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Abstract

The massive increases in computational power that have occurred over the last two decades

have contributed to the increasing prevalence of Bayesian reasoning in statistics. The often

intractable integrals required as part of the Bayesian approach to inference can be approx-

imated or estimated using intensive sampling or optimisation routines. This has extended

the realm of applications beyond simple models for which fully analytic solutions are pos-

sible. Latent variable models are ideally suited to this approach as it provides a principled

method for resolving one of the more difficult issues associated with this class of models,

the question of the appropriate number of latent variables. This thesis explores the use of

latent variable models in a number of different settings employing Bayesian methods for

inference.

The first strand of this research focusses on the use of a latent variable model to perform

simultaneous clustering and latent structure analysis of multivariate data. In this setting the

latent variables are of key interest providing information on the number of sub-populations

within a heterogeneous data set and also the differences in latent structure that define them.

In the second strand latent variable models are used as a tool to study relational or net-

work data. The analysis of this type of data, which describes the interconnections between

different entities or nodes, is complicated due to the dependencies between nodes induced

by these connections. The conditional independence assumptions of the latent variable

framework provide a means of taking these dependencies into account, the nodes are in-

dependent conditioned on an associated latent variable. This allows us to perform model

based clustering of a network making inference on the number of clusters. Finally the latent

variable representation of the network, which captures the structure of the network in a dif-

ferent form, can be studied as part of a latent variable framework for detecting differences
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between networks.

Approximation schemes are required as part of the Bayesian approach to model esti-

mation. The two methods that are considered in this thesis are stochastic Markov chain

Monte Carlo methods and deterministic variational approximations. Where possible these

are extended to incorporate model selection over the number of latent variables and a com-

parison, the first of its kind in this setting, of their relative performance in unsupervised

model selection for a range of different settings is presented. The findings of the study help

to ascertain in which settings one method may be preferred to the other.
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Chapter 1

Overview

This thesis considers the use of latent variables to model dependency structure in both mul-

tivariate and relational data. Latent variables may be used simply as a mathematical conve-

nience, for example they allow us to take advantage of conditional independence properties

to handle dependencies inherent in network data, or alternatively the latent variables may

have a fundamental meaning which is the target of inference. In this case, the fundamental

meaning is not present in the manifest (or observed) variables.

Although a very useful tool, the introduction of latent variables creates a number of

problems which must be dealt with such as determining the appropriate dimension of the

latent space. These problems themselves can often be of interest, rather than being merely

computational inconveniences, particularly when using latent variables to capture cluster

structure in the data and determining the appropriate number of clusters. In order to tackle

these problems associated with latent variable models we follow the Bayesian approach

to inference. A Bayesian approach allows unknown parameters, such as the number of

clusters, to be handled in a principled manner, by expressing our uncertainty through prior

distributions and inferring posterior distributions from the observed data. The strength of

this approach is particularly apparent when it comes to tackling model selection issues,

with the Bayesian engine carrying an inherent penalisation for overly complex models.

Although principled and relatively straightforward in its theory the Bayesian approach

to inference, in this setting, leads to integrals that are analytically intractable. In order to

approximate these integrals sophisticated computational techniques are required. In this
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thesis two approximation methods are studied; Markov Chain Monte Carlo based meth-

ods capable of trans-dimensional moves and methods based on variational approximations.

These are two different solutions to the same problem and they each have have their own

strengths and weaknesses. To gain a deeper understanding of the context in which the

choice of one algorithm may be more appropriate than the other an empirical comparison

of these methods is conducted for a range of different settings. This work constitutes a

novel contribution to the model selection literature building on a recent study in [21] and

extending this to the unsupervised domain.

Armed with methods to handle the problems associated with latent variables and an un-

derstanding of the associated Bayesian model selection methods the latent variable model

framework can be used to tackle complex problems without the need for restrictive a pri-

ori assumptions. We begin by considering joint inference of both the number of clusters,

K, and the dimensionality of the latent space, q, in a Mixture of Factor Analysers (MFA)

model. Estimation of q and K are intrinsically linked, for example if the latent space de-

fined is insufficient to separate individual clusters the value of K will be underestimated.

We further extend the problem by allowing each cluster to inhabit its own latent space al-

lowing clusters defined by differences in latent structure to be detected. In this setting the

number of possible models increases massively and standard model selection methods such

as Bayes Factors are infeasible making these more complex model selection methods the

only viable solution.

The statistical analysis of autism data is an application where the above approach is

particularly useful. Autism is a neural disorder characterised by impaired social interaction

and verbal and non-verbal communication skills and restricted or repetitive behaviour, with

patients existing on a broad spectrum of disorder. The heterogeneous nature of the popula-

tion complicates analysis and here we deploy the MFA on behavioural data collected as part

of research conducted by the International Molecular Genetic Study of Autism Consortium

(IMGSAC). Analysing the data in this manner to detect sub-populations exhibiting differ-

ent latent structure is a problem of real value that can both uncover the unknown number of

sub-populations present and reveal the differences that define these groups. Analysis at this

level of flexibility and sophistication has never been performed previously in this setting

and represents a novel contribution to the statistical analysis of autism data.
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The latent variable approach can be used to model network data in an elegant fash-

ion that respects the unique characteristics of this type of data. Networks are composed

of entities, referred to as nodes or vertices, and their connections, referred to as links or

edges. The connected nature of networks means that these nodes and edges are inherently

dependent on each other and standard statistical methods based on assumptions of inde-

pendence between samples are inappropriate. A latent variable model provides a means of

handling this dependence by introducing a latent variable for each node. This allows us to

treat the nodes as independent, conditional on the latent variable. A model based on this

principle is the Latent Position model [63] in which the latent variables are positions in

Euclidean space. The model has been extended to incorporate model based clustering of a

network. This variation on the original model is the Latent Position Cluster Model (LPCM)

[58] which will be used extensively throughout this thesis. The form of the likelihood of

the model makes Bayesian inference possible and we incorporate MCMC based Bayesian

model selection techniques to tackle the problem of inferring the number of communities

in a network. This extends the work of the previous groups [63, 58]who developed the

models and our contribution is solely from a model estimation and selection perspective,

incorporating trans-dimensional MCMC based methods for the first time in this setting.

The analysis of network data suffers from a problem with scale, as the size of the

network increases computationally intensive methods such as MCMC quickly become in-

feasible. Informed by the comparison of variational and MCMC methods in Chapter 3, in

which it was shown that comparable performance can be obtained from the variational ap-

proach in much shorter timescales provided there is sufficient data, a variational approach

to estimating the Latent Position and LPCM models is developed. This allows these latent

variable methods to be applied to larger networks.

Finally the latent representation of a network obtained from the LPCM is of interest

in itself. It provides a model-based method for visualising the network and also gives us a

multivariate representation on which standard multivariate analysis tools such as Canonical

Correlation Analysis (CCA) can be deployed. CCA measures the correlations between

two sets of data. This allows two networks to be compared, or a single network to be

monitored over time to detect changes in structure. A probabilistic formulation of CCA as

a latent variable model allows us to construct a test statistic with confidence intervals and



Chapter 1. Overview 17

the overall method is a novel approach to detecting changes in a network. We combine

this change detection method with the MCMC based model selection techniques applied

to the LPCM to study the Enron email corpus. The Enron email corpus is a real-world

dataset of email communications from a company during a time of severe crisis. These

methods allow us to study the community structure of the network and detect changes

in the patterns of communication, which may indicate the occurrence of extreme events

such as the resignation of the CEO or filing for bankruptcy. This final application brings

practically all elements of this thesis together.

1.1 Contributions

This thesis makes a number of contributions in the following areas:

• Methods for Bayesian Model Selection: The comparative study provided in Chap-

ter 3 evaluates the performance of MCMC and variational methods for model selec-

tion in a range of different settings, for example varying the number of points, the

difficulty of the clustering problem and the dimensionality. A similar study of sorts

was undertaken by [21] however our work extends this beyond the regression setting

to that of unsupervised model selection. Understanding the different characteristics

of both methods is important to allow the most appropriate method to be used for

different problems and our results provide strong evidence to suggest that given suf-

ficient amounts of data the variational approach can match the accuracy of MCMC

based methods but in time scales that are orders of magnitude shorter.

• Statistical Analysis of Autism Data: A large volume of literature exists on the

analysis of the Autism Diagnostic Interview - Revised with broadly speaking two

objectives, to stratify a cohort of subjects into more homogeneous sub-populations

based on specific behavioural traits or to analyse the structure of the interview for

possible improvements. The methods deployed on the ADI-R in this thesis are some

of the most sophisticated ever used and to the best of our knowledge represent the

only fully unsupervised Bayesian model based clustering of the data that also incor-

porates latent structure analysis. The results obtained show the existence of a number
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of sub-populations in a carefully chosen study sample and also differences in latent

structure between these groups. This is a further illustration of the heterogeneous na-

ture of the autism population and the need for methods which can take into account

the inherent heterogeneity.

• Network Community Detection: The Latent Position Cluster Model provides a

tool for performing model based clustering of a network. We extend the original

MCMC based model estimation method to incorporate a sampler capable of trans-

dimensional moves to allow inference over the number of clustersK. This represents

an improvement on the original method for selecting between models of differing K

by comparing pairs of models using Bayes factors, a weakness which was remarked

upon in the discussion of the original RSS read paper [58].

• Efficient Algorithms for Networks: A key issue affecting the analysis of networks

is the massive computational burden associated with increases in network size. This

makes MCMC based estimation infeasible for large networks of more than a thou-

sand nodes. An alternative method of estimation by variational approximations is

faster by orders of magnitude and we derive a set of update equations that allow the

Latent Position and LPCM to be estimated in this fashion. There has been previous

work on this problem [114], highlighting the need for efficient methods of estima-

tion, however the authors were forced to resort to numerical optimisation routines to

update the model parameters due to the complexity of the derivations. We present a

fully realised probabilistic solution utilising an alternative but equivalent phrasing of

the model.

• Detecting Changes in the Structure of Networks: There are two main approaches

to the problem of detecting differences between or determining changes in the struc-

ture of networks. These are feature based [87] or those that work in the graph space,

generally using subgraph comparison [67] or entropy measures [27]. The latent vari-

able approach of the LPCM allows us to contribute a unique approach based on

analysing an embedding of the network in Euclidean space. This differs to methods

that work in the graph domain and is more closely linked to methods that extract
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and monitor specific features of a network. Both approaches have their weaknesses,

methods in the graph space carry a huge computational burden while the feature

based method inherently restricts the type of changes that can be detected to only

those that provoke change in those features. The method proposed here uses Canon-

ical Correlation Analysis to compare representations of networks in Euclidean space

which we feel is a more principled approach than selecting arbitrary features and less

costly than the graph based approaches. A latent variable model formulation of CCA

allows a test statistic with confidence intervals to be derived.

