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ABSTRACT
Cosmic rays are protons and atomic nuclei that flow into our Solar system and reach the Earth
with energies of up to ∼1021 eV. The sources of ultrahigh energy cosmic rays (UHECRs) with
E � 1019 eV remain unknown, although there are theoretical reasons to think that at least
some come from active galactic nuclei (AGNs). One way to assess the different hypotheses
is by analysing the arrival directions of UHECRs, in particular their self-clustering. We
have developed a fully Bayesian approach to analysing the self-clustering of points on the
sphere, which we apply to the UHECR arrival directions. The analysis is based on a multistep
approach that enables the application of Bayesian model comparison to cases with weak prior
information. We have applied this approach to the 69 highest energy events recorded by the
Pierre Auger Observatory, which is the largest current UHECR data set. We do not detect
self-clustering, but simulations show that this is consistent with the AGN-sourced model for
a data set of this size. Data sets of several hundred UHECRs would be sufficient to detect
clustering in the AGN model. Samples of this magnitude are expected to be produced by future
experiments, such as the Japanese Experiment Module Extreme Universe Space Observatory.
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1 IN T RO D U C T I O N

Cosmic rays (CRs) are high-energy particles that flow into our
Solar system and reach the Earth. They consist mainly of protons
and atomic nuclei, and have energies in the range 109–1021 eV,
which makes them the most energetic particles observed in nature
(see e.g. Letessier-Selvon & Stanev 2011 for a review). A number
of open issues remain in this field, especially with respect to ul-
trahigh energy cosmic rays (UHECRs) with arrival energies Earr �
1019 eV. In particular, no consensus has been reached on the sources
of UHECRs. A number of candidates, such as active galactic nu-
clei (AGNs) and pulsars have been proposed, but lack empirical
verification.

The strongest demonstration of the origin of the UHECRs would
be if they could be associated with their progenitors, something
which is made plausible by the fact that the most energetic CRs can
only travel for cosmologically short distances before losing energy.
UHECRs with energies of E � 5 × 1019 eV scatter off the cosmic
microwave background (CMB) radiation via the Greisen–Zatsepin–
Kuzmin (GZK) effect (Greisen 1966; Zatsepin & Kuzmin 1966).
The resultant energy loss is very significant: the mean free path of
the GZK effect at high energies is a few Mpc and the energy loss in
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each collision is 20–50 per cent depending on energy (Stanev 2009).
The GZK effect is expected to cause an abrupt cutoff in the flux of
UHECRs at ∼4 × 1019 eV, for which there has been observational
support (Abraham et al. 2008; Bergman 2008). UHECRs that arrive
at Earth with energies above the GZK limit can only have come
from within a limited radius (the GZK horizon) of ∼100 Mpc.

Due to the low flux, the number of detected UHECRs is small:
the largest currently available sample is the 69 events with E ≥
5.5 × 1019 eV recorded by the Pierre Auger Observatory (PAO)
between 2004 January 1 and 2009 December 31 (Abreu et al. 2010).
The low number of events is the main reason why any hypothesis
about the sources is difficult to investigate.

Another difficulty is that CRs are charged particles, and so are de-
flected by magnetic fields. The deflection due to the extra-Galactic
magnetic fields is expected to be ∼2 – ∼10 deg for the highest en-
ergy CRs (e.g. Medina Tanco, de Gouveia dal Pino & Horvath 1998;
Sigl, Miniati & Enßlin 2004; Dolag et al. 2005). This complicates
the study of UHECR origins because it becomes difficult to directly
link arrival directions with possible sources.

Nevertheless, a number of attempts have been made to find a
correlation between the arrival directions of UHECRs and cata-
logues of potential sources, although no clear consensus has yet
been reached. The Pierre Auger Collaboration reported a strong
correlation between the arrival directions of UHECRs with energies
E ≥ 5.7 × 1019 eV and the positions of nearby AGNs (Abraham et al.
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2007). The result is supported by Yakutsk data (Ivanov 2009), but
not by HiRes (Abbasi et al. 2008) or Telescope Array (Abu-Zayyad
et al. 2012). A more recent analysis of a larger PAO UHECR sam-
ple has shown a much weaker correlation than before (Abreu et al.
2010).

