped Transducer.

2 2

2bk  Ac/c

00

0.005

0.160

* 7.030

12.192

26.466

88.932

* By Definition

AT at 4.2K
{mK)

-4
7.8x10

-2
2.5x10

1.9x10

4.1x10

1.4

All amplitudes G where m is greater than zero are iero.

an
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. 2.3 The Effect of.GeometriEaL Misalignment of the Cavity End Faces.

Very - often, when reporting values .for sound velocities and
absorption | coefficients measured with acoustic interferometers,
workers have omitted to mention what errors are attributable to
mechanical misalignments in their instruments. In general it is
tacitly assumed that if errors in geometry are small compared- to the
wavelength .of sound in the medium under investigation. then any
resulting acoustic errors will be negligible. At low frequencies this
condition is easily achieved and often it has been thought unnecessery
to state .the tolerances to which an instrument has been built. At very
high frequencies, on the other hand, when wavelengths can approach
orders of smallness not far removed from what are normally considered
to be fine engineering tolerances, it has occasionally been the
practice to guote the accuracy to which transducers and reflectors
have been aligned. But, again: no assessment of the errors to be
expected is offered. Neither is it shown that the tolerances achieved
are sufficient to make the errors negligible.

2.3.1 Bad Geometry and Velocity Errors.

Unfortunately, to solve the problem of evaluating the wave field at
any point within a cavity whose end faces may be described by the

equations

M
"

2g (48) << A0 (2.3.1).

and -

w
!

Z2rlne)+d (2 (o)) (2.3.2)

is not easy because the solution to the wave equatfon fails to

separate as in the case of perfect geometry. However, We may attempt
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an approximate treatment of the problem which yields a separable
. : \ : : .
.. solution at frequencies below the lowest cut—off frequency of the

. cavity.

. It is supposed that normal modes:(? » of the form

mn | '
x“(—x’—“ﬁ)( Ama Cosme + Brmsin.ma) e o

(9\.{3) :

propagatg_in the interferometer. For values af m and n greater than
zeros, however, the modes will be evanescent and will only travel
extremely short distances before becoming severely attenuated. Thus it
is only necessary to consider such modes in the immediate vicinity of
fhe end faces .Qhere they arise from the incidence of the plane wave
mode which is the principal constituent of the wave field "in the
cavity. It 1is also .assumed that because the errors in geometry are
small, tﬁe amplitudes of the higher 'modes are small even in the

neighbourhood of the end faces. And for the same reason we write

- Ve X - d¢ = o (1.2.4)
2=%€qe) oz z=zévﬂ)

for an. approximate boundary condition on the end face. Thus for a

plane wave

e o .,%) (2.3.5)

-8
T

incident upon an end face we have
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- ; 2{15““(3"‘“ Cosmeo + Bma S{y’;me)

e ——————

L —iq 2(ce)
y -ym(xmv) e | rmnfWOO 75 (a.3.¢)

Multiplying both sides by exp(iq =z(r.e)) this becomes
. : 00

A ' iiq,oolafv)e)
Yoo 1 & = :

g -q Jzulqe
_g Zh: e (Amq Corme + ansinme) Tm(meg r) e T e RAe

'éh - l:—l , 2; c\rmn(ﬂmn Cosmo + Bma s-cnme) I’\(ﬁﬁgﬁ) » |

The approximation follows because z(r.,e) is very small as are A and

. nn
B when m.n>0 and because when msn=0 the index in the exponential
mn

term on the right hand side vanishes. Integration from e=0 to 2xand _

from r=0 to b now yields

\ s
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| 1,. ai Z(f, )
Ra = Ase = j J e 0 drde
A o ’ nb
: ' A x?
= jr(l + 9.u1_ ngf,a) _1% Za(f,e))drde
'“b o . ao )
Y ¥
- i - 9.- T ZK(T 6) d.TOLG

b'oo

T%(f,g)drole (2.3 g).

-

Thus we see that the attenuation of the reflected plane wave is only
2 : .
of the order z (r.e) but that there 1is a phase change of order

R . )
z (re0). A similar reflection coefficient may be derived for a wave

R )
incident upon an end face from the opposite direction. but here  the

phase change is of the opposite sign. We have therefore

1]

A RT | ‘ - aT “-,'i(s‘-r .‘ | . ) ("L--an)

where
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b 2%

&WT = h. ;I JrZ&T(ge)drde ' -'(1-&80)
B, 0 |
and
A b 2% q .
€a,v = 8% J Jrzm (r,e) dedo (2.3v.n)
Ly |

The effect of such complex reflection coefficients may be -seen from
equation 2.1.4. If is to add a term,(81-5 )/l to the wavenumber, k. in
the denominator which essentially dete?mi:es where resonance is going
to occur.. Thus a fractional error in the measured velocity of sound

results given by

Ac - - AR = &r-dr (9..3‘11)
: N '

Equation 2.1.4 should be further modified by a factor exp(—is /2) on
T

the right hand side arising from the fact that the transducer. being
geometrically imperfect. imparts a phase change to the wave it emits.

But since all partial waves have this factor it may bg omitted in a

discussion of velocity errors.
Evaluation of the velocity error to be expected from a practical

instrument is now possible given the form of the functions z (r.e) and
R

z (ree)e It will be calculated for two important practical examples.

T .

However, the error will only arise, in principles for a cavity of
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fixed length (*1) as will be ‘argued in section 4,2 .(although end

"effects will be encountered in a variable path cavity if the end faces

in particular the moving one - change their alignment during a

measurement). Whether or not this is true for a cavity operated above

Vthe first cut off frequency cannot be said on the basis of this simple -
theory. |
2.3.2 Tilted End Faces.

It will now be assumed that the end faces are perfactly flat, but

tilted off axis as in figure 2.8. If the maximum angle of tilt is

x where %X<<]1 in a direction e=e¢ we haVé
. : 0 ‘
so that \
SR.T = &b Xa,7 Cos (9 -GQR.T) e
—_— | '
oo™ 7 N € TS
ol (0] |
and

(1) It would be more correct to say that it only arises. in
cavities whose measured geometrical length (as opposed to'their
effective acoustic lenﬁfh) is used in the calculation of the
velocity of sdund. - Thus it ﬁeed be of no concern where the

distance separating resonances is measured.
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8=6e

2=0 _ z=1

FIGURE 2.8

An Interferometer with Tilted Transducer and Reflector.

-

e e o e 4 St s~ h s o ® i
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E"\.T 8|\x ﬂ, J J “'f Cos (9 ebg.‘-) dfde
v lbo

T

- llzbl'xzﬁ.r / .'\bg ( l- s- l‘}’)

Thus, since & is zero, the only effect of a tilted end face is to

.R'T i .

decrease Herzfeld's real reflection coefficient: ¥: by an amount of
2 2 2 . .

order bX /A . Itis not even necessary to call for the

R.T 00
finest engineering tolerances to ensure that this term is no greater
-5 -6

than 10 or 10 and so entirely negligible compared to reflection
losses from boundary layer mechanisms. . .

2.3.3 The Flatness of the End Faces.

End faces which are not flat . like imperfect transducers. are not
easy to treat in a genéral way since it is difficult to find a model

for them which typifies faults in a wide range of instruments. In

" order to obtain an approximate idea of what is to be expegted<§and‘

gwill be calculated for a parabolically concave or convex end face. We

write

tr(ne) = X v/B T (23a0)

"Again. X is a parameter which is a measure of the geometrical
~imperfection present being the depth of the.paraﬁolic face. From

_equation 2.3.10

- b .22 3
- e [}
(4] : . .
' ‘)4;\°° A‘30
| (2.3.,19)
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~ whilst from equation 2.3.11

b 2-:5" 7 ]

€q,v = B% %”a.-rJ jrdrela = 8% KR
'3 o 2
a o 3 A
b Ace . ¢
(2v3418)
As before & is easily madé small enough to be of no consequences
ReT
but now & is of the order X /A . But from equation 2.3.12 it can
ReT ReT 00 -

be seen that if the fractional error in a velocity measurement is not
to become comparable to the precasion otharwise expected from the

'instrument. then the expression X /k A U must not exceed several
~ ReT 00 00
4 .

parts in 10 .

- s B i L



CHAPTER III

THE PROBLEM OF THE BOUNDARY LAYER

It has alreadyAbeen pointed out that the simple boundary conditions
of Chapter.II are not entirely realistic. Hitherto we have required.
only the normal component of the particle velocity'to vanish at the
boundary whereas for a viscous fluid the tangential component should
also vanish. Furthermore. the presence of a solid boundary may be
' éxpected to distuFb the temperature field associated with the.particle .
velocity field. In the vicinity of the interface acoustic proﬁagation
would tend to be‘isothermal rather than adiabatic due to the enormous
thermal conductivity of a solid compared to a gas. Thus the velocity
of sound would Llie somewhat to the Newtonian side of the Laplacian
Value.'

3.1 The Theory of the Boundary Layer.

Helmholtz was the first to attempt to treat this problem in 1863.
By taking the effect of viscosity into account.he was able to derive a
- quantitative estimatg for the decrease in the velocity of sound
' '.brdpagatéd in an infinitel? long tube. Five years later'andt reported .
6nly a qualitatfve agreement with Helmholtz's predictions énd
sudgested thétlvthe .thefmal: conductivity of fhe walls be taken intd
account. This calculation uas'carried out by Kirchhoff in ‘the same

~ year leading to results which we prefer to quote in the following

form:



(&m) i (3.1.1)

expressing the fractional error in velocity., c., to be added to values
measured in infinite tubes to obtain the values which would be

‘measured in the unbounded medium. Here

A

eCp

The acoustic absorption coefficient was found to be

R N S

£ = A

Y - (3.1.3)
be ' | '

L
Y

Considerable discussion of these results has taken place.
_Weston[36]1 has clarified the exact conditions under which Kirchhoff's
various approximations apply, and Shields, Llee and Wiley[37] have
tested them against a more exact numerical solution of the problem.
They find that the fractional error due to approximation in the
correétion is no greater .than the frécgional correction itself. Other
Work has also been done to extend the scope of the Kirchhoff-Helmholtz
corrections. Molecular slip.flexible or porous walls and walls with
low thermal conductivity could all, in principle, affect the form of
thé correction. These effects have been investigated theoretically by
Henry[38] together with the effect of a temperature discontinuity at

the boundary ( an analysis later corrected by Weston[361). Similar

treatments to that of Kirchhoff have also been given to finite
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amplitude propagation in tubes and to the propagation of pulses. But,
most ‘important for our purposes: the effect of end reflectors has been
considered. In 1907 Thiesen derived a quantitative exﬁression for the
boundary layer effect on thé velocity of sound in an interferometer '
”._rather. than in an'infinite cylindert39]; The existence of a second

"~ small term‘in édditiohutb the term'found by Kirchhoff was proven: -

Ac = Al1o) ? '-_a_’(g_) &
e EF‘ - “'}(ﬁ)-i o (3.1.1.;3
b 4 a2l
where
A' = A -y<Z (3.1.5)

At infinite cavity lengths this result agrees with Kirchhoff's as
' expected. .

More recently Fritchel40] has given a somewhat wider and simpler
treatment 'of the problem which is capable of giving the boundary Llayer
corrections to the phase velocities and absorption coefficients of the
higher modes as well as to those of the plane wave mode which is the
only mode of propagation to which the results of Kirchhoff and Thiesen
may be applied. Unfortunately. since his main preoccupation was with
the accurate measurement of absorption coef%icients: the treatment of
velocity errors was developed to a lesser extent. Because of‘this and
because all of these workers have written in German we shall outline a
solution to the boundary Llayer problem for a variable path
interferometer which will shgw that Fritche's approach yields the éame
answer as originally obtained by Thiesen when applied to plane waves.

It will also be indicated how the corrections to the phase velocities

!
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and absorption coefficients of the higher modes may be obtained should
they be required.

3.1.1 Towards a Simple Statement of the Problem.

In considering a fluid wﬁere the effects of heat conduction and
viscosity may no longer be ignored it becomes necessary to employ as
many as five equations in the initial specification of the - problen.
This section will bé devoted to reaching a briefer and more tractable
statement..The five equétions are:

0C + e V.v =0 | (3.1.4)

tn—

t

( the equation of continuity asserting the conservation of the fluid).

" 1 .
e ¥ + VP = \QV Yo+ vV.y (3.1.9)
° 1 . 2 -
okt
( the ﬁavier-Stokes equation which is the equation of motion for a

viscous fluid replacing the simpler equation of Euler for an ideal

fluid ).,

P - 6%\—1 = elep-e VT (3ar8),

( the equation of state for an ideal gas which should be a
satisfactory approximation to the virial equation of state for the
purposes of examining a small correction to ideal propagation at any

pressure likely to be of interest ),
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—'PV._—E_ = ec¢y o1 + V. W (3.1.9)
ot

( stating that energy is conserved in an elementary volume of fluid if
frictional losses may be neglected ) and. finally

W = -KWV.T (3.1.10)

which 1is  Fourier's Law of heat conduction. Compared to conduction
lossea. losses from a volume element of fluid by radiation may ba
shoun to be entirely negligible for our purposes. Zero subscripts
_ indicate here that the subscripted variable takes 1its mean value -
that is its va[ue in the absence of an acoustic disturbance. The
vector v is the particle velocity and ¢ and ¢ are the speqif?c heats
per unit mass at constant pressure and solume zespectively. 91 is the
'layer viscosity whilst 7 is a quantity g1venln/7 —§+1/39 where
§ is the bulk viscosity. N is a vector giving the f1eLd of heat flow
associated with the particle velocity field v.
Kirchhoff, Thiesen and Fritche all proceed in essentially the same
way to reduce these five equations to three partial differential
equations in three variables. Unlike the particle velocity field for

an ideal fluid.v may no longer be considered to be irrotational. e

‘must therefore write

V?Jr VA&_ o o Gaem)

"where«P and a are respectively "scalar ahd ‘vector fields. We also
require that V.a be zero in order that P and a thus defined are

uniquely specified. Taking the divergence of both sides of this

4
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' equation therefore gives:

M
Vg = Vu (3.1.12)

Thus, by substituting for v and {/.v from equation 3.1.11 and 3.1.12

into the Navier—Stokes equation: 3.1.7. we obtain:
V = V§+VaA = o (3.1.13)

. where

. _ ]
§ =._5_. *‘,_E_. —(V.fvl)vso (o)
3%k e,
and
a
A= 298 - vWWa | (3 aa5)
ot
where W ( iously W I=n/ d ¥ =9/,
) previous %)1 (ooan 5 92 €°
Since the divergence of a is zero we have:
V.A = o (3.1.16)

making an obvious analogy between equations 3.1.13 and 3.1.11. Thus
the Navier-Stokes equation has been used to show that a new "particle
velocity™,V, may be expressed in terms of a scalar potential.ﬁ[. and a
vector potential, A related to the true velocity potentials as above.

Taking the divergence of equation 3.1.13 yields:



V 2 =o0 | | i"S-.l.l‘ﬂ

which is the first of the neQ equations, ;{ being the first of the new
variables, |

The variables P.W and v may now be eliminated from the energy
equafion 3.1.9 using the equation of state: 3.1.8. Fourier's law,
3.1.10, and equation 3.1.12. If the acoustic motion is of sufficiently

small amplitude this yields:

-V, V2@+'§:Q+V&<P = 0 fs.l.:e)
, ot , | | o

where V =K/p ¢ ié the thermal diffusivity and
3 oOv .

(3.1.:9)

I
I
Q

©

(T-T )/T being the fractional. change in temperature associated wWith a
giveg po?nt in the fluid ( giving a similar interpretation to the
scalar field & ). Equation 3.1.18 is the second of the ihree ﬁew
fundamental equations and @ the second new variable. |

The remaining new equation is obtained from equation 3.1.14 which

on differentiating with respect to time becomes:

i

2 = e - (v.w,.)gv"w_a_(p) (3.1.20)

Sk ot ot ot _6:

In order to evaluate the last term we turn to the equation of state

'3.1.8. For the small changes in P.e and T associated with an acoustic
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disturbance it gives:

P-Po = -6 +T-To = -0, +(0=1) 8
,’P° . ‘_'eo | TO ) eO

n

(2.1.21)

Differentiating this with respect to time and substituting for 98/0t

from the equation of continuity we obtain:

_Q__(_'P_) - et Viclv v lom) 96 (3.:..1;).
at eo i 0’ o Dt

172
where c=(cP /¢ ) is the wvelocity of sound in the absence of
0 0 .
boundary layer ef.fects. Thus from equation 3.1.20

¢ = 7 -(v+v,_\3V?J+c V?fc(mﬁa@
ot JE* ot -k

. (3.1.23)

which 1is our third new equation and (p the remaining new variable.

Assuming a harmonic time dependence of angular frequency,&, for the

fieLds@.Qand @ the equations become:
. .
Vv § = 0 (2 .1.24)
2 . 2 '
vVO +iwbd -V o =0 (3.1.25)

_(:(o—-..n)iwg 4—{_&1.-7:(.3(\)‘;\)2_\} cPMMP i T

o Vg

(3. lle) .

where the functwnsé@and?no longer have time as an argument. but

are functmns solely of position.
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The procedure now adopted by Kirchhoff was to eliminate@ and ¢ from
three equations similar to these leaving a single equation of fourth
order in 8. Solution of this equation yielded a complex wavenumber
which could be associatea with the propagation of any of several.
‘acoustic variables sfnce they would all propagate with a constant
phase relat1onsh1p w1th 9 Thus the required corrections to velocity
and absorption - coeff1c1ents vere ava1lable from the real and imaginary
parts of the wavenumber respectively. Fritche and Th1esen, on the

other hand. start by expand1ng§ 0 andfom terms of the soLutwns of

the wave equation:

Vg rn oo (3129

and point out thét they must all contain the same number of terms q)

YJ \Y etc. in the1r expansions so that the wave fields of the
funct1ons are of the same general form. Their respective phase
relationships at any inen point may be accounted for 1in the

coefficients of the expansions. Thus

N
(P = E \'Pn (3.1.18)
N=o '
© = Eo an WY (v.1.29)
. .
' é. = r§ bn\'l)n : (\-5-‘.30)

where a and b will generally be complex. Substitution of these
n n

series into the three fundamental equations 3.1.24 to 3.1.26 yields
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&L
9 b = o 3. 1.31)
2 % . 1, .
@ - 9. &i - 1w (v,+v2\} + ¢ (o-1)ivan-iwb, = o
0
(3a.32)
and

2 8 '

_.\).Sc"cr}“* T Qm 4..% = (@) (‘S.I.S’S )

Thus if g #0 we have b =0 from the first equation whilst from the last
n n .
tvo

L ' 2 |
9 il + L—k‘ —q'nflxa-l + ) 1%—!:0(3.\.’51.»)
R PO ;

where

R - c.:f’*/c‘- (3.1.35)

q = iw%f—{'l'__ e gcoer}i (3.1.34)

and

ol
H
»l-

(3.1.34)

% = {1(") l z l+'l..§ W l
v VitV Ja (v, sy
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From the last equa%ion. 3.1.33;

L A : 3 o
o = L _Fa s (3.1.38)

. a L
T Cin. B <1—r

and from the wave equation q will be zero so that a =0 also. It then:
0 '

follows from equation 3.1.32 that b =—iw. So finally
0 A

W, P s Y. (z.1.34)

¢

©

W o+ on W, | (3.1 .40)

('}"‘11-‘)

ey

The small number of terms arises from equation 3.1.34 uhich being

2
quadratic in q has only two independent solutions which we call g
n 1
~and q . These are approximately ‘ ,
. R 2 . } . )
a YA ‘.," . o - £y
: hRIVvrrol vy, +fo-n )y = h -
q’l g a | I r —— T .
~ C o - o '
and (S.th)
L, a _ ' Y
q = eq 11~ 1oer | Yi+VY, -3 =0
.k S 2 T
C (v
(.43)

where q and q are to be regarded as the complex wavenumbers of the
1 2 '



- 04 —

‘? and ‘%) waves respectively. Evaluation of the imaginary part of q
1 2 1

will vield the classical absorption coefficient for a viscous gas with
a smalls but finiter, thermal. conductivity. This will be put aside
until we are in a position fo evaluate the propagation constant for an
infinite tube:s however. But we are .now ready to retrieve the
conventional acoustic variables v and p from the functions éZ(Dand

? and to assess some of the qualitative aspects of the wave field when

boundary Llayer effects are present.

3.1.2 The Existence of an Acoustic Boundary Layer and its Properties.

The particle velocity:vs may be calculated from equation 3.1.1%

once the vector potential. ar is known. From equation 3.1.15 we have:

Ve rq o = - A (o)

x

where

q, _ {mli - ﬁgs_ P b('S'.l.lLS) |

The solution of this differential equation will be

a = - A + ¥ (2.1.4e)

so that
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_v;‘= Vo + Vz\.__(}_

= (W, + VP, +\y,_)-___l__\7n_ﬁ_\_ + Va Wy

To
= V(k})+ Wa )+ Va Py -;S(VE?VA&3
.‘Thus R : | »‘ | -
v = V(\%,fwl).+ Va Y | (’;.1.'@)
whi Le
© = oW+, Y, ("é.l.ge) |
and

ALV W = o (3.1.59)

In the absence of thermal conduction and friction V=V=V=0 so that’
from equations 3.1.42 and 43 q =k whilst the imagina:y 2(d?ssipative)
parts of q2 and q3 become igfinite. Thus the Hé,and:t; waves do not
propagate whilst the“‘J1 wave propagates with the real wa;enumber, Ke
of an unattenuated sound wave in an ideal fluid. The three basic

equations 3.1.47 to 49 then become:
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VKH - (3.1.5.0) »

|

© = a, ¥ | (3.1.53)

A : 2
where from equation 3.1.33 a =iw/c ., and
1

VY, + KW - o | (3.1.52)

"It may now be seen that\*’=??s the familiar velocity potential of an
1 .
adiabatic sound wave in an inviscid fluid.
When V sy and v take on finite values, houever, \y and \Y are
1 2 3 2 —3
able to propagate, but even then only for very short distances since
they are so highly attenuated. Using the values presented with table
2.1 to calculate g and q at a pressure of one atmosphere and a

2 3
temperature of 4.2 K for a freauency of 10 kHz we have:

- ' ' 1 ‘ 2.. -
% = (L+L){V“’}l = (+1) x L.ax 10 U“‘
+ l\):t, '

and



-1

q, * (1+i)g_c_x_>_li (131)xL.ax10 cm

the imaginary parts of wuhich may ge seen to constitute a massive
absorption coefficient. The 'distances these waves travel before.
becoming severely attenuated are there%ore of the order of 0.01 cn.
This being. the case they would not be expected to be present
throughout the wave field in any significant strength. but would
appear only at boundary surfaces if at all. The distance of 0.01 cm
would: then be a measure of the thickness of the "boundary layer™ or
" that layer in whf&h fhey may be said to propagate. The application of
suitable boundary conditions for a gas—solid interféce shows that they
do in fact occur. '

From the expressions used to calculate q and q it can be seen

2 3
that the propagation of \P and \P depends upon ¥ . the thermal
2 ~3 3
diffusivity: and Y . the shear viscosity. respectively. We shall thus

: 1
refer to them as a “temperature” wave (recalling Herzfeld's usage

| mentioned in section 2.1) and a “viscoqs' wave. This is not. of
course,» intended to suggest that \P and ly represent wave-like
2 ~—3

temperature or viscosity fields — their physical interpretation is
onlyhavaiLabLe through the three equations 3.1.39 to 41.

It is also important to realise that whilst the waves \P and \f

2 =3

contribute to the particle velocity, v, and to the “excess

temperature”, ®, they do not contribute to the acoustic pressure, p.

Consequently the work integral per cycle
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dw cﬂépv‘dt

for some elementary area will not vanish due to the pha;e shift in v
relative to p brought about by the contributions of‘f; and t%g to V.
Were it not for this p and v would remain in phase and bouﬁdary Layer
losses would not occur. Substituting for(f in equation 3.1.25 Trom

equation 3.1.22 we find

1 2 2 ' |
p = Goc 5v0+a~1 @} (3.1.53)
_— T
o~ 4
Ty
Since @ itself depends only upon‘l') and Y it can be seen that lf) will
1 2 3
‘ . ' : 2 2
not contribute to the acoustic pressure. MNoting that q =(d this

2 T
becomes

p =t f: {a,(vl‘\ﬂ‘w:w.h 0 (V' ¥itq ¢)
9, .
(2.1.53)

Since the second term on the right hand side is zero, p will not
depend upon‘}’ either which confirms our assertion that the acoustic

pressure remains unchanged by boundary layer effects.
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3.1.3 Boundary Laver Corrections Associated with the Radial Boundary

Conditions.
I¥ the wave equation for\F is expressed in cylindrical coordinates
—_3
and it is assumed that\y has no azimuthal dependence. it becomes
' —3

V‘aL\’h' + (qi-l)‘i’% =0 .(3'_.\.55)

3 2

3 Y2

‘V'&\Fz,; +(C¥Q—J—)L§)39 -0 (z.1.50)

" and -

RS ST

where the subscripts r.e and z refer to the directional components of
VJ « Demanding symmetry about the z axis limits the generality of the
-3 '

treatment, but greatly simplifies the problem at this stage because it

enables the vector field.\}). to be replaced by a scalar field. We

-3
write

Yoo = Yy = 0 (3.1.58)

and
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Y, = -7 ¢ (3.1.59)

where G satisfies the wave equation

vzﬁ + CLZ G=o (3.1.¢0)

The scalar function G is then seen to have a propagation constant q .

" so that in conformity with our current notation we denote it by\F -
’ 3

We are now in a position to express v in terms of these functions

so that the appropriate boundary conditions may be applied to them. Qe

have
lf = U.‘. I + 'U-e ‘S + -U.z_E
A \%ﬂ + \ig.) + ‘<7.“ ttg, ('S N )
Thﬁs ' -

v, = O {U{l% Yy a'\vgg o 301.62)
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to which we add

O = ¥ + o Y, (3.1.65)

to form the current set of working equations for the problem.

If the wave,\V  is now expanded in terms of Bessel functions of
1 -

the first kind of order zero we have

- o YWwex
A Er;. An T (Xax/b)e e (2.1.66)

Thus q) satisfies the wave equation as required (these terms being of
1

the same form as the terms %) of the previous chapter 1in the
On
expansion of Q{). The value of X and hence of q will be determined

n n o .
by the radial boundary conditions applied to the wave field.

Previously it was required that
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9 ‘_-ro(XOn’r\) = O ('S\Q?)

Since the new radial boundary condition to be derived from equations

3.1.62 and 65 will be different, we expect X‘ to differ sLightly from -
. R n .

X . Consequently g : which is given by

On 1n :

o - (_x&) | (5.1.16)

will change Aas well. In particular, the ”planeiwave' wavenumnber:.q .«
: » ' , 10
will be less than 9 because X will not be exactly zero like X .

: 1 0 00

For\Y2 and\k3 we write

Pt

Y = 2s Bn:ro(vn»/b)e‘q‘“i 21 CnTo (Rar/be
v | " (3.1.69)
and

1a % i
W - D030 Zer/bJe " L En Talkar/b)e

Hint

(3.1.70)

where

<D
P »

3

n
57w

]
T
~d
P

‘_‘.O
s P
o3
"
<0
L
|
—————
ity
S
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q,i - (\/r\ /b)l

:_Q
=
n

4, - (Za /) (3.1.70)

P
3

This method of expanding LY and‘? enables them to share the same
2 3
phase on the cylinder walls and on the end faces of the cavity as +the

\V wave from which they arise whilst differing from‘? over the cross.'
1 1 _
section of the cavity ( where they are expected to be of negligible
amplitude in any case ).

The new radial boundary conditions derived from equations 3.1.62 to

65 which\? .\P andly must satisfy are
1 2 3

;\)'1- =0 = Aq c\.:ﬁ,(xax’)+3n =8 Io(ynf)" (‘:n:b“ i.I:(Zn\’)
<

dv Ar b el b

(‘f:b) ‘ (3.1-7&)

Vi = 0= An Jo(Xn)t Ba To(\/n\ - (an)'l:bn Jo (Zn)

(3.1.73)

© = 0: a A TolXn) + ayBa To(Ya) (3. L7
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Terms with propagation constants q or g have been neglected so
2n 3n
that these boundary conditions apply to within a distance of the

interferometer end faces approximately equal to the boundary Llayer
thickness. Should 8 =D =0 it can be seen that the first of these three

n n .
equations réduces to the original boundary. condition: 3.1.67: and that
£

for an inviscid fluid and thermally non-conducting walls the latter

two would not be appropriate.