1.2 Thesis Structure

The thesis is structured as follows:

• Chapter 2 provides the background for the methods that will be used throughout this

thesis. The general framework of latent variable models is described as well as some

specific models which will feature prominently. A model-based approach naturally

incurs the question of model selection and the Bayesian approach to model selec-

tion is discussed. This approach requires the computation of the marginal likelihood

which is often an intractable integral and we discuss two approximation methods

for estimating this as part of the model selection problem, these are Markov Chain

Monte Carlo and variational approximations. The methods discussed here form the

core of this thesis and are deployed in Chapter 3.

• In Chapter 3 we deploy the model estimation techniques described in Chapter 2 to

the problem of estimating both the number of clusters and the dimensionality of the

latent space in a model that combines two of the latent variable models described in

Sections 2.1.1 and 2.1.4, Factor Analysis and the Finite Mixture Model. This two

tiered model selection problem is made more complex by allowing the dimension

of the latent space to vary between clusters and a sophisticated birth-death MCMC

method is deployed which is explained in detail. This is compared with the cor-

responding variational approach in a simulation study in which the performance of

both approximation methods is investigated for a range of different settings. Hav-
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ing studied these methods extensively we then apply them to the analysis of a data

set of behavioural data from a cohort of subjects with autism. The flexibility of the

model selection techniques are a key advantage allowing sub-populations within a

supposedly homogeneous sample to be detected while also uncovering differences in

latent structure between the sub-populations which may be of interest in characteris-

ing these groups.

• Chapter 4 marks a shift in the focus of the thesis and from hereon we concentrate on

the analysis of network or graph data, but still maintaining a latent variable approach.

The chapter begins with a description of some of the characteristics of network data

that must be captured by any suitable modelling approach and some basic models

from the literature are introduced. These will be useful to illustrate some of the

characteristic behaviour of networks and also as a means to generate synthetic data

in later chapters. Next the specific model utilised, the Latent Position Cluster Model,

which accounts for the dependency between the nodes and edges of a network by

conditioning on a latent position variable in Euclidean space, is introduced. These

latent positions are assumed to be drawn from a mixture of Gaussian distributions and

we incorporate the birth-death MCMC methods presented in Chapter 3 to perform

inference on the number of mixtures.

• Chapter 5 is motivated by the results of the simulation study in Chapter 3 where we

showed that the performance obtained from the variational method for model esti-

mation can match that of the MCMC approach, given sufficient data. Scale is a key

problem with network data and as the size of the network increases the computa-

tional burden makes MCMCmethods infeasible. In this chapter a variational method

for estimating the LPCM based on a alternate phrasing of the model using cosine

angle distance is developed. Similar work has been attempted in [114] however the

approach developed here does not require the use of numerical optimisation routines

and represents the first fully probabilistic solution.

• Chapter 6 tackles the problem of detecting changes in network structure using the

latent variable embedding obtained from the LPCM. We review some of the relevant
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literature in the area before describing our own particular method which uses Canon-

ical Correlation Analysis to compare embeddings. The probabilistic formulation of

CCA as a latent variable model allows us, within the Bayesian framework, to con-

struct a test statistic with confidence intervals based on the posterior distribution of

the transformation matrices. The derivation of this test statistic is described in detail

and the method is tested extensively in a number of experiments using synthetic data

from the simple network models discussed in Chapter 4. These experiments also al-

low us to characterise the capabilities of the method. We then conclude by applying

the method to two data sets: the VAST challenge 2008 data set and the Enron Email

corpus. This chapter contains extended versions of material previously published as

[99] and is reproduced with permission from the IEEE, c©2012.

• Chapter 7 concludes the thesis with a discussion of some of our findings and avenues

of further exploration deriving from the work.

1.3 Glossary

A synopsis of the notation used throughout this report is provided here for reference. In

general we will adhere to the conventions defined but it may be necessary at times to re-

use variables in different contexts. The variables n, p, q and K refer to the number of data

points, the dimensionality of the data points, the number of factors and the number of clus-

ters respectively:
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X
data matrix with n rows corresponding to instances and p

corresponding to variables
n × p

x data vector for a single observation of p variables 1 × p

xi scalar observation, i ∈ {1, . . . , p} 1 × 1

Y generally reserved for the adjacency matrix of a network n × n

yij

binary variable used to denote the presence or absence of an

edge between two nodes in a network
1 or 0

Z
matrix of latent variables with n rows corresponding to in-

stances and q corresponding to independent variables
n × q

Λ factor loadings matrix p × q

μ mean vector 1 × p

ε noise matrix n × p

Ψ variance matrix of noise p × p

Σ covariance matrix of data p × p

π vector of mixing proportions 1 × K

0p vector of zeros 1 × p

θ collection of model parameters

p(.) denotes a probability distribution

q(.) denotes a ‘proposal’ probability distribution

q∗(.) used to indicate the ‘optimal’ probability distribution
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Chapter 2

Background

Latent variable models will feature extensively throughout this thesis. In this chapter a

general overview of the framework of this class of model is provided and a number of spe-

cific models which will be used in later chapters are introduced. As discussed in Chapter

1 a Bayesian approach to model estimation is preferred and this approach is extended to

incorporate model selection. Bayesian model selection reduces the number of modelling

assumptions, allowing key parameters such as the dimensionality of the latent space to

be inferred for a fully unsupervised method. The cost of this increased model flexibility

is added complexity and the second half of this chapter is dedicated to an exploration of

relevant parts of the theory and methodology of Bayesian model selection. The methods

considered fall into two categories: MCMC methods and variational approximations. An

empirical comparison of both approaches will be performed in Chapter 3 but first we pro-

vide a detailed introduction to the theory behind both.

2.1 Latent Variable Models

Many of the fundamental methods of modern statistics, such as the design of experiments,

have their roots in the analysis of physical data from the agricultural sciences [45, 46]. In

contrast latent variable models have their origins in the study of less tangible data from the

social and behavioural sciences [121, 129]. Latent variables can be used to represent many

phenomena such as ‘true’ variables measured with error, unobserved heterogeneity or sim-
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ply concepts that do not admit direct measurements [9, 14, 80, 118]. Many concepts in the

social and behavioural sciences, such as social class, personality, intelligence and ambition

are of this type. In order to obtain information on such variables researchers are required to

consider other variables which can be measured (i.e. are manifest variables) and which are
related to the original quantities of interest, but which may contain additional error or noise.

For example we may attempt to measure intelligence by a battery of tests including an I.Q.

test, an arithmetic test, a comprehension test and a spelling test. However none of these

tests are a pure measure of intelligence, arithmetic may additionally involve numerical abil-

ity, spelling will depend to some extent on memory, comprehension on verbal facility and

all the tests will be subject to sampling fluctuation as well as unpredictable measurement

errors. An individual’s intelligence will need to be estimated in some way from that in-

dividual’s test scores and to do this a model must link the latent and manifest variables

[80]. In this thesis we simply consider a latent variable as a random variable whose reali-

sation is hidden from us. This is in contrast to manifest variables where the realisations are

observed, we will use this term interchangeably with the term data throughout this thesis.

Latent variable models provide a powerful approach to probabilistic modelling. By

defining a joint distribution over manifest and latent variables the corresponding distribu-

tion of the observed variables can be obtained by marginalisation [13]:

p(x) =

∫
p(x|z)p(z)dz (2.1)

where x = (x1, . . . , xp) are the manifest variables and z = (z1, . . . , zq) are the latent

variables, with q < p. Of course we need a way to relate the latent variables to the manifest

variables and this brings us to the basic premise for latent variable models which is that

given p correlated manifest variables, x, the observed associations among them can be

explained by finding q uncorrelated latent variables, z, such that the xi, i ∈ {1, . . . , p}, are

conditionally independent given the values of the z [9],

p(x) =

∫
p(z)

p∏

i=1

p(xi|z)dz. (2.2)

Next the conditional distribution p(x|z) is expressed in terms of a mapping from latent
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variables to data variables so that:

x = f(z; w) + ε, (2.3)

where f(z; w) is a function of the latent variable z with parametersw and ε is an indepen-

dent noise process. If the components of ε are uncorrelated the conditional distribution for

x will factorise as in Equation 2.2.

The definition of the latent variable model is completed by specifying the distribution

p(ε), the mapping f(z; w) and the marginal or prior distribution p(z) [80]. Different

assumptions lead to different models, for example the well known finite mixture model

which will be discussed in Section 2.1.4 is a latent variable model in which the latent

variables are discrete component labels. Alternatively if we consider continuous latent

variables a number of models are possible. Within this thesis we will restrict ourselves

to linear Gaussian models where the mapping from latent variables to manifest variables

is assumed to be linear, for example Factor Analysis, see Section 2.1.1, where the latent

variables are assumed to follow a Gaussian distribution. It is however also possible to have

a non-linear mapping, f(.), from latent variable to data space. While we do not utilise any

of these non-linear models, in Section 3.1 we will show how combining mixture models

with a linear Gaussian factor model, described in detail in the following section, makes it

possible to handle non-linear data.

2.1.1 Factor Analysis

The general framework outlined above permits a vast array of models, in order to progress

it is necessary to make assumptions about the distributions of the manifest and latent vari-

ables. In the specific case of both continuous manifest and latent variables a model must

be formulated that satisfies Equation 2.2. If x and z are assumed to follow multivariate

Gaussian distributions then the joint distribution, p(x, z), and the conditional distribution

p(x|z) are also both Gaussian. Moreover the conditional mean of x given z is linear in z

and the conditional covariance matrix does not depend on z [80]. From these assumptions
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Figure 2.1: Schematic showing how the loadings matrix, Λ, encodes the network of depen-
dencies within the manifest variables

the following generative equation is obtained:

x = μ + zΛT + ε. (2.4)

The latent variables z are referred to as factors and if they are assumed to follow a standard
Gaussian distribution, p(z) ∼ N (0q, Iq), then we have the linear Gaussian factor model
[9, 42]. The p-dimensional random vector ε is distributed N (0p,Ψ), where Ψ is a p × p

diagonal covariance matrix. The diagonality of Ψ is not so much an assumption of the

model but rather a consequence of the conditional independence postulate, Equation 2.2.

The manifest variables are independent given the factors [53]. A parameter that will be of

key interest throughout this thesis is the loadings matrix, Λ, a p × q matrix which captures

all the correlation between the latent and manifest variables as illustrated in Figure 2.1. The

mean vector of the manifest variables is captured by the parameter μ [9].