All attempts to associate UHECRs with specific sources are ham-
pered to some degree by large magnetic deflections, possibly tran-
sient sources and incomplete catalogues. An alternative approach
is based on the idea that if the UHECR sources are distributed
inhomogeneously inside the GZK horizon, it should be possible
to detect self-clustering in the UHECR arrival directions, indepen-
dent of any source catalogue. Examples of such work include De
Domenico et al. (2011) and Abreu et al. (2012). In Abreu et al.
(2012), the Pierre Auger Collaboration studied the self-clustering
using three statistical methods based on correlation functions (two
methods based on the two-point correlation function, one method
based on a three-point correlation function, developed by Ave et al.
2009). No strong evidence of non-uniformity was found based on
the p-values obtained under the null hypothesis of no clustering.
The interpretation of p-values is, however, known to be problematic
as they have no quantitative link to the (posterior) probability that
the null hypothesis is correct (see e.g. Berger & Delampady 1987).

Whereas p-values are probabilities conditional on the null hy-
pothesis, what is needed is a method of calculating the probability
that the null hypothesis is correct. Cox (1946) proved that Bayesian
inference is the only self-consistent method to make probabilistic
statements about models based on observations, and Bayesian meth-
ods have previously been used to assess whether UHECRs originate
from AGNs (Watson, Mortlock & Jaffe 2011; Soiaporn et al. 2012).

In this paper, we present a Bayesian analysis of the self-clustering
of the PAO UHECRs. The Bayesian method for assessing non-
uniformity is explained in Section 2. In Section 3, the effectiveness
of the method is discussed, based on tests of the method on sim-
ulated mock UHECR catalogues. The application of the method
to data from PAO is discussed in Section 4. Our conclusions are
summarized in Section 5.

2 STATISTICAL FORMALISM

Our primary aim here is to assess whether there is evidence that
the distribution of UHECR arrival directions is anisotropic. We do
this by using Bayesian inference in the context of two models: a
uniform model, Mu, which would be the null hypothesis in a classical
hypothesis test; and a non-uniform model, Mn, as yet unspecified.
The posterior probability of the non-uniform model, conditional
on data in the form of N UHECR arrival directions {r i} (where
i ∈ {1, 2, . . . , N}), is given by the Bayes’s theorem as

Pr(Mn|{r i}) = Pr(Mn) Pr({r i}|Mn)

Pr(Mu) Pr({r i}|Mu) + Pr(Mn) Pr({r i}|Mn)
, (1)

where Pr(Mu) and Pr(Mn) are the prior probabilities of the two
models, and Pr({r i}|Mu) and Pr({r i}|Mn) are the probabilities of
the data under each of the models (i.e. the likelihoods). With just
two models, it is convenient to work with the ratio of the posterior
probabilities, given by

Pr(Mn|{r i})
Pr(Mu|{r i}) = Pr(Mn)

Pr(Mu)
B, (2)

where

B = Pr({r i}|Mn)

Pr({r i}|Mu)
(3)

is the Bayes factor. In the convention adopted here, models Mu and
Mn are favoured by small and large values of B, respectively.

If a model M has an unspecified parameter θ , then Pr({r i}|M) is
the marginal likelihood,1 which is given by

Pr({r i}|M) =
∫ ∞

−∞
Pr(θ |M) Pr({r i}|θ, M) dθ, (4)

where Pr({r i}|θ,M) is the probability of the data for a given value
of θ and Pr(θ |M) is the prior distribution of the parameter. This
distribution must be fully specified and unit-normalized, otherwise
the resultant value of Pr({r i}|M) is meaningless (Jeffreys 1961).

The next task is to specify the two models to be compared and
to evaluate the marginal likelihoods for both. The null hypothesis
represented by the uniform model (Section 2.1) is unambiguous and
yields the marginal likelihood given in equation (5); the alternative
non-uniform model (Section 2.2) is more complicated and is derived
from a subset of the data, eventually yielding the marginal likelihood
given in equation (9). This requirement means that both marginal
likelihoods are evaluated only for the remaining data that was not
used to obtain the non-uniform model.