The function J (X r/b) may be expanded in terms of the .original

0 n 4
orthogonal functions J (X r/b) which will lead to a relation
0 On
expressing dJ (X r/b)/dr in terms of these functions and to a value of
0 n '
X . We wpite '
n

To (Xnv/k}) = ZE. C\h I(XORT /\3\
(3.1.412)

. so0 that

b

[T

b* To" (Xog )

G

n

(..S . ‘-76) o

uhere the familiar orthogonality relations of Chapter II ( equation

2.2.29 5 have been used. Evaluating the integral, G becomes
k
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Gy . ab d U—O(th) o)
(x5 -2 Tk |

Since X will be closely eduaL to X the only significant term in
k 0k .
this series will be the kth so that

1t

—m—— |} cmtm—

(K= Yn) T o)
dy b =b 2b

d To'(xhr)

- (3.1.198)

which is the promised relation between dJ (X r/b)/dr and the function

0 n
J X ).
0 On . ,
The assumption that X =X also allows Y and Z to be evaluated

n On n n
from equations 3.1.71:

2 .
(\ﬂ\ / EJ) = Clz_ - OC;n'

b
2
= CL > 1
&
(2.1.49)
2 2 2 :
if g >>q -(X /b) . This is plausible if it is assumed that only
2 1 On - .

modes where n is small are required in the approximations for Y , P =
_ 1 2

and \:" . Similarly
3
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a 2
(Zn/m = 9, (3.1.80)

Thus we now'have ;bmplete expressions for the radial dependénce.chaa
\Fé and \¥g. Since +this information has been derived solely from
consideration of a set of radial boundary conditions it should enable
a wavenumber to be calculated which is appropriate for propagation in
an inf;nite tube. This we may calculate from equation 3.1.68 once

(X /b)Y has been explicitely evaluated which we do from equation

n
3.1.78:

el bl £

b. / o b jo (Xo_ny de b =\

(3.1:31)

The last term on the right hand side of this equation may be obtained

from the radial boundary conditions and the relations

L s « i, 31

(3.1.82)

which are approximately true since the moduli of Y and X are very
. n n ’
large. We find



() - b this) ]

(2.1.82)

Thiss . together with equation 3.1.68, will enable the propagation
constant for any Onth mode to be calculated. For the moment we shall

consider only the “plane wave™ solution for which n=0 and X =0

: ~ On
causing the first term to disappear leaving
1 . 1 ‘ i) -1
(Xo) = (H—i\i{l’lla} (U‘-l)(K )2@/0) 2
b b ecpl N2
(2.1.84)

where we have substituted for q » 9 and q . From equation 3.1.68  the

. 1 2 3

real part of @ s
10

Pt e

(2.1.85)

pl=

leading to a fractional error in measured velocity of
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(3.1.‘86)

which is the Kirchhoff-Helmholtz correction of equation 3.1.1. The
corresponding absorption coefficient. d, will be given by the
imaginary part of q :

10

2

o= ‘3 {x% ;Tvl + (W;ILJS__ )

dc
. '{v,i - e (K )LH—“—%
bc o | € Cp 2

which is clearly the sum of the classical absorption coefficient, s

»i=

(3.18m) |

attributable to losses from thermal conduction aﬁd friction within the

body of the gas itself.v and %o the boundary Llayer absorption

coefficients, d o+ of Kirchhoff and Helmholtz due to the same
mechanisms occurE?ng at the walls of the tube.

Similar expressions may be obtained for higher modes by taking the

first term on the right hand side of equation 3.1.83 into account. We

find
d & . | A : N 1 o
Y. * R [\‘- (Xon) ¥ (120) t{uf(i—(xm ){-&r—u)(ﬁ_ﬂj
| Q!_'b (%hb 9,b QCP

(3.1.88)

At low frequencies where boundary layer losses predominate over losses
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oceurring in the gas itself it is not possible to ignore terms which

are powers of (X /q b) even for the lower values of n. Thus
- 0On 1 :

——

G,b

Y e

(2.i.94)

and

LN 1

el e 1B

——

9,b
(.3. 1.90)

These last two expressions are, however, nof very useful for high
accuracy acoustic measurements since it is common practice to work
either at very high frequencies where boundary layer effects may be
ignored altogether, or at frequencies below the Llowest cut-off
" frequency where sucH modes do not propagate. There is seldom any gobd
reason for operating at intermediate frequencies where both systematic '
errors arising:from bouﬁdéry'Layér effeéts and -from a complex wave

field have to be accounted for.
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3.1.4 The Boundary Layer Corrections 7“or the End Faces of an

Interferometar.

There is no need to recalculate the-wave field 1in the cav1uy by
summing posative and negafive going disturbances with appropriate
boundary conditions for the uavesly \V and\y . Instead the
reflection coe.f1c1entﬂr + OT a single eld face will be calculated- and
substituted into -equation 2.1.4 in place of R and R . If complex
($becoming Yexp(-id)) rather than real as supposedRin Chagter 11, then

the denominator will become

2 -—2(d+i1Lk+3/1214)
I -~ ¥ e .

Thus the denominatbr of R (L) and X (L) in equations 2.1.10. and 11
G G
will be altered in one respect only. The wavenumber k will become

k+8/L so that resonance will occur when

4 = NX/a - SN/as (2.1.41)

leading to a fractional error in velocity of

Ac = - 82
¢ 25d | (2.1.92)

It now only remains to calcul.ateSto arrive at an expression for‘ the
boundary Llayer correction appropriate for velocities measured in
interferometers rather than in infinite tubes. This is obtained by
adding the correction 3.1.92 %o our or1g1naL correction 3.1.86. A -

Supposing the three waves\f [f and\{ to be present at a boundary

at z=0 we have



V¢ =0 An + Cn - Er\ = _Fn (5-‘-C13>)_

‘Yz =0 otmp‘ﬁ + c“zlncn “'(..X_“)CLS E‘n zc\,m!‘:n
Lo o L /.

{2 .v.ay)
and
8 =0: O.‘Qn_ “"'C\')_Cn = -.Q\Fn (3_],%5)

where F 1is the amblitude of the nth component of an incident\y wave.

n : 1
Since WJ and ﬁl waves are so rapidly damped. it is assumed that no
2 3

such waves are incident upon the boundary. and that only those arising
from the immediate incidence of the \%’ wave are present. The
1

conponents of the \P and‘%) waves propagating inwards from the
2 3

cylinder walls have also been ijgnored for the same reason. From the

first equation we have

4, Ea = c‘(‘ (An + Fy o+ ) (3190
. in

which 1is of the first order of smallness in view of the magnitude of

a . Again considering only the 'plane.wave“ case for which X =X =0

3n On 00
2 .
we also find from equation 3.1.83 that (X /b) is of the first order
. n
of smallness for a similar reason. Thus the second equation here,
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3.1.94, may to a good approximation be written

% A, + q,mC“ = c\va“ {(2.1.97)
Thus from the third equation, 3.1.95:
-1
Ye oz ¥x01-i8)
= QO / Fo
‘: O\Lc"lo - qlq-’l.o
Az Yo + O G, (:.1.98)
giving
' L 1 .
1-¥ = (o--1) (K )l(le" (3.1.99)
C eCp
and

§ = _ (W-\)(K\%(QQ)%{ (3.1.100)

The former equation gquoted in Chapter II ( equation 2.1.14 ) was that

originally derived by Herzfeld., and from the Latter we obtain



=
o
1
!
o
1t
~
(‘(
t
-
—————
X
S’
»l-

(03)—% (%.\Jol\

which was the second term added to the Kirchhoff-Helmholtz correction
by Thiesen ¢ cf equations 3.1.4 and 5 ).

o absorption coefficient correction arises from the end effects inl
the sense that it does from the radial boundary layer effect. v%he
ab;orption_coefficient,‘c{.'measured'from the décay in the size of the
' resonances or ‘fhe diameters of'the impedance circLeé of Chapter I1,
will be corEectLy evaluated if oné proceeds on the assumption fhat the
resonances decay as fmplied by the function R‘(L) ( see equafion
2.1.10) where'xfékes Herzfeld’s real value. TheGmaximum value of this
function is approximately‘proportional to 1/(AL+B) uhere §=1—Eand the
minimum to Al+f/2 which is negligible in comparison so that the former
expression is a good approximation for an impedance circle diameter in
Aarbitrary units. Thus the measurement of the diameters of  two
impedance ciréles will giveciand‘&in arbitrary units. How these may be
converted to absolute units s described in the following chapter
where practical interferometer designs are discussed. If, on the other
hand, it is assumed that §=0 ( or that §=1 ) when in factBis of the
order of dl. then an error would arise in the calculation of on the
basis of measurements made on two impedance circles. But examination
of three or more impedance circles should reveal that their‘diameters
do not decrease as described by the incorrect function 1AL, aéd the

correct functional dependence would then become apparent.
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3.2 Objections to the Boundary Laver Corrections.

Unfortunately., while the boundary layer corrections darived in the
previous section appear to be theoretically sound and complete Tor the
- purposes of audio ;requency or ultrasonic acoustic interferometry. it
has been suggested in the past that they‘are. nevertheless: incorract.
Tuo types of criticism have arisen. Firstly the dependence of the
effect upon the square root of the frequency is challenged, and
secondly. given this dependence, the constant of proportionality is
said to be incorrect. Since the experimental sources for both these
views_seem_tovbe somewhat tenuous whilst the theory of the boundary
layer., uidélx epplied to other phenomenar seems reliables it is
surprising that they have gained the currency they have.
| ThernLy experimental information known to count against the order
of the frequency arises from the uork of Schneebeli and Seebeck [41,
421 which goes back to the years 1869 and 1870 fespectively; Their
instruments wuere someﬁhat crude judged by present day standards being
mechanically excited resonant systems of indeterminate engineering
finish. Iﬁ order to investigate the boundary‘ layer effect it is
absoldtely essential that micros&opic protrusions and interstices on
the cavity walls are small not only compared to the acoustic
wavelength used, but atso to the boundéry layer tHickness. These
important features of the iﬁstruments used are simply not discussed -
an omission which still seems to be acceptable today. No doubt the
historical reason is +that the early interferometers were:fashioned
from glass tupes cpntaining finebpowder vhose distribution after the
decay of the sound left a record of the acoustic field. Such dévices
frequently had side ports welded tb the -cavity for the admission and
evacuation of ¢as and had end faces which were equally crude. It was
assumed that if rough and réady instrurients like these could be shoun

to operate much. as pradicted by a simple theory of the acoustic
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interf{erometer such as we gave in section 2.1 then they were suitadle
for accurate studies of the boﬁndary layer theory. Unforiunately there
is no justification for such an assumption. The smaller the effect to
be investigated the greater ére the demands upon the geometry of the
cavity. Nptuithstandiﬁg this the results 6f Schneebeli and Seebeck qfe o
often taken to 'héve' demonstrated a frequency -dependence for the
velocity decrease of.ordef 3/2.

The only theofetica[ support forbthe work of Schneebeli and Seebeck
has been givén by Schweikert [43] who derivéd the folléwing‘ formula

for the measured velocity, ¢, in an interferometer

o -
i

l C l-4££__1 (3.2.1)
ANT W ' '

from considering the superposition of an incident wave upon a

reflector at z=l

- Z ' .
; = se  sinlwb-hz) (3.2.2)

and a reflected wave

_L(as-2) -
- sTe sin (ob-kL[22-2T7)
' | (3.2.3)

.l

The resultant acoustic (i. e. excess) density was written as
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e = € + €&+
-dz
= 3{& stn {wb-kz)
—dk(AL-%7)
+ T € : Sin(wt—h[_&&z])i

J
(3.2.4)

from which he deduces that the acoustic intensity at some point z in

the cavity is

a

g -

2 2 2 2 :
s.{g + B +-C—+lﬁﬁunlhz+lﬁc9mlh3§

where . | ‘ ( 3.2 5)
~-dZE
A = ¢ )
~d(ad-%)
B =YY€ cos AR &
and
od(as-2)
C = Te sun lh&

Differentiation shows that this has a maximum at
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d * NN o+ d ' {(3.2.¢)

rather +*han at I[=NA/2. Since our equations 2.1.10 and 2.1.11 do not
'giVe this result, it must be the case that an error has arisen either
in our oun or iﬁ Schweikert's analysis. To show that it must be in
Schweikert's consider the acoustic density at the reflector (2=Ll) wien
r=1. According to the physical presuppositions of Schwefkert which are
essentially those of section 2.1, the acoustic density should vanish

at z=l whereas we find Trom equation 3.2.4 that

~d 4
Ase sin (wb-kY) (z.2.%)

o
I

only 1if the reflection coefficient: r:, is negative will we obtain the
correct ansuer. But in replacing the positive sign in equation 2.1.4
by a negative sign it ceases to be possible to derjve Schweikert's
correction 3.2.1 and we find instead that l=NA/2 at resonance as in
section 2.1. But- even uwuere Schuweikert's equation 3.2.1 correct his
proof that a frequency dependence of opder 3/2 for the decrease in the
velocity of sound occurs is not. Moreover. the proof requires one to
take the dependence of the orthodox absorption coefficient;cL, r on
the square root of the frequency to be correct, yet not that o?ﬁ the
orthodox velocity correction to whichhit is intimately related. The

absorption coefficient is substituted into equation 3.2.1 to give a

fractional velocity error of
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) L
Ac = -1 ivz R Y i U b .

‘C 24h €Cp

~
pi-

c
Mjw

(3.2.8)
This fractional Eorrection to the velocity_ is smaller than that
predicted by the boundary layer theory by a factor 1/2Nvand so mignt
be difficult %o detect even 1in the absence of the boundary layer
effect conventionally predicted. But in using the predicted absorption
coefficient, d} . it is surely admitted that the expected boundary
Layer redqptigg in velocity should a[so occur. Thus on Schﬁeikert's
theory it still remains to be ekplained why Schneebeli and Seebeck did
.not see a much larger dependence on the sqhare root of the freguency
in addition to the dependence on its 3/2th power.
| 3y far the Lar§est majority of workers investigating the ,boundary -
layer effect agree that it must depend upon the square root of the
frequency but find various degrees of disagreement on the validity of
the size of the coefficient of proporfionality. It is often confirmed
exactly but may b2 in error by as much as 40 per cent. It seems quite
likely, however, that this may be attributed to the casual approach
most worke}s have towards the engineering finish to the inner walls of
their acoustic cavities and to a lesser extént to the poor knouledge
of the transport prorerties of the gases used in the evaluation of tﬁe
theoretical constant of proportionality. The problem of the constant
of proportionélity need not worry us:. however, since it can easily be

measured as will be shown in the next chapter.
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' CHAPTER IV
PRACTICAL DESIGN COMSIDERATIONS FOR AN

ACOUSTIC THERMOMETER

If an acoustic thermometer is to achieve an accurgcy comparable to
that ofF the conyentionaL constant volume gas thermomneter it is
essential that velocities shou@d be measurable to one or two bqrts in
ten thousand. This would represent an error in measured temperature of
about 1mK at the normal boiling pofnt of helium—4 and about 6mK at the
hydrogen boiling point. Slightly Lesg accuracy ié required, however,
to make a useful investigation of the errors thought to exist in the
temperatures assigned to the normal boiling point of helium—4 on the
‘scaLes T-58 and T-62 and to the hydrogen boiling point on IPTS-68.
Seéeral recent measurements have suggested that the value of 4.215K
for the helium point is too low by approximately 10mK while the error
in the hydrogen pbint may be measured in tens of mKs rather than mKs.
“Growing suspicion of tﬂe value assigned to the hydrogen point nas .led
to the suggestion that the extension of IPTS-68 down to the tripLe '
point of hydrogen was bremature - a point of view which should be seen
in the light of the continued debate as to whether the IPTS should ke
maintained as a thermodynanic temperatuﬁe scale or a stable and rarely

altered means of comparison for individual temperature measurements.

Either way the necessity for thermodynémic temperatures. whether
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embodied in the definition of the IPTS or used as corrections to it{
remains: and so every evfort has been made to design an écoustic
thermometer which will prdvide thermodynamic temperatures ot >the
highest accuracy available ffom this method.

4.1 High Frequencies vs. Low Frequencies.

The first decision %o be <taken in the- design of &n acoustic
interferometer 4is whether <to operate at high or low frequencies. In
operating at high frequencies all the broblems of a complex wave field
dealt with in Chapter II arise. The difficulty with this type of
systematic error is that it cannot be corrected for in the absence of
a knowledge of the way in which the trensducer vibrates. Our guesses
as -to the form of the function g (r;e) Cequations 2.2.54 and 62) are
plausible and so serve to show whag order of wvelocity error may be
e%petted. 'Howevef} it will have been noticed that no azimuthal
dependencévof the amplitude of vibyation of the transducer was
specified. This was not because it made the problem mathematically
intractable, but rather because the azimuthal dependence of one
transducer might differ greatly from that of another depending upon
such things as the eveness of clamping of a diaphracm or a quartz
crystal and the homogeneity of.their constituent materials. lMany such
parameters could be enumerated. Moreover: the radial dependences are
only plausible guesses and as such could not be relied upon to correct
‘neasurements from a given instrument. It micht be the case, for
example, that a quartz crystal clamped as in figure 2.7(c) might
vibrate only over a small region of its face at the centre. Qere this
the case the amplitudes of Table 2.5 for a/b=1/4 hight be more
appropriate than those for a/b=1. But, fér worse, it might, unbeknown
to its user, vibrate over a smzall region slightly off centre in which

case no useful assessment of a velocity error would be made at sll on

the simple assumptions of Chapter II. ALl that may reliably be said is
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that at a freduency of 1VHz in'a cavity of diameter 2cm (the example
of. Tabte 2.5) a reasonable guess would suggest that errors would be
negligible. Such a situation 1is obviously unsatisfactory from the
poin{ of vieu of obtaining tﬁe very highest accuracy.

An equally ,serious problem at high freﬁuencies is that of deciding
how the imperfections in ths geometry of oné's cavity will affect the
measured velocity. The results of section 2.3 apply only kEteleu the
.first cut—off frequency., f . At higher frequencies geometrical errors

could cnly be more serious; firstly because the wavelengths are not so

large compared to the cavity imperfections and secondly bgcause'it

would be expected that modes akin to the normal modes @ . Tor the
mn
jdeal cavity would propagate. A superposition of such modes would not

correspond exactly to the-previous-superposition-of-normal-modes—since .

there would be pe}furbations entering our previous calculation due to
the complex boundary conditions of the imperfect end faces of the
cavity. A brief investfgation suffices to show hou unwieldy the
problem becomes when an indefinite number of higher modes may
propagate in the cavity.

Less important at higher frequencies: however, is the problem of
the boundary layer. Reference to the values of Table 2.1 shows that at
asbout 1MHz the absorption coefficient attributable to losses within
the gas is not significantly larger than the boundary layer absorption
coefficient. However, at 10MHz the former absorption mechanism is sé
severe as to make measurements of velocity virtually impossible. But.

fortunafely. boundary layer velocity errors have become fairly small

by the time the frequency has approached 1MHz (which is presumably uhy-

Plumb and Cataland chose to work at this frequency). From equation
3.1.85 ue find that the error to be expected in a temperature
measurement at the normal boiling point of helium-4 is only about

0.1mK based on the values presented wuwith Table 2.1. This nay be
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considered negligible but could be corrected for if desired.

levertheless: since the two main problems of operating at hig

-t

frequehcies seem insurmountable in principle it was Telt that the
advantage to be gained with fegard to the boundary Llayer was not
worthuhile and that a low frequency desién of acoustic interferometer
should be adopted. This would be further justified in that it would
offer .a more independent check on the ultrasonic work of Plumb and
Cataland by encountering, and hopefully circumventing, an entirely
dififerent kind.of mainﬁsystematic error — the boundary layer error.'
The generaLLQ»acceptea Viéw that the boundary layer effect depends
upon the squaré root of the +requency was defended in the last
éhapter,A but there is no. reason why it should not be teSted
experimentally for a given instrumeht. Having ensured that the
acoustic absorption coefficient and theAveLocity of sound both vary as
expected with frequency. it would then be possible to obtain the
Iconstant of proportiohality. A+ betveen each of them and the square-
root of the frequency from a measurement of the absorption
coefficient. This could then be used to correct the measured velocity.
Assuning the frequency to be sufficiently low so ‘that the boundéry

layer absorption mechanism is the predominant one, we have

4 = A jold (.1.1)
" be L

and

Ac = A o] 2 | (4.1.2)

so that
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Ac = d&c (1 .1.3)

which expresses the fractional correction to be added to velocities
measured in tubes. This is only approximately correct for a short
interferometer because Thiesen's end correction has not been accounted

for. Strictly '

Ac = A - A {‘*—’2—1 (l:,..\..lﬂ
S |

H
g
e

However. if we may'anticipate the discussion of the next section on
the relative merits of variable path and variable frequency
interferometry, it will be apparent that in a variable path instrument
where wavelengths are measured from the separations of the resonances.

the total error in the separation of the first and Nth resonance will

be

Ady-A ¢, {;um “A - AL A e]

. b ab a

A
A

:ii_uﬂ,- 4) 3_3‘5‘ Uy15)

so that
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A
L = féji‘ (1§.L.6 Yy
w

———tey. ———

[S(l = E&:Qﬁ1‘~ [&JZ = A { [N E

as. before. Thus only if a single resonanée is detected in a cavity
whose absolute length is measured in order to derive the veLoEity will
it be necessary to allou Tfor Thiesen's term. This applies, in
principLe.'iboth to variable path and variable frequency instruments.
De Laet's interferometer being an example of the Llatter. In practice:,
however( variable path interferometers are not wused in this way.

. Further problems encountered 'in using variable frequency instruments
will be dealt with in the following section.

In order to measure the radial boundary Llayer correctidq in a
variable path interferometer. the absorption coefficient,d, must be
meésured for substitution into equétion 4.1.3 (a rough uncorrected
value beaing good enouéh for the velocity substitution).

The measurement of may be carried out in either of two ways. At
resonance X (1)=0, and |

G

: | ~add
Re(d) = Relmna) = 1 + ve
g -4
| —¥'e

(4.19)

or: putting ¥=exp(-B) where @<xﬂ:
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Rglna/a) = | . (4 .18)
di+ B -

Since, for practical values of dl andfsl R at antiresonance is very

‘ G

small compared to R at resonance, this gives the values of the
G

diameters of the impedance circles to a high degree of accuracy. Thus

by fitting a function of the form 1/(aN+b)=D to the experimentally

L]

N
measured diameters. D . where a/b=dNA/2B, the ratio c{/ﬁ may be
' N
calculated. In order to evaluate &, a further relation with p is
required. (*1) This may be obtained from the rate of change of the

phaée.?b. of the impedance of the gas column with L:

1

tom.io = - Xg(d)

YY) -l g
Rq(!i) 1 -%%e - ¥(¥-1)e cosdkd

~¥(¥+1) sinakd

(k.1.9)

On differentiating one finds at resonance:

1) fn ultrasonic interferometry wgere reflection coefficients
are expected to be low and classical absorption coefficients
high, end where quartz crystal transducers are commonly used:
. this second relationship is easily obtained by measuring tﬁe
value of R at.antiresonancq.(Seé. for example. Refs. 26 and 27
or HowardGC. Hardy. J. Acoust. Soc. Amer. 15,2 (1943)). Because
in the preéent case the transducer impedance is not zero so that

circles do not lie symmetrically about the real axis:. a more

complicated procedure has to be devised.
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-2p(r+x)

7 _{5("} ax)
o ad = - (l'- e

Wise )

dt&n? ?=o ' R(Q_g+ €~QB)

i

{4 .1.10)

where X=Na/b. To a good approximation if p<<1 and xis of order no

greater than unity:

ﬁ - ___fifi___. (l}.\.?l)

I +
which, taken with the expression for a/b, enablesdto be calculated. t

may be evaluated by plotting a graph of tan?:against Z Trom values

obtained by measurements on the impedance circles. Then

i

- Az c AL (haaa)

dang <p=‘o CUZcch ®=0 dZ lg=0

the Llatter gradient being obtaiped from the original experimental
curve of Z(l) once a value of Z at resonance has been obtained.

A graphically less arduous way of calculating Lis to express
dZ/d(tan?) at resonance in terms of quantities already calculated for

drawing the impedance circles. We see from Figure 2.2 that

Z = (RT-}RC")&+(XT;XQ)J‘§—& _(i;;.mS) |

Substituting



RC, =¥, t Y, cos @ = RTN (Hl!l.})
and
Xq = T, sin '9\@‘9 = | &_TN &llanoe (L).\{%S)

where r is the radius of the Nth impedance circle and where the
N -

approximation apry near resonance, we obtain
' a 2 LN
Z = { ZT + QTN('P\T-XTtan?){-hTN}a

éo that : ( L.t 16)

A Z | = ATy A+ ' (A.I.l'ﬂ

d.tQ.Y'\.(P CP'—'O ZRES

t may be found from equation 4.1.10 and the calculation proceeds as
before.

The second way to calculate the absorption coefficient is from its
'relationship with the half widths of the resonances. The height of the
function R (L) at [=NA/2 (or the diameter of the Nth impedance circle)

G
is known to be 1/(Al+R). By solving the equation’

Re(d) = ! ' (g aag)

2 {dds (5‘)
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we' may therefore calculate A , the half width of the Nth resonance at
: N-
hal¥ the height of the resonance. It is given by

!}_N = dd+p (& .1.19)

which is compatible with the expression dl/k quoted in Chapter II
where reflection losses were assumed to be negligible. Reference to

figure 2.2 shows that the corresponding value of Z, Z « at the half

HALF
height of R (1) are given by the distances of the upper and lower
. G .
extremities of the impedance circles from the origin. And the wuseful
value of 2 - that is the one encountered between Z and Z on
HALF - . MAX MIN

the resonance - will be the shorter. A similar conclusion will also be

reached for the case where X is negative and the circles lie below
. T

the real axis since they are still traversed in a clockwise direction.

Thus we uwrite quite generally

ZHALF N (Ry+ Tmf + ( ‘XTf‘ Tm)agi

i

{zi v ar, +an (Ro-[X |)]3
(&§.IAQC33

It is now a simple matter to read off the corresponding value of L.

l , from the experimental z(l) curve and to take the difference

HALF :

from | to give ;A . Then if at least two resonances are available
RES N -
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¢ and g may be caleulated from eguation 4'1'19f However, it is
probably better practice to calculate the ratio d&/f from the circle
diameters as already described. and to use it to solve each of the
equations 4.1.19. This is because the value of d/p is likely to be
comparatively accuraté since the circle diameters are quite easy o
neasure. Half Qidths} ‘oh ‘the othér.‘hand, may be a little more
ditficult to-meésure pfecisely, and so- it is wasteful of wuseful
statistical ‘ evidence to effectively expend one value on .the
calculation of the ratio when the figure is already available - from
another soﬁrce. | '

Whether it is preferable to calculate the absorption .coefficient
from the gradient of the Z(l) curve at resonance or from the half
width is difficult to say in advance. Both techniques will be examined
in the light of the data which becomes available and agreesment between
the two methods will also be checked to ensure that the rQSOnance
curve is of the form assumed theoretically.

Should large values of dlL orgbe encountered. the validity of our
assumpfion of section 2.1 that all the impedance circles touch at
Z (L)=0 may be questioned. It may be shown from equations 2.1.10 and

G .
11 that white X (1)=0 at antiresonance, R (L)=g/2+2AL#0. Whether or

not this will causg some small error dependsGupon how the impedance of
the transducer, Z . is measured. If some single wvalue is wused to
construct the i;pedance circle diagram (calculated, say. from the
height of the resonance curve at the first antiresonance) then
successive circles will require to be displaced in the direction of
the positive real axis by a distance equivalent to R/2+2ll so that a
‘second approximation of Z can be made; The conversion of the shift
B/2+24l to the arbitrary uifis used in the complex plane (cms, say) is

best accomplished by equating the diameter of some impedance circle to

1/(dl+§) which will give the.conversion factor to a high degree of
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accuracy. However for +the cases under consideration it is unlikely

-5 -6
that +he shift will amount to more than 10 or 10 of the impedance

circle diameter so that it is probably quite satisfactory to continue
as outlined 1in section 2.1. A better way of dealing with the problem

would be to calculate the value, Z . for.each impadance circle from
T .
the average of the values obtained from the antiresonances eitner side

4

of the corresponding resonance. This way the circles would be plotted

with the correct displacement from the point Z_(l)=0 right from the
G .
beginning.