According to this linear Gaussian model, the marginal distribution of x is:

p(x) = N (μ,ΛΛT + Ψ),

and the goal of factor analysis (FA) is to find the appropriate values of q, Λ and Ψ that

model the covariance structure of the population [80]. From these assumptions it can be
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seen that the conditional distribution of x given z is:

p(x|z) ∼ N (μ + zΛT ,Ψ). (2.5)

One of the biggest limitations of the factor analysis model is that it assumes the data is

homogeneous or comes from a single distribution. In Section 2.1.4 we will describe a

latent variable model that is more suited to heterogeneous data. The next section discusses

a practical issue that must be taken into consideration when utilising the linear Gaussian

factor model.

Factor Rotations

The linear Gaussian factor model as specified above is indeterminate and does not specify

a unique set of parameters but a multiplicity of parameter sets, each related to the other by

an orthogonal transformation [49]. The factor model decomposes the sample covariance

matrix of the data, Σ, as ΛΛT + Ψ. However if we consider a non-singular orthogonal

transformation of z to new latent variables y = Mz, then the yi will still be standard

Gaussian and

x = μ + ΛMT y + ε,

so that:

Σ = ΛMMTΛT + Ψ = ΛΛT + Ψ.

Thus our latent variables are indeterminate up to an orthogonal transformation [80]. Ge-

ometrically speaking the columns of Λ can be viewed as defining the axes of the lower

dimensional latent space (coordinate system) of factors. Since a rotation is a non-singular

orthogonal transformation and a permutation of columns is a particular type of rotation we

say that the factor solution is invariant to permutation of axes. In situations where this

rotation invariance becomes problematic, for example when trying to compute the average

of a number of factor loading matrices, the Procrustes transformation will be utilised. A

Procrustes transformation [28, 73] is a geometric transformation that involves only trans-

lation, rotation, uniform scaling or a combination of these transformations. Hence it may

change the size but not the shape of a geometric object. This will require the definition of a
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template orientation to which all other configurations will be mapped using the Procrustes

transformation, allowing for coherent averaging.

2.1.2 Principal Component Analysis

Principal component analysis (PCA) [64, 104] has proven to be an exceedingly popular

technique for dimensionality reduction that is discussed in most texts on multivariate anal-

ysis [14, 16] and in great detail in the exemplar reference [71]. Its many application ar-

eas include data compression [132], image analysis, visualisation [71], pattern recognition

[75], regression and time series prediction.

The most common definition of PCA is that for a set of observed p-dimensional data

vectors,X , the q principal axeswj, j ∈ {1, . . . , q}, are those orthonormal axes onto which

the retained variance under linear projection is maximal [64]. The main attraction of PCA

is its computational simplicity as all it requires is an eigen-decomposition of the sample

covariance or correlation matrix to obtain the largest eigenvalues and eigenvectors [14]. A

limiting disadvantage of PCA as defined above is the absence of an associated probability

density or generative model, it is purely a rotation, which arbitrarily discards low value

components. To overcome this Probabilistic PCA [131] was developed based on a latent

variable model framework. To carry out PCA all that is required is the eigen-decomposition

of the covariance matrix:

Σ = AWAT ,

whereW is a diagonal matrix whose elements are the eigenvalues ofΣ andA is an orthog-

onal matrix whose columns are the corresponding eigenvectors of Σ. However in Section

2.1.1 the factor analysis decomposition of Σ is defined as:

Σ = ΛΛT + Ψ,

which is equivalent to the PCA decomposition when

Λ = AW
1
2 and Ψ = diag(0, . . . , 0)p.
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From Equation 2.5 we can see that if, Ψ = diag(0, . . . , 0)p, the conditional distribution of

x is now degenerate with all the probability concentrated at the mean [9]. This gives us an

insight into one of the main advantages of FA over PCA, in that FA can model covariance

amongst input dimensions separately from variance, by inflating Ψ, whereas PCA cannot.

It also highlights the more statistically sound model based approach of FA which does not

result in degenerate probabilities. In the case where the q eigenvalues ofΣ are large and the

remainder small, PCA can produce a decomposition that is similar to the solution obtained

by factor analysis but in general they will give quite different results due to their inherently

different properties [62].

In response to the shortcomings mentioned above a more principled model based ap-

proach to PCA was developed in [130]. This is known as Probabilistic Principal Compo-

nents Analysis (PPCA) and is even more closely related to FA but makes the assumption

of isotropic residuals, i.e.

Ψ = σ2I,

which allows for a certain amount of noise due to the unused components but is constrained

to be the same across each of the observed variables.

2.1.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [65] is a standard tool from multivariate analysis

which will feature heavily in Chapter 6. CCA is a method for measuring the linear re-

lationship between two sets of multivariate observations [15]. In a sense it is similar to

PCA where we are concerned with finding a linear transformation such that the compo-

nents of the transformed vector are uncorrelated. Given two random vectors, x1 and x2,

of dimension m1 and m2, CCA is concerned with finding a pair of linear transformations
such that one component within each set of transformed variables is correlated with a sin-

gle component in the other set. The correlation matrix between x1 and x2 is reduced to a

block diagonal matrix with blocks of size two where each block is of the form

(
1 ρi

ρi 1

)

,

potentially padded with the identity matrix if m1 6= m2. The non-negative numbers ρi, at

most p = min(m1,m2) of which are nonzero, are called the canonical correlations and are
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usually ordered from largest to smallest [7].

In order to illustrate the effects of CCA a toy example using synthetic data is presented,

the results of which are shown in Figure 2.2. Two data sets, X1 and X2 were generated.

The data setX1 is composed of 100 samples from a multivariate Gaussian distribution with

covariance matrix Σ:

Σ =







1 .1 .5

.1 1 .3

.5 .3 1





 .

The data setX2 is generated as a linear combination of the dimensions ofX1:

X2 = X1 ×







1 1 1

−2 .9 0

1 0 −1







The first and second principal components of X1 and X2 were extracted using PCA and

are plotted in Figure 2.2b. Despite the factX2 is linearly dependent onX1 no relationship

is apparent from the principal components, this is because PCA seeks the transformation

that maximises the variance within each dataset, X1 or X2, individually . In contrast the

relationship between the canonical variates, the points obtained by transforming the origi-

nal points by their respective weight matrices estimated by CCA, plotted in Figure 2.2c is

clearly linear. This is because CCA seeks the transformations that maximise the covariance

between both datasets X1 and X2. As with PCA the CCA problem can be computed by

solving a generalised eigenvalue problem [76] or alternatively it can be formulated as a

latent variable model. In the latter model the two random vectors x1 and x2 are considered

to have been generated by some unknown transformations,W1 andW2, of the same latent

variable z subject to independent Gaussian noise, ε1 and ε1. The correlations between the

two data sets are accounted for by the shared latent or source variable and the model takes
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Figure 2.2: Canonical Correlation Analysis example see text for details. (a): data X1, in
blue, and X2, in red, plotted in 3-D. (b): First two principal components of X1 and X2

plotted against each other with the blue points corresponding to the first principal compo-
nent and the red the second. (c): the canonical variates obtained from CCA and reveals the
linear dependence between the two data sets.

the following form [7]:

x1 = μ1 + zW T
1 + ε1, (2.6)

x2 = μ2 + zW T
2 + ε2, (2.7)

p(z) ∼ N (z|0p, Ip), (2.8)

p(ε1) ∼ N (ε1|0p,Ψ1), (2.9)

p(ε2) ∼ N (ε2|0p,Ψ2). (2.10)

The maximum likelihood estimates of the parameters of this model lead to the canonical

correlation directions [137]. The model looks similar to the latent variable model formu-

lation of FA and PCA but the core difference is in the full covariance matrices Ψ1 and Ψ2

introduced instead of the simple spherical noise model,Ψ = σ2I, of PCA or diagonal noise

model,Ψ = diag(σ2), of factor analysis. This is necessary for CCA to be able to focus on

modeling the correlations but at the same time it poses notable computational difficulties

in real applications [7].

The probabilistic formulation of CCA is merely an alternative but equivalent formula-

tion of the original or classical CCA, however it makes justified extensions possible [137]

and in the next section we will discuss a Bayesian approach to estimating the model.
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Bayesian CCA

The probabilistic model described by Equations 2.6-2.10 is here extended to a Bayesian

generative model by introducing suitable prior distributions. We adopt the formulation of

[137, 76] and the prior distributions for the model parameters are:

wi ∼ N (0p, αiI), (2.11)

αi ∼ Gam(α0, β0), (2.12)

Ψ1,Ψ2 ∼ IW(I, v0), (2.13)

μ1, μ2 ∼ N (0p, σ
2I), (2.14)

where wi denotes the ith column of W1 or W2. The conditional dependencies of the

model are illustrated using a Directed Acyclic Graph (DAG) in Figure 2.3 The priors for the

mean, μ, and the covariance matrices,Ψ, are standard conjugate priors and the prior for the

transformation matrices is the Automatic Relevance Determination (ARD) prior [14]. The

purpose of the ARD prior is to automatically control the number of components extracted

by the model. The parameter αi controls the magnitude of wi, if the dimensionality of the

dependent subspace is less than the full dimensionality of W , then αi for the remaining

columns goes towards infinity, and the actual elements of the vectors go to zero. This will

prove useful in Chapter 6 as a means of determining whether or not there is correlation

between two data sets and this section will be referred to again as part of that work.

The model can be estimated using variational approximations [135, 137]. The varia-

tional approach is a deterministic approximation method that generally provides bounds on

conditional or marginal probabilities and will be discussed in Section 2.3.2

2.1.4 Finite Mixture Models

Another well-known example of a latent variable model is the mixture distribution in which

the latent variable is the discrete component label [130]. Finite mixture models [14, 82]

provide a rich class of models that are heavily used in statistical modelling and that have
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Figure 2.3: Directed Acyclic Graph of the Bayesian CCA model.

been extensively studied in recent years by both the Neural Computation and Machine

Learning communities for a variety of applications. The use of finite mixture models is

particularly relevant to applications where the input space is assumed to be heterogeneous,

so that it would be unrealistic to use a single density to model the distribution of the data

[49]. The description of a finite mixture of distributions is straightforward: any convex

combination of distributions is a mixture,

f(x) =
K∑

k=1

πkfk(x; θk), (2.15)

where the fk are densities and the πk are non-negative real numbers that sum to one; that

is:

0 ≤ πk ≤ 1, (k = 1, . . . ,K),
K∑

k=1

πk = 1. (2.16)

The quantities π1, . . . , πK are called the mixing proportions or weights. The fk(x) are

called the component densities of the mixtures. Later when we use the term component,
we mean a specific component and the corresponding parameters, θk. In most cases the fk’s

are from the same parametric family, with unknown parameter θk, leading to the parametric
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mixture model:

K∑

k=1

πkf(x|θk). (2.17)

Mixture models are commonly used for density estimation as they combine the flexibility of

non-parametric methods while retaining some of the advantages of parametric approaches,

they are thus described as being semi-parametric [82]. The latent variable framework de-
scribed earlier is a key feature of the model. Defining a joint distribution over observed and

latent variables, the corresponding distribution of the manifest variables alone is obtained

by marginalisation. This allows relatively complex marginal distributions over manifest

variables to be expressed in terms of more tractable joint distributions over the expanded

space of manifest and latent variables. The introduction of latent variables thereby allows

complicated distributions to be formed from simpler components [14], in the next section

the latent variable or missing data formulation of the finite mixture model is discussed.

