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ABSTRACT

Several topics of quantum field theory are
discussed within the algebraic context. It is shown
that for the charged Bose field there are two natural
ways of defining the local field algebras; however,
these are relatively antilocal in the sense of Segal
and Goodman. We define the charge sectors and show that
although they are unitarily inequivalent representations
of the observable algebra, they are physically (and,
in fact, strongly locally) equivalent. This is a
partial justification of the use of abstract algebras.

The converse problem, that of constructing
charge carrying fields given the observable algebra
in the charge zero sector, is then tackled fdr the case
of a massless boson field in two dimensional space-
time. This is achieved by applying the techniques of
Doplicher, Haag and Roberts, viz,the use of localised
automorphisms. The specific localised automorphisms
used are suggested by consideration of Skyrme's model
for zero mass.

Finally, we discuss the time evolution
copresponding to a bounded interaction density in an
arbitrary number of space dimensions. This extends a
result of Guenin. A condition on the interaction in
order that the resulting time evolution be causal is

given.
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Introduction

The use of abstract algebras (as opposed to
operators on a Hilbert space) was made clear by
I.E.Segal, in 1947, in a paper entitled ‘'Postulates
for General Quantum Mechanics' (l). Here, he sets out
the postulates in a mathematically cogent form in terms
of abstract algebras, and states on these.

In 1957, R.Haag suggested the use of the
(unbounded) operator algebras generated by polynomials
of Wighetman fields (2). These were reformulated in terms
of bounded operator algebras and underwent intensive
study, notably by H.Araki, FE.J.Borchers and R.Faag and
B.Schroer (3-9). Meanwhile, Segal was developing his
own theory (13).

The formulation as generally accepted today was
put forward in 1964 by R.Haag and D.Kastler (10). The
axioms set out by Haag and ‘Kastler are sufficiently
restrictive so as to allow fruitful investigation, but
are morec general and less restrictive than the Wightman
axioms (11,12). Certainly, the former are more intuitively
appealing than the latter.

We shall begin with a brief account of Segal's
postulates, and the Haag-Kastler axioms, and shall show
how the algebraic approach affords some explanation

of superselection rules.



1. The Algebraic Approach to Quantum Field Theory.

§1.1 Quantum Phenomenology (1,13)

We shall take the observables of a system as the
basic undefined quantities (in the same sense that a 'line'
may be considered as the basic undefined concept in
geometry), in terms of which all other physically
meaningful objects are to be defined. Originally, an
observakle was identified with a self-adjoint operator
on a Hilbert space, H, and a state was a vector (or, in
a more sophisticated formulation, a 'ray’', i.e. a family
{ 2w | »e@|r|] =1; fixed y € H} ) in the Hilbert
space. The expectation value of an operator A in the
state y was then taken to be (w,Aw)T

Such a theory is rather unintuitive, and is not
sufficiently general. Indeed, in order to have an energy
operator for interesting systems, it seems practical to
conslder at least two Hilbert spaces. This is a consequence
of Haag's theorem (14). A recent example of this is the
¢2 theory of J.Glimm and A.Jaffe (15).

We shall suppose that our observables are bounded.
Unbounded objects, such as the energy of an infinite

heat bath, are considered to be observable only in that

T We shall always use the (Dirac) convention in which an
inner product on a complex linear space is linear in

the second variable and antilinear in the first.



they arc limits of bounded observables; one can

measure the enexrgy of any arbitrarily large, but finite,

volume of the heat bath, for example.

If ¢ is a real number, we can interpret gA as that
bounded observable with values equal to o times those

of A. A? is the bounded observable obtained by measuring

A, and squaring the result. Fowevcr, A+B and AB can only

be similarly defined if A and B are simultancously

observable. We can hope to define A+R as that observable
with expectation value, in any state; eqgual to the sum of
those of A and B. This can be done if an observable is
determined uniquely by its expectation values in every
state. We cannot do the same thing for AR bheccause it is
not true that the expectation value of a product is. equal
to the product of the corresponding expectation values.

(The observables will not be'independent®, in general).

It is possible to define a formal product of A and

B in terms of A+B and A-BE, as was done by Segal (1).

However,; we shall not do this, but shall accept the

following postulate.

POSTULATE. The cbservables of a physical system are

self-adjoint elements of an abstract C*-algebra,A.

Parhaps a fow remarks are in order.

1. We have supposed that our observables are bounded.
Thus, to each A we associate a non-negative real
number ||2]] . A is O if and only if ||2|| = 0. This
is the physical interpretation of the norm in the

C*-algebra, A.



The C*-property, || A*A|| = ||A|f, or, in the case of
self-adjoint 2, ||a%]] = || A]| ?,1s a natural
requirement according to our interpretation of the
norrm.

It is technically convenient to assume that the
obscrvables are complete with respect to the norm;

if not, we could complete them. It is also convenient
to assume that A has an identityf

Wo have assumed that there is a product BB of any two
observables A and B, but as previously noted, the
physical interpretation of this is not always clear.
We could have taken A to be a real, rather than a
complex, algebra. This was done by Segal (1), but
there seems to be no advantage in this. We can always

complexify a real algebra.

Having accepted this postulate, we can now apply

the beautiful theory of Gelfand and others, on commutative

Banach algebras, to recover such concepts as 'exact value

of an observable' and 'probability distribution of an

observable in a given state'. Let us define the concept

of a state.

expected value to each observable, i.e. is an 'expectation

A state of a system is an assignment of an

functional on A:

(i) w(AA+R) = Aw(A)+w(B), for all Ae &, 2,B € A.

* Wes shall alwavs assume that all C*-algebras that we

consider have an identity.
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(ii) w(A*n) > O for all A e A.

(iii) w( 1) = 1;
In short, a state is an element of the unit sphere of the
positive dual, é*+, of A.

A state is called a mixture if it is a convex
linear combination of two different states; i.e. if there
exist wy # w, € é*+ such that

w= Aw; + (1-A)wz .,
for some O < XA < 1.

A state is pure if it is not a mixture.

If A is realised as operators on a Hilbert space,

H , then a vector ¢ € B , with (¢,¢) = 1, defines a
state by

w(a) = (¢,Ay) for A e

i

.

Such a state is called a vector state in the particular

realisation. w is pure if and only if A leaves no
subspace of H invariant (16). In general, there are
more pure states than vector states (1) ~ another

inadequacy of the older formulation.

The variance of an observakle A in a state w is
defined to be w(A%?) - w(A)?. We say that 2 has an
exact value in the state w if its va-iance therein
vanishes; the exact value is then w(A). The set of values
w(A) of A in all such states is the spectrum of the
okservable.

Now, the commutative C*-algebra generated hy an
observable A ( = A* ) is isomorphic to a subalgebra

of C(R), the uniform algebra over a compact Hausdorff
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space §, for some .(1,17) ( C(Q) is the C*-algebra of
contiuous complex-valued functions on Q , with respect to

the sup. norm ). Thus any A = A* ¢

g

can be considered

as a real-valued continuous function on a compact Hausdorff
space Q . Let a be this function. It is natural to say
that the exact values of A , i.e. the spectrum of & ,

is { a(x) | x € 2 }. That this agrees with the above
definition is seen as follows. Let w be a state on A.

Then w clearly defines a state on C(R). By the Riesz-

Markov representation theorem we can write

w(A) = fa(x) du(x)
9

for some unique probability measure p on . Suppose
is pure. Then one can show (1) that p has total mass in
some single point of Q ;
w(2) = a(xy) for some x4 € Q.

Clearly, in this case, w(d?) = w(n)2, and so a(xy) is an
exact value of 2. Also, any Xpe 2 defincs a state, w,
on the commutative C*-algebra genasrated by &. This state
has the property that w(Vv?) = w(V)? for all V belonging
to this algebra. This implies that w is purs as a state
on this algebra (1). Now, a pure state on a subalgebra of
a C*-algebra, A, is thec restriction of a pure state on A
to the subalgebra. Hence, given xy, € £, theore is a
pure state, w', on A. such that w'(h) = a(xe), and so
a(xoe) is an exact value of A. We conclude that
{ a(x) | x e @} is a subset of the spectrum of &.

However, if w(A?) = w(a)?, then, ac above, w is a

pure state on a subalgebra generated by 2, and therefore
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corresponds to a measure on Q with total mass in some

single point. Thus { a(x) | x ¢ @ } 1is equal to spectrum

of A. It is the set of values { w(d) | w ¢ é*+, w pure }.
The expectation value of an observable in a state

w is the average of its spectral values with respect to a

probability distribution uniguely determined by the state;

w(@) = [ a(x) du(x) .
The probability that g has values in 2 Borel set I in R,
in a state w, is given by u(A) where w(d) = an(x)du(x)
and A={xe Q| a(x) ¢ I 1}.

Let us remark, with Segal, that the spectrum of an
observable, A ; heing egual to the values of 2 in the
pure states of 7 is representation independent.

The set of pure states is separating for A (1)

- that is, (i) = © for all pure states w, implies
that A = 0. Therefore A+B is uniqucly defined in terms
of its eupectation values in all pure statas. This is
consistent with our introductory definition of the sum of
two observables.

Let us ncow turn to further requirements on our

C*-algebra pertinent to quantum field theory.
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§1.2 The Haag-Kastler Axioms (10)

Any particular experiment takes place in a finite
region of space-time. That is to say, any cxperiment can
be assigned to a region of Minkowski space, M, namely,
the region in which it takes place. ( » region is, by
definition, a bounded open set ). If our apparatus is
located in some region in M, we can only expect to
measure observables also located within the same space-

time region. This is the idea behind the first axiom.

Axiom 1. To each region 0O in Minkowski space, M,

there corresponds a C*-algebra of observakles, B1(Q).

The correspondence 0O + A(Q) can be said to

determine the theory.

Axiom 2. (Isotony) If 0Oi, QO are regions in M, and
0, contains Q; , then A(Q;) can be identified with

a subalgebra of A(Q:1).

The physical reason for this axiom is obvious.
Axioms 1 and 2 allow us to define the inductive limit of

the algebras A(Q), indexed by regions in M ;

l

(

)

(1>
N
fio>
1o

10 <

( the double bar denoting the norm comnletion ).
The algebras 2(Q) are called local algebras
( hence the label 'Local Quantum Field Thecory' ) and 2
is called the quasilocal algebra. The term guasilocal
is used to emphasise the fact'that L. contains the local

algebras, together with their norm limits.
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The next axiom is the main one as regards field
theory; it corresponds to the fact that no influence can
propogate faster than the speed of light ( - taken to be
unity ). Thus we expect two ohservables associated with
space-like separated regions to be simultaneously
measurable - this is expressed by requiring them to

commute.

Axiom 3. If 0, and Q, are space-like separated regions,

then A(0Q;) 2nd 2A(Q0;) commute.

This makes sense since, by axiom 2, they can both
be identified with subalgebras of B (Q3), for any 0;
containing 0, and Q; . Indeed, any 1(Q) is a
subalgebra of 2.

We would like our theory to be relativistic, so we

make the next

4

4 7 the

Axiom 4. There is a representation o of P
restricted Poincaré group, in AutA, the automorphism
group of A, such that

a({a,AD2(Q) = A(AQ+a)

+

for any region Q in M, and {a,A} eP_.

The last axiom is one of technical convenience.

Axiom 5. A is primitive. (That is, I possesses a
faithful, irreducible representation as operators On

a Hilbert space).
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It is worth noting that, except for the trivial
case, the automorphisms a({a,A}) cannot be inner (l10).
This reflects the global nature of Poincaré transformations
and the exclusion of such from A. To see this, suppose
there is a U(a,A) € A such that

U(a,A)AU(a,p) "t

al{{a,ADhA
for all A e A, {a,A} ¢ P} , with U(a,A) unitary.
Then, for given ¢>0, there is a V € A(Q), with Hvll = 1,
for some region 0, such that (dropping the {a,A})
Ho - vl <e.

Let A€A(Q1), where Qi is space-like with respect to Q.
Then la({a,A)a - 2] = || vau* - al|

< |l vav* - vav#|| + || avv* - all using Av = va,

< Mluaux - vaur|| + |lvaux — vav+|] + 2]l llwv* - nl]

< 20lw = villizl + 1la]l 2¢

< aellall.
This implies that o({a,A})A = A which is false except

in the trivial case.

§1.3 Physical Equivalence.

Since any abstract C*-algebra is isomorphic to a
C*-algebra of bounded operators on a Hilbert space, there
appears to be no particular advantage of the former
over the latter. However, we claim that the abstract
algebra is more fundamental than any particular
representation of it. A1l properties of the system should
be inherent in the absract algebra. This belief is

justified by consideration of Haag and Kastler's notion of



physical equivalence.

Let the system be in a state w. A given experiment
will correspond to the measurement of a finite number
of observables Al,...,An, with resulting experimental
values PyreeesPps and with maximum error £, say. Then

lw() = py] < ¢ for i=1,...,n.

We cannot determine gy uniguely from this data. Indeed,
as far as this particular experiment is concerned, we
can only conclude that the system is in some state u'
with

|w'(A;) - py

l| < g for i=1,...,n.

Thus
lw' (Ay) - w())| <2¢ for i=1,...,n.
So we see that an experiment will give us a
w*-neighbourhood of the state of the system. (The w*-
topology in é*+ is that given by the neighbourhood base
{(N(w,Z,e) | we é*+; » a finite set of elts. of A;e >0}
where N(w,Z,e) is given by
N(w,Z,e) = { w'e a*| Ju'(a) - w@)| <€, vAae L.
Let m and m' be any two representations of A. That
part of é*+ peculiar to a representation is the family
of normal states. We consider m and m' as physically
equivalent if no experiment can distinguish between them.
But an experiment, as we noted above, corresponds to a
w*-neighbourhood of the state of the system. This leads

us to the

16



Definition 1.3.1 Two representations ¢ and 7' of 2

are physically equivalent if and only if any w*-
neighbourhcod of a state of A which is normal in the
representation 7 contains a state which is normal in
the representation 7', and vice versa.

Remark. We can replace "normal” ky "a finite convex
linear combination of vector states” by virtue of the
fact that the latter are w*-dense in the set of normal
states.

Now, there is a theorem, due to J.F=1ll (18), which
says that 7 and 7' are physically equivalent ( Fell's
terminology is 'weakly equivalent') if and only if they
have the same kernel ; i.e. if and only if

{reda|mn@®)=0}={Rren| () =01}

This is the justification for cur claim that it is
the abstract C*-algebra A that is basic, rather than
any particular representation of it (10). All faithful
representations (i.e. those with kernel = {0} ) are
physically equivalent.

It should be pointed out that this is rather a
matter of opinion. Let us 1llustrate this for the case of
a system of charged particles. We shall see later that
the total charge can be used to label the inequivalent
representations of the observable algebra, &. These are
physically equivalent : any state in the charge 3 sector,
for example, can be approximated by a state in the charge
8 sector by adding 5 charges to the original state in a

remote region of space.

17
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However, given a state of definite total charge, it
is possible to determine this charge, i.e. the sector to
which the state belongs, by making a local measurement
( - albeit in a very large region ). One could therefore
argue that the sectors should be considered as physically
distinguishable. Of course, we could now add an extra
charge to the state, in a remote region, without
appreciably changing the value of the above local
measurement.

The point is that for any given local measurement,
there are states from different sectors between which the
measurement cannot distinguish. On the other hand, given
any two states belonging to different sectors, there is a

local measurement which can distinguish between these.+

We shall illustrate the ideas of Haag and Kastler
in the case of a charged Bose field. Although we shall
construct A as A gauge invariant algebra of operators, the
charge sectors, as rcmarked akove; will be seen to be
inequivalent, but physically equivalent, representations
of A.

In further support of these ideas, we shall construct
an algebra of observables,in the charge zero sector,
corresponding to a two-dimensional massless boson, and
from this construct charge carrying fields which behave

as fermions. This is contrary to the belief that fermions,

T I am grateful to Professor R.F.Streater for discussion

of these points.
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in principle unobservable, must be basic constituents of
a theory (42). Our construction is an explicit example,
and a slight variation, of the general theory of
S.Doplicher, R.Haag and J.Roberts (19,20). Before doing

this, let us first turn to superselection rules.