4.2 Variable Path vs. Variable Freguency Interferometry.

Having decided to work below the first cut-off frequency it fs
nécessary to choose between fixed path interferometry entailing the
measurement of resonant frequencies, and variable path interferometry
at some fixed frequency entailing the measurement of resonant cavity
lengths.

Fixed path interferometry. requiring no moving parts, has the
adventage of simplicity - a doubly important consideration in a liquid

helium cryostat. It might also seem:, prima facie. that resonant

frequency measurements are straightforward compared with measurements
of- resonant cavity lengths. However, both of these advantages diminish’
on close examination. Firstly. the one single critical measurement of
the length of tﬁe cavity needed in fixed‘path interferbmetry reqﬁires
the exact definition of the positions of the ends of the cavity. Quite
apart from the problem of allowing for the overall thermal contraction

of the cavity. a precise‘ knowledge of the mean position of the
vibrating transducer at low temperatures is. required. Thus careful
consideration needs to be given to the coupling of the transducer %o
the cavity. The possibility of exciting a cavity with two rigid end

reflectors through & port in one of them whilst monitoring the

acoustic pressure through a port 1in either is to be viewed with
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circumspection because:. although it solves the problem of the length
of +the cavity. it |can, as in section 2.2.4, result in the wastefyl
excitation of evanescent modes at the expense of the plane wave .mode.
As.tﬁe ports bscome sufficieﬁtLy smal[ to be‘neg[igible the difficulty.
of adequate exﬁitatidn of the cavity ana 6f monitoring the intensity

+ the sound with sufficient sensitivity increase accordingly.

[ol)
Regarding the measurement of the true resonant frequency. it witl

be appreciated that it requires, in principle. a frequency independent

method of measuring the acoustic pressure in the cavity as the

exciting freguency- sweeps through resonance. This calls for a
transducer whose impedance and & microphone whose sensitivity are

sufficiently constant with changing frequency. Furthermore. if their

&

diaphragms are +to form the end reflectors of the cavity. their

reflection coeffiﬁ%ents must be frequency independent as well, (unless
the reflection Losseslare negligible compared to losses in the body of
the gas or on the cylinder walls). ‘Given the narrouness of the
resonances, these requirements should be met quite easily, thus
enabling single uncorrected measurements of velocity to be made.
However, as has been shown: velocity measurements made at several
orders of resonance enable acoustic absorption coefficients. and so
the bbundary layer corrections to the velocity: to be measured rather
than Ealculated from theoretical considerations whose applicability
has occasionally been in doubt. This requires velocity measurements to
be made at well separated frequencies where changes in the transducer
and receiver characteristics are bﬁund to occur. Even by using a
transducer and microphone at frequencies well separated from their
main natural resonant freguencies — e. g. far into the mass controlled
region - ohe can still expect to see: with practical devices, Lésser
natural resonanceé superimposed-upon a slow drift with frequency bf

impédance or sensitivity. Similar behaviour might also be expzacted for
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their respective reflection coefficients. Thus Tor each resonance it
uould only be possible to calculate the sum thk/2+F;, rather than the
absolute valuss of L and . Consequently it would Eot be possikle to
make  a meésured blo]undaryN layer correction. This problem has been
avoided by Smith and garlow [44] in an experiment at room temperature
where a long cavfty‘ ués'.used so that di>>g thus enabling end face
losses to be.ighored.'However; accommodation of such an instrument in’
a cryostat would cause considerable practical difficulties, and it
also seems to be bad practfce to dispose of one loss problem by meking
other .losses large in comparison since it results ih an overall
reduction in the sensitivity of the instrument.

The additional dinconvenience of having to recalculate the
transducer impedance at each successive order of resonancé has already
been pbinted out in section 2.1, but is no more serious than Having to
do it in the case of a variable path interferometer if the corréctions
for large absorption and reflection coefficients are made as suggested
at the end of the previous section.

Both problems of absolute length measurement and of frequency
stability are removed by using a variable path interferometer.
Distances are measured relative to the first position of resonance
which can be determined unequivocally since all acoustic impedances.
sensitivities and reflection coefficients are guaranteed to be
constant at constént frequency. Moreover. there is also the advantage
of évading the the boundary layer end effect, which: it will be
recalled, causes each peak to be shifted by the same amount so that
the separations remain unchanged although the absolute resonant
'lengths of the cavity require @ small correction inversley
proportional to these lengths. The same applies to‘ end effects

attributable to imperfections 1in cavity geometry which wére seen to

arise in the same way — namely by adding a small 1/l term %o the
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wavenumber. For these rezsons the variable path technique was chosen.

4.3 The Excitation of the Cavity and the Detection of Resonance.

Grimsrud and Werntz in their variable path interferometer made use
of a separate microphone toAmonitor the acoustic pressure in addition
to the transducer used <o excite the cavify. De Laet wused a .similar
technique in her variable -frequency acoustic thermometer. Such a
combination is very simpLe +to use since the resonance cuprve obtained
from the microphone will be of the form R (L) so that the positions of
resonance are immediatély available fromGthe positions of the maxima:
Plumb and Cataland used only an x—-cut quartz crystal transducer ‘which
also served %o detect the resonances through the changes in its
measure§ impedance brought about by the gas loading. It was explained
in section 2.1 that because such a transducer has a very small and
real impedance théﬁresonance curve %s also of the form of the function
R (L). We feel that the technique of using only a single transducer is
tg be preferred at Llow ‘temperatures 'because of its greater
~constructional simplicity and reliability although at low fregquencies
ve cannof avail ourselves of the use of a quartz crystal. Instead we
have chosen to use a moving co%l dEiven diaphragm which, having a
complex impedance of .the typé indicated in figures 2.2 and 2.3,’
necessitates  a much more detailed examination of the resonance curve
which is no longer of‘the form given by R ().

The mechanical impedance of such a tra:sducer is usually measured
in terms of its electrical impedance. However, the measured electrical
‘impedance has a pufely electrical component which masks to some extent
‘that part of the impedance attributable to the gas loading of the
transducer. It has already been pointed ocut in section 2.2.3 that the
mechanical Jmpedance may be measured in arbitrary units directly from

the reciprocal of the velocity amplitude provided that the driving

force 1is constant. With our moving coil driven diaphragm this would
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best bé achieved by attaching a small piezoelectric accelerometer to
the rear face of the diephragm at its centre. At ctonstant frequency
the voltage across the faces of the accelerometer would be
propoftionaL ‘to its velocfty as required. The necessary constant
driving force is obtained simply by driviﬁg the transducer at constant
current. Since the accelerometer, being a natural piezoelectric ‘
crystal or a piece of synthefic piezoelectric ceramic, will have an
extremely high impedance and will be in close proximity to the driving
coil, it is necesséry to know what the effect of interference in the
accelerometer circuit from the drive circuit will be. Interference is.
Likely to be due to three causes and:. of course. of the same frequency
as the driving current. These.are (a) interference due to the motion
of the accelerometer and its électrical leads in the stray magnetic
fields from the pefmanent magnet providing the radial field .for the
moving coil, (b) induced interference from the driving current and (c)
interference from the driving voltage due.to resistive or capacitative

coupling or a mixture of both.

Ideally we have for the accelerometer voltage:

V =V, sin (we-a') - b sinfwt-a’)
Z
(&.2.1)

where

&:an.c{ = K, = >(1f - ><CL(~£) { L;.E;.El)

R Ry~ Re(4) |
and where b is some constant which determines the arbitrary units of
the measured mechanical impedance, Z. of the loaded transducer.

Considéring the first +type of interference due to magnetic
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induction wa have instead o7 equation 4.3.1:

V = aé + b sin {uk-~cd’)
Z

= F cos{wb-oL') + senlowb-d') (M.%.%I\)

Z Z
_where F is . the amplitude of the constant driving force. a is a

constant determining the amplitude of the interference and where we

have supposed that

g

- §%> Sin Coet:- at)

~ wgocus (coﬁ: ED

JS.
i

and
Ve § = wig, sin (ob-d’) (1 5.1)

Equation 4.3.3 may be written

/

Vo=V, sin (uk-g) (ha.s)

where

Can ﬁ = - b | (h.3.6)

and
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z.' !

4 (2F s bl‘gi (4.2.m)
Z

Thus even 1if this type of interferenbelis very large, it is of no
consequence since the reciprocal of the driving voltage still gives
the mechanical impedanﬁe in arbitrary units. In fact an inductive
accelerometer would serve our purposes just as well as the
piezoelectric. accelerometer except tﬁat it might be slight{y more
complex in construction.

The second type of interference due to inductive pick up of the

driving current is more serious. We write

V = - asin (ob-g) + b_sin(wb-a’)  (h.3.8)
- Z -

where <the first term on the right hand side represents the induced

voltage. Advancing our time scale by @/c¢ we have instead
?

V = asineb+ b sin (wb-4) (4.3.9)
Z

Vo= V) st (ob-g) C{5.300)

- where
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tu.n('s = -~ sind - (Ls,,.s-.n\.
(.osal-\_raZ/b

if a<<b/Z as it should be: and

i

V, : _;—{‘ - %Cu?d} (;.3_\1\

or

{l

Z Z glﬁ-.__C\_Z_ COS‘oL)S (Q.s.m\

b

A similar expression could be derived for the third type of
interference arising out 6f resistive or capacitative coupling.

We now need to know what values of az/b are tolerable so that a
check can be made that such interference as is found to occur will be
negligible. In the presence of interference our experimental resonance

curve, Z{L), will take the_value

Zaes = Znes ‘ll 4 aZ\;Res C-o%cL} (k.’S.nL,)

at [=NA/2. Errors in the measured position of resonance will arise if

this differs from the value of 2z , 2" + calculated from the
RES RES
constructed impedance circle diagram. We have
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ya S(R;w,;\* ; x;ag

-

LS

=

z Za: g\ +_ o [Z Cosd +D cosd+DZ —z-RD ms{l
RtS

_aa ! +
+ D, + Q.RTD’,\,"‘

(. 315 )
which is: unfortunately. not the same as equation 4.3.14. D' s
. N
defined in the same way as Z' since it 1is the difference of the

maximumn and minimum values of Z. Inspection of figure 2.2 will reveal

that cosd, takes the same values for these two values of Z. The error

in the value of z for the purposes of calculating the error in the
RES
position of resonance will be given by the difference of the two
correction terms of Z' and 2" + and may be calculated once rough
RES RES
-values of Z . D , R » cosdk and cosdd, have been obtained. Typ1caLLy we
T N T T
might take Z =D =22 /3 and cosd=cosd =1 so that
T N RES T
i
Zmas = Zmas I+ 32 QZRES% (4.3.16)
- ah b |
giving an effective error in 2 of
RES
~ - Q.Z - -
,AZaesg, S RE2 | (h.3.m)
obtained by subtracting z' . The resulting error in L "+ L .

RES _ o RES RES
will be given by : : :
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AW N7 e

RES —

dZ Rres

g Q-ZRES AN'
2% b A (x.3.18)

where A =dl/k is the half width of the Nth resonance. Thus
N .

A 2 & oaZass & (.38
2% by, R |

'Typfcally az/b=0.01 while &/k=0.001. Thus tﬁe error is likely to be
negligible especially since it will be reproduced to some extent from
ohe resonance té{,the next so that the separations of the resonances
‘are affected to a lesser degree. Simple checks on the Voltage
amplitudes a and b/z shduld ensure that this is. in fact, the case.
Apart from the errors which arise from misalignment and Llack of
flatness 1in the diaphragm which have already been treated in section
2.3+ there still rgmains the problem of coupling the transducer to the
cavity which. if not approached .carefully., might lead to a new kind of
geometrical error. The larger the diameter ‘of the diaphragm compared
to that of the cavity., the more efficient and sensitive it will be in
exciting and responding to plane waves, and the easier to align
accurately. It will alsb have a lower spring rating which should help
to keep its impedance.,.Z » low compared to the impedanée of-‘the gas
loading which is the reaI goal of the measurements. However, as may be
seen from figure 2.7(a) a diaphragm sucﬁ as this has to be mounted a
small distance from the mouth of the cavity to allow it to vibrate

freely unlike the less effective, but at present more predictable,

diaphragm of figure 2.7(b). Prima facie this gap might well present a



- 140 -

cavity imperfection which could lead to velocity errors. However, an
analysis of.the type undertaken in section 2.1 would suggest that the
complete system might be considered as two interferometers with tuwo
sets ofA standing waves loading the. .diaphragnm. THe first set of
standing waves would occur between the exposed part of the"diaphragm
and the movable reflector as before, and the second éet between theA
masked part of the diaphragm and the end of the cavity which masks it.
Since the length of this second interferometer is constant. the
loading of the second set of standing waves would merely contribute a
constant term to the impedance of the transducer. Z . Thus their

effect would automatically be taken "into account gy the existing
procgdures for analysing the resonance curve. A very small effect
might arise due to the fact that the boundary layer correction to the
original plane waves would be different for a short distance”from the
diaphragm where the cavity has a wider diameter. This effect would not
be noticable sihbe;the difference in the small correction would only
apply at most over a'fraction 2g/Aof total distance travelled ?y the
waves Where g is the width of the gap. VWe might expect g to be of the
order of 0.03cm and the wavelength about 3cm. However, it should be
possible to investigate the effect experimentally by superimposing a
direct current on the ‘alternating current used to drive the
transducer. This would shift its mean position and enable any
significant effect which depended upon the width of the gap to be

observed.
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4.4 Some Remaining Systematic Errors of Acoustic Origin.

Hitherto. the discussion of systematic errors has centered entirely
_on the problems associated with the wave field at higher frequencies
and the boundary Llayer .at lower frequencies. It wWill now be
demonstrated that other likely sources o{ systematic error will be of
no consequence.

4.4.1 The Effect of Finite Sound Amplitudes.

Elements of an acoustic wave propagate with a velocity proportional
to their amplitude. Thus the high pressure part of the wave is
expected to draw level with the trough of the wave after a certain'

‘distance leading to the formation of a shock wave. It is essential

that amplitudes used in acoustic interferometery are sgffjciently Low‘
to prevent this effect becoming significant before the sound wave has
decayed to a negL1g1ble amplitude.

We have for the velocity of such a wave

“c. = c + o+ 1 ngo (1*.1;.1 )
&

where(ng is the particle velocity amplitude at some point on the
0 B
wavel45]. Thus the relative velocity of a peak with respect to the

trough in front will be

It

(ow-x)m%o 8uw¥ /3 (.A.l*.&)
for monatomic heL1um-4..In order to calculate a value of g let wus

assume that the acoustic power, We rad1ated into the cav1ty is as

large as 10mW. Thus
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a a2
W = ech b W g = 0. 01 Wakks _(k.\\.%\
o :

-7
giving g =2x10 cm at the normal bo1l1ng point of helium-4 at a

frequency of 3.3kHz. Thus from equation 4. 4 2 the velocity of approach
of peak and trough is approximately 3.1x10 = em/s which implies that
the shock wave would Havelformed after about 600 seconds = the tine
taken to travel one half wave length at this speed. By this time the
.wave itself has traveled 3.6x106cm and écquired an attenuqtion }actor '
exp(-dz) with an exponent ofA103 or 104. Thus we may conclude that at
realistic amplitudes the velocity of sound is for all practical
purposes equal tb the velocity of sound at vanishingly small
amplitudes.

4.4.2 The Effect of Frequency Dispersion.

When the frequency of the sound is sufficiently high the pefﬁod of
oscillation becomes cbmparable to the. mean collision rate of the
helium molecules so that translational relaxation occurs. Under these
conditions the slower molecules will be incapable of transmitting the
disturbance since the acoustic driving force on some volume element of
gas Will have changed its direction before the necessary molecular
collisions can take place. Thus only the faster molecules participate
in souﬁd transmission and acoustically the gas appears to be warmer
than it would at lower frequencies so that the velocity of sound is
too great. The mean callisibn frequency, T » of the molecules will be

c
given by

Csen (RTIE k)

]

nm

where n is the number of molecules per unit volume, m is their mass
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and k is éhe Boltzman constant. The total scéttering cross section. o .
may simply be calculated from the approximate cross sectional area of
the helium atom for oﬁr'bresent purpogégliAt 5 température of 4.2K and
a pressure of 1 atmosphere we find f =161? per second which is higher ‘
than the hiéhest acoustic freque:cies we are likely to use by some
seven orders of magnitude. Thus we may consfder that translational
relaxation 1is entirely negligible. Other mechanismé of molecular

relaxation are not, of course, available to a monatomic gas.

4.4.3 Approximations in the Radial Boundary Condition.

We have assumed in Chapter II in requiring that the radial particle
velocity vanishes at the cylindrical walls of the cavity that there is
a perfact acoustic mismatch between ga; and walls. In practice,
however, the walls will not be éntirely rigid and some sound will
propagate into them. But, since the acoustic mismatch is as 1arge as
it is. it has usually been assumed that this effect is negligible -
eSpe;iaLly in comparison to the boﬁndary layer effect. Such a point of
view probably arises because an incorrect analogy is drawn between
this radial boundary condition and the end face boundary condition
where the reflectidn’loss will be proportional to the ratio. of the
specific acoustic ihpedances of gas .and end face. P c 40 c.Ina

GG WW ]
copper cavity filled with helium—4 gas at a pressure of 1 atmosphere’

and a temperature of 4.2K this will be of the order of 10-6. This~
ratio is derived by demanding that both the normal particle velocity
~and acoustic pre#suée be continuous at the end face. In order to
obtain the particle velocity, the velocity potential has to be:
differentiated with respect to z so that the'wavenumber appears as a
factor in the expressions for. the particle velocities.either side of
the boundary = hence the éxistence of the ratio of the velocities in

the expression for the attenuation on reflection. In the case of the

radial boundary condition., on the other hand, differentiation of the
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velocity potential is with respect to r, and so does not lead to this
factor. Thus _only the ratio of the densities of the two media enters
into the expression for the :loss. Del Grosso [46] has done this
calculation and obtained a result from which we may derive the

following characteristic equation appropriate to our system:

T(X) _-1-_\__ Cuw Ko(b/hq - (‘-\— l\ 'b).
X Jo (X) f’q (b/kq) K (b/hq\

where K and K are modified Bessel functions of the second kind and
where Xowill e;ual X if the fatio of the densfties becomes inffhite.
Notice that ¢ does ggt enter this equation (*1). Turning to the pLane
wave case. we“assume that X=X00=0 so that we may write

2. = Cw Ko (b/R¢). .y .6)
X €q (b/Re)K(b/Rc)

The ratio containing the Bessel functions 1is of order unity for

situations of immediate interest, so that, very roughly, we may urite

(1) Exceptr that is, as a second order term which we have
omitted 1in this case. Del Grosso retained it since his interest
was in liquid filled cavities where velocities in the two media

are comparable.
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)(o = G = 10 (l* .L{.'])
i ew
leading to a fractional error in measured velocity of
2 -3

(X /bk ) /2510 . This is small, though by no means negligibles but -
si:ce Gwe are plotting veLocity.isotherms and extrapoLatihg to zero
pressure. the ratio of the twe densities in the characteriétic
equation will. in fact, tend to infinity and our final answer for the
velocity of sound will not be affected. Howevers the higher points on
the velocity isotherm will be depressed to some extent which wiLl.‘
chaqge the measured second acoustic Qirial .coefficient by a small

-amount.

4. 4.4 Parametric Oscillation.

_Hitherto we have treated the length of the cavity. l. as a variable

with no,timevdepéﬁdence. In fact it oscillates with the transducer:

L = L, + & e 4.4.8)

Breazeale and Adler [47] have investigated the effect of such a
variation and conclude that fractional harmonics of the fundamental
resonant frequencies will occur in the cavity if the amplitude of

vibration of the transducer, § ., exceeds a threshhoid value, ol c/a.
- 0 0
. -3
We may assume that this quantity will be of the order 10 cm whereas
=7
we have already calculated a rough value for g of 10 cm. Thus we
‘ 0

assume that we may continue to regard the Llength of the cavity as

being constant without incurring any error whatsocever.
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‘of the previous chapters.
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CHAPTER V

THE PRACTICAL INSTRUMENT AND TESTS

ON THE SYSTEM.

A practical instrument was constructed in accordance with the
principles outlined in the previous chapter. It was designed to be
operated at some fixed frequency below the first cut off frequency and

could be brought into resonance by moving an acoustic reflector. The

main innovations were in the use of an optical (laser) interferometer

to measure the separations of the positions of resonance and in  the
use of an accelerometer to measure mechanical impedances directly.
Careful tests have been carried out on the system to ensure that

its behaviour conforms with all the relevant theoretical assumptions

5.1 The Acoustic Interferometer.

The acoustic interferometer is shown in Figure 5.1 suspended in its

~vacuum cans V. and surrounded by a radiation shield, R. At the bottom

of the instrument the transducer assembly may be seen hanging on the
lower end of the acoustfc cavity., G, whose length may be increased by

withdrawing the piston, H. The Llower face of this piston is the

acoustic reflector whilst the upper end carries' a cube corner

reflector» J. which is the moving mirror of the optical
interferometer. The fiducial mirror of the optical interferometer. a
semi-reflecting beam splitter, L. is situated in the horizontal plate

above the piston. By these means the length of the acoustic cavity -
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Figure 5.1

The Acoustic Interferometer.

*A - Stycast Seals. B - Permanent Magnet Assembly. C & D - Electrical

Lead Sereenss E = PZT Accelerometer. F = Transducer Diaphragm, G -

' Acoustic Cavity, H - Piston Reflector, I - Germanium Resistance
. Thermometers, J - Cube=Corner Reflector, K = Pushrods, L' - Beam Splitter.

M - Gimbalss N - Optical Window, O - Bearing, P -“Upper Chamber, Q -
Moving Tubes, R = Radiation Shield, S - Temperature Controlling Sensor.

T = Thermal Anchoring Grooves (with heater), U = 4.2K Thermal Anchoring

Grooves, V = Vacuum Canes W = Central Supporting Tube:. Y = Laser Beams.
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or rather changes in length - may be measured without any of the
' problems of indeterminate thermal coﬁtractions encountered in the
conventional pushrod technique where reflector displacements are
measured outside the cryostét Wwith a micrometer bearing on the end of
the pushrod. Both Plumb and Cataland and érfmsrud and Werntz suffered
from t@is problem. i

Above the beam splittér a second coaxial chamber, P, can be seen'
guiding a sliding brass bearing. 0. This bearing'serves two functions.
Firstly it carries gimbals. H., through which the vertical actuation is
transmitted to the piston without transmitting any lateral force. This
was intended to help maintain the alignment of the .acoustic
interferometer. Secondly it hduses a cryogenic vacuum tight optical
windéw. N. sealing the end of a moving tube down which the light
tfavels to the opf%cai interferometer and up which the two beams - one
from the moving mirror, one from the fidUcfal - return. This light
tube also serves to éctuate'the'brass pearing and so the‘piston via
VR the gimbals and two thin pushrods, K. passing either side of the beam

. splitter. The thermometric gas for the interferometer descends through
.the annulus between the moving tube and a wider supporting tube, W,
and thence through variocus channels drilled for that purpose into the
cavity and the spaces behind the transducer diaphragm.

In accordance with good cryogenic practice the instrument was made
almost entirely with oxygen free high conductivity copper to diminish
the risk of thermal gradients appearing in the walls of the cavity.
"Most of the parts were assembled using Wood's metal - a lég melting

point solder.
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5.1.1 The Cavity., its Dimensions and Alignment.

The first cut off wavelength will be given by

Ao = Awb /ey = 3ab (s.1.1)

Thus, having decided to Qork below the first cut off frequency. we are
obliged to use wavelengths greater than 3.42 cavity radii. It was
decided, somewhat arbitrarily, that a Llittle over five .half
wavelengths should be a sufficient Lengéh for the cavity giving three
more than the absolute minimum of two required to calculated and p.‘
Should any unexpected systematic deviation.of measured velocity with
acoustic path occur it would be likely to be greatest in the early
drders of resonanéé where l=A. By the fifth order it might be.expecteé
" to show a change and thus betray its presence. To keep the cavity as
short as possible it ﬁas desirable to use a bore of small radius. On
the other hand, boundary layer errors would then increase and the
loading of the gas column on the transducer would decrease so leading
to a drop in sensitivity. The value of b=1cm was finally chosen which
just enabled the smallest cube corner reflector which could be
obtained to be mounted on the rear face of fhe moving acoustic
reflector. This formed the aforementioned moving reflector. J.» of the
optical interferometer. A usable cavity length of 9.4cm was therefore
- made available which allowed five half waves to be accomodated when
operating at a cut off frequency of 0.9f . A plot of f '~}°r this
cavity is shown as a function of temperalgre in Figure 5.;?

It was in order to ensure good alignment of the moving acoustic
reflector in any position that it was made in the form of a piston

10cm long (not including the cube corner housing or retaining cap).

Being of copper it was chrome plated on its curved surface to diminish
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wear and to prevent it sticking to the unplafed copper walls of the
bore. This méasure was thought to be necessary at the fine tolerances
 to which the bore and cylinder were Lappéd. Clearance was estimated to
be a-few ten thousandths of a centimetre. The face of the piston was

aluminised to give it an optically reflecting surface and an

autocollimator was used to measure the squareness of the piston face

o--

at various bositions in the bore. By rotating the piston through 180
on its axis and measuring the angular displacement of the reflected
beém jn two mutually orthogonal planes. an estimate of its alignment
could be made. This method did not require the direction of the axis
~ of the cavity to be determined independently. It was found that the
piston face was out of true by less than an angle of 15 microradians
(+ or - 10 per cent) in the worst case and about half this in the
best. At the walls; of the bore this is equivalent to an axial
displacement of 15x10-6cm or less than 5x10-6 of the cﬁt off
wavelength leading to a reflection Lloss of approximately ‘2)(10“‘1‘l
- (calculated from equa&ion 2.3.15) which is entirely negligible. Due to
the method of lapping the end faces.‘it would be expected th;t the -
- depth of any convexity or coﬁcavity would be far Lless than theA
“depth”, b of any tilt, X. But since this interferometer is operated
 in such ‘a way as to measure the separation of resonances rather than
Vabsolute resonant lengths in accordance with the recommendations of"
section 4.2, no errors in measured velocity will arise from these'
- causess it being a question merely of’keepiné.reflection losses to . a
minimum.

A longitﬁdinal groove (not shown in figure 5.1) had been cut in the
.side of the piston to take a sprung Teflon pad should it be needed.
This was designed to hold the piston hard against the opposite wall of

the bore as it moved. But in the light of these alignment'figures it

was discarded since it was felt that it might add to the difficulties



- represents an entirely negligible‘reflection,loss.
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of ensuring that thé interferometefvbore remained scrupulously clean
after .assembly. ‘It has already been pointed out that, in any case.,
lateral forces cannot.be transmitted to the piston because of the
gimbals (themse lves travelling on the bearing in the upper coaxial
chamber) .

The diaphragm of the moving coil transducer was held at its
perimeter between two‘flat‘copper surfaces. The upper copper surface
was machined on the flange at the lower end of the bore which was
turned on a close fitting mandrel. This seemed the best way of
ensuring that theidiaphragm was square to the axis. Similar tests to
those carried out on the piston were performed on this surface. A
circulgr optical plate of the same diameter as the diaphragm was made
and laid on the inverted cavity so that its lower face occupied the

same position as ﬁoutd the radiating surface of the diaphragm. This

face was aluminised except for a circular window of two centimetres

diameter which looked into the mouth of the cavity. The autocollimator

i .. was thus able to focus on two reflected graticules simultaneously -

. . one  from " the 'pision_ face as before. and one. in effect, from the
¢ “radiating face'pf the diaphragm. This enabled the angular misalignment -
" of transmitter and reflector to be measured directly. It was found

""" "never to exceed 28 microradians (+ or.- ten per cent) representing an

. -6 . .
axial displacement of 28%x10 cm at the walls -of the cavity. or
-6

approximately 8x10  of the cut off wavelength. Again such a figure

AAAAA

B TP UU AUV U U U
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5.1.2 The Transducer and the Accelerometer.

After checking the alignment of the' transducer with the cavity
there still remain two othér geometrical problems - the flatness of
the dimphragm and its coupl{ng to the cavity.

