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ABSTRACT 

Several topics of quantum field theory are 

discussed within the algebraic context. It is shown 

that for the charged Bose field there are two natural 

ways of defining the local field algebras; however, 

these are relatively antilocal in the sense of Segal 

and Goodman. We define the charge sectors and show that 

although they are unitarily inequivalent representations 

of the observable algebra, they are physically (and, 

in fact, strongly locally) equivalent. This is a 

partial justification of the use of abstract algebras. 

The converse problem, that of constructing 

charge carrying fields given the observable algebra 

in the charge zero sector, is then tackled for the case 

of a massless boson field in two dimensional space-

time. This is achieved by applying the techniques of 

Doplicher, Haag and Roberts, viz,the use of localised 

automorphisms. The specific localised automorphisms 

used are suggested by consideration of Skyrme's model 

for zero mass. 

Finally, we discuss the time evolution 

corresponding to a bounded interaction density in an 

arbitrary number of space dimensions. This extends a 

result of Guenin. A condition on the interaction in 

order that the resulting time evolution be causal is 

given. 
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Introduction  

The use of abstract algebras (as opposed to 

operators on a Hilbert space) was made clear by 

I.E.Segal, in 1947, in a paper entitled 'Postulates 

for General Quantum Mechanics'(1). Here, he sets out 

the postulates in a mathematically cogent form in terms 

of abstract algebras, and states on these. 

In 1957, R.Haag suggested the use of the 

(unbounded) operator algebras generated by polynomials 

of Wightman fields (2). These were reformulated in terms 

of bounded operator algebras and underwent intensive 

study, notably by H.Araki, H.J.Borchers and R.Haag and 

B.Schroer (3-9). Meanwhile, Segal was developing his 

own theory (13). 

The formulation as generally accepted today was 

put forward in 1964 by R.Haag and D.Kastler (10). The 

axioms set out by Haag and Kastler are sufficiently 

restrictive so as to allow fruitful investigation, but 

are more general and less restrictive than the Wightman 

axioms (11,12). Certainly, the former are more intuitively 

appealing than the latter. 

We shall begin with a brief account of Segal's 

postulates, and the Haag-Kastler axioms, and shall show 

how the algebraic approach affords some explanation 

of superselection rules. 
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1. The Algebraic Approach to Quantum Field Theory. 

§1.1 Quantum Phenomenology (1,13) 

We shall take the observables of a system as the 

basic undefined quantities (in the same sense that a 'line' 

may be considered as the basic undefined concept in 

geometry), in terms of which all other physically 

meaningful objects are to be defined. Originally, an 

observable was identified with a self-adjoint operator 

on a Hilbert space, H, and a state was a vector (or, in 

a more sophisticated formulation, a 'ray', i.e. a family 

{ X* I A c C,IXI = 1; fixed Ips11}) in the Hilbert 

space. The expectation value of an operator A in the 

state * was then taken to be (*,AW 

Such a theory is rather unintuitive, and is not 

sufficiently general. Indeed, in order to have an energy 

operator for interesting systems, it seems practical to 

consider at least two Hilbert spaces. This is a consequence 

of Haag's theorem (14). A recent example of this is the 

cj)i theory of J.Glimm and A.Jaffe (15). 

We shall suppose that our observables are bounded. 

Unbounded objects, such as the energy of an infinite 

heat bath, are considered to be observable only in that 

We shall always use the (Dirac) convention in which an 

inner product on a complex linear space is linear in 

the second variable and antilinear in the first. 
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they are limits of bounded observables; one can 

measure the energy of any arbitrarily large, but finite, 

volume of the heat bath, for example. 

If a is a real number, we can interpret aA as that 

bounded observable with values equal to a times those 

of A. A2  is the bounded observable obtained by measuring 

A, and squaring the result. However, A+B and AB can only 

be similarly defined if A and B are simultaneously 

observable. We can hope to define A+B as that observable 

with expectation value, in any state, equal to the sum of 

those of A and B. This can be done if an observable is 

determined uniquely by its expectation values in every 

state. We cannot do the same thing for AB because it is 

not true that the expectation value of a product is. equal 

to the product of the corresponding expectation values. 

(The observables will not betindependent', in general). 

It is possible to define a formal product of A and 

B in terms of A+B and A-B, as was done by Segal (1). 

However, we shall not do this, but shall accept the 

following postulate. 

POSTULATE. 	The observables of a physical system are 

self-adjoint elements of an abstract C*-algebra,A. 

Perhaps a few remarks are in order. 

1. We have supposed that our observables are bounded. 

Thus, to each A we associate a non-negative real 

number HAM . A is 0 if and only if Hril= O. This 

is the physical interpretation of the norm in the 

C*-algebra, A. 
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2. The C*-property, H A*AH = 11A112, or, in the case of 

self-ad/oint A, II A2 11 = H All 2,is a natural 

requirement according to our interpretation of the 

norm. 

3. It is technically convenient to assume that the 

observables are complete with respect to the norm; 

if not, we could complete them. It is also convenient 

to assume that A has an identity! 

4. Po have assumed that there is a product AB of any two 

observables A and B, but as previously noted, the 

physical interpretation of this is not always clear. 

5. tae could have taken A to be a real, rather than a 

complex, algebra. This was done by Segal (1), but 

there seems to be no advantage in this. We can always 

complexify a real algebra. 

Favina accepted this postulate, we can now apply 

the beautiful theory of Gelfand and others, on commutative 

Banach algebras, to recover such concepts as 'exact value 

of an observable' and 'probability distribution of an 

observable in a given state'. Let us define the concept 

of a state. 

A state of a system is an assignment of an 

expected value to each observable, i.e. is an 'expectation' 

functional on A: 

(i) w(XA+B) = Xw(A)+w(B), for all Ae C, A,B 

' We shall always assume that all C*-algebras that we 

consider have an identity. 
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(ii) w(A*A) > 0 	for all A c A. 

(iii) w( 1) = 1. 

In short, a state is an element of the unit sphere of the 

positive dual, A*4., of A. 

A state is called a mixture if it is a convex 

linear combination of two different states; i.e. if there 

exist w1 	w2  e A*+ such that 

to = X(ol + (1°A)w2 r 

for some 0 < X < 1. 

A state is pure if it is not a mixture. 

If A is realised as operators on a Hilbert space, 

H , then a vector 1p e H , with (V,V) = 1, defines a 

state by 

w(A) = (4),A0 	for A e A. 

Such a state is called a vector state in the particular 

realisation. e is pure if and only if A leaves no 

subspace of H invariant (16). In general, there are 

more pure states than vector states (1) - another 

inadequacy of the older formulation. 

The variance of an observable A in a state w is 

defined to be w(A2) 	w(A)2. We say that A has an 

exact value in the state w if its va-iance therein 

vanishes; the exact value is then w(A). The set of values 

w(A) of A in all such states is the spectrum of the 

observable. 

Now, the commutative C*-algebra generated by an 

observable A ( = A* ) is isomorphic to a subalgebra 

of C(Q), the uniform algebra over a compact Hausdorff 
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space 2, for some 0.(1,17) ( C(2) is the C*-algebra of 

contiuous complex-valued functions on 0 , with respect to 

the sup. norm ). Thus any A = A* E A can be considered 

as a real-valued continuous function on a compact Hausdorff 

space 0 . Let a be this function. It is natural to say 

that the exact values of A , i.e. the spectrum of A , 

is { a(x) Ixe2}. That this agrees with the above 

definition is seen as follows. Let w be a state on A. 

Then w clearly defines a state on C(0). By the Riesz-

Markov representation theorem we can write 

w(A) = fa(x) dp(x) 
SZ 

for some unique probability measure p on 2. Suppose w 

is pure. Then one can show (1) that p has total mass in 

some single point of 0 

w(A) = a(x0) for some xo e 2. 

Clearly, in this case, w(A2) = w(A)2, and so a(x0) is an 

exact value of A. Also, any xoe SZ defines a state, w, 

on the commutative C*-algebra generated by A. This state 

has the property that w(V2) = w(V)2  for all V belonging 

to this algebra. This implies that w is pure as a state 

on this algebra (1). Now, a pure state on a subalgebra of 

a C*-algebra, A, is the restriction of a pure state on A 

to the subalgebra. Hence, given xo E 0, there is a 

pure state, w', on. A. such that w'(A) = a(xo), and so 

a(xo) is an exact value of A. We conclude that 

{ a(x) Ixe0} is a subset of the spectrum of A. 

However, if w(A2) = w(A)2, then, as above, w is a 

pure state on a subalgebra generated by A, and therefore 
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corresponds to a measure on 2 with total mass in some 

single point. Thus { a(x) Ixe0) is equal to spectrum 

of A. It is the set of values { w(A) 1 w E A*+, w pure }. 

The expectation value of an observable in a state 

w is the average of its spectral values with respect to a 

probability distribution uniquely determined by the state; 

w(A) = f a(x) du (x) . 

The probability that A has values in a Borel set I in 3R, 

in a state w, is given by p(A) where w(A) = I a(x)du(x) 

and A= {xePla(x)eI }. 

Let us remark, with Segal, that the spectrum of an 

observable, A 0 being equal to the values of P. in the 

pure states of 	is representation independent. 

The set of pure states is separating for A (1) 

- that is, w(A) = 0 for all pure states w, implies 

that A = 0. Therefore A+B is uniquely defined in terms 

of its expectation values in all pure states. This is 

consistent with our introductory definition of the sum of 

two observables. 

Let us now turn to further requirements on our 

C*-algebra pertinent to quantum field theory. 
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51.2 	The Haag-Kastler Axioms (10) 

Any particular experiment takes place in a finite 

region of space-time. That is to say, any experiment can 

be assigned to a region of Minkowski space, M, namely, 

the region in which it takes place. ( A region is, by 

definition, a bounded open set ). If our apparatus is 

located in some region in M, we can only expect to 

measure observables also located within the same space-

time region. This is the idea behind the first axiom. 

Axiom 1. 	To each region 0 in Minkowski space, M, 

there corresponds a C*-algebra of observables, A(0). 

The correspondence 0 -> A(0) can be said to 

determine the theory. 

Axiom 2.(Isotony) If 01, 02 are regions in M, and 

01 contains 02 , then A(02) can be identified with 

a subalgebra of A(01). 

The physical reason for this axiom is obvious. 

Axioms 1 and 2 allow us to define the inductive limit of 

the algebras A(0), indexed by regions in M 

A = U A(0) 
0 

( the double bar denoting the norm completion ). 

The algebras A(0) are called local algebras 

( hence the label 'Local Quantum Field Theory' ) and Z. 

is called the quasilocal algebra. The term quasilocal 

is used to emphasise the fact that Z contains the local 

algebras, together with their norm limits. 
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The next axiom is the main one as regards field 

theory; it corresponds to the fact that no influence can 

propogate faster than the speed of light ( - taken to be 

unity ). Thus we expect two observables associated with 

space-like separated regions to be simultaneously 

measurable - this is expressed by requiring them to 

commute. 

Axiom  3. If 01  and 02  are space-like separated regions, 

then A(01  ) and F.(02) commute.  -   

This makes sense since, by axiom 2, they can both 

be identified with subalgebras of. P(03), for any 03 

containing 01 and 02 . Indeed, any ?AO) is a 

subalgebra of A. 

We would like our theory to be relativistic, so we 

make the next 

Axiom  4. There is a representation a of 134.  , the 

restricted Poincar6 group, in AutP, the automorphism 

group of A, such that 

a(fa,A1)A(0) = A(AO+a) 

for any region 0 in M, and {a,A} 

The last axiom is one of technical convenience. 

Axiom  5. A is primitive. (That is, T possesses a 

faithful, irreducible representation as operators on 

a Hilbert space). 
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It i8 worth noting that, except for the trivial 

case, the automorphisms a({a,A)) cannot be inner (10). 

This reflects the global nature of Poincard transformations 

and the exclusion of such from A. To see this, suppose 

there is a U(a,A) e A such that 

U(a,A)AU(a,A)-1  = a({a,A})A 

for all A c A, {a,A} c 	 , JO'+ 	with U(a,A) unitary. 

Then, for given c>0, there is a V E ma), with 11\111= 1, 

for some region 0, such that (dropping the {a,A}) 

11U - V II <€. 

Let A€A(01), where Q1 is space-like with respect to Q. 

Then 	II a(la,A})A - A II = II UAU* - All 

< Ii UAU* 	VAV*H + II AVV* - All using AV = VA, 

< HUAU* - VAU* H + IIVAU* - VAV*Il + HAI' HVV* - Ilil 

< 2 11U - \di 11P-11 + II All 2E 

< LIC 11A11 . 

This implies that a({a,A})A = A which is false except 

in the trivial case. 

§1.3 Physical Equivalence. 

Since any abstract C*-algebra is isomorphic to a 

C*-algebra of bounded operators on a Hilbert space, there 

appears to be no particular advantage of the former 

over the latter. However, we claim that the abstract 

algebra is more fundamental than any particular 

representation of it. All properties of the system should 

be inherent in the absract algebra. This belief is 

justified by consideration of Haag and Kastler's notion of 
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physical equivalence. 

Let the system be in a state w. A given experiment 

will correspond to the measurement of a finite number 

of observables Al,...,An, with resulting experimental 

values pi,...,pn, and with maximum error e, say. Then 

Iw(Ai) - Pil < c 	for i = 1,...,n. 

We cannot determine w uniquely from this data. Indeed, 

as far as this particular experiment is concerned, we 

can only conclude that the system is in some state w' 

with 

IWI(Ai) 	pil < 6  for i = 1,...,n. 

Thus 

IwI(Ai) - w(Ai)  I < 2e 	for i = 1,...,n. 

So we see that an experiment will give us a 

w*-neighbourhood of the state of the system. (The w*-

topology in A*+  is that given by the neighbourhood base 

{N(w,E,e) I w e A*4-; E a finite set of elts. of A;E >0} 

where N(w,E,e) is given by 

N(w,E,e) = { w'e A*4-I 1W(A) - w(A)I < e,VAEE1). 

Let it and it' be any two representations of A. That 

part of A*+  peculiar to a representation is the family 

of normal states. We consider it and w' as physically 

equivalent if no experiment can distinguish between them. 

But an experiment, as we noted above, corresponds to a 

w*-neighbourhood of the state of the system. This leads 

us to the 
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Definition 1.3.1 	Two representations 7r and 71-' of A 

are physically equivalent if and only if any w*- 

neighbourhood of a state of A which is normal in the 

representation 7r contains a state which is normal in 

the representation 7rI, and vice versa. 

Remark. We can replace "normal" by "a finite convex 

linear combination of vector states" by virtue of the 

fact that the latter are w*-dense in the set of normal 

states. 

Now, there is a theorem, due to J.Fell (18), which 

says that it and rr' are physically equivalent ( Fell's 

terminology is 'weakly equivalent') if and only if they 

have the same kernel ; i.e. if and only if 

{AeAllr(A) = 0 } = {AeAl7r1 (A) = 0 }. 

This is the justification for our claim that it is 

the abstract C*-algebra A that is basic, rather than 

any particular representation of it (10). All faithful 

representations (i.e. those with kernel = {0} ) are 

physically equivalent. 

It should be pointed out that this is rather a 

matter of opinion. Let us illustrate this for the case of 

a system of charged particles. We shall see later that 

the total charge can be used to label the inequivalent 

representations of the observable algebra, L. These are 

physically equivalent : any state in the charge 3 sector, 

for example, can be approximated by a state in the charge 

8 sector by adding 5 charges to the original state in a 

remote region of space. 
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However, given a state of definite total charge, it 

is possible to determine this charge, i.e. the sector to 

which the state belongs, by making a local measurement 

( - albeit in a very large region ). One could therefore 

argue that the sectors should be considered as physically 

distinguishable. Of course, we could now add an extra 

charge to the state, in a remote region, without 

appreciably changing the value of the above local 

measurement. 

The point is that for any given local measurement, 

there are states from different sectors between which the 

measurement cannot distinguish. On the other hand, given 

any two states belonging to different sectors, there is a 

local measurement which can distinguish between these. 

We shall illustrate the ideas of Haag and Kastler 

in the case of a charged Bose field. Although we shall 

construct A as a gauge invariant algebra of operators, the 

charge sectors, as remarked above, will be seen to be 

inequivalent, but physically equivalent, representations 

of A. 

In further support of these ideas, we shall construct 

an algebra of observables,in the charge zero sector, 

corresponding to a two-dimensional massless boson, and 

from this construct charge carrying fields which behave 

as fermions. This is contrary to the belief that fermions, 

I am grateful to Professor R.F.Streater for discussion 

of these points. 
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in principle unobservable, must be basic constituents of 

a theory (42). Our construction is an explicit example, 

and a slight variation, of the general theory of 

S.Doplicher, R.Haag and J.Roberts (19,20). Before doing 

this, let us first turn to superselection rules. 

§1.4 	Superselection Rules. 