§1.4 Superselection Rules.

The algebraic formalism affords some explanation of
such apparently ad hoc rules. We begin with the Hilbert
space approach. As previously remarked, the states are
described by unit rays in the underlying Hilbert spacec H(12).
The reason for considering these lies in the fact that
Y and eiaw brth define the same expectation wvalues,

(W,ay) = (e1%,ne’%)
for all A e B(H), the set of all bounded operators on
H. The cobservables are self-adjoint elements of B(H).

Superselection rules originated in the observation
that Dirac's superposition principle does not hold
unrestrictedly. For example, one cannot form a state
from a sum of two states ¢ and ¢ if ¢ and ¢ transform
under odd and even-dimensional representations of the
rotation group. This is because under a rotation of 2w,
physically the identity transformation, ¢ is left
invariant, but { becomes -Y. The state given by a¢+8Y
can only be unchanged if a=0 orBf=0. The total electric
charge, baryon number and lepton number are also thought
to define superselection rules (21).

Let us denote by R the subset of EB(H) which



represents the observables. A state is said to ke
physically recalisable if and only if the projection onto
it is an element of R.(12) That the superselection rules
are related to 5', the commutant of R in B(H), can be
seen as follows. If all self-adjoint operators in B(H)
are cbservable, i.e. belong to R, then in particular all
projections are observable, and so all states are
physically recalisable. Thus there are no superselection
rules - all states have a physical meaning. In this
case, R' is trivial, i.e. R' = { 21| 2 e C }.

On the other hand, if R' is not trivial, then there
exists a non-trivial projection in B(E) which is not
in R, and so not all states are physically-realisable,
and we have a superselection rule.

Suppose, follewing Wightman (21;12), that we make
the hypothesis of commuting superselection rules, viz,
R' is abelian. In this case, R' can be diagoalised, and

H is reduced by a direct sum of orthogonal subspaces;

the operators defining superselection rules having
definite values on these subspaces, called superselection
sectors.

The observables map each superselection sector

into itself. Moreover, the restriction of R to each

superselection sector is irreducible. The superpositon
principle holds unrestrictedly in each sector.

We can prove that R' is abelian if it 1s assumed
that the set of physically realisable vectors are total.
This assumption, although seemingly innocuous, is, in

fact, false in the case of relativistic guantum field

20
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theory, if we insist that all observables are local,
and that there are no global observables. Nevertheless,
it is a nice result, and may be relevant to non-
relativistic quantum theory. Let us define the notion
of a coherent subsct of H.

Definition 1.4.1. A subset K in H is said to be

coherent if and only if it cannot be decompcsed as
K = KyU X2 where Ki | K2 and K;,K: # @.
For example, if ¢; and &, are any two vectors such
that (&,,%2) # 0, then K = {&;,%,} is coherent.
If o,Y € S, some subset of vectors of H, we say
that ¢ is equivalent to ¥, denoted & ~ ¥, if there is a
coherent subset K in S such that 9,¥Y € K. To show that ~
is an equivalence relation :
(i) Clearly, & ~ & (take K = {o})
(ii) & ~ ¥ == ¥ ~ $ 1is obvious.
(iii) Let o,¥ € ¥X;, ¥,x € K, with K; and X, coherent.
Let K = K,U K,. We shall show that K is coherent. First
we note that X; [ K, since ¥ ¢ ¥,U Kp. If K were not
coherent, so that K = K{U Kj with K} | K}, then
K; = Kir\Ki)U( KiF\Ki) i =1,2, would ke a non-trivial
decomposition of zither K, or K,, contradicting their
coherence. Thus ¢ &~ y and ~ is indeed an equivalence

relation.

Theorem 1.4.2 (Oksak~Haratian (22))

Let S be the set of physically realisable vectors,

O £ S. If S is total in H, then R’ is commutative.
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Proof.

The assumption O ¢ S is mercly cone of convenience;
0 is orthogonal to all vectors, and is thus never
equivalent to a non-zero vector.

We must prove that A,B ¢ R' = AB = BA. Let Sa denote
the distinct equivalence classcs with respect to the

equivalence nv defined above

S = g Sa ; SaftSB =@ if o # B.
If ,Y € S and (¢.¥) # O, then & ~ ¥. Thus, if ¢ € S _,

o
¥ ¢ SB' o # B, then (¢,¥) = 0. We may thercfore write

il

- [s1= oy,
where H = [Sa] , [+] denotes the linear span of a set

of vectors, and the kar denotes the closure.

H ineg R' = . s ! The E i€
Lemma Define za { FT | ¥ € o }', vhere EW is

the projection onto ¥. Let A ¢ R+ tken 2 maps H,
into itself, and the restriction of A to ga is a
multiple of lﬁ .

=0
Proof of lemma

[A,EW]'= O for all ¥ ¢ Sa , 1.0, AR
for any ¢ € B. Take ¢ = ¥ == AY = E,AY = A(VYyv
for some A(¥) € €. Similarly, A*Yy = A(¥V)V.
Suppose A(¥1) # A(¥2), ¥1,¥2 € 5.

Then (Y1,¥2)

(A (¥Y1)¥y,¥3) ~ A(¥2) (¥1,.¥2)
A(Y1) - A(Y2)

(A*Y;y,¥,) ~ (¥2,2Y¥2) =0 .
A1) = A(Y¥2)

Now let Sl = {¥eS | A(¥) = A(¥1), fixcd Y1 € §, 1.
U

Then S = S s* , say, and §' | ¢* from the above.



But 8 = U{K | XK coherent, ¥; ¢ K in S }, and so
K

S is coherent. [ S
o a

XUY, X l'Y ; Y1 e X =

K= (KnX)U(KN"Y) ¥ K in Sa' K coherent => K \Y = ¢

@

for all K in so =>Y = ¢ ). We conclude that s;
And so A(-) is constant on Sa'
Thus, the restriction of A to ga is a constant

multiple of lq .
=g,

If Ag R'==> A e[ ;R

L
o

, hence A [ E

AL
a
for all o. This proves the lemma.

By the lemma, it is obvious that R' is commutative,

and so the proof of the theorem is complete.

As remarked in (12), R' is commutative if R

contains a maximal abelian subalgebra R, of obhservables.

( R¢g is maximal abelian if and only if R, Ry ). Then

Rp in 5:==~§‘ is in 55 = Roy and so R' is commutative.

The set-ur,; then, is the fellowing. We have a
C*-algebra of operators representing the okservables.
The underlyvinag Hilbert space splits as a direct sum of
superselection sectors. Fach sector corresponds to a
definite value of the superselecting operators, and, on
each sector,; the observakles act irreducibly. R' is
commutative.

We can realise such a set-up from the algekraic
point of view quite easily. Let A be the C*-algebra of -
quasilocal observakles. Each state on A will yield a

representation of A - this is the well-known Gelfand,

Neumark, Segal construction (23,24). This representation
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is irreducible if and only if the state is pure (16€).
There are many pure states on A, and therefore many
irreducible representations to consider. Mot all of
these will be physically interesting ~ we must restrict
ourselves to a subclass of representations.

In practice, A is given as an operator algebra,
and so there is a natural faithful representation to
consider; namely, the representation of 2 hy itself. If
we also require that other interesting irreducible
representations be physically equivalent, then they will
also be faithful. Let us suppose that they are unitarily
inequivalent ( - equivalent ones do ncot provide any
further states ). Thus, we are concerned with a family
(na,gu) of inequivalent, irreducible, faithful
representations of A. We can form the direct sum of
these, (gna,gga), which is also faithful; &m (7) is

uniquely determined by w,(A) for any A ¢ A, and g. In

8

particular, we note that gﬂa(é) does not contain the

projection E_, onto the subspace of gg@.

B g
Let R = gﬂa(é) , and let Q ¢ R’ ; the commutant
being taken in B(@H ). R' is determined by its unitary
elements, so we may suppose that Q is unitary. (Any
element of a C*-alagebra is a linear comtination of four
unitary elements). Suppose there is an ga which is not
left invariant by Q. Let Q, = Q [ H . Then Q,:H ~ QH,

is onto and isomctric, and intertwines 7, and ®n8 I Qaga;
©) = @m (- g,
QM () % g (7)Qq on Hy

D Qa"a = %ﬂs r Qaga )Qa .
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But Ty is irreducible, and so Qa Ea must be contained

in H

=B’
equivalent to QB'NB' r o, B, would be reducible ).

some R. ( otherwise To! being unitarily

Hence

Qp o (*) Q = mg(s) on Q H .

i
B o =0o

But the irreducibility of =, implies that Q B = Hg,

B
and so Qa intertwines Ty and WB , contradicting
their inequivalence. We conclude that any Q € R' leaves
each subspace E = of & H  invariant, and, by the
irreducibility of each T must be a multiple of the
identity on each of these subspaces.

Thus, on quite general grounds, we have proved
that R' is commutative. The various subspaces ga will
correspond to the superselection sectors. Let us note
the great difference between the C*-algebra R, and its
enveloping von Neumann algebra. From the above, we see
that any Q € R' can be written as Q = Za AaEa '
where E_ is the projection onto E,, and {Aa} is a
family of complex numkers, with supalkal < o, (This last
condition ensures that Q 1is a bounded operator). Thus,
the enveloping algebra of R, viz, R". the double commutant,
is egual to the set of bounded operators cn @ H, of the
form & A, where A e E(H,) and sup Jlal] < =. The
elements of R" can therefore be quite independent

operators on each E , whereas R is determined by

its restriction to any one H,.
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2. The Charged Scalar Bose Field.

We have spent some time discussing the general
theory - now we shall construct the local observable
algebras, A(Q), for the charged field, the charge sectors,
and show that these are physically equivalent, but
unitarily inequivalent, irreducible representations of
the guasilocal algebra 2.

This has been discussed by Doplicher, Haag and
Roberts (19), as part of a general theory - we feel,
however, that an explicit treatment in this case is not
without value.

A charged field is a field comprising two
independent fields representing the "particle” and
"antiparticle", respectively (25). By convention, we
choose the "particle” to have charge +1, and its
"antiparticle" to have charge -1l. (The opposite convention
is used for the electron, however).

In mathematical terms, the charged field (i.e. the
system comprising a charged field) is the tensor product
of two "uncharged", but distinguished, fields. It is
therefore described by two neutral fields. It is convenient,
for this reason, to develop our notions and notations

for the neutral Bose field.
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§2.1 The neutral Boson Field.

Let Hp

its complexification.

be a real Hilbert space, and let H be

Definition 2.1.1. The Fock space F over H 1is the

Hilbert space comrletion of the symmetric tensor algebra

over E °
F=0H

(We shall use the symhol © to denote the symmetric tensor

product. The bar signifies completion).

(n) of

Thus the homogeneous components F F are
given by E(o) =@, and for n > 1
p(m) o ygp (-1
® is defined for decomposable vectors in g(n) by
@ez! = z A R,...82
n TeP . W(1) T(n+1l) /(n+l)!
where P is the permutation group on n+l symbols,
n+l
241 = £, and zé = zl@b..@zn is a decomposable vector
in g(n)n The product is extended to the whole of g(n)

by linearity and continuity.

Define F' = {zeF | z = (20,21,...), there is N s.t.
> = .
¥n>N,z =0]
Definition 2.1.2. Civen 1 € H, we define the creation

operator, a*(z), to be the closure of the operator
defined on F' by linear extension of the map given on

homogeneous elements by

a*(z) : £, potd)

a*(r) : zn+ /n+l CGzn .



Definition 2.1.3. The annihilation operator, a(g), is

the adjoint of a*(f), and is given on homogeneous
elements of F' by

a(z)zo = O ¥ z2p £ g(o),

a(r) : E(n+l) - E(n)

alt) ¢ 2py * <Cezn*/mrT

where <f,°> is defined on g(m) by
m 2
<T,210...07 > = Zi=l(§,zi)zl@.,@zi@..®zm

( the "~ signifies omission ).

Thus, a*(z) and a(z) are densely defined

operators for all ¢ € H. We note that a(;):g(n+l)+g(n)

is bounded in norm by vnllz|] and that a*(;):g(n)+g(n+l)
is bounded in norm by vn¥I|| ]| .
a(fy) and a*(g2) satisfy the canonical

commutation relations on E' :

Ca(zy),a*(g2) ] = (L1,52) 1

Definition 2.1.4. We define the field d(r) and its

canonically conjugate momentum II(z) for ¢ € H on E' by

3(z) = 27%( a*(z) + a(g) )
n(zg) "

2 “i( a*(g) - af(g) ).

Then ¢ and 1 obey the Heisenkerg relations on F':

it

[o(zy),o(z2)] = [N(g1),N(z2)] = 0,

[mizi) ,@(52)]

-i(g1,T2)1.
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Using the bounds on a* and a, one can easily show that
F' is a set of analytic vectors for the symmetric

operators ¢(z) and N(z). ( z is an analytic vector for
an operator A if z € DomA" for all n, and if the power

series nzollAnzllmn /n! in ¢ has a non-zero

radius of convergence ). By Nelson's theorem (26), it
follows that ¢(z) and NI (z) are essentially self~adjoint

.on F', and the Weyl relations hold :

LATTET 33T ~iTTE) ~13T8) | L(E,2)

where £, ¢ H. (The bar denotes the closure of the

e.s.a. operators).

Definition 2.1.5. Let R be the C*-algebra generated
in(&),ei¢(6) | ¢ e Hy

by the set of unitary operators {e

(We recall that H is a real subspace of H).

It is well-known that R is irreducible, i.e. R",
the double commutant of R in B(E), is equal to B(E).
This follows from the fact that the state v defined
on Rby A+ U(A) = (Q,AR), where @ = 1 ¢ F°), is pure,
and Q 1is cyclic. (These facts can be proved via the
Stone-von Neumann uniqueness theorem for the case when
E is finite dimensional (27)).

In our applications, we shall only consider @(h),
NN(g) for h,g in a subset of QR' and will therefore
have a slightly smaller algebra than R. This will not

spoil the irreducibility.
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Lemma 2.1.6. Let Di1,D2 be dense in Hp. Let Ro be
the C*-algebra generated by the operators
{ eiQ(h), eiﬁ(g) | h e Di, g € D2 }. Then R§ = B(F).

Proof. We need only show that RY§ contains R, for

then B(F) > R} » R =>B(F) > R{ = R" = B(F). This
follows if we can show that eii(h)e R? and
eln(g) € Rp for any h,g € QR.

It is easy to see that Q(hn)z converges strongly
to &®th)z if hn converges strongly to h in gR, for
z € F'. Similarly for H(gn). Since R§ 1is strongly

closed, the proof is complete if we can show that

and e n converge strongly to eiQ(h)

and e , respectively. Thus, to complete the proof,

we shall prove

Lemma 2.1.7. Let {An}, A be a sequence of operators

on a Hilbert space, H.

Let D in HE be a domain of

essential self-adjointness (i.e. a core) for A and An'

¥n=1,2,... . Suppose, further, that An + A strongly

on D. Then elPn 4 1B strongly in H.

Proof. We shall show that the resolvents Rn(A) of
Xﬁ converge strongly to R(A), the resolvent of A.
Let A € €, Rel # O. Let z € (A-A)D. Then

HC R (D-R() )zl IR, (A) (a=n )R (M) 2]

fia

kM) || E-B )R 2]l

since HRD(A)H <k (1) for some constant K depending on

A ( independent of n ).
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k() H(K-in)z'“ some z' ¢ D,

Kk (A) H(A-An)z'l|+ O as n =+ «,
Now, (A-A)D 1is dense in H. To see this, consider
first A = i. Let z2' ¢ D. Then

|| @zimyz' | = || Az + || 2|

( since A* is an extension of A, and so A*z' = Az’
for z' ¢ D). Let z # O be such that (z,(A-il)z') = O

for all =z' e D. It follows that =z € Dom(A-il)* and

o)

((A~ill)*z,2z') = ((A*+il)z,z2').