Every care was taken to ensure that tﬁe diaphragm was flat. It was
pﬁnchqd from Duralumin sheet . 0.25mm in thickness., laid between two
lapped steel blocks and'subjected to a load of some fifty tons in ‘an
hydraulic press. It was then annealed for several hours at a
temperature of 45006 between. the same lapped blocks under a load of
appréximately 20kg. Subsequent measurements with an enéineer's-
micrometer capable of discerning differences of Lless than 10-3cm
failed to show any variations in thickness.

Experiments with diaphragms of several thicknesses loaded’ with a
range of weights.ﬂad'shown that a lower spring rating made for greater
sensitivity. Changes of mass. on the other hand. were not né;rly S0 -
“important. Accordingly; the Hfaphragm‘finally chosen for uge had eight
holeé qf 1cm diameter punched on a circle surrounding the central
region . which radiated into the cavity. Apart from lowering the spring
rating they also diminished the gas loading oh the diaphragm due to
the pockets of gas in the transducer housing - in particular the ga§
between the outer region'of the diaphragm and the flange at the base
of the bore. which, it‘ will be recalled from section 4.3, adds a
constant term to the impedance of the transducer, and so lowers its
sensitivity.

It was not possible to check the flatness of the diaphraém in situ.
but it was felt thay it could not possibly be distorted after this
: preparation. The flat clamping copper surfaces and the.comparatively
‘greate} contraction of the diaphragm on cooling. would also help to

remove distortion had it occurred."

The unclamped diameter of the diaphragm was four times that of the
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cavity. Had it been clamped at the edge of the cavity (see figure.
2.7(b)) it would have suffered from the drawbacks outlined in section
4.3. Furthermore, there would have been insufficient space on the rear
face‘to accommodate the driv%ng coil and accelerometer which both
_ require ‘tb be situated well in from'the edge of the diaphragm to
function to the best advantage.

The driving cofl was ‘wound on a perforated paper former; the
purpose of the perforations being to prevent standing waves occurrin§
in the gap between the rear face of the diaphragm and the pole piece
of the permanent magnet. It was earthed at a centre tap and driven by
a floating drive voltage. It was hoped that the resulting symmetry in
the drive circuit would inhibit interference between the driving
current and the accelerometer circuit. Every care was taken to ensure

;. that the coil was éligned centrally in the gap of the permanent magnet

. .. assembly. Using a cryogenic varnishs it was stuck to the diaphragm in

gﬁ‘a specially qonstructed {]igh which 'held it central and kept it

.- _perfectly circular. The diaphragm itself was exactly located by a ol

- brass ring encircling the twd copper clamping faces. Another fig ‘was

- made which tightly fitted the gap in the permanent magnet assembly.
The securing screws of the assembly were loosened, the jig inserted
and the screws retightened..The assembly as a whole was centralised by
"being accurately placed in the copper housing which had the lower
clamping ring machined on its upper face.

The accelerometer was -a small lead zirconate titanate (PZT)
. synthetic piezoelectriﬁ element in the form of a cylinder. Suﬁplied by
the Brush Clevite Company. it had been poled axially to form the
‘piezoelectric designated as “"type 5A" and was plated on its end faces.
It was loaded with a 4g disc of brass which also functioned as an
electrical screen. The accelerometer assemb[y was glued together with °

cryogenic varnish and attached to the diaphragm in the same way.
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Leads to both ‘accelerometer and coil were tightly twisted and led
away through screens of hyéodermic tu@ing to pass through separate
Stycast seals in the base of the transducer housing. They were then
immediately rescreened and'taken out of the cryostat through separaﬂe

tubes and vacuum seals.

5.1.3 The Optical Interferometer.’

The design of'the'opfical interferometer is shown in Figure 5.3 and
the situation of the low temperature components - already discussed -
in Figure 5.1. The beam splitter providing the optical fiducial is
located at some distaﬁce from the transducer diaphragm whose position
it represents. But since the whole instrument is maintained at the
same constant temperature, this is of no consequence. The same applies
to the cube corner reflector moving at constant separation from the
écoustically ‘reflecting face of the piston. In this configuration

- there is approximately zero optical path for maximum acoustib path.
Should the optical path increase to haLf the length of the cavity of |
the laser which is usedr the output of the interferometer would be
oo | expected to fall owing to interference between the closely spaced
| | wave lengths in the spectrum of the laser light. This calls for the use -
of a laser with a cavity at least twicév as long as thé maximum:
acoustic cavity length. Alternatively, a ere sophisticated laser with
only " a single line could be employed: or a more elaborate ]
interferoheter which could function either sfde of zero optical path.
- In this case a 1mW helium—neon Laser subplied by Spectra—Physics Ltd.
was used with a cavity aboﬁt 27¢cm long. An external mégnet Was
~supplied to polarise the beam.

Having used a cube corner for thé full reflector, .the only

alignment required within the cryosfat was that of the beam splitter.

This was achieved simply by ensuring that the mating faces of the beam

splitter plate and the upper cavity against which it was held were
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true.‘ It was with this in mind that Wood's metal solder was employed
for assembly and sealing rather than the neater and cleaner crushed
indium technique. With the latter changes of alignment unavoidably
occur as the indium wire is crushed between the mating surface§.

The laser was mounted on an adjustable bench hinged about the point
where its beam impinged upon the semi-reflector which diverted half -
the Light down into thewcryéstat. A single screw was usedbto tilt the

bench until two beams of light re-emerged. The Llaser could then be

~ positioned exactly so that the emergent beams were parallel and also

coplanar with the laser beam. By adjusting the small room temperature.
reflector the two beams could be superimposed and aligned in the same
direction. They would then interfere. Once aligned only occasional
small adjustments were made. The stability of the optical
{nterferometer wéé ensured by hanging the cryostat from @ thick
stainless steel optical table. itself supported on a heavy iron frame.
All vacuum pumps were mechanically isolated from the fﬁaﬁe with the
aid of dampers and anti-vibration mountiﬁgs both on the pumps and in
the vaéuum lines.

The.light entered and left the cryostat through the moving tube
which also served to raise and lower the piston. The beams were about
2 or 3 mm in diameter and the tube was 11.7mm internal diameter which

enabled them to be kept well separated from each other and from the

-ualls of the tube. At its room temperature end it was sealed with ‘an

' t}_lopt1cal u1ndou."and: at its lower end was the cryogenic vacuum tight -

'”fboptical windou weLded onto a graded glass seal on a thin Covar tube.

" gonvection or osc1llat1on occurred over the large thermal grad1ent and','”

I was felt to be necessary to evacuate the moving tube in case gas

made the optical 1nterferometer unstable. Some cons1derat1on was also -

given to sealing the tuo cold components of the interferometer in a

vacuum for the same reason. However. with the present type of
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interferometer. this would have required a complex system of thin
bellows to Llink the stationary beam splitter plate with the moving
tube and piston. Such a system would almost certainly. have been
unreliable and -so the %dea was rejected. In fact such'opticaL
instability did occur as will be explaiﬁed. and reduced the maxiﬁum
pressure at which it was possiblé to operate the thermometer. A more
satisfactory method uoﬁld have been to provide two separate evacuated
tubes into the instrument. One. being stationary. would descend to the

fiducials and the other, much as in the present instrument, would move - -

~with the reflector on the piston. However. no interruption of its

. vacuum to accomodate a stationary beam splitter would be necessary.

The windoﬁ}*in-any‘éasg. was the cause of considerable difficulty.

1. - Attempts were made fq: glue optical flats into thin swaged copper R
" tubes. Several of these functioned for a period of time, and then

“failed, even though all of them had been shock tested by plunging into ' . °

liquid nitrogen man? times whilst‘bging monitored for leaks wfih a .
mass spectrometer. It éeems that the: usual resins available in a
cryogenic Llaboratory are prone to crystallisation after prolonged
thermal cycling. The problem with welding optical windows onto graded
glass seals. on the other hand. is that they become optically
unsatisfactory. However. after making several - all of a diameter
Larger fhan that required for optical purposes - one was obtained with
a sufficiently good central region for optical interferometry. This
has now been in use for some time.

The two sets of fringes obtained from the optical intérferometer
were in approximate quadrature since the fiducial beam in output 1

(see Figure 5.3) has had four reflections compared to the three in

_output 2. Both outputs were monitored by solar cells as was the

intensity of the laser. After attenuation to the mean level of the

fringe signals. the Llatter signal was subtracted from them to
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compensate for any variation in laser intensity. The resultant signals

were then amplified through d.c. amplifiers and subsequently used to

"trigger a bi-directional counter giving two counts for every fringe.

The Qavelength of the light.was 6.3299x10-5cm Jn vacuo. thus giving a
precision of approximately 1.58x10-5cm in .a length measurement. A
small correction was made to the wavelength to account for the
réfractive index of the fhermometric helium which filled the optical’
interferometer. The density of the gas was calculated from a

preliminary (and always sufficiently accurate) value of its

temperature. Using the law of Gladstone and Dale:

=1 oL . e B ‘ (g.1.2)

it was possible to correct the refractive index.Ju. at STP for the

prevailing conditions. The correction was of the order P/T parts in
7 2 '

10 at a pressure of PN/m and a temperature of TK.

5.2 Control and Measurement of Temperature and Pressure. '

5.2.1 The Cryostat.

'The cryostat was supplied by the British Oxygen Company and was of

conventional modern .design. The whole assembly hung from the optical

~ bench and could be taken apart layer by layer as shown in Figures 5.4

to 5.8. The outer layer was a standard British Oxygen Company;
stainless steel dewar modified so that the internal vacuum - usually
common to the air/liquid nitkogen wall and the liquid nitrogen/liquid
helium wall - could be split into two to facilitate precooling. This
dewar could be disconﬁected from its vacuum lines and lowered on
extensible springs from the optical bench against which it éealgd to
reveal the vacuum can 1in which the acoustic interferométer and

radiation shield were suspended. Two vacuum lines also carrying the
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various electrical leads descended to the can from the optical bench
above as did the large central tube within which the evacuated light
tube ‘moved. Three copper radiation baffles cooled by the gas boiling
off from thé liqﬂfd helium bath preventgd_room temperature radiation
from the optical bench falling upon the can. This method of insulating
the bath from above is preferable to the older and . much more"

complicated technique of inserting another vacuum above the bath as

~ well as around it.

<

To operate the system it first had to be precooled. A few hundred
N/m2 pressure Qf air was let into the nitrogen/helium vacuum wall as '~
thermal exchange gas, and the helium bath was filled with helium gas
at atmospheric pressure. Helium exchange gas was also let into the
interferometer vacuum can at low pressure. The liquid nitrogen bath
was then filled and -the interferometer gradually cdoled to
approximately 80K over a period of about 36 hours. Liquid heliuﬁ coyld
then be transferred into the helium bath until it covered the vacuum
-can to a depth of up to 30cm - sufficient for almost 48 hours
operation under the most favourable conditions. If care was taken to
ensure that the Lliquid Llevel did not fall below the bottom of the
interferometer vacuum can. it was a.matter of minutes to top up' the
bath in the mornings so that a velocity measurement could be taken in
the afternoon and evening. After transferring the liquid helium. the
. helium exchange gas 'was evacuated fromlaround the interferometer and |
';‘thé temﬁerature ;and'ﬂ pressure 'controLLing systems for the
':‘intgrferometer .and jts ‘tHarge of fﬁermOmetfic gas codld be~switched_ -

. on. The exchange gas . in the ni;rogen/helium wall. being air,: -

" solidified immediately the liquid helium transfer was initiated so = .

- that there was no need to evacuate this'Spacg.
The simple design of this cryostat "ensured complete reliability

except on two occasions when the only demountable vacuum seal in the
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system leaked at low temperatures. This was a crushed indium wire seal

on the flange of the interferometer vacuum can which probably Lleaked

_because it was not tightened sufficiently. However, the whole system

may now be considered to be entirely reliable.

5.2.2 Temperature Measurement and Control.

.

Three four—lead germanium resistance thermometecs were inserted
into the walls of the interferometer so that they would be in thermal

contact with the thermometric gas (see Figure 5.1). All had been

- calibrated at the normal boiling point of helium to within less than

ImK and carried the NBS acoustic scales NBS-65, of Plumb and Cataland. .
The latter calibratibn was obtained ' through a comparison with a
thermometer sent to the NPL from the NBS and briginally calibrated
against a resistance thermometer taken directly from their. high
frequency acoustfb thermometer. Our comparison depended upon.transfer
via a computed fit and is therefore only accurate to_+ or - ZmK. Plumb
and Cataland. it will bé recal led,  found that their temperature was

10mK above that defined on the T-58 and T-542 vapour pressure scales at

* the normal boiling point of helium. This was subsequently confirmed by

Rodgers et al.[48] to within 3mK and by Cetas and Swenson[13]. Cetas
and Swenson using a magnetic thermometer calibrated against the old

platinum resistance thermometer scale, NBS-55 (see Figure 1.1).

between 20 and 30K find the vapour pressure scale value too Llow by

6.7mK with a similar precision so that this result, too, would seem to-

- confirm a figure in the order of 10mK. We have found our NBS-65

. calibration to be 8K (+ or -2mK) high relative to T-58 and T-62 at

this point which is compatible with the other measurements. . '

In an experimental mgésurement of veldcity the interferometer was
brought to a temperature within several mK of the required temperature
(always a fixed ‘point for the work done to date). The values of

velocity thus obtained were subsequently corrected to their exact
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boiling point values using the gradient of the resistance-temperature
curve for the germanium resistance thermometer. Thermometer
resistances at temgeratures other than the normal boiling point‘ of
helium were only known roughly for these thermometers, but when the
need arose one was replaced by another calibrated thermometer. or. on
one 6ccasiop.. corrections vfo the véLocities were made in retrospect
when a célibrated thermometer subsequently became available. Errors

introduced by uncertainties in the reproduction of the true fixed

" point temperature will be dealt with when the results themselves are

discussed.

The temperature of the interferometer was controlled by a fourth
germanium resistor - a two lead element this time — which formed.an
arm of an equal ratio a.c. Wheatstone bridge. The in-phase component
of the. out—of-balance signal from the bridge was selected bi'a phase
sensitive detector whose output was used to control the current _in a
heater on the interferometer. Sinﬁé the heater necessarily main%ained
the interferometer at a higher £emperature than the ambient coolané
bathf .the Llatter had to be pumped‘slightly below its normal boiling
point when measuring velocities at 4.2K. The controlling temperature
was set by adjusting the resistance of another bridge arm and the
quadrature component of the bridge output was nulled manually by a

parallel variable capacitance. The lead to the controlling germanium

‘7j:'{_sensorvwas of 1mm thi&k Karma wire as was a compensating lead in the
*v;::other side of ‘the bridge.- Both  electrical returns were via the o
. cryostat itself-thus'enéblfﬁg,one'sidé of the sensor to be soldered to?'w '

| the interferometer for good thermal contact.
| WitHAthis“bontholler temperatures could usually be héld conétanf tblr,fv“

" better than + or -0.5mK for the duration of a measurement at 4.2K. At

20K they seldom varied by more than + or -2mK. However, these small

drifts in temperature are easily corrected for. The velocity is
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calculated from the positions of the first and last resonances which
are recorded at the initial and final temperatures respectivety.'lf
there is a drift of AT, it may easily be shown that an error in

measured velocity occurs of

Ne = e _N AT | (5.2.1)
2 N-I T

where N is the order of the Llast peak (usually five for our

instrument). Accordingly the error in measured temperature will be

AT Ac =_N AT = (522)
c N-1

Thus if a rough value of AT is obtained from the monitored resistance
thermometers this is easily corrected for.

5.2.3 Pressure Measurement and Control.

It was necessary that the préssure of the thermometric gas was held '
sufficiently constant for the duration of a wvelocity measurement.
However. it became unstable above a certain value which was quite well
defined for any givén teﬁperature. It appeared that gas convection
took place within the annular region between the stainless steel

supporting tube and the tube moving within it. (*1) The situation was

(1) A similar problem was encountered by Plumb and Cataland (see

Reference 24). It‘uould seem to be bad practice to use this
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greatly improved by winding nylon cord around the inner tube so that
the direct path. of the gas was almost entirely obstructed whilst
allowing it impedéd access to the interferometer via a helical ﬁéth.
Nevertheless, it was not possib}e to operate the instrument much above
0.3 of an atmosphere at the boiling . point of helium or about 1
atmosphere at the hydrogen boiling point. The onset of this pressure
instability was acbompanied by a marked deterioration in the stabilify

of the temperature of the interferometer and, at the same time. an

increase in the power required to maintain it at the chosen isotherm

temperature. The stability of the optical interferometer was also
adversely affected as has already been mentioned.

However, this problem has not greatly diminished éhe effectivenéss
of the instrument since it remains sensitive down to much lower
pressures than these. In any case it 1is the lowest point$ on “an
isotherm that are the most valuable since they narrow the range of
extrapolation to zero pressure. Tﬁeir comparatively Llarge boundary

layer corrections are not necessarily any more problematical than

" smaller corrections at' a greater distance from the intercept.

The pressure was controlled by a Texas Instruments pressure
controller. This functioned by bleeding helium in or out of the system

through servo controlled needle valves. The necessary controlling

annulus to take the thermometric gas down to the interferometer
"= probably because it will be denser in the region passing'
thrbugh_the helium bath than }n the warmer interferometer below.
It is suggested that in any future instrument a tube is provided
which descends past the interferométer and rises to it from .
beneath or else that the descending tube should be vacuum

insulated from- its room temperature end right down.to the

interferometer.



- pressures could nearly always be held constant to within + or -=5N/m

- 169 - -

" signal was supplied from a quartz spiral Bourdon tube gauge from the’

same manufacturer. In the absence of the aforementioned instability., ..

for the duration of a measurement - about three hours.

The pressure of the thermometric gas was measured and frequently

checked using a recently calibrated Kew pattern mercury barometer. the

usual corrections "to standard temperature and gravity being made.

2
Pressure measurements are estimated to be accurate to + or =5N/m

which represents only a very small part of the total error in a final

value of isotherm temperature.

5.3 The Modus Operandi and Tests on the System.

5.3.1 The Measurement of Velocity.

The velocity measurement itself consisted of taking values of the
aﬁplitude of viBfafion of the transducer ;s a function of .acoustic
path so that a resonance curve of the form shown in Figure 2.3 could
be constructed. The émplitude was qbtained in arbitrary units by
measuringAthe the r.m.s. voltage from the PZT accelerometer. It was
amplified by a high impedance low noise differential amplifier. passed
through a tuned filter (both from AIM Ltd.) and then fed to a Dynamco

a.c. to d.c. converter. This device enabled the r.m.s. voltage to be

‘determined directly in terms of 1its heating effect on a vacuum

thermojunction by providing a d.c. output voltage which was

continuously adjusted to have the same heating effect. This was then

. measured by a digital voltmeter from the same manufacturer reading

from 0 to 1.9999. A full analysis of the performance of this measuring
system will be givén in the next section.

Each time a Qalue of the accelerometer voltage was recorded so was
the wvalue of the acoustic path. The acoustic reflector was in%tially
brought down to the transducer and the optical counter zeroed. It was:

then raised and held at about four hundred positions on the resonance
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curve whilst readings were taken. Both numbers were punched onto paper
tape, one immediately after the other. Between the movement of the
piston and the recording of the points sufficient time was allowed to
elapse to enable pressure and" temperature equilibrium to be achieved.
"Véut since the hovémeht‘on_the resonances was generally only some'.teh 

or twenty 'wévélgngfhsz §f‘ Light.iifhis took only a’feQ seﬁonds; Thg; 
'density of bo%nts befﬁeéh resonances was Llow since the .curve variéd'

-only gradually. but the‘resonaﬁces‘fhemselves were covered much more .
fully. Prior to a run a rough plot of the resonance curve was obtained
on a graphical x-y plotter. This was fetraced during the run pboper.

and enabled one to see where the greatest point densities were
required. Generally, the procedure was the same for all points on all
- velocity isotherﬁs except in one respect. In the earlier readings the
values of the maxima and minima of the resonance curve Qgre found
simply by searching for the extreme values on the digital voltmeter by.
moving the piston. up and down. Later, points were taken over the -
maxima and minima and fitted with a low order polynomial fit whose

peak gave the values adoptéd for the maxima and minima in the

calculation on the‘impedance circles. The method finally adopted was

to take points with a very close spécing over the peaks and merely to
select the greatest and thejleast. There seems to be no difference in’
the quality of the answers obtained in the three different ways which
is why the last method. being the simplest, was adopted. An example of
a resonance taken at 20K is shown in Figure 5.9.

The driving current was obtained directly from the floating ‘output
of a frequency'standard. This was of the frequency synthesising type
suppliéd by the company of Schlumberger and claims an accuracy better
than one part in 107. It was used with an dutput impeéance set to 600
ohms driving the ' transducer symmetrically'.through two 330 ohm

‘resistances - a method which ensured that the driving current waé‘

-
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The First Resonance Taken at the Boiling Point of

Hydrogen at a Pressure of 50030 N/m .
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A
constant to at least one part in 10 . The desired operating frequency

was dialled digit by digit, each digit locking onto the internal

frequency standard. This wvalue of frequency was used in  the

‘calculation of the velocity.

The experimental curves were plofked on the NPL's computer
cbntqolled graph plotter and an_occasional point was removed if it was
found that that it léy well off an otherwise smooth curve. The data-
was then processed by computer rather than by manually drawing -
impedance circles as described in sections 2.1 and 4.1. However., the
proéfamme was an exact reformulation of the. graphical procedure in
terms of coordinate geometry and so. in principle, introduced nothing

new. The data was split up 1into segments of resonances  and

anti-resonances (i.e. the slowly changing parts of the curve between

the resonance peéks) and Tfitted with orthogonal polynomial Tits.

values of Z were then calculated for each imbedance circle from the

T . )
_anti-resonances either side of each resonance together with values of
Z and Z followed by a first approximation of Z . This enabled
MAX MIN RES

the six points closest to resonance on each peak to be selected and:

refitted with a low order orthogonal polynomial so that L and dl/dZ
RES ;

could be accurately calculated. From the latter value an absorption

coefficient could be calculated for each resonance. -Absorption

’coefficients,;were also calculated from the half widths of the

+

resonances and, as will be shown in Section 5.3.3, generally appeared
to be more self consistent. The average of these was used to calculate

the boundary layer correction to the velocity as explained in section

4.1,
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5.3.2 Tests on the Accelerometer.

The first.test to be performed on the accelerometer was to check
':thaf."it did . indeed, yield impedance circles as expected. The signal
from the accelerometer was ‘ampLified and split into in-phase and
quadrature components with respect fb the driving current (or the
driving force). This was achieved by using a phase sensitive detectorf
from AIM ‘Ltd. The d..c. outputs were fed to the terminals of an xfy.
graph plotter so that mechanical impedance = or ' rather admitténce -

circles could be drawn'directly.

VL) < L | | (5.3.1)
L+ L)

Tﬁe‘ origin _of the admi ttance -plane was found by disconnecting the
accelerometer inputiand marking the paper where the pen came‘to rest.
This point represented a situation where no vibration was possible
even With a finite driving force i. e. infinfte impedahce or zero
admittance.

A similar test was carried out using the voltage across the driving
coil instead of the accelerometer voltage so that another set of

.circles>could be obtained - electrical impedance circles this time. .~

V) & _z__Cm’ + 1 (5.3.2)
| Zo+ Zg)

Two potential Lleads going down into the cryostat to the driving coil
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had been provided for this purpose in case the_accelerometer techniqye
had proved unsatisfactory in practice. This enabled us to ensure that-
our direct mechanical “impedance” measurements were qualitatively
similar to the elegkrical.impedance measurements which constitute the
raw data in the conventional and well eétablished method of operating
such an interferometer. The tuo sets of circles are shown in figure
5.10 and.indicate cleafly that, whatever the étrict interpretation of
the circles may be. they may still be regarded as impedance circles
for our purposés since the true point of resonance will be obtained by
exactly the same procedures that have already been described with
regard to pechanical impedance circles proper. The only point for

caréful consideration arises with the calculation of absorption

- coefficients where the wrong sign will be obtained unless the slope of

"Z" is correct[y expressed at resonance. Accordingly we shall feel

free to talk of the various distances on the diagrams as repfesenting

_the same quantities as they did in figure 2.2 - in particu[ar. the

distance of the circles from the origin will be taken to be a measure

of 2 although, from equations 5.3.1 and 2 it will be apparent that it
T

is not. )

The short distance of the accelerometer circles from the origin
compared to their diameters shows that the newer method is the more
sensitive one. The greater }atio of Z to 2 (L) in the case of the
electrical measurements is the rezult gf the purely electrical
impedance of the device being included in its total' measured
impedance. This effect was predicted in section 4.3 and“leads to a
loss of sensitivity[fn the detection of the position of resonance and
hence in the measurement of veloci;y. Since the purely electricap
éomponent of the transduéer impedance remains fhe-séme at increasingl?

lower pressures. the instrument tends to become less sensitive at the -

lower end of the iso;herms where the effect is least welcome. However:
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Z7Z (A/2) = 1,06
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~ Accelerometer Mechanical

Admittance Circles

Figure 5.10

A Comparison of the Accelerometer Technique for Detécting

Resonance With the-Conventional Technique.
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the purely mechanical contribution to Z in either type of impedancF
diagram may be expected to fall to somz extent due to the fact that
the internal gas loading of the transducer (that due to the pockets of
gas behind the diaph#agh fof example) falls at lower pressures in the
same way that Z (1) does. Thus the fmpedances tend to remain of
comparable size evgn at low pressures in the accelerbmefer method.
The poor quality of fhe circles ¢(i. e. their ovality) was traced to

a phase error in the circuitry responsible for resolving the input
voltage into {n-phase and quadrature compohents. It can be seen that
it is similar for both types of measurement. The quality achieved in

this sort of application using the type of phase sensitive detector

commercially available is not likely to be significantly better than

‘this. Lengthy investigations with an accurate impedance bridge would

be required for éXact plotting of the circles. However.. this was
considered to be an adequate demonstration that the accelerometer
signal was behaving in'a‘quaLitatively similar way to the electrically
measured impedance, only with greater sensitivity as expectea.

Simple tests were also carried out at. room temperature on the.
accelérometer Lleads to ensure that there was no serious interference

from the driving current in accordance with the criteria of Section

“4.,3. Dummy leads 1in physical, but not electrical., contact with the

accelerometer were substituted for the normal leads and the
accelerometer was short circuited and earthed. The interference.
voltages were then read on an oscilloscope and compared to tﬁe normat
accelerometer signal obtained under similar conditions. The results‘
are shown in.Tablé»5,1 where it can be seen that the intérference
voltages are hardly evér in excess.of 10-3_of the signal from the

interferometer and always less than one per cent. Since the smaller

voltages could not be read very easily.lan upper limit to the signal

to noise ratio had to be calculated from the smallest visible
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TABLE 5.1

Interference ‘in the -Accelerometer Leads from the
Driving Coil.

Frequency - Accelerometer Noise in Signal ;o
Signal Leads . Noise Ratio
(kHz) ‘ (Vp-p) (Vp-np)
o , -5 3
2.0 0.28 7x10 4x10
-5 3
4,0 , 0.05 <<5x10 >>1x10
* - o -5 ‘ 2
6.0 0.04 <<5x10 >>8x10
g = 3
8.0 0.07 <<5%x10 - >>1x10
" =5 2
10.0 0.02 <<5x10 >>4x10
-5

. N. B. 5x10 was the smallest readable voltage
although smaller voltages- could be seen.
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interference voltage so that the figure, as written, will almost
certainly be pessimistic. But, in any case, they represent an entireiyA'
negligible error when substituted into equation 4.3.19.

The linearity of the PZT accelerometer and its associated circuitry
Was tested by plotfing the amplified output signal against the current
passing through the transducer coiL.' Block diagrams of the
accelerometer circuit and the drive circuit, both described in the
previous section. are shown in Figure 5.11. In the latter circuit. a
transformer has been added across one of the 330 ohm series
resi;tances in order to isolate it from the voltmeter which would
otherwise earth one end of it. The voltmeter used was in fact the a.c.
to d.c. converter and associated digital voLtmetér which.also served
to measure the amplitude of the accelerometer signal. |

Like the circle tests, these were carried out at the normal boiling

2

poinflof heliuﬁ-4 at a pressure of 16690N/m in the acoustic cavity

and a driving frequenéy of ‘3.3kHi. Measured values of the driving

current in terms of the voltage' dropped across the series resistor and .

output signalware'shown in Table 5.2. and their ratio pLotted{-as a‘ ‘
function of the former in Figure 5.12. It can be seen that above an ®
output‘reading on the digital voltmeter of 0.1500 the system is linear .
to better than one per cent. In practicel voltages read -are always
greater than -than 0.1500 under these conditions, so it is feLt.that
this‘figure représents the Linearity achieved in an actual temperature
measurefMent. The linearity of the driving current measurements should
be considerably better (about 0.07 per cent,wﬁich is the Linear{ty for
the converter specified by the manufacturer).