The algebraic formalism affords some explanation of 

such apparently ad hoc rules. We begin with the Hilbert 

space approach. As previously remarked, the states are 

described by unit rays in the underlying Hilbert space H(12). 

The reason for considering these lies in the fact that 

ip and eia  berth define the same expectation values, 

(t¢,A1p) = (eicl\b,Aeialp) 

for all A c B(H), the set of all bounded operators on 

H. The observables are self-adjoint elements of B(H). 

Superselection rules originated in the observation 

that Dirac's superposition principle does not hold 

unrestrictedly. For example, one cannot form a state 

from a sum of two states (I) and 1p if (1) and IP transform 

under odd and even-dimensional representations of the 

rotation group. This is because under a rotation of 2n, 

physically the identity transformation, (f) is left 

invariant, but IP becomes -IP. The state given by 0+011) 

can only be unchanged if a=0 or8=0. The total electric 

charge, baryon number and lepton number are also thought 

to define superselection rules (21). 

Let us denote by R the subset of E(H) which 
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represents the observables. A state is said to be 

physically realisable if and only if the projection onto 

it is an element of R.(12) That the superselection rules 

are related to R', the commutant of R in B(H), can be  

seen as follows. If all self-adjoint operators in B(H) 

are observable, i.e. belong to R, then in particular all 

projections are observable, and so all states are 

physically realisable. Thus there are no superselection 

rules - all states have a physical meaning. In this 

case, R' is trivial, i.e. R' = { X ]1 A e e 1. 

On the other hand, if R' is not trivial, then there 

exists a non-trivial projection in B(H) which is not 

in R, and so not all states are physically-realisable, 

and we have a superselection rule. 

Suppose, following Wightman (21,12), that we make 

. the hypothesis of commuting superselection rules, viz, 

R' is abelian. In this case, R' can be diagoalised, and 

H is reduced by a direct sum of orthogonal subspaces;  

the operators defining superselection rules having 

definite values on these subspaces, called superselection 

sectors. 

The observables map each superselection sector 

into itself. Moreover, the restriction of R to each 

superselection sector is irreducible. The superpositon 

principle holds unrestrictedly in each sector. 

We can prove that R' is abelian if it is assumed 

that the set of physically realisable vectors are total. 

This assumption, although seemingly innocuous, is, in 

fact, false in the case of relativistic quantum field 
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theory, if we insist that all observables are local, 

and that there are no global observables. Nevertheless, 

it is a nice result, and may be relevant to non-

relativistic quantum theory. Let us define the notion 

of a coherent subset of H. 

Definition 1.4.1. 	2) subset K in H is said to be 

coherent if and only if it cannot be decomposed as 

K = KiU K2 where Ki 1 K2 and Ki ,K2 # 0. 

For example, if 01 and 02 are any two vectors such 

that (01,02) 	0, then K = {01,02} is coherent. 

If 0,T E S, some subset of vectors of H, we say 

that 	is equivalent to T, denoted 0 ti T, if there is a 

coherent subset K in S such that 0,T e K. To show that q,  

is an equivalence relation : 

(i) Clearly, 0 ti  c (take K = {0}) 

(ii) 1, 	is obvious. 

(iii) Let 0,T e K1, T,x e K2  with K1  and K2 coherent. 

Let K = K1U K2. We shall show that K is coherent. First 

we note that Ki  / K2  since T e K1U Y2. If K were not 

coherent, so that K = KIU K1 with K1 1  K1, then 

• K = ( :K.nimu( K.r)K1) i = 1,2, would he a non-trivial 

decomposition of either K1 or K2, contradicting their 

coherence. Thus (I) 	x and ft, is indeed an equivalence 

relation. 

Theorem 1.4.2 (Oksak-Haratian (22)) 

Let S be the set of physically realisable vectors, 

0 X S. If S is total in H, then R' is commutative. 
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Proof. 

The assumption 0 S is merely one of convenience; 

0 is orthogonal to all vectors, and is thus never 

equivalent to a non-zero vector. 

We must prove that A,B e R' 	AB = BA. Let Sa  denote 

the distinct equivalence classes with respect to the 

equivalence n,  defined above 

S =USa ,Sar.,S(3 = 0 if a 
a 

If (1),T e S and (4).T) 	0, then (1) % T. Thus, if (1)e Sa, 

'P e SS, a 	(3, then (4),T) = 0. We may therefore write 

ES] = e H 
a 

where Ha = CSa] , Col  denotes the linear span of a set 

of vectors, and the bar denotes the closure. 

Lemma 	Define R' = { ET 	T e Sa  }1 , where ET  is 

the projection onto y. Let A E Ra, then A maps Ha  

into itself, and the restriction of A to Ha  is a 

multiple of lu  . 

Proof of lemma  

LA,ET]-= 0 for all T e Sa  , i.e. Z\ET(1) = ETTA) 

for any (1) e H. Take (1) = T 	AT = ETAT = X(T)T 

for some X(T) e E. Similarly, 70'T = X(T)T. 

Suppose A(Ti) 	X(T2), Ti,T2 e Sa. 

Then 	(TI,T2) = (T(TOTI,T2) - A(T2)(T1,T2)  
X(TI) s  X(T2) 

= (A* T1,T2 ) 	(T i,P12 ) 	= 0 . 
X( T1 ) 	X (T 2 ) 

Now let Sa = {TESaI A(T) = A ('Yi), fixed 'Y1 c Sa 1. 

Then Sa  = ca U S'(; , say, and S' 1  S" from the above. 
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But S
a 
= Ut K I K coherent, Y1 E K in S }, and so 

K 

S
a 

is coherent. ( S
a 
=XUY,XIY, pl ex==> 

K = (KnX)U(KnY) V K in S. K coherent 	>K'-IY = 0 

for all K in S
a 	= 0 ). We conclude that S" = 0 a 

And so X(°) is constant on S
a
. 

Thus, the restriction of A to Pa  is a constant 

multiple of 1T1  . 
-a 

If A s R'---> A 6 ni R.' , hence A. r H - 	. -a 	-a  
a 

for all a. This proves the lemma. 

By the lemma, it is obvious that 	is commutative, 

and so the proof of the theorem is complete. 

As remarked in (12), R' is commutative if R 

contains a maximal abelian subalgebra Ro of observables. 

( Ro is maximal abelian if and only if Ro = R.; ). Then 

R o  in R 	is in R; = Ro , and so R' is commutative. 

The set-up, then, is the following. We have a 

C*-alaebra of operators representing the observables. 

The underlying Hilbert space splits as a direct sum. of 

superselection sectors. Each sector corresponds to a 

definite value of the superselecting operators, and, on 

each sector, the observables act irreducibly. R' is 

commutative. 

We can realise such a set-up from the algebraic 

point of view quite easily. Let A be the C*-algebra of 

quasilocal observables. Each state on A will yield a 

representation of A - this is the well--known Gelfand, 

Neumark, Segal construction (23,24). This representation 
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is irreducible if and only if the state is pure (16). 

There are many pure states on A, and therefore many 

irreducible representations to consider. Not all of 

these will be physically interesting - we must restrict 

ourselves to a subclass of representations. 

In practice, A is given as an operator algebra, 

and so there is a natural faithful representation to 

consider; namely, the representation of ?‘ by itself. If 

we also require that other interesting irreducible 

representations be physically equivalent, then they will 

also be faithful. Let us suppose that they are unitarily 

inequivalent ( - equivalent ones do not provide any 

further states ). Thus, we are concerned with a family 

(n a — ,E a
) of inequivalent, irreducible, faithful 

representations of A. We can form the direct sum of 

these, (TnalHa), which is also faithfu)4 Tna(P) is 

uniquely determined by ors  (A) for any A e A, and 	In 

Particular, we note that Sff (A) does not contain the a a — 

projection E onto the subspace H of SH 
6 	 otct 

Let R = eTT
a 
 (A) , and let Q 6 B' ; the commutant 

a   

being taken in H(THa). R' is determined by its unitary 

elements, so we may suppose that Q is unitary. (Any 

element of a C*-algebra is a linear comhination of four 

unitary elements). Suppose there is an Ha  which is not 

left invariant by Q. Let Qa  = Q r F. Then Occaa  0aUa  

is onto and isometric, and intertwines na and On r 0a  H 0 	 r 
6 

QaTra(-) = 	en8(°)Qa  
6 

==> (vet  = ( (Dsn r Qaaa  )0a  . 

on 1-7  
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But Tra 
is irreducible, and so Qa  Ha 

 must be contained 

in HS, some 0. ( otherwise 7
a
, being unitarily 

equivalent to 9
(3'  7a 

 rQH would be reducible ). 

Hende 
Q
a 

w
a 	

Q*a  = 0(.) 	on Qa  Ha  . 

But the irreducibility of TrS  implies that Qa  Ha  = HR, 

and so Q
a 

intertwines Tra  and Tr(3  , contradicting 

their inequivalence. We dOnclude that any Q e R' leaves 

each subspace Ha  of T Ha  invariant, and, by the 
irreducibility of each na, must be a multiple of the 

identity on each of these subspaces. 

Thus, on quite general grounds, we have proved 

that R' is commutative. The various subspaces Ha  will 

correspond to the superselection sectors. Let us note 

the great difference between the C*-algebra R, and its 

enveloping von Neumann algebra. From the above, we see 

that any Q e R' can be written as 0 = Ea AaEa , 

where Ea 
is the projection onto Ha, and {Xa} is a 

family of complex numbers, with supalAal < 00. (This last 

condition ensures that Q is a bounded operator). Thus, 

the enveloping algebra of R, viz, R", the double commutant, 

is equal to the set of bounded operators on t get  of the 

form T Aa, where Aa  e Vila) and suppll < co. The 
elements of R" can therefore be quite independent 

operators on each Ha  , whereas R is determined by = 

its restriction to any one Ha. 
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2. The Charged Scalar Bose Field. 

We have spent some time discussing the general 

theory - now we shall construct the local observable 

algebras, A(0), for the charged field, the charge sectors, 

and show that these are physically equivalent, but 

unitarily inequivalent, irreducible representations of 

the quasilocal algebra A. 

This has been discussed by Doplicher, Haag and 

Roberts (19), as part of a general theory - we feel, 

however, that an explicit treatment in this case is not 

without value. 

A charged field is a field comprising two 

independent fields representing the "particle" and 

"antiparticle", respectively (25). By convention, we 

choose the "particle" to have charge +1, and its 

"antiparticle" to have charge -1. (The opposite convention 

is used for the electron, however). 

In mathematical terms, the charged field (i.e. the 

system comprising a charged field) is the tensor product 

of two "uncharged", but distinguished, fields. It is 

therefore described by two neutral fields. It is convenient, 

for this reason, to develop our notions and notations 

for the neutral Bose field. 
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§2.1 The neutral Boson Field. 

Let HR  be a real Hilbert space, and let H be 

its complexification. 

Definition 2.1.1. 	The Fock space F over H is the 

Hilbert space completion of the symmetric tensor algebra 

over H 
F = (7) H 

(We shall use the symbol 0 to denote the symmetric tensor 

product. The bar signifies completion). 

Thus the homogeneous components F(n) of F are 

given by F(0) = C, and for n > 1 

F(n)  = HOF(n -1)  

0 is defined for decomposable vectors in F(n) by 

= /
ffePn+1 

z 	0...0z 
7(1) 	7(n+1) /(n+1)! 

where Pn+1 is the permutation group on n+1 symbols, 

zn+1 = c, and zy  = z10...0zn  is a decomposable vector 

in F(n). The product is extended to the whole of F
(n) 

by linearity and continuity. 

Define F' = fzeF I z = (z0,21,...), there is N s.t. 

V n > N, zn = 0 ). 

Definition 2.1.2. 	Given r; e H, we define the creation 

operator, a*(C), to be the closure of the operator 

defined on F' by linear extension of the map given on 

homogeneous elements by 

a*(c) F(n).4. F(n+1) 

a*  (c) 	zn÷ ATTI cozn  

• 
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Definition 2.1.3.  The annihilation operator, a(c), is 

the adjoint of a*(C), and is given on homogeneous 

elements of F' by 

a(C)zo = 0 	V zo E F(°), 

a(C) : (n+1) F  (n) 

a(?) zn+1 < 'zi1+1>/irTTI 

where <C,.> is defined on F(m) by 

<c,z10...ezm> = 11.111(c,zi)zie..02i0..ezm  

( the " signifies omission ). 

Thus, a* (C) and a(c) are densely defined 

operators for all C e H. we note that a(C):F(n+1)+F
(n)  

is bounded in norm by $4Ellcil and that a* (r,) ,F(n)4.F(n+1) 

is bounded in norm by ATM 	. 

a(C1) and a*(C2) satisfy the canonical 

commutation relations on F' 

[a(C1),a*(C2)] = (C1,C2) 1 

Definition 2.1.4.  We define the field c1)(c) and its 

canonically conjugate momentum 11(c) 

(1)(c) 	= 	2-1/2( 	a*(C) 	+ 	a(c) 	) 

1/2. 11(c) 	= 	2- 	1( 	a* (r) 	R 	a(c) 

for c c H on F' by 

). 

Then I) and II obey the Heisenberg relations on F': 

D(C1),(D(C2)1 = ER(C1),11(C2)1 = 0 , 

Ell(C/),(1)(C2)] = -i(C1,C2)1. 
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Using the bounds on a* and a, one can easily show that 

F' is a set of analytic vectors for the symmetric 

operators (DR) and n(C). ( z is an analytic vector for 

an operator A if z c DomAn  for all n, and if the power 

seriesn 0  HAnzlie /n! 	in K has a non-zero 
= 

radius of convergence ). By Nelson's theorem (26), it 

follows that (DR) and 11(0 are essentially self-adjoint 

on F', and the Wey1 relations hold 

e
inTr)eiTTO e-in(E)e-iTTU = ei(E,0 a  

where E,c c H. (The bar denotes the closure of the 

e.s.a. operators). 

Definition 2.1.5. Let R be the C*-algebra generated 

by the set of unitary operators feiff7),eiTre)  I 	c H . 

(We recall that HR  is a real subspace of H). 

It is well-known that R is irreducible, i.e. R", 

the double commutant of R in B(F), is equal to B(E). 

This follows from the fact that the state u defined 

on R by A 	u(A) = (R,AQ), where S2 = 1 c F
(o), is pure, 

and Q is cyclic. (These facts can be proved via the 

Stone-von Neumann uniqueness theorem for the case when 

H is finite dimensional (27)). 

In our applications, we shall only consider 0(h), 

11(g) for h,g in a subset of HR, and will therefore 

have a slightly smaller algebra than R. This will not 

spoil the irreducibility. 
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Lemma 2.1.6. 	Let Di,D2 be dense in HR. Let Ro be 

the C*-algebra generated by the operators 

e 	, e i0(h) 	n7q 

	

i ) 	h C DI, g E D2 }. Then RU = B(F). 

Proof.  We need only show that RU contains R, for 

then B(F) 	RU 	R ===>13(F) 	RU 	R" = B(F). This 

follows if we can show that e .11-5)c RU and 

eill(g) c 121; for any h,g  s HR. 

It is easy to see that 0(hn)z converges strongly 

to 4)(h)z if hn  converges strongly to h in HR, for 

z E Fl. Similarly for 11(gn). Since PI is strongly 

closed, the proof is complete if we can show that 

ei(1)(hn) and  eiH(gn) converge strongly to e
i0(h) 

and ei11(g)  , respectively. Thus, to complete the proof, 

we shall prove 

Lemma 2.1.7. 	Let {An}, A be a sequence of operators 

on a Hilbert space, H. Let D in H be a domain of 

essential self-adjointness (i.e. a core) for A and An, 

V n = 1,2,... . Suppose, further, that An 	A strongly 

on D. Then e 	4- eiT strongly in H. 

Proof. 	We shall show that the resolvents Rn(X) of 

An converge strongly to R(X), the resolvent of K. 

Let X c C, ReX 	0. Let z c (A-X)D. Then 

II( Rn(a)-R(X) )zil 	= MRn(A)(4-Tin)R(A)zil 

< 	(A-Kn)R(A)zn 

since IIR n(X)I1 <K(X) for some constant K depending on 

X ( independent of n ). 
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Ic(x) H (k-An)zin 
	

some z' E D, 

	

tc(x) II (A-An)21 H 4 0 as n 	co. 

Now, (A-A)D is dense in H. To see this, consider 

first A = i. Let z' c D. Then 

II Az.112 + H z' 112  

( since A* is an extension of A, and so A*z' = Az' 

for z' c D ). Let z 	0 be such that (z,(A-il)z') = 0 

for all z' c D. It follows that z e Dom(A-i1)* and 

0 = ((A-ilL)*z,z') = ((A*+ill)z,z1 ). 

But A is e.s.a. on D ==-4>A** = A*. Thus z e Dom(A**+il) 

and 

	

0 = ((A**+il)z,e) 	V z' e D. 