But A is e.s.a. on D =>A** = A*, Thus 2z ¢ Dom(A**+il)

and
O

((A**+ill)z,2") ¥ z' € D.

D is dense, so (A**+ill)z = O,
=> || a**z ||2+ |]2]] * = 0, = ||z]| = o,

a contradiction. Hence (A-il)D is dense.

A-Reh _ in.] . WwWe conclude

Since A=\ = Imk(
Imi )

that (A-\1)D is dense, and therefore R_(A) > R(})
strongly. This implies that (28)

e"'n *>e strongly. Q.E.D.

The proof of lemma 2.1.6. is now complete.

Now let us consider the special case when
H = L>(m}4Q), where df is the relativistic measure
on the positive-energy mass-hyperboloid (here identified

with R?%); af = a%k/2vk*+m*. In this case, AT
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the space of all symmetric complex-valued functions of
n 3-variables, square-integrable with respect to the

indicated measure. a(f) becomes, for z € g(n),

m—cine

a(t) : z (kyseisky) /0 [ TRz, (kiky,iooky) 40

and a*(r) becomes

+1 "
a*(g) : z (kyreoik) > ;:— 1iay Elky)z (kyveerkyvenikp)

Definition 2.1.8. Let £,9 € S{R?), the Schwartz space

of rapidly decreasing, smooth functions, be real-valued.
The neutral relativistic field at time t, and its
conjugate momentum, are defined as the operators,

with core FE',

b (£:t) = 2 ¥ (a*(F) + a(F))

m(git) =27%i (a* (G) - a(G))

where F(k) = vZ ™™ £(-k) and 6(x) = /2 ™ vIF(-0),

p(k) = /(k2 + m2) , and E(k) = (2m) " 3/2 [ oKX £(y) alx,

similarly for g(k).
Our main concern will be with the time-~zero fields
which we shall just write as ¢(f) and w(g) , resp.

These are given simply in terms of ¢ and I by

d(f) = 3(F) and Tig) = I(G),
where F(k) and G(k) are as above, but with t = O.

As before, we have the Heisenberg relations on E'
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[rtg) 0 (6)] = -if G(k) F(k)an = -i [ g(x)£(x)d’x.

To each real pair (f,g) ¢ S(IR?¥)xS( R?), we
can associate a real solution g(x,t) of the Klein-
Gordon equation (ai-v2+m2)g = O ; namely, the solution

with Cauchy-data (f,g) :

E(x,0) = £(x) , E(x,0) = g(x).
(We shall use a dot to denote the time~derivative).
Now, ¢(f)-m(g) 1is e.s.a. on F', so we can define
W(E,g) = ol (9 (£)-7(9))

We may write W(() instead of W(f,g) in view of the
correspondence £ +«++ (f,g9). It is not hard to see that

the W(f) satisfy the Segal-Weyl relations
WEL) W(E) = e 4 {E1/B2) g g,

where (£:;,£2} 1is the Wronskian between the two solutions

g1 and £ :
{£1,62 = [ (Eatx,t)E2(x,t) - E1(x,t)E2(x,t))a%x,
t=const.
Let us define an action of P:, the restricted

Poincaré group, on FE. Let {a,A} e]P:, and define (29)

an action U(a,A) on H = L?*(IR?,49) by

ua,A) ¢ hik) + et(@%) nuly)
_ k’= u(k)

( (a,k) 4is the Lorentz scalar product a’k’- a.k )

This is a strongly continuous unitary representation

4

of ZD+

in H, which extends to a unitary representation
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I'(u(+,*)) on E. T(U(+,*)) is given on decomposable

vectors h,@...6h  in g(n) by

]

r(u) h,0...6h Uh

1 n 1@...®Uhn

I'(U) leaves F' invariant, and

1

rama™ mrw ! = at™ (wn)

*
where a( ) denotes a or a*.

It can be shown that

1

T(U(a,M))W(E)T(U(a, M) " = W(E, ,)

where Ea’A(x) = E(A-l(x-a))-

We are now in a position to define the local algebras.

Definition 2.1.9. Let O be any region in Minkowski

space, M. We define E(Q) to be the set of solutions,
£, of the Klein-Gordon equation, with the following
property : there is a flat hyperplane (3-dimensional),
J, depending on £, such that JnQ # @, and the

function £ ' J has support in JNOQ.

Definition 2.1.10. We define A(Q), for a region Q

in M, to be the C*-algebra generated by
{ w) | £ e E(Q }.
A is the norm closure in B(F) of { A(Q) | 0 in M }.
Clearly, the A(Q) satisfy isotony, and one can

show that

[a@.a@)] =0



if O and 0, are space-like separated, and that
I'(U(a,A)) A(Q) I‘(U(a,.A))-l = alg, )

by using the fact that
r(u(a,A)) WE) T(uaa)t = WE, 4)-

Thus { é(g) } satisfies the axioms 1 - 4 of §l1l.2.
A is generated by all W(g) where g has real Cauchy

data with compact support: that is, by the operators

e

l¢tf,"‘"(g) with f’g £ 2( ]Rs). Taking f or g to be

zero, we see that A contains all operators of the

form eiETf), eiﬁT&). Now, ¢(f) = ®(F) and 7(g) = N(G),

where F(k) = vZ £(-k), G(k) = vZ u(k)3(-k). F and G
are smooth, rapidly decreasing, and have the property
F(k) = F(-k), G(k) = G(~k). H can be written as the
complexification of Hp, = { he H | h(k) = h(-k) }.
The F's and G's lie dense in gR, and so we may apply
lamma 2.1.6, to conclude that A is irreducible. Thus

axiom 5 is also satisfied.

§2.2 The Charged Boson Field

As we have said before, the charged field is
built from two distinguished neutral fields.

Let gf and F  be two distinguished Fock
spaces over L?(1R?,dQ). Then the Fock space for the

charged field is
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Let a} and a, be the creation and annihilation
operators in gi, respectively. Ve interpret ai@]& as
the operator creating a particle with charge +1,

a,® 1 as that destroying a particle with charge +1 ;

with analogous interpretations of 1I®a* and 1@a_.

Definition 2.2.1. The number operators N,  are defined

+
on F™' by

t(n)
Ni 2z, > nzn v zne F

The total number operator N in F is defined as
N=N®IL + I1eN_.

The total charge Q in F is defined as
Q=N@8IL - 18N_.

Clearly, N has eigenvalues 0,1,2,.., whilst Q has

eigenvalues 0,%*1,%2,...

Definition 2.2.2. The charged field, smeared with a

real test-function £ € S(R®) is defined as the closed

operator given on E'S F''8F ' by

$(£) = 27 % (ax(F)O 1 + 1Lea_(F))

where, as before, F(k) = vV2f(-k).
Its "complex conjugate" is
-
¢*(£) = 2 *(a (F)® 1 + IL®a*(F)).

We see that ¢ (f) creates a charge +1, and destroys a
charge -1. We say, therefore, that ¢(f) carries a charge

+1. Similarly, ¢*(f) is said to carry charge -1.



The momenta are defined, for smooth real g, by

T(g) = 2—%i(ai(G)® 1 - 1®a_(G))
T* (g) =—2_%i(a+(G)®.n - 1®a*(G))

where G(k) = v2 u(k)§(k).

The Heisenberg relations hold on E'

Cote),m*(g)] = [o*(£),m(a)] = 1[?"@(;(5)(19

i [ £(x)g(x)dix.

All other commutators wvanish.

As in the neutral case, we would like to construct
the local algebras from bounded functions of these
fields. However, they are not symmetric on E'. We must
take linear combinations. The operators ¢ (f)+¢* (f),
T(g)+m*(g), i($(£)-9*(f)) and i(m(g)-7*(g)) are
symmetric on F', and, moreover, E' is a domain of
analytic vectors for them. We can, therefore, define

the unitary operators

w(f,qg) exp i(¢(£)+¢* (f)-7(g)-1*(qg))

71 (fvg)

exp i(1(P(£)-d*(£))-1(m(g)-T*(g)))

- the generators being e.s.a. on E'. In fact, on E',

¢ (E)+¢* (£)-m(g)=T*(g) = ¢, (£)® L+ 18¢_(f)
-n+(g)8 1- 1en_(9g)

and
i(¢p(£)=¢*(£))-i(n(g)-1*(g))

= ¢, (1f)8 1-7_ (ig)® 1- 18¢_(if)+ 1&7_(ig)

37
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where ¢i(f) and ﬂi(g) are defined as‘in definition 2.1.8
in gt, respectively. (We have used the antilinearity of
a(*), viz, a(iF) = -ia(F)). So if £ is the solution of
the Klein-Gordon equation with £ and g as Cauchy data,

and if we write W(g) for W(f,g), we have that

Ww(g)

W, (E) ® W_(E)

and

Wi(E) = W, (4E) ® W_(~1E)

where W_(-) are the Weyl operators, as defined in the

+
previous section, actling in F~, respectively.

§2.3. The Local Field Algebras.

Definition 2.3.1 Let O be a region in M. IF(Q) is

defined to be the C*-algebra generated by the W(§)
and Wi (§) with £ e E(Q).

Let IF be the norm closure in B(F) of {1IF(Q)|0 in M}.
F is called the field algebra of the charged field ;

the F(Q) are the local field algebras.

Let T', (U) be the unitary representations of PI
acting in gi as previously defined. We define the

strongly continuous unitary action T'(U(-,°)) in E by

{a,A} » T _(U(a,A)) ® T_(Uula,A)).

Thus,

P(U(a,A))W(g)F(U(a,A))-l

W(E, ,)

and -1
r(u(a,n))w, ()T (v(a,n))

Wl(Ea’A)-

The { F(Q)} satisfy our axioms 1 - 4.



There is another rather natural definition of
the local field algebras

Definition 2.3.2. Let O be a region in M. Let ]ﬁ(g)

be the C*-algebra generated by the operators

{w (e, new_(g)| & e E(0) }.

The ]ﬁ(g) define a perfectly satisfactory local
relativistic theory, because the Wi(-) do. However,
Zﬁ(g) is antilocal with respect to F(Q) in the sense
of Segal and Goodman (30). To see this, suppose £ has
Cauchy data (f£,0) with suppf compact in R%®. Then Zé(g)

contains the operator el¢+(f)® 1 if § € E(Q). But

¢, (£)® 1 = (¢ (£)+¢* (£)-1(m(£1)-7* (£1)))

1

where £, (k) = £(k) u(k) ‘.

Thus

LT, g g o SEDIF (D) ~hi (Tn(E1) 1% (£1))

The first term on the right hand side kelongs to IF(Q),
but the second term does not. This is because of the

1 (30).

antilocality, in x-space, of the operator u(h)-
Indeed, f(x) and f,(X) can only both vanish in an open
set if they are both identically zero. Thus £1 cannot
be part of compact Cauchy data : fi cannot vanish
outside suppf.

The algebras IF(0) are preferable to the ]E(g)

because the former associate ¢ (f) to the region Q if

(£,0) <« £ € E(Q).
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Theorem 2.3.3.

IF is irreducible.

Proof.

Using such equalities as

ie, (£) o210 (£)+0* (£) -%i(im(f1)-Im*(£1))

1l =

and lemma 2.1.6, one shows that IT" contains all the

operators

111

{w (5)®e 1, new_(&) | £ e € = (0) 1.

o <

The result now follows from the fact that the W+‘s
form an irreducible set, and the fact that
(A®B) ' = A'@B'

for any two von Neumann algebras A and B.

§2.4. Gauge Transformations.

We have defined the algebras IF(Q), but have not
vet specified the observable algebras A(Q). An
observable does not change the charge of a state -
observables are electrically neutral. This means
that we should construct the observakles from functions
of the fields ¢,¢*,nw,n* which contain as many starred
as unstarred fields. This being so, our observables
should remain invariant under the simultaneous

-i0
e

b*,

so-called gauge transformation ¢ > ela¢, o*x -

io ~ia
T e m, Tk > e wk,

Thus, we rigorously define such an action on E,

and define A(Q) as the gauge invariant part of FE(Q).



Definition 2.4.1. On , define the unitary operator

U+ (u)l +ia
- U+(a) : h»e " 7h for O < a < 27m.

Ut(') induces a strongly continuous unitary group

F(Ui(-)) on F :

P(Ui(a)) s hl®°"®hn > Ui(a)h]_@...@t}i(a)hn

for hl®...®hn a decomposable vector in gi(n).

The tensor product T(a) = T'(U (a)) @ I'(U_(a)) defines

a representation of T, the torus, on E. T is called

the gauge group. Moreover, on F', we find that

T(a) ¢ (£)T () L = e¥% (£)

I (0) 6% (£) T () "%

e 1% (£)
(Similarly for m and T7¥).

Thus, the indicated gauge transformations
correspond to the spatial automorphisms implemented
by I'(*). The generator of the strongly continuous,
one-parameter group [I'(*) is nothing other than

N.®L —1s8N_ = Q, the total charge operator.

Definition 2.4.2. The local observables are the

gauge invariant elements of F(Q)

A(Q) FQ)NAT(T)'

where T(T)' is the commutant, in B(E), of the

set { T(a) | ¢ €T }.

A is the norm closure, in B(F), of the set

{ a(Q) | @ a region in M }.
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As sub-algebras of theIF(Q), the A(Q) satisfy
axioms 1 - 4, Ve shall see later that axiom 5 also

holds.

§2.5. The Charge Sectors.

The charge operator, Q, has eigenvalues 0,+1,%+2,..:
the eigenspace corresponding to the eigenvalue q is

denoted gq. Clearly,

or _ +(n)=.~(n-q)
Eq = ®n£ |F if g < 0.
Also
o0
E=0_F.

Since A commutes with I'(*), we see that A leaves
each gq invariant. This is a restatement of the fact
that the elements of A do not carry any charge.
Accordingly, the restrictions of A to the various gq
define representations, wq, say, of A. These represen-
~tations are called the charge sectors.

We expect these representations to be physically
equivalent. Indeed, as in our discussion in §1.3, a
state in the g-sector can be made arbitrarily close
to a state in the g+l-sector by adding a particle with
charge +1 in a sufficiently remote region of space.
This argument can be made quite rigorous ; we shall

need two lemmas.
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Lemma 2.5.1. Let A € A(Q), and let O, be a space-

-like region with respect to Q0. Suppose (£,0) is the
Cauchy data for some solution £ € Z(0;). Then for

any z,z' € F',
(z,Ad(£)2') = ($*(f)z,Az’)

i.e. ¢(f) and A weakly commute on a dense set.
Proof.

By construction, W(AE), Wi (AE) € F(Q:1), for
all A € R. Therefore they commute with A, and so,

taking z,z' € E',

(W(-AE)z,Az")

(A*z ,W(AE)z")

and

(W1 (-AE)z,Az') = (A*z,W (AE)z').
But  w(Ag) = exp iA(F(E)F6* (£))
and

W1 (AE) = exp iA(i¢(£f)-i¢*(f)).

The result now follows by taking the derivative, with

respect to A, at A = O, cancelling the i's, and adding

the two resulting equations.

Lemma 2.5.2. Let I denote the linear span (i.e.

finite linear combinations) of decomposable vectors

in E of the form h = h;6..6h 8h ,,0...6h for some

1l
integers n and m, where h, ¢ S®?) for all i.
Let £ ¢ D(IR?), be given such that £ is normalised

to unity in L2 (R3}dQ). Let £, be the translate of f,

i.e. fa(g) = f(x~-a). Then ¢*(fa)¢(fa)h converges
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weakly to h as Igl + o, for h € I.

Proof.

Let h ¢ £. Since ¢*(fa)¢(fa)h is uniformly
bounded in norm, we need only show that
(¢*(f2)¢(f2)h,h') + (h,h') as |a] » «,

for h' in a dense set in F. Now, £ is such a set, so
we choose h' ¢ I. Writing ¢ and ¢* in terms of creation

and annihilation operators, we obtain
(G* (£ )¢ (£,0h,h") = %( (aj(F)a, (F)® Lh,h')
+ (a+(F)®a_(F)h,h') + (ai(F)@af(F)h,h')
+ ( L®a*(F)a_(F)h,h') + (h,h")[|F(k)]2d9 )

where F(k) = vZ £_(-k) = vZ e *%:2 £(-k), and we have

made use of the CCR to obtain the last two terms.