Missing Data Formulation

It is convenient when working with finite mixture models to introduce the missing data for-

mulation of the model. Each observation x has an associated K-dimensional binary latent

variable, z, in which a particular element zk is equal to one and all other elements are equal

to zero [82]. The discrete latent variable, z, can be interpreted as defining assignments of

data points to specific components of the mixture [14]. The marginal distribution over z is

specified in terms of the mixing proportions such that

p(zk = 1) = πk, (2.18)

and the p(z) follows a multinomial distribution [49]. This allows us to work with the

joint distribution of x and z, instead of the marginal distribution of x which simplifies the

mixture problem greatly. The conditional distribution of x given a particular value for z is:

p(x|zk = 1) = f(x|θk). (2.19)
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The joint distribution is given by p(z)p(x|z) which are defined in Equations 2.18 and 2.19

and the marginal distribution of x is then obtained by summing the joint distribution over

all possible states of z to give:

p(x) =

∫
p(z)p(x|z)dz

=
K∑

k=1

πkf(x|θk)

This is the same as the original formulation in Equation 2.17 however the incorporation of

the latent variables significantly simplidies model estimation.

In order to make inference on component assignments we consider the conditional prob-

ability of z given x which, using Bayes’ theorem, is given by [14]:

p(zk = 1|x, πk, θk) =
p(zk = 1)p(x|zk = 1)

∑K
k=1 p(zk = 1)p(x|zk = 1)

=
πkf(x|θk)

∑K
k=1 πkf(x|θk)

,

where f is the specified component distribution, e.g. Gaussian, Student-t. We shall view

πk as the prior probability of zk = 1 and the corresponding conditional posterior as the

probability once the data has been observed. This conditional posterior can be considered

the ‘responsibility’ that a component has for generating x and gives us a natural framework

for carrying out clustering of the data, by computing these responsibilities [82]. These

can be used in a ‘hard’ clustering framework where a point is assigned exclusively to the

component with the highest responsibility or in a ‘soft’ clustering method where we allow

for joint membership weighted by the responsibility.

The mixture model with Gaussian densities can be combined with the linear Gaussian

factor model described previously in Section 2.1.1 to create a Mixtures of Factor Analysers

model which will be discussed in detail in Section 3.1.
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2.2 Model Selection

Fitting the mixture model introduced in the previous section requires the specification of

K, the number of components in the mixture. Ideally K is to be inferred from the data

as part of a fully unsupervised approach, rather than specified a priori as in a K-means

clustering method. Inference over K is effectively the problem of choosing from a set of

competing models, e.g. the mixture model with K = 4 over the model with K = 5. This

model selection problem is an issue of key interest in the clustering application presented

in Section 3.5 where it provides insight to the number of unknown sub-populations within

a heterogeneous sample.

Standard model estimation techniques such as a maximum likelihood approach to pa-

rameter estimation, i.e. choose the value ofK that gives the highest value for the likelihood

function, are inappropriate in this setting. This is because adding components to the model

or increasing the model complexity, always increases the likelihood [82]. As a result alter-

native methods must be employed.

Generally we are interested in using the model to make predictions about future events

or unseen data and thus the predictive power of the model is of interest. As an example

having trained a model based on the sample data we may wish to use this model to predict

the component assignment, p(z), for a new point, xn+1

p(zn+1,k = 1|xn+1, θ) =
p(zn+1,k = 1|θ)p(xn+1|θ, zn+1,k = 1)

∑K
k=1 p(zn+1,k = 1|θ)p(xn+1|θ, zn+1,k = 1)

.

Increasing the model complexity however degrades its predictive performance as the model

becomes too finely tuned to the training data. This is known as overfitting [14]. A number

of measures have been devised to tackle this overfitting problem. An additional term can

be introduced to the likelihood that penalises model complexity. There are many different

measures available such as the Akaike Information Criterion [2] or Efron Information Cri-

terion [36]. The disadvantage of such an approach is that the choice of measure is quite

arbitrary and their criteria and sensitivity varies.

Another approach is to employ computer intensive data re-use techniques such as cross-

validation [77, 106]. Here some of the data is held back from the training data and the
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model that best predicts the unseen data is used.

These methods both have their shortcomings, different choices of penalisation terms

can produce different results and cross-validation techniques greatly increase the amount

of computation required. Also in situations where data is limited it is undesirable to have

to throw away a portion of it. In the next section we will show how taking a Bayesian

approach to model selection resolves these issues and provides a natural penalisation for

excessively complex models.

2.2.1 Bayesian Model Selection

The Bayesian view of model comparison simply involves the use of probabilities to rep-

resent uncertainty in the choice of model, along with consistent application of the sum

and product rules of probability [83]. Our uncertainty in a choice of models, {Mi} where

i = 1, 2, 3 . . . , is expressed through a prior distribution p(Mi). Given a data set D we then

wish to evaluate the posterior distribution

p(Mi|D) ∝ p(Mi)p(D|Mi). (2.20)

The prior allows us to express a preference for different models. Let us simply assume that

all models are given equal prior probability. The interesting term in Equation 2.20 is the

model evidence, p(D|Mi), which expresses the preference shown by the data for different

models. The model evidence is also referred to as the marginal likelihood because it can

be viewed as a likelihood function over the space of models, in which the parameters have

been marginalised out [14]. The ratio of model evidences, p(D|Mi)/p(D|Mj), for two

models is known as a Bayes factor [72] and can be used to compare pairs of models.

For a model governed by a set of parameters θ the model evidence is given by

p(D|Mi) =

∫
p(D|θ,Mi)p(θ|Mi)dθ.

This marginalisation over parameters neatly encapsulates the principle of Occam’s razor,

that the simplest possible model that explains the data should be used [83]. Figure 2.4 gives

the basic intuition for why complex models can turn out to be less probable.



2.2 Model Selection 38

D

Evidence

p(D|M1)

p(D|M2)

Figure 2.4: The horizontal axis represents the space of possible data sets, D. The probabil-
ity of the data given the model,Mi, p(D|Mi), is called the evidence forMi.

The horizontal axis is a one dimensional representation of the space of possible data

sets, so that each point on this axis corresponds to a specific data set. Bayes’ theorem

rewards models in proportion to how well they predicted the data that occurred [14]. These

predictions are quantified by the evidence, the probability of the data given the model. The

simpler model, M2, makes only a limited range of predictions as shown by p(D|M2).

The more powerful model,M1, is able to predict a greater variety of data sets, as seen by

the greater width of the x-axis covered byM1. This means, however, that M1 does not

predict the data sets in regions close to the vertical axis as strongly as M2. If equal prior

probabilities have been assigned to both models and the data falls within this region, the

less flexible model,M2, will be the more probable model [83].

The model evidence makes it possible to choose between two competing models while

taking model complexity into account. In Chapter 3 a two tiered model selection problem

will be encountered with bothK, the number of components, and qk, the number of factors

in each individual component to be inferred from the data. The different combinations of

K and qk gives us a huge number of models to compare. Clearly, with the explosion in the

number of possible models, computing the model evidence and comparing Bayes factors

for each model is infeasible. Instead stochastic methods will be employed to compute a

search over the model space which finds more likely configurations. This will be discussed

further in Section 3.2.
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2.3 Estimation Methods

For the latent variable models described earlier in this chapter we will be required to eval-

uate the posterior distribution, p(Z|X), of the latent variables given the observed data,

Z = (z1, . . . , zn)T and X = (x1, . . . , xn)T respectively. In this thesis a fully Bayesian

approach will be employed to inference in all models. This makes model estimation a

difficult procedure and for many of the models used it will be infeasible to evaluate the

posterior distribution or indeed to even compute expectations with respect to this distribu-

tion. This may either be because the posterior distribution has a highly complex form for

which expectations are not analytically tractable or that the required integrations may not

have closed form analytical solutions.

Approximation schemes are required to overcome these model estimation challenges.

Those used in this thesis fall into two classes, stochastic approximation techniques such

as Markov Chain Monte Carlo [54, 91] and deterministic approximation schemes such as

variational Bayes [6, 14]. These are extensive topics with a vast catalogue of literature be-

hind them and a detailed exploration of the theory of both is beyond the scope of this thesis

but can be found in the texts referenced above. Here we seek to provide a general overview

and key definitions that will be required to understand the specific instances utilised in later

chapters. We begin with MCMC.

2.3.1 Markov Chain Monte Carlo

Stochastic techniques such as Markov Chain Monte Carlo (MCMC) have enabled the

widespread use of Bayesian methods across many domains [54]. They generally have the

property that given infinite computational resource they can generate exact results and the

approximation arises from the use of a finite amount of processor time [14]. MCMC is a

strategy for generating samples xi while exploring the state space χ, the space of all pos-

sible configurations or states, using a Markov chain mechanism [5]. It consists of Monte

Carlo integration using Markov chains and each element will be introduced individually,

starting with Monte Carlo integration.

Monte Carlo integration evaluates the required integral, E[f(x)], by drawing samples,
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{xi, i = 1, . . . , n}, from the posterior distribution and then approximating:

E[f(x)] ≈
1

n

n∑

i=1

f(xi). (2.21)

So the population mean of f(x) is estimated by a sample mean. When the samples xi

are independent the laws of large numbers ensure that the approximation can be made as

accurate as desired by increasing, n, the sample size [54]. In general drawing samples xi

independently from the posterior is not feasible since it can be quite non-standard. However

the samples need not necessarily be independent. The xi can be generated by any process

which draws samples throughout the support of the posterior distribution in the correct

proportion. This can be achieved using a Markov chain which has the target posterior as its

stationary distribution and the combination of these methods is then Markov chain Monte

Carlo.

It is intuitive to introduce Markov chains on finite state spaces, where xi can only take

s discrete values xi ∈ χ = {x1, . . . , xs}. The stochastic process xi is called a Markov

chain if:

p(xi|xi−1, . . . , x1) = T (xi|xi−1),

where T is a fixed transition matrix composed of the probabilities associated with vari-

ous state-changes [113]. The chain is homogeneous if T remains invariant for all i, with
∑

xi T (xi|xi−1 = 1) for any i. For any starting point the chain will converge to the invari-

ant distribution p(x), as long as T is a stochastic transition matrix that obeys the following

properties [5]:

1. Irreducibility. For any state of the Markov chain there is a positive probability of
visiting all other states. That is, T cannot be reduced to separate smaller matrices.