2.1 Uniform model

In the uniform model, Mu, the probability that a UHECR
arrives from direction r is constant at Pr(r|Mu) = 1/(4π). Hence,
the marginal likelihood for a test sample of Nt UHECRs with arrival
directions {r t } (with t ∈ {1, 2, . . . , Nt}) is given by

Pr({r t }|Mu) = 1

(4π)Nt
. (5)

This simple expression is, however, valid only in the case of uniform
exposure; if the exposure is non-uniform, as is always the case for
real experiments, it must be modified as described in Section 2.3.

2.2 Non-uniform model

In contrast to the above uniform model, there is an infinite variety of
possible non-uniform models that might explain the distribution of
UHECR arrival directions. This is a significant conceptual problem:
it is difficult to decide which alternative clustered model should
be used. To resolve this issue, we develop a multistage, Bayesian
approach by splitting the arrival directions {r i} into three subsets:

(i) First, Ng generating points {rg} (with g ∈ {1, 2, . . . , Ng}) are
chosen as the centres of smooth, localized kernels which can be
combined into a mixture distribution on the sphere (Section 2.2.1).

(ii) Then, Nf fitting points {rf } (with f ∈ {1, 2, . . . , Nf}) are used
to obtain a distribution for the unspecified width parameter of the
kernels (Section 2.2.2).

(iii) Finally, the remaining Nt testing points {r t } (with t ∈ {1,
2, . . . , Nt}) are used to evaluate the marginal likelihood under this
non-uniform model (Section 2.2.3).

The partitions of the data are chosen at random and the generating
points are not linked to the putative UHECR sources in any way. This
method is hence independent of any source catalogue or propagation
model and, indeed, could be applied to any sample of points on the
sphere. The three steps of this approach are illustrated in Fig. 1 for
the three test cases described in Section 2.4.

1 The marginal likelihood is sometimes referred to as the model-averaged
likelihood or, particularly in astronomy, as the (Bayesian) evidence.
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The resultant model (and marginal likelihood) is fully specified,
but the algorithm for generating it has two free parameters: Ng and
Nf. The relative merits of using a low or high fraction of the data
to generate and fit the model (leaving, respectively, a high or low
fraction to evaluate the marginal likelihood) is an important area
of investigation (e.g. Spiegelhalter & Smith 1982; O’Hagan 1995),
but here we take the simplest approach by using a third of the data
at each step, so Nf = Ng = floor(N/3), leaving Nt = N − (Nf + Ng)
� N/3 testing points. The results of varying these divisions are
deferred to a later paper.

The above three-step approach is novel, but similar in princi-
ple to the methods of partial or incomplete Bayes factors that
have been explored by e.g. Spiegelhalter & Smith (1982), Aitkin
(1991), O’Hagan (1991), O’Hagan (1995) and Ghosh, Delampady
& Samanta (2006). In all cases, the aim is to evaluate the marginal
likelihood for a model with unspecified parameters that do not have
strongly motivated priors; and in all cases the basis of the approach
is the same as is used here, namely to use part of the data to gen-
erate the parameter distributions that are necessary to evaluate the
integral in equation (4).

2.2.1 Generating a clustered model from the data

The first step to specifying a non-uniform model is to use the Ng

generating points {rg} as the centres of smooth, localized kernels
of an as yet unspecified angular size.

The specific kernel chosen was the von Mises Fisher (vMF) dis-
tribution, which resembles a Gaussian on the sphere and is defined
by the density

Pr(r|r, κ) = κ

4π sinh(κ)
eκ r·r , (6)

where r is the central direction and κ is the concentration parameter.
This is inversely related to the width of the distribution: for large
values of κ the distribution is peaked over an angular scale of
∼1/

√
κ , while if κ tends to 0 the distribution becomes uniform on

the sphere. The vMF distributions were centred on the generating
points to give the mixture model density

Pr(r|{rg}, κ) = κ

4πNg sinh(κ)

Ng∑
g=1

eκ r·rg . (7)