However, even if non-linearities were far worse than this, it
should still not affect measured temperatures. This is because on
extrapolation of measured velocity to zero pressure the range of the

voltages measured becomes increasingly small compared to the voltage
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330 ohms

'J\AAﬁ Transducer
Frequency =~ QB Drive Coil
’ . P ‘
Standard - 330 ohnms c?g

7

3
——
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1

a.C. = decC.
PZT 3
Accelermtr‘.mm Converter
T .
i Digital
Low Noise Tuned Ampf. Voltmeter

Figure 5.11

Circuits for Accelerometer Linearity Tests,

Tt
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TABLE 5.2

The Linearity of the Acceldrometer.

Current

0.0522
0.0754
0.0929
0.1265
0.1510
0.1760
0.2003
0.2258
0.2497
0.2754
0.3134
0.3186

Acceleroreter
Signal

0.1853
0.2740
0.3412
0.4702 -
0.5635
0.6575
0.7485
0.8472
0.9350
1.0378
1.1972
1.1972

Ratio

3.549
3.632
3.672
3.716
3.732
*.736
3.737
3.752
3,744
3.768
3.760
3.758
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Figure 5.12

The Linearity of the Accelerometer,

0.3
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characteristic of the impedance, Z . Consequently non—linearities in
A , T .
the system are removed by extrapolation just like gas imperfections.

5.3.3 Tests on the Boundary Layer Corrections.

In view of the aforementfoned suspicion of the orthodox frequency
dependence of the boundary layer effect'of order 1/2. it was decided.,
as suggested in Chapter III. that it should be tested experimentally.
Accordingly several véLocity and absorption coefficient measurements
were taken at the same temperature and pressure, but at varying
frequgncies. The results are shown 1in Table 5.3. At the lower
frequencies, the reactance of the transducer appeared to become
somewhat small Lleading to resoﬁances of a fair degree of symmetry
reminiscent of those characteristic of a quartz crystal’ transducer.
Thus the true point of resonance lay close to the peak so that its
» Jexact location wéé difficult since therheight of the resonance cufve
| beﬁomes.'rather.‘insensftive to changes in cavity length under thésev;

conditions. The situation is further complicated because small amounts

" of-noise or a small scatter on the points becomes more serious when "

© the curve becomes flatter. Absorption coefficients were calculated ...

both from the slope§ of the resonance curves at resonance and from the
Hélf widths of the resonances. It can be seen that the Llatter values j-
are more self consistent and so itAhas been decided to use these for
" the calculation of the boundary layer corrections. Their superiority
is most 1in evidence at the low frequencies where the symmetry of the
resonances makes the meésurement of the slope, at resonance harder, if
anything, than the location of the resonance itself¥. Thisr}s because
the slope near the maxima varies considerably with position and also
because, even when the exact position of resonance is correctly
defiﬁed. noise can seriously change the slope of a fit put through a
mere six points (see Section 5.3.1?. At higher frequencies when the-

slope of the curve is very steep at resonance, it can be seen that the
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TABLE 5.3

Tests on the Frequency Dépendence of the Boundary Layer Effect.

3 3
f Date dx10 Ax10 c c
' (from (from (meas'd) corr'd for
slopel h/wdth) at b. p. b. layer
(kH2) (/cm) (/cm) Lem/s) (em/s)
1.5 27/04/71 1.125 1.153 (velocity not

_ 1176 1.158 successfully taken)
29/10/71 1.110 1.058 (11957.6)

1.262 1.151 11954.5

04711771 1.545 1.259 -€11957.1)

€9) 0.894 1.099 . 11953.5

04/11/71 1.318 © 1.158 €11960.4)

(aIn 0.942 1.155 - 11956.4

"Mean: ’ 1.171 1.149 11954.8
Std. Error: 0.064 0.019 0.7

11972.2

1.75  25/06/71 1.135 1.296 - (11952.4)

¢9) ©5.095 1.550 11950.7
08/07/71 1.668 1.233 (11956.4)
1.117 1.119 - 11951.5 '

20/07/71  1.202 1.086 - (11956.5)

o 2.888 °©  1.167 11950.7

Mean: 2.184 1.288 11951.0
Std. Error: 0.587 0.060 0.4

S 11967.7

2.05 ° 15/06/71 1.306. 1.270 (119604)
1.287 1.276

1.257  1.267 11957.6
Mean: 1.283 1.27
Std. Error: _ 0.012 . 0.001

11971.7

continued......
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2.25 25/06/71 1.320 1.376 - (11960.4)
(I 1.358 1.397.

~

1.376 . 1.346 11958.0
" Mean: 1.351 1.373
. Std. Error: 0.013 ° 0.012

11971.9

2.50 24/06/71 1.398 1.412 (11959.9)
1.464 1.382

1.454 1.414 11956.8
Means 1.438  1.403
Std. Error: 0.017 0.009
11969.6

3.0 07/707/71 1.661 1.677 (11961.9)
| 2.995 1.739
1.742 1.624

1.625 1.801 11958.3
Mean: - 2.006 1.710
Std.-Error: 0.286 0.033
. 11971.0
_3.3 10/701/71 1.739 1.742 {11952.3) .

1.669 1.645
1.676 1.780
1.770 2.636%  11959.1
. Mean: o M1 1.951 Cuse 1.723)

11971.0

* These values are rejected as being spurious since
they are more than three standard deviations from the mean
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two absorption coefficients agree very well when the occasional

spurious point has been removéd. Spurious points have been marked in

Tabie'S.Z and the justification for each rejection is that the value

' rejécted compares badly -with the remaining values taken at the same

frequency.-Because of the prevalence of such points at the two lowest

frequencies (1.5 and 1.75kHz) and because of the large scatter in the

- raw velocity measuremehts they have been repeated several times.' The

mean of the better answers has been taken and treated as a single

point. In our judgement the weight deserved by these two averaged

poin;s is more nearly comparable to that merited by the higher.
frequency points, and so all points will be treated equally without,.
we feel, unduly overrating the importance of any one measurement

relative to anéther. Had all the Llow frequency measurements been

‘employed as iﬁaividual points in the curve fitting investigations

about to be described., then a seriously misleading influence would'
-haQe been‘exerted on fhe functions being fitted to the points.

It was assumed that

,

(5.5.3)

and log & was fitted with a straight line as a function of log f so
10 ) : . 10

that

-Qosmok = J?.Oj { la—PJ.oS ]C .(5.3.1;\

thus enabling p to be obtained from the slope of the fit. It was found-
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that

p = 0.519 + or - 0.066(std. error)
where the standérd error has been quoted. We feel that, unless one is
prepared to consider value§ for p which are not éimple fractions, this
shows that the orthodox frequéncy dependénce for the boundary Llayer
absorption coefficient is correct. and ;ertainly that an order of 3/2
is not applicable to ouf instrument. The latter conclusion is further
reinforced by a plof of the absorption coeffiéient aéainst the qua;e
root of the frequency. Here we find that a polynomial fit to the
points of order three has a somewhat larger standard deviation than a
linear fit. A value.of

A =0.211 + or - 0.027(std. error)
was calguLated from the slope of the linear fit which compares very
.well with the tﬁéoreticaL value of 0.198 calculated from such rough
values of the transport properties of helium gas that were available
for this temperature énd pressure. If, in addition 'to the seven

1/2 .
experimental points of gl and f s Wwe include the origin we obtain a

better value still:

A = 0.201 + or — 0.009(std. error)
" The Llatter “step is quite Legitimate‘ since, whatever the
frequency dependence of the boundary La&er effect, we may assume that
absorption losses will disappear at zero frequency where the particle
velocit& at any point in the gas., and so the rate of workiné. Wwill be
zero too. In any case., it was found with the first fit that the line
passed by the origin well within a distance given by the standard
error of the intercept. The results of these fits are shown in Tables'
5.4 and 5. |

In order to. assess the dependence of measured velocity upon
frequency. the velocities were fitted against the reciprocéL of the

square root of the frequency with Llinear, quadratic "and cubic
. . . i '

L
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TABLE 5.4

Linear Fit of the Logarithm of the Measured Absorption

Coefficients as a Function of the Logarithm of

Frequencies.
Log f Log Log Residuals
10 10 10
Data Data Calc'd
3.17609 . -2.93968 -2.94528 -0.00560
3.24304 © -2.89008 -2.91055 -0.02047
3.31175 -2.89585 =-2.87490 +0.02095
3.35218 -2.86233 -2.85393 +0.00840
3.39794 -2.85294 -2.83019 +0.02275
3.47712 -2.76700 -2.78911 -0.02211
3.51851 =2.76371 =-2.76764 -=0.00392

Result:

Constant Term = -4.59301 + or - 0.22280(std. error)
- Linear Coefft. = +0.51879 + or - 0.06640(std. error)

Standard Deviation of Points = 0.0199
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.

TABLE 5.5

| Polynomial Fits of the Measured Absorption Coefficients
" as a Function of the Square Root, of the Frequency.

Linear Fiq:
3 . 3 3
¥t %10 Ax10 Resdls. . x10 Resdls.
: 5 : 5
' x10 " xX10
Data Data Calc'd from 7 pts. Calc'd from 8 pts.
WHz) (/cm) (/cm) (/cm) (/cm) - {/cm)
0 0 -0.071003 -0.01003

38.7928  1.14900 1.12630 -2.26983 1.14407 -0.49292
41.8330 1.28800 1.22428 -6.37160 1.23654 -5.14584
45.2769 1.27100 1.33303  +6.20257 - 1.33917  +6.81665
- 47,4342 1.37300  1.40114 +2.81404 1.40345  +3.04498
50.0000 1.40300 1.48216  +7.91565 1.47991 +7.69087 |,
54,7723 1.71000 1.63284 -7.71599 1.62212 =-8.78836
57.4456 1.72300 1.71725 -0.57484 1.70178 =2.12203

Result for seven point fit:

. -4
Constant Term = =(0.96590 + or — 1.92451(std. error)) x10
-5
Linear Coefft. = +(3.15749 +-or - 0.39821(std. errorl)) x10
-5

Standard Deviation of Points = 6.55x10

The Standard Deviations for the quadratic and cubic fits are
© =5 - ‘
6.03x10 . and 6.95x10 respectively.

Result for eight point fit: .
: . 5
Constant Term = =(1.00334 + or - 5.78865(std. error)) x10
) =5
Linear Coefft. = +(2.97988 + or — $.12804(std. error)) x10

-5 .
Standard Deviation of Points = 6.11x10

The Standard Deviations for the quadratic and cubic fits are
-5 =5. L ‘
6.44x10 - and 6.06x10 " respectively. .
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poiynomials. It was found once more that the standard deviation of the
fit deteriorated a little on raising its order to two or three.'Aéain,
the lack of improvement in the fit with the cubic polynomial suggested
that no dependence on the 3/2th power of the frequency was present in
the measured velocities. A value for A o} 0.208 + or - 0.082(std.
érror) which is in very good agreement with the values calculated from
the absorption coéffiﬁients was obtained from the linear fit using
equation 4.1.2. and.the value of the 'intercept. interpreted as the
value of the velocity at infinite frequency (when the boundary layer -
error in the velocity is zero), was

Co= 11971.4 + or = 5.9(std. error) cm/s

‘Reference to Figure 5.13 shows that all the corrected velocities lie

within one standard error bar of this value as would be expected. This
value was subtracted from the measured values of velocity. and the

following form for the frequency dependence was assumed:

"cim - c Ac JC_P (5.5.5‘)

1bni

A straight line fit of log (c-%n) against log T was then carried out

10 10
as before: - '

-Qoaw (c-¢) = dog i.fl_:.;_i + ?JDS.Of

so that the order of the frequency dependence Eould be obtained. It-

was found that

. p = —0.483 + or - 0.172(std. error)

N
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The Bbundary~Layer Correction as a Function of Frequency.
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which again 1is a satisfactory answer from the point of view of the
orthodox theory showing that our initial assumption that the frequency
dependence was of order one half was self consistent. However. this
answer suffers from the rather inaccurate value obtained for Co? aﬁd
so it was decided to investigate a fit of the corrected velocities
against the reciprocal of the square root of the frequency to ensure
that they were constant to within the statistical error of the fit.

Corrections wWere madq to the measured velocities from equation.4.1.3

2

Ac A c | (‘3.3.‘1)

_and we obtained_.

c = 11971.6 + or — 5.0(std. error)

- (39.977 + or - 235.865(std. er‘r‘or‘))/fw2
This function was ¢hosen to répresent any frequency dependence that
" might remain in the'pUrportedly corrected velocities because it was
» assumed_' that such' errors would in any case vanish "at higher’
| frequenéies where’the'boﬁndary layef effect becomes negligible. It can
| be seen that the magnitude of the réméining-,frequency dependence is
far less than one standard error and so may well be of‘burély
statistical origin. Furthermore, at the highest frequency (3.3kHz)
where temperature measurements are‘made it émounts to only 58 parts
per million in the velocity equivalent to approximately 0.5mK which is
virtually negligibles and far Lless thanf the uncertainty in the
frequency independent term (+ or - 2.3mK). The details of the last

three fits are given in Tables 5.6 to 8.
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TABLE 5.6

o PoLynomiaL’Fits of the Measured Velocity as a
Function of the Reciprocal of the Square Root of the

v.i.- - Frequency. . ;
B L%hear.Fit:

100WFf °© ¢ "¢ Residuals

Data : Data Cale’'d - -
(//HzZ) {cm/s) (cm/s) (cm/s)
2.58199  11954.8  11953.3 -1.5
2.39046  11951.0 11954.7 +3.6
2.20863  11957.6  11955.9 -1.7

- 2.10819. 11958.0 11956.6 -1.4

2.00000 11956.8 11957.4 +0.6
1.82574  11958.4  11958.6 +0.2
1.74078  11959.1 11959.2 +0.1

. Result of Linear. Fit:

Constant Term = 11971.4 + or = 5.9(std. error)
Linear Coefft. = -699.866 + or — 276.634(std. error)

Standard Deviation of Points = 2.03

The standard deviations for the quadratic and cubic fits are

both 2.27.
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TABLE 5.7

Polynomial Fits of the Logarithm of the Estimated
Boundary Layer Velocity Error as a Function of
the Logarithm of the Frequency.

Linear Fit:

Log f Log ¢ Log ¢ Residuals
10 10 10
Data Data Calc'd

3.17609 1.22011  1.25218 +0.032
3.24304 1.30963 1.21987 - -0.090
3.31175 1.13988  1.18671 +0.047
3.35218 +1.12710 1.16720 +0.040
3.39794 1.16435 1.14512 - -0.019
3.47712 7 1.113%94 1.10690 -0.007
3.51851 1.08991 1.08693 °© -0.003

Result of Linear Fit:

2.78499 + or - 0.57752(std. error)
-0.48261 + or - 0.17270(std. error)

Constant Term
Linear Coeffr.

Standard Deviation of Points = 0.0516

The standard deviations for the quadratic and cubic fits are
0.0576 and 0.0627 respectively.
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TABLE 5.8

A Linear Fit of the Corrected Velocity as a
Function of the Reciprocal of the Square
Root of the Frequency.

100/ f c- c Residuals

Data Data Calc'd
(/W/H2) (cm/s) (cm/s) (cm/s)
2.58199 11972.2 11970.6 -1.6
2.39046  11967.7  11970.7 +3.0
2.20863 11971.7 11970.'8 -0.9
2.10819 11971.9  11970.8 -1.1
2.00000 11969.7 11970.8 +1.1
1.82574  11971.3 11970.9 -0.4
1.74078 11971.0 11970.9 -0.1

Result of Linear Fit:

Constant Term = 11971.6 + or - 5.0(std. error)
Linear Coefft. = -39.9768 + or - 235.865(std. error)

.~ Standard Deviation of Points = 1.73



- 195 -

5.3.4 Tests on the Measured Diameters of the Impedance Circles.

Fundamental to the whole treatment of the raw data 1is the
assumption of Section 4.1 that the circle diameters are of the form

given by

D, - Vo (5.3.8)
o alN + b
.If this is not trué_fﬁen it QiLl certainly be_ impossible to measure
the boundary [ayer"cor5e§¥ions in tﬁe way wWe had hOped and, dependjng
 upon the reason for the discrepancy, it may not be possible to
calculate the exact position of resonance as outlined in Section 2.1.
In order to demonstrate that our assumption was, in fact., correct.
fhe first eighf:isotherm points taken at the normal boiling point of‘
helium (see next chapter) were investigated. The reciprocals of the
diameters of the circles (obtained by subtradting 2 from Z ) were
plotted against the ‘order of resonance, N to egiﬁre thatmgiraight
lines were obtained. The diameters are given *in Table 5.9 together
with the pressure at which they were taken:. and their reciprocals are-
plotted in Figure-5.14. As may be seen. they confirm the predicted
linear relationship very closely with the exception of the last point
at the lowest pressure which is due to an error in the reading of
Z . We have rejected'this point and.calculated the velocity from the
f?igt four resonances alone. The quality of the agreement suggests
that in future we might use such plots to correct éach-simpedance
circle diameter - especially the first and last - in order to smooth
out the scatter in the measured diameters. The slopes and intercepts

are used to calculate the values of a and b and the ratio djp as

described.
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TABLE 5.9 -

Measured Impedance Circle Diameters as a
Function of the Order of Resonance.

Pressure Date N ' D

2
N/m
- 8470 10701771 0.9320
‘ 0.6956
0.5424
0.4586

W0

10700 17/01/71 1.189%4
0.8904
0.6976
0.5896

- 0.5116

VIS W=

12510 13701/71 1.5580 -
1.1310
0.8918
0.7404

- 0.6492

w3 -

15940 11/701/71 1.9554
1.4486
1.1292
0.9318

0.8206

[V, PR LV AN I

2.6830
1.9284
1.4800
- 1.2060
- 1.0478

900 /007

v W N -

3.9232
2.8080
2.1478
1.7206
1.4688 -

T 23260 . 09/01/71

VT WD -

26660 08/01/71 5.9616

4,1362
3.2154
2,5330
2.0662

wmps>sUWN =
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. : Fiqure 5,14

The Relation of the Impedance Circle Diameters, D » to the

N
Order of Resonance, N. :
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5.3.5 Testing the Coupling of the Transducer to the Cavity.

At the end of Section 4.1 it was suggested that the mean positioh
of the diaphragm might be shifted in order to investigate any
unexpected effect there might be due to the gap (0.25mm) separating it
from the mouth of the cavity. The shift was to be achieved by passing

a direct current through the driving coil superimposed upon the usual

‘alternating driving current.

’ Simple investigations with a diaphragm at room temperature using a

dial gauge ‘micrometer and some sma[lvweights had shown tha;'it had a

spfing rating 6flapproximétely one ten thousandth of an inch per gram .
veight loading. However. the applicébility of this figure to the cold:
diaphragmn mounted 15;5135 is of some doubt; It was estimated that if
it did apply, the gap could be closed with a current of some 250mA

through the coil which, it was falt. could lead. to serious pﬁqblems of

. temperature control iT the coil res1stance began to increase dus its

warming up. But. in any case. the restoring force of the diaparagm was
far from linear over this distance and so no serious attempt was made
to use a current of tﬁis magnitude since it w;uld sthL not close the
gap. The best that could be aéhieved without causing serious
iﬁstability was a current of 30mA which :was reversed to give an
estimated total shift of (very roughly indeed) 0.06mm equivalent to
1/4 of the gap. |

Measurements made with this current flowing through the coil
yielded the following answers for velocities when corrected to the
n.b.p. of heliuméd

11959.8 cm/s

(2]
|

and

c = 11958.4 cm/s
which shows that in a rather ill defined test no effect was observable

which exceeded the normal scatter expected in two such measurements
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(Cf the scatter amongst the velocity measurements of Section. 5.3.4).
The c¢ircuit employed for superimposing the direct current upon the
alternating drive current is shown in Figure 5.15.

It is conceded that the limitations of this test are such as to
guarantee no more than the absence of an error of_the most unlikely
magnitude. Had it been possible, an attempt would have been made to
operate the diaphragm so that it almost touched the mouth of the
cavity at the limit of its traverse since it is only in such a

situation (where the gap is reduced to a distance comparable to the
\\amplitude of vibration and to the boundary layer thicknesé) that any
effect might' have been expected to show. However, we are content to
assume that the gap is of no consequence. for the reasons given in
Section 4.3 and also because, if there were any effect, it would be
expected to manifest itself as as é.-real or complex ﬁeflection

coefficient which:, 1irrespective of size, is cancelled out by using a

variable path'cavity.

bl
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330 ohms 120 ohms
Frequency wvvxﬁke£> VYV Stabilised
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Figure 5,15

Circuit for Shifting Mean Position of Diaphragm.
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CHAPTER VI

EXPERIMENTAL RESULTS

.

Three acoustic isotherms have been plotted at the normal boiling
point of helium—4 and at the triple point and the normal boiling point
of equilibrium hydrogen. .The thermodynamic temperatures of these
points have been'évatuated from isotherm intercepts as described in
Section. 1.2 and' rough values of the second virjal coefficients have
been obtained from the gradients of fhe isotherms. On making ‘ceftain
simplifying assumptions as to the form of the temperature dependence
of the virial coefficients it is possible to calculate the approximéte

pressure dependence of the principal specific heats of heliumé4 at

these temperatures.

> 6.1 The Normal Boiling Point of Helium—4.

Thirteen measurements"of the velqcity of sound with changing

pressure have been made at the normal boiling point of helium-4 at a

frequency a little below the first cut off. frequency of the cavity. T

Absorption coefficients -have also been measured so that the boundaby‘
layer corrections can be calculated. The results of these measurements

are shown in Table 6.1 together with the various corrections that have

been made.
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TABLE 6.1

Isotherm Data at the Normal Boiling Point of Helium—4.

i

; 3 . : _ .

\\ . Pressure Date Ax10 - c c -,
: _ o (Meas'd) Corr'd for

at b.p. b. layer

(N/m ) (/cmd (em/s) (cm/s)

8470 10/01/71 1.723 (11952.3)

- 11959.1  11971.0
10700,  17/01/71 1.412 (11919.1)

11926.9 11936.6
12510 13/01/71 1.352 (11894.8)

: 11901.7 11911.0
14100 23/06/71 1.287 (11882.3)

11880.9 11889.7
14500 08/06/71 1.310 -€11882.7)

11877.9 11886.8

15940 11/01/71  1.201 (11845.1)
11852.5 11860.6
18010 14706771 1.221 (11829.1)

. 11826.0 11834.2
19700  15/01/71 1.129 (11788.0)

11795.1 11802.7
21600 16/06/71 1.073 (11770.4)

11768.8 11775.9
23260 09/01/71 1.056 (11732.6)

11740.1 117471
25010 17/06/71 1.013 (11719.4&
: 11717.1  11723.8
26660 08/01/71 1.004 | (11679.9) _
11687.5 11694.1
29890 19/01/71 0.865 (11628.0)

11635.9 11641.5

N.B. ALl measurements were made at a frequency of 3.3kHz
exactly, and absorption coefficients have been calculated from
the half widths of the resonances.
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6.1.1 Reproduction of the Isotherm Temperature

We have already mentioned in Section 5.2.2 that the interferometer
carried three'germanium resistance thermometers aLL.calibrated at fhe
normal boiling point of hel%um~4. Their calibration was effected by
mounting them in close fitting weLlé in the outer wall of a small
copper vapour p;essuré bulb, good thermal contact being ensured by
smearing them with éonducting grease beforehand. A thin-walled
stainless steel tube left the bulb and was connected to a mercury
barometer so that the vapour pressure of the liquid helium which was
condensed into the bulb could be measured. This vapour pressure tube
was vacuum jacketed up to its room temperature end so that cold spots
could not occur on its walls — especially at the surface of the liquid
helium bath in which it was immersed. Fourteen readings'of resistance
were taken at pféssures in the neighbourhqod of one atmosphere. These
resistances were then fitted with a quadratic polynomial so that the
exact'normal boiling point resi;tance (i,e. the resistance at a vapour .
pressure of 101325 N/m2) could bé calculated. Using the gradient of
this resistance-pressure curve and. the gradient of the
pressure—temperature - curve .as given by the secondary scale T-58, a
rough value of the resistance~temperature gradient could be calculated
~ for each thermometer. This value was sufficiently accurate for us to
be able to calgglaté how far from the true boiling point a velocity
measurement might be made, and thus enabled the appropriate cérrection
to be added to or subtracted from the measuredAveLocitx to bring it to

4

its exact boiling point value;

Following our remarks in Section 1.1 on the necessary independeﬁce
of a "primary” temperature measurement, it might be objected that the
use of {he scale T-58 was not available to us - even for the purposes
of making a small correction - if we wished to maintain our claim to?'

be doing primary thermometry. However. the gradieht of vapour pressure
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with temperature in T-58 1is obtained .directly from the

Clausius—Clapeyron equation:

d?P

L | (6.-1)
AT TAV ’

where L 1is the latent heat of evaporation of the liquid and AV the
corresponding increase 1in volume.r Our rough .uncorrected acoustic
temperature is sufficiently accurate for a value.of T whilst L and AV
may be measured without assigning a thermodynamic temperature to the
boiling point. Thus this procedure requires only that ;he rough
initial acoustic value and the value assigned on T-58 are éufficiently
close to give dP/dT to the necessary degree of approximation. This
. Qas always the céée.%the actual difference Being much smaller than the
| greatest“tolerable difference. Thus thg use of the scale T-58 'is"
- justified by our acousfic'thermometrf Eaﬁherlthan presupposed by it. ’
i 'One thermometer was alﬁays uséd to make the ‘correction to the
normal ‘boiling point and the remainihg two were used to check that no
change had occurred in its calibration {on the assumption that an
jdentical change in two thermometers would not occur) . -Resistance
measurements on all three were taken at the start and the finish of
" each scan of the resonance curve. These values coincided closely with
the temperature of the thermometric gas -as the first and last
resonances were traversed - temperatures..which might be slightly
different. To corréct for this a small velocity cortection was made
from equation 5.2.1 to bring the measured velocity to the value which
would have been obtained had the instrument remained at the
temperature at which the first resonance was fraversed. It was this

value of velocity which was subsequently corrected to "the normal’

boiling point value.
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These corrections do not require that any temperature drift remaiﬁs'
uniform since the velocity of sound is calculated soleLy from the
positions of the first and last resonances. The positions of the
intérmediate points of résonance are calculated in order to evaluate’
the absorption coefficients which are affected only to a negligible’
extent by small changes in temperature.

ALL resistances Qere measured with a Diesselhorst d.c.
‘potentiometer which: on recent calibration, has been shown: to be more
than accurate enough for our purposes. If the worst possible
combination: of -decade errors is supposed to have occurrgd at this
~ temperature., then if would only amount to a temperature error of 0.2mK
at the most. (*1) This is exceedingly unlikely, however, aéd SO we
- shall count it as three standard errors. The threé four-lead
‘resistance thefmometers were connected 1in series together with two
calibrated four-lead standard resistors of 100 and 1000 ohms nominal
resistance. Thus the'same current could be passed through all of thenm
and the resistances of the germanium thermometers could therefore Be
calculated from the ratiqs of the voltages measured across their
potential leads to the voltages measured across the potential leads of
the standard resistors. The current was drawn from a current source of
the optically stabilised type and was reversed so that the effect of

small thermal voltages could be accounted for by taking the mean of

(1) This figure of 0.2mK for the potentiometer errors is Likely
to be overly pessimistics iﬁ fact, since its most significant
decades were set to the same values both for calibration and
during the acoustic measurements. The remaining decades varied
for each of the fourteen calibration points and for each of the
thirteen isotherm points so that the e}rors would be eXpecfed to

average out to a large extent.
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~ the measured voltages obtained before and after reversing the current.

This was standard practice for resistance measurements at all isotherm

temperatures.