D is dense, so (A**+ii)z = 0, 

	

H A**z 11 2+ 11 Z11 2  = °F 	lIZII = 0, 

a contradiction. Hence (A-il)D is dense. 

A.41  = ImA( A-ReX  Since 	 , we conclude 
ImA 

that (A-A11)D is dense, and therefore Rn(X) + R(A) 

strongly. This implies that (28) 

eiAn + eiT 

	

strongly. 	Q.E.D. 

The proof of lemma 2.1.6. is now complete. 

Now let us consider the special case when 

H = L2(IRldS/), where dP, is the relativistic measure 

on the positive-energy mass-hyperboloid (here identified 

with IR3); an = d3k/2/k2+m2. In this case, On)  is 
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the space of all symmetric complex-valued functions of 

n 3-variables, square-integrable with respect to the 

indicated measure. a(r) becomes, for zn  F
(n), 

a(?) : zn(ki,,,kn) + Vic jC07)zn(k,k2,..,kil) dS2 

and a*(c) becomes 

1 yn+1 

	

a*(t) : z (k ,..,k ) + 	k.)z (k ,..,k ,..,k ) 

	

n -1 	-n 	i=1 -1 n -1 	-n 
vn+1 

Definition 2.1.8. Let f,g c S(3R3), the Schwartz space 

of rapidly decreasing, smooth functions, be real-valued. 

The neutral relativistic field at time t, and its 

conjugate momentum, are defined as the operators, 

with core F', 

(f; t) = 2-1/2(a*(F) + a(F)) 

	

7(g;t) =2 1/2i(a*(G) 	a(G)) 

where F (k) = VT el" E(-k) and G (k) = / eitil  p(k)4(-k), 

11(k) = i(k2  + m2) , and f(k) = (27)-3/2  f eik.x f(x) d3x, 

similarly for 4(k). 

Our main concern will be with the time-zero fields 

which we shall just write as (PM and 7(g) , resp. 

These are given simply in terms of 4) and H by 

•(f) = 41(F) 	and ff(g) = 11(G), 

where F(k) and G(k) are as above, but with t = 0. 

As before, we have the Heisenberg relations on E.' 
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[n(g)4(f)] = -if G(k) F(k)dQ = 	f g(x)f(x)d3x. 

To each real pair (f,g) c S(IR3)xS( IP), we 

can associate a real solution C (x,t) of the Klein-

Gordon equation (8t-V2+m2)E = 0 ; namely, the solution 

with Cauchy-data (f,g) 

1(x,0) = f(x) , C(x,0) = g(x). 

(We shall use a dot to denote the time-derivative). 

Now, ¢(f)-w(g) is e.s.a. on F', so we can define 

W(f,g) E e14(f)-ff(g)). 

We may write W(t) instead of W(f,g) in view of the 

	

correspondence C 	(f,g). It is not hard to see that 

the W(C) satisfy the Segal-Weyl relations 

W (g1 ) w(g2) = e-1/2i(E1 1C 2 )  w(c1-1- 2 ) 

where {g1,E2}  is the Wronskian between the two solutions 

gi and g2 : 

{g1,g2} = 	f (E1(x,t)12(x,t) - k1(x,t)g2(x,t))ex. 
t=const. 

Let us define an action of P+'  the restricted 

Poincare group, on E. Let {a,A} elP:, and define (29) 

an action U(a,A) on H = L2(I0,dn) by 

	

U(a,A) 	h(k) 	ei(a'k)  h(A-1k)I 
k°= u(k) 

( (a,k) is the Lorentz scalar product a°k°- a.k ) 

This is a strongly continuous unitary representation 

of IP
+ in H, which extends to a unitary representation 
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r(U(.,.)) on F. r(U(•,•)) is given on decomposable 

vectors h1 .0hn in F(n) by 

Nu) h
10...0hn = Uh10...0phn 

r(U) leaves Fi invariant, and 

r(U)a(*)(h)r(U)-1  = a(*)(Uh) 

where a(*) denotes a or a*. 

It can be shown that 

r(u(a,A))W(E)r(U(a,A))-1  = W(Ea,A) 

where Ea,A(x) E E(A-1(x-a)). 

We are now in a position to define the local algebras. 

Definition 2.1.9. Let 0 be any region in Minkowski 

space, M. We define E(0) to be the set of solutions, 

E, of the Klein-Gordon equation, with the following 

property : there is a flat hyperplane (3-dimensional), 

J, depending on E, such that Jr.Q # Of and the 

function r J has support in JnO. 

Definition 2.1.10. 	We define A(Q), for a region Q 

in M, to be the C*-algebra generated by 

{ W(E) I 	c E(0) }. 

A is the norm closure in R(F) of { A(0) I 0 in M }. 

Clearly, the A(Q) satisfy isotony, and one can 

show that 

[A(c),A(Q1)] =0 
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if 0 and 01  are space-like separated, and that 

r(U(a,A)) A(0) r(U(a,A))-1  = A(0a1A) 

by using the fact that 

r(U(a,A)) W(E) r(U(a,A))
-1 
 = W(a,A)' 

Thus { A(0) } satisfies the axioms 1 - 4 of §1.2. 

A is generated by all W(E) where E has real Cauchy 

data with compact support: that is, by the operators 

e1(1)(f)"(g)  with f l g c D(113). Taking f or g to be 

zero, we see that A contains all operators of the 

fo
rm eriff),  e . Now, Of) = (1)(F) and Tr(g) = 

where F(k) = 1/7 f(-k), G(k) = /7 p(k)4(-k). F and G 

are smooth, rapidly decreasing, and have the property 

F(k) = F(-k), G(k) = G(-k). H can be written as the 

complexification of HR E{hcHlh(k) = h(-k) }. 

The F's and G's lie dense in 	and and so we may apply 

lamma 2.1.6, to conclude that A is irreducible. Thus 

axiom 5 is also satisfied. 

§2.2 The Charged Boson Field  

As we have said before, the charged field is 

built from two distinguished neutral fields. 

Let F
+ and F be two distinguished Fock 

spaces over L2(30,d0). Then the Fock space for the 

charged field is 

E = F+  E . 
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Let a: and a+  be the creation and annihilation 

operators in F
+
, respectively. We interpret a:031 as 

the operator creating a particle with charge +1, 

a+ 1 as that destroying a particle with charge +1 ; 

with analogous interpretations of ]1®a* and lOa_. 

Definition 2.2.1. The number operators N+  are defined 

on F-' by 

N±  • zn 	nzn V zne 11
±(n) 

'  

The total number operator N in F is defined as 

N = N+o I1 + LON . 

The total charge Q in F is defined as 

Q = N+ 	- 10N_. 

Clearly, N has eigenvalues 0,1,2,.., whilst Q has 

eigenvalues 0,±1,±2,... 

Definition 2.2.2. 	The charged field, smeared with a 

real test-function f e SOR3) is defined as the closed 

- 	 1 operator given on F'.7: F+1  OF by 

4)(f) = 2-1/2  (a* (F)0 	+ 10a (F)) 

where, as before, F(k) = iff(-k). 

Its "complex conjugate" is 

0* (f) = 2 1(a4.(F)0 	+ 10a*(F)). 

We see that 4(f) creates a charge +1, and destroys a 

charge -1. We say, therefore, that 4)(f) carries a charge 

+1. Similarly, e(f) is said to carry charge -1. 
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The momenta are defined, for smooth real g,by 

Tr (g) = 2-1/2 i (a*(G)0 1 - MA4a (G)) 

Tr* (g) =-2 'i (a+  (G) ®Il - ll0a*(G)) 

where G(k) = 1/ p(k)4(k). 

The Heisenberg relations hold on F' 

D(f),w*(g)1 = [e(f),w(g)] = ifF(k)G(k)dQ 

= i f f(x)g(x)d3x. 

All other commutators vanish. 

As in the neutral case, we would like to construct 

the local algebras from bounded functions of these 

fields. However, they are not symmetric on F'. We must 

take linear combinations. The operators 4)(f)+4)*(f), 

w(g)+w*(g), i(cp(f)-(1)*(f)) and i(w(g)-w*(g)) are 

symmetric on F', and, moreover, F' is a domain of 

analytic vectors for them. We can, therefore, define 

the unitary operators 

W(f,g) = exp iMf)-14*(f)-7r(g)-g*(g)) 

Wi(f,g) = exp i(i(W)-(1)*(f))-1(7(g)-71.*(g))) 

- the generators being e.s.a. on F'. In fact, on F', 

of).1.4)*(f)...w(g)-71.*(g) = (4(f)(0 1+ 310(L(f) 

-rr+(g)0 	
107r_(g) 

and 
iop(f)..4)*(f))-i(7(g)_7*(g)) 

= c4(if)41) 2-7+(ig)0 1-  104_(if)+ LOw..(ig) 
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where (1)4.(f) and 7+(g) are defined as in definition 2.1.8 

in  i F , respectively.(We have used the antilinearity of 

a(.), viz, a(iF) = -ia(F)). So if E is the solution of 

the Klein-Gordon equation with f and g as Cauchy data, 

and if we write W(E) for W(f,g), we have that 

W(E) = 141.(E) 0 k'_(E) 

and 
W1 (E) = W.f.(iE) 0 W_(-iE) 

where W.I.(-) are the Weyl operators, as defined in the 

previous section, acting in F-, respectively. 

§2.3. 	The Local Field Algebras. 

Definition 2.3.1 	Let 0 be a region in M.1F(0) is 

defined to be the C*-algebra generated by the W(E) 

and Wi(E) with g e E(0). 

Let IF be the norm closure in R(F) of {IF(Q)I0 in M}. 

I' is called the field algebra of the charged field ; 

the IF(0) are the local field algebras. 

Let r+(u) be the unitary representations of P+  

acting in F-  as previously defined. We define the 

strongly continuous unitary action r(U(.,.)) in F by 

{a,A} 	r+(U(a,A)) 0 r (U(a,A)). 

Thus, 

r(U(a,A))W(E)r(U(a,A))
-1 
 = W(Ea,A) 

and 	
NU(a,A))Wi()r(U(a,A))

-1 
 = Wl(a,A)* 

The {3F(0)} satisfy our axioms 1 - 4. 
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There is another rather natural definition of 

the local field algebras : 

Definition 2.3.2. 	Let 0 be a region in M. Let IF(0) 

be the C*-algebra generated by the operators 

W+( ) ® a, )1@W_(E) I 	c E(0) 

The 1F(0) define a perfectly satisfactory local 

relativistic theory, because the WI (.) do. However, 

1E(0) is antilocal with respect to 1F(0) in the sense 

of Segal and Goodman (30). To see this, suppose has 

Cauchy data (f,0) with suppf compact in R3. Then IF(0) 

contains the operator e+(f)0 1 if E c E(0). But 

(4(f)0 1 = 1/2(4)(f)+4)*(f)-i(w(f1)-ff*(f1))) 

where fl(k) = f(k) u(k) -1. 

Thus 

ei(4(f)0 	= elliflf)+43,*(f) e-hi(iff(f1)-ilT*(f1)) 

The first term on the right hand side belongs to 1E(0), 

but the second term does not. This is because of the 

antilocality, in x-space, of the operator u(k)
-1  (30). 

Indeed, f(x) and fi(x) can only both vanish in an open 

set if they are both identically zero. Thus fi cannot 

be part of compact Cauchy data : fi cannot vanish 

outside suppf. 
A 

The algebras 1E(0) are preferable to the 1F(4) 

because the former associate (PM to the region Q if 

(f,0) 	c E(0). 
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Theorem 2.3.3. 

IF is irreducible. 

Proof. 

Using such equalities as 

ei +(f)011.  = e1/2i4)(f)+4)*(f)e-ki(i7r (fi)-in*(f 1 )) 

and lemma 2.1.6, one shows that 1E" contains all the 

operators 
{ +(E)0 le 11MAJ._(0 I 	c'71=1JE(0) ). 

0 

The result now follows from the fact that the Tql.'s 

form an irreducible set, and the fact that 

(A0p); = A'OB' 

for any two von Neumann algebras A and B. 

§2.4. 	Gauge Transformations. 

We have defined the algebrasiF(0), but have not 

yet specified the observable algebras A(0). An 

observable does not change the charge of a state -

observables are electrically neutral. This means 

that we should construct the observables from functions 

of the fields (1),e0r,7r* which contain as many starred 

as unstarred fields. This being so, our observables 

should remain invariant under the simultaneous 

so-called gauge transformation (I) 4  eiaci), e 4  e-iat*, 

7 4  eia7, 7* 	e
-ia

7*. 

Thus, we rigorously define such an action on F, 

and define A(0) as the gauge invariant part of F(0). 



41 

Definition 2.4.1. On F±(1),  define the unitary operator 

U+(a), 	
U.4. (a) : h + e±iah 	for 0 < a < 21r. 

U+(.) induces a strongly continuous unitary group 

r(U4.(•)) on F 

r(114.(a)) : 1110...Ohn 	1.34.(a)1110...OU+(a)hn  

for h10...0hn a decomposable vector in F±(n)  . 

The tensor product r(a) = r(U+(a)) 0 r(U_(a)) defines 

a representation of T, the torus, on F. T is called 

the gauge group. Moreover, on F', we find that 

r (a ) 0 ( f ) r (a)-1  = eiao ( f ) 

r(a)e(f)r(a)
-1 = e-iacp*(f) 

(Similarly for 7 and Tr*). 

Thus, the indicated gauge transformations 

correspond to the spatial automorphisms implemented 

by r(-). The generator of the strongly continuous, 

one-parameter group r(•) is nothing other than 

N+0 	= Q, the total charge operator. 

Definition 2.4.2. 	The local observables are the 

gauge invariant elements of F(0) 

A(p) = TE(Q)r■r(T)1  

where r(T),  is the commutant, in a(F), of the 

set { r(a) I aeT }. 

A is the norm closure, in 11(F), of the set 

{ 4(2) I Q a region in M }. 
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As sub-algebras of thelF(0), the A(0) satisfy 

axioms 1 - 4. We shall see later that axiom 5 also 

holds. 

§2.5. The Charge Sectors. 

The charge operator, Q, has eigenvalues 0,±1,±2,..; 

the eigenspace corresponding to the eigenvalue q is 

denoted F . Clearly, 

F = T F+(n+q)-OF-(n) -q 	n- 

or F = F+(n)iiF-(n-q) n= = 
Also 

if q > 0, 

if q < 0. 

F = (130 F . 

Since A commutes with r(•), we see that A leaves 

each F invariant. This is a restatement of the fact 

that the elements of A do not carry any charge. 

Accordingly, the restrictions of A to the various F q  

define representations, wq,  say, of A. These represen-

-tations are called the charge sectors. 

We expect these representations to be physically 

equivalent. Indeed, as in our discussion in §1.3, a 

state in the q-sector can be made arbitrarily close 

to a state in the q+1-sector by adding a particle with 

charge +1 in a sufficiently remote region of space. 

This argument can be made quite rigorous ; we shall 

need two lemmas. 
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Lemma 2.5.1. 	Let A e A(0), and let 01  be a space- 

-like region with respect to 0. Suppose (f,0) is the 

Cauchy data for some solution F e E(01). Then for 

any z,z' e pt, 

(z,A4)(f)z 1 ) = (e(f)z,Ae) 

i.e. cp(f) and A weakly commute on a dense set. 

Proof. 

By construction, W(XE), 1,111(AU e]F(01), for 

all A 621. Therefore they commute with A, and so, 

taking z,z' a F', 

(4(-AE)z,Ae) = (A*z,W(A)z') 

(W1(-AUz,Azi ) = (A*z,WI(AC)z1 ). 

lq(XE) = exp iA(4)(f)+4)*(f)) 

141(10 = exp Dt(icl)(f)-ie(f)). 

The result now follows by taking the derivative, with 

respect to A, at A = 0, cancelling the i's, and adding 

the two resulting equations. 

Lemma 2.5.2. 	Let E denote the linear span (i.e. 

finite linear combinations) of decomposable vectors 

in F of the form h = 1110..OhnOhn+10...011n+m  for some 

integers n and m, where hi  e S(R3) for all i. 

Let f c D(IR3), be given such that f is normalised 

to unity in 1,2 01Ran). Let fa  be the translate of f, 

i.e. fa(E) = f(x-a). Then (1)*(fa)(1)(fa)h converges 

and 

But 

and 
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weakly to h as lal 4 00, for h c E. 

Proof. 

Let h c E. Since 0*(f
a
)(1)(f

a
)h is uniformly 

bounded in norm, we need only show that 

(e(fa)(1)(fa)h,h1 ) 4 (h,h') 	as lal 4 co, 

for h' in a dense set in F. Now, E is such a set, so 

we choose h' E E. Writing (t) and e in terms of creation 

and annihilation operators, we obtain 

(4)*(fa)$ (fa)h,h1 ) 	= 	1/2( (a,f(F)a.1. (F)0 1111,h 1 ) 

+ (a4.(F)0a_(F)h,h 1 ) + (a.t(F)0a*(F)h,h') 

+ (10a*(F)a_(F)h,h1 ) + (h,h1 )fiF(k)1 2d2 ) 

where F(k) = 12 fa(-k) = 1ff 	i(-k), and we have 

made use of the CCR to obtain the last two terms. 