2. Aperiodicity. The chain should not get trapped in cycles.
A sufficient (but not necessary) condition to ensure that a particular p(x) is the desired

invariant distribution is to choose the transition probabilities to satisfy the property of de-
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tailed balance, defined by:
p(xi)T (xi−1|xi) = p(xi−1)T (xi|xi−1).

A Markov chain that respects detailed balance is said to be reversible [14].

MCMC samplers are irreducible and aperiodic Markov chains that have the target dis-

tribution as the invariant distribution [5]. Two specific examples, the Metropolis-Hastings

and Gibbs samplers are introduced in the next sections. It should be emphasised that the

samples obtained from Markov chains are not a set of independent samples from the in-

variant distribution. This is because successive samples are highly correlated [113]. To

obtain independent samples it is necessary to discard most of the sequence and only retain

everyM th sample, a process called ‘thinning’. Another issue for practical consideration is

the dependence on the initial value of the chain x0. In order to remove this dependence

a burn-in period of sufficient length is required at the start of sampling and samples from

within the burn-in period are discarded [54].

Metropolis Hastings

The Metropolis-Hastings algorithm [90, 59] is a method used to construct a Markov chain

such that its stationary distribution is precisely our distribution of interest. For theMetropolis-

Hastings algorithm at each sample i, the next state xi+1 is chosen by first sampling a can-

didate point x∗ from a proposal distribution q(.|xi). The candidate point is then accepted

with probability α(xi, x∗) where:

α(xi, x∗) = min

(

1,
p(x∗)q(xi|x∗)
p(xi)q(x∗|xi)

)

.

If the candidate point is accepted, the next state becomes xi+1 = x∗. If the candidate point

is rejected the chain does not move, xi+1 = xi. The specific choice of proposal distribution

can have a marked effect on the performance of the algorithm [14]. For continuous state

spaces a common choice is a Gaussian centred on the current state, leading to an important

trade off in determining the variance parameter of this distribution. If the variance is small

then the proportion of accepted transitions will be high, but progress through the state
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space takes the form of a slow random walk leading to long correlation times. However

if the variance parameter is too large then the rejection rate will be high because in the

kind of complex problems we are considering , many of the proposed steps will be to states

for which the probability is low. In practice this parameter is adjusted to try and achieve

an acceptance rate of approximately 23% which has been shown to be optimal for an n-

dimensional Gaussian target distribution [111].

The Gibbs Sampler

Gibbs sampling [51] is a simple and widely applicable MCMC algorithm that can be seen

as a special case of the Metropolis-Hastings algorithm where the proposals are always

accepted. Thus rather than evaluating an acceptance probability, Gibbs sampling simply

consists of draws from the posterior conditional of the variables of the target distribution

drawn sequentially, each conditioned upon the previous. There will be some cases where

it is not possible to determine the conditional distributions of the variables and in these

cases it will not be possible to Gibbs sample, rather we will have to use the full Metropolis-

Hastings algorithm as in Chapter 4.

2.3.2 Variational Bayesian Approximation

Variational methods have their origins in the 18th century with the work of Euler, Lagrange

and others on the calculus of variations [14]. In order to describe these methods we first

need to introduce the concept of a functional which is a mapping that takes a function as the

input and that returns the value of the functional as the output, an example being entropy

which takes a probability distribution p(x) as an input and returns the quantity:

H(p) =

∫
p(x)ln p(x)dx.

The derivative of the functional then expresses how the value of the functional changes

in response to infinitesimal changes to the input function. Many problems can be expressed

in terms of an optimisation problem in which the quantity being optimised is a functional.

Although there is nothing intrinsically approximate about variational methods they do natu-
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rally lend themselves to finding approximate solutions. This is done by restricting the range

of functions over which the optimisation is performed. In the applications to probabilis-

tic inference the restriction may for example take the form of factorisation assumptions.

This factorised form of variational inference corresponds to an approximation framework

developed in physics called mean field theory [101].

We now describe how variational optimisation can be applied to the inference problem

for Bayesian models, such as those described earlier, consisting of both latent and manifest

variables, Z and X , and parameters θ. Good introductions to the subject of variational

Bayesian approximations can be found in [11, 13, 133].

The probabilistic model specifies the joint distribution p(Z, X, θ) and our goal is to

find an approximation for the posterior distribution p(Z, θ|X) as well as for the model

evidence p(X). The log marginal likelihood of the data can be lower bounded by intro-

ducing any distribution over both latent variables and parameters and appealing to Jensen’s

inequality (due to the concavity of the logarithm function):

ln p(X) = ln
∫

p(X, Z, θ)dZdθ = ln
∫

q(Z, θ)
p(X, Z, θ)

q(Z, θ)
dZdθ,

≥
∫

q(Z, θ)ln
p(X, Z, θ)

q(Z, θ)
dZdθ.

This does not simplify the problem since evaluating the true posterior distribution requires

knowing its normalising constant [11]. Instead we use a simpler factorised approximation

to q(Z, θ) ≈ qz(Z), qθ(θ).

ln p(X) ≥
∫

qz(Z), qθ(θ)ln
p(X, Z, θ)

qz(Z), qθ(θ)
dZdθ = F(qz(Z), qθ(θ), X) (2.22)

The quantity F is a functional of the free distributions qz(Z) and qθ(θ). The varia-

tional Bayesian algorithm iteratively maximises F in Equation 2.22 with respect to the free

distributions qz(Z) and qθ(θ).

Update equations can be derived for the latent variables and model parameters by taking

expectations of the free distributions over all variables with respect to the other factors.

If for the time being we incorporate the model parameters, which are treated as random

variables anyway, into Z so that the elements of Z are partitioned into disjoint groups that
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are denoted by Zi our previous factorisation assumption means

q(Z) =
M∏

i=1

qi(Zi), (2.23)

a general expression for the optimal solution q∗j (Zj) is given by [14]:

ln q(Zj) = Ei6=j[ln p(X, Z)] + const. (2.24)

This solution provides the basis for applications of variational methods. It says that the

log of the optimal solution for factor qj(zj) is obtained simply by considering the log of

the joint distribution over all hidden and observed variables and then taking the expectation

with respect to all of the other factors qi(Zi) for all i 6= j. The set of equations given

by Equation 2.24 for all j = 1, . . . ,m represent a set of consistency conditions for the

maximum of the lower bound subject to the factorisation of 2.23 [14]. They do not provide

an explicit solution since they depend on the other factors qi(Zi) for i 6= j. Therefore a

consistent solution is found by cycling through these factors and replacing each in turn with

the revised estimate. Convergence of F is guaranteed because the bound is convex with

respect to each of the factors qi(Zi) [133].

In Chapter 5 the variational method will be used to perform Bayesian inference over a

latent variable model known as the Latent Position Cluster Model.

2.4 Conclusion

In this chapter, we have introduced some standard models for multivariate data analysis

and discussed their properties from a latent variable model perspective. To add rigour to

our model based approach we also described two methods for performing Bayesian model

selection, providing us with a principled method for choosing the most appropriate model

given the data. In the next chapter we carry out an empirical comparison of the Variational

and MCMC model selection techniques and assess the conditions under which different

performance is obtained between the two approaches. Models based on the latent variable

framework discussed will feature throughout this thesis and in Chapter 3 we will utilise a
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mixture of factor analysers to extract and analyse the different networks of dependencies

in a heterogeneous population of autistic subjects.
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Chapter 3

Simultaneous Clustering and Latent

Structure Analysis using Mixtures of

Factor Analysers

The previous chapter gave a general introduction to the concept of a latent variable model

and discussed some specific examples. This chapter focuses on a well known model from

the literature that is a combination of two of these examples, the linear factor model and

finite mixture models. This Mixtures of Factor Analysers (MFA) [53] overcomes some of

the weaknesses associated with each model. The flexibility of the linear factor model is

increased by incorporation of elements of mixture models allowing factor analysis to be

performed on data that is non-linear or heterogeneous. Complementary to this effect, in-

corporation of the FA decomposition of the covariance matrix, outlined in Section 2.1.1,

naturally produces model based clustering of the data using fewer parameters than a full

mixture of Gaussians model while simultaneously performing local dimensionality reduc-

tion. Due to the difficulties associated with mixture models outlined in Chapter 2 we favour

a Bayesian approach to model estimation and describe how this can be applied to the MFA

model in Section 3.1.1. The use of a mixture model framework raises the question of how

many components, K, are appropriate given the data, coupled with this now in the MFA is

the choice of the number of factors. In our approach the number of factors in each compo-

nent, qk, is allowed to vary, rather than constrain all components to have the same number
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of factors, qk = q. This two tiered model selection problem greatly increases the num-

ber of possible models making standard model selection techniques such as Bayes Factors

infeasible. Instead a stochastic approach is employed that searches over the space of all

models.

Although some of the content of this chapter may be considered background material,

as it pertains to models and methods that are well known in the statistics community, we

prefer to include it here as specific to the chapter rather than the more general material

outlined in Chapter 2. The chapter is organised as follows.

Section 3.1 introduces the MFA model and a full Bayesian treatment is described in

Section 3.1.1. In Section 3.2 we describe in detail the stochastic method used to estimate

the model inferring both K and qk from the data, Birth-Death MCMC (BDMCMC). This

method will also feature in Chapter 4 in a different setting but again applied to a latent

variable model. The use of MCMC methods in a mixture model setting requires a careful

treatment of an issue known as label switching and Section 3.2.4, describes the method

employed here to resolve this problem. The full algorithm, MFA estimated by BDMCMC,

is then deployed to conduct an empirical comparison of the stochastic estimation method

with an alternative method for performing model selection and dimension reduction based

on variational Bayesian approximation. The variational method for MFA was developed

by [10] and is described Section 3.3 which builds on the overview of variational methods

provided in Section 2.3.2.

The chapter concludes with the application of the MFA to a real world data set in

Section 3.5. The data in question is a set of Autism Diagnostic Interview - Revised (ADI-

R) [81] scores for a cohort of 625 subjects gathered as part of research conducted by the

International Molecular Genetic Study of Autism Consortium (IMGSAC). The ADI-R is a

diagnostic tool used to determine whether a subjects suffers from autism and is described

in Section 3.5.2. Autism is a pervasive development disorder which exhibits a wide range

of symptoms of varying severity referred to as the autism spectrum. Previous studies have

reported difficulties due to the heterogeneous nature of the population which confounds

genetic analysis in the search for autism phenotypes. This is the first application of the

MFA to ADI-R data and the combination of clustering and latent structure analysis, in

an unsupervised manner, may provide insight as to what characterises these different sub-
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populations.