The first four terms all contain a factor of the

form

~

(F,h") = I/? et¥-2 £(x) n"(x) ao

where h" is some function in S(R?®). But this converges
to zero as |a| + =, by the Riemann-Lebesgue lemma. The
fifth term is just equal to (h,h') because of our

normalisation of f£f. Q.E.D.

We can now prove

Theorem 2.5.3. The representations {ﬁq | 9 =0,#1,..}

of A are physically equivalent.
Proof.

It suffices to prove that T and 7 are

a+l
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physically equivalent.
Let w be a state on A given by a finite linear
convex combination of vector states in the representation

ﬂq. That is, w has the form

=7 N .
w(s) = zi=1 Ai(zil“q( )zi)
for some integer N, vectors z;e E, lizgll = 1,
and A,e R ZN Ay =1
i I Li=1"1 '
Let N(m,Al,...,Ap,e) be a w*-neighbourhood of w ;

N(w,Ay,.. A ,€) = {w'ea*’| o' (a

b —m(A£)|<e,£=1,..,p}.

9!
Suppose, first, that Al,...,Ap € A(Q0), for some region

0. Let I be as in lemma 2.5.2. Then we can choose

hje INE,, 4= l,..,N,IIhJI = 1, such that the state

W' (+) = Jiog2y (hy,mo()hy)

belongs to N(m,Al,..,AP,%e). (This is possible because

ergq is dense in gq, and N and p are both finite).

Define a positive linear functional p,(*)

given by
= TN .
pé(') = zi=1xi(¢(f§)hi'“q+l( )¢(f2)h1)

where suppf is compact in IR’.pa is not a state, since

it is not normalised; pa(')/pa(l) is a state, however.
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By lemma 2.5.1, we can write pa(Ag) as
N
Pa(Bg) = Ii_y A (O*(E )0 (£ )by ,Ach,)

£ =1,..,p, for |a| sufficiently large.

Now, by lemma 2.5.2, we see that
po(X) +» w'(X) as |a| + =,

for X = ]].,Al,.- 'A

p ¢ i.e. °g(x)/°§(n) + w'(X).

Therefore, pg(-)/pé(m € N(w',Al.--.Ap,%e) for |a|
sufficiently large, in which case pa(-)/pa(BJ is in
the neighbourhood N(w,Al,..,Ap,e) of w.

We must remove the condition A A e g(g).

ll"'

P
Let Al,..,Ape A. We can find Ai,...Aé € A(Q), for some

9, such that [|A -A¢]| < ¢, for £ = 1,..,p.

Given w, we construct pa(-)/pa(ﬂj as above, and

deduce that it belongs to N(m,Ai,..,Aé,e). But

- Y ’
lotdg) =, (Bg) /0, (M| < [ulBg)-p, (A7) /p, (W]
+2]|ag-a |
< 3e.
Thus pg(')/pg(l) € N(w,Al,..,Ap,3e). Since €>0 was
arbitrary, we conclude that the set of finite convex
linear combinations of vector states in "q+l is w*-
dense in those in wq.
Reversing the rbles of q and g+l and replacing ¢
by ¢* in the above argument, we conclude that nq is

physically equivalent to nq+1. QED.



We can now apply Fell's theorem to the various
sectors, with the conclusion that all the wq have the

same kernel. It follows that Gqﬂq has the same kernel
as each wq. But enq is faithful, and so the same is

true of the representations Ty

Theorem 2.5.4.

Each ﬂq is a faithful, irreducible representation

of A. In particular, A is primitive. If g # g', then

nq and ﬂq, are unitarily inequivalent.

Proof.

We have already noted that each wq is faithful.

To prove the irreducibility and ineguivalence, we
reproduce the proof given by Doplicher, Haag and
Roberts (19).

We define the mean of an operator with respect
to the unitary representation I'(*) of the gauge group T,

m : B(E) + B(E)

_12w -1
m: X > (21) ~f T(a)xT(a) ~do

(6]
The integral is a weak integral. Clearly, m is a map

from B(F) onto { T(a) | o e T }'.

Lemma 2.5.5.

(a) T(@)m()T(@)" L = m(T(e) ()T(x)™ ) = m(*).

(o) m(*) is weakly continuous on bounded sets.



Proof.

(a) is obvious.

(b) We shall give an explicit alternative proof to
that of (19).

Let X be a weak limit point of the set

{aeB(F)| ||A]} < K}. Let {x,} be a net with |]xvu <KV¥v
such that xv converges weakly to X. We must show that
m(xv) + m(X) weakly.

Let z,z'e E. Then

b -
(z', (X)) -m(X))z) = [ (z',T(a) (X,-X)T (@) tda

1
fo(F(a)*z',(xv—X)r(a)*z)da

where we have identified T with [0,1).
Fix aoe T. Then, given €>0, there exists v(ao)

such that ¥ v>v(ao)
(T (o) *2', (X,=X)T (a0) *2) | < €.

However, the continuity of T'(*) in o implies that this
inequality, with 4e on the r.h.s., holds for all a in
some neighbourhood of op.

To see this, put A = X -X. Let a be fixed. Then,

given €>0, there exists v(a) s.t. ¥ v>v(a)
| (T(a)*z',A T(a)*z)| < €.
Let v,v'>v(a). Then

| (z',T(B)A T (BY*2) = (2',T(a)A T (a)*z)]



Ia

| (z*,T(B)A T(B)*z) - (z',T(a)A T(a)*z) |

+ I(z',F(a)AvF(a)*z) - (z',T(0)A T (a)*2) |

iA

I(Z'.P(B)AvF(B)*Z) - (z'uF(B)AvF(a)*Z)I
+ | (2", T(B)AT(a)*z) = (z',T(a)A T (a)*z)]

+ | (2" T(a)A T(a)*2) - (z',T(a)A T (a)*z)]

<z A T )y *2-T (a)*z|| + || z[ll[a HIT(B) *2'~T (@) *z" |

+ €+ € (sincelll(-)] = 1)
< 3e provided |B-a| < some &, since T'(-) is strongly
continuous, and [[a || < 2K ¥ v.
Hence

I(Z'.P(B)AvF(B)*z)l < 4g
for |B-a| < &8, and ¥ v>v(a), as asserted.
Now, by varying ao, over T, we get a family of

v(a)'s, and a corresponding family of neighbourhoods,

{N(a)}. The {N(a)} cover T, and so the compactness of T

implies that there exists GyreesOy St T = U?alN(ai).

N

Let 0 > max{v(a;)|i=1,..,N}. Then, for any aeI, and v>9,
I(P(a)*z‘.(xv-x)r(a)*z)l < 4e

since aeN(a;), some ie{l,..,N}.

Hence, ¥ v>9¥,
1
|fo(r(a)*z',(Xv~X)P(a)*z)da | < 4e.

This completes the proof of part (b) of lemma 2.5.5.
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Lemma 2.5.6.

Let B be a C*-algebra in B(F) such that
m(B) < B, then (BAT(T)') =B nT(T)'.

(The bar denoting the weak closure).
Proof.

Since m(B) < B, (a) of lemma 2.5.5 gives
BAT(T)' = m(B). Thus (B~T(T)') = m(B) .

Now suppose B is a weak limit point of B. Then,
by Kaplansky's density theorem (31), B is a weak limit
point of a net {X eB| X, Il <IiBll ¥ v}. It follows
from lemma 2.5.5 (b), that m(Xv) + m(B) weakly, and
m(B) € m(B) . Thus m(B ) < m(B) .

Any Bem(B) is the weak limit of elements of B
invariant under m. As above, we can find a net,{xv},
in m(B) with m(xv) > m(B) weakly. But X € m(B) implies
that m(xv) = Xv + B weakly. Thus m(B) = B, and so
m(B) < m(B ). We have, then, that m(B ) = m(B) .
Therefore m(B ) = m(B) ¢ B , and so, by lemma 2.5.5 (a),
B ~T(T)' =m(B).

Hence B MT(T)' = (BAT(T)') . QED.
We are now in a position to prove theorem 2.5.4.

From the definition of A(Q) and A, we get
A(Q) =TF(Q) ~AT(T)' = m(TF(Q))
and, by the norm continuity of m,

A=m(IF) = FAT(T)".
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Now, by theorem 2.3.3, IF is irreducible, and so,

by lemma 2.5.6,
A = F AT(T)' = T(T)"'.

So we see that the sectors gq reduce A as well as A.
Moreover, I'(T)' = @qg(gq), and so each nq(é) is
irreducible.

Let Eq denote the projection onto Eq' Then

Ege TR m (D))" = A~ A'. Thus E, and F_, are the

central supports of m_ and ﬂq, (31). These are

a

orthogonal for g # q', and so ﬂq and ﬂq, are disjoint

(see 5.2.1 (iii) of (31)), and are.therefore

inequivalent. QED.

Thus, regarding A as an abstract algebra, we see
that the axioms 1 - 5 are satisfied.

We proved, in theorem 2.5.3, that the sectors
are physically equivalent. In fact, they are strongly

locally equivalent in the sense of Borchers (32).

Definition 2.5.7. Let my and 7, be two representations

of the quasilocal algebra A. We say (32) that m; and
m, are strongly locally equivalent if and only if
for any region O in M, the C*-algebras mi"A(Q') and
m2[A(Q'), where A(Q') is the C*-algebra generated

by {é(g1)| 01 a space-like region with respect tbo o}



are unitarily equivalent,

my and w2 are called locally equivalent if and

only if m[A(Q) = w,['A(Q) for any region 0.

Theorem 2.5.8.

The representations {nq | @ = 0,+1,+2,..} are
strongly locally equivalent.
Proof.

Let O be an arbitrary region in M. Let EeZ (Q)

be such that its Cauchy data has the form (h,0).

The unitary operators expis (¢ (h)+¢*(h)) and

expis (i¢p* (h)-i¢ (h)) commute, and so they can be
expressed as complex functions of unit modulus defined
on some measure space S; i.e. there is a unitary
equivalence U between F and L?(S,dm), such that the
aforementioned unitary operators are represented
as multiplication operators (17).

By taking the strong derivative with respect
to s, and using the fact that |z]|2%= |Rez|2+ |Imz|?

for £ € €, we conclude that

Dom ¢ (h) = Dom ¢* (h)

= Dom (¢ (h)+¢* (h)) N Dom (¢* (h)-¢ (h))

and that Uq>(h)U—l

is multiplication by a complex-
valued m-measurahble function on S with domain UDom ¢ (h).

In other words, ¢(h) is a normal operator (17).
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$(h) can be writtem as
¢ (h) = /p*(hY¢(h) V

where V = ¢ (h)/v/¢*(h)$ (h) is a unitary operator.
(This decomposition is obvious by virtue of the fact
that ¢ (h) is equivalent to a multiplication operator).

Now, ¢*(h)¢(h) is self-adjoint on its natural domain,

and commutes with TI'(T), and so therefore does V¢*(h)¢ (h).

But ¢ (h) is a map from the g-sector into the g+l-
sector. It follows that V is a unitary operator

mapping Eq onto I

Eg+1- Moreover, V is a function of

operators in IF(Q), and so commutes with all
operators commuting with ¥(Q). In particular, V
commutes with A(Q'), and since A(Q') leaves the sectors

invariant,

vV, (aQh = wq+1(§(g') V onE., ¥aq,

. 1 ~ 1]
By iteration, we see that
ﬂ Q') =7
q M A"

for any gq,q' = 0,%1,%2,... QED.

Remark This proof breaks down if we take the local
field algebras ¥ (0) in definition 2.3.2. This is

because ¢ (h) is equal to
X(p(h)+o*(h)) + %i(i¢* (h)-id(h))

= 5(¢,(h)® 1 + 18¢_(h)) + %i( Lem_(h1)-7, (h1)8 L)

53



where hy (k) = h(k)u(k)™ L.

Consequently, V cannot be associated with ]E(Q), and
so we cannot deduce, as before, that V commutes with
the commutant of Zé(g).

Using the "~localisation, it has been proved by
G.Dell'Antonio (57), and independently by J-L.Bonnard
(unpublished), that gauge transformations of the second
kind (i.e. those in which a is x-dependent) are not
locally implementable. (An automorphism of the global
algebra is said to be locally implementable if its
restriction to any local algebra is implementable).

This would appear to contradict the work of
M.Fitelson and R.Johnson (58), ir which they are able
to construct the local generators of such
transformations (-albeit in two space-time dimensions).

The point is that these transformations may well
turn out to be locally implementable with respect to
our preferred, and in our opinion, more physical,
localisation. This, and related questions, is at

present under investigation.
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3 The Massless Bose Field, its Sectors

and Associated Charged Fields.

In chapter 2, we showed that the inequivalent
representations of the observable algebra, A, (defined
as the gauge invariant part of the field algebra, T),
occuring in an irreducible representation of I were
strongly locally equivalent. Since the observable
algebra, A, contains all the physical information,
we can regard T as an auxiliary construct. That is
to say, it should be possible to construct charge
carrying fields given the algebra A. In other words,
given A in the vacuum sector, we should be able to
construct all other sectors.

We shall not do this in complete generality,
but rather we shall consider a particular model. We
take A to be the C*-algebra associated with the
massless boson field in two space-time dimensions.

¥We shall construct various inequivalent
representations of A - those given by applying
localised automorphisms to the Fock representation.
These representations turn out to be strongly
locally Fock, and each one contains a strongly
continuous representation of the restricted Poincaré
group, having energy-momentum spectrum in the closed
forward light cone, V+.

We find that our "charge” takes doubly-

continuous values, i.e. values in RXIR, and that the



charge carrving fields do not obey the Bose-Fermi
alternative, except for a discrete countable number
of values of the charge.

Finally, we identify an uncountable number of

copies of the torus with the gauge group : G = xaeI T

where I = [0,1)x[0,1) and T, is the torus for all ael.
Our model is suggested by an early paper of
Skyrme (33,34), where there is an explicit formula
for the fermion fields in terms of the boson field.
It should be mentioned that the study of the
charge sectors given the charge zero sector was
initiated by H.J.Borchers in the mid-sixties (32).

His results, however, are inconclusive.

§3,1. The Zero-Mass Bose Field in Two Dimensions.

The construction of the local algebras etc.
is almost the same as for the case of a massive field -
the difference is that the invariant measure on the
positive~energy mass-hyperboloid is singular for
zero-mass particles. This creates problems if we
want to consider the field as a Wightman field, i.e.
as an operator-valued distribution. In fact, there is
no such field in two dimensions (35,36). This is
because there is no Lorentz-invariant tempered, Puih&e
distribution defined on the light-cone (35). We
avoid this difficulty by restricting our test-

function space (37).
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We shall give the complete construction of A
for the massless case, as this is simpler, and less
messy, than pointing out the differences between the
present case and that for the massive field.

Let us take an explicit, and less abstract,
formulation of Fock space, and the creation and
annihilation operators.

The one-particle space is K = L2 (R,dR), where
d2 = dp/2|p|. We shall also use w to denote |p].

Let H be the Fock space over K ;

®K = & _ K
~ "n=0 "n

(l=+
"

where KO= €, and Kn is the space of symmetric

complex-valued functions of n variables, square-

integrable with respect to the product measure 8"aq.

Definition 3.1.1.(29)

For each FeL?(R,dp), we define the annihilation
operator as the closed operator, given by its action

on homogeneous elements of H as

=
+
T
@)
et

a(F) :

a(F) : K+ K

(a(F)hn)(pll"fpn_l) = /HIF(p)hn(p'pl""pnnl)gE

v2Tpl
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a*(F) is its adjoint, given explicitly on

homogeneous elements of H as

* (Y
a* (F) : Kn »> Kn+1

- _ n+l
(a*(F)h ) (py,e.sP 1) = _;IZ 1721P IF(D Yh_(py.- .pj..pn+l)
vyn+

As before, a(F) and a*(F) define closed,
densely-defined unbounded operators in H. If one puts,
formally, F(¢) = 8§(*-p), a(F) and a* (F) become the
creation and annihilation forms a{p) and a*(p), as
defined in (29), for example.

