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L-cysteine suppresses ghrelin and reduces appetite in rodents
and humans
AK McGavigan1,5, HC O’Hara1,5, A Amin1, J Kinsey-Jones1, E Spreckley1, A Alamshah1, A Agahi1, K Banks1, R France1, G Hyberg2,
C Wong1, GA Bewick1,3, JV Gardiner1, A Lehmann2,4, NM Martin1, MA Ghatei1, SR Bloom1 and KG Murphy1

BACKGROUND: High-protein diets promote weight loss and subsequent weight maintenance, but are difficult to adhere to. The
mechanisms by which protein exerts these effects remain unclear. However, the amino acids produced by protein digestion may
have a role in driving protein-induced satiety.
METHODS: We tested the effects of a range of amino acids on food intake in rodents and identified L-cysteine as the most
anorexigenic. Using rodents we further studied the effect of L-cysteine on food intake, behaviour and energy expenditure. We
proceeded to investigate its effect on neuronal activation in the hypothalamus and brainstem before investigating its effect on
gastric emptying and gut hormone release. The effect of L-cysteine on appetite scores and gut hormone release was then
investigated in humans.
RESULTS: L-Cysteine dose-dependently decreased food intake in both rats and mice following oral gavage and intraperitoneal
administration. This effect did not appear to be secondary to behavioural or aversive side effects. L-Cysteine increased neuronal
activation in the area postrema and delayed gastric emptying. It suppressed plasma acyl ghrelin levels and did not reduce food
intake in transgenic ghrelin-overexpressing mice. Repeated L-cysteine administration decreased food intake in rats and obese mice.
L-Cysteine reduced hunger and plasma acyl ghrelin levels in humans.
CONCLUSIONS: Further work is required to determine the chronic effect of L-cysteine in rodents and humans on appetite and body
weight, and whether L-cysteine contributes towards protein-induced satiety.
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INTRODUCTION
High protein diets can drive weight loss and support subsequent
weight maintenance.1,2 Identifying the mechanisms by which
protein drives satiety and weight loss may help identify
therapeutic options for the treatment of obesity. Recent work
has suggested that the amino-acid products of protein digestion
may be sensed peripherally and centrally to regulate appetite.3

Amino acids are critical for normal physiological function and
many species are able to adapt their protein intake to ensure an
adequate supply of essential amino acids.4 Different types of
protein exert variable effects on appetite,5–8 which may reflect
their varied amino-acid constituents. The discovery of amino-acid-
sensing G-protein-coupled receptors, and their expression in
regions including the gastrointestinal tract, has led to the
suggestion that these receptors may sense amino-acid intake to
regulate appetite.9 Leucine, a branched-chain essential amino
acid, reduces food intake by modulating mammalian target of
rapamycin activity in the hypothalamus and/or the nucleus tractus
solitarius (NTS).10,11 Yet, the effect of leucine alone does not
account for the success of high-protein diets,12 suggesting
additional individual amino acids may also contribute. However,
the amino acids with anorectic effects and the mechanisms by
which they mediate these effects remain to be fully elucidated.
We therefore investigated the effects of oral and intraperitoneal

administration of a range of amino acids on food intake in

rodents. These studies identified L-cysteine, a conditionally
essential amino acid that acts as a precursor for biologically
active molecules such as hydrogen sulphide (H2S), glutathione
and taurine, as an anorectic agent. We subsequently further
investigated the effects of L-cysteine on appetite in rodents and
humans and the mechanisms mediating these effects.

MATERIALS AND METHODS
Animals
Male Wistar rats (8–10 weeks, 220–250 g, Charles River, Margate, UK) and
male C57BL/6 mice (8–10 weeks, 22–25 g, Harlan, Bicester, UK) were
maintained in individual cages under controlled temperature (21–23 °C)
and light (12:12 light–dark cycle, lights on at 0700 hours) with ad libitum
access to food (RM1 diet; SDS, Witham, UK) and water unless otherwise
stated. Transgenic ghrelin-overexpressing mice were generated as
previously described.13 GPRC6A knockout mice were obtained from
the Knockout Mouse Project Repository (supplementary material).
All animal procedures were approved under the British Home Office
Animals (Scientific Procedures) Act 1986 (Project Licence 70/6402 or
70/7236).
Male Wistar rats used in subdiaphragmatic vagal deafferentation

(SDA) experiments were maintained in individual cages under
controlled temperature (21–23 °C) and light (12:12 light–dark cycle,
lights on at 0600 hours) with ad libitum access to food (R70, Lactamin,
Sweden) and water unless otherwise stated. Experiments were approved
by the Gothenburg Animal Review Board (ethical application number
101505).
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Feeding studies
Animals were orally gavaged or intraperitoneally (IP) injected with vehicle
or L-amino acids during the early light phase following an overnight 16-h
fast. Food intake was measured at 1 h post administration with any notable
spillage accounted for.

Effect of L-cysteine on behaviour and conditioned taste aversion
Behavioural studies were used to investigate the possibility that the
administration of L-cysteine and the associated reduction in food intake
was secondary to nonspecific behavioural effects. To confirm that
L-cysteine did not result in aversive effects, we also investigated whether
oral administration of L-cysteine at 1, 2 or 4 mmol kg− 1 resulted in
conditioned taste aversion (CTA) using an established method14 (see
Supplementary Material).

Effect of L-cysteine on energy expenditure
The effect of 2 mmol kg− 1

L-cysteine on activity and energy expenditure
was investigated using a 24-chamber open-circuit Comprehensive
Laboratory Animal Monitoring System (CLAMS; Columbus Instruments,
Columbus, OH, USA)15 (see Supplementary Material).

The role of downstream metabolites and the N-methyl D-aspartate
(NMDA) receptor in mediating the anorectic effect of L-cysteine
L-cysteine is metabolised via a number of pathways (Supplementary
Figure 2A). L-cysteine and some of its metabolites have been reported to
act as weak NMDA receptor agonists.16 The roles of cysteine metabolites
and the NMDA receptor in L-cysteine-induced hypophagia and food intake
were therefore investigated (see Supplementary Material).

Effect of L-cysteine on cFos immunoreactivity
Rats were fasted overnight before receiving an oral gavage of water,
4 mmol kg− 1

L-cysteine or 4 mmol kg− 1 glycine (n= 4–6). Glycine was used
as a negative control as it was previously found to have no effect on food
intake (Figure 1a). Two animals were IP injected with hypertonic saline as
positive controls for the staining procedure.
Transcardial perfusion, tissue preparation and immunohistochemistry

were carried out as previously described,17 with animals killed 90 min post
gavage.
Cell bodies positive for cFos-like immunoreactivity (cFLI) were counted

bilaterally from matched sections in hypothalamic and brainstem nuclei by
an observer blinded to the treatment. Nuclei were defined in relation to
anatomical landmarks according to the rat brain atlas of Paxinos and
Watson.18

Gastric emptying
Gastric emptying was measured using an established method.19,20 Rats
were fasted overnight, then received an intraperitoneal injection of saline,
2 mmol kg− 1

L-cysteine, 2 mmol kg− 1 glycine (negative control) or 10
nmol kg− 1 A71623 (cholecystokinin (CCK)-A receptor agonist, positive
control) (n= 4–7) followed immediately by an oral gavage of 2 ml of a 1.5%
methylcellulose (4000cP), 0.05% phenol red solution. Animals were culled
by decapitation 30min later and the stomach removed for quantification
of the remaining phenol red.
Using the same method, the effect of L-cysteine on gastric emptying was

further investigated in mice. Mice were fasted overnight, then received an
IP injection of saline, 0.5 mg kg− 1 devazepide, 10 nmol kg− 1 A71623, 0.5
mg kg− 1 devazepide and 10 nmol kg− 1 A71623, 2 mmol/kg L-cysteine, or
0.5 mg kg− 1 devazepide and 2mmol kg− 1

L-cysteine followed by 0.2 ml of
the 1.5% methylcellulose, 0.05% phenol red solution.

Subdiaphragmatic vagal deafferentation surgery
Rats were adapted to a nutritionally complete liquid diet (Nestlé
Nutrition, Resource Energy, 1.5 kcal ml− 1) for 3 days before undergoing
SDA or sham surgery. SDA surgery involved left intracranial rhizotomy
and transection of the dorsal subdiaphragmatic trunk of the vagus,
resulting in 50% deafferentation and complete subdiaphragmatic vagal
deafferentation.21,22 Post surgery, rats received liquid diet for 2 days and
then a semiliquid diet for 4 days, and were given 10 days to fully recover.
The effect of oral gavage of 4 mmol kg− 1

L-cysteine on food intake was
then measured.

Effect of L-cysteine on gut hormone release
Rats were fasted overnight before receiving an oral gavage of water or
4mmol kg− 1

L-cysteine (n= 7–8) or intraperitoneal injection of saline or
2 mmol kg− 1

L-cysteine (n= 6–8). Animals were returned to their home
cages and 30 min post administration were culled by decapitation and
trunk blood collected in lithium heparin tubes containing 0.6 mg aprotinin.
Plasma was separated by centrifugation and then frozen and stored at
− 20 °C for analysis. After centrifugation an aliquot of plasma was acidified
with HCl to a concentration of 1N before freezing.
Plasma glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were

measured using established in-house radioimmunoassays,23,24 and acyl
ghrelin using a commercially available enzyme immunoassay (SPI
Biobertin, SPI bio bertin, Bertin Pharma, Montigny le Bretonneux, France).

Repeated administration
Adult male Wistar rats were orally gavaged three times throughout the
dark phase (at 1900, 2300 and 0300 hours) with water, 4 mmol kg− 1

L-cysteine or 4 mmol kg− 1 glycine (negative control) (n= 6–9). Body weight
and food intake were measured daily at the onset of the dark phase.
Male C57BL/6 mice aged 6 weeks were maintained in group housing

with ad libitum access to high-fat diet (D12492, Research Diets, New
Brunswick, USA; containing 60% of its energy as fat) and water for
14 weeks, reaching an average weight of 39.1 g. Animals were then
individually housed and allowed 1 week to acclimatise before experiments
commenced as for rats above (n=8–10).

Clinical studies
Study participants. Human studies were conducted following ethical
approval (West London Research Ethics Committee 1, London, UK) and
according to the principles of the Declaration of Helsinki. All participants
gave their written informed consent before study enrolment.
Healthy male (n=2, 1 Caucasian, 1 South Asian) and female (n = 5, all

Caucasian) subjects with a mean (± s.d.) age of 35.9 ±10.9 years and body
mass index of 23.7 ± 4.3 kgm− 2 who had been weight stable for the
3 months were recruited.

Study design. Participants attended three study visits and reported to the
clinical research facility at 0830 hours having fasted from 2100 hours the
night before. On each visit, participants were cannulated in the antecubital
fossa for serial blood sampling and asked to consume a 200- ml drink
containing either vehicle alone, 200ml containing 0.07 g kg− 1

L-cysteine or
200ml containing 0.07 g kg− 1 glycine in a single-blind (participant)
randomised order. Blood samples were collected at 15- min intervals
starting at t=− 15min for 2.5 h after dosing. Participants were asked to
complete visual analogue scales (VAS) at each time point to assess hunger,
fullness, nausea, anxiety, irritability and sleepiness. Participants were asked
to report any additional side effects during and after the visits. Baseline
plasma and serum was assayed for routine clinical chemistry (liver and
kidney function, calcium and electrolytes). Plasma acyl ghrelin was
measured using a commercially available ELISA (Merck Millipore, MA, USA).

Statistical analysis
Acute food intake and area under the curve (AUC) data is expressed as
mean± s.e.m. and was analysed by one-way analysis of variance (ANOVA)
and post hoc Tukey’s test. CTA data were analysed using one-way ANOVA
with post hoc Dunnett's test. Data from transgenic mice were analysed by
paired t-test. CLAMS data, cumulative data and data from GPRC6A
knockout mice were analysed by two-way repeated measures ANOVA with
a post hoc test with Bonferroni correction. Behavioural data were analysed
by Mann–Whitney test and cFos data were analysed by Kruskal Wallis with
Dunn’s post hoc comparison.
All additional methods are included in Supplementary Material.

RESULTS
The effect of L-amino acids on food intake in rats
To investigate the anorectic potential of specific L-amino acids
in vivo, the effect on food intake following oral and intraperitoneal
administration of a range of amino acids was examined in rats. Of
the amino acids investigated, L-cysteine reduced food intake to
the greatest extent following both oral and intraperitoneal
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administration (Figure 1a). We therefore decided to further
investigate the effects of L-cysteine on food intake.

L-cysteine decreases food intake in rodents
Oral administration of L-cysteine dose-dependently decreased
food intake in rats and mice (Figure 1b and d). Food intake
following 4mmol kg− 1

L-cysteine was significantly reduced,
compared with food intake following saline or 4 mmol kg− 1

D-cysteine 0–1 h following administration (Po0.01) in rats,
demonstrating an enantiomer-specific effect (Figure 1b). Intra-
peritoneal administration of L-cysteine also dose-dependently
decreased food intake in rats and mice (Figures 1c and e).

L-Cysteine increases respiratory exchange ratio (RER) in mice
A single IP injection of 2 mmol kg− 1

L-cysteine in the early light
phase during food restriction significantly increased RER from the
first 30–90min post administration (Po0.001), and significantly
reduced ambulatory activity during the first 30 min post injection
(XTOT: Po0.001, XAMB: Po0.01, ZTOT: Po0.05) (Supplementary
Figure 1).

L-cysteine does not induce aversive behaviour in rodents
Oral administration of 4 mmol kg− 1

L-cysteine to rats significantly
reduced feeding behaviour (Po0.05) (Supplementary Table 1)

without altering behaviours indicative of illness or nausea.
Intraperitoneal administration of 2 mmol kg− 1

L-cysteine to rats
and mice did not cause any behaviour indicative of illness or
nausea compared with control (Supplementary Tables 2 and 3).
Oral gavage administration of L-cysteine at doses up to 4
mmol kg− 1 did not cause CTA in rats (Figure 1f). In addition, our
data suggested that L-cysteine does not mediate its anorectic
effects via the NMDA receptor, GPRC6a or via downstream
metabolites (see supplementary results and Supplementary
Figures 2 and 3).

L-cysteine increases neuronal activation in the rat brainstem
Oral administration of 4 mmol kg− 1

L-cysteine significantly
reduced cFLI in the lateral hypothalamic area (LHA) (Po0.05)
(Figure 2a). However, there was no significant difference in cFLI in
the LHA between animals treated with L-cysteine and glycine
(used as a negative control) (Figure 1a), suggesting the reduction
in cFLI in the LHA was not specifically related to the anorectic
effects of L-cysteine. Oral administration of 4mmol kg− 1

L-cysteine
significantly increased cFLI in the area postrema compared with
water-treated controls (Po0.05) (Figure 2a, representative sec-
tions Figure 2b). There was a trend for increased cFLI in the NTS
(Figure 2a, representative sections Figure 2c).
To investigate whether L-cysteine mediated its effect

on food intake centrally, we measured food intake following

Figure 1. The effect of L-cysteine on food intake in rodents. (a) The effect of oral gavage administration of 4mmol kg− 1 (left panel) and of
intraperitoneal administration of 2mmol kg− 1 (right panel) L-amino acids on 0–1-h food intake in the early light phase following an overnight
fast, n= 5–10. (b) The effect of oral administration of L- and D-cysteine and (c) the effect of intraperitoneal administration of L-cysteine on 0–1-h
food intake during the early light phase after an overnight fast in male Wistar rats (n= 6–8), and (d) the effect of oral and (e) intraperitoneal
administration of L-cysteine on 0–1 h food intake during the early light phase after an overnight fast in male C57BL/6 mice (n= 7–10). (f) The
effect of oral administration 1, 2 and 4mmol kg− 1

L-cysteine and 127mg kg− 1 LiCl on conditioned 1 hour KoolAid consumption in male
Wistar rats (n= 5–9). All data are expressed as mean± s.e.m. *Po0.05, **Po0.01, ***Po0.001.
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administration of L-cysteine into the lateral ventricle. Central
anorectic doses resulted in severe behavioural abnormalities,
including seizure-like activity. Such behavioural effects were not
previously observed following oral or IP administration of
anorectic doses (Supplementary Tables 1–3). We therefore
hypothesised that the reduction in food intake following central
administration of high doses of L-cysteine was secondary to these
behavioural abnormalities and that these effects were caused by
high central concentrations of L-cysteine activating central NMDA
receptors. Accordingly, NMDA receptor antagonism completely
blocked the reduction in food intake and the behavioural
abnormalities observed following L-cysteine administration
(Po0.05) (Supplementary Figure 4B).

L-cysteine reduces gastric emptying
Gastric emptying and gastric distension can affect satiety.
Therefore, we investigated the effect of L-cysteine on gastric
emptying. Intraperitoneal administration of 2 mmol kg− 1

L-cysteine significantly reduced gastric emptying 30min after
administration to rats (Po0.001) (Figure 3a). Administration of
2 mmol kg− 1 glycine, used as a negative control, did not affect
gastric emptying. To investigate whether CCK, a potent inhibitor
of gastric emptying, was responsible for the reduction in food
intake and delayed gastric emptying, following administration of
L-cysteine, a CCK-1 receptor antagonist was used. The CCK-1
receptor antagonist devazepide (0.5 mg kg− 1) inhibited the effect
of the CCK-1 receptor agonist, A71623, on food intake and gastric

emptying in mice (Figures 3b and d) but did not inhibit the effect
of L-cysteine on food intake or gastric emptying (Figures 3c and d).
The degree of gastric distension is primarily communicated to the
brain through vagal afferents. The role of vagal afferents in
mediating the effect of L-cysteine on food intake was investigated
in rats that had undergone subdiaphragmatic vagal deafferenta-
tion. There was no significant difference in the anorectic response
of sham and SDA animals following oral administration of
L-cysteine, suggesting vagal afferents are not essential for the
anorectic effects of L-cysteine (Figure 3e).

L-cysteine suppresses plasma ghrelin
Thirty minutes after oral administration of 4 mmol kg− 1

L-cysteine,
plasma levels of acyl ghrelin were significantly reduced compared
with water-treated rats (Po0.05) (Figure 4a). IP administration of
2 mmol kg− 1

L-cysteine also significantly reduced plasma acyl
ghrelin levels compared with saline-treated animals (Po0.001)
(Figure 4c), but not GLP-1 or PYY levels following oral (Figure 4b)
or IP (Figure 4d) administration. L-cysteine did not suppress food
intake in transgenic ghrelin-overexpressing mice (Figure 4e).

L-cysteine suppresses hunger and plasma ghrelin in humans
L-cysteine reduced feelings of hunger compared with glycine-
treated controls as measured by visual analogue scales (VAS)
(Po0.05) (Figure 5a). There was a trend for a decrease in VAS
scores for ‘How pleasant would it be to eat’ (Figure 5b) and ‘How

Figure 2. The effect of oral administration of L-cysteine on hypothalamic and brainstem cFos expression in rats. (a) Number of cFos-positive
cells in the hypothalamic nuclei: AHA, ARC, DMN, LHA, PVN, VMN and brainstem nuclei: AP and NTS following oral gavage of water,
4 mmol kg− 1 glycine or 4mmol kg− 1

L-cysteine (n= 3–6), data expressed as median and interquartile range, *Po0.05. (b) Representative
sections of the AP (l-r: water, glycine, L-cysteine at − 14.0 mm posterior from bregma) and (c) NTS (l-r: water, glycine, L-cysteine at − 13.3.mm
posterior from bregma), scale bar= 50 μm.
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much could you eat’ (Figure 5c). L-cysteine significantly reduced
plasma acyl ghrelin levels at 45 min post administration compared
with levels following vehicle and glycine treatment (Po0.05)
(Figure 5d), the time point at which the largest cysteine-induced
change from baseline for ‘How pleasant would it be to eat’
and ‘How much could you eat’ occurred. L-cysteine had no
effect on plasma GLP-1 and PYY (Supplementary Figure 5). No
significant side effects were reported during or after the study
(Supplementary Figure 6).

Repeated administration of L-cysteine reduces cumulative food
intake
Our data demonstrated that L-cysteine could acutely suppress
appetite. We subsequently investigated whether the anorectic
effect of L-cysteine was sustained following repeated administra-
tion in rodents. Repeated administration of L-cysteine over a
period of five nights significantly reduced cumulative food intake

in lean rats compared with water and glycine-treated controls
(Po0.001) (Figure 6a). However, this change in food intake did
not result in a significant difference in body weight gain between
the groups (Figure 6b).
To investigate whether L-cysteine could reduce body weight in

an obese model, we used the same protocol in diet-induced obese
(DIO) mice. L-cysteine-treated animals had lost significantly more
weight than water and glycine-treated controls on days 2 and 3
(Po0.05) (Figure 6d). Cumulative food intake was also signifi-
cantly lower in the L-cysteine group on days 2 (Po0.05) and 3
(Po0.01) (Figure 6c).

DISCUSSION
Our data identify a novel anorectic effect for the amino acid
L-cysteine. L-cysteine reduced food intake in rodents and hunger
in a small scale study in humans, and reduced plasma levels of the
orexigenic gut hormone acyl ghrelin in both rodents and humans.
Jordi et al.25 recently described the effects of an oral dose of

6.7 mmol kg− 1 of the 20 proteinogenic amino acids on food
intake, and identified L-arginine, L-lysine and L-glutamic acid as the
most anorectic amino acids. However, our data suggest that at the
lower doses we used (oral gavage: 4 mmol kg− 1, intraperitoneal:
2 mmol kg− 1), L-cysteine is more anorectic than L-arginine and
L-lysine. We found that L-cysteine reduced food intake in a dose-
dependant manner. The amounts of L-cysteine administered were
higher than a rodent would be expected to consume in a single
bout of eating, and thus represent a pharmacological effect.
If L-cysteine does have a physiological effect on appetite, then it is
likely to act in concert with other products of protein digestion,
and thus the effects of L-cysteine per se may be difficult to detect.
However, if the precise mechanisms mediating the anorectic
effects of L-cysteine are characterised, it would be interesting to
investigate whether blocking these mechanisms can inhibit
protein-induced satiety and the long-term metabolic effects of a
high protein diet.

L-cysteine was effective at doses that did not induce
conditioned taste aversion or evoke abnormal behaviour. These
data suggest that L-cysteine does not result in unpleasant post-
ingestive consequences that might result in a nonspecific
reduction in food intake. However, there may be an effect of
L-cysteine at the highest dose tested in the CTA protocol, though it
does not achieve statistical significance, and the post-injection
increase in locomotor activity observed in saline-treated mice in
the CLAMS cages was suppressed in cysteine-treated mice, which
may suggest a degree of treatment associated discomfort. Further
work would thus be useful to determine whether higher doses of
L-cysteine are associated with aversive effects. An isomolar dose of
D-cysteine did not reduce food intake following oral or intraper-
itoneal administration. This L-enantiomer specificity may indicate a
potential role for promiscuous amino-acid-sensing receptors such
as T1R1/T1R3, CaSR and GPRC6A, which are reported to be
activated by L- but not D-amino acids.26–28 However, L-cysteine
reduced food intake in GPRC6A knockout mice to the same extent
as wild type, suggesting GPRC6A is not necessary for the anorectic
effects of L-cysteine. L-cysteine induces a strong T1R1/T1R3-
mediated cellular response in vitro, but other amino acids that
also induce a strong response, such as serine and threonine,26 did
not have significant effects on food intake. L-cysteine can also
activate the CaSR. However, histidine is reported to induce the
strongest CaSR-mediated cellular response of the proteinogenic
amino acids, but did not reduce food intake in our studies. These
data suggest that the promiscuous amino-acid receptors T1R1/
T1R3, CaSR or GPRC6A are unlikely to mediate the effects of
L-cysteine on appetite, though further studies are needed to
conclusively demonstrate that T1R1/T1R3 and CaSR are not
involved.

Figure 3. The effect L-cysteine on gastric emptying and the role of
the CCK-1R and vagal afferents. (a) The effect of IP administration of
saline, 2 mmol kg− 1

L-cysteine, glycine or 10 nmol kg− 1 A71623, a
CCK-1 receptor agonist, on gastric emptying of 2 ml of a semi-solid
non-nutritive substance given by oral gavage in rats 30min post
injection relative to gastric emptying at time 0 (n= 4–7). (b) The
effect of IP administration of 0.5 mg kg− 1 devazepide on the
anorectic effect of 10 nmol kg− 1 A71623 in the 0–1 h period post
administration (n= 8–9). (c) The effect of 0.5 mg kg− 1 devazepide on
the anorectic effect of 2 mmol kg− 1

L-cysteine in the 0–1 h period
post administration (n= 8–9). (d) The effect of devazepide on the
L-cysteine-induced delay in gastric emptying in mice (n= 4–7).
(e) The effect of oral gavage of water and 4mmol kg− 1

L-cysteine on
0–1 h food intake (n= 9–10) in male Wistar rats having undergone
sham or subdiaphragmatic vagal deafferentation (SDA). Data
expressed as mean± s.e.m. *Po0.05, **Po0.01, ***Po0.001.
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L-cysteine increased the number of cFos-positive cells in the AP,
suggesting the brainstem may mediate its effects on food intake.
L-cysteine reduced gastric emptying via a CCK-1-receptor-
independent mechanism and reduced food intake independently
of the CCK-1 receptor and vagal afferents. These results accord
with those published by Jordi et al.25 for the amino acids
L-arginine and L-glutamic acid, suggesting that there may be
similarities between the mechanisms by which these amino acids
and L-cysteine mediate their anorectic effect.

L-cysteine may also work by modulating gastrointestinal
hormone release. L-cysteine did not alter circulating PYY or
GLP-1 concentrations in rodents or humans. The assays used
measured total PYY and GLP-1 immunoreactivity, and it is thus
possible that specifically measuring the active forms of these
hormones might have revealed an effect, though the levels of
these active forms generally correlate with the total circulating
concentrations.29,30 L-Cysteine did reduce circulating plasma acyl
ghrelin levels in both rodents and humans. This reduction in
ghrelin coincided with the greatest decrease in appetite in
humans, and the effect of L-cysteine on food intake was
attenuated in transgenic ghrelin overexpressing mice. The
mechanism regulating ghrelin secretion remains unclear. How-
ever, other hormones, including bombesin, somatostatin, CCK,
GLP-1 and insulin, have all been linked to the suppression of acyl
ghrelin release. The data presented in this paper suggest that the
effect of L-cysteine on food intake does not involve GLP-1 or CCK.
Interestingly, the CaSR has recently been localised to X/A cells,

where it can have both inhibitory and stimulatory actions on
ghrelin release.31

Our data demonstrate that a single dose of L-cysteine can
reduce appetite in rodents, and can reduce subjective feelings of
appetite in a small scale human study. These effects may, at least
in part, be mediated by a reduction in circulating plasma levels of
the orexigenic hormone acyl ghrelin. To assess whether this
reduction in appetite could be maintained and potentially
modulate body weight we investigated the effect of repeated
administration in lean rats and obese mice. A previous study has
demonstrated that supplementing the diet of rats with 1 or 2%
L-cysteine can reduce food intake and body weight, though this
study did not investigate whether these effects might be
mediated by an aversion to the taste of the supplemented
diets.32 Repeated administration of L-cysteine significantly reduced
cumulative food intake in lean animals but had no significant effect
on body weight over the duration of the study. To determine
whether L-cysteine could modulate body weight under obesogenic
conditions we investigated the effect of repeated administration of
L-cysteine in DIO mice. L-cysteine caused an initial modest and
statistically significant decrease in food intake and body weight in
DIO mice. However, the magnitude of this effect appeared to
decrease after 3 days of treatment. Weight loss was also observed in
control groups, suggesting the administration protocol may have
induced undue stress. It is possible that alternative administration
protocols might result in more sustained and reliable effects on food
intake and body weight. However, higher doses of cysteine were

Figure 4. L-cysteine suppresses plasma acyl ghrelin levels in rats. Plasma levels of (a) acyl ghrelin and (b) l-r: GLP-1 and PYY, 30min after oral
gavage of water or 4mmol kg− 1

L-cysteine (n= 7–8), (c) acyl ghrelin and (d) l-r: GLP-1 and PYY, 30min after intraperitoneal administration of
saline or 2 mmol kg− 1

L-cysteine (n= 6–8). (e) The effect of 2 mmol kg− 1
L-cysteine on 0–1-h food intake in wild-type and transgenic ghrelin-

overexpressing mice after an overnight fast (n= 15–21). Data expressed as mean± s.e.m. *Po0.05, **Po0.01, ***Po0.001.
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associated with toxicity. As previously mentioned, L-cysteine
can have NMDA-receptor-mediated excitatory actions. Dose
toxicity studies of L-cysteine have previously been published
demonstrating toxic effects after 28 day intravenous adminis-
tration of 1000 mg kg − 1 day − 1.33 Our acute studies used doses
that were significantly less than this and our data suggest they
were well tolerated.
It has been reported that circulating levels of L-cysteine and its

oxidised forms correlate with body mass index and obesity.34

However, it is unclear whether this is a causal or consequential
factor, and whether the observed differences in circulating
L-cysteine reflect differences in cysteine intake or metabolism.
A previous study has shown that supplementing rats with L-cysteine
can prevent the weight loss associated with a methionine-
deficient diet, which may reflect an attenuation of the changes
to protein metabolism that this diet results in. This study did not,
however, find that supplementation with cysteine administration
increased the body weight of rats on a nutrient complete diet.35

Cysteine supplementation has also been reported to lessen the
age-related decline in food intake in rats, suggesting an appetite
stimulating effect in older animals.36 Our animals, though adult,
were still growing and it is possible that this may also influence
their response to L-cysteine. Collectively, these studies suggest
that cysteine may have different effects on food intake dependent
on the nutritional status and age of the animals. Cysteine
administration and dietary supplementation have also been
reported to have beneficial effects on glucose levels and insulin
sensitivity,37,38 though, conversely, L-cysteine has also been shown
to have inhibitory effects on glucose-stimulated insulin release
from pancreatic β-cells in vitro.39 Our studies found that L-cysteine
transiently increased RER, suggesting cysteine stimulates glucose
utilisation and reduces fat utilisation. It would be interesting in
future studies to further investigate the effects of L-cysteine on
glucose homoeostasis in animals and man.
In summary, our studies identify L-cysteine as an amino acid

with potent acute anorectic effects. Further work is required to

Figure 5. L-cysteine suppresses appetite and ghrelin release in humans. (a–c) Visual analogue scales and area under the curve following
ingestion of vehicle, 0.07 g kg− 1

L-cysteine or 0.07 g kg− 1 glycine (n= 7) (d) The change in plasma ghrelin following oral ingestion of vehicle,
0.07 g kg− 1

L-cysteine or 0.07 g kg− 1 glycine (n= 7). Data are expressed as mean± s.e.m. *Po0.05.
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investigate whether the mechanisms responsible for these effects
can be exploited therapeutically.
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