3.1 Mixtures of Factor Analysers

Chapter 2 introduced the latent variable models; Factor Analysis and finite mixture mod-

els. The main limitation of FA is that it is a linear model. Combining FA with the mixture

model framework it is possible to obtain a global extension of the basic model, that si-

multaneously performs clustering and local dimensionality reduction. This MFA is a more

flexible extension of the basic factor model capable of handling heterogeneous data [49].

Each component of the mixture model is a linear factor model and if we keep the same

assumptions as used in both mixture models and the FA model, as described in Sections

2.1.1 and 2.1.4, the marginal density of x is given by:

p(x) =
K∑

k=1

πkN (x|μk,ΛkΛ
T
k + Ψ), (3.1)

which is simply a finite mixture of K Gaussians where, as previously, the πk are mixing

proportions. By exploiting the FA parameterisation of covariance matrices (see Section

2.1.1) a mixture of factor analysers can be used to fit a mixture of Gaussians to correlated

high dimensional data without requiring O(p2) parameters, or undesirable compromises

such as axis aligned covariance matrices. The MFA model has recently been used for

clustering of high dimensional micro-array data [89, 141] and has proved less susceptible

to overfitting than the full mixture of Gaussians. The dimension of the latent space, q,

or columns of Λ, allow us to control the number of parameters required to fit the model.

The model can be made more flexible by allowing the value of q to vary between mixture

components, qk, this allows each cluster to potentially occupy a different subspace of the

high dimensional feature space. Figure 3.1 provides a simple example of data with this kind

of feature. The data shown is composed of three different clusters in three dimensions. Each

cluster was generated from a factor model with a different number of factors. The effect of

this can be observed in the structure that they exhibit in the plot with the red single factor

cluster having a cigar shape, the blue two factor cluster a sheet shape and the green three

factor cluster a cloud shape. Clearly the use of a fixed factor to describe all clusters would
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result in the loss of information about the structure of the clusters.
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Figure 3.1: Three clusters inhabiting subspaces of different dimensions. The cigar shaped
red cluster originated from a single factor factor model. The blue sheet shaped cluster was
generated from a two factor model. The green cloud shaped cluster was generated from a
three factor model.

This extension gives us a very powerful model-based, variable dimensional clustering

algorithm that shares many characteristics with subspace clustering and feature selection

algorithms for clustering. These algorithms simultaneously look for clusters within the data

as well as the variables of the data that give the best clustering so as to remove redundant

features that confuse analysis [102, 103]. The MFA model however is more of a feature

transformation algorithm that finds clusters by capturing the dependency structure in the

data through Λk . Correct estimation of qk is a key part of the clustering problem as with

too few factors Λk is unable to capture enough of the dependence structure to uncover the

differences between clusters [48]. In the other extreme case, with too many factors the

MFA is able to model spurious correlations in the data and as such many clusters become

one supercluster.

In the MFA formulation the independent disturbance vector, Ψ, is assumed to be the
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same for all components, when this is isotropic the model becomes a mixtures of PPCA

[82].

3.1.1 Full Bayesian MFA

There are a number of pitfalls to consider when estimating the MFA. As with all mixture

models the MFA suffers from a number of complications in the likelihood: it is susceptible

to singularities resulting from components collapsing onto one data point [14]. Addition-

ally, the likelihood is always increased by adding more components or factors so a maxi-

mum likelihood approach is not applicable without some form of penalisation (as discussed

in Section 2.2). A Bayesian approach overcomes these problems by treating the parameters

of the model as unknown random quantities and averaging over the ensemble of models

they provide. This requires the specification of priors for the parameters of the model and

we adopt the same structure used in [49]. A Direct Acyclic Graph is shown in Figure 3.2

showing the dependencies in the model. As the model is a combination of Factor Analysis

and a mixture model there are two latent variables to consider, the factor scores (see Section

2.1.1) which will be referred to as y and the cluster allocation variable (see Section 2.1.4)

denoted by z.
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Figure 3.2: Direct Acyclic Graph of Bayesian MFA Model, squares denote fixed variables,
circles denote random variables, k is used to index over components, n indexes over data
points.

Conjugate priors are used for the parameters of the model and the distributions of all

parameters are of the following form [49]:
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p(μk) ∼ N (ξ, κ),

p(Λkr) ∼ N (0,Ω),

p(ω−2
c ) ∼ Ga(g, h),

p(σ−2
p ) ∼ Ga(α, τ ),

p(π) ∼ Dir(δ).

A hierarchical prior is used for the loading matrices, Λk, this adds extra flexibility to the

model allowing the loading matrices for each cluster to be similar but not constrained to be

the same. We define the column vector Λkr made up of the r-th row of the k-th matrix of

factor loadings and use the zero mean Gaussian prior:

Λkr ∼ N (0p,Ω),

for k = 1, . . . ,K and r = 1, . . . , p. The hyperparameter, Ω, is assumed to be diagonal and

more precisely: Ω−1 =diag(ω−2
1 , . . . , ω−2

q ) with:

p(ω−2
c ) ∼ Ga(g, h), c = 1, . . . , q.

The same Ω is used for all components. Gamma distributions are used for the diagonal

elements of the noise precision, Ψ−1 =diag(σ−2
1 , . . . , σ−2

p ). A Dirichlet prior, which is

the conjugate of the multinomial posterior distribution, is used for the mixing proportions

where δ = (δ1, . . . , δK). Initially we assume that it is equally likely for the data to have

arisen from each cluster and therefore set δ1 = δ2 =, . . . , δK = δ.

Using the specified conjugate priors it is possible to explicitly calculate full conditional

posterior distributions for the model under the assumption of fixed K and qk = q. A two

stage Gibbs sampler, sometimes referred to as a data augmentation algorithm, can then be

used to draw samples from the conditional posterior distributions of these parameters. The

first stage of this algorithm imputes values for the missing or unobserved parameters, zi, yi,

while the second stage performs the estimation on the complete data. This is analogous to
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the standard deterministic EM algorithm. The first step is to simulate samples from the

conditional posterior distributions of the latent variables, which are the latent allocation

variables:

zi ∼ Mn(1, π
∗
1i, . . . , π

∗
Ki) with πki ∼ πkN (xi; μk + yiΛ

T
k ,Ψ),

and the factor scores:

yi:zi=k ∼ N
(
(I+ ΛT

k Ψ−1Λk)
−1ΛT

k Ψ−1(xi − μk)
T , (I+ ΛT

k Ψ−1Λk)
−1
)
.

In the second stage the observable parameters are estimated, starting with the mixing pro-

portions:

π ∼ Dir(δ + n1, . . . , δ + nK),

where nk = #{i : zi = k} for k = 1, . . . ,K denotes the number of observations currently

allocated to component k of the mixture. For each μk a Gaussian prior is used which leads

to a Gaussian conditional posterior:

μk ∼ N ((nkΨ
−1 + κ−1)−1(nkΨ

−1x̂k + κ−1ξ), (nkΨ
−1 + κ−1)−1

)
,

where x̂ = 1
nk

∑n
i:zi=k(xi − yiΛ

T
k ) for k = 1, . . . ,K.

For the variance of the noise in the model, Ψ (see Equation 2.5), we find it more con-

venient to work with the precision Ψ−1 = diag(σ−2
1 , . . . , σ−2

p ) and to define a matrix

S =
∑K

k=1

∑n
i:zi=k(xi − yiΛ

T
k − μk)(xi − yiΛ

T
k − μk)

T . The Gamma full conditional

posterior of each element on the diagonal is now given by:

σ−2
r ∼ Ga(α + n/2, τ + Srr/2).

We use the zero mean Gaussian prior Λkr ∼ N (0,Ω), for k = 1, . . . ,K and r = 1, . . . , p
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which gives a Gaussian full conditional posterior:

Λkr ∼ N
(
(Ω−1 + σ−2

r (Y T
k Yk))

−1(σ−2
r Y T

k X̄kr), (Ω
−1 + σ−2

r (Y T
k Yk))

−1
)
,

where X̄kr is the data matrix obtained from x̄k = x − μk. We assume Ω to be diagonal

and find it more convenient to work with the precision Ω−1 = diag(ω−2
1 , . . . , ω−2

q ) and to

define B =
∑K

k=1

∑p
r=1 ΛkrΛ

T
kr. Finally the Gamma full conditional posterior for ω−2

c is

given by:

ω−2
c ∼ Ga(g + Kp/2, h + Bcc/2), c = 1, . . . , q.

3.2 Stochastic Model Selection

The previous section described how the MFA model could be estimated for fixed K and

q using a Gibbs’ sampler. We now consider the problem of inferring the correct value

for K. This is a model selection problem. A description of the Bayesian approach to

model selection was provided in Section 2.2.1 outlining the inherent penalisation for overly

complex models which makes it preferable to the standard non-Bayesian alternatives.

In order to infer K it is necessary to compute the joint posterior over all models,

Mk, and associated model parameters, θk. However as we change the model order the

dimensionality of θk naturally changes as well. The required joint posterior is analytically

intractable and we therefore turn to methods of approximation of which there are two;

stochastic approximation and variational approximation. The method we have focused on

is the stochastic approach, using Birth-Death MCMC developed by Stephens in [125, 126]

and applied to the MFA in [49], which is described in detail in the following section. Sec-

tion 3.4 provides a comparative study evaluating the performance of the BDMCMCmethod

with it’s variational analog and to prepare for this a brief description of variational approx-

imation, introduced earlier in Section 2.3.2, applied to the MFA is provided in Section 3.3.

The next section describes the stochastic model selection method used.
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3.2.1 Birth-Death MCMC for K

Stochastic model selection methods areMCMC algorithms capable of making trans-dimensional

moves. This allows simulation from the posterior over model parameters and model index.

The most widely used of these algorithms is the Reversible Jump MCMC (RJMCMC)

[110]. An alternative method known as Birth-Death MCMC was developed by Stephens

[125, 126] and applied to the MFA model in [48, 49]. BDMCMC is based on the theory of

point processes and it has been shown to be a limit of RJMCMC where holding times, to be

described later, replace accept or reject stages. An excellent comparison of RJMCMC and

BDMCMC can be found in [20] where the authors demonstrate the many similarities be-

tween the methods. In the nested scheme we implement, performing model selection over

the number of factor analysers and the number of factors in each analyser, the use of BDM-

CMC is more suitable due to it’s greater portability and modularity. Within this section we

will assume familiarity with the mixture model notation as used in Section 2.1.4.