2.2.2 Obtaining a concentration distribution

The last step to fully defining the non-uniform model is to specify a
distribution for κ . This is done by using the fitting points to obtain
a fully normalized posterior for κ that can be used as a parameter
prior in the model comparison step. A uniform prior for κ ≥ 0 is
chosen in order to include models with κ = 0 (which would not be
possible for, e.g. a logarithmic prior in κ). The posterior distribution
that results from generating points {rg} and fitting points {rf } is

Pr(κ| {rg

}
,
{

rf

}
) = Pr(κ) Pr({rf }|{rg}, κ)∫ ∞

0 Pr(κ ′) Pr({rf }|{rg}, κ ′) dκ ′

∝ �(κ)
Nf∏

f =1

Pr(rf |{rg}, κ)

∝ �(κ) κNf

sinhNf (κ)

Nf∏
f =1

⎛
⎝

Ng∑
g=1

eκ rf ·rg

⎞
⎠ , (8)

where �(κ) is the Heaviside step function that encodes the fact that
κ is non-negative. The posterior distribution is straightforward to
normalize numerically as it is (generally) unimodal and as there is
only one parameter.

The alternative, non-uniform model for the UHECR arrival di-
rections is hence fully specified (in the sense of being usable in
Bayesian model comparison). It is a sum of vMF distributions cen-
tred on the set of generating points, {rg}, and with the distribution
of vMF concentration parameter κ given by equation (8).

2.2.3 Evaluating the marginal likelihood

Having specified the non-uniform model, Mn, with the generating
points, {rg} and obtained the distribution Pr(κ|Mn) by using the
fitting points, {rf }, it is now possible to use the remaining data,
the testing points {r t }, to evaluate the marginal likelihood. From
equation (4) this is

Pr({r t } |Mn) =
∫ ∞

0
Pr(κ|Mn) Pr({r t } |κ, Mn) dκ, (9)

where Pr(κ|Mn) = Pr(κ|{rg},
{

rf

}
) is given in equation (8) and

now plays the role of the prior distribution for κ , and the likelihood
for the testing points is (cf. equation 7)

Pr({r t }|κ, Mn) = Pr({r t }|{rg}, κ)

=
Nt∏
t=1

Pr(r t |{rg}, κ)

= κNt

[4πNg sinh(κ)]Nt

Nt∏
t=1

⎛
⎝

Ng∑
g=1

eκ r t ·rg

⎞
⎠ . (10)

The one-dimensional integral in equation (9) is, once again, straight-
forward to evaluate numerically. This then gets further modified by
the non-uniform exposure, as described in Section 2.3.

2.3 Non-uniform exposure

When studying the measured arrival directions of CRs in a real ex-
periment, the non-uniform exposure of the observatory needs to be
taken into account. This is characterized by the relative exposure per
unit solid angle, dε/d�, defined such that

∫
(dε/d�) d� = εtot is the

total exposure.2 The relative exposure is proportional to Pr(det|r),
the probability that a UHECR arriving from direction r is detected.
The distribution of arrival directions of detected CRs is then given
by the Bayes theorem as

Pr(r|det) ∝ Pr(r) Pr(det|r) ∝ Pr(r)
dε

d�
, (11)

where Pr(r) is the distribution of arrival directions of all CRs, irre-
spective of whether they are detected.

For uniform UHECR arrival directions discussed in Section 2.1,
Pr(r|Mu) = 1/(4π), so that Pr(r, det|E) simply becomes

Pr(r|det, Mu) = 1

εtot

dε

d�
. (12)

For the non-uniform UHECR arrival directions discussed in Sec-
tion 2.2, Pr(r|κ, Mn) is given in equation (7), so that

Pr(r|det, κ, Mn) ∝ dε

d�

Ng∑
g=1

eκ r·rg , (13)

2 The units of the total exposure are km2 sr yr.
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where the normalization depends on the position of the generating
points, {rg}, the relative exposure and κ , and must be calculated
numerically.

2.4 Illustration of the multistep method

Fig. 1 illustrates how the multistep Bayesian method works for
several simple test cases: a uniform source distribution; a model
with three sources; and a model based on the AGN simulations
described below in Section 3.2. The total number of UHECRs is 69
in all cases. The associated κ posteriors and the resultant distribution
of Bayes factors are shown in Fig. 2.