To define the time-zero fields, ¢, w, let D
denote the real test-function space of smooth
functions on IR with compact support.

Let Do = { feD | E(O) = 0 }, where, as usual,
£p) = (2m 3£ (x)etP¥ax.

Let us denote by M the set of real-valued

pairs (f,g)eDo*D. Then, for (f,g)eM, we define

$(£) = 27  (ax (F_)+a(F,))

m(g) = 27%i (a*(G_)-a(G,))

where F, (p) = |p] %2 (+p) ; G, (p) = Ip|¥5(+p).

Our restriction to feDo implies that E(p) is
analytic in p in a neighbourhood of the origin, and
that it behaves like p near the origin. Thus IpIG%E(p)
is finite at p = 0, and so belongs to L?( IR,dp).

Accordingly, ¢(f) is a well-defined operator with
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dense domain. In fact, as in §2.1, ¢ (f) and w(g) are
essentially self-adjoint on H', the algebraic direct
sum of the K. .

Let £ be a solution of the two~dimensional
wave equation, atzg—ang = 0, with Cauchy data

(£,9) eM ;
£(x,0) = £(x) , £(x,0) = g(x).

We have a correspondence between M and a subset
of real solutions of the wave equation. Let us denote
this subset also by M. The restricted Poincare group,
in two-dimensions, acts on these solutions, as in §2.1,
by

{a,A} : & »+ ga,A

£,40 = 80 H(x-a)), x € R,

Now, M is invariant under this acticn. To see
this, we note that the Wronskian between any two
solutions is invariant. Taking £€eM, and the constant
solution, we have that fE(x,0)dx is invariant. But
E(O) = 0 is equivalent to ff(x)dx = O, and so this

invariant is zero, and implies that Ea A(x,O)ep__o.
4

Let us denote ¢(f)-m(g) by {4,8},
vhere £ «+ (f,g9) € M. (The notation is meant to
indicate that ¢ (f)-7(g) is the Wronskian between
the two solutions ¢(x,t) and &(x,t) of the wave-
equation). As in §2.1, {¢,£} is self-adjoint and

has H' as a core; moreover, we have the Segal-Weyl
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relations :
WENW(E,) = e T¥l81E2kyip e )
= e HMEirle by yu(ey)

where W(E) = e1{¢’€}, and {£,,£,} is the Wronskian.

Just as in §2.1, we can give M a local structure.

Definition 3.1.2.

We define M(Q) as the set previously denoted
by £(Q), but we only consider convex regions Q in

Minkowski space, M.

Definition 3.1.3.

We define A(Q), for an arbitrary region in M,

as the von Neumann algebra generated by the set

{ w(&) | €eM(01), Q1 in Q}.

So although we have only defined M(Q) for convex
regions, O, in M, we have defined A(Q) for arbitrary Q.
According to our definition, W(£)eA(Q) if and
only if W(£)eA(Q1), for some convex (and therefore
connected) component Qi1 of O. Suppose Q = 01U Q2,
with Q1, Q2 disjoint convex regions. Then it is
natural to require that A(Q) be generated by A(Q1)UA(Q2).
If we had defined A(Q) as the algebra generated by
the W(£) with £eM(Q) (defined as the analogue of £(Q)),
then there would be operators, W(£), in A(Q), such

that the restrictions of & to Q1 and Q2 fail to give



elements of A(O0;) and A(Q,), respectively, because
the condition that f£(x,0)dx = O would fail. This
will be the case, for example, if é(x,t) is non-
negative in 9,, and non-positive in Q,. A(Q) would
not then be equal to the von Neumann algebra
generated hy A(0)) and A(Q,). It is for this reason

that we insist that W(£)eA(Q) only if EeM(01) for

some convex region Qi in Q.

We have defined A(Q), for each region 0, to
be a certain von Neumann algebra of operators. This
is not essential in that we could have taken them to
be C*-algebras, i.e. replaced von Neumann by C¥*-
in definition 3.1.3. However, our results are stronger
if they hold for the A(Q) as von Neumann algebras.
Since any von Neumann algebra is also a C*-algebra, we
can still view A(Q) as an abstract C*-algebra by
ignoring the underlying Hilbert space.

A is defined to be the norm closure of
{ A(0) | 0 a region in M } in B(H).

The condition [ (x,0)dx = O, necessary because
of the infra-red problem, i.e. the singularity of the
measure df, may be interpreted "physically" by saying
that , being a potential, is not observable: only the
"field"” -Y¢ can be observed, or rather, its smeared
form -fV¢ (x)h(x)dx = ¢(Vh) = ¢(f), where £ = Vh € Dy
if h ¢ D. With this interpretation, A is the algebra

of observables of the theory.
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We remark that A is irreducible. This follows
from lemma 2.1.6, together with the fact that both
é and éo (the Fourier transforms of D and Do,resp.)
are dense in the set K, = { feK | £®)=£(-p) } in

the induced strong topology of K.

Definition 3.1.4.

As in 82.1, we define a strongly continuous

unitary representation of ZPI on H by extension of

{a,A} »+ Uy (a,n)

iY2 . (ps,a) -1 -1
(Uu(a,A)hn)(pl.--,pn) = e £j=1"%3 hn(A pl,.,A pn)

p;=|p,l

where (p,a) = p%a’-plal! and A-lg is the space-
component of the two-vector A—lp.
Then

Uo (@, A)W(E)Uq (a,n) "t

WE, )

and so

Uo (a,A)A(0)Uq (a,4) "%

A (AQ+a)
with the obvious notation.

In the same way as for the massive case, the
vanishing of the Wronskians {M(Q),M(Q:1)} for space-
like regions Q and Q:, and the Segal-Weyl relations

imply that A(Q) and A(Q1) commute.
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Definition 3.1l.5.

Let a:G = Aut A be a representation of a group
G by automorphisms of A. Suppose that the notion g+«
in G is meaningful. Then we say that A is asymptotically
abelian with respect to the pair (a,G) if for any
A,B e A,
norm lim [a(g)A,B] = 0,

g-+c

Lemma 3.1.6.

A is asymptotically abelian with respect to the
space and time translations given in definition 3.1.4.
Proof.

The first part is obvious because of the
quasilocal nature of A and the commutativity of the
A(0) for space-like regions.

For the second part, we must show that

norm lim [U, (£)AU, (t) " 1,B] = 0
+>

for any A,B € A, where Uo(t) = Uo(a,A) with {a,A} a
pure time translation.
Suppose that A = W(E) € A(Q), B = W(n) € A(Q1).
Then
[Ue (£)AU6 (t) ~1,B]
becomes

Cwig ) wm ] = exp ilg,,n}.

Now, any solution £ of 3;5 = 8;5 can be written in the
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form

E(x,t) = £(x+t) + g(x-t)

for some functions £ and g, which can be chosen to
be smooth, and with compact support for the case £ € M.

Therefore, gt(x,s) has the form

gt(x,s) = f{x+s-t) + g(x-s+t)
and

{Et,n} = I((f(x—t)+g(x+t))ﬁ(x.0)

- (£ (x~-t)-g' (x+t))n(x,0))dx

where f£'(y) = d4df (y)/dy.
But n(x,0) and n(x,0) have compact support, and so,

for sufficiently large t, {Et,n} = 0. Thus

[Uo(t)AUo(t)~l,B] =0

for large t, for this choice of A and B. Clearly, the
same is true for A chosen to be finite linear
combinations of finite products of various W(§),
where £ € M(Q).

It follows that
[Us (£)A(Q)Us () ™F,B] = ©

for large t, and B = W(n), n £ M(01), and therefore
that

1

[Uo (£)A(D)Uo () “,A(01) ] = O

for lairge t.

Now let A,B € A be arbitrary. The norm density
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of {A(0)]0 in M} in A allows us to choose, for given
€>0, A; and B; € A(Q) and A(Q;), respectively, such
that

1 1

l| [Uo (£)AU, (£) ~,B] - [Up (£)2, U (£) ~,B1]]] < €

uniformly in t. The second commutator vanishes for

large t, and the proof is complete.

The algebras A(Q), O in M, and A, satisfy the
Haag-Kastler axioms 1-5 of §1.2.

Moreover, U, satisfies the spectrum condition,
viz, the energy-momentum spectrum lies in the closed
forward light-cone, V+ ;: there is a non-degenerate
eigenvalue O of Pu, p = 0,1, the generators of U¢(a,l),
corresponding to the eigenvector € = 1 in Ko= €. @
defines a vector state on A, which is called the vacuum

state.

§3.2. Localised Automorphisms.

Following Doplicher, Haag and Roberts (20), we
make the

Definition 3.2.1.

An automorphism vy of A is said to be a localised

automorphism, localised in a region Q, if
Yy(A(Q1)) ¢ A(Q1) for all 01 2 Q

and if

Yy a")y = 1" A",

fi



66

where 1 is the identity automorphism. (We recall that
A(Q') is the C*-algebra generated by all the A(0:),

with Qi space-like with respect to 0Q.)

In other words, y is localised in a region O if
it has no effect on observables outside O, but maps
observables in O into observables again located
within Q.

If duality holds, viz, A(Q) = A(Q")', for all Q,
then v [ A(Q') = 1 [ A(Q') implies that if 01 D Q
then y(A(Q1)) <€ A(01). This is because, for A ¢ A(Q1),

B e é(gll)r
(a,B]=0 = v[a,B]l =0
= [y@),y®]=0 = [y@,B]=o0

since v [ A(Q") = 1 [* A(Q")

=> y(A) e A(Q1")' = A(Q1).

However, in general, duality will not hold unless the
regions O are suitably shaped (3). It is for this reason
that the 0 are taken to be "double-cones" in (20).

It is the purpose of this section to construct
localised automorphisms with the above properties.

The effect of our automorphisms will be to add
c-numbers to the fields ¢ and m. The operators W(§),
therefore, just pick up a phase. We could treat ¢ and
T separately; but to show that Poincaré transformations

are implemented in the various sectors we must exploit



the properties of solutions of the wave equation, and
the treatment is unified and “"compactified" if we

consider {¢,£} rather than ¢ and T separately.

Let 6: IR +IR be such that d6(x)/dx € D
and 6(-«) = 0. Thus 6 is a smooth step function,
vanishing for large negative argument.

Each such 6 defines a pair of solutions of the

wave equation (Bé—ai)@(x,t) = 0 by setting

0(x,t) = 6(x+t) or = B(x-t).

Definition 3.2.,1.

o+
Let N~ denote the set of such solutions, and

let N be the real linear span of §+ and N .
Clearly, ©¢eN if and only if éeg and 0(-«,0) = 0.
We want to give N a local structure - we can do this

via M.

Definition 3.2.2.

Let O be a region in M. We define N(Q) to be

the real linear span of the set

{Osgléeg(g1), 01 convex, 03 in 0}.

Lemma 3.2.3.

If 0eN(Q), and if Q' is space-like with respect

to 0, then &(x,t) and 9,0(x,t) are zero on Q'; i.e.
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O©(x,t) is constant on connected components of Q'.
Proof.

Let & be a space-like line passing through O
and O'. By a Poincaré transformation, {a,A}, we can

transform & into the line {(x,t)|t=0}.

<)
=0 \,/t=0

We may suppose that O is simply connected
because of our definition of N(Q) in terms of the
M(0y).

Consider @a A(x,t). This can be written as
t4
ea’A(x,t) = 0 (x+t) + 62 (x-t)

+ -~ o . 3
with 63 N, 626 N . Now, @a’A(x,t) € Q(ga'A) implies

that @a’A(x,O) and ea A(x,O) have support in an

’

interval (a,b), space-like with respect to gé A
14

Thus 6;'(x)-62'(x) and 6;" (x)+62" (x) have support in
(a,b). (The dash denotes ak)’

It follows that 0,'(x)+6,'(x) is constant
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for x<a and for x>b (with different constants resp.).
This, together with supp(8;'(x)-6.'(x)) in (a,b)
implies that 0;'(x) and 0,'(x) are both constant
outside the interval (a,b). But 6; and 6, &€ gi and

so 8;' and 6,' are zero outside (a,b). Thus

0i'(x) + 02'(x)

ft

]
Oa,A(x,O)

and

1

éa’A(x,O) 81'(X) - 02'(x)

vanish on any interval disjoint from (a,b). It follows

that O(x,t) and 3,0(x,t) vanish on O', as asserted.

We shall realise the additive groups, N, N(Q),

by automorphisms of A. To this end, we make:

Definition 3.2.4.

For any © € N, the transformation y is defined

on elements of A of the form W(£) by

i{e,&}

Yy : W(E) » e W(E)

Lemma 3.2.5.

For each region O in M, there is a unitary
operator, V, (non-unique) which effects the
transformation Y ;

1

Y(W(E)) = VW(E)V for all W(E) € A(Q).

Proof.

Let ©01€ M be such that @1 (x,t) = O(x,t) if



(x,t) € 0. Put V = W(-0,). Then, according to the

Weyl relations

VW(E)V-.1 = W(E)W(-el)w(el)ei{elrg}

ei{e'E}W(E)

since {0,£} only depends on the values of 0 in 0. QED.

Corollary 3.2.6.

To each 0eN there exists a unique automorphism
of A which reduces to y on elements of the form W(E).
Proof.

Since the W(E) generate A(Q), for EeM(01), O
convex in O, y can be extended uniquely to an

automorphism Yo of A(Q), implemented by V. Clearly,
if 0, contains Q;, then YOZF 2(0,) = Yo, By taking

the inductive limit, we obtain the required

automorphism which we shall also denote by Y.

Remark.

O(x,t)+c defines the same automorphism as 0(x,t)
for any constant, c. Thus the requirement that
©(-»,0) = O is one of convenience. The important
property of 0(x,t), as far as we are concerned, is

the value of the difference 0O(+»,0)=0(~e,0).

The next lemma expresses the fact that y is a

localised automorphism.
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Lemma 3.2.7.

Let ¥y be defined as in corollary 3.2.6, with

OeN(Q). Let O, be space~like with respect to Q.

Then vy | A(0;) =1 | A(O)).
Proof .

We need only show that {0,£} = O for all EeM(Q;),
with 0, a convex region in 0,. The Wronskian {0,£} is

given by

{0,8} = f(e(x,t)E(x,t) ~ O(x,t)E(x,t))ds
L

where & is any space-like line. Choosing £ to run

through 0 and Q,, and using lemma 3.2.3, we find that
{0,£} = const.fé(x,t)dz = const.{1,E} = O,
L

as required. QED.

Suppose that 0(x,t) = 6(x+t). Then the
corresponding automorphism y corresponds to a

displacement of the fields :

d(f) + ¢(f) + ff(x)e(x)dx

T(g) + m(g) + [g(x)de (x)ax

dx

or, if we avail ourselves the distribution-theoretic
notation ¢ (x), w(x), where ¢(f) and m(g) are written
symbolically as ¢(f) = f¢(x)f (x)dx, and
m{(g) = Ju(x)g(x)dx, then we find that Y corresponds

to the displacements ;
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$(x) > ¢(x) + 0(x)
and

m(x) » 7w(x) + 8'(x).
If 9(x,t) = 8(x~-t), then y would correspond to the
displacements

¢ (x) »> ¢(x) + 6(x)
and m(x) » w(x) - 8'(x).
Since 1 is the time-derivative of ¢, we see that y is
given by the displacement

d(x,t) » ¢(x,t) + O(x,t).

We call y a gauge transformation of the second kind,
since it is an addition of a space-time dependent
function, 6(x%,t). We notice that if supp £ M supp 6°'
= supp g N supp 6' = @, then ¢(f) and 7(g) remain
unaltered (-this because f € Do). This is why we
localise 6 in terms of its derivative.