The central idea behind this approach is to view each component of the mixture model

as a marked point in the parameter space, where the marks correspond to the associated

parameters, and adapt the methodology of point process simulation to help construct a

Markov chain with the posterior distribution of the parameters as its equilibrium distribu-

tion [49]. For this method to hold we require that the posterior distribution satisfy two

conditions; it is independent of the model labels and invariant to permutations of the pa-

rameters [1]. Studying the MFA formula:

p(x) =
K∑

k=1

πkNp(x|μk,ΛkΛ
T
k + Ψ),

it can be seen that the likelihood of a mixture model satisfies the invariance to labels require-

ment and parameter permutations. If prior distributions are chosen that are also invariant

to labelling and permutations the posterior will have this quality. Later in Section 3.2.4 we

will see that this invariance creates difficulties when computing the stochastic average, see

Equation 2.21, due to a phenomenon known as label switching.

Within the birth-death framework births and deaths are defined, using the notation / to

denote a model without a specific component, as follows:
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Births: If at time t ∈ R+ the process is at m = {(π1, θ1), . . . , (πK , θK)} ∈ χK , where

χK denotes the parameter space of the mixture model with K components, and a birth is

said to occur at (πK+1, θK+1), then the process jumps to:

m ∪ (πK+1, θK+1) = {(π1(1 − πK+1), θ1), . . . , (πK(1 − πK+1), θK),

(πK+1, θK+1)} ∈ χK+1.

Deaths: If at time t ∈ R+ the process is at m = {(π1, θ1), . . . , (πK , θK)} ∈ χK , and a

death is said to occur at (πk, θk) ∈ m, then the process jumps to:

m/(πk, θk) =
{( π1

1 − πk

, θ1

)
, . . . ,

( πk−1

1 − πk

, θk−1

)
,

( πk+1

1 − πk

, θk+1

)
, . . . ,

( πK

1 − πk

, θK

)}
∈ χK−1.

Thus a birth increases the number of components by one, while a death decreases the

number of components by one. These two operations are the inverse of each other and

the constraint of π1 + . . . , +πK = 1 is preserved by appropriate scaling of the mixing

proportions after a birth or death. When a birth occurs a complete collection of component

parameters are drawn from the prior distributions described in Section 3.1.1.

With births and deaths defined we now consider the continuous time Markov birth-

death process, where births and deaths occur as independent Poisson processes. The rates

at which these births and deaths occur is determined by the birth rate, β(m) and death rate

δ(m). The time to the next birth/death event is then exponentially distributed with mean

1/(β(m) + δ(m)) and the probability of it being a birth or death is:

p(birth) =
β(m)

β(m) + δ(m)
, p(death) =

δ(m)

β(m) + δ(m)
.

These rates determine the stationary distribution of the process [?]. If we set the birth

rate, β(m) to be a constant, λb, it has been proved that the process will have the correct

stationary distribution if each point dies independently of each other as a Poisson process

with rate [?]:

δk(m) = λb
(L(m\(πk, θk))

L(m)

p(K − 1)

Kp(K)
,
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where L(m) is the likelihood evaluated for m using the mixture distribution formula and

p(K) is the prior probability on the number of components. Thus the death rate is calculated

in such a way that components which do not fit the data well have a high death rate and

are killed quickly. So the process constantly generates new births but reverses bad ones

quickly. The total death rate, δ(m) =
∑K

k=1 δk(m), is the sum of all component death

rates.

The pseudo code for the Birth-Death process for K is shown in Algorithm 1, this is

referred to as the naive birth-death process as it does not include the Gibbs update stage for

the parameters, which instead remain at the values drawn from the priors. Starting with the

initial model m = {(π1, θ1), . . . , (πK , θK)} iterate the following steps:
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Algorithm 1 Pseudo code for naive birth-death process.

1. Define the birth rate β = λb , hold time Thold = 0 and T0 = 0.

2. Calculate the death rate for each component, the death rate for component k being
given by:

δk(m) = λb
(L(m\(πk, θk))

L(m)

p(K − 1)

Kp(K)
(k = 1, . . . ,K).

3. Calculate the total death rate δ(m) =
∑K

j=1 δk(m).

4. Simulate the time to the next birth/death move, tmove, from an exponential distribution
with mean 1/(λb + δ(m)).

5. Simulate the type of jump: birth or death with respective probabilities

p(birth) =
λb

λb + δ(m)
, p(death) =

δ(m)

λb + δ(m)
.

6. Adjustm to reflect the birth or death:
Birth: Generate a new component by drawing all the associated parameters from their
respective prior distributions and adjusting the mixing proportions appropriately. K
becomes K + 1.

Death: Select a component to die with probability δk(m)/δ(m) for k = 1, . . . ,K . K
becomes K − 1.

7. T0 = T0 + tmove.

8. Return to step two until T0 exceeds the hold time Thold. When it exceeds the hold
time, draw a sample of Kt and return to step one to simulate the value for Kt+1.

9. Repeat until t = Tend.
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In Algorithm 1 we refer to a hold time, Thold. This is the time that must be exceeded

for the algorithm to exit the inner loop and take a sample. This idea is illustrated in Figure

3.3. Within each discreet sampling instance the continuous time naive algorithm runs for

Kt+1 Kt+2 Kt+3 Kt+4

tmove tmoveThold Thold

Figure 3.3: Illustration of the function of the hold time, Thold, in the birth-death scheme:
see text for details.

a set time Thold. For each birth or death move there is a time to next event, tmove. The

expected time to the next move is inversely proportional to the death rate so this hold

time encourages the sampler to stay in regions of low death rate longer and draw more

samples of K [49]. In poor configurations of the model tmove will be low as illustrated at

sample Kt+1 where within the hold time we get multiple birth/death events which all have

a low tmove. In contrast at sampling instance Kt+4 the last birth/death produced a good

configuration for which tmove exceeds Thold and we jump out of the hold time and sample

this configuration without further moves. The algorithm requires the specification of λb, the

constant birth rate, and the hold time, Thold for which the birth-death process is run within

samples. However doubling λb is mathematically equivalent to doubling Thold and so we

are free to fix Thold = 1 and specify a value for λb. Larger values of λb will result in better

mixing over K, at the cost of more computation per iteration time and it is not clear how
an optimal balance between these factors could be achieved [?].
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3.2.2 Naive Birth-Death Algorithm

To demonstrate the naive birth-death process, a selection of results are shown using the

algorithm as described by the pseudo code in Algorithm 1 on some synthetic data. The data

used in this example is the Ueda spiral data set [134], a 3-D spiral of 800 points subjected to

some Gaussian noise shown in Figure 3.4. The naive birth-death algorithm does not update

the posterior distributions of the parameters using the Gibbs sampler but only the value K,

the number of clusters which are born with a single fixed factor. With no updates of the

Gibbs sampler, what occurs is simply a stochastic search of the data space using random

draws from the priors. Clusters born in areas of high likelihood are retained while those in

low areas die. The computational cost of this naive algorithm is quite low, the simulation

below took less than a minute to run 10,000 samples, and in terms of performance it can be

seen in Figure 3.4, where the cluster centres are shown using a green marker, that it does

a good job of finding good cluster positions in the data. This, as noted by [?], makes it an

ideal way to initialise the full algorithm.

Figures 3.4a and 3.4b show the locations of the cluster centers, after 10,000 samples,

relative to the noisy data. The arrangement observed is representative of the shape of the

data and all of the data space has been well explored. In Figure 3.4c the MCMC sample

path plot of K shows how initially just adding components improves the model but as the

locations become better the number of components reduces to just those for which there is

adequate support.

3.2.3 Estimating the Number of Factors

The BDMCMC scheme described in the previous section can also be used to make infer-

ence about the number of factors in each cluster of the MFA model. This gives each local

factor analyser its own internal dimension qk and we define the K-dimensional vector q =

{q1, . . . , qK} [48]. The complete algorithm is now implemented using a nested scheme,

where first K and then q are simulated over. From some starting point the parameters are

initialised to θ = {Kt, qt, πt, μt,Λt,Ψt} and allow K to vary for a fixed time t0 and then

sample Kt+1. The number of factors, q, are then allowed to vary for every individual clus-

ter k = 1, . . . ,K t+1, for a fixed time t0 using the parameters θ = {Kt+1, qt, πt, μt,Λt,Ψt}
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Figure 3.4: MFA applied to Ueda spiral data set [134] using BDMCMC. (a) and (b): data, in
profile and from above, plotted in blue with the means of the centres of the nine components
in green. (c): samples path obtained for K. (d): likelihood which is improved over the run.

until we obtain qt+1. The Gibbs sampler described in Section 3.1.1 is then used to update

the remaining parameters producing a new sample from the target distribution over all pa-

rameters. From these samples the quantities of interest may be estimated by appropriate

sample path averages, for example:

p(K = i|x) = E(I(K = i|x)) of i = 1, . . . ,Kmax,

≈
1

n

n∑

t=1

I(K(t) = i).

As part of the algorithm we need to specify priors on the values of K and q. In our simu-

lations we used appropriately bounded uniform priors which place equal probability on all

values of K and q within a certain range and are thus relatively uninformative.



Chapter 3. Simultaneous Clustering and Latent Structure Analysis using Mixtures
of Factor Analysers 61

3.2.4 Label Switching

The use of MCMC methods for mixture models requires a careful treatment of a phe-

nomenon known as label switching. We will give a brief outline of the problem and the

solution we have used here but for a complete overview of the topic see [70].

One of the main challenges of a Bayesian analysis using mixture models is the non-

identifiability of the components [82]. That is, if exchangable priors are placed upon the

parameters of a mixture model, then the resulting posterior distribution will be invariant to

permutations in the labelling of the parameters. As a result, the marginal posterior distri-

butions for the parameters will be identical for each mixture component. Therefore, during

MCMC simulation, the sampler encounters the symmetries of the posterior distribution

and the interpretation of the labels switch. It is then meaningless to draw inference directly

from the MCMC output using sample path averaging [70]. Label switching significantly

increases the effort required to produce a satisfactory Bayesian analysis of the data, but is

a prerequisite of convergence of an MCMC sampler and therefore must be addressed.

There are three main approaches to resolving the labels switching issue: identifiabil-

ity constraints (IC) [31], relabelling algorithms [?] and label invariant loss functions [22].

The method we have chosen to use is a pivot relabelling algorithm developed by [100]

which matches all samples in the path to a pivot permutation of the labels. This very re-

cent algorithm is both simple and efficient, and has the advantage that the computational

cost depends on the length of the simulated chain but not on the parameter space dimen-

sion. In contrast IC based algorithms are unsuitable for use in multivariate situations while

the decision theoretic approach of a label invariant loss function is quite complicated and

computationally very intensive [100].

The form of a relabelling algorithm is exactly that of a k-means clustering algorithm

[70]. Under an inferential objective the permutations of the labelling are induced or discov-

ered so that all of the samples are labelled in the same way. The pivot relabelling algorithm

we have chosen operates in the allocation space, i.e. z or the cluster indexes for each point.

It seeks to minimise a matching distance between the allocation variables for each point at

each iteration and a specified pivot orientation of the labels, typically chosen as the maxi-

mum a posteriori estimate [100]. The labels are permuted so as to minimise this matching
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distance and label all the samples to the template permutation. The algorithm can only

be deployed once the simulation has completed, for fixed K, and this requires that all the

sampled parameters are stored as well as the labels and also specify the number of clusters

post simulation. This then allows us to make sensible estimates of μ, π and Ψ over the

sample path.

This relabelling algorithm combined with the BDMCMC methods discussed gives us a

complete method for conducting Bayesian analysis of the MFA model for unknown Kand

qk. In the next section we conduct a set of simple verification tests to demonstrate the

correct working of the algorithm to prepare for its use in more demanding challenges.

3.2.5 Verification Tests

The MFA model with variable K and qk estimated by BDMCMC which we have just

described is a complex algorithm. The full algorithm will be deployed in the analysis

of real data in Section 3.5 and also in a comparison study with an alternative variational

algorithm in Section 3.4. To prepare for these we first verify that the algorithm is working

correctly and conduct a number of tests as described in [48] examining each aspect of the

algorithm in turn. Synthetic data was generated from the factor model, Equation 2.4 and

three tests conducted. First data composed of a single cluster with p = 10 and q = 2 was

used to test how accurately the model could estimate the latent dimensionality. Then a data

set with K = 4, qk = q = 1, and p = 3 was tested to assess the algorithm’s ability to

cluster data accurately. Finally a data set with K = 2, p = 10 and qk = [1, 5] was tested to

see how well the algorithm could perform both operations simultaneously. Selected results

are shown in Figure 3.5 illustrating the good performance of the algorithm. Performance is

judged on the posterior estimates for K and qk and whether or not they approach the truth.

As a more complicated clustering problem, a data set consisting of two overlapping

clusters was generated with p = 3 and qk = q = 1. A plot showing the original two

clusters and the reconstructed points obtained is shown in Figure 3.5 and it can be seen that

the algorithm is able to identify clusters even when their mean vectors are very close and

there is substantial overlap of points.
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Figure 3.5: Results from a set of verification tests: see text for details. (a): posterior
distribution of q for data with p = 10, q = 2 and K = 1, peaked at the correct value.
(b): samples obtained for the posterior distribution of K, for data with p = 3, qk = q = 1
and K = 4. (c): histogram of samples obtained for the posterior distribution of qk, for the
K = 2, p = 10 and qk = {1, 5} test data. (d): two overlapping clusters were generated
with q = 1 as a more difficult clustering problem. The model correct identifies K and qk

and the noisy data is plotted in blue with the reconstructed single factor ‘signal’ in red.

3.3 Variational Bayesian Mixtures of Factor Analysers

Section 2.3.2 gave an introduction to the theory of variational Bayesian approximations.

This method has been used by Beal and Ghahramani [52, 10] as an alternative means of

conducting Bayesian inference of the MFA model. Section 3.4 describes an empirical

comparison of the variational Bayesian approximation and BDMCMC investigating their

different characteristics and capabilities and to prepare for this the variational approach to

the MFA is discussed here. The variational method is a complicated procedure and we do

not explore it in great detail. For a full explanation of the variational solution for MFA see
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[52, 10] but broadly speaking it works in the following manner.

The variational approximation places a lower bound on the model evidence, discussed

in Section 2.2.1, using Jensen’s inequality:

ln p(x) = ln
∫

p(x, θ)dθ ≥
∫

q(θ)ln
p(x, θ)

q(θ)
dθ ≡ F ,

which we seek to maximise [52]. Maximising F is equivalent to minimising the KL-

divergence, an entropy measure, between q(θ), a tractable proposal distribution which we

use to approximate the posterior p(θ|x). For the proposal distribution, q(θ), we use a fac-

torised approximation to the joint posterior over all parameters. Due to the conditional

independence structure of the Bayesian MFA model the only approximation that is needed

apart from that between the latent variables and the model parameters is the factorisation

q(v,Λ, μ) ≈ q(v)q(Λ)q(μ) where v is the precision over Λ.

Model exploration in the variational approach again occurs in single increment birth/death

moves, however the heuristics for these moves are completely different to those of the

BDMCMC. Component births do not occur spontaneously as previously. Instead, when-

ever F is judged to have stabilised a component is selected probabilistically based on how

well it is performing and split. Dependent on the effect on F this birth can be accepted or

rejected. Deaths occur naturally whenever a component is judged to have zero responsibil-

ity for the data [10].

In order to estimate the local dimensionality of each FA an Automatic Relevance De-

termination (ARD) [83] mechanism is used. Each factor analyser’s dimensionality is set to

the maximum possible and we use priors that discourage large factor loadings. The width

of each prior is controlled by a hyperparameter and the result of learning with this method

is that only those factors that are required remain active after learning [10]. Each column of

each factor loading matrix is governed by a separate precision parameter, vlk, l = 1, . . . , q.

If one of these precisions vlk → ∞ then the weights for the lth factor in the kth analyser

will have to be very close to zero in order to maintain a high likelihood under this prior and

this in turn leads the analyser to ignore this factor allowing the model to reduce the intrinsic

dimensionality in the locale of that analyser [52].

This variational approach outlined above gives us another method for inferring the num-
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ber of components,K, and intrinsic dimensionalities, qk, for the MFA model. The approxi-

mations that arise in the BDMCMC outlined in Section 3.2 are due to the use of finite com-

puting times, however if the sampler is run to convergence then it is essentially inferring

the exact distributions required. In contract the variational approach approximates these

distributions with simpler factorised assumptions. We therefore might expect to obtain dif-

ferent results between the two different methods in certain circumstances, for example it

is a general result that a factorised variational approximation tends to give approximations

to the posterior distribution that are too compact [52]. The variational methods has also

been found to be sensitive to correlations in data [21] which could be an issue given the

FA decomposition of the data covariance matrix into variance and covariance structure. An

empirical comparison of both methods in this setting has not to our knowledge been per-

formed to establish under what circumstances one method may fare better than the other.

The form of the model used in the variational scheme is slightly different to the one pro-

posed for the stochastic scheme, this is illustrated in Figure 3.6. A deterministic solution
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Figure 3.6: Directed Acyclic Graph for the formulation of the MFA used in the Variational
Bayes approach. The main difference is that in the BDMCMC framework Ψ is a random
variable.

for the variance of the noise matrix Ψ is used as opposed to the full posterior. This is

conditional on the model parameters and is updated accordingly at each iteration of the

algorithm. Correct estimation of the noise matrix is vital for correctly inferring the dimen-

sionality. These differences between the two methods may produce different properties

making them more suitable for different situations, such as in higher dimensional data or

when data is sparser, and this behaviour will be investigated in the next section.
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3.4 Comparative Study

The inference problems associated with the Bayesian approach to model selection are typ-

ically resolved by the application of either MCMC or variational methods. Chapter 2 dis-

cussed the theory behind both approaches and in this section we conduct an empirical eval-

uation of the performance obtained from each method in a variety of different scenarios

using synthetic data.

It is well known that the computational costs of MCMC methods are high, particularly

in data spaces of large dimension, and a great deal of research has been devoted over the

years to developing more efficient sampling methods. In contrast variational methods are

orders of magnitude faster but variational estimates of posterior distributions can be in-

accurate. For example, they are often too concentrated [52]. MCMC methods however

are guaranteed to converge to the ‘true’ posterior when run for sufficiently long. From a

practical point of view it would be of great interest to understand under what circumstances

variational methods could produce comparable or equivalent performance to MCMCmeth-

ods. A recent study has sought to answer this question in the setting of Bayesian variable

selection for linear regression [21]. We build on this work and extend it to the unsupervised

setting in the following experiments. From a more theoretical perspective it has also been

commented that another potential draw to developing a greater understanding of the varia-

tional approach is that it would represent a ‘more’ Bayesian solution to the problem rather

than resorting to what are essentially frequentist sampling methods [10], but this is perhaps

a touch dogmatic.

3.4.1 Methodology

The objective in these experiments is to correctly infer the number of clusters, K, and

the number of factors per cluster qk present in the data for a range of settings. We inves-

tigate performance with respect to two factors; number of data points per cluster, nk ∈

{10, 25, 50, 100, 150}, and the difficulty of the clustering problem, which we increase by

reducing the distance between clusters from 100% to 20% of its starting value in steps of

20%. This gives 25 different combinations to test. These 25 simulations are then repeated

10 times and averaged. There is no reason to expect to obtain different results if the MCMC
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algorithm has converged and we find that the variance between repeated experiments is mi-

nor. The variational method can become ‘trapped’ in local maxima and terminate early and

repetitions help reduce the effect of this. The effect of increasing the dimensionality of the

data is also considered and the complete set of experiments is carried out for three settings

p ∈ {10, 20, 30}. This gives us 750 individual simulations, per method.

The final factor considered which may be relevant to performance is the robustness of

each algorithm to data that deviates from the model assumptions. To test this the previous

experiments are repeated but this time the data is subjected to additive noise from a Uniform

distribution rather than Gaussian, as per the model assumptions. The results presented

are the product of weeks of simulations and the variance between repeated simulations is

minimal suggesting that further simulation would not significantly alter them in any way.

3.4.2 Data

The data used in the experiments consists of four clusters, the centres of which would be

located at the corners of the hyper-cube with sides of length five. The clusters conform to

the FA model as described in Section 2.1.1 with each having a different number of factors,

q = [1, 2, 3, 4] and the data is a MFA described by Equation 3.1 with variable qk. The Λk

were formed from independent draws from the distribution p(Λkr) ∼ N (0q, Iq), in keeping

with the basic assumptions outlined in 3.1.1. The noise matrixΨwas varied as either being

from aN (0p, Ip) or a uniform distribution U(−3, 3) depending on the experimental set up.

3.4.3 Results

Given the large quantity of information to be summarised, spider plots [23] are utilised as a

convenient means of illustrating the performance obtained in the tests determining K. The

five axes are the distances between clusters, and the number of points per cluster are the

five different coloured lines in the plot. Figure 3.7 shows the results obtained for p = 10

using data sampled from the model. The performance obtained in estimating the number of

factors, q = [1, 2, 3, 4] is summarised by calculating the string edit distance [57] between q

obtained and the true q. This is limited to comparing to the trueK, so if a method finds that

there are two clusters, we compare the edit distance with zeros substituted for the missing
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(a) MCMC spider plot for K, p = 10
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(b) VB spider plot for K, p = 10

Figure 3.7: Results obtained from estimation ofK varying the numbers of points per cluster
and the distance between clusters, using the MCMC (a) and variational (b) methods for
estimation. Comparison of the plots reveals the different behaviour of both methods with
the number of points per cluster having a much greater impact on the performance of the
variational method than on the MCMC.

clusters. In the case of a K > Ktrue being determined we only consider four clusters. As

the factor and cluster