The first test case was a very simple scenario: the UHECRs were
simulated with isotropic arrival directions, for the case of uniform
exposure. The κ posterior for the uniform case has its maximum
very close to 0, and declines rapidly, because the vMF distributions
that are fitted to the data are almost uniform. The Bayes factors for
this case are small: the uniform model is favoured in 74.1 per cent
of the simulations.

The second test case is a simple model of non-uniform arrival di-
rections: the UHECRs were sampled from three vMF distributions,
representing three UHECR sources. The concentration parameter
κ of the vMF distributions was taken as 90. The κ posterior for
this case is systematically peaked at higher values, as can be seen
in Fig. 2 A. It is peaked at a value higher than the input value of
κ because each of the three original kernels is now accounted for
by multiple narrower kernels that are slightly off-centre. The Bayes
factors are very large: the non-uniform model is favoured in more
than 99.9 per cent of the simulations and the average Bayes factor
is ∼40.

For the case of three sources, it was also possible to apply an
idealized form of the multistep method: instead of using one third
of the full data set as the generating points, the generating points
were taken as the actual positions of the sources of the UHECRs.
In this way, the idealized method does not share the catalogue-
independence of the full three-step method described in Section 2.2.
For this idealized case, the κ posterior is consistent with the input
value, because the three original kernels are accounted for by three
kernels located on the original kernel positions. This is also the
reason why the Bayes factors are even larger than for the ordinary
case. The idealized form of the multistep method is useful to see the
potentially strong impact the lack of knowledge about the source
positions can have, although it hence cannot be used to analyse real
data.

The third test case was the case for UHECRs generated by AGNs,
simulated with the realistic model described in Section 3.2. The
input value of κ = 360 was chosen to give the strongest plausible
signal, but the resultant posterior is peaked close to κ = 0. The reason
is that there are now so many sources compared to the number
of UHECRs that the source distribution is undersampled. This is
an indication that, given the weak (projected) clustering expected
of nearby AGNs, a significantly larger UHECR sample would be
needed for their self-clustering to be apparent. More realistic tests
that are documented in Section 3 confirm this result.

3 A P P L I C AT I O N TO SI M U L AT E D U H E C R
SAMPLES

To investigate the effectiveness of the multistage Bayesian method
described above, it was applied to realistic mock catalogues of
UHECRs. Catalogues were created for two different UHECR sce-
narios: isotropic (Section 3.1) and AGN centred (Section 3.2). The

samples of incoming UHECRs were then subjected to the PAO mea-
surement process (Section 3.3). The distributions of Bayes factors
for the resultant observed samples are analysed in Section 3.4.

3.1 Isotropic distribution of sources

The application of the multistep method to uniform UHECR dis-
tributions acted as a false positive test. Computing large numbers
of Bayes factors for uniform UHECR distributions can be used to
establish how often the null hypothesis is wrongly rejected.

3.2 AGN sources

Simulated UHECR catalogues were created for the case of UHE-
CRs originating in AGNs. The simulation encompassed two main
components: the injection of the UHECRs at the sources and a
propagation model.

3.2.1 Injection at the sources

The AGN sources were drawn randomly from the simulated Las
Damas ‘Consuelo’ catalogues,3 following a similar procedure to
Berlind et al. (2011).

Two source densities were used: 10−3.5 and 10−4.5 Mpc−3. These
are the highest and lowest source densities available in the Consuelo
catalogues, and represent a reasonable range of possible source
densities.

The injection spectrum of the UHECRs at the sources is assumed
to be a power-law of the form Q(E) ∝ E−α , where Q(E) dE is the
number of cosmic rays emitted with energy between E and E + dE
per unit time, and α is the power-law index. Simulations were
conducted for three realistic values of the index: 2.0, 2.3 and 2.7,
spanning the range of values used in e.g. De Domenico & Insolia
(2013), Abreu et al. (2013), Ahlers & Salvado (2011) and Decerprit
& Allard (2011).

3.2.2 Propagation model

Both the energy loss that the UHECRs experience during propa-
gation and their magnetic deflection must be accounted for. The
deflection is not treated explicitly, but included in the observa-
tional smearing described in Section 3.3; the energy loss model is
described here.