The estimate of the maxihum possible error in the reproduction of °
the normal boiling point is + or - 1.ﬁmK (counted as three standard -
errors again). This figure is obtained from the previous figure of
0.2mK for'pote;tiometef errors to which we add firstly 0.4mK which is
{hought to be the maximum conceivable error which could arise from the
head of helium vapour in the cold part of the vapour pressure tube in 
the calibrating instrument. This head of vapour would lead to too Lw:tv
a barometer reading at the true boiling point and so the estimated
boiling point resistance would correspond to a slightly :higher
tempefatube where the measured vapour pressure would have'risen to one
.atmosphere. on cbmparing thevthree resistance thermometers long after.
work was completed« at this temperature, it was found that ‘they all
agreed to within 0.7mK, and that two of them agreed to within 0.2mK{
the “working”™ thermometer being one of thenm. Since. the workiné
thermometer agreed so closely with one of the others it is a plausible
assunption that this pair represent very closely the true boiling
point calibration whilst the third thermometer is slightly in error.
It has therefore been decided to use the working thermometer
calibration and to assign it a maximum error of 1mK.which Qe count as
three standard errors once more. This generously embraces all three
values and accords well with the general ekperience that in_the
absence of a drastic change of calibration, these thermométers are
stable to within this figure. -Thus combining this error with the
previous errors of 0.2mK and 0.4mK by taking the root of their summed
squares, we obtain an overall three standard error bar of 1.1mK or a
standard error of 0.4mK. The greatest care was taken to ensu}e that

. I .
" the " germanium thermometers were 1in good thermal contact with the
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" copper into which they were inserted both in the vapour pressufe bulb
during calibration and in the interferometer. In the former they were
in direct contact with the liquid bf the bath as was the vapour
pressure bulb and so no femperature difference would be expected. In
the interferometer, on the other hand, there was a danger of thermal
conduction via the electrical leads into or out-of the germanium -

“chip™ within its sheath. To avoid this the leads were careful ly

o varnished down to“the copper body of the interferometer before

A reaﬁhiné the‘resistanbe'thermometers to "thermally anchor™ them tqithe;
oPerating teﬁperature"of »the intébférometer ‘(see Figure 5.1); A
considerable length of »wire. ‘épﬁroximateLy one metre. wvas Vthen'
suspended in the vacuum and anchored again at the temperature of the
coolant bath by being wound on a copper bobbin in thermal contact with

.the bath. It waé"fe[t that these precautions precluded the possibility
of the thermometers being at any temperature other than that of the

interferometer.

6.1.2 The Boundary Layer Corrections at the NBP of Helium—é.

The measured values of the absorption coefficients are given 1in
Table 6.1 and plotted as a function of pressure in Figure 6.1 uhere
the theoretical curve (derived from the Kirchhoff-Helmholtz
expression) is also shown. Additional points have been calculated from
the absorption coefficients taken at lower frequencies for the purpose
of confirming the theory of the bqundary'layer (see Section 5.3.3).
These were converted to the appropriate value for a frequency of
3.3kHz by multiplying by the square root of the rafio of'the.
frequencies e.g. by (3300/2050)1/2 for the absorption coef%icient
measured at 2.050kHz. it can be seen that they are compatible with the

values taken at 3.3kHz and, furthermore. that all values seem to

confirm those predicted theoretically.
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Fiqure 6.1

Measured Absorption Coefficients at the NBP of Helium-4.
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6.1.3 The Isotherm at the NBP of Helium—4.

The squares of the measured velocities, both before and after
correction for the boundary Llayer. are piotted in Figure 6.2 as a
function of pressure. It caﬁ be seen that a significant curvature
toﬁards lower values becomes apparentg ét pressures above about
18kN/m2. Thus fitting é straight line to this data would be expected

to vyield ‘an excessive value for the intercept Lleading to an

overestimate for the normal boiling point of helium. If a quadratic is

fitted to the points. on the other hand, then. provided that the .

curvature 1is attributable solely to the existence of a gquadratic term

as in the acoustic virial expansion, the correct intercept should be

obtained. However, if the curvature is of a slightly different form
attributable to small effects which are not dependeht on the square of
fhe pressure. or'ff the curvature arises ffom an unfortunate and
" statistically improbable. but nevertheless possible. distribution of
points, then an incorrect answer will be obtained. In order to avoid
these possibilities, it is advisable to fit a straight Lline to the
lower portion of the isotherm if it can be shown to be linear:. and to
abandon the higher points. In fact straight lines have been fitted to
progressively fewer and fewer points starting with all thirteen and
finishing with the three at the lowest pressures. The resulting
intercepts with their standard error bars are shown in Figure 6.3
together with comparable results using quadratic fits. As expected the
value of the intercept for the linear fits decreases as the range of
pressure is lowered: appears to become roughly constant for between
four and seven experimental points and then rises erratically due.
presumably. to the short range of the data compared to the range of
the extrapolation and to the small number of points. Because of this
we have decided to adopt‘the answer for the normal boiling point

~obtained from the linear fit to the first seven data points giving:
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The Isotherm at the NBP of Helium—4.



-8

_ 2
Intercept x 10 (cm/s)
: |

i
\ N
‘ Linear;Intercepts

1.464 {
| +
i .
-
|
\-
ooy, /
Wy
Wy
Y

,\\ -
1.4501 / h
/
A /
VAN BN /
N/
- \y
1.485]_
* | Quadratic
Intercepts
No. of Data Points
1.456 L L | | I 1
0 2 4 6 ] 10 12

Figure 6.3

Values of Intercepts Calculated from Linear and Quadratic Fits to the

Isotherm Points at the NBP of Helidmf4.



- 212 -
T({intercept) = 4.2218K + or - 2.5mK(std. error) '
Full detéils of this fit are given in Table 6.2 where it can be seen
that the linear fit has a smaller standard deviation than a quadratjc
fit to the same poiﬁts © (the latter giving a consistent answer:
however, as would be expected). The value obtained from a quadratic
fit to all the data would be:
T(intercepf) = 4.2177 + or - 3.8mK(std. error)

which differs by 4.1mK from the answer we have adopted. In fact this
- difference is almost accommodated by a single standard error bar in
the latter . answer and .so may be considered to be compatible.
Nevertheless we still prefer the answer based on the low pressure data
both for the reasons given above and also because the standard
deviation of the Llinear seven point fit is slightly lower than the
standard deviation of the quadratic fit to all the data. This shous
that the data .at Llow pressures is better represented, if'onLy
marginally., by a straight line than is all the data by the quadratic,
details of which are given in Table 6.3; |

Our final answer for the normal boiLiné point of helium—4 will be
giveh when we have accounted for the only remaining (knoun) systematic_
errors - those contribut#ng to the standard error of 0.4mK in the .
reproduction of the correct isotherm temperature and that due to ‘tﬁe
standard error~ of 45 ppﬁ in the gas constant (equivalent to 0.2mK).
Taking the square root of the sum of the squares of these and the
statistical standard error in the intercept: we obtain:

NBP of helium-4 = 4.2218 + or - 2.5mK(std. error)

the systematic errors making a negligible contribution to the total

¢

error due to the comparatively large random error.

’
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TABLE 6.2

'PdLynomiaL Fits to the Low Pressure Data at the
Normal Boiling Point of Helium-4.

Linear Fit:

2 =8 2 =8

Pressure ¢ x10 ¢ x10 Residuals
_40
(Data) (Data) (Calc'd) x10
2 2 2 2

“(N/m ) (cm/s) (em/s) ~ (cm/s)

8470 1.43305  1.43276 -2.9
10700 1.42482  1.42518 +3.5
12510 1.41872 1.41901 +3.0
14100 1.41365  1.41361 =0.4
14500 1.41296  1.41224 .- =7.2
15940 11.40674  1.40735 +6.1

2.1

18010 1.40048  1.40028 -

Result of Linear Fit:

. Constant Term = (1.46161 + or - 0.00083(std. error)) x10
Linear Coefft. = -340.5 + or - 6.3(std.error)

- Standard Deviation of points = 4.99x10

The standard deviations for the-quadratic and cubic fits are
S.4Sx104 and 6.12x104 respectively, and the corresponding
intercepts are (1.46319 + or - 0.00385(std. error)>x108 and
1 47264x10 |
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TABLE 6.3

PolynomiaL“Fits to ALl the Data at the
Normal Boiling Point of Helium—4.

Quadratic Fit:

.2 -8 2 -8 :
Pressure ¢ x10 ¢ x10 ' Residusls
-4
(Datad (Data) (Calc'd) x10
2 2 2 2
(N/m ) (cm/s) (ecm/s) (cm/s)

8470

1.43305  1.43280 =-2.5

10700 1.42482  1.42529 +4.6
12510 1.41872 1.41909 +3.7
14100 1.41365  1.41358 - -0.7
14500 1.41296 1.41217 =7.9
15940 1.40674  1.40712 +3.9
18010 1.40048  1.39972 =7.7
19700 1.39304 1.39362 +5.8
21600 1.38672  1.38666 -0.6
23260 1.37994 1.38052 +5.7
25010 1.37449  1.37393 =5.5
26660 1.36752 1.36767 +1.5
-0.3

29890 1.35525  1.35521

Result of Quadratic Fit:
8 .
Constant Term = (1.46019 + or — 0.00133(std. error)) x10
Linear Coefft. = =312.0 + or - 14,9(std. error))
=3 .
Quadratic Coefft. = =-(1.3 + or - 0.4(std. error)) x10

4
Standard Deviation of Points = 5.27x10

The standard deviations for the Llinear and cubic fits are
4 4
7.35%x10 and 5.55x70 respectively, and the corresponding
k -8
intercepts are (1.46442 + or - 0.00063(std. error))x10 and
8 v

1.45976x%10 .
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6.2 The Triple Point of Hydrogen.
Nine measurements of the velocity of sound and acoustic absorption
coefficients have been taken at the triple point of hydrogen in

exaétly the same -way as before. The data is shoun in Table 6.4.

6.2.1 Reproduction of the Isotherm Temperature.

A platinum resistance thermometer was.available at the NPL whose
resistance had been measured at the triple point of hydrogen in one of
our fixed point apparatuses. A germanium thérmometer was calibratéd
against this and exchanged for one of the three already in the
interferometer. Comparisons with the remaining two were immediately
made so that any sussequent changes in any of the thermometers could
be detected. It was estimated that the overall-uncertainty in the
reproduced temperature attr%butabte to these calibrations was + or -
'0;6mK wﬂich. agéin. we count as three standard errors. Unfortunately.
however. when checking this calibrated resistance thermometer after
the measurements were completed it was found to have changed by a
small amount (about 3mK) since the caLiSration. This change must " have
occurred be%ore comparison wWith the other two thermometers since all
three remained in agreement throughout the time they were in use, and
since a corresponding discrepancy was subsequently noticed in
measurements of their helium boiling po{nt resistances made before its
removal from the cryostat. Consequently., it was decided to rebalibrate
all our resistance thermometers against a standard platinum resistance
thermometer in a comparison cryostat. This showed that a sﬁalt
correction amounting to 3.3mK needed to be subtracted from our final
answer. Given this correction our estimated uncertainty in the
thermometer calibrations remains at 0.6mK. Combining this figure with '
an uncertainty of 0.75mK due to the maximum possible potentiometer
error, e obtain a figure of 1.0mK for the overall error in the

reproduced isotherm temperature or an .estimated standard error of
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Isotherm Data ét the Triple Point of Hydrogen.

Pressure Date -
C 2
(N/m )
10050 25/05/71
10120 20/05/7
20080 21/05/71
e9)
30060 21705771
(In
© 39980 22/05/71
50170 19/705/71
59970 22/06/71
64770 01/707/71
69990 21/06/71
N.B. ALl measurements

3
Ax10

(/cm)

3.214
3.252
2.301
1.849
1.635
1.430
1.364
1.224

1.162

the half widths of the resonances.

c
(Meas'd)
at b.p.

(cm/s)

(21821.8)
21824.4
(21820.8)
21823.0
(21831.2)
21833.9
(21836.4)
21839.1

-(21840.0)

21842.4
(21845.0)
21847 .3
(21846.5)
21849.2
(21844.6)
21848.9
(21850.4)
21852.1

c
Corr'd for
b, layer

(cm/s)

21865.0
21864.1
21863.0
21862.5
21863.1
21865.4
21866.5
21864. 4
21866.8

have been made at a frequency of 6.0kHz

exactly. and absorption coefficients have been calculated from
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0.3mK. As before corrections for small drifts and conversions to the
exact boiling point were made to the measured velocity.

The gradient for the resistance — temperature relation for this
thermometer which was requi}ed for these corrections was obtained from
a rough prior calibration in agreem;nt with IPTS-68 and T-58. The
justification for its use on this occasion is that. in retrospect. the
calibratioﬁ was éonfirmed to a sufficient degree of adcurécy by
acoustic measurements at 4.2K, 13.81K and 20.28K. Had this not been
the case the caLibratfon would have had to be corrected to achieve
agreement with the uncorrected gcoustic measurements. It would have
then yielded a sufficiently accuféte value for the gradient to make

the corrections. Thus the temperatures finally arrived at are

independent of any errors in the initial calibration and so our

thermometry may still claim to be truly primary.

6.2.2 The Boundary Layer Corrections at the Triple Point of HYdrOQen.

) The measured absorptidn coefficients are plotted in Figure 6.4 as a

function of pressure together with values calculated theoretically.

Again'it can be seen that there is good agreement between them.

6.2.3 The Isotherm at the Triple Point of Hydrogen.

The isotherm at the triple point of hydrogen is plotted 1in Figure
6.5. This time the cufvature present in the previous isotherm at
higher pressures is no longer visible. However. the standard deviation
of a quadratic fif is marginally lower than that of thé linear fit as
may be seen from Table 6.5. But the points are more randomly
distributed about the line in the linear fit and so we shall adopt the
answer given by the linear intercept. As for the low pressure data at
4.2k we find: as we should, that the linear and quadratic intercepts
are statistically compatible.

The data at this temperature is of a better quality than that’

obtained at the helium boiling point having a standard error on the
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Figure 6.4

Measured Absorption Coefficients at the Triple Point of Hydrogen.
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Figure 6.5

The Isotherm at the Triple Point of Hydrogen.
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TABLE 6.5

Polynomial Fits to the Data at the
Triple Point of Hydrogen.

Linear Fit:
2 =8 2 =8
Pressure ¢ x10 ¢ x10 Residuals
=4
(Data) (Data) (Calc'd) x10
2 2 2 2

(N/m Y  Cem/s) (cm/s) Cem/s)

10050 4.78078  4.78009

=6.9
10120 4.78039  4.78009 -3.0
20080 4.77991  4.78026 +3.5
30060 4.77969  4.78042 7.3
39980 4.77995  4.78059 +6.4
50170 4,78096  4.78076 -2.0
59970 4.78144  4.78092 =5.2
64770 4.78052  4.78100 +4.8
69990 4.78157  4.78108 4.9

Result of Linear Fit:
8
Constant Term = (4.77993 + or - 0.00040(std. error)) x10
Linear Coefft. = 1.65 + or - 0.89(std. error)
4
Standard Deviation = 5.86x10

The standard deviations for the quadratic and cubic fits are
4 4 | . .
4.77x10  and 4.28%x10 respectively, and the corresponding
. - 8
intercepts (4.78096 + or - 0.00058(std. error))x10 and
8
4.78233x10 . The Llinear intercept has been chosen since the
standard deviations are comparable and the signs of the
residuals are slightly more randomly distributed.
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intercept which is smaller even in absolute terms, and much less
relative to the value of the intercept. This may seem surprising in
view of the fact that there are approximately the same number of
points and similar standara deviations for the two isoitherms (the 4.2K
standard deviation' being the Lower): The reason for this is almost A
certainly that whiLst: the "maximum densities are comparable. the
pressure réngé of the'brésent isotherm is abouf six times the distance
to be extrapslated whilst the comﬁarable figure on the 4.2K isothern
'is abbut oﬁe. The temperature corresponding to the Llinear infercépt.is
given by:
f(intercept) = 13.8066K + or - 1.2mK(std. errér)
To obtain- our final answer we subtract the retrospective temperature
correction of 3.3mK and combine the systemafic errors with the random
errors as beféfe by taking the root of the summed squares of the
standard errors from every source (the standard error due to the gas
constant being 0.6mK ét this temperature). Thus we have:
Triple Poinf of Hydrogen = 13.8033 + or - 1.7mK(std. error)

The comparable answer for the quadratic fit would 13.8063K with a

total standard error of 1.9mK.

6.3 The Normal Boiling Point of Equilibrium Hydrogen.

Ten measurements of velocities and absorption coefficients have

been made at this temperature. They are tabulated as before in Table

6.6,



TABLE 6.6

" Isotherm Data at the Normal Boiling Point
of Equilibrium Hydrogen.

3
Pressure Date x10 c c
' (Meas'd) CcCorr'd for
at b.p. b. layer
2 . }
(N/m ) C/cm) (cm/s) Cem/s)

10170 18/05/71 4.072 (26478.0)
g 26429.4  26492.1

20240 01/03/71 3.059 (26477.4)
26457.9  26515.0

30020 02/03/71 2.541 (26469.9)
26482.2 26521.2

40330  24/02/71 2.019 (26497 -2)
- 26494.2 26525.3

49740 09/03/71 1.633 (26496.9)
: 26509.1 26534.3

50040 03/03/71 1.874 (26485.7)
© 26510.2 26539.1

60030  10/03/71 1.470 (26518.6)
26521.2  26543.9:

69920  11/03/71 1.570  (26520.9)
. 26534.0 26558.3

80090  25/02/71 1.287 (26524.0)
26543.7 26563.6

97790 28/02/71 1.330 (26563.2)
26569.5 26590.1

N.B. ALl measurements have been made at a freguency of 7.25kHz
_ exactly, and all absorptiun coefficients except that at a
. 2 .
pressure of 60030 N/m have been calculated from the half widths
of the resonances. An excessively low value (0.000902/cm) was
2

obtained for that at 60030N/m for reasons which remain
uncertain, and so it was evaluated from the gradient at
resonance which agrees better with the theoretical value and
with the other data (see Figure 6.6).
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6.3.1 Reproduction of the Isotherm Temperature.

At the time these measurements were made no resistance therpometer
calibration was available tq enable us to reproduce the exact isotherm
temperature. Instead. it was necessary to rely on.a rough calibration
on one of our existing three germanium thermometers. Subseguently.
when an exact calibration became available, we were able to transfer
it onto thfé thermometer and to make the necessary corrections to the
measured velocities to allow for drift and to bring them to their true
boiling point values. However. the same germanium thermometer was used
for this purpose as was used at the triple point of hydrogen, and so
an additional correction of 1.7mK has to be subtracted from our final
answer as before.

The total uncgftainty in the final reproduction 1in the isotherm
temperature 1is ; or - 4mK which, as usual: 1s counted as three
standard =zrrors. .

6.3.2 The Boundary Layer Corrections at the NBP of Equilibrium

Hydrogen.

The measured absorﬁtion coefficients are plotted against isotherm
pressure 1in Figure 6.6 together with a plot of values calculated froh'
-~ the Kirchhoff-Helmholtz formula. Unfortunately they seem to have a
Larger écatter about the theoretical curve than in the previous ca%es
whjch is particularly regfettab[e at this temperature because of the
coﬁrespondingly>hfgher corfections. These amount to about 100mK at the
lowest pressures. However: large residuals close to the intercept afe
not necessarily any more problematic' than smaller residuals some
distance away. This would seem to be the case in the present isotherm
where the standard error ih the intercept is much smaller than these

residuals as will be seen in the following section.
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Figure 6.6

Heasured Absorptioh Coefficients at the NBP of Equilibrium Hydrogen.
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6.3.3 The Isotherm at *the Normal BRBeiling Point of Eguilibrium

Hydrogan.

Values of the square of the‘acoustic velociiy both before and affer
correction for the boundary layer are shcwn  in Figure 6.7 plbtted
against pressure. Given the large scatters the isotherm wouLd appear
' to,be lirear. but with the small number of ‘points availaole it is
possible that a 'considerable unresolved curvature exists. Were this
“he case., there could be a large error in the intercept. Howsver., the
isotherm =zppears to be linear in its caentral and upper regiens which.
given the form of the acoustic virial expansion: wculd suggest that it
would remain linear down to the intercept. The evidence obtained from
fitting the isotherm certainly does not suggest otherwise, the Lingar
fit having a smaller standard deviafion than- the quadratic.

The details of the fits are given in Table 6.7. Adcpting fhe value
obtained from the linear intercept. we have:

T{intercept) = 20.2643X + or - 4.9mK(std. error)
faking from this the fetrospective temperature correction of 1.7mK and
allowing for a standard error of 1.4mK in the reproduction of the
isotherm tempsrature and 1.0mK due to the uncertainty in the gas

constants it bhecomes:

NBP.of Equilibrium Hydrogen = 20.263K + or - 5mK(std. error)
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Figure 6.7 ,

The Isotherm at the NBP of Equilibrium Hydrogen.
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TABLE 6.7

" Polynomial Fits to the Data at the Normal
Boiling Point of Equilibrium Hydrogen.

Linear Fit: -

2 -8 2 -8
Pressure ¢ x10 c x1i0 Fesiduals
. : -5
(Data) (Data) Calc'd) x10
2 2 2 2
(N/m ) (em/s) (cm/s) {cm/s)

10170 7.01831  7.02107 +2.8

20240 7.03045  7.02646 =4.0

30029 7.03374  7.03168 =2.1

40330 . 7.03592 7.03720 +1.3

49740  7.0406%  7.04223 - +1.5

50040 - 7.04324  7.04239 -0.9

60030 7.04579  7.04773 +1.9

69920 7.05343  7.05302° -0.4 . ‘
80090 . 7.05625 7.05846 +2.2 ‘
97790 7.07033 7.06792 2.4 '

Result of Linear Fit:
8
Constant Term = (7.01563 + or - 0.00170(std. error)) xi10
Linear Coefft. = 53.5 + or - 3.0(std. error)
5
Standard Deviation of Points = 2.43x10

\

The 'standard deviations for the quadratic and cubic fits are
2.53x105 and 2.10x105 respectively and the corresponding
intercepts are (7.01707 + or = 0.00301(std. error))x10 8and
,?.01019x108
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6.4 The Second Virial Coefficient.

Another piece of evidence that suggests straight Lines should be
fitged to our isotherm dafa is afforded by the sLopes‘of these lines.
It will be recalled from ‘section 1.3 that if the second virial
coefficient, B(T). of a pressure—volume-;xpansion is of the form a+b/T
as past measurements would often suggest. then the second acoustic
virial coefficient, A (f). is also. Consequently, if our wvalues of

1
A M lie on a straight Lline when plotted against rec¢iprocal

t;mperatbre. then there is further reason to be confident that the
linear slopes. and therefore the linear fits. were the correct ones. -
Such a plot is shown in Figure 6.8 where it can be seen that our three
points lie very close fb a straight line. In each case the residual is

less than two standard errors in the gradient obtained from the fit.

balculating valuéé of a.and b from equation 1.3.10 we obtain:
_a = 18.63 + or - 0.30(std. error)

b= 419.0 + or - 3.5(std. error)

These values Llie close to those obtained by other workers some of

which are listed in Table 6.9.
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Measured Values of the Second Acoustic Virial Coefficient.
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TABLE 6.8

A Linear Fit of A (T) against 1/T.
’ _

.

10/7 A (M A (M Residuals
1 1
(bata) (Data) {Calc'd)

0.49349  +53.4730 +51.8372 -1.64
0.72429  +1.65355 +3.51893 +1.87

2.36870 -340.494 -340.724 -0.23

Result:
Constant Tefm = 155.1 + orv- 2.5(std. error)
Linear Coefft. = ~2093.5 + or ='17.2(std. error)
Standard Deviation of Points = 2.49
2 -2 -2
N.B. T 1is expressed in K and A (T) in cm s /Np . To obtain a

1
3

and b in cm /mole, multiply the constant term and the linear
coefficient by 0.1 and substitute them into equat1ons 1.3. 10 for
d.and & respect1velj.



- 231 -

6.5 The Principal Specific Heats of Helium—-4 and their Ratio.

Provided that care is taken not to extend our results beyond the
pressure ranges within which our q{sotherms are linear, we may

approximate in equations 1.4.2 and 1.4.4, obtaining:

n |
v |

o= Co Mcl{l - 4B
Cyv RT

=
o

7‘{1 - lB(T)P } {6.5.1)
| . RT ~

R T

Co-Cy = R{n y L olB(M P% (6.5.2)

Put{ing B(T)=a+b/T we have

q
ll.

Mo f .R%_ta+br>?§ {12 (ast/ D7)

RT RT

(6.6.3).

and

<
i

Rgs—&b_? (t.5.4)
| RT™

giving
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1
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')

saiw_ag_ﬂ '
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= C'V 5»\ + 9\0\ ? § (é-’o’--‘.’)—--§
° RT |

where the zero subscript -refers to the dideal gas value of the
subscripted variable. C » (C -C ) and o have been calculated using the
values of a and b givenvin tge Yast section. Their values have been
plotted in Figures 6.9 to 6.11. Clearly such values much be treated
with care since they are based on values of a and b which are derived
by fitting a étraight line to oﬁLy three points, two of which are

rather close to each other.

6.6 Conclusions

There is nothing to be said in éonclusion vhich has not already
been said, but it may be useful to draw together our main results. For
the three measured temperatures we found:

NBP of Helium—4 = 4.2218K + or - 2.5mK(std. error)
Triple Péiht éf ﬁydrégén'= 13.8033K + or - 1.7mK(std. error)
NBP of Equilibrium Hydrogen = 20.263K + or - 5mK(std. efror)< -
and for the second virial coefficient of helium—4 the following
tempergﬁure dependence was calculated: |

B(T) = 18.63 - 419/T

From the considerations of Chapters IT to IV and from the
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Measured Values of the Ratio of the Principal Specific Heats.
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Measured Values of the Difference of the Principal Specific

Heats.
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inveétigatioﬁs of Chapter V into the boundary layer effect, it would
seem that: in the absence of hidden systematic errors, these-
%emperatures are. true thermodynamic .temperatures. This belie? is
further supported by the égreement which exists between these resultis
and those of the most reéent priméry gas thermometry and the
ultrasonic thermometry of Plumb and Cataland both of which depend on
the circumvention of entirely different types of systematic error. The
values obtained by these other two methods are given in Table 6.9.

The only possible systematic error which we feel might be present
in our work arises from the possibility that the wrong type of curves
"have been fitted to‘our isotherm data. The only way in which this can
be checked is by accumulating further experimental data - in
particular at the lowest pressures on the isotherms at 4.2K}and 20.3K.
-It can easily bé'seen that in the latter case. for example, renoval of
.the lowest point would suggest ‘quite strongly that the appropriate
function to fit to the points is a quadratic whose intercept would be
higher than the éurrently adopted linear intercept by some tens of
m¥s.. For th{s reason we feel that the results reported here should be
regarded as being preliminary. .However, it does seenm . that these
investigations have shown that., as a primary technique, Lowvfrequency
acoustic thermometry is capable of prov{ding information every bit as

useful as that obtainable from ultrasonic thermometry. and somewhat

better than has been obtained in the past at low frequencies.
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TABLE 6.9

Comparable Results from OtheH Techniques.

Existing values of the three isotherm temperatures:

Present Work Ultrasonic Thermometry Gas Thermometry
K (K)* (Kyx*
20.263 +- 0.005 20.265 [22] - 20.2746 +— 0.0004

20.285 [48,49]
13.8033 +- 0.0017

4,2218 + 0.0025 4.225 [24] 4.2240 + 0.0003

* Errors have not been assessed by Plumb and Cataland for their
ultrasonic thermometry so that it is impossible to check Tor
consistency when their results lie outside our three standard
error bar.

** These are some preliminary results of K. H. Berry obtained at
the NPL. We believe them to be the best - values available from
primary gas thermometry.

Existing values of a and b:

a b Sourbe - Method
18.6 + 0.3 - =419.0 + 3.5 Present work l.f. acstec.
17 -385 £511 prmy. gas
20 =408 - [52] prmy. gas
22 4= 4 . =433 4= 22 [251 L.f. acstc.

19.8 +- 6.3 441 +— 3 o [24] ultrasonic

a and b for the last four cases were calculated by Rogers et al.
£501
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APPENDIX 1.1

Proof of Equation 1.3.3 Relating B(T) and B'(T).