If we admit the limiting procedure 61 =+ H(x-Xo),
where H is the Heavyside step-function, and the
function 01 of lemma 3.2.5 is 0; (x,t) = 8, (x+t), then
the unitary operator of lemma 3.2.5 becomes essentially
the fermion operator of Skyrme (33,34). These limits
are not rigorous, however. It is essential to consider

inequivalent representations of A.
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§3.3 The New Representations.

We consider A and the various A(Q) as abstract
C*-algebras - we shall denote by m¢ the representation
of A by itself on H, which we now write as H,.

For any of our localised automorphisms, y, we
can define a new representation ny, say, obtained by

composing my with y, viz,

“Y = Mo*Y

acting on Hy.

Thus ny(A) = mo(y(A)) for A e A.

Definition 3.3.1.

Define T, T(Q), I‘t as the automorphism groups
of A, obtained earlier, by choosing 0 in N, N(Q),

and gt, respectively.

These give various inequivalent representations
of A. To prove this, we must first identify M with a
subset of K, the one-particle space of Ho, and then
prove a lemma on the implementability of certain

gauge transformations.

For each £ ++ (f,g) € M, we can associate the
function
h(p) = 2wg(p) - if(p) € K = L?( R,4Q),

where, as usual, w = |p|, and dQ = dp/2w.



As (f,g9) run over Do¢xD, the corresponding h's run
over a dense subset of K. Moreover, {£:,£2} is
nothing but minus the imaginary part of the scalar

product (h;,h2) in K :

Im (h;,h;)

it

Im [h; (P)h, (p)dQ

Im [(2wa; (p)-iE; (p)) (2032 (p)-iE, (p)dn

f(E1(P) 2032 (p) - 2031 (p)E2 (p))dR

[(£1(P)g2(p) - a1 (p)E2(p))dp

]

J(£1(x) g2 (x) = g1 (x)£2(x))ax

'{El IEZ}
as asserted.

Now we need the lemma ;

Lemma 3.3.2.

Let x:M IR be a real linear functional on M.
Suppose that ¥ is unbounded (where M is identified,

as above, with a subset of K). Then the transformation

w(g) » e XEygy

£ € M, is not unitarily implementable.
Proof. (This is an adaption of Manuceau (38,39), after
Roepstorff (40)).

X unbounded implies that there exists a sequence

{e,}, £, M n=1,2,.., with £ > O in K, such that

x(gn) + T as n > o,
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Now, by lemma 2.1.7, gn+ 0 implies that W(gn) + 1
strongly in Hp.

Suppose the transformation W(+) - eix(')W(o)
were implementable, by U, say. Then

UW(En)U'1 = eix(gn)wgn), ¥ n.

But as n + », the l.h.s. converges strongly to 1,
whereas the r.h.s. converges strongly to -1 ;

a contradiction.

Theorem 3.3.3.

(1) If Yler+ and Yzer+, then mgeyy = Toey2 if
and only if 0, (=) = 02 (»), where 0,,0: € Qf define
Y1 ané ys.

(ii) TIf Yieri are defined by 0 (x*t), respectively,
then the two representations ﬂi = no'Yi are unitarily
inequivalent unless 6(») = O.

Proof .
(i) Suppose, first, that 0;(») = 0;(®). Let
8(x) = 61(x)-82(x). Then O(x,t) = 6(x+t) € M.

Hence, if ej(x,t) = ej(x+t), j=1,2,

1 —lei{elrg}

W(0)y1 (W(E))W(O) ~ = W(O)W(E)VI(O)

i{0,-0,8} _ ei{eng}

= W(E)e W(E)

va2 (W(E)).
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Since {W(£)|ZeM} generates A, we have

W(O)Y: (A)W(O) "L = va (B)

for all A ¢ A. Thus

oYz (A) = 7o (W(0)Y: (A)W () 1)

To (W(0)) o+, (A) e (W(0)) 71

and so wo(W(0)) € mo(A) provides the required unitary

equivalence.

To prove the inequivalence for 0j(x) # 85 (),
we shall show that {0,¢} is an unbounded functional
on M, and use lemma 3.3.2.

More precisely, let Y = Y1°Y;l. Y 1is defined
by 0(x,t) = 0(x+t), where 8(x) # O ; i.e. 0'e D
but 6'¢ Dg¢. (We write 8'(x) for d6(x)/dx, and 6'(p)
is the Fourier transform of 6'(x), not the derivative
of é(p)). Therefore 5'(0) # 0., It follows, by the
continuity of 5'(p), that there exists 6>0 and b>0
such that, for |p| < &, we have that |Re6'(p)| > b.
(Since 6'(x) is real, 6'(0) is also real).

Now suppose {0,+} were a bounded linear
functional on M - identified with a dense subset
of K. Then the same is true for {0,°} on the subset
of elements of M of the form £ = (0,g). On such

elements, {0,°*} is given by

{Or (Org)} = _f é(P)a' (-p) dp
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it

- 2wg(p)§' (-p) 4q.

But, as g runs over D, 2w§(p) runs over a dense
subset of a real subspace, KR' of K, - the real
subspace of hermitian functions, i.e. those with
h(p) = h(-p). {0,+} can be extended, therefore, by
continuity, to the whole of this subspace. This

implies (by Riesz' lemma) that 8'(:) e Kp-

This is a contradiction, however, because,
as remarked above, ]Ree'(-)l >b >0 in a

neighbourhood of p=0, and so
[18' (p)]2dQ = =.

Hence, {0,+} is unbounded on M. Thus, by lemma 3.3.2,
Y is not implementable. But then it follows that
To*Y1 and Tgo+*Y2 cannot be unitarily eguivalent. This
completes the proof of (i).

(ii) We consider Y"P-(Y“)'—1 = Y, say. Then vy is
defined by ©(x,t) = 6 (x+t)-0(x-t).

HNow,

{0,£} = -] 6(x,0)g(x)dx
for £ of the form (0,9),

= -2f g(x)0' (x)dx

-2 2wg(p)6' (-p) an

The proof now proceeds exactly as in (i). The unitary



operator giving equivalence if 6 (4=) O is W(0). QED.

Theorem 3.3.4.

Let Ysr+. Then restricted Poincaré transformations
are implemented in the representation mo°y.

Proof.

Suppose Y is given by O(x,t) = 6 (x+t).

+

Under {a,A} ¢ P,

W(E) becomes W(ga A). Now, in the
14

representation mwe*yY, these are represented by

10,8} i{e,g£_ ,}

Y1(£) and e a,iA W(Ea A)' resﬁectively; so

we must prove the implementability of the map

oif{e,E} i{e,g_ ,1}

W(E) » e a,A W(ga'A)

for £ € M, by operators in Ho:
i.e. the map

W(E) + ei{e’ga,A"g}W(ga RE

Now, Ug(a,A) implements W(E) - W(Ea A), sO we must
r

implement

wig, o > g, pett®fa 78

- W(E,a A)ei{e’ga,A}e—i{ea,A'ga,A}
r
since {+,+} is ]Pi invariant,

. i{e-o_ ,,E_ ,}
= W(Ea’A)e a,A"7a,A".

But £ is arbitrary, so we must prove that



W(E) » w(g)etl0 0y 08}

is implemented for any {a,A} eIPi.
By theorem 3.3.3 (i), this is true if

0{=,0) = ea,A(m'O)' and 0(-»,0) = Oa,A(‘”:O) = 0.

Any Lorentz transfcrmation A takes the form x+t -+ o(x+t),
Xx-t - anl(x-t) for some a>0. Therefore, if

{a,A} = {(a%,a'),A(a)}, then 0, ,lx,t) = 0 (a(x+t)+a®+al).

Clearly, @a A(oo,O) = 9(») = 0(»,0) etc. QED.

Remark 1.

Space and time inversions are not implemented
except in my. This follows bkecause, according to
theorem 3.3.3, ©(-x,t) and O(x,-t) define
representations inequivalent to that defined by

O(x,t).

Remark 2.
Since, for any region Q, there are functions
in M(0), we see that I'(Q) is non-trivial however

small O is,.

Theorem 3.3.5.

Let YEF+. Then 7o and To*Y are strongly locally
equivalent.
Proof.

Let Q be a given region. If Y€P+(g), then, by
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lemma 3.2.7, v [ A(0') = 1 and there is nothing to
prove., If y¢P+(g), the idea of the proof is to move

Y into by a unitarily implementable automorphism.

o]
Let Y€F+(g1), and suppose Y is defined by 0,¢ gf(gl).
Let 0, N'(0) with 0, (=,0) = 0, (»,0), and let y, be
the automorphism corresponding to 0, (x,t).

Accordinj to theorem 3.3.3 (i), y-y;l is
implemented; so my = no-y-yzl.

ler+(g), (it correspondé to -0, (x,t)),

But v,
and so y;l I A(Q") = 1.

Therefore mo | A(Q') = mge+y [> A(Q'). QED.

Theorem 3.3.6.

If yeF+, then the operators in To*Y
implementing IPi may be chosen so as to give a
strongly continuous unitary representation of ]PI
with energy-momentum spectrum in the closed
forward light-cone.

Proof.

Suppose that y is given by 9(x,t) = 6 (x+t).

m(A) = mo*Y(A) is an algebra of operators acting in

Ho. The action of ZP: in 7 is to map the operator

Ji{e,E} i{e,gg}

W(E) into the operator e W(Eg), qs:Pi.A

We saw in the proof of theorem 3.3.4, that this

action is implemented by V(g) = Uo(g)W(G-Og_l),

. o
where Up is the representation of 2P+ in 7o. The



phase of V(g) is arbitrary. The Weyl relations imply

that

V(g)V(h)

Uo(g)W(G-Og-l)Uo(h)W(G-Gh-l)

Uo(gh)W(Gh-l-G -lg-l)W(G-@h-;)

h

Uo(gh)W(e—eh-lg—l)exp-%i{eh-l-e —1g-1,e-eh—1}

h

V(qh)exp—%i{e,eh}exp%i{e,Ggh}exp—%i{e.eg}

using the invariance of {+,+} under IPI.

Thus
Ui(g) = Uo(g)W(G-Gg—l)exp%i{G,Gq}

is a strongly continuous unitary representation

of ]PI in W, implementing the Poincaré transformations.
To show that the spectrum condition holds, we

shall compute the generators of time and space

translations.

Let s be a time translation. Then
Gs(x,t) = O(x,t-s) = 0 (x+t-s),

and so

Ui(s) = Uo(S)eXpi(¢(9'-9ls) - n(6-9_s))exp%i{9,es}.

The generator is the sum of the strong derivatives
w.r.t. s, at s=0, of the three unitary operators

appearing in the expression (divided by i) :-

81



82

there being a common dense domain for these
operators, viz, those elements of Ho' with rapid‘
decrease for large arguments, or the one-dimensional
analogue of ¥ in lemma 2.5.2.
Now,

¢(6'-6ls) - ﬂ(B-B_S)

= 2% (a*(F_)4a(r,)) - 2°

i(a*(G_)-a(G.))
where F, (p) = |p| 7(8'-0! )" (¢p),

lpl%(6‘6_5)~(ip).

and Gi(p)

Thus, the strong derivative, at s=0, (divided by i),
of the middle term in the expression for U; is,
on I,

2'%[(-a*(p)5'(-p)izﬁ(w-p) + a(p)8' (p)iv (w-p))dp

P p
where w=|p|, and we have used the forms a*(p) and
a(p) together with a symbolic integration.
The strong derivatives of Uy, (s) and exp%i{O,OS}

at s=0, are given on I respectively by
Ho = [wa*(p)a(p)dp,

and [ 8'(-p)8' (p)adp.
Hence U; (s) has generator

[{uwa* (p)alp) - 2 *ia*(p) &’ (-p) V& (w-p)
P
+ 27 %5a(p) 8" (p) VB (w-p) + 8' (p)8' (-p) }dp
P



= [ub*(p)b(p)dp
where
_ -k ~
b*(p) = a*(p) + 2 “*if'(p) (w=p)
w P
b(p) = a(p) - 2 %id' (-p) (w=p) .
Yw P

In the same way, we find (using the fact that
the generator for space-translations Ug(a) is
~-/pa*(p)a(p)dp ) that the generator of space-

translations is given by

- [pb* (p)b(p)dp.

Evidently,

Jub* (p)b(p)ap > |[pb*(p)b(p)dp]|
i.e.

(h, fwb*(p)b(p)dp h) > |(h, [pb*(p)b(p)dp h)|

for h in the domain of the operators in question.
This is just a statement of the fact that the energy-
momentum spectrum lies in the closed forward light-

cone. QFED.

Remark 1.
This result is not surprising. Indeed, the
transformation Y has the effect of taking
d(x) *> ¢(x) + 8(x)

and )
T(x) +> m(x) + 0'(x).
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In terms of a*(p) and a(p), this is effected by the

transformation

a*(p) =+ b*(p) and a(p) + b(p),

where b and b* are as in the previous proof. Thus,
in as much as y can be extended to unbounded
operators, we expect that fwa*(p)a{p)dp and

-/pa* (p)a(p)dp transform into fub* (p)k(p)dp and
-/pb* (p)b(p)dp, respectively, and we would expect
these latter to implement time and space
translations in the representation 7y°y, as is,

in fact, the case.

Remark 2.

The vacuum in the representation myg,
viz, @ = (1,0,0,..) € Ho, defines a vector state in
the representation m = mg*y. This state no longer

has zero energy;
(Q,H0,2) = 5[ (0(x,0)2+ (g—i(er))Z)dX

where H; is the generator of time translations U; (t).
This means that the phase of U, is chosen such that
the average energy of the vector state § is equal to
the classical energy of the solution ©(x,t) of the

wave equation.

Remark 3.

It is of interest to note that the representation



U, (a,A), restricted to the cyclic subspace generated
by @, is infinitely-divisible (41). This follows by

applying the criterion of Streater (41).

§3.4. The Sectors and Charged Fields.

We now turn to the definition of the sectors,
and the charge carrying fields. As we saw in the
last section, two representations m; and m,, given
by 0, and 0;e g+, are unitarily equivalent if and
only if 8, (x) = 0, (»). An equivalence class of such
representations will be called a sector, labelled
by 6(«), called the charge of the sector, taking
values in IR. For example, 7Ty has charge zero.

The charged fields will be defined as unitary
transformations from one sector to another. We shall
see that these will anticommute if they have a certain
charge, or multiples of that charge. There will be
fields that are neither Bose nor Fermi, as we expect
from our form of lemma 2.3 of (20); viz, if Y;,Y25F+
are localised in space-like separated convex regions,
and correspond to the same sector, of charge o, say,

and if U is such that

ya(*) = Uy (UL,

+ia?
then vi1(U) = e *® y. The sign of the phase depends

on whether Y1 1is localised to the right or left of Y:.
That Y(U) # U is possible, is due to the fact that we

have only one space dimension. Indeed, in three-
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-dimensional space, only y(U) = U is possible (20).
We select an arbitrary, but fixed, 0 ¢ §+,
with 0(~,0) = 6(w) = 1. For each a ¢ IR, we shall
write Ga for ol € gf. Such a Ga' and its corresponding
automorphism, Yo! will be called standard.
For each a € R-{0}, let H, be a Hilbert space
isomorphic to Hyp. Thus we have a family of-copies
of Hy, indexed Ly R.
Let y* be an isometric operator from H, onto

. * = . .
H,,» with y¥ lﬁo' Define the representation Mo of A

on by

H
=gy,
(!( ) o 0° (!( ) (¢ =!

where b, ¢ By ™ Ho is the inverse of 7.

By theorem 3.3.3(i), (ﬂa,gu) and (ﬂﬁ,ge) are

unitarily inequivalent if «a#R8. Define

(I3

ZE®H, and Tz @® T .
a = o

H will be the Hilbert space in which the field
algebra will be defined. If Ua(a,A) represents ]Pi
in (na,ga), then H carries the representation 8 Uy
which satisfies the spectrum condition because the
Ua do.

e define w; on E by linear extension and

continuity of the map

p* He = V,,p*Vg r Hy . ¥ B e
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Clearly, wé is a unitary operator in H ; it is the
charged field operator correseponding to the
standard automorphism Yo We can now extend the
definition to any Yue P+, corresponding to M ¢ §+,

with M(x,t) = p(x+t) and p(») = a.