A pure proton composition of UHECRs was assumed and so the
energy loss during propagation consists of three components (e.g.
Stanev 2009):

(i) The GZK scattering off the CMB photons at energies above
E � 5 × 1019 eV;

(ii) Bethe Heitler e+e− pair production (also a scattering process
off the CMB radiation), which dominates at lower energies (Hillas
1968);

(iii) The adiabatic energy loss due to the expansion of the
Universe.

Our implementation of this propagation model includes the BH
and adiabatic losses in a continuous approximation, and treats the
GZK effect as a stochastic process.

3 http://ls.phy.vanderbilt.edu/lasdamas. The catalogues have been compiled
by the Las Damas collaboration, Andreas Berlind et al.
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Figure 2. (A) Kappa posteriors and (B) cumulative fractions of Bayes factors, produced by the application of the multistep method to test cases of 69 UHECR
events. Three test cases are considered: uniform UHECRs; UHECRs generated from three sources; and UHECRs generated by AGNs from a realistic catalogue.
In the case of three sources, in addition to the conventional application of the multistep method, the results for an idealized method are displayed. In the
idealized application of the method, the generating points are taken as the true centres of the vMF distributions that generate the UHECRs, rather than as a
random subset of the data.

3.3 Measurement

All of the simulations were done for a PAO-like experiment, three
aspects of which were modelled explicitly:

(i) PAO’s non-uniform exposure was taken into account by ac-
cepting arriving UHECRs with a probability proportional to the
relative exposure dε/d� defined in Section 2.3.

(ii) The error in PAO’s energy measurement is about 12 per cent
(Letessier-Selvon et al. 2013), and was included in the model. This
is significant as only UHECRs that have an observed energy above
a fixed threshold are included in the simulated samples.

(iii) The angular resolution of PAO varies from about 2.2 deg to
about 1 deg for the lowest and highest energies, respectively (Abreu
et al. 2012). The magnetic deflection that the UHECRs experience
during propagation also means that their arrival directions are off-
set from the source. The magnitude of this effect is uncertain, the
estimates of typical deflection angles ranging from ∼2 to ∼10 deg
for the highest energy UHECRs (e.g. Medina Tanco et al. 1998;
Sigl et al. 2004; Dolag et al. 2005). These two effects are simulated
together by drawing a measured arrival direction from a vMF distri-
bution centred on the source. We used three different values for the
concentration parameter κ of the vMF distributions: 30, 90 and 360,
which correspond to average angular deviations of approximately
10, 6 and 3 deg, respectively.

We treated the magnetic deflection as a simple smearing, rather
than including detailed simulations of the Galactic and extra-
Galactic magnetic fields, because our aim was to assess the arrival
directions without reference to a particular physical model. Detailed
models of the magnetic fields are available (De Domenico & In-
solia 2013; Farrar 2014 and references therein), and a formalism
for incorporating these into a Bayesian UHECR analysis has been
developed in Soiaporn et al. (2012).

3.4 Results of the simulations

Simulations were performed and Bayes factors evaluated for the
isotropic model, and for the AGN-centred model with 18 combina-
tions of the above parameters:

(i) source densities of 10−3.5 Mpc−3 and 10−4.5 Mpc−3;
(ii) injection parameters α of 2.0, 2.3, 2.7;
(iii) concentration parameters κ of 30, 90, 360.

For each of the 18 combinations of parameters, 1000 samples of
69 UHECRs were created (matching the size of the PAO data set).
For each sample, Bayes factors were computed for each of three
energy thresholds: 5.5 × 1019 eV, 8.0 × 1019 eV and 10 × 1019 eV.
Including the 1000 realizations of the isotropic model, 55 000 Bayes
factors were computed in total.

The results of these simulations are shown as cumulative distribu-
tions of Bayes factors in the top half of Fig. 3. These are compared
to similar cumulative distributions for the case of uniformly dis-
tributed UHECRs.