The density and pressure expansions for the product PV are

o a' »
PV = nRTE!—k%(T)ﬂ_*ﬁ- C(T)(_D__) 4—---}'(1-3.})
V Y,
and
PV = wRT(1+2'(MP+ c:'(-r)P“Js----)I (1.3.2)

(

respectively. From equation 1.3.1

P = ’P\T'{% +B(~.)({3/.)ﬂ c(-ﬂ(_\f;_)s-%--f} (Aaa)

so that from equation 1.3.2



) 4 3 _—
PV = hRi{\—-bO\T s_ﬂ_%-B(_ﬁ_)%- C(L\Jg. }
y Y; v ]
-2 d 2
'] _p_a-%(j\_)«:- C(n).g. ‘]
| Y \Y Vv _
- E {a.2)

At sufficient[y low ipressures equations 1.3.1 and A.2 Eecome

approximately

Py = nfRT{w B(T).”_LK (A-3)
a |
and
PV = nm‘{a + B'(T)'RT.H_% (A1)
Y |

where second order and smaller terms' in P and n/V have been ignored. "

Thus

B(T) = B'(T)RT (3
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APPEMDIX 1.2

Proof of Equation 1.3.4 Relating C(T) and C'(T).

Knowing the relation between 8(T) and B'(M), it is poséible to
calculate the relation betwéen C{TY and C*(T). Substituting for B’ in

equation A.2 from equation 1.3.3 we ohtain

PV = nRT i " B(ﬂ{\/_ (B (M C'(T)RATA)("?TYJ' }

(A.5)

Thus by comparison with eguation 1.3.1

¢(T) ={C(T)'—%&(T)3/R&Ta4 (1.3 .1)
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APPEMDIX 1.3

Proof of Equation 1.3.5 Relating A (T) and B(T).
. 1

We have

S

uy
A+ A, MP+ AT P (n 5)

(), - - 3,
- —(\//rﬁ Cp (aP\ (A7)
9\1 Cy oV /

the second equality arising because

), ey, e

It may also be shoun that
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a
o= Co :_n—'r<a‘-?\) /<ap {a.9)
so that
9. .
e T (v M{\B’P}a - (v M%(NP) (a.10)
' ’ -_Aibﬁ E (:\) } E)-i- Y} TV} éB\L/ '~T' -

which may be evaluated from the equation of state if it is remembered

that

C, ='»_3;_{ + TJ: (_%a:"!’a_)vdv' (A1)

Thus from equations 1.3.3, A.10 and A.11
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4

. where terms of the same order in n/V have been coLLected together and

where o is the ratio of the principal specific heats of an ideal
0

gas. By comparing this with the acoustic density expansion:

¢ = Ho‘(T\ + AT + A (T) n‘)&+~-- (1-3.5)
Y Y

. ¢
we obtain the following expression for the coefficient. A (T):
1

H,'(T) AB(T) + BT BT + bt dQB(T) {(A3)
3 AT 1< d.T '

4

The ~ corresponding expression for the second acoustic virial

coefficient in the pressure expansion is easily obtained from this by

expressing A (T) in terms of A" (T). This

is done as it was in
1 1
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appendices 1.1 and 2 for the virial coefficients of gas thermometry
i.e. by substituting for the pressure terms in the pressure viral
expansion to obtain an expansion in terms of n/V which may be compared

to the original density expansion. We thus obtain

-

A(T) = A(TIRT

and

A, (T) = A, MBTRT+AMRTY (A1)

'so that we find -

A TY = _U;{Q_BLT%%L, 48(1) + 1 daB{T) zg
M 3 dT 15 or?

{1.3.5)
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APPENDIX 1.4

Proof of Equation 1.3.6 Relating A (T) to B(T) and C(T).
2

The required relationship follows directly from equations A.12 and.

A.14. to gfve equation 1.3.6.
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APPENDIX 2.1

Proof that the Zeros. X
o . ©omn

It has often been shown that

- |
f T I (1) Im (BT) v =

atl-13a

s+ of Equation 2.2.18 are Real.

= (PTWT (R -  THOTe)]

(Aas)

C. 2 2 ) :
where & ;5{5 . If ﬁ is the complex conjugate of { we may write instead:

i T T ) T T) e =

-

i dt ot

Assuming that if

then

R EARFEACS T ) ek T ()

;

(A-16)
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d I (d+) = o | @)
dr ‘ |

alsos, we have in this situation

f T () T (oLﬂch

j (oh*\) I (&Y)

:jTJ “la)dr 4. o

(B.18)

Thus o} cannot be complex. However., it may still be imaginary since the

denominator of equation A.15 vanishes in this case. But, expanding J

in an infinite series, gives "
| & Anim -1

ji__ :I;\(L>() = j;—: (“l) {(X/2) An+m

dX | " n) (arm) A

m-)  m-1 2 An

(_X__) (1) Z (\//9;\ Ak o # o)
] n=o l’l!(f\-\-n\)! a |
(X =1iY) ' - (A.19)

so that ol being neither complex nor purely imaginary must be real.
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APPENDIX 2.2

Proof of the Equivalence of Several Criteria for Resonance
at Sufficiently High Frequencies and the Effect of Higher

Modes on the Measured Absorption Coefficient.

It will be shown that the "same values of L at resonance are

obtained . when (a) Z (L) is entirely real., (b) The real part of Z (L)
: G L G
is greatest or (c) the power dissipated is greatest .povided that the

frequency is sufficiently high.
Condition (a)

From equation 2.2.24 it can be seen that this requirqs

P GuuXwd) = 0 (a.40)

-~

Now from equatioq 2.2.36
d
2 Do

Y Gun sin ARmad (a.21)
m n
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But at high frequencies & and k are roughly constant for the
first few values of m andmg whichmgre expected to correspond to those
modes of high amplitude which are unlikely to be resolved. Thus we may
fof practical purposes canéel the denominators in equation A.21 to

d

give

L2 G sin ARand =0 ' " (A-20)

It will now be shown that this same criterion for resonance is

obtained in cases (b) and (¢).

Condition (b)
_Again. equatioh 2.2.24 enables this condition to be ihterpﬁéted

into the following cohétraint on l:

ct ‘ZE qm:&.mu) 2 Z G &R () =0 (A13)
dd - e

Now

A Runl) 2 2ekinn (cash Qdenad = cos AR & ~LRend sin 2Rl
dd

' (COSh limni‘ - COS.c’z.hmn_\é )&
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a
( cosh Admad — o5 LRmad )

where we have retained only terms of‘second order of smallness. tﬁere

~ being hone greatef inrthe immediate yicinity of the resonance; As

before the‘ denominatoh can be -Cancelled together Qith the factpr

4A k  which ié'also approxiﬁafely constant withuchanging m and n for
mn mn ' ‘

" the same reasons. This leads to the same condition on.l at ‘resonance '

as was obtained in‘thé previous situation.
Condition (c)

It may immediately be seen from equation 2.2.40 that this condition
leads to the same equation for L at resonance as have the last two

conditions. )

At somewhat lower frequencies where of and K may no Llonger be
mn mn
considered to be exactly equal for the various different values of m

and n. the conditions
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2;_1. };. an sin dRund = o (a.a5)

Cosh 1°lm“& - (mlhmn\-i

(.

| ahd

ol Gua  sin 2Rud = o (A.20)
m n

(Ccs\n. 2l d = cos 2R d )l

are no longer eqﬁivalent. In such a case the denominators of equations
2.2.46 and 2.2.52 will no Llonger be réfsed to the powér two if
resonance is defined by criterion ¢a). It may easily be shown that the
requirement for the equivalence of these criteria of resonance is: in
fact. equation 2.2.47:
L
A

i1,

A':Q > '(Jblm.,‘);L (2.2.14)

stating that the mnth resonance is far from being resolved.
Higher Modes and the Measured Absorption Coefficient.
The effect of higher modes upon the measured absorption coefficient

may also be calculated easily at frequencies high enough to satisfy

equation 2.2.47. At the observed resonance



But

R (@) & _dwnd 1 (aas)
d:\\ 12 + hin(i‘ -f.mnyl | . doo oo

4

’

under the approx?mations already used at these frequenbies.,Thus

W) = Bk Gomn - | (A.23)

At somewhat Llower frequencies when equation 2.2.47 no longer holds

goods, but when the higher modes still remain unresolved. this becomes

W@ = DL G (a2
&OO "QOO

It might at first be supposed that both these expressions ' would lead .

to errors in ‘the evaluation of the absorption coefficient since.the

o .
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equivalent ideal expression would be

\:\/q(l\ = ‘. ‘C100> o ' (H-'Si) |
doo oo |

However, in order to evaluate d . independent evaluation of their
' . 00
numerators is required. These values might be obtained from the

corresponding values of W (l) at antiresonance which are
G

We (4) = EEZ“ G Ao d = dood gqm

(n.32)

for the first two cases where higher modes are presenf. or’

Wo (@) = Gegdood | (.33)

in the ideal case. Thus a correct value of & may be calculated from“'

00
measured values of 2.2.6 ok and EZG I at sufficiently high
m Do 00 mn o 00

frequencies as for the ideal case. In the case of the Llower

frequencies: on the other hand., a fractional increase in & of
. 00
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2;: 2;: c;rnr\ éi _ A\
L L G

will be found. This might betray the presence of higher modes if
adequate datg is available to enable a reliable value df the true
absérption coefficient to be calculated from equation 2.1.14. For
example, if we take the case of Table 2.5 where a/b=1 (1.e. a stiff
driven diaphﬁagm of the same diameter as the cavity) we may derive

from equation 2.2.52 the following amplitudes G' :

mn

mn G X G’
S mn mn mn

00 +1.00 0.00 0.94
01 0.66  7.01 0.56
02 0.04  10.17 0.0

Here Wwe have assumed that the 02th mode is virtually resolved so that
A =l-lL . This occurs at a frequency of approximatelyA1Méz for a
: 00 02 . -

cavity of 2cm diameter filled with helium-4 gas at a temperature of

4.2K and a pressure of one atmosphere. Thus



- 255 -

Mol

ol

1. ‘70 OLL\D = 1. 06 400
.51 )

showing a 6 5er cent increase in the measured value of the absorption
coefficient over the correct value. Unfortunately, however, much of
the information on the transport coefficients of gases is of uncertain
accuracy:, .and so an effect of this size may not.be a sufficiently
pronounced indicafion-of the presence of higher modes to enable a
definite conclusion to be reached. Furthermore. there i1s no guarantee
that the spectrum of this example is relevant tb any given ;ractical
case where, for example. one single higher mode méy predominate thus
leading to a change in the measured velocity, but to no vi;ible change
in the measured absorption coefficient at all. Consequently measured

values of absorption coefficients cannot be relied upon to check on

the absence of errors attributable to higher modes.
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A low frequency scoustic thermometer for the range 2 - 20 K, s

by
AJR. Colclougn, National Physical ,laboratory,

Teddington, Middlesex, United Kingdom.

Abstract

A low frequency acoustic thermometer for the liquid helium range is
described which incorporates several novel features designed to eliminate
the difficulties commonly encountered with this technique. Boundary layer
errors which are particularly troublesome at low frequencies have been corrected
for experimentally rather than by using the apparently unreliable corrections
of Kirchhoff, Helmholtz gt al. Increased sensitivity has been acﬁieved with
a method of detecting the resonances which is independent of the purely
electrical impedance of the transducer used to excite the interferometer
cavity. Acoustic paths are measured with an optical in%erferometer operating
- under isothermal conditions inside the cryostat.

Acoustic isotherms at the normal boiling points of helium~}4 and equilibrium
hydrogen have been plotted to yield thermodynamic temperatures which are in
vfair agreemént with the high frequency work of Plumb and Cataland.



A low frequency acoustic thermometer for the range 2 - 20 K
by
A. R. Colclough
National Physical Laboratory, Teddington, Middlesex, United Kingdom

Introduction

In recent years a number of interferometric investigations into the
propagation of sound in helium gas have been made with a view to measuring
thermodynamic temperatures in the range 2 — 20 3.1_12 Two methods seem to
have emerged: the use of high frequencies with the attendant risk of an
ill-defined wave fie1d1’2’7-11 and low,frequency meth0633'5’12 where this
. problem is avoided at the expense of incurring difficulties with boundary
layer effects for which reliable theoretical corrections may not easily be
made. At the moment, however, there seems to be no detailed low frequency
temperature scale to compare with the high frequency scale of Plumb and
Cataland.'® It was in answer to this need that the National Physical _
Laboratory designed and constructed a low frequency acoustic thermometer and
undertook an examination of the systematic errors characteristic of low
frequency acoustic interferometry. The degree of self-consistency achieved
in the measurements made so far leads us to believe that the systematic
errors have been successfully corrected for and the agreement reached
between our preliminary results and the aforementioned ultrasonic work tends

to support this view.

1. The design of the instrument

The instrument which is to be described more fully elsewhere13 is
essentially a variable-path cylindrical acoustic interferometer (Fig. 1)
operated at some constant frequency below its first characteristic cut-off
frequency so that only plane waves may propagate in the cavity.14’15 As a
result of the low frequencies used, the boundary layer causes a sizable
decrease in the measured velocity of sound relative to the value in the
unbounded fluid.16—20 There is also an increase in the acoustic absorption
coefficient brought about by the same mechanism.- By measuring the acoustic
"absorption coefficient, however, it is possible to calculate the correction
to the velocity. This enables one to avoid the use of the theoretical
corrections of Kirchhoff, Helmholtz, Thiesen et al. which have often been
found to be unreliable.
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Figqure 1
The Acoustic Interferometar.

A - Stycast Seals, B - Permanent Magnet Assembly, C & D - Electrical
Lead Screens., E = PZT Accelerometer. F = Transducer Diaphragm, G -

" Acoustic Cavity. H - Piston Reflector, I — Germanium Resistance
Thermometers:s J = Cube=Corner Reflector, K = Pushrods. L — Beam Splitter,
M - Gimbals, ¥ - Optical Window. O - Bearing., P ='Upper-Charber, Q -
Moving Tube, R =~ Radiation Shield, § = Temperature Controlling Sensor.

T - Thermal Anchoring Grooves (With heater)., U = 4.2K Thermal Anchoring
Grooves, V = Vacuum Can. W = Central Supporting Tube, Y - Laser Beams.
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Conventionally resonance in the interferometer cavity is detected
either by using a microphone to monitor the acoustic pressure or by
measuring the electrical impedance of the tranédhcer used to excite the cavity
which is modified by the mechanical loading of the gas.21-2h The latter
method has the advantage of simplicity, but the mechanical impedance of the

' system may not be coupled very strongly to the electrical impedance of the

device and will, in any case, be masked to some extent by that constituent
of the electrical impedance which is purely electrical in origin. Tor this ,
reason it was decided to measure the mechanical impedance of the loaded
Atransducer directly. .

A small lead zirconate.titanate (PZT) piezoelectric accelerometer was
attached to the rear face of the moving coil driven diaphragm which served
as the transducer. At constant frequency the amplitude of the voltage from
the accelerometer gave the velocity amplitude of the diaphragm in arbitrary
units. By dividing the driving force of the diaphragm by this quantity the
mechanical impedance of the system is obtained. Since the driving force
is constant at constant'current, the impedance in arbitrary units may

be obtained simply by taking the recipreccal of the voltage amplitude. This

Jnethod enabled sound velocities to be measured at considerably lower

pressures than would otherwise be possible.

The separation of the various positions of resonance from which the
acoustic wayelength'is calculated (and hence the velocity of sound) was
measured using a laser interferometer situated within the acoustic inter-
ferometer unit itself. The wavelength of sound is therefore measured in
terms of the accurately known wavelength of light from a laser. This has
the advantage over the conventional pushrod and micrometer method where
acoustic paths are measured from outside the cryostat in that it does not'

suffer from the indeterminate thermal contractions in the pushrod.

2. Experimental procedure

The normal boiling points of equilibrium hydrogen and helium-4 were
realised by 'controlling the temperature of the interferometer at values
which closely reproduced the calibrated bolling point resistances on three
germanium resistance thermometers which were in thermal contact with it.
Subsequent corrections of the measured velocities to their exact boiling
point valugs were made, from a rough prior calibration of these thermometers.
It was estimated that the final value of velocity which was calculated
corresﬁbnded to a temperature within? 1.4 mK of the boiling point of helium-l4
or within ¥  mK at the hydrogen point. In quoting our final results these

errors have been taken to be equal to three standard errors.

LS —_

'
1
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The interferometer was suspended in a va.cuuﬁl can immersed in the
liquid helium bath of a..conventiona.i liquid helium cryostat. For the 4.2 K
:L.aotherm the 1liquid cooclant was pumped to a temperature slightly below its
normal bo:Ll:Lng point so that the interferometer itself could be brought to
the exact boiling point by means of an electrical heater. It was, of course;

unnecessary- to pump the bath at the higher isothern temperature. The heater

current was controlled using an equal ratio a.c. Wheatstone bridge one arm
of which was a two lead germanium sensor mounted close to the heater on the
:Lnterferometer. Using this controller temperatures were held constant to
within ¥ 0.5 oK at the lower po:.nt and seldom varied by more tha.n -2 n;K
at the hydrogen point.

'The pressure of the thermometric gas was controlled by a pressure

controller from Texas Instruments Lid. This device functioned by bleeding -

helium in or out of the interferometer through servo-operated neecdle valves.

These were driven by an out-of-balence signal from a quartz spiral bourdon
gauge supplied by the same manufacturer. Pressures could be held constant
to within s 5N m--2 for the duration of a measurement (about three hours)
and were measured and constantly monitored with a recently calibrated Kew
pattern mercury barometer. The accuracy achieved in the measurement was
about ¥ 5N m_2 which represented an entirely negligible error in the
final values of isotherm temperature.

At the highest frequen'cy which could be used without exceeding the
first cut-off frequency it was possible to accommodate five resonances in
the cavity when fully extended. The resonances were scanned and about four
hundred readings of the accelerometer voltage (and hence impedance) were

taken at various points, together with the corresponding readings of acoustic

-path from the optical interferometer. This resonance curve was subsequefxtly

analysed by plotting impedance circles for each resonance which enabled the

exact points of resonance to be determined to within several parts in 101*'

of the acoustic cut-off wavelength (approximately 3.4 cm with a cavity radius

of 1 cm). All other things being equal, temperatures may be calculated to-

twice the fractional error in the final value obtained for the velocity or

\ :
It is also possible to calculate from the rescnance curve the reflection

coefficients for the ends of the cavity and the acoustic absorption -

coefficient, ok » Which is almost entirely attributable to the bouhda.ry

layer at._these frequencies. Thus, taking the fractional error in the

measured valocity, v , to be o(v/(,.) where (O is the angular frequency 6f

the sound, it is then possible to make a measured correction to the velocify
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for thre effect of the boundary layer. The validity of this correction depends
on the assumption that the absorption coefficient is directly proportional to
the square root of the frequency whilst the velocity correction varies inversely
with it. Tests made at two frequencies at the helium point indicate that this
is in fact the case. The ratio of the two measured absorption coefficients

was equal to the square root of the ratio of the corresponding frequencies
within the limits of accuracy achieved. Furthermore, the corrected velocities
were equal to within the.general reproducibility of velocity measurements made -
at the same frequencyt No such tests were made aF 20 X, but the corrected
velocities were found to lie randomly about a straight line whereas the
uncorrected velocities showed a distinct curvature. We feel confident, there-
fore, that the sysiematic errors attributable to the boundary layer have been
correctly assessed.

3. Experimental results

The values of the normal boiling points of helium=~4 and equilibrium
hydrogen which are presented are to be regarded as provisional pending the
accumulation of sufficient data to define the shape of the isotherms more
closely. Nevertheless, it is already clear from the results'now available .
that their self-consistency is of a hlgh enough order to justifly confidence
in the instrument.

Measured and corrected values of the velocity of sound at the normal
boiling point of helium;4 are given in Table I together with the measured
absorption coefficients and the frequencies at which they were obtained.

The isotherm is plotted in fig. 2 where uncorrected values of the velocity

are also included to show the general effect of the boundary layer on measured
temperature.- The two lowest points on the isotherm were the points taken at
the two frequencies as described above. It can be seen that the peint taken
at the lower frequency has a correspondingly higher boundary layer correction
as expected.

Straight line, quadratic and cubic polynomlal representations of the data
were tried and it was found that the quadratic fit was best, but not greatly
superior to the linear fit. Details of the straight line and quadratic fits ‘
are given in Table II. It can be seen that the two answers for the boiling
point differ by 4.6 mK - a difference easily covered by twice the sum of the
purely statistical standard errors in the individual answers. Unfortunately,
however, it is impossible to make a rational choice of one value in preference
to the other. The improvement observed on raising the order of fit to two
might be attributable to a curvature in the points brouéht about by the

* See Addendum
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TABLE I

Showing Results at the Normal Boiling Point of Helium-j

L

Measured Square of
Pressure ﬁgizz?:d Frequency |Absorption 39§re?2ed Corrected
2 Y| s Coefficient | '~ oy | Velocity
ms ~1 ms 2 =2
i m m s
870 119,592 3.3 1850 | 119,720 14332,9 *
- 81,80 119,486 1.5 .1220 119,671 14,3211
10700 119.274 3.3 <430 119,372 14249.7
12520 119,018 3.3 <1460 119.118 1,189,1
15930 118.517 3.3 .1270 118,603 14,066,7
19700 117.961 3.3 .1190 118. 041 13933.7
23290 117.401 3.3 170 117.479 13801.3.
26630 116,880 33 .1380 116,971 13682,2




., —4 '
Vx 10 %m? s—2

145

1-40

1-35

. Corrected values
- @ Uncorrected values

U Vo? = 14622 mPs?

57 Figure 2

'_".‘,‘The‘l“l-tsot?-lerm at the NBP of Heliu;n-4.

Pressure

20 , 30 kiNm™2
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TABLE II *

Showing Details of the fit to the Isotherm

at the Normal Boiling Point of Helium-i

2 _oR
Vo =50 T

where R is the gas constant

3 _ _ 2 _ 2 2_ .2 ' 2
(8.3143 x 107), o = CI/CV—S/B Vo=V "+ ap Ve =V "+ ap+ bp
and M is the molecular weight
of He-4 (4.00260) )

RMS deviation of V2 m2 3-2_ 3.7 . 3.1
Equivalent temperature mK 1.1 0.9

2 4 ' 2 =2 + +
Vo < standard error m~ s 14630 = 4 A6 = 11

Equivalent temperature

.t standard error K

4.2258 L 0.0011

L.2212 £ 0,0033

- .0033276

a - .0035525
-8
b - 6,5988 x 10
‘Mean value of two boiling points
4.2235 = L0018

pt standard error K o <

# See Addendum
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physical properties of the thermometric gas. Or - equally likely on the present
evidence - it could be brought about by the random distribution of points' -about
what may ‘l;ranspire to be a straight’'line on further investigation. Accordingly
the mean of the two answers has been adopted until the question can be settled.
The compounded standard error in the mean is 1.8 mK. To this statistical error
mst be added any other source of systematic error which has not been accounted
for, in particular the error due to the uncertainty in the reproduction of the
boiling point and that due to the uncertainty in the gas constant. The former
is taken to be ¥ O.4 mK and the standard error in the gas constant 45 parts in

. 10° which is equivalent to ¥ 0.2 mK in the final answer. Thus for the normal

boiling point of helium-4 we have:
T(n. b. p. helium-h) = 4.2235 K 1,9 K
where we have quoted the total estimated standard error.

The experimental results for the normal boiling point of equilibrium hydrogen
are given in Table III and the isotherm is plotted in fig. 3. It can be seen
that the boundary layer corrections are considerably greater in this isotherm
than in ‘izhe previous one .a'ne" to the lower gas densities at the higher, temperature.
However, in terms of a fractional error they are roughly comparable., ZFor this
isotherm no improvement was observed on increasing the order of fit to two, and
s0 a linear representation of the data could be unambiguously chosen. Assessing
the errors in the same way as before we find

, T(d. b. p. e-hydrogen) = 20.265 K + 5 mK.
Full details of the linear £it to the data are given' in table IV.

L. Conclusions

A thermodynamic temperature of 4.2235 K for the normal boiling point of
helium-4 indicates that the helium-4 vapour pressure scale, T58’ assigns it a
value (4.215 X) which is too low by 8.5 mK. This is almost equal to othe_ discrepa.?gy m}%

An early estimate of ‘l:heirs8 of the normal boiling point of equilibrium
hydrogen gave the value as 20.265 K with a reproducibility equivalent to z 7 oK
in the measured velocities. Later. mea,s'.urementsJlo at the slightly lower
temperature of 20.0 K indicated that their acoustic temperature exceeded
temperatures measured on the scale NBS-5552 (defined only to * 10 mK) by
approximately 3 mK. This scale yields a value of 20.271 25 for the normal
boiling point of equilibrium hydrogen indicating a rough value only of 20.274 K
for the acoustic estimate which must be considered entirely compatible with the
earlier measurement. .

*. See Addendum



Showing the Results at the Normal Boiling

Point of Equilibrium Hydrog'en'

Me od Measured C ‘ ted Square of
Pressure - v isuf't ‘| Frequency | Absorption vo;:rec.: Corrected
Nm-a e oﬁ y o kHz Coefficient € oi:.ty Velocity
ms m—‘l ms m2 s-2

10170 204,294 7.25 4072 26,921 70183,1
20240 264,679 7.25 .3059 |  265.150 7030%4., 5
30020 264,822 7.25 2541 265,212 70337 .4
40330 . 264,942 © 7.25 .2091 265,253 70359.2
L9740 265,091 7.25 L1633 265.343 | 70406.9-
50040 265.102 7.25 1874 265,391 70432, 4
60030 265,212 7.25 L1470 265,439 70457.9
69920 - . 265.340 7.25 .1570 265,583 | 70534.3
80090 . 265.437 7.25 - 1287 265,636 70562, 5
97790 265,695 7.25 1330 265,901 70703.3
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7.02

7,00

.98

ISRa

e . = 271‘—

L2 = 2

e %10 Lem/s)
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’ Layer
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2
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Figure 3

The Isotherm at the NBP of Equilibrium Hydrogen.:
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TABLE IV

Showing Details of the Fit to the Isotherm at the

Normal Boiling Point of Equilibrium Hydrogen

2 _oR
v, = =5 T
where R .is the gas constant (8.3143L4 x 103),
o=0 l/cv =5/3 and M is the molecular weight

of He-4 (4.00260)

Linear Fit

”2 = Voz + ap

RMS deviation of Vo m> 5 2"

Equivalent temperature mK

21.7
6.3

Vbz * standard error m s 2

‘Bquivalent temperature t,sgandard error K

70156.3 = 17.0

20,2643 = 0,0049

“a

0.00534730

A small correction of 1,7 mK is,subtfacted from the #alﬁe

© 20,2643 K to allow for a calibration error of the germanium

resistance thermometers at this point, . Thus we have

" 20,2626 K £ 1.9 mK for the NBP of e-hydrogen.

o '-)’("/l :

Kxg‘/‘-’ ) E\ i
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A second exact d.etermj_nat:'}on was reported in 1967 giving a value of
20,285 K.26’2_7 This value, in company with values arrived at by other
workers using gas thermometry, was used in the de‘}:ermination of the value,
20,28 K adopted for the corresponding primary fixed point on the

28,29 It is,

' International Practical Temperature Scale (1968).
unfortunately, impossible to say whether or not this most recent result is |
compatible with our own value since it lies outside our three standard
error bar and we are unaware of its associated error, icnowledge of which is
necessary to resolve the x.natter. .

It is felt that the tests carried out on the boundary, layer at 4,2 K
together with the excellent agreemen‘l; reachec. with the high frequency work
of Plumb and Cataland ler;d_:s considerable support to our claim to have
. measured the true thermodynamic boiling point of helium-l,
A similar conclusion follov_vs for the normal boiling point of equil'ibrium'
hydrogen,, Whilst no tests on the boundary layer corrections have been x.nade-‘r |

L at thls tenperature there is ho reason to suppose that any new problems
would arise Wh:.ch are not vn.s:Lble at the lower temperature, Furthermore, -
it can be seen from the 1sotherm that the corrected. veloc:.t:Les are linear

whllst the uncorrected. velocn.t:Les ln.e on a dlst:mct curve Wlnch, as

expected. falls away mcreasmgly rap:.dly at the lower gas pressures.

e e i secaAmm e e



- 274 =

References

1e
2.
Se

Le
5e

6o

7.

8.

9.

10.
1.

12,
13
1.
15.
164

17,
18.

- 19,

20,

21,
22,

23.
2.

A. Van Itterbeek and G. Forrez, Physica 20, 767 (1954).

‘A. Van Ttterbeek, J. Acoust. Soc.”Am. 29, 58 (1957).

A. Van Itterbeek, Proceedings of the Fifth International Conference
on Low Temperature Physics and Chemistry. Ed. J.R. Dillinger
(University of Wisconsin Press, Madison, Wisconsin, 1958) p. 206.