The first four terms all contain a factor of the 

form 	
(F,h") =

J
!f(k) h"(k) c1 

where h" is some function in S(R3 ). But this converges 

to zero as !al 4 00, by the Riemann-Lebesgue lemma. The 

fifth term is just equal to (h,h') because of our 

normalisation of f. Q.E.D. 

We can now prove 

Theorem 2.5.3. 	The representations Urq 1 q = 0,±1,..1 

of A are physically equivalent. 

Proof. 

It suffices to prove that 7 and 7a4.1 are 
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physically equivalent. 

Let w be a state on A given by a finite linear 

convex combination of vector states in the representation 

'Ng. That is, w has the form 

("6)  = 411-1 Ai(zi'wq(e)zi)  

for some integer N, vectors z.e F Hz jII = 1, 

and Xic7R'i=1 	= 1. 

Let N(w,A1,...,Ap,c) be a w*-neighbourhood of w 

N(w,A..,Ap,c) = Cw'eA*4.1 Ic0(A)-w(A )1<edt=1, 

Suppose, first, that Al,...,Ap  c A(0), for some region 

0. Let E be as in lemma 2.5.2. Then we can choose 

hic Erqq, i = 1,..,N, 	= 1, such that the state 

w".)  = 17=1Ai(hiincl(*)hi)  

belongs to N(w,A1,..,Apdx). (This is possible because 

Engq  is dense in Eq, and N and p are both finite). 

Define a positive linear functional pa(s) 

given by 

Pa(*)  = IT=1Xi Mfa)hi'ffq+1(9"(fa)hi)  

where suppf is compact in 1R3.pa  is not a state, since 

it is not normalised; pa(.)/pa
(2) is a state, however. 
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By lemma 2.5.1, we can write pa(A1) as 

pa(A1) 	17.=1  Ai(0*(fa)0(fa)hi,Ajthi) 

= 1,..,p, for lal sufficiently large. 

Now, by lemma 2.5.2, we see that 

Pa  (X)w' (X) 	as la' 

for X =111,A1,..,Ap  ; i.e. pa(X)/pa(1) + w i(X). 

Therefore, pa(0/pa(11) e N(w',A1,..,Apdle) for lal 

sufficientlylar"""thichc"ePa(0/P-a ") is in 

the neighbourhood N(w,A1,..,Ap,e) of w. 

We must remove the condition Al,..,Apc a(0). 

Let Al,..,Ape A. We can find 	e a(2), for some 

0, such that HAE  -A'H < e, for £ = 1,..,p. 

Given w, we construct pa(.)/pa(11) as above, and 

deduce that it belongs to N(w,Ai,..,A,:),e). But 

lw(Ad-pa(Ad/pa(1)1 < lw(Ap-pa(Ap/pa(M) I 

+ 2HAi-At H 

< 3e. 

Thus pa(-)/pa(Il) e N(w,A1,..,Ap,3e). Since e>0 was 

arbitrary, we conclude that the set of finite convex 

linear combinations of vector states in 71'q+1 is w*- 

dense in those in .1r q. 

Reversing the roles of q and q+1 and replacing 0 

by 0* in the above argument, we conclude that ir is 

physically equivalent to itq+1  . QED. 
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We can now apply Fell's theorem to the various 

sectors, with the conclusion that all the 7 have the 

same kernel. It follows that 03 
q  7q 

 has the same kernel 

as each IT . But ®wq  is faithful, and so the same is 

true of the representations 7q. 

Theorem 2.5.4. 

Each 7 is a faithful, irreducible representation 

of A. In particular, A is primitive. If q q', then 

•Trq  and 7 I  are unitarily inequivalent. 

Proof. 

We have already noted that each 7 is faithful. 

To prove the irreducibility and inequivalence, we 

reproduce the proof given by Doplicher, Haag and 

Roberts (19). 

We define the mean of an operator with respect 

to the unitary representation 11(.) of the gauge group T, 

m : B(F) 	B(F) 

2w 
m : X 4- (27)-l!  r(a)xr(a)

-1da 
0 

The integral is a weak integral. Clearly, m is a map 

from B(F) onto { r(a) laeT}'. 

Lemma 2.5.5. 

(a) r(a)m(.)r(a)
-1  = m(r(a)(.)r(a)-1) = m(*). 

(b) m(0) is weakly continuous on bounded sets. 
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Proof. 

(a) is obvious. 

(b) We shall give an explicit alternative proof to 

that of (19). 

Let X be a weak limit point of the set 

{Acla(1)1 HAM < K). Let {Xv} be a net with 11Xvil <KVy 

such that X
v 

converges weakly to X. We must show that 

m(X
v
) 	m(X) weakly. 

Let z,z'c F. Then 

(e,(m(X)-m(X))z) = f o(e,r(a)(X-X)r(a)
-1da 

= f o (r (a )*e , (Xv-X ) r(a ) *z )da 

where we have identified T with [0,1). 

Fix aoc T. Then, given c>0, there exists v(ao) 

such that V v>v(ao) 

l (r(a0)*e ,(Xv-X) r (a0)*z)1 < C. 

However, the continuity of r(•) in a implies that this 

inequality, with 4c on the r.h.s., holds for all a in 

some neighbourhood of ao. 

To see this, put Av= Xv-X. Let a be fixed. Then, 

given c>0, there exists v(a) s.t. V v>v(a) 

kr(a)*e,Avr(a)*z)1 < c. 

Let V,v 1 >V(a). Then 

1(e,r(a)Avr(a)*z) - (zt,r(a)Av,F(a)*z)1 
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< 1(e,r(0)Avr(0)*z) - (e,r(a)Avr(a)*z)I 

+ 1(z',r(a)Avr(a)*z) - (z',F(a)Av ,r(a)*z)1 

< 1(e,r(0)Avr(0)*z) - (z',F(s)Avr(a)*z)1 

+ 1(e,r()Avr(a)*z) 	(Z 1 ,11(a)Avr(a)*Z)1 

1(Z i rr(a)Avr(a)*Z) 	(Z I ,r(a)Av ir(a)*Z)I 

< HZ1M1AvIHINR)*Z`r(0)*ZH +11ZHHAA11(0)*ZI NU)*Z 1 11 

E 	c 	(since Ilr(.)11 = 1) 

< 3E provided 16-al < some 8, since r(•) is strongly 

continuous, and HA
v 
 < 2K V v. 

Hence 

1(z 1 ,r(B)Avr(0)*z)1 < 4e 

for 10-al < a, and V v>v(a), as asserted. 

Now, by varying at)  over T, we get a family of 

v(a)'s, and a corresponding family of neighbourhoods, 

{N(a)}. The {N(a)} cover T, and so the compactness of T 

implies that there exists al,..,aN  s.t. T = ULiN(ai). 

Let 0 > max{v(ai)1i=1,..,N}. Then, for any acT, and v>0, 

l(r(a)*z',(Xv-X)F(a)*z)1 < 4e 

since aeN(ai), some ie{1,..,N}. 

Hence, V v>0, 

1 
If o(r(a)*z',(Xv-X)r(a)*z)da 1 < 4e. 

This completes the proof of part (b) of lemma 2.5.5. 
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Lemma 2.5.6. 

Let B be a C*-algebra in B(F) such that 

m(B) C B, then (B,-%F(T)')= Bnr(T)'. 

(The bar denoting the weak closure). 

Proof.  

Since m(B) rB, (a) of lemma 2.5.5 gives 

Brr(T),  = m(B). Thus (Bnr(T)') = m(B) 

Now suppose B is a weak limit point of B. Then, 

by Kaplansky's density theorem (31), B is a weak limit 

point of a net (XvcRI 11Xv H I IIBH V 0. It follows 

from lemma 2.5.5 (b), that m(Xv) 	m(B) weakly, and 

m(B) c m(B). Thus m(B ) C m(B) . 

Any Bcm(B) is the weak limit of elements of B 

invariant under m. As above, we can find a net,{Xv), 

in m(B) with m(Xv) 	m(B) weakly. But Xvc m(B) implies 

that m(X
v
) = X

v B weakly. Thus m(B) = B, and so 

m (B) c  m(B-). We have, then, that m(B-) = m(B)-. 

Therefore m(B) = m(B)c B-, and so, by lemma 2.5.5 (a), 

Besr(T)1  = m(B ). 

Hence Bnr(T)' = (BrINT),). QED. 

We are now in a position to prove theorem 2.5.4. 

From the definition of A(0) and A, we get 

A(0) =IF (0) 	r (T) 	m ( IF (Q.) ) 

and, by the norm continuity of m, 

A = m(IF) = MF"r(T) '. 
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Now, by theorem 2.3.3, IF is irreducible, and so, 

by lemma 2.5.6, 

A—  = 	r(T)' = r (T) 

So we see that the sectors F
q 
 reduce A as well as A. 

Moreover, r(T)' . 9 qB(Fq  ), and so each ¶q  (A) is _ 	= =   

irreducible. 

Let E
q 
 denote the projection onto F . Then 

E
q 
 c r (T) ' r' (T)" = Ari A'. Thus E

q 
 and Eqi  are the 

— 	_ — —  

central supports of 7rq  and 	, (31). These are 

orthogonal for q 	q', and so .11-  and Tr , are disjoint 

(see 5.2.1 (iii) of (31)), and are,therefore 

inequivalent. QED. 

Thus, regarding A as an abstract algebra, we see 

that the axioms 1 - 5 are satisfied. 

We proved, in theorem 2.5.3, that the sectors 

are physically equivalent. In fact, they are strongly 

locally equivalent in the sense of Borchers (32). 

Definition 2.5.7 
	

Let 'RI and w2 be two representations 

of the quasi local algebra A. We say (32) that wi and 

7f2 are strongly locally equivalent if and only if 

for any region 0 in M, the C*-algebras 7rirA(0') and 

n2rA(0'), where A(0') is the C*-algebra generated 

by {A(01)I 01 a space-like region with respect to 0} 
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are unitarily equivalent. 

w i  and w2 are called locally equivalent if and 

only if wirA(°) = w2rA(0) for any region 0. 

Theorem 2.5.8. 

The representations {lTq  I q = 0,±1,±2,..} are 

strongly locally equivalent. 

Proof. 

Let 0 be an arbitrary region in M. Let c1-1(0) 

be such that its Cauchy data has the form (h,0). 

The unitary operators expis4(h)+e(h)) and 

expis(ie(h)-4(h)) commute, and so they can be 

expressed as complex functions of unit modulus defined 

on some measure space S; i.e. there is a unitary 

equivalence U between F and L2(S,dm), such that the 

aforementioned unitary operators are represented 

as multiplication operators (17). 

By taking the strong derivative with respect 

to s, and using the fact that Ic1 2= IReC1 2+ lImt1 2  

for c C, we conclude that 

Dom Ch) = Dom e(h) 

= Dom (4 (h)+4)* 	n Dom (4*(h)-(1)(h)) 

and that Ucp(h)U-1  is multiplication by a complex-

valued m-measurable function on S with domain UDom 4(h). 

In other words, (1)(h) is a normal operator (17). 
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4(h) can be written as 

(p(h) = 4*(h)(p(h) V 

where V = (1)(h)/10*(h)(1)(h) is a unitary operator. 

(This decomposition is obvious by virtue of the fact 

that Oh) is equivalent to a multiplication operator). 

Now, 0*(h)(1)(h) is self-adjoint on its natural domain, 

and commutes with r(T), and so therefore does le(h)(0(h). 

But $(h) is a map from the q-sector into the q+1- 

sector. It follows that V is a unitary operator 

mapping Eg  onto Eq+1. Moreover, V is a function of 

operators in 1E(0), and so commutes with all 

operators commuting with ]F(0). In particular, V 

commutes with A(0'), and since A(O') leaves the sectors 

invariant, 

V •Trq  (A(0') = nq+1  (A(01 ) V on Fq  , V q, = 	= 

i.e. 
q

r A(0') = nq+1 	= r A(0'). 
= =  

By iteration, we see that 

wq  r Img,) = Trq,r a(2,) 

for any q,q' = 0,±1,±2,... QED. 

Remark This proof breaks down if we take the local 
A 

field algebras 1F(0) in definition 2.3.2. This is 

because 4(h) is equal to 

1/2(4)(h)+e(h)) + ki(ie(h)-1.0(h)) 

= 1/2(4).4.(h)(1) 1 + 164..(h)) + 	11@n...(h1)-74(h1)09 E.) 
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where hl (k) = h(k)p(k) -l. 

Consequently, V cannot be associated with 3F(0), and 

so we cannot deduce, as before, that V commutes with 

the commutant of 1F(0). 

Using the "-localisation, it has been proved by 

G.Dell'Antonio (57), and independently by J-L.Bonnard 

(unpublished), that gauge transformations of the second 

kind (i.e. those in which a is x-dependent) are not 

locally implementable. (An automorphism of the global 

algebra is said to be locally implementable if its 

restriction to any local algebra is implementable). 

This would appear to contradict the work of 

M.Fitelson and R.Johnson (58), in which they are able 

to construct the local generators of such 

transformations (-albeit in two space-time dimensions). 

The point is that these transformations may well 

turn out to be locally implementable with respect to 

our preferred, and in our opinion, more physical, 

localisation. This, and related questions, is at 

present under investigation. 
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3 The Massless Bose Field, its Sectors  

and Associated Charged Fields. 

In chapter 2, we showed that the inequivalent 

representations of the observable algebra, A, (defined 

as the gauge invariant part of the field algebra, IF), 

occuring in an irreducible representation of IF were 

strongly locally equivalent. Since the observable 

algebra, A, contains all the physical information, 

we can regard F as an auxiliary construct. That is 

to say, it should be possible to construct charge 

carrying fields given the algebra A. In other words, 

given A in the vacuum sector, we should be able to 

construct all other sectors. 

We shall not do this in complete generality, 

but rather we shall consider a particular model. We 

take A to be the C*-algebra associated with the 

massless boson field in two space-time dimensions. 

Tie shall construct various inequivalent 

representations of A - those given by applying 

localised automorphisms to the Fock representation. 

These representations turn out to be strongly 

locally Fock, and each one contains a strongly 

continuous representation of the restricted Poincare 

group, having energy-momentum spectrum in the closed 

forward light cone, V. 

We find that our "charge" takes doubly-

continuous values, i.e. values in M<MR, and that the 
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charge carrying fields do not obey the Bose-Fermi 

alternative, except for a discrete countable number 

of values of the charge. 

Finally, we identify an uncountable number of 

copies of the torus with the gauge group : G = XacI T 

where I = [0,1)x[0,1) and T is the torus for all acI. 

Our model is suggested by an early paper of 

Skyrme (33,34), where there is an explicit formula 

for the fermion fields in terms of the boson field. 

It should be mentioned that the study of the 

charge sectors given the charge zero sector was 

initiated by H.J.Borchers in the mid-sixties (32). 

His results, however, are inconclusive. 

§3.1. The Zero-Mass Bose Field in Two Dimensions. 

The construction of the local algebras etc. 

is almost the same as for the case of a massive field - 

the difference is that the invariant measure on the 

positive-energy mass-hyperboloid is singular for 

zero-mass particles. This creates problems if we 

want to consider the field as a Wightman field, i.e. 

as an operator-valued distribution. In fact, there is 

no such field in two dimensions (35,36). This is 

because there is no Lorentz-invariant tempered;  p4siiitle, 

distribution defined on the light-cone (35). We 

avoid this difficulty by restricting our test-

function space (37). 
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We shall give the complete construction of A 

for the massless case, as this is simpler, and less 

messy, than pointing out the differences between the 

present case and that for the massive field. 

Let us take an explicit, and less abstract, 

formulation of Fock space, and the creation and 

annihilation operators. 

The one-particle space is K = L2 CR,dg), where 

dE2 = dp/21p1. We shall also use w to denote !pl. 

Let H be the Fock space over K ; 

co 
H = 15K = n=0 Kn 

where K0 	' = U, and Kn is the space of symmetric 

complex-valued functions of n variables, square-

integrable with respect to the product measure edn. 

Definition 3.1.1.(29) 

For each FeL2(R,dp), we define the annihilation 

operator as the closed operator, given by its action 

on homogeneous elements of H as 

a(F) : K0-0- {O}, 

a(F) : Kn Kn-1
, 

(a(F)hn)(p.. 11'''Pn-1)  = 1111F(P)hn (P'Pl""Pn-1)12  
1/21p1 
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a*(1) is its adjoint, given explicitly on 

homogeneous elements of H as 

a* (F) : Kn + Kn+1 

	

n+1 	 
(a*(1)hn)(Pl"" n+1 	--- 3-1 	3 	- 3 n-l'''Pj"Pn+1)  P 	) = 1 1. 1/21p.IF(p.)h (D 

A741 

As before, a(F) and a*(F) define closed, 

densely-defined unbounded operators in H. If one puts, 

formally, F(.) = 6(•-p), a(F) and a*(F) become the 

creation and annihilation forms a(p) and a*(p), as 

defined in (29), for example. 

To define the time-zero fields, (1), T., let D 

denote the real test-function space of smooth 

functions on MR with compact support. 

Let Do = { fel) I f(0) = 0 }, where, as usual, 

f(p) = (270 kff(x)eipxdx 

Let us denote by M the set of real-valued 

pairs (f,g)epoxp. Then, for (f,g)cM, we define 

-1/2 (pm 2 (a*(F_)+a(F.4.)) 

n(g) = 2 i(a*(G-)-a(G+)) 

where F+(P) = IPI-1/2f(±P) 	G+(P) = IPI 1/24(ip). 

Our restriction to feD0 implies that f(p) is 

analytic in p in a neighbourhood of the origin, and 

I 
that it behaves like p near the origin. Thus ipi

-1/2  f(p) 

is finite at p = 0, and so belongs to L2(IR,dp). 

Accordingly, (1)(f) is a well-defined operator with 
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dense domain. In fact, as in §2.1, Of) and it (g) are 

essentially self-adjoint on H', the algebraic direct 

sum of the K. 

Let E be a solution of the two-dimensional 

wave equation, at2E-ax2C = 0, with Cauchy data 

(f,g) Erg ; 

1(x,0) = f(x) 	E(x,0) = g(x). 

We have a correspondence between M and a subset 

of real solutions of the wave equation. Let us denote 

this subset also by M. The restricted Poincare group, 

in two-dimensions, acts on these solutions, as in §2.1, 

by 

{a,A} 
	a,A 

Ea,A(x) = E(A-1(x-a)), x c IR2. 

Now, M is invariant under this action. To see 

this, we note that the Wronskian between any two 

solutions is invariant. Taking EEM, and the constant 

solution, we have that fl(x,O)dx is invariant. But 
•VO 

f(0) = 0 is equivalent to If(x)dx = 0, and so this 

invariant is zero, and implies that Ea,A(x,O)cno. 

Let us denote cp(f)-7r(g) by 14),E1, 

where E 	(f,g) c K. (The notation is meant to 

indicate that (1)(f)-w(g) is the Wronskian between 

the two solutions (1)(x,t) and E(x,t) of the wave-

equation). As in §2.1, 4,E1 is self-adjoint and 

has H' as a core; moreover, we have the Segal-Weyl 
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relations : 

W(EI)W(E2) = e-11/21E1121W(E1+E2) 

e-i{CifC21w(E2)w(c1) 

where W(C) = ei41E1, and {EI,C2} is the Wronskian. 

Just as in §2.1, we can give M a local structure. 

Definition 3.1.2. 

We define M(0) as the set previously denoted 

by E(Q), but we only consider convex regions 0 in 

Minkowski space, M. 

Definition 3.1.3. 

We define A(0), for an arbitrary region g in M, 

as the von Neumann algebra generated by the set 

W(C) I CeM(01), al in al. 

So although we have only defined M(Q) for convex 

regions, Q, in M, we have defined A(0) for arbitrary Q. 

According to our definition, W(E)6A(0) if and 

only if w(E)emol), for some convex (and therefore 

connected) component al of Q. Suppose Q = QiU Q2, 

with Q1, Q2 disjoint convex regions. Then it is 

natural to require that A(Q) be generated by AMOUA(0.2). 

If we had defined A(Q) as the algebra generated by 

the W(C) with EEM(Q) (defined as the analogue of E(Q)), 

then there would be operators, W(C), in A(Q), such 

that the restrictions of E to al and Q2 fail to give 
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elements of A(01) and A(02), respectively, because 

the condition that It(x,O)dx = 0 would fail. This 

will be the case, for example, if t(x,t) is non-

negative in 01, and non-positive in 02. A(0) would 

not then be equal to the von Neumann algebra 

generated by A(01) and A(02). It is for this reason 

that we insist that W(E)cA(0) only if EcM(01) for 

some convex region 02 in O. 

We have defined A(0), for each region 0, to 

be a certain von Neumann algebra of operators. This 

is not essential in that we could have taken them to 

be C*-algebras, i.e. replaced von Neumann by C*- 

in definition 3.1.3. However, our results are stronger 

if they hold for the A(0) as von Neumann algebras. 

Since any von Neumann algebra is also a C*-algebra, we 

can still view A(0) as an abstract C*-algebra by 

ignoring the underlying Hilbert space. 

A is defined to be the norm closure of 

{ A(0) I 0 a region in M } in B(H). 

The condition It(x,O)dx = 0, necessary because 

of the infra-red problem, i.e. the singularity of the 

measure (IP, may be interpreted "physically" by saying 

that , being a potential, is not observable: only the 

"field" -V4) can be observed, or rather, its smeared 

form -fVOx)h(x)dx = OVh) = Of), where f = Vh c Do 

if h E D. With this interpretation, A is the algebra 

of observables of the theory. 
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We remark that A is irreducible. This follows 

from lemma 2.1.6, together with the fact that both 
• .■ 

D and Do (the Fourier transforms of D and Do,resp.) 

are dense in the set KR = { fel< I f(p)=f(-p) } in 

the induced strong topology of K. 

Definition 3.1.4. 

As in §2.1, we define a strongly continuous 

unitary representation of IP on H by extension of 

{a,A} 	Uo(a,A) 

(Uo(a,A)hn)(P1,-./Pn) = e 3=1(p 3
,a) 

 hn(A
-1 

 Pl p.,A  1Pn) 

P?=IP.1 

where (p,a) = p0a0-pl at  and A-lp is the space- 

component of the two-vector A-1p. 

Then 

Uo(a,A)W(E)U0(a,A)-1 = W(Ea,A) 

and so 

Uo(a,A)A(0)U0(a,A)-1  = A(AO+a) 

with the obvious notation. 

In the same way as for the massive case, the 

vanishing of the Wronskians IM(0),M(01)} for space- 

like regions 0 and 01, and the Segal-wey1 relations 

imply that A(0) and A(01) commute. 
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Definition 3.1.5. 

Let a:G Aut A be a representation of a group 

G by automorphisms of A. Suppose that the notion g+ 

in G is meaningful. Then we say that A is asymptotically 

abelian with respect to the pair (a,G) if for any 

A,B c A, 

norm lim [a(g)A,B] = 0. 
Ip.co 

Lemma 3.1.6. 

A is asymptotically abelian with respect to the 

space and time translations given in definition 3.1.4. 

Proof.  

The first part is obvious because of the 

quasilocal nature of A and the commutativity of the 

A(0) for space-like regions. 

For the second part, we must show that 

norm lim [Uo(t)Allo(t)-1,B] = 0 
t4.03 

for any A,B a A, where Uo(t) = Uo(a,A) with fa,A1 a 

pure time translation. 

Suppose that A = W(E) c A(0), B = w(n) e A(OA). 

Then 

CUo(t)AUo(t)-1,B] 

becomes 

CW(Et),W(71)] = exp 

Now, any solution E of qE = a,2,E can be written in the 
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form 

(x,t) = f(x+t) + g(x-t) 

for some functions f and g, which can be chosen to 

be smooth, and with compact support for the case E e M. 

Therefore, Et(x,$) has the form 

Et(x,$) = f(x+s-t) + g(x-s+t) 

and 

{Et,n) = f((f(x-t)+g(x+t));1(x,o) 

-(V(x-t)-g'(x+t))n(x,0))dx 

where f' (y) E df(y)/dy. 

But n(x,O) and n(x,0) have compact support, and so, 

for sufficiently large t, {Et,n1 = 0. Thus 

Do(t)AU0(t)
-1

,B] = 0 

for large t, for this choice of A and B. Clearly, the 

same is true for A chosen to be finite linear 

combinations of finite products of various W(E), 

where E c m(0). 

It follows that 

[Uo(t)A(Q)Uo(t)-1,B] = 0 

for large t, and B = W(n), n c M(01), and therefore 

that 

EU0(t)A(0)U0(t)-1,A (01)3 = 0 -- = 

for large t. 

Now let A,B c A be arbitrary. The norm density 
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of {A(0)10 in Ml in A allows us to choose, for given 

e>0, Al and B1 e A(0) and A(01), respectively, such 

that 

Cuo 	Auo(t)-1,13] — CuomAluo(t)-1,BIIII < c 

uniformly in t. The second commutator vanishes for 

large t, and the proof is complete. 

The algebras A(0), 0 in M, and A, satisfy the 

Haag-Kastler axioms 1-5 of §1.2. 

Moreover, U0 satisfies the spectrum condition, 

viz, the energy-momentum spectrum lies in the closed 

forward light-cone, V ; there is a non-degenerate 

eigenvalue 0 of P', p = 0,1, the generators of Uo(a,l), 

corresponding to the eigenvector 0 = 1 in Ko= C. St 

defines a vector state on A, which is called the vacuum 

state. 

§3.2. Localised Automorphisms. 

Following Doplicher, Haag and Roberts (20), we 

make the 

Definition 3.2.1. 

An automorphism y of A is said to be a localised 

automorphism, localised in a region 0, if 

Y(A(QI))<:. A(01) for all 01 	0 

and if 

Y r il((v) = 	r A(4.1 ) 



66 

where i is the identity automorphism. (We recall that 

A(0') is the C*-algebra generated by all the A(01), 

with 01 space-like with respect to O.) 

In other words, y is localised in a region 0 if 

it has no effect on observables outside 0, but maps 

observables in 0 into observables again located 

within 0. 

If duality holds, viz, A(0) = A(0')', for all 0, 

then y r A(O') = t r A(0') implies that if 01 	0 

then y(A(01)) C A(01). This is because, for A e A(01). 

B e A(01'), 

[A,B] = 0 	y[A,B] = 0 

-=> Ey(A),y(B)] = 0 ==> Ey(A),B1 = 0 

since y r A(0') = t r 

==> y(A) e A(01 1 )1  = A(01). 

However, in general, duality will not hold unless the 

regions 0 are suitably shaped (3). It is for this reason 

that the 0 are taken to be "double-cones" in (20). 

It is the purpose of this section to construct 

localised automorphisms with the above properties. 

The effect of our automorphisms will be to add 

c-numbers to the fields and 7. The operators W(C), 

therefore, just pick up a phase. We could treat (1) and 

T.  separately; but to show that Poincare transformations 

are implemented in the various sectors we must exploit 
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the properties of solutions of the wave equation, and 

the treatment is unified and "compactified" if we 

consider {(1),E} rather than (f) and n separately. 

Let 6:MR 4-IR be such that d6(x)/dx c D 

and 0(-0*) = 0. Thus 8 is a smooth step function, 

vanishing for large negative argument. 

Each such 8 defines a pair of solutions of the 

wave equation (9.-a)0(x,t) = 0 by setting 

0(x,t) = 0(x+t) or = 0(x-t). 

Definition 3.2.1. 

Let N-  denote the set of such solutions, and 

let N be the real linear span of N+ and N . 

Clearly, OcN if and only if OEM and 0(-c0,0) = 0. 

We want to give N a local structure - we can do this 

via M. 

Definition 3.2.2. 

Let 0 be a region in M. We define N(0) to be 

the real linear span of the set 

{ectilecM(01), 01 convex, 01 in 0}. 

Lemma 3.2.3. 

If OcN(0), and if 0' is space-like with respect 

to 0, then O(x,t) and 8x0(x,t) are zero on 0'; i.e. 
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0(x,t) is constant on connected components of 0'. 

Proof. 

Let k be a space-like line passing through 0 

and 0'. By a Poincar6 transformation, {a,A}, we can 

transform k into the line {(x,t)It=0}. 

0 

t=0 

We may suppose that Q is simply connected 

because of our definition of R(Q) in terms of the 

M(01). 

Consider 0a,A(x,t). This can be written as 

alA(x,t) = 01(x+t) + 62(x-t) 

with 8I6 e, 026 N . Now, 6a,A(x,t) a M(0 A) implies — 
•• 

that 6a,A  (x,o) and 
0a,A(x,0)  have support in an 

interval (a,b), space-like with respect to 04;,A. 

Thus 81'(x)-62'(x) and O1n(x)+62"(x) have support in 

(a,b). (The dash denotes ax). 

It follows that 61'(x)+021 (x) is constant 
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for x<a and for x>b (with different constants resp.). 

This, together with supp(01'(x)-02 1 (x)) in (a,b) 

implies that 81 1 (x) and 02 1 (x) are both constant 

outside the interval (a,b). But 01 and 02 c Ni  and 

so el' and 82' are zero outside (a,b). Thus 

0' 	(x,0) = 8k,' (x) + 82'(x) 
a,A 

and 

ea,A (x,0) = eli(x) — 02'(x) 

vanish on any interval disjoint from (a,b). It follows 

that 0(x,t) and 9x0(x,t) vanish on 0', as asserted. 

We shall realise the additive groups, N, N(0), 

by automorphisms of A. To this end, we make: 

Definition 3.2.4. 

For any 0 s N, the transformation y is defined 

on elements of A of the form W(E) by 

y : w(E) 	ei{0,0 

Lemma 3.2.5. 

For each region 0 in M, there is a unitary 

operator, V, (non-unique) which effects the 

transformation y 

Y(w(E)) = VW(E)V
-1 	for all W(E) E A(Q.). 

Proof. 

Let Ols M be such that 01(x,t) = 0(x,t) if 
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(x,t) E 0. Put V = W(-01). Then, according to the 

Weyl relations : 

-1 	101,E) VW(E)V 	= W(C)W(-01)14(01)e 

= eife,E1w(E) 

since {0,}  only depends on the values of 0 in 0. QED. 

Corollary 3.2.6. 

To each OeN there exists a unique automorphism 

of A which reduces to y on elements of the form W(E). 

Proof. 

Since the W(E) generate A(0), for EEM(01), 01 

convex in 0, y can be extended uniquely to an 

automorphism yo  of A(0), implemented by V. Clearly, 

J102containsol,theny_
V2
rA(01)=_ y01. By taking 

J 

the inductive limit, we obtain the required 

automorphism which we shall also denote by y. 

Remark. 

0(x,t)+c defines the same automorphism as 0(x,t) 

for any constant, c. Thus the requirement that 

0(-00,0) = 0 is one of convenience. The important 

property of 0(x,t), as far as we are concerned, is 

the value of the difference 0(+00,0)-0(-.10,0). 

The next lemma expresses the fact that y is a 

localised automorphism. 
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Lemma 3.2.7. 

Let y be defined as in corollary 3.2.6, with 

OcN(0). Let 01 be space-like with respect to O. 

Then y r A(01) 	r A(91). 
Proof. 

We need only show that 10,0 = 0 for all EcM(02), 

with 02 a convex region in 01 . The Wronskian {0,} is 

given by 

{0,0 = f(0(x,t)4(x,t) 	6(x,t)E(x,t))d2 

where £ is any space-like line. Choosing 2, to run 

through 0 and 02, and using lemma 3.2.3, we find that 

{0,} = const.ft(x,t)dL = const.{1,} = 0, 

as required. QED. 

Suppose that 0(x,t) = 0(x+t). Then the 

corresponding automorphism y corresponds to a 

displacement of the fields : 

(P(f) 	(1)(f) + ff(x)0(x)dx 

n(g) 	n(g) + fg(x)d0(x)dx 
dx 

or, if we avail ourselves the distribution-theoretic 

notation 4)(x), n(x), where (PM and n(g) are written 

symbolically as (PM = .4(x)f(x)dx, and 

n(g) = fw(x)g(x)dx, then we find that y corresponds 

to the displacements ; 
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ct, (x) 	(1)(x) + 0(x) 

and 

n(x) 	7r (x) + 0'(x). 

If O(x,t) = 0(x-t), then y would correspond to the 

displacements 

(p(x) -4- (15(x) + 0(x) 

and 	mix) 	'r (x) - 0'(x). 

Since Tr is the time-derivative of 4), we see that y is 

given by the displacement 

(p(x,t) -4- cp(x,t) + 0(x,t). 

We call y a gauge transformation of the second kind, 

since it is an addition of a space-time dependent 

function, 0(x,t). We notice that if supp f rIsupp 0' 

= supp g r supp 0' = 0, then (p(f) and ir(g) remain 

unaltered (-this because f c Do). This is why we 

localise 0 in terms of its derivative. 

If we admit the limiting procedure 01 -4- H(x-x0), 

where H is the Heavyside step-function, and the 

function 01 of lemma 3.2.5 is 01(x,t) = 01(x+t), then 

the unitary operator of lemma 3.2.5 becomes essentially 

the fermion operator of Skyrme (33,34). These limits 

are not rigorous, however. It is essential to consider 

inequivalent representations of A. 
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§3.3 The New Representations. 

We consider A and the various A(0) as abstract 

C*-algebras - we shall denote by no the representation 

of A by itself on H, which we now write as Ho. 

For any of our localised automorphisms, y, we 

can define a new representation ny, say, obtained by 

composing no with y, viz, 

E no.),  

acting on Ho. 

Thus n (A) = ffo(Y(A)) for A s A. 

Definition 3.3.1. 

Define r, r(o), r-  as the automorphism groups 

of A, obtained earlier, by choosing 0 in N, N(0), 

and N , respectively. 

These give various inequivalent representations 

of A. To prove this, we must first identify M with a 

subset of K, the one-particle space of Ho, and then 

prove a lemma on the implementability of certain 

gauge transformations. 

For each E 4+ (f,g) a M, we can associate the 

function 

h(p) = 2w-i(p) - if (p)  e K = L2(3R,an), 

where, as usual, w = Ipl, and an = dp/2w. 
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As (f,g) run over DoxD, the corresponding h's run 

over a dense subset of K. Moreover, {E1,E2} is 

nothing but minus the imaginary part of the scalar 

product (hi,h2) in K : 

Im (hi,h2) = Im fhl(10)h2(p)dP 

= Im f(2wgi(p)-ill(p))(2wi2(P)-ik2(p)dQ 

= gki(p)2w42(p) - 2w4I(P)?2(P))d0  

= f (fl (p)i2( ) 	gi(P)?2(p))cip 

= f(f i (x ) g2(x) - gi (x)f 2 (x ) ) dx 

= 

as asserted. 

Now we need the lemma ; 

Lemma 3.3.2. 

Let x:M +IR be a real linear functional on M. 

Suppose that x is unbounded (where M is identified, 

as above, with a subset of K). Then the transformation 

W(E) 	eiX(Ow(E) 

E e M, is not unitarily implementable. 

Proof. (This is an adaption of Manuceau (38,39), after 

Roepstorff (40)). 

x unbounded implies that there exists a sequence 

{En}, Ens M n=1,2,.., with ;1-4- 0 in K, such that 

XRn) iTrasn 	co. 



75 

Now, by lemma 2.1.7, En÷ 0 implies that W(Cn) + a 

strongly in Ho. 

Suppose the transformation W(.) + eix(.)W(•) 

were implementable, by U, say. Then 

UW(Cn)U-1 = e
ix(Cn)W(En), V n. 

But as n + co, the l.h.s. converges strongly to R, 

whereas the r.h.s. converges strongly to -R. ; 

a contradiction. 

Theorem 3.3.3. 

(i) If yier+  and y2cr+, then ro•YI = no*Y2 if 

and only if 61(00) = 02(00), where 61,02 e e define 

yi and y2. 

(ii) If y-
+ 
 er-

+ 
  are defined by 0(x±t), respectively, 

then the two representations 7
+ 
= 70'Y

+ are unitarily 

inequivalent unless 6(00) = 0. 

Proof. 

(i) Suppose, first, that 62(00) = 02(00). Let 

6(x) = 61(x)-82(x). Then 0(x,t) = 0(x+t) c M. 

Hence, if yx,t) = 6.
3 
 (x+t), j=1,2, 

11(0)Y1 (14())W(0)-1  = W(0)W(E)W(0)-leil01,°  

= W()ei 
 
101-0,0 = eii02,E1w(E) 

= y 2 (w(c)). 
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Since {W(E)1E0} generates A, we have 

W(0),(I(A)W(0)-1  = Y2 (A) 

for all A e A. Thus 

Iro*Y2(A) = TAW(0)Y1(A)W(0)-1) 

= wo(W(0))7To•Yi(A)no(1,1(0))-1  

and so 7ro(W(0)) c no(A) provides the required unitary 

equivalence. 

To prove the inequivalence for 01(00) 	02(")), 

we shall show that {0,.} is an unbounded functional 

on M, and use lemma 3.3.2. 

More precisely, let y = Yloy21  . y is defined 

by 0(x,t) = 0(x+t), where 0(00) # 0 ; i.e. e's D 

but 0' Do. (We write 0'(x) for de(x)/dx, and 8' (p) 

is the Fourier transform of 0'(x), not the derivative 

of 6(p)). Therefore 8'(0) # 0. It follows, by the 

continuity of 61 (p), that there exists 6>0 and b>0 

such that, for Ipl < 6, we have that IRe6'(p)I > b. 

(Since 0'(x) is real, 6'(0) is also real). 

Now suppose {0,..} were a bounded linear 

functional on M - identified with a dense subset 

of K. Then the same is true for {0,0} on the subset 

of elements of M of the form E = (0,g). On such 

elements, {0,0} is given by 

{0,(0,g)} = -f g(p);'(-p) dp 
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= -f 2wa(p)5.(-p) dO. 

But, as g runs over D, 2wg(p) runs over a dense 

subset of a real subspace, KR, of K, - the real 

subspace of hermitian functions, i.e. those with 

h(p) = h(-p). {0,.} can be extended, therefore, by 

continuity, to the whole of this subspace. This 

implies (by Riesz' lemma) that 61 (.) e KR. 

This is a contradiction, however, because, 

as remarked above, IReP(.)I > b > 0 in a 

neighbourhood of p=0, and so 

f16'(P)12dR = co. 

Hence, 10,.1 is unbounded on M. Thus, by lemma 3.3.2, 

y is not implementable. But then it follows that 

no"(1 and Tro.y2 cannot be unitarily equivalent. This 

completes the proof of (i). 

(ii) We consider y+  .(y )-1  = y, say. Then y is 

defined by 0(x,t) = e(x+t)-e(x-t). 

Now, 

10,0 = -f (5(x,O)g(x)dx 
for E of the form (0,g), 

= -2f g(x)V(x)dx 

' -2f 2(060:061(-p) dR 

The proof now proceeds exactly as in (i). The unitary 
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operator giving equivalence if 0(+03) = 0 is W(0). QED. 

Theorem 3.3.4. 

Let yer+. Then restricted Poincare transformations 

are implemented in the representation 11- 0°Y. 

Proof. 

Suppose y is given by 0(x,t) = 8(x+t). 

Under {a,A} 	W(E) becomes W(Ea,A). Now, in the 

representation Tro.y, these are represented by 

eif0,E 47(C) and e'Ea,A}W(C), respectively; so 

we must prove the implementability of the map 

if0,0w() 	e 
i{e'a,11}44(a,A) 

for C E M, by operators in Ho: 

i.e. the map 

W(E) + ei{e,  a, 	w(Ea,A ). 

Now, Uo(a,A) implements W(E) 	W(Ca,A" so we must 

implement 

w(Ea,A) + w(Ea,A )eife,Ea,A-0 
 

= W(Ea,A )e
i{0Ea,A}e-if()a,A,Ea,A1 

since {-,.} is 112.: invariant, 

= W(Ea,A
)eii0-0a,A'Ea,A. 

But E is arbitrary, so we must prove that 
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i{0-0 	,E1 

W(0 4  11410e 	adi 

is implemented for any {a,A} CIP:. 

By theorem 3.3.3 (i), this is true if 

0(c0,0) = 0a,A(00,0), and 0(-00,0) = °a,A(-w'°)  = 
0. 

Any Lorentz transfcrmation A takes the form x+t a(x+t), 

x-t 4  a-1(x-t) for some a>0. Therefore, if 

{a,A} = {(a°,a1 ),A(a)}, then 0a,A(x,t) = 0(a(x+t)+a°+al). 

Clearly, Oa,A(w,0) = 8(w) = 0(c0,0) etc. QED. 

Remark 1. 

Space and time inversions are not implemented 

except in ff o. This follows because, according to 

theorem 3.3.3, 0(-x,t) and 0(x,-t) define 

representations inequivalent to that defined by 

0(x,t). 

Remark 2. 

Since, for any region 0, there are functions 

in N(Q), we see that I'(0) is non-trivial however 

small 0 is. 

Theorem 3.3.5. 

Let 'WI'. Then iro and wo*y are strongly locally 

equivalent. 

Proof. 

Let be be a given region. If YEr+(Q), then, by 
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lemma 3.2.7, y r A(0') = t and there is nothing to 

prove. If yal-(0), the idea of the proof is to move 

y into 0 by a unitarily implementable automorphism. 

Let yer
+
(O1), and suppose y is defined by Ole N+(00. 

Let 02e le(0) with 02(=,0) = 02(03,0), and let y2  be 

the automorphism corresponding to 02(x,t). 

AccordiLg to theorem 3.3.3 (1), y.y;1  is 

implemented; so ffo = no*Y",(2 • 

-  But y21  Er (o), (it corresponds to -02(x,t)), 

and so y21  r A(0') = 1. 
Therefore Ito r 4(01 ) = wo.y r A(0'). QED. 

Theorem 3.3.6. 

If yer+, then the operators in no.y 

implementing IP may be chosen so as to give a 

strongly continuous unitary representation of IP 

with energy-momentum spectrum in the closed 

forward light-cone. 

Proof. 

Suppose that y is given by 0(x,t) = 0(x+t). 

w(A) = iro-y(A) is an algebra of operators acting in 

Ho. The action of IP in 11 is to map the operator 

ei{0, }W(E) into the operator eilei g/W(Cg), 

We saw in the proof of theorem 3.3.4, that this 

action is implemented by V(g) = Uo(g)W(0-0g-1
), 

where Uo is the representation of IP
I- 
in wo. The 
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phase of V(g) is arbitrary. The Weyl relations imply 

that 

V(g)V(h) = Uo(g)W(0-0g-1)110(h)W(0-0h-1) 

= uo(gh)14(0h-1-0h-1g-1)W(0-0h-1) 

= Uo(gh)1#(0-0h-1g-1)exp-hi{0h-1-0h-1g-1,0-0h
-1} 

= V(gh)exp-ki{0,Oh}expki{0,0gh}exp-1/2i{0,0g} 

using the invariance of {.,.} under IPA. 

Thus 

ul(g) E uo(g)11(0-0 -1)expki{0,0 } 

is a strongly continuous unitary representation 

of IP in 71., implementing the Poincare transformations. 

To show that the spectrum condition holds, we 

shall compute the generators of time and space 

translations. 

Let s be a time translation. Then 

05  (x,t) = 0(x,t-s) = 0(x+t-s), 

and so 

Ui(s) = Uo(s)expi0(8 1 -0's) - IT(8-e_5))expki{0,05}. 

The generator is the sum of the strong derivatives 

w.r.t. s, at s=0, of the three unitary operators 

appearing in the expression (divided by i) 
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there being a common dense domain for these 

operators, viz, those elements of Ho' with rapid 

decrease for large arguments, or the one-dimensional 

analogue of E in lemma 2.5.2. 

Now, 

cb(v-e' ) 	1'0-0) -s 	-s  

= 21/2  (a*(F )+a(F+)) - 21/21(a*(G)-a(G+)) 

where F+(P) = IPO( e'-vs)-(IP" 

and 	G+(13) = IPI 1/2(0-0_s)-(±p). 

Thus, the strong derivative, at s=0, (divided by i), 

of the middle term in the expression for Ui is, 

on E, 

21(-a*(p)5 1 (-p)i467(w-p) + a(P)e l(P)i,(73(w-p) }dp 

where w=ipl, and we have used the forms a*(p) and 

a(p) together with a symbolic integration. 

The strong derivatives of 170(s) and expki{0,0s} 

at s=0, are given on E respectively by 

Ho = fwa*(p)a(p)dp, 

and 	f 6'(-p)E0(p)dp. 

Hence U1(s) has generator 

Ilwa*(P)a(P) - 2kia*(p)51(-P)A-13(A-P) 
p 

+ 2-kia(P)6l(P)47(w-p) + 6i(10)61(-p)}dp 
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= fwb*(p)b(p)dp 

where 

b*  (p) E a*  (p) + 2 10 11p)(w-P) 
iu) 	p 

b (p) .- a(p) - 2-1/2 10'(-P)(w-p) • 
orr p 

In the same way, we find (using the fact that 

the generator for space-translations U0(a) is 

-Ipa*(p)a(p)dp ) that the generator of space-

translations is given by 

- fpb*(p)b(p)do. 

Evidently, 

fwb*(p)b(p)dp > Ifpb*(p)b(p)dp1 

i.e. 

(h, fwb*(p)b(p)dp h) > 1(h, fpb*(p)b(p)dp h)1 

for h in the domain of the operators in question. 

This is just a statement of the fact that the energy-

momentum spectrum lies in the closed forward light-

cone. QED. 

Remark 1. 

This result is not surprising. Indeed, the 

transformation y has the effect of taking 

(1)(x) -* (1)(x) + 0(x) 

and 
Tr(x) 	7r(x) + 8' (x) 
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In terms of a*(p) and a(p), this is effected by the 

transformation 

a*(p) 4 b*(p) and a(p) 	b(p), 

where b and b* are as in the previous proof. Thus, 

in as much as y can be extended to unbounded 

operators, we expect that fwa*(p)a(p)dp and 

-fpa*(p)a(p)dp transform into fwb*(p)b(p)dp and 

-fpb*(p)b(p)dp, respectively, and we would expect 

these latter to implement time and space 

translations in the representation wo.y, as is, 

in fact, the case. 

Remark 2. 

The vacuum in the representation no, 

viz, 0 = (1,0,0,..) e Ho, defines a vector state in 

the representation n = no sy. This state no longer 

has zero energy; 

(0,H1) = kf(e(x,0)2+ G(x,0))2)dx 

where H1 is the generator of time translations Ul(t). 

This means that the phase of U1 is chosen such that 

the average energy of the vector state P is equal to 

the classical energy of the solution 0(x,t) of the 

wave equation. 

Remark 3. 

It is of interest to note that the representation 



85 

U1(a,A), restricted to the cyclic subspace generated 

by 0, is infinitely-divisible (41). This follows by 

applying the criterion of Streater (41). 

§3.4. The Sectors and Charged Fields. 

We now turn to the definition of the sectors, 

and the charge carrying fields. As we saw in the 

last section, two representations r1 and 7r2, given 

by 01 and 02e N+, are unitarily equivalent if and 

only if 01(03) = 82(03). An equivalence class of such 

representations will be called a sector, labelled 

by e(.), called the charge of the sector, taking 

values in IR. For example, wo has charge zero. 

The charged fields will be defined as unitary 

transformations from one sector to another. We shall 

see that these will anticommute if they have a certain 

charge, or multiples of that charge. There will be 

fields that are neither Bose nor Fermi, as we expect 

from our form of lemma 2.3 of (20); viz, if YilY2cr+  

are localised in space-like separated convex regions, 

and correspond to the same sector, of charge a, say, 

and if U is such that 

Y2(°) = UY1(*)U-1, 

2 
then yi(U) = e±ia U. The sign of the phase depends 

on whether yi is localised to the right or left of Y2. 

That y(u) 	±U is possible, is due to the fact that we 

have only one space dimension. Indeed, in three- 
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-dimensional space, only y(U) = ±U is possible (20). 

We select an arbitrary, but fixed, 0 c N+ 

with 0(00,0) = 0(m) = 1. For each a ciR, we shall 

write 0a for a0 e N
+
. Such a 0a' and its corresponding 

automorphism, ya, will be called standard. 

For each a c7R-{0}, let H be a Hilbert space 

isomorphic to Ho. Thus we have a family of copies 

of Hof  indexed by IR. 

Let **a  be an isometric operator from Ho  onto 

H , with ** = Ho. Define the representation Tra of A 

on H by 

wa(A) = *ttwo•ya(A)*a 
	A c A, 

where *a  : Ha  + Ho  is the inverse of n. 

By theorem 3.3.3(i), 	) and (Trvfia) are 

unitarily inequivalent if ota. Define 

HESH, and Tr 	. _ a  = 	a a 

H will be the Hilbert space in which the field 

algebra will be defined. If Ua(a,A) represents IP: 

in (wa,Ha), then H carries the representation T Ua, 

which satisfies the spectrum condition because the 

Ua do. 

We define **a  on 3 by linear extension and 

continuity of the map 

r "la  = 4),413*Ipa  r xs  r v 	EIR. 
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Clearly,a is a unitary operator in H ; it is the 

charged field operator correseponding to the 

standard automorphism ya. We can now extend the 

definition to any yue r
+
, corresponding to M E N

+
, 

with M(x,t) = p(x+t) and p(m) = a. 

Definition 3.4.1. 

We define the representation Ir of A on H by 

7 (A) E11)*Vo.Y (A)1P p 	a for A e A 

and the field **(p) with charge a = TIM by extension 

of 

**(11) r Ho  E 700.0(W(M-0a))41 r xs  

for each a c]R, where 7ra443 is a standard representation. 

We understand this definition as follows : 

IP* acting on H creates a standard charge in H. ,. We a 	 a 	 —a+p 

can change this standard state to the required state, 

determined by M, by an element of A, namely W(m-0a); 

and this must be done in the representation woo.a. 

Ve(p) is a unitary operator in B. 

Lemma 3.4.2. 

Let Q be any given space-time region, and let 

M c r
+
(2). Then **(11) commutes with 1T(A(W)). 

Proof. 

It suffices to prove this on each E, since, 
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by construction, it is reduced by W 

Let A c A(0') , and suppose that 11(03) = a. 

Then 

IP*  (11) (A) r Hs = ** (11)1 s  (A) 

ct+a (w (m-0a ))4111q7  r (y (A)) D(3  

= 	Tr° (Yei+i3  (W)) 4)ct+f31Pt443 it 0(Y r3  (A) )1P0  

(writing W for W(M-0a)), 

n+e, ito (Y r3(Ya  (W)A))iPt3  

tilt+s pro  (Y0  (Ya  (w)Yli  (A)) )41 f3  

since yp  r a(w) = t by lemma 3.2.7, 

= 	no 	(Y0) Yu  (A) Ya  (W) -iya  (W) ) 111)0. 

But ya(W) = eivW for some v e IR, and so 

Y (W)Y (A)Y (W) -1 = WY (A)W 
1 

a 	11 	a 

= W(M-0 a)y (A)W(M-0a)
-1 

= ya(A). 

Hence 

r(off(A) r Hs= 1p$040  70111, (ya(A)ya(w))) 1P 6  

= 1111+f3  w o (ya+0Aw)) 
a 

= no.i3  (70.ya+0 (A))(71- 0.ywilow)) 11)13 
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= 7a+a(A)  7a-0  (W) e r H a 	 13 

= 7(A) g,* (11) r go 	QED. 

Definition 3.4.3. 

We define 74-(0) to be the von Neumann algebra 

generated by the set 

14)*111)Ip++MeN(0)1 U In(A)1AeA(0)1. 

By lemma 3.4.2, we see that 

EF4-(01 ),1T(A(g2))j = 0 

if pl  and 02  are space-like separated regions. 

Lemma 3.4.4. 

Let 01 and 02 be space-like separated convex 

regions in Minkowski space. If Mie N+(O1) and 

M2e N+(02), then 

0(111)11)*(112) = 11)*(p2)11)*(11 1)eiv  

where Mj(x,t) = pj(x,t) and v = ±111(00)112(03) according 

as to whether 01  is to the left or the right of 02. 

Proof. 

Let U1 (°O) = a, and 112(c) = S, and consider 

0(111)11)*(112) on any subspace He  of H. 

11)*(111) 41*(112) r He  

= 71- a+a+c (W(M1-0
a
)) V 

a 
7e+0 04(M2-0

a
) ) ** 
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= 11) 	1To l a+0+e 	Ya+0+e("1-°a))Yel-0("2-o0))1  

11)(1+0+e nolw(M1-0a)W(m2-0 )e
iX1 =  

where 

X = {0a+S-1LE'M1-0a} +  {004-E ,M2-00 }. 

Now,{0.,0j
}=0foranystandards0.and 0,, as they 

are proportional. Thus 

X  = {ea++e'Ml} 	{C) +E1M2}  

and so 

W(M1-0 )147(M2-0 )eiX 	14 = 0/11+M2-0a-00)e 
iY 

a 

where Y = 1/2{M2,M0 + 1/2{14I100 + 1/2{0a1M2} 

+ {0ri ,Mi} 	{0(3 'MO a++c 	+6 

= {0a+6+6 /MI+M2} - 1/2{0a,m2} 

- 1/2{MI,M2} - 1/2{00,M1}. 

Interchanging M1 and M2 and a and f3, we deduce that 

'p*  (111) 11)4'(12) = U*  (112) li)*(111)eiv  

where v = {MI,M2} 

= f(141(x,O)A2(x,0) - Ai(x,O)M2(x,0))dx 

= f(111(x)14(x) 	111(x)112(x))dx 

± 111( 00 ) 112(03) 
	

as required. 
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Remark. 

If PIM and 112(4") are of the form ITTETITI 

for some integer n, then 11,*(111) and **(112) anticommute 

at space-like separation. 

So far we have only considered r+, for convenience. 

In the same way, the group r leads to a family of 

inequivalent representations Tr 	, corresponding to 
al,a2 

M c N, where M(x,t) = M+(x,t) + M (x,t), and 

m+(03,0) = al, M (c0,0) = a2. 

The charged field, acting on 1101,02, is 

**(111,112) = Iral+1,a2+82(W(M-oal,a2)) 1111,a2' 

where 

M+(x,t) = 111(x+t) 
	

M (x,t) = 112(x-t) 

0 	(Y.t) = alei(x+t) + a202(x-t), ai,a2 

forsome"standardee.;and 1p* 	is the standard 

charged field. 

There is an analogue of lemma 3.4.4, but the 

expression for v is not quite so simple. 

Just as in definition 3.4.3, the field algebra, 

1F, is defined to be the C*-algebra generated by 

71 (A) and the **'s.(Ir being the direct sum of the 

various inequivalent representations). 

We have called the 1P*'s charge carrying fields - 
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- we cannot think of them as particles :e.g. the 

"two-particle" state ****n is the same as the "one-
particle" state *

a
* P. 
+0 

We can define a gauge group on ED H 
1,K=1,K 

asG=XT 	'where (a,$)e[0,1)x[0,1) andT—a,, 
a,0a,0 	 o1 

is the torus, for each (c4,0).(111,K  is the representation 

space for the irreducible representation n1,1(  of h). 

G acts on e H 	as follows; 
1,K=1,K 

ga, 	LI1,K 	
eiMga,0 eing0,b 

0  

where m,n e Z, a,b e [0,1) are given by 

1= m+ 	, 	K = n + b . 

a,0 and g0,b  are the (a,0) and (0,b) components of 

g 
a,p 

ne G, respectively. 

This ties in with the ideas of Doplicher, Haag 

and Roberts (19), where it is shown that, without loss 

of generality, the gauge group may he chosen to be 

compact, and that the physical spectrum of A, i.e. the 

representations of A occuring in IF, is in one-one 

correspondence with the irreducible representations 

occuring in the gauge group. Indeed, we have defined 

G so that this is the case. 

Let us also remark that, contrary to the 

philosophy that fermions must be involved in the basic 

formalism (42), we have constructed such from the 

observable algebra, A, given in the charge zero sector. 



93 

4. The Time Evolution of Quantised Fields. 

So far we have considered only free systems. 

The purpose of this last chapter is to discuss the 

time evolution corresponding to a certain class of 

interactions. These will be rather "mild", and, in 

general, non-local. Nevertheless, it is felt that 

this may be a "half-way" step to more realistic 

theories. Indeed, we can define, quite rigorously, 

a time evolution corresponding to a four-fermion 

interaction, provided the interaction is given by 

smeared fermions. We can also define a time evolution 

corresponding to an interaction of the form 

1 
1 + if(x):(1) n(x):dx 

a "smeared" version of interaction densities recently 

considered by Efimov and Salam and co-workers(43,44). 

However, it still remains to investigate the 

"unsmeared" version of these theories; i.e. the limit 

as all test-functions become 6-functions. 

It may also be possible to treat two space-time 

dimensional models such as :4)2n: by putting in a 

spectral cut-off on the self-adjoint operator 

Ig(x):(1)2n(x):dx, obtaining a time evolution 

automorphism by our rather elementary methods, and 

then taking the limit (in some sense) as this spectral 

cut-off is removed. This could be an alternative to 

the methods of Glimm and Jaffe, or those of Segal, and 
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Simon and Hdegh-Krohn (45). The idea of putting in a 

spectral cut-off appears in Guenin's lectures at 

Colorado in 1966 (46). 

§4.1. The Guenin-Interaction Picture. 

The conventional approach to study interactions 

is to use the so-called interaction (or Dirac) 

picture of the time-evolution (see e.g. (25)). This 

is related to the Heisenberg picture as follows : 

1PI(t) = eiHote-iHt 14/  

AI(t) = e
iHotAH(0)e

-iHot 

where the subscripts refer to the "picture", and 

Ho and H are the "free" and "interacting" Hamiltonians 

respectively. H is given as a sum of Ho and V, 

where V represents the interaction. It is then usual 

to "solve" the equation 

 
d 11),(t) = -1 e

iHot Ve
-iHot 	(t) 

dt 

for 1),(t), by iteration - the perturbation expansion. 

Unfortunately, in many cases of interest, the formal 

object V has little or no mathematical meaning (47), 

the operator H having even less! 

Even if we can give a meaning to H as an operator, 

there is no reason to expect the perturbation series 

to converge; in fact, in some cases it has been shown 
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to diverge (48). Segal has suggested that, in order 

to avoid the divergences of quantum field theory, 

one might take the time-evolution as an automorphism 

of the algebra of observables, not necessarily 

spatial (49). The operative question, however, is 

how can one define these automorphisms? We shall 

follow Guenin in considering the "inverse" 

interaction picture. Guenin's idea (46) was to let 

the states evolve trivially, rather than the operators 

as in the usual interaction picture. Thus; 

iG (t) = e — iHot, 
4111 

and therefore 

A (t) = e-iHoteiHt A e-iHteiHot 

The Heisenberg picture operators are thus 

AH(t) = e
iHot AG(t)  e

-iHot.  

The point is that the map 

A E AG(0) + AG(t) 

may have a well-defined meaning, even though the 

"unitary" operators eiHt  may not exist. 

We will show this to be the case for our 

"mild" interactions; this extends to arbitrary dimension 

Guenin's result (46). (Actually, we shall only 

consider four dimensions, but the extension is 

trivial). 
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We should point out that the time-evolution, as an 

automorphism group, has been successfully illustrated 

for the Heisenberg ferromagnet (50), certain fermion 

systems (51), and quantum spin systems (52,53). 

We shall take a slight variation of the axioms 

1-5 of §1.2. Explicitly, we shall adopt axioms 1, 2, 

and 3 of §1.2, together with 

Axiom 4' 

We are given a continuous homomorphism To, from 

1R4  into Aut A, the automorphism group of A (furnished 

with the strong topology of operators on a Banach 

space), such that 

To 	= A(0a) 

where 0a  = {x c1 	x-a E 

Thus, the continuity means that 

Irro(a)A - A 	o 

as a 0 in TO, for each A e A. 

We shall call To the free field dynamics. 

Examples. 1. 

The A(0),A defined in §2.1 for the massive neutral 

boson field, together with 
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To(a)(•) = U(a)(•)U(a)
1- 

 

a cIR41  do not satisfy the continuity requirement, 

axiom 4'. We must "resmear" the alaebras. 

If A c A, and f c D(114), define 

A(f) = f f(x)t0(x)A ex, 

where the integral is a strong integral on Fock space. 

Then 

IlTda)A(f)-A(f) H = II ff(x)lb(a+x)AA - ff(x)Tdx)AAH 

= H f(f(x-a) - f(x)) To(x)A dic H 

< f if(x-a) - f(x)I HT0(x)All dx 

= IIAI I f I f(x-a) - f(x)Idx 

4. 0 as a 4 0, as required. 

The algebras A(Q) must now be adjusted to take account 

of the finite size of the support of the various f's. 

(This corrects an error in (54)). 

2. In two space-time dimensions, we could do the 

above modification for the case when To(*) is the 

space-time automorphism group of Glimm and Jaffe 

corresponding to a :4)2n: interaction. 

3. The usual algebra generated by even powers of a 
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free Dirac field satisfies our requirement. (The 

continuity condition of axiom 4' holds because of 

the bounded nature of fermion fields.) 

§4.2. The Cut-Off Interaction. 

Let V c A(01) be such that V = V*, and write 

Va for To(0,a)V, and V(t) for Td-t,0). The minus sign 

appears here, rather than in many places in the sequel. 

We would like to consider the translationally 

invariant interaction given by fVad3a. However, this 

will not generally exist as an element of A. We must 

first introduce a space cut-off, and remove it, in 

some sense, later on. 

Let us define the cut-off interaction 

Vr = f Vad3a 

lakr 

as a Riemann-Bochner integral (55), and, so defined, 

it lies in A. we have that 

lb(—t,O)Vr  E Vr(t) = 	f Va(t)d3a. 

fal<r 

This perturbs the dynamics To(t) and defines a new 

one-parameter group of automorphisms. We shall show 

that the limit as r co exists, and defines a space-

translation invariant time-evolution. 

As we have already said, Guenin defines 
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A (t) = e-iHoteiHt A e-iFteiHot 

which, when "differentiated" and "solved" by iteration, 

yields 

t  A (t) = A + if ds re -iHosveiFos ,AJ + 

where H = Ho  + V. This suggests the following definition 

of the (Guenin) interaction picture evolution 

corresponding to the interaction Vr  ; 

t eIR :t 	Ti(t) 

t 
Tr
(t)A E A + ifedti[Vr(ti),A] 

t 	ti 
+ i2f

0
dtlio  dt2[Vr(ti),EVr(t2),A1 

for any A e A. 

Now, To is an automorphism, and so 

11 vr(t) II = 1117,11 < 	I Hva  II d3a 	= 	itr3IIVII 

lakr 

for all t. The (n+1)th term of Tr(t)A is a multiple 

commutator which can be expanded to give 2n  various 

permutations of Vr(t1)...Vr(tn)A. 
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Its norm is therefore bounded above by 

2n  Pr!I n  IIAII Irvi n 

It follows that the series converges in A in norm, 

for all t EP. T
r
(t) is thus a well-defined 

map : A A for all t c IR. 

Lemma 4.2.1. 

(i) T
I
(t)(AA+B) = AT

r(t)A + T
I(t)B 

(ii) (T1.(t)A)* = TI(t)A* 

(iii) Ti(t)(AB) = T
r
(t)A T

r
(t)B 

for all tc1R, AcM, A,BcA. 

Proof. 

(i) is obvious, and so is (ii) since V = V. 

(iii) Denote by Sn  the sum of the first n terms of 

the series for T
I
(t)A, tcP, AEA. Then using the 

fact that 

lEn+lit) = 	r (t),Sn(t)] dt 1   

it is not hard to show that 

d I 
TITTr(t)A = i [11 r(t),Tr(t)A1 . 

Similarly, 

 L 	T (t)ABJ 
dtTr

I  
(t)AB = 	1-17rkLit _I 

	, 
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Now, 

g
T(1.  (t)A l'(t)B) = i [Vr(t),T(t)A3 

i T
r
I  (t)A EVr(t),Ti(t)B] 

= i Evr(t), Tr(t)A Tr(t)B3 . 

Thus we see that T
r
(t)(AB) and T

r
(t)A T

r
(t,B satisfy 

the same differential equation and the same initial 

condition, viz, T
r(0)AB = AB. It follows that 

T
r
(t)(AB) = TI  WA TI(t)B 

for all t. QED. 

Remark. 

Lemma 4.2.1 says that t 	T
r
(t) is a map 

:MR 4. End A ( - the endomorphism algebra of M. 

Theorem 4.2.2. 

Let 'robe given as in axiom 4', and let Tr he 

defined as above. Then, writing To(t) for Tat,0), we 

have that To(-)Tr(s) is a one-parameter group of 

endomorphisms of A. 

Proof. 

We must show that 
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To(s)Tr(s)To(t)Tr(t)A = Tds+t)Tr(s+t)A 

for all ACA, and s,t 

Or, equivalently, since Td.) is a one-parameter 

group of automorphisms, 

Tr(s)-rgt)TI(t)A = To(t)Ti(s+t)A. 

Fix t ; then as in lemma 4.2.1, the l.h.s. satisfies 

the differential equation 

Ivr(s),(.)j . 

The r.h.s. satisfies 

ds{TiAt)Tr(s+t)A) = To(t)i[Vr(s+t),Tr(s+t)A] 

= iEVr(s),Tat)T
T(s+t)A] . 

Since they both satisfy the same initial condition, 

we conclude that they are equal for all s. QED. 

Corollary 4.2.3. 

The endomorphisms T(.) are automorphisms of A. 

Proof. 

Let BEA. Put A = lb(-t)T(-t)To(t)B. 

Then AEA, and To(t)T;(t)A = To(t)B, by the theorem. 

Since T0(t) is an automorphism, we conclude that 

T
r
(t)A = B, and so T

r
(t) is a map from A onto A,VtE1R. 
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Suppose TI MA = O. Then /b(t)T
r 	= 0, and 

acting on this with To(-t)T
r(-t) yields, by the 

theorem, that A = O. Therefore T
r
(t) is one-one 

for all t E IR. QED. 

§4.3. Removal of the Cut-Off. 

Let us now consider the limit of T
r
(-) as r-4.00. 

Definition 4.3.1. 

Let ro be the smallest real number such that 

EVa(t),Vb(s)3 = 0 

for all a,b with la-b) > ro, where Itl<1,and Is1 <1. 

Definition 4.3.2. 

Let A E A(0). Let rA  be the smallest real number 

such that 

EVa(t),A3 = 0 

for all II >rA, where Itl < 1. 

Both ro and rA  are well-defined on account of axiom 4' 

and axiom 3. 

Theorem 4.3.3. 

There exists 6>o such that the limit Ti(t)A 

exists as r+co, for all AEA, uniformly in Itl<8. 
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Proof.  

Let A cA(0) be given, and suppose It1 < 1. 

Then, according to definitions 4.3.1 and 4.3.2, 

if Itil < It1 and itk l < It!, we have 

EVa.(ti ),V
a (tk 	= 0 if 1a.- a

-k  1 > ro  

	

-g 	-k 	g  

and 

EVa  (t),A] = 0 if la-3d > rA . j  
-3 

Consider the general term, un, in the series for 

T
I
(t)A, viz, 

t2 
infdt ..fdti fd3an..fd3alCv (t ),C..,EV (ti ),k3...j 

	

o n o 	n 	al 

where R= { a 1 lal < r }. 

Working from the inside bracket, we see that 

Ev 
a
(ti ),A] is zero if lail>r ; similarly for the 

double commutator, 

ry (t2),V (t0i7 = CValt2),V ft1)1A + V (ti)EVa2t2),A] a2 	al 	-I 	al 	al 

vanishes unless 1a2- all < ro  or 1a21 < rA  . The same 

goes for the other term -EV
a2 (t2),AVal  (ti)]. 

In general, the j-fold commutator will vanish unless 

lailfrA  or lai-A11<ro or ... or laj-ai_11<ro. 
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It follows that the integrand of un  is zero outside 

the 3n-dimensional region S(n) given by 

S(n) = U
g
. 	Si , 
<n 3 

S1  = {acIOnliall<rA) 

S2 = {acR3n lia.4<rA  }U{a1la2-all<ro} -  

Si. = {alla.1<rA  }U{alla.-. -i  
,I<ro}U...U{alla.-all<ro}. g 	 3

a 
—3 

Thus HunH is bounded by 

It

fd

l 	t2 

t 	f
n 	

H 	(t n  ),[... ,F,V al  
0 n j° S(n) 

Expanding the commutator gives the bound 

IIATI f d3an...d3a1. ! 2
n Plin 
	S(n) 

The integral over S(n) can be split up into n! 

(overlapping) parts, each of the form of a polysphere 

in suitable co-ordinates, namely, 

i 	il lailirA  , ia2 1<const., 141<const., ... _ 	_ 	_ _ 

where a: is either a
---ji 

 when the constant is rA' or is J  

one of aj -ak-1  (2<k<j) when the constant is ro.  

For each j c {1,...,n} let us put 
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3 a. 	= 	f 	d3a. = -nr 	= D, say 
3,1 	I.i 1 1 <' 	3 

	A 
1A 

and 

aj,k = 	
4 3 d 3

(a.-a 	) = -nro  = d, say, 3 k-1 	3 la.-a 	<r 1 -3 k-1  0  

for k = 2,...,j. Then the typical term in the integral 

over S(n) is a1,1a2,i ... 
2 ano.• n 

wtere1 . e {1,...,j}. Hence, the integral over S(n) is 

bounded by the sr.-1 

E a1,1a2,i2 	
an,i 

(where the sum extends over all possible values 

of i2,i3,...,in). 

= D(D+d)(D+2d) 	(D+(n-1)d). 

So a final estimate for Hun11 is 

Hunll < 14.  2n  Plln  HAM D(D+d) 	(D+(n-1)d). 

Since each S(n) is a bounded 3n-dimensional 

region, each term of the series for TI(t)A becomes 

independent of r for r sufficiently large. 

But litr
I  (t)All is bounded by the series 

CO 

E HAI' hr 2n  HVII n  D(D+d) 	(D+(n-1)d), 
n=0 	n! 
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which is uniformly convergent for It! < 

where 6 < (2 HVIld)-1. 

Therefore TI(t)A converges in norm, as r + co, 

uniformly in It' < 6. The convergence depends on d, 

which depends only on ro , and is independent of A. 

Thus Tr(t)A converges uniformly in It1 < 6 for all 

A c{ A(0) I 0 a region in M}. 

Now let B e A be arbitrary, and let e>0 be given. 

Then there is an A c A(0), some 0, such that 

HA - BH < e/3. 

Therefore 

11  
Tr(t)B-Ts(t)1311 < Iltr(t)A-Ts(t)All + 2 11A-811 

< c 

for It! <6, and r,s sufficiently large. The T
r
(t)B 

therefore converge in norm as r -' co. QED. 

Remark. 

If we had taken s dimensions, rather than 3, 

the only difference would be that D and d would be 

replaced by the volumes of s-dimensional 

hyperspheres of radii rA  and ro , respectively. The 

conclusion of the theorem remains unaltered. 

Corollary 4.3.4. 

The family 	To(t)TI(t) 1 t 6 11 }, where T:(t) 
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denotes the limit of T
r
(t) as r 00, define a strongly 

continuous one-parameter group in Aut A. 

Proof. 

The relation To(s)TI(s)To(t)Tr(t) = m(s+t)Tr(s+t) 

implies, by the theorem, that 

Tas)T.,(s)Igt)T.(t) = To(s+t)T.(s+t) 

provided Is1,1t1 and Is+tI are all <6. 

The fact that each T.(t) is an automorphism 

follows just as in corollary 4.2.3. 

We shall utilise this group property to extend 

Tg.)T.(.) to 1t1 < 26. Let us write T(.) for Td•)T.(•). 

For lel < 26, define T(0) = T(x)T(y) 

where lx1,1171 < 6, and x+y = 8. The r.h.s. is a well-

defined automorphism of A. For 101 < 6, this definition 

is no more than an identity. 

Suppose that 6 < lei < 26, x+y = 0 = x'+y', 

1x1,1x'1,1y1,1y1 1 < 6, and x 	x'. Then 

T(x)T(y) = T(x')T(x-x')T(y) 

= T(x')T(y-y')T(y) 

(using x-x' = y'-y) 

= T(x')T(y') 

all the automorphisms occuring are well-defined since 

their arguments have modulus not greater than 6. 

This simply means that T(.) is independent of 
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how we write 0 = x+y, i.e. is well-defined. 

We have extended the range of t from Iti < 6 

to Itl < 26. In the same way, we can extend this 

to ItI < 46, and so on. 

Thus T(t) is a well-defined automorphism for 

each t cIR, and satisfies the group property. It remains 

to show that T(t) is strongly continuous in t;i.e. 

T(.)A is norm continuous in t for each A c A. 

Let A c A(0), and let c>0 be given. 

Then 

H T ( s+t ) A - T (s)A II = H TWA -PH 

= H TI(t)A - To(-t)All 

since To has the group property, 

< H TI(t)A-AH + H A-To(-t)All . 

But 

H Tel(t)A-AH < 11All 	I41  2n IIVIInD 	(D+(n-1)d) 
n=1 r" 

Also 

Therefore 

< E/2 for Itl sufficiently small. 

II A - To(-t)All< e/2 for small ItI by axiom 4'. 

T(t')A - TWAH < 

for It'-ti sufficiently small. 

Now let A s A, and let B e A(0), some A(0), 



110 

with H A - BH < 2e/3. 

Then 

II T(t')A-1-(t)A 	II T(t,)B-T(t)B11 + 211 A-Bit 

< 

for sufficiently small 	QED. 

Remark. 

The conclusion of corollary 4.3.4 depends on the 

continuity assumption (axiom 4') of To. 

Suppose that A is given as a C*-algebra of 

operators on a Hilbert space, H. A weaker continuity 

assumption on To is then that, for each A e A and h e H, 

H To(a)Ah - Ah 	+ 0 in H, as a .4- 0 in IR4  

Tr
(t)A can be defined as a series of strong integrals 

on H, and theorem 4.2.2, corollary 4.2.3, and 

theorem 4.3.3 remain unaltered. However, corollary 4.3.4 

must be modified 

Corollary 4.3.4'. 

If To satisfies the weaker continuity condition 

above, then the family {To(t)Tim(t) 	tcIR} define a 

one-parameter group of automorphisms satisfying the 

same continuity condition as To(t). 

(Note that it remains true that TIMA is norm 

continuous in t, at t=0, for fixed A). 
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Theorem 4.3.5. 

T(t) commutes with space translations. 

Proof. 

Let A e A(0), some 0, and let Iti < 6. 

Then we have 

t 
T0(0,a)T(t)A = T0(t,a)(A + if dtlfealr-Va  (ti) ,A1 + 	) 

t 
= To(t)(T0(0,a)A+if0  dtijd'ai[va+a lt i) ,To(0,a)A] + ..) 

= i0(t)Tw(t)(11)(0,a)A) 

= T(t).1-0(0,a)A. 

By continuity in A, we obtain the result for arbitrary 

A s A. To remove the restriction Iti < 6, we use the 

group property of T. 

Let s be given. Then there is t, with It! < 6, 

and an integer n such that nt = s. Thus, for A e A, 

T0(O,a)T(s)A = 10(0,a)T(s/n)nA = T(s/n)11T0(0,a)A 

by repeater', application of the result for Iti < 6, 

= T(s)T0(0,a)A 	QED. 

We have obtained a translation-invariant 

automorphism group IT(t) 	te1R1 by removing the space 

cut-off on Vr, despite the fact that Vr 
itself has no 

limit. If, in addition, we have a continuous 



112 

representation of 0(3) in Aut A, and if we choose V 

to be invariant under this action, the theory will 

be Euclidean invariant. (For example, an invariant V 

can be obtained by averaging an arbitrary V over the 

group 0(3) with respect to its Haar measure). 

§4.4. The Heisenberg Fields. 

Suppose now that A is the quasi-local algebra 

for the free field, as discussed in g2.1. To(t) and 

T(t) are then continuous in the weaker sense that 

H TmAh AhN 4. 0 as t 0 for each A e A and each 

h E H, the Fock space. 

In this case, Vr  is a bounded operator in H, 

and therefore Ho+ Vr, where H implements the time 

translations of §2.1, is a well-defined, unbounded 

self-adjoint operator with domain equal to Dom Ho. 

It is not hard to see that Tr(t) E To(t)Tr(t) is 

implemented by the unitary group with generator Ho+ Vr. 

From our estimates in theorem 4.3.3, it is clear 

that the convergence of r(t)A to Tw(t)A for Iti < 6 

depends only on D and d and N AN . Now, if A E L(Q), 

D depends only on Q. Thus T1.(t)A converges to Tolo(t)A 

uniformly in II All < 1 and A c A(Q) , for fixed Q, 

Provided (ti < 6. 

Now let w(aE) c mg), where 
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W(aE) = exp ia(4)(f)-w(g)) ,a ePt, as in §2.1. 

This is strongly continuous in a, and the 

implementability of Tr(t) implies that the same is 

true of Tr(t)14(aE). By the above comments, this 

converges in norm, for itl < 8, as r 4 co, uniformly 

in a, and so we conclude that T(t)W(aE) is strongly 

continuous in a, for Iti < S. 

We can therefore define the sharp-time 

Heisenberg fields 4(f,t), w(g,t) for iti < (S, as 

the self-adjoint generators of T(t)W(aE) for E 

given by Cauchy data (f,0) and (0,-g), respectively. 

Clearly, the domains of (1)(f,t) and rr(g,t) will 

depend on t. 

Remark. 

We do not expect T(t) to be implemented if Tat) 

is - this because of Haag's theorem (14). To obtain a 

representation of A in which T(t) is implemented, one 

method would be to find an invariant state on A and 

then employ the G.N.S. construction (23,24) to 

obtain a unitary operator U(t) implementing T(t) on 

a new Hilbert space. The difficulty is in showing 

that U(t) is strongly continuous in t, as is 

necessary if we are to define the Hamiltonian as its 

generator. This has been done successfully by J.Glimm 

and A.Jaffe (45), and can also be done in our case in 
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two-dimensional space-time using their techniques (56). 

Another undesirable property of T(t) is its 

violation of causality. The various terms in T4(t)A 

spread out further and further, so that although A 

may be located within a bounded region, T(t)A is spread 

over all space for any arbitrarily small time, t. 

§4.5. Almost-factorisable Interactions. 

We can prove that T(t) is causal under an extra 

condition on V. Unfortunately, we do not know if there 

are any such V satisfying this condition. 

To avoid the complications of the time-dependence 

of the 0, let us suppose that we are given the local 

algebras, A(0), for a fixed time, say t=0, so that 

now 0 is a region in 1R3. 

For example, the time-zero algebras for the free 

boson field are generated by the time-zero fields 

4)(f), w(g) with f,g c D(30). (Note that A is the same 

here as in the 4-dimensional case). 

Axioms 1-3, for the three dimensional regions 

will still be meaningful, and we shall suppose that 

they hold. Axiom 4' is the same except that we 

suppose To(t)A(0) = maw), where Q't' is the region 

0 "spread out" by a distance It! : 	= U 	Bit', 
B in 0 

where B is a ball, and Bit, is the ball obtained by 

increasing the radius of B by It'. 
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We would like T(t) to have this property, 

viz, T(t)A(0 = A(Piti). 

Definition 4.5.1. 

Let V E A(0), for some region O. We say that V 

is almost-factorisable if, for any given c>0, 6>0, 

there is a finite cover of 0 by open balls Oili=1,..,111, 

with radii equal to 6, and elements Vie A(Bi) 

such that 
n 

V- X v11 < c. 
1=1 

Vi 
 
II 

 other words, V can be approximated by a sum 

of elements in arbitrarily small regions. The following 

theorem is, therefore, not so surprising. (An example 

of such a V is given by any element in the intersection 

of all the A(0). In this case, V can be written as 

V E 

	

	1 
i=1 1 n
n V. , where V. = -V, which clearly will satisfy 

the conditions of the definition. However, in cases of 

interest, the intersection of all the A(Q) is trivial, 

or at least is contained in the centre of A, in which 

case, Ti  is equal to the identity automorphism). 

Theorem 4.5.2. 

Let V = V*e A(R), where R is a ball of radius P, 

be almost-factorisable. Suppose that To is causal,i.e. 

satisfies our modification of axiom 4', above. Then 

T is causal. 
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Proof. 

Let A c A(0), 0 a region in 10. We note that if 

W c A(S), where S is a ball of radius a, then 

Id3a[W a  ,A] c A(02a  ). - = 

The causality of To  implies, therefore, that 

fd3a1 —Warn  To(t)EW (ti),[ ..,CWa(tm),A] ... 3 
-m 

(where Wa(t) = To(-t)Wa) 

= fd3a1..d3amTo(t-ti)[Wa  ,T)(ti-t2)EWa  , 
-1 	-2 

. . . , To( tm_ 1— tin  )[W , To( tm ) A] . . 
—m 

B(22am+Itl)  

Let lel<Itl<(211vIld)-1, with d as in theorem 4.3.3, 

and let c>0 be given. Let N be an integer, and c'>0. 

Then, since V is almost-factorisable, there is a finite 

cover of R, by open balls {Bil i=1,..,n} with radii 

equal to 6 = It' -2-N101 , and elements Vic A(Bi) such 

that 

	

IIV - E.1=1  Vi 	< e ' . 

Now, it follows from our previous remark that 

	

.0 	t. 
.] SN(e)A 1-0)A + 	fdt 4]-1dt.fd3a, .fd3a. 1* 0  3 J. 	3 j=1 ° 

1.0(6)Ew (t1),..[wact4) ,A]..j 
al 
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where W = Ei=iVi  , belongs to 2Y22N6+ lel)  = A(olt1)- 

But 	WII < E t  implies that 

IISN MA - (8) I Ali < c, 
IN 

provided c' is sufficiently small; where T(0)1 A is the 
IN 

sum of the first N+1 terms of the series for T(0)A. 

Now, T(0)INA 	T(0)A in norm, as N 3  00 (by our 

estimates in theorem 4.3.3), and so the same is true 

for SN(8)A. 

The norm completeness of A(Olti) implies, therefore, 

that T(0)A E A(01t1). Now, T(t)A is norm continuous in 

0 if To(0)A is. Under this assumption on To, we conclude 

that T(t)A, as a norm limit of T(0)A as 8 4 t, belongs 

to a(21t1). 

The group property of T ensures that this property 

holds for all t, and the proof is complete. 

Remark 1. 

If we assume that the A(0) are given as operator 

algebras, and as such are weakly, or equivalently, 

strongly closed, then we need only assume the weaker 

condition that To(t)A is strongly continuous in t. 

Indeed, this implies that the same is true of T(t)A, 

and so T(t)A is the strong limit of T(t)A as 	t. 
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But each T(8)A c A(Piti) and so T(t)A c A(OI1) if 

this is strongly closed. 

Remark 2.  

If V is such that TM is causal, we can exploit 

the uniformity in n A II < 1, A e A(0), of the 
convergence of the series for TwI  (t)A, and define the 

Heisenberg fields 4(f,t) and ff(g,t) for all time, t. 

Indeed, Tr(t)A -* T(t)A uniformly in n A n < 1, 

A e A(Olti) for any fixed t, and so the restriction 

Iti < a can be removed. 
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