The Bayes factors tend to be larger for the source-centred case
than for the uniform case. The difference between the results for
uniform and non-uniform UHECRs is greater for the case of low
source density, as for higher source density the UHECR distribution
would eventually tend to a uniform distribution.

Furthest away from the uniform case is the model with the low-
est source density, highest κ and highest α. Higher κ means that
the UHECR arrival directions are more closely correlated with the
positions of the sources. High α reduces the GZK horizon, meaning
fewer contributing AGN sources and hence more non-uniformity.

The threshold energy value does not have a substantial effect
on the distribution of Bayes factors. It is difficult to predict the
effect of the threshold energy qualitatively, because there are two
competing effects: a lower threshold would increase the sample size,
which makes the non-uniformity more apparent; a higher threshold
decreases the effective GZK horizon, which would increase the non-
uniformity signature. This means that there is some ideal threshold
that gives the greatest chance of detecting whatever anisotropy is
present.

While the results for the uniform and non-uniform cases are
clearly different, the difference is not very significant. If we take
a threshold value of ln (B) = 5 to represent a decisive detection,
then anisotropy is detected only for 0.002 per cent and 5 per cent of
the samples for source densities of 10−3.5 Mpc−3 and 10−4.5 Mpc−3,
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Figure 3. Results of the multistep method applied to mock UHECR catalogues. Cumulative distributions of Bayes factors have been produced for three energy
thresholds, two source densities, and for different values of the sample size N, the injection parameter α and the concentration parameter κ , as indicated above.
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respectively. The conclusion is that the clustering expected from a
realistic model of AGN-sourced UHECRs is too weak to be detected
from a sample of 69 events. This is consistent with the results of
Abreu et al. (2012).

The simulations were repeated for 100 samples of N = 690
UHECRs (i.e. 10 × the PAO sample). The results are shown in
the bottom half of Fig. 3. The difference between the uniform and
non-uniform cases becomes very apparent for all combinations of
parameters. For source densities of 10−3.5 Mpc−3 and 10−4.5 Mpc−3,
22 and 93 per cent of the Bayes factors are above the threshold of
ln (B) = 5. UHECR samples of 690 events are sufficient to detect
self-clustering for a realistic model.

We assume a pure proton composition of UHECRs, which is con-
sistent with the results of HiRes (Abbasi et al. 2005), but not fully
consistent with the results of PAO, which indicate a more complex
mixed nuclear composition (Unger 2008), including heavier nuclei
such as iron. For iron, the magnetic deflection angle would be in-
creased by a factor of 26, leading to a deflection of ∼50 – ∼250 deg.
This makes it more difficult to associate the UHECRs with specific
sources. However, the detection of clustering is also made easier
by the fact that heavier nuclei lose more energy through additional
scattering processes, which reduces the GZK horizon and thus the
number of candidate sources. The energy loss length for cosmic
rays with E � 5 × 1020eV is reduced from ∼10 MeV for protons
to ∼2 MeV for iron, which reduces the GZK horizon by a factor
of ∼5 (Stanev 2009). The net effect of these two factors will need
to be established through additional simulations.

4 A NA LY SIS O F TH E PAO DATA

We now apply the multistage Bayesian method described in Sec-
tion 2 to the PAO data set in order to assess the uniformity of the
measured UHECR arrival directions. This data set consists of 69
events observed from 2004 January 1 to 2009 December 31, and
is described in full by Abreu et al. (2010). As the results depend
to some extent on the way the data are split into the three subsets,
Bayes factors were calculated for 1 000 different random, but equal
sized, partitions. The cumulative distribution of Bayes factors is
shown in Fig. 4.

The Bayes factors are calculated for different partitions of the
same sample. Apart from the distribution for the PAO data, Fig. 4
also shows the distribution for a uniform sample of 69 UHECRs,
as well as the distribution for a UHECR sample generated from
a realistic AGN catalogue (with a source density of 10−3.5 Mpc−3,
κ = 30 and α = 2.0). The results shown here differ from those shown
in Fig. 3, insofar as they result from different random partitions of
a single sample (i.e. PAO, uniform or AGN-sourced) rather than
being drawn from completely independent samples. However, the
distributions produced using these two methods are comparable and
the main conclusions remain unchanged.