A. Van Itterbeek gnd J. De Laet, Physica 2k, 59 (1958).

Je De'Laet, Verhe K. Vlaame. Acad. Wet. Klasse der Wetenschappen

" (Brussels) 66, 22 (1960).

A.D. Brodsky, V.P. Kremlevsky and A.V. Savateev, Compt. Rend.
Comite Intern. Poids Mesures, Comite Consultat. Thermometrie,
6° Session ((1962), annexe 27.

G. Cataland, M. Edlow. and He Plumb, Temperature, its lMeasurement and
Control in Science and Industry. Ed. C.M. Herzfeld (Reinhold
Publishing Corporation, New York, 1962) Vol. III, Pt. 1, p. 129.

G. Cataland and H. Plumb, Proceedings.of the BEighth International
Conference on Low Temperature Physics. Ed. R.0. Davies

(Butterworth Scientific Publications Ltd., London, 1963) pe’ 439.

'H. Plumb and G. Cataland, J. Research Natl. Bur. Standards €94,

575 (1965).
H. Plumb and G. Cataland, Metrologia 2, 4 (1966).
G. Cataland and H.H. Plumb, Meeting of the CCT, 8 Session, (1967),
Document 27. ,
D.T. Grimsrud and James H. Werntz, Jr., Phys. Rev. 157, 1 (1967).
To be published in a metrological journal in the near future.
P.E. Krasnooshkin, Phys. Rev. 65,5, 6 (1944).
A.R. Colclough, Acustica 23, 2 (1970).
H. Helmholtz, Verhandlungen des Naturhistorisch-medecinischen
Vereins zu Heidelberg 3, 16 (1863).
G. Kirchhoff, Ann. Phys. Lpz. 134, 177 (1868).
M. Thiesen, Ann. Phys. Lpz. 24, 401 (1907). )
D.E. Wéston, Proce. Phys. Soc. B66, 695 (1953).
L. Fritche, Acustica 10, 4 (1960).
D.H. Smith and R.G. Harlow, Brit. J. Appl. Phys. i, 102 (1963).
R.De Fay and W.M. Hall, J. Acoust. Soc. Am. 5, L6 (1933)
R.D. Fay, J. Acoust. Soc. Am. 15, 32 (1943).
J.E. White, J. Acoust. Soc. Am. 18, 155 (1946).

b

——————



P

- 275 -

* 25. R.E. Bedford, M. Durieux, R. Muijlwijk and C.R. Barber, .

‘Metrologia, 5, 2 (1969).
26, G. Cataland and H.H. Plumb, Meeting of the Comite Consultat.
. Thermometrie, 8% session, (1967) Document 27. (Unpublished)
27. Re Muijlwijk, M. Durieux and H. Van Dijk, Physica, L3, 622 (1969).
28. Metrologia, 5, 2 (1969). |
29. J.A. Hall, Rapport au Comite International des Poids et Mesures,
Meeting of the Comite Consultat. Thermometrie, 8° session (1967)

-

N

Bt U PRSNGSR



- 276 -

ADDENDUM

Further measurements have been made at the NBP of helium—l;. since this
paper was suﬁmitted to the Symposiuml making al presep‘b total of 13 isotherm
points in all, ‘A definite curvature has become ’visible above a pressure
of about 18 k}\sz. Fitting a straight line to the lower (1linear) part of
' the isotherm has prdduced an impfoved value of 4.2218 K it 2.5 mK (standard
error), A compatible answer was obtained by f:itting a quadratic polynomial
to0 the whole isotherm,

In addition a value of 13.8633 K £ 1.7 oK (standard error) has b,een'
obtained for the triple point of hydrogen, This was obtained from a
linear fit to nine isotherm points between 10 and 70 Na®,

Very full. investigations have now been carried out on the boundary
layer ef’fect at 4.2 K, and it has been found to behave exactly as pred.lcted
theoretically both qualitatively and quantlta.tlvely

" Summarising our best current values we have, therefore,

NBP of Helium-4

4.2218 K £ 2,5 mK (standard error)

Triple Point of Hydrogen = 13.8033 = 1,7 mK ( standard error)

NBP of Equilibrium Hydrogen = 20,263 % 5 mK (standard error)
Further work is to be carried out on these isotherms and so these reauits

are still to be regarded as being preliminary, - —— '

. s ' . e ’ - ’
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Sommaire

Zusammenfassung

ngher Modes in Acoustic Interferometry

by A. R. CoLcrouGcH

’

National Physical Laboratory, Teddington, Middlesex
Summary

The form of the high order modes in a cylindrical acoustie interferometer is deduced,
together with equations velating their amplitudes to the way in which the tmnsduccr
vibrates. It is then possible to calculate the shape and shift in position of the resonance
peaks in the interferometer, and the resulling error in a veloeity of sound or absorption
eoéfficient measurement. The theory is illustrated by an analysis of the likely performance
of a common type of instrument, and its genecral bearing on interferometer design is
discussed.

Modes plus élevés en inter[érométrie acoustique

On donne la forme des modes d'ordre ¢élevé dans un interférometre acoustique cylindri-

" que en méme temps que des équations établissant le rapport de leurs amplitudes suivant

la fagon dont vibre le transductéur, I1 est alors possible de caleuler la forme et la varia-
tion en position des pointes de résonanec dans l'interférométre et erreur résultante dans
la vitesse du son ou la mesure du cocfficient d'absorption. La théorie est illustrée par

I'analyse d’une performance vraisemblable d'un type commun d'instrument et on discute
son comportement général sur le dispositif interféroméirique.

Hé'here Moden bei akustischer Interferometrie

Es wurden diec Form der Moden héherer Ordnung in einem zylindrischen akustischen
Interferometer und Gleichungen «fiic ihre Amplituden, wie sic der Wandler produziert,
abgeleitet. Es ist dann mépglich, dic Gestalt und die Verschichung der Resonanzpeaks im
Interferometer und den sich daraus ergebenden Fehler bei Sdmllgcsdlwmdlgkclls- und
Absorptionskoeffizientenmessungen zu berechnen. Die Theorie wird an Hand einer Analyse
der wahrscheinlichen Arbeitsweise eines iiblichen Instrumententyps dargestellt. Ferner wird

ihre allgemeine Bedeutung fiir die Interferometerkonstruktion diskutiert.

1. Introduction

It is well known that apart from plane wave mo-
des more complicated acoustic modes can be pro-
pagated down cylindrical tubes. Each of these higher
modes can be shown teo have a unique phase velocity
which is higher than that of the plane wave mode,
and a charaeteristic cut-off frequency below which
it is severely attenuated. Often workers with the
acoustic interferometer have used frequencies well
ahove many of these cut-off frequencies, and have
observed “satcllite” peaks corresponding to reso-

nances of the higher modes (BELL [1]). When un- .

resolved these parasilic resonances can lead to er-

.. rors in measuring the velocily of sound due to the
" increased phase velocities of their parent modes.
" Measured values of absorplion coefficients are also -

too high because of interference between the plane
wave resonance peak and those of the higher modes
(KrASNOOSHKIN [2], BELL [1]).

The purpose of this paper is to show how the
amplitudes of the higher modes may be calculated
from a knowledge of the way in which the trans.
ducer in the interferometer vibrates. Knowing this,

. it is possible to predict the shape of the resonance

o

peaks and to assess the grror in the positions of their

- maxima. This theory enables the likely performan-

ces of alternative transducer designs to be compar-
ed, and might be used to correct experimental re-
sults when olhcr methods of dealing with the prob-
lem are not applicable. ’

2. The form of the high erder modes

In order to establish the form of the high order
modes we follow a method similar to that used by
KRASNOOSHKIN [2], except that we shall allow for
the angular dependence of*the modes as well as
for their radial dependence. It is assumed that a-
velocity polential

@'(r,l?,z,t):!p(r,b,z) efo! (1)

-exists such that

V2 (r, 9

where agg="Fkgg—1iag is the complex wavenumber

,Z) +030 (p(r,ﬂ,z)=0 (2)

_for propagation in the unbounded medium at an

angular frequency, w. Thus ag, is the free gas ab-
sorption coefficient of sound whilst j= (~1)4,
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“The relevant boundary eonditions for an inter- Table I.
ferometer of radius & and length I (Fig. 1) -are: Values of Xmn.
' 3 ‘ | - .
a0 0=0, (3) "o I 1 | 2 I 3 | 4 | s
- Z = 4
, o |o |a3s83] ,01'1017 1332116.47
1 1.8+ | 533 | 8541117
2 1305|670 | 9971131 i
reb _ 3 | 420 | 801 |11 1711;
 Fiston 5 ) /\ Transducer and A = Ao Kool Kmn « (13)
1 .
\/ Values of %y, and @y, are plotted in Fig.2 for a
5 4 plane wave mode wavelength of 0.1 em with ag =
- 1~
Fig. 1. The acoustic interferometer. The length of the B (1] 2.8
- cavity, /, may be changed by moving the piston. ‘
' S ' )| —— 24
D(r,0,z) =D (r,?+27,2), 4) : Ken
B i : 50 N \ 20
af r-b-o' (5) VA 40 g 16 I
| N L}
; & (r,?, z) must not be infinite 6) - - ke 30 \\ 12 ém
an , . :
. ' — (D' ) eiet 2 .8
‘ EZY B . _ - ek [ 04
where F(r,?) is the amplilude dxslribution over | Fon. | k
the face of the transducer. Using the first four of 00 20 30 w0 0 & 700
these boundary conditions and assummg a solution’ Xon/b—

* of the form:

. . Fig. 2. Variation of %ox and aon with Xoa/b (aoo =0.1,
& (r,9,z) =R(r) O() Z(z) (8) - - kwo=62.83).

for eq. (2), its solution separates to give the follow-

ing expression for the m n-th mode:

(pmn(r’ﬂ’z) =lm(anr/b) X .
X (Apneosm P 4+ Bpasinm 3) cosapmpz.  (9)

=0.1 and b =1 cm. The phase velocity, vy, of the
m n-th mode is given by:

Vyan = Ofkyy =0 App[2 70 (14)

where ,,, is the wavelength of the m n-th mode. The
where m, n=0, 1, 2,... and Apy and B are eon-  eut-off frequeney, fun, of the mn-th mode is the
stants determining the amplitude of the m n-th mode. frequeney at which the wavenumber, ann, would

Xomn is the (n+1)-th root (always real) of: become purely imaginary if ay,,=0. It is given by: -
d/, (X) fon = o0 Xonf2 7 b (15)
dX  [X-b(alo-ani =0 (10) " oo ""'/.
where J,, is a BESSEL funetion of order m of the 3. The general solution and the amplitndes

first kind and —a® and —m? are the respective z
and 1} separation constants of eq. (2). From eq.
(10) it can be seen that for every value of X'y, there The general.solution of eq. (2) will be a linear
is a unique value of @, @, , whid is to be inler- superpoqlhon of the mn-th modcs At the face of the
preted as the eomplex wavenumber of the mn-th transdueer it is given by:

mode. Some values of X, are given in Table I, and B(r,0,0) = 35 S (X 1[b) (A cos m P+

the corresponding values of a ap, are obtainable plies

of the high order modes

‘from: + Bmnsinm?) eosap,l. (16)

@i = ago — (Xmn/b)? (11) Applying the last boundnry condmon, eq. (7), -
whose real and imaginary parts, &k, and —a,, Wwe obtain:
respectively, are given by: ’
Kon =Bk —alo— (X5 + (Ko — RO = 5 3 S e/ Ummeosm0+
—aly — (Xmn[0)3)3+4030 ko)™ (12) -~ +Bpasinm®?) sinaps i .an

Y
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On integrating this with respect to # from 0 to  and
2z it becomes: oo
* ={r]'; (Xjrfb) dr= (26)
.f F(r, 0) (]0— o ZGOu JO(X(ln"/b) Agnsinagyl. b2
(18) =v"2*' (1-— -?'/Xj'[,) .’;'(X”,) if n=k
Now multiplying by r Jo(Xox 7/b) where k=0, 1, giyes:
2,...and mlenralmg with respect to 7 from 0 to b 2
we have !

_I' j'rlo(Xog- r{b) F(r. ?) dr dt? = (19)

Z gn Ao,. sin g l_f rJo(Xor: 7/6) Jo(Xon /) dr

l“ n

* which after applymrv the fonbwnnf' orlhogonallty".

relations:

and

. b 2 '
1=6frlg‘ (Xo,,.r/b) dr= %" Jo('j (Xo];) if n=k (21)

becomes:

EI) %
7t b2 ag, J5(Xon) sinagn |
b 22

X | Jrlo(Xoar/b)F(r,?) drdd (22)
00

AOu'——'

" after rearranging and changing the subscript k& to n.

The amplitude of the 0 n-th mode is given by | Ao, |
and, in particular, the amplitude of the plane wave
(00-th) mode is given by | Agg| for which .

J3(Xon) =1.

In order to find A,,, (where it is understood that
m>0) eq. (17) is multiplied by cosj ¥ with j=0,

" 1,2,... and integrated with respect to ¥ from 0

to 27

T 2«
JcosiﬂF(r,ﬂ) dd=.

= 1_::; %a}n J( X rlb) Ajpsinajal. (23)
- Multiplying eq. (23) by rJ(Xjxr/b) with k=0,

1, 2,... and integrating with respect to T from 0
to b it becomes:

(24)

: = Za,,, A;,, sin a,,.l _fr/;(Xlk r[b), Ji(Xln "/b) dr

.K= ft'])(X;kr/b') J;(X],.r/b) dr_O if n-f:L (20)

|

0 if nek (20)

which on applymg the followmg orlhogonal:ty rela- B
) tlons Lol

= e T e e X
" a b ana(l —mglx;;m) J o (Xoun) sinapl

b 2x .
Pl J' _f 1 Xmn r[b) cosm? F(r,#) drd?® (27)

after rearranging and changing the subscripts j a'nd
ktomandn respeclwely

" Similarly, it can be shown that:
‘B = —_ 2e %
™o bt “mn(l - mzlxrgnn) 1'2" (an) Sinﬂinnl

b 22
de bfr]m(Xm" r/bysinm? F(r,?) drd?. (28)

So that if F(r,?) is known the amplitude of the
m n-th mode may be calculated from

I Amu + an I .

From eqs. (16), (22), (27) and (28} it is now
possible to write a completely defined expression for
the velocity potential at the face of the transducer.

- Inits preferred form it becomes:

(I)(rﬂ?al):' ZZ(kmn'l'iamn) Jm(anr/b) X (29)

¥ (Cpn €08 m G + Dpypsinm #) coth(ap,, +1kmn) £
where

w

C = o o L] ] x
08 A0 (k3 +adn) 15 (Xon)

b4 _f _frJo(Xo,, r/b) F(r,®) drd?, (30)

Co - 2w v
m ‘sz(krgnn +a;€m) (1 "melx;.':m) -’L;n (an)

b 2
xoj df-rl,,.(X,,,,,r/b) cosm? F(r,%) drd? (31)

and

D 2w
m= xb® (I'mn +amn) (1- m2/X,,,,,) Jm (an)

Xof 0J' P In(Xmarlb) sinm® F(r,®) drdd.  (32)

4. The shape of the resonance peaks

Eqs. (29) to. (32) enable the shape of the re-
sonance peaks to be determined in terms of the
power 'dissipated -in the cavity. The power, ¥ (l),
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is given by:

)=t frRe(E)Re(p®)) drd?  (33)
00

where () and p(l) are respectively the particle

-velocity and the excess pressure at the face of the

transducer. From the definition of F(r,?):

E() =i F(r, D) elot T (34)
so that ' -

R'e(;z(z)) o F(r,?) sinwt.  (35)

The pressure al the transducer may be obtained
from:

p(l) =0- ('I(m? ) e""‘) ~ (36)

. so that, since ct,,,,.<£,,,,, for all cases of practical

interest,
Re(p()) = —0® 3 Z kunJu(Xpa r/b) X

X (Cran 08D +Dppsinm ?) (Ppa(l) sinw 4
' + Qma(l) cosw 1) (37)

where Pp,(l) and @Qna(l) are respectively the real

and imaginary parts of coth(a,,+ikp,) I given by:

sinh2 ap,, !
cosh2 a,,l—cos 2 kpnl

Pmn (l) = (38)

and

sin2kual .
Qrn (1) T cosh2a,,l—cos 2 kpnl °

- So, substituting eqs. (35) and!(37) in eq. (33)

S and performing a lime average:

Wwezzmn;m ;f(w)

-omen

.“:where, if @y, is again laken to be small in compan~
- son wxlh kon s ‘ :

"l

F' 0 Vrnn © LR
' Itb“(]. m® X‘r,nn) ]m (an) \ : (41) -
[ r 1o (Xom 1/B) cos m & F(r, 9) dr )2

;}" 7 Jn(XmnrfB)sin m 9 F(r, 9) dr d0)?)

) °"a°. o.“

(39)
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when m>0, and
Fon=1% Fnyn as defined above when m=0. (42)

In order to illustrate the use of eqs. (40) to (42),
the peak shapes for an ideal transducer executing
perfect piston-like vibrations will be derived and
compared with those produced by a still diaphragm
driven, say, by a moving coil. Often transducers of
the lalter type have a diameter larger than that of
the cavily in order 1o approximate to the ideal by
diminishing the curvature of the diaphragm at the
extreme positions of its vibration.

For the ideal case we put:

F(r,9) =4,

where &, is a constant. All the amplitudes, Fyn, for
which m>0 arc zero since the ¥ integrals of cq.
(42) vanish, Similarly Fy, is zero when 2>0 be-
cause of the r integral in eq.. (41). So, as would
be expected, only the phnc wave amplitude, Fo , is.
finite. In units of o w3 §5b%/2 &y, it is given by:

Foo=1. (44)

The peak shapes for this case are shown in Fig. 3
where agg has been taken t6 be 0.1. Since no high
order modes have been excited the peak maxima al
ways fall on a position for which /=15 44/2 where
s=0,1,2,....

To approximale to the amplitude dlslnl)ul:on of
the stiff diaphragm we choosc: :

F(r, 19) = $0 e~ rM@=r)  for 0 g r é a . (‘LS)

where a is the.radius of the diaphragm. This ensures "~

- that F(r,?) is zero at the edge of the diaphragm’
; \\hcre it is clamped and lhat QF (r,M)/3r| g is -

-also zero to allow for the stifiness of the diaphragm.

_In order to consider how the performance of the in-

strument is affected by changing the diameter of the ="

diaphragm, peak shapes will be calculated for. -: . ..
_ " ag/b=1 and a/b=4-.
The two cases are shown in Fig. 4.

For the same reason that was given in the ideal
case; Fp,, vanishes when m>0. But now the ampli-

400 ‘ )
T t ' st ek 100 thpesk 200 h pesk
200 2 2 -
0 0 :
A ™ 19970 502, 199%gs 004 &01Ag
% 2 5 P 3

Fig. 3. Peak profiles for ideal transducer.
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— Table IL _
Cased: a/b=4 370 ¢ Amplitudes of the O nth modecs for a stiff diaphragm.
Piston : Transduter n o oab ! Fon
=0 2=l > "
o ¢ 4 | 52
) le b4 | 0002
—_— 2 ! € ! 0.000
| 3L 4 1 0000
a=tb s 4 | o0
‘ - | 50 4 | 0.000
s alb= : 0 1 * 1.000
Case2: a/b=b ' ‘ A B 1 o L0638
Pisten Transducer 2 ] 1 0.043
=0 3 1 ! 0.02
; s L1 | o000
5 | 1 | 0.000
-1

Fiz. 4. The interferometers are shown with small and
large diaphragms. The latter may be expected
to approximate to the ideal.

~tudes, Fy,, are no longer generally zero as may be
“secn from Table II where they are expressed in

units of Fgy when a=b. The resulting peak shapes
are shown in Figs. 5 and 6 for cases 1 and 2 respee-
tively. It can be seen that the ease where a/b=4
approximates so well to the ideal ease that there is
no disecrnible difference in the peak shapes (the
change in seale merely reflecting the change in

" units). The ease for which a/b=1, however, has

two parasitic modes, the 01-th and the 02-th, which

-eause severe distortion of the peaks. A marked asym-

metry can be séen by the 100-th peak and by the

~ 200-th peak the 01-th mode is virtually resolved. In

.

praetice, though, it is unlikely that a transducer
could be made which would he sensitive enough to
respond to these distortions so that the presenee of
the higher modes might go unsuspected. This would
result in an error of several parts in 10000 in a
velocity of sound measurement and about 7% in agp -

In the eases eonsidered therc has been no # de- -
pendenee in the amplitude of vibration of the trans-
dueer. Consequently £, has always vanished when
m>0. But were this not the ease the peaks could be
further eomplicated by the presenee of m-th modes.
Furthermore, the funetions chosen for F(r,?) have
been eoneisely expressible, whereas in praetiee it
may well have to be expanded as a serics of ortho:*
gonal funetions of r and ¥ (preferably the m n-th
modes).

400—— 4 .
{5} peak 100 th peak
/*\ 200 th peak
iR 200 /‘Voo ’ /

: L __ .
T E /

s;__./

01 T '
N >

. 0 J\ 0 102 102
. kN A 1920 5020 WAz, 1004,  0lAg
4 2 ' 4 4 4
Fig: 5. Peak profiles for a/b=1.
4st peak /\400 thpeak
1000 ) — .
' I 200 $h peak -
, 2 500 5/ \ — ~
' 0 0
; A ™ 199 209 SO0 Wilg 1003,  &0lAg
§ 2 4 4 . 4

Fig. 6. Peak profiles for a/b=4.
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5. Higher modes and interferometer design

It is clear from the last example that if accurate
acoustic measurements are to be made, it is neces-
sary to know what effect high order modes are
having on the performance of one’s instrument.

Of several ways of dealing with the problem, the
simplest and most effective is 1o work below the cut-
off frequency of the 0l-th mode. Since only the
plane wave mode can then be propagated it will be
certain that all resonances are pure planc wave re-
sonances. This is a satisfactory method if velocities
alone are to be measured. But, in order to examine
enough peaks to enable absorption coefficients to be
measured, a very long interferometer might be re-
quired. A sufficient numbcr of peaks must be tra-
versed to enable a measurable decrease in their
height to be observed. So quite apart from the in-
crease in wavelength brought about by operating
at low frequencies, allowance must be made for the
diminished rate of decrease in peak height brought
about by the dependence of 244 on the square of the
frequency. Thus at low frequencies there are two
factor working to inerease the length of the cavity

required. And as a consequence problems of tem-

perature uniformity in the tube and mechanical
alignment of the transducer and piston may become
troublesome.

Secondly an attempt could be made 1o detect the
presence of unwanted modes by using an inter-
mediate frequency and a cavity of sulficient length
to resolve a signifieant 01-th mode resonance (and
therefore any other significant resonance) . But, apart

from any problems of temperature uniformity and .

mechanical alignment which might arise, there re-
mains the problem of designing a sufficiently sensi-
tive transducer capable of responding 1o deformities
in the smallest peaks. In practice this is likely to

- require the use of a quarlz erystal since other clec-

tromechahical devices, even when driven on reso-
nance, have too large an impedance compared lo

* the small changes in gas impedance which are to be

measured.

Thirdly, a measurement might be made of F(r,?)
with a view to applying the preceding theory to cor-
rect the positions and heights of the resonance
peaks. Such a measurement would have to be done
in situ if it was to be of any value since trans.
ducers tend to be sensitive lo the smallest changes
in their immediate environment. This would almost
certainly involve an optical experiment on the trans-
ducer so that its amplitude of vibration would have
to be large compared to the wavelength of light. The
amplitude would be limited by the maximum toler-
able power input to the cavity. But, sinee the power
radiated into the cavily is proportional 1o the squa-
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res of lhe amplitude and frequency of the trans-
ducer, this implies a maximum frequency for any
given amplitude, For some interferometers it might
be the case that, in order to obtain a measurable
amplitude of vibration, the driving frequency of the

" transducer would have to be lowered 1o a value

which again introduces problems in the measure-
ment of absorption coefficients.

There is also another problem a&socmlcd with the
precise application of the preceding theory arising
out of the “tube effect”. When measured in lubes,
velocities are found to be less than the free gas velo-
cities of sound at the same frequency, and absorp-
tion coefficients are in excess of their free gas val-
ues too. This arises out of wall eflects due to the
viscosity of the gas and the relatively high thermal
conductivity of the walls of the cavity. Unforlunately
to try and take them into account from first' prin-
ciples produees a mathematically intractable prob-
lem, but there do exist corrections to allow for them.’
The corrections, given by the Kirchuorr-HELM-
HOLTZ equations, are fully discussed in a paper by
WESTON [3], but it suffices to say here that they
are large at low frequencies and in eavities of small
bore, and small at high frequencies and in ecavities
of large bore. The difficulty arises because they are
only relevant to the plane wave mode, so that it is
not possible to tell exaetly to what extent the phase
velocities of the higher modes are altered by wall -
effects. It may be supposed, however, that the tube
cffect becomes increasingly unimportant for all mo-
des as frequency and eavity bore increase, so the
preceding theory may he expeeted to apply under
these conditions. And, even al low frequeneies, an
optical experiment could provide useful confirmation
that a well designed transducer was approximating
to the ideal in which case the question of the phase
veloeities of the higher modes would not arise.

_ A more practical solution to the problem would

“scem to be to design a transducer which, according

to the above theory, would be unlikely to excite un-
wanled modes and then to operate it below the first
cut-ofl frequeney. If it is then necessary to observe
a larger number of peaks (to measure absorption
coefficients) the frequency may be increased and a
check made that velocities measured at the new fre-
quency are compatible with those measured below
the first cut-off frequency. This proeedure should be
quite satisfaclory so long as all measurcments are
carried out at low enough frequencies to avoid prob-
lems associated with velocity dispersion.
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NOTATIONAL GLOSSARY

a p21; a figs.2.6 and 2.7; a pp125,136; a p87; a p91;

n
. A pp46784; ‘area of transducer face; A p88; A’ p85; A p50; A
: mn n-
p101;A « A+ A + A’ +» ... acoustic virial coeffts. pp15.16;
0 1 2 0
b p21; b fig. 2.1; b pp125.135; b p91;

n
Br B® virial coeffts. p19; B adiabtc. blk. modls.; B isothl. blk.
: S T
modls.; B p50; B p102;
mn n
c velocity of sound; ¢ + ¢ principal specfc. hts./unit mass; ¢ p50;
p v mn

C : C principal specfc. hts./mole; C p102;
PV ) -, n

d p22;

D p102;

n

e p22;

f frequency;

F p111;

n

G subscript 51gn1fy1ng gas in cavity; G p150 G p104;
. k

i 1mag1nary unxt, '
J Bessel function of first kind;
k wavenumber;
K thermal conductivity; modified Bessel function of second kind;
Ll length of acoustic cavity;

. 2

m subscript for mnth mode (-m is separation const. for azimuthal
variable p45); SRR
M molecular weight; .
subscript for mnth mode (see equn. 2 2.19); n number of moles;
order of resonance;
acoustic (excess) pressure;
pressure;

oo =3

2
q complex wavenumber of mnth mode (-q is axial separation constant
mn
p45); q «q P92; 9 Pp101; 9 g P102;
v t n 2n 3n
radial cyl. coord.;
g$§6const.. resistance or real refln. coefft.. p44
p126;
thdc. temp., subscript signifying transducer-
particle velocity;
voltage; V p88;
power; W heat flux;
Cartesian coord.;

reactance; X' p101; X p47}

n . mn

> X =:<d< ~ et
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y Cartesian coord.;
Y Bessel function of second kind; Y p102-
n
z Cartesian or axial cyl. coord.; 2 » 2 p74%;
: : R T
Z pbh; Z p102; _
n 4

ol absorption coefft. /un1t length
pl24; -
complex acoustic refln. coefft.;

§ Kronecker & ; p110;

A half width of mnth resonance;
mn .. -

€ p77;

5 bulk viscosity;
D 9 layer viscosity; 9 pp86,87;

<] az1nuthal cyl. coord., p79-

® pbs,.89;

A acoustic wavelength;

M refractive index;

» . ¥ kinematic- -layer viscosity; WV p88;
1 2

p89; :
particle displacement;
density; . ,
ratio of principal specfc. hts.,» ¢ /c ;
p Vv

velocity potential;
p31; .

p79;

p%1;

angular frequency,

E€Re8 qrux

3

Y thermal diffusivity,

.
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