Definition 3.4.1.

We define the representation ﬂu of Aon B by

ﬂu(A) z w§“°°Yu(A)wa for A e A

and the field Y*(u) with charge a = u(~) by extension
of

VR T OHg = om o (W(M-0)) 0 B

for each B € R, where = is a standard representation.

a+f

We understand this definition as follows :

w; acting on QB creates a standard charge in H . We

=a+8
can change this standard state to the required state,
determined by M, Ly an element of A, namely W(M-Ga);
and this must be done in the representation “a+B‘

Y* (p) is a unitary operator in H.

Lemma 3.4.2.

Let QO be any given space-time region, and let
ME P+(Q). Then Y* (1) commutes with T(A(Q')).
Proof.

It suffices to prove this on each EB' since,
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by construction, m is reduced by % gB.
Let A € A(Q'), and suppose that p(x) = a.

Then

Y* (u)m(A) | Hp = ¥*(u)m,(a)

= oy g (WOM-0) Jukutmo (v, (2)) ¥,

VEep To(Yaup M) Vo p¥ip mo(vg(a)]v,

(writing W for W(M—ea)),

='lp*

xeg Tolvgly,(ma))u,

= YP*

reg Mo (vglyg (v, (2)]])v,
since Ty [ A(Q') = 1 by lemma 3.2.7,

1

= vx, o Todvg (y iy, R v o0 "y, 0] Jo,.

But Ya(w) = Vv for some v € IR, and so

1

-1 _ -1
Ya(W)Yu(A)Ya(W) = WYH(A)W

1

W(Mnea)yu(A)W(M—eu)

= Ya(A)'
Hence

v @) P B= vE e ey (v, By, (M]} v,

= Varg Mo (Yqeg BM] g

frg (10 Vo] (o074 g (M) Vg



Toep (B) Topg () v2 [ By

m(A) P*(u) | Hg QED.

Definition 3.4.3.

We define 1F+(g) to be the von Neumann algebra

generated by the set

{W* () [wesmeNT (@)} U {7 (a) |2ea(0)}.

By lemma 3.4.2, we see that
+ -y
[F" (01) 7 (a(02))} = 0

if 0, and O, are space-like separated regions.

Lemma 3.4.4.

Let O0; and O, be space-like separated convex
regions in Minkowski space. If M;e gf(g1) and

M,e N (Q2), then
PF ()% (2) = % () P* (y) eV

where Mj(x,t) = uj(x,t) and v = ), (©)us («) according
as to whether 0; is to the left or the right of Q7.
Proof.

Let p; (@) = o, and ua(~) = B, and consider

P* (u;)P* (uz) on any subspace ge of H.

P*(u1) ¥*(u2) [ Hg

= Toppre (TM1-0)) 9% w o (W(M2-04)) %
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Virpre "0 WVaupae (P00 )1 g (WM2-0) )} v

Y2 e no{W(M,—ea)W(Mz—eB)elx} Ve

where

X = {0 Ml-Oa} + {0 Ma-0,1.

a+B+e’ B+e B

Now, {Oi,ej} = O for any standards 0 and ej, as they

are proportional. Thus

.8,1\.’1}} "" {@,}_}_e,Mg}

W(My -0 YW (M2 -0 yel¥ = W(M1+M2-Oa-08)ely

B

where Y %{Mz,Ml} + %{Mlle } + %{OQIMZ}

B

+ {0 My} o+ {98+€,Mz}

a+B+e

i

{6 JMytM, ) - %{Gapmz}

o+R+e

- %{Ml er} - !E{OBIMI}-

Interchanging M; and M, and o and B, we deduce that
Y* (1) V% () = VX (up) Yr(up)e™

{Ml er}

where v

= [(M; (x,0)M; (x,0) - M;(x,0)Mz(x,0))dx

[lun () uy (x) = wp(X)u2 (x))dx

]

t yp () H2({x) as required.
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Remark.
If ui(®) and uz (~) are of the form V(2n+l)w
for some integer n, then y*(u,) and P*(u2) anticommute

at space-like separation.

So far we have only considered P+, for convenience.
In the same way, the group T leads to a family of

inequivalent representations “01 ay’ corresponding to
14

M e N, where M(x,t) = M'(x,t) + M (x,t), and
+ -
M (2,0) =0y, M (»,0) = a,.

The charged field, acting on H is

=61162’

* = - *
w (UlrUZ) WQI+BI,GZ+BZ(W(M eal ’az)) ‘pal’az'

where

MT(x,t) = up(x+t) , M (x,t) = U2 (x-t) ,

( = -
Gal'az_v.t) 0191 (X+t) + az02(x-t),

for some "standards" Gj; and wal .. 1s the standard
, O

charged field.

There is an analogue of lemma 3.4.4, but the
expression for v is not quite so simple.

Just as in definition 3.4.3, the field algebra,
IF, is defined to be the C*-algebra generated by
7 (A) and the P*'s. (7 being the direct sum of the
various inequivalent representations).

We have called the y*'s charge carrying fields -



92

- we cannot think of them as particles :e.g. the
"two-particle" state w;wgn is the same as the "one-
" *
particle" state wa+BQ'

We can define a gauge group on @ H
1 ,K=1,K

as G = X » where (a,8) ¢ [0,1) x[0,1) ana T_

G,BT‘Q,B 'B

is the torus, for each (a,B).(E_1 ¢ is the representation
—Lr

space for the irreducible representation LI of A).

’

G a ;
cts on el,th,K as follows;

- _img ing
9q,8 r Et,K z e a,0 e 0,b

where m,n ¢ Z, a,b ¢ [O,l) are given by
1=m+ a , K =n+2>D,.

ga'o and gO'b are the (a,0) and (0O,b) components of

g € G, respectively.

a,B

This ties in with the ideas of Doplicher, Haag
and Roberts (19), where it is shown that, without loss
of generality, the gauge group may be chosen to be
compact, and that the physical spectrum of A, i.e. the
representations of A occuring in ¥, is in one-one
correspondence with the irreducible representations
occuring in the gauge group. Indeed, we have defined
G so that this is the case.

Let us also remark that, contrary to the

philosophy that fermions must be involved in the basic
formalism (42), we have constructed such from the

observable algebra, A, given in the charge zero sector.
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4, The Time Evolution of Quantised Fields.

So far we have considered only free systems.
The purpose of this last chapter is to discuss the
time evolution corresponding to a certain class of
interactions. These will be rather “mild", and, in
general, non-local. Nevertheless, it is felt that
this may be a "half-way" step to more realistic
theories. Indeed, we can define, quite rigorously,
a time evolution corresponding to a four-fermion
interaction, provided the interaction is given by
smeared fermions. We can also define a time evolution
corresponding to an interaction of the form

1l
1+ ff(x):¢2n(x):dx

a "smeared" version of interaction densities recently
considered by Efimov and Salam and co-workers(43,44).

However, it still remains to investigate the
"unsmeared" version of these theories; i.e. the limit
as all test-functions become &§-functions.

It may also be possible to treat two space-~time
dimensional models such as :¢2n: by putting in a
spectral cut—-off on the self-adjoint operator
fg(x):¢2n(x):dx, obtaining a time evolution
automorphism by our rather elementary methods, and
then taking the limit (in some sense) as this spectral

cut~off is removed. This could be an alternative to

the methods of Glimm and Jaffe, or those of Segal, and



94
Simon and Hgegh-Krohn (45). The idea of putting in a
spectral cut-off appears in Guenin's lectures at

Colorado in 1966 (46).

§4.1. The Guenin-Interaction Picture.

The conventional approach to study interactions
is to use the so-called interaction (or Dirac)
picture of the time-evolution (see e.g. (25)). This

is related to the Heisenberg picture as follows :

eiHote-lHt

¥y (t) Vy

eiHot

-iH,t
AH(O)e

AL (t)

where the subscripts refer to the "picture", and

He and H are the "free" and "interacting" Hamiltonians
respectively. H is given as a sum of Ho and V,

where V represents the interaction. It is then usual

to "solve" the equation

d po(t) = -i ety (x)
at

for wI(t), by iteration - the perturbation expansion.
Unfortunately, in many cases of interest, the formal
object V has little or no mathematical meaning (47),
the operator H having even less!

Even if we can give a meaning to H as an operator,
there is no reason to expect the perturbation series

to converge; in fact, in some cases it has been shown
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to diverge (48). Segal has suggested that, in order

to avoid the divergences of quantum field theory,

one might take the time-eévolution as an automorphism
of the algebra of observables, not necessarily

spatial (49). The operative question, however, is

how can one define these automorphisms? We shall
follow Guenin in considering the "inverse"

interaction picture. Guenin's idea (46) was to let

the states evolve trivially, rather than the operators

as in the usual interaction picture. Thus;

-iHot

wG(t) = e wH

and therefore

AG(t) - e-lﬂoteth A e-lHtelHot

The Heisenberg picture operators are thus

iHpt ~iHot

AH(t) = e AG(t) e

The point is that the map
A = AG(O) + AG(t)

may have a well-defined meaning, even though the
"unitary" operators St may not exist.

We will show this to be the case for our
"mild"” interactions; this extends to arbitrary dimension
Guenin's result (46). (Actually, we shall only
consider four dimensions, but the extension is

trivial).
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We should point out that the time-evolution, as an
automorphism group, has been successfully illustrated
for the Heisenberg ferromagnet (50), certain fermion
systems (51), and quantum spin systems (52,53).

We shall take a slight variation of the axioms
1-5 of §1.2. Explicitly, we shall adopt axioms 1, 2,

and 3 of §1.2, together with

Axiom 4°'

We are given a continuous homomorphism T,, from
R" into Aut A, the automorphism group of A (furnished
with ths strong topology of operators on a BRanach

space), such that
To(a)A(Q) = A(D,)

where O = {x eR"| x-a e O}.

Thus, the continuity means that
Hto(a)a - Al] » 0O

as a » 0 in R", for each A € A.

We shall call T, the free field dynamics.

Examples. 1.

The A(Q),A defined in §2.1 for the massive neutral

boson field, together with



(a) (+) = u(a) (-)u(a) "t

a € IR*, do not satisfy the continuity requirement,
axiom 4'. We must "resmear" the alagebras.

If A e A, and £ € D(R"), define
A(f) = [ £(x)n(x)A d*x,

where the integral is a strong integral on Fock space.

Then

Hrta)a(£)-a(£) ] = || [£(x)wla+x)Bdk - [£ (x)To(x)Adk]|

I| [(£(x-a) -~ £(x)) B(x)n d% ||

| A

[ 1f(x-a) - £(x)] llw(x)n}l ax

Hall [ l£(x-a) - £(x)]ax
-+ 0 as a + 0, as required.

The algebras A(Q) must now be adjusted to take account
of the finite size of the support of the various f's.

(This corrects an error in (54)).

2. In two space-time dimensions, we could do the
above modification for the case when To(*) is the
space-time automorphism group of Glimm and Jaffe

corresponding to a :¢2n: interaction.

3. The usual algebra generated by even powers of a
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free Dirac field satisfies our requirement. (The
continuity condition of axiom 4' holds because of

the bounded nature of fermion fields.)

§4,2, The Cut-0Off Interaction.

Let V € A(01) be such that V = V*, and write

Va for 1(0,a)V, and V(t) for T(-t,0). The minus sign

appears here, rather than in many places in the sequel.

We would like to consider the translationally

invariant interaction given by fVadsa. However, this

—

will not generally exist as an element of A. We must
first introduce a space cut-off, and remove it, in
some sense, later on.

Let us define the cut-off interaction

as a Riemann-Bochner integral (55), and, so defined,

it lies in A. We have that

To(-t,0)V, = V_(t) = / Va(t)daa.

lal<x ~

This perturbs the dynamics T(t) and defines a new
one-parameter group of automorphisms. We shall show
that the limit as r + « exists, and defines a space-
translation invariant time-evolution.

As we have already said, Guenin defines
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~iHo telHt e-theiHot

AG(t) = e A

’

which, when "differentiated" and "solved" by iteration,

vields
t -iHos,, iFos
AG(t) = A + ifods e 05ye™+0 ,A] + 0. ..

where H = H; + V. This suggests the following definition
of the (Guenin) interaction picture evolution
corresponding to the interacticn Vr ;

t ER it > Ti(t)
r
I t
T (t)A = A + ifodtltvr(tx)rA]

t ot
+1%f aerf aeo[v (t1),[V (¢2),a] ]

for any A € A.

Now, To is an automorphism, and so

Nvcerfl =liv ll < f v lla®a = 2 m?]v]]

lal<r
th I .
for all t. The (n+l) term of Tr(t)A is a multiple
commutator which can be expanded to give 2" various

permutations of Vr(tl)"'vr(tn)A'



Its norm is therefore bounded above hy
n n )™
27 v Al T2

It follows that the series converges in A in norm,

for all t £ IR. Tg(t) is thus a well-defined

map : A+ A for all t £ IR.

Lemma 4.2.

(1) <

LI o B | o)

(t) (AA+B) = Ati(t)A + Ti(t)B

(11) (Tp(0)a)* = tl(t)a*

I I
Tr(t)A Tr(t)B

(ii1) Ti(t)(AB)

for all te R, e, A,Bel.
Proof.

(i) is obvious, and so is (ii) since V = V*,
(iii) Denote by Sh the sum of the first n terms of
the series for Tﬁ(t)A, te R, AceA. Then using the

fact that

as .
Fentle) = i [v_(t),s (£)]

it is not hard to show that

a1

I
st (B2 =1 [V (e), 1 (e)n] .

Similarly,

da T

reeiar = 1 [V (t), 1l (v)arR] .

100



101

Now,

d .
Sl ®a tiws) = i [v_(o),1le)a] <Lie)s
+ i 'r]]_i(t)A [Vr(t),T]]_E(t)B:I

=1 [v_(t), tla fe)s] .

Thus we see that Ti(t)(AB) and Ti(t)A Ti(t)B satisfy
the same differential equation and the same initial

condition, viz, TE(O)AB = AB. It follows that
I R I
Tr(t)(AB) = Tr(t)A Tr(t)B

for all t. QED.

Remark.

Lemma 4.2.1 says that t - T:(t) is a map

:IR - End A ( - the endomorphism algebra of 4).

Theorem 4.2.2.

Let T, be given as in axiom 4', and let Ti be
defined as above. Then, writing B(t) for Tt,0), we

have that Tde)r§(°) is a one-parameter group of

endomorphisms of A.
Proof.

We must show that



To(S) T () TlE) T (E)A = To(s+t) TL (s+E)A

for all AeA, and s,t € R.
Or, equivalently, since T¢*) is a one-parameter

group of automorphisms,

TS B TL(EA = To(t) TL (s+E)A.

Fix t ; then as in lemma 4.2.1, the l.h.s. satisfies

the differential equation

s = i]visr.].

The r.h.s. satisfies

S {n(t) 1l (s+t)A) w(t)i[V_(s+t), 15 (s+¢)a]

i[v_(s) ,mt) 7] (s+t)a] .

Since they both satisfy the same initial condition,

we conclude that they are equal for all s. QED.

Corollary 4.2.3.

The endomorphisms Ti(') are automorphisms of A.
Proof.
Let BeA. Put A = Td-t)Ti(—t)Tdt)B.

T
Then AeA, and Tdt)T;(t)A = T{t)B, by the theorem.
Since T¢t) is an automorphism, we conclude that

Ti(t)A = B, and so Ti(t) is a map from A onto A,¥te R.
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Suppose ri(t)A = 0. Then Tﬁt)T:(t)A = 0, and
acting on this with gp(-t)t.(-t) yields, by the
theorem, that A = 0. Therefore Ti(t) is one-one

for all t € R. QED.

§4.3. Removal of the Cut-Off.

Let us now consider the limit of ri(-) as r-o,

Definition 4.3.1.

Let ro be the smallest real number such that
[vém ,v9<s)] = 0

for all a,b with ja-b| > ry, where |t|<l,and |s|<1.

Definition 4.3.2.

Let A ¢ A(Q). Let r, be the smallest real number
such that

[v,(t),a] = o

for all |a >r,, where lt] < 1.

Both ry and r, are well-defined on account of axiom 4!

and axiom 3.

Theorem 4.3.3.

There exists 6>0 such that the limit Ti(t)A

exists as r+w, for all AeA, uniformly in |[t]<8.
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Proof.

Let A e¢A(Q) be given, and suppose lt] < 1.
Then, according to definitions 4.3.1 and 4.3.2,
if |tj| < |t} and |t ] < |t|, we have

[Va_ {:j),va (tk)] =0 if |gj— Ekl > Ty
and

[Véj(tj),A] = 0 if |aj| > 1, -

Consider the general term, u s in the series for

Ti(t)A, viz,

t t,
infgtn..Ldt,fg3an..fg3a‘tvéétn),[..,[ngt,),A]...]

where R={a | |a] <r}.

Working from the inside bracket, we see that

[va§t1),A] is zero if |ai|>r, ; similarly for the

double commutator,

[v fa) v, (e05 = [V, () v, (k) JA + v, (£2)[V, (£2) 18]

vanishes unless |a,- a;| < ry, or |a;| < r, . The same

goes for the other term '[VaétZ)'AVaft‘)]'

In general, the j-fold commutator will vanish unless

]gjlirA or |§j-§1|§ro or ... or |gj-gj_l|gro.
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It follows that the integrand of u is zero outside

the 3n-dimensional region S(n) given by

S{n) = U S.

j<n 73

S; = {aeIR3n||§1|§rA}
S, = {aeZR3n|IgzﬁrA}U{allgg-glliro}
Sj = {allijlirA}U{alIEj'Ej-lliro}U°-~U{a|Iij’illﬁro}-

Thus [lu || is bounded by

|t] ts
LFtn..f;tls{n?san..d3al|][Vgétn),E...,[Véftl),A]..]”.

Expanding the commutator gives the bound

l£] 75m v|® ||a d%a_...d%
~IcaR A lls{n) n 1

The integral over S(n) can be split up into n!
(overlapping) parts, each of the form of a polysphere
in suitable co-ordinates, namely,

lailsx, o |az|<const., |a3|<const., ...

where 35 is either ayr when the constant is r,, or is
one of a.-a, 4 (2<k<j) when the constant is ry.

J
For each j ¢ {1,...,n} let us put



= D, say

and
a = / a’las-a, ) = Zpr? =4, say
.k k-1 3"°¢e ! !

lﬂj-ik_llﬁro )

for k = 2,...,j. Then the typical term in the integral

over S(n) is al 1a2 i ...an i
(4 (4 2 ’

where ij e {1,...,3}. Hence, the integral over S{(n) is

bounded by the su:

X °1,1%,i, 77 ®n,i

(where the sum extends over all possible values

of iz,i3,...,in).

= D(D+d) (D+24) ... (D+(n-1)d).

So a final estimate for [lu || is

N
Il Il < 'E, 27 V™ l]2]] D(D+d) ... (D+(n-1)d).

Since each S(n) is a bounded 3n-dimensional

region, each term of the series for Ti(t)A becomes
independent of r for r sufficiently large.
But llTi(t)Al' is bounded by the series

[+0]

5 olall | 22 |Iv]I® pp+d) ... (D+(n-1)4),
n=0 n!
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‘which is uniformly convergent for |t| < §,
where § < (2||V||d)-l.

Therefore Ti(t)A converges in norm, as r -+ <,
uniformly in |t] < 6. The convergence depends on d,

which depends only on r,;, and is independent of A.

Thus Ti(t)A converges uniformly in |t| < § for all

Ae{A() | 0 aregion in M}.
Now let B ¢ A be arbitrary, and let e>0 be given.

Then there is an A ¢ é(g), some 0, such that

lla - Bl| < e/3.

Therefore
I I I I
It (0)B-1_(0)B]] < ||t (v)A-1g(t)A]l + 2 ||a-B]|
< €
for |t| <8, and r,s sufficiently large. The Ti(t)B

therefore converge in norm as r -+ «., QED.

Remark.

If we had taken s dimensions, rather than 3,
the only difference would be that D and d would be
replaced by the volumes of s-dimensional

hyperspheres of radii r, and r,, respectively. The

A

conclusion of the theorem remains unaltered.

Corollary 4.3.4.

The family { W(t)To(t) | t € R }, where T.(t)
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denotes the limit of Ti(t) as r » », define a strongly

continuous one-parameter group in Aut A.
Proof.

The relation E(S)Ti(S)TMt)Ti(t) %(s+t)1£(5+t)

i

implies, by the theorem, that

TdS)Ti(s)TMt)Ti(t) = TMS+t)T£(S+t)

provided [s|,|t] and |s+t]| are all <8.
The fact that each Ti(t) is an automorphism

follows just as in corollary 4.2.3.

We shall utilise this group property to extend
I . I
T(*)T_(*) to |t] < 28. Let us write () for T(*)T_(*).

For |08| < 28, define T(8) = T(x)T(y)
where |x|,|y| < 6, and x+y = 6. The r.h.s. is a well-
defined automorphism of A. For IBI < 6, this definition
is no more than an identity.

Suppose that & < |8] < 28, x+y = 6 = x'+y",

IXI'IX'IIIYIIIY'I < 6, and x # x'. Then

T(x) T(Yy) T(x") T (x-x")T(y)

= T(x")T(y-y")t(y)
{(using x~-x' = y'-y)
= 1t(x")t(y') ;

all the automorphisms occuring are well-defined since
their arguments have modulus not greater than §.

This simply means that T(°) is independent of
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how we write 8 = x+y, i.e. is well-defined.
We have extended the range of t from [t| < §
to |t] < 28. In the same way, we can extend this
to |t| < 46§, and so on.
Thus t(t) is a well-defined automorphism for
each t e IR, and satisfies the group property. It remains
to show that t(t) is strongly continuous in t;i.e.
T(+)A is norm continuous in t for each A ¢ A.
Let A € A(Q), and let g>0 be given.
Then

|| T(s+t)r - 1(s)A]| = || T (v)a - 2|
I
= |1 (t)A - n(-t)a||
since 13 has the dgroup proverty,
I
< I o)a-all + || a-n(-t)al] .

But

© n
I <Zwa-all < [1all 3 E 2P vlP Lo orm-na)
n=1 —°

< e¢/2 for |t| sufficiently small.

Also
| 2 - w(~-t)a|]< e/2 for small |t| by axiom 4'.
Therefore

|} t(e")a - 1(0)Al| < €

for |t'-t| sufficiently small.

Now let A ¢ A, and let B € A(Q), some A(Q),
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with || A - B|| < 2e/3.
Then

| t@)a-t@®Aall < || te)B-t(t)B|| + 2|| A-B]]
< €

for sufficiently small |t'-t]. QED.

Remark.

The conclusion of corollary 4.3.4 depends on the
continuity assumption (axiom 4') of T1,.

Suppose that A is given as a C*-algebra of
operators on a Hilbert space, H. A weaker continuity

assumption on t1,is then that, for each A ¢ A and h € H,
|| t{a)Ah - Ah|] > O in H, as a + 0 in R*,

Ti(t)A can be defined as a series of strong integrals
on H, and theorem 4.2.2, corollary 4.2.3, and
theorem 4.3.3 remain unaltered. However, corollary 4.3.4

must be modified :

Corollary 4.3.4"'.

If 1psatisfies the weaker continuity condition
above, then the family {Tdt)Ti(t) I te IR} define a
one-parameter group of automorphisms satisfying the

same continuity condition as T(t).

(Note that it remains true that Ti(t)A is norm

continuous in t, at t=0, for fixed A).
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Theorem 4.3.5.

T(t) commutes with space translations.
Proof.
Let A € A(Q), some O, and let |t] < &.

Then we have

t
$(0,a) T(t)A = T(t,a) (A + ifo dtlj'daal[Val(tl),A] + oeee )

t
w(t) (0(0,2)A+i[ dtlj'daall:va+al(t1 ), B(0,2)A] + ..)

Il

w(t) T (t) (1(0,2)A)

T (t)TU(OIE)A‘

By continuity in A, we obtain the result for arbitrary
A € A. To remove the restriction |t| < &, we use the
group property of T.

Let s be given. Then there is t, with |t} < §,

and an integér n such that nt = s. Thus, for A € A,
(0,a)T(s)A = 'to(O,_g)'t(S/n)nA = T(S/n)nTo(O,_a_)A
by repeated applicaticn of the result for |t| < ¢,
= 1(s) ©(0,a)A QED.
We have obtained a translation-invariant

automorphism group {T(t) | te R} by removing the space

cut-off on Vr’ despite the fact that Vr itself has no

limit. If, in addition, we have a continuous
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representation of O0(3) in Aut A, and if we choose V
to be invariant under this action, the theory will

be Euclidean invariant. (For example, an invariant V
can be obtained by averaging an arbitrary V over the

group 0(3) with respect to its Haar measure).

§4.4. The Heisenberg Fields.

Suppose now that A is the guasi-local algebra
for the free field, as discussed in §2.1. T(t) and
T(t) are then continuous in the weaker sense that

|| T(t)Ah - Ah|| + 0O as t + O for each A € A and each
h € H, the Fock space.

In this case, Vr is a bounded operator in H,
and therefore Ho+ Ve where H implements the time

translations of §2.1, is a well-defined, unbounded
self-adjoint operator with domain equal to Dom Ho.

It is not hard to see that Tr(t) = rdt)ri(t) is
implemented by the unitary group with generator FRo+ Vr.

From our estimates in theorem 4.3.3, it is clear
that the convergence of Ti(t)A to Ti(t)A for |t| <38
depends only on D and d and || A|| . Now, if 2 € A(Q),

D depends only on Q. Thus Ti(t)A converges to Ti(t)A

uniformly in || A|] < 1 and A € A(Q), for fixed Q,
provided |t| < 6.

Now let W(aE) € A(Q), where
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W(ag) = exp ilal(d¢(f)-n(g9)) ,a e R, as in §2.1.

This is strongly continuocus in a, and the

implementability of Tr(t) implies that the same is
true of Tr(t)W(ag). By the above comments, this

converges in norm, for |t] < §, as r + », uniformly
in o, and so we conclude that t(t)W(af) is strongly
continuous in o, for |t| < §.

We can therefore define the sharp-time
Heisenberg fields ¢(f,t), w(g,t) for |t]| < §, as
the self-adjoint generators of t(t)W(oE) for £
given by Cauchy data (£,0) and (0,-g), respectively.
Clearly, the domains of ¢(£f,t) and n(g,t) will

depend on t.

Remark.

We do not expect 1(t) to be implemented if T(t)
is - this because of Haag's theorem (14). To obtain a
representation of A in which t(t) is implemented, one
method would be to find an invariant state on A and
then employ the G.N.S. construction (23,24) to
obtain a unitary operator U(t) implementing T(t) on
a new Hilbert space. The difficulty is in showing
that U(t) is strongly continuous in t, as is
necessary if we are to define the Hamiltonian as its
generator. This has been done successfully by J.Glimm

and A.Jaffe (45), and can also be done in our case in
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two-dimensional space-time using their techniques (56).
Another undesirable property of t(t) is its

violation of causality. The various terms in Ti(t)A

spread out further and further, so that although A

may be located within a bounded region, T(t)A is spread

over all space for any arbitrarily small time, t.

§4.5. Almost-factorisable Interactions.

We can prove that t(t) is causal under an extra
condition on V. Unfortunately, we do not know if there
are any such V satisfying this condition.

To avoid the complications of the time-dependence
of the O, let us suppose that we are given the local
algebras, A(Q), for a fixed time, say t=0, so that
now O is a region in IR®.

For example, the time-zero algebras for the free
boson field are generated by the time-zero fields
¢(f), m(g) with f,qg € Q(IR3). (Note that A is the same
here as in the 4-dimensional case).

Axioms 1-3, for the three dimensional regions
will still be meaningful, and we shall suppose that

they hold. Axiom 4' is the same except that we

suppose To(t)A(Q) = é(g’tl), where gltl is the region

0 "spread out" by a distance |[t]| : gltl =U Bl

where B is a ball, and Blt] is the ball obtained by

increasing the radius of B by |t].
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We would like t(t) to have this property,

viz, T(t)A(Q) = é(gltl)'

Definition 4.5.1.

Let V € A(Q), for some region 0. We say that V
is almost~factorisable if, for any given €>0, 6>0,

there is a finite cover of Q by open balls {Bi|i=l,..,n},

with radii equal to §, and elements Vie é(Bi)

such that

n
HV" Z Vi” < E.
i=1

In other words, V can be approximated by a sum
of elements in arbitrarily small regions. The following
theorem is, therefore, not so surprising. (An example
of such a V is given by any element in the intersection

of all the A(QO). In this case, V can be written as
v =zl vi , where Vi = %V, which clearly will satisfy

the conditions of the definition. However, in cases of
interest, the intersection of all the A(Q) is trivial,
or at least is contained in the centre of A, in which

case, Ti is equal to the identity automorphism) .

Theorem 4.5.2.

Let V = v*¢ A(R), where R is a ball of radius p,
be almost-~factorisable. Suppose that To¢ is causal,i.e.
satisfies our modification of axiom 4', above. Then

T is causal.
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Proof.

Let A € A(Q), O a region in IR®. We note that if
W e A(S), where § is a ball of radius o, then

fdaa[Wé,A] € A0, ).

The causality of t, implies, therefore, that

fata, ...[a%a_ m(t)[Wé{tl),E ..,[Wéétm),A] eer ]

(where Wé(t) = Tﬂ“t)WE)
= fdaal"daamﬁ(t'tl)twgl'“(tl’tz)[Wgz' cen

..,Tdtm_l—tm)[WEm,nﬁtm)A]..]

™
hed

(220m+|t|)

Let |e1<|t|<(2||v||d)'l, with 4 as in theorem 4.3.3,
and let £>0 be given. Let N be an integer, and e'>0.
Then, since V is almost-factorisable, there is a finite

cover of R, by open balls {Bil i=1,..,n} with radii

equal to § = lel = 181, ana elements v, e A(B,) such

2N i
that

[l v - Z?=l vill <e'.

Now, it follows from our previous remark that

N .0 t.
- . J j-1 3 3
Sy(0)A = T(6)A + _g i Lgtl..fo dtjjd a;..fda ay

j=1

%(G)Ewg{tl)"‘twgétj)’A]"]
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= n =
where W zi=lvi : belongs to é(22N6+|6|) é(gltll.

But ||V - W|] < €' implies that
lIsy(e)a - <o) | all <e,
N
provided e' is sufficiently small; where 1(8)] A is the
N

sum of the first N+1 terms of the series for T(6)A.

Now, T(G)INA + T1(6)A in norm, as N »+ « (by our

estimates in theorem 4.3.3), and so the same is true

for SN(G)A.

The norm completeness of é(g't') implies, therefore,
that 1(86)A ¢ é(gltl). Now, T(8)A is norm continuous in

8 1f 1(6)A is. Under this assumption on Ty, we conclude
that t(t)A, as a norm limit of 1(6)A as 6 » t, belongs
to é(gltl).

The group property of T ensures that this property

holds for all t, and the proof is complete.

Remark 1.

If we assume that the A(0) are given as operator
algebras, and as such are weakly, or eguivalently,
strongly closed, then we need only assume the weaker
condition that T(t)A is strongly continuous in t.
Indeed, this implies that the same is true of tT(t)A,

and so T(t)A is the strong limit of T(6)A as 6 -+ t.
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But each 1(8)A € A(O I) and so T(t)A € é(gltl) if

|t

this is strongly closed.

Remark 2.
If V is such that t(t) is causal, we can exploit
the uniformity in ||A || < 1, A € A(Q), of the

convergence of the series for Ti(t)A, and define the

Heisenberg fields ¢ (f,t) and 7(g,t) for all time, t.
Indeed, T_(t)A - T(t)A uniformly in |[A ] < 1,

A€ é(gltl) for any fixed t, and so the restriction

|t| < 8 can be removed.
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