A sensible way of dealing with the range of Bayes factors is to
characterize their distribution by the arithmetic or geometric mean.
There is no compelling reason to choose one over the other (see
e.g. O’Hagan 1997), but the fact that the logarithm of the Bayes
factor is symmetric between the two models suggests that the ge-
ometric mean is more natural. The geometric mean was 0.57 and
the arithmetic mean was 1.26. From equation (1), if we assume a
prior probability of 0.5 for both models, we calculate mean poste-
rior probabilities for the clustered model of 0.37 and 0.56 for the
respective means. Thus, there is no clear preference for either of
the models, and the data are consistent with both. We do not detect
evidence for self-clustering. Fig. 4 shows that for data sets of this

Figure 4. Cumulative fractions of Bayes factors, produced by the applica-
tion of the multistep method to 1 000 partitions of: (a) the PAO data; (b) 69
simulated UHECRs from uniform sources; and (c) 69 simulated UHECRs
from a realistic mock catalogue of AGNs.

size, the distributions of Bayes factors for the uniform and AGN-
centred cases cannot be clearly distinguished. This is consistent
with the results of Abreu et al. (2012).

5 C O N C L U S I O N S

We have developed a Bayesian method for the analysis of the self-
clustering of points on a sphere and applied it to the 69 highest
energy UHECRs detected by PAO up until 31 December 2009.

The method is a three-step Bayesian approach, in which the data
are divided into three subsets: the first two subsets of the data are
used to generate a model of self-clustered UHECRs; the third subset
is used to perform Bayesian model comparison between this self-
clustered model and a uniform model of UHECRs. This approach
is an extension of the Bayesian model comparison methods that
were developed by Spiegelhalter & Smith (1982), Aitkin (1991),
O’Hagan (1991) and O’Hagan (1995). Like the multistep method
that is presented here, those approaches are aimed to evaluate the
marginal likelihood in cases when there is weak prior information
on the model parameters. The method we have presented here is not
specific to the UHECR problem in question and could be applied
to anisotropy searches in other areas of astronomy, such as the
search for angular anisotropies in the distribution of gamma-ray
bursts described by e.g. Balazs, Meszaros & Horvath (1998) and
Magliocchetti, Ghirlanda & Celotti (2003).

There is some ambiguity in the partitioning of the full data set.
In the present implementation, the total data set is divided into
three subsets of equal size. However, it is possible that a different
partitioning, or perhaps an average over partitions could make this
method more effective. These issues will be explored in future work.

We tested our model comparison method on mock catalogues of
UHECRs. The results for uniform UHECR arrival directions were
compared to the results for UHECRs originating in AGNs from
a realistic mock catalogue. UHECR clustering in a realistic AGN
centred model is too weak to be detected in a sample of 69 events,
but would be detectable in samples of 690 events. This is consistent
with the results of Abreu et al. (2012).

We assumed a pure proton composition of the cosmic rays, but
there are some indications that heavier nuclei are also part of the
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composition (Unger 2008). The effect of including heavier nuclei
will be investigated through additional simulations.

For the PAO data, Bayes factors were calculated for different
random partitions of the data. The geometric and arithmetic means
of the Bayes factors were 0.57 and 1.26, respectively, corresponding
to posterior probabilities of 0.37 and 0.56 for the clustered model.
Thus, we did not find strong evidence for clustering in the PAO
data, although the data are also consistent with the AGN-centred
simulations.

It is expected that future experiments will produce data sets that
will be sufficiently large for our Bayesian method (and other sta-
tistical approaches; see e.g. Rouillé d’Orfeuil et al. 2014) to detect
even the weak clustering expected if the UHECRS have come from
nearby AGNs. PAO is continuing to take data and is expected to pro-
duce a sample of ∼250 UHECRs over its first decade of operations.
Looking further ahead, the planned Japanese Experiment Module
Extreme Universe Space Observatory (JEM-EUSO; Adams et al.
2013) on the International Space Station is scheduled for launch
in 2017 and is expected to detect ∼200 UHECRs annually over
its five year lifetime. These data sets should be sufficiently large
to detect the self-clustering of UHECRs independent of the source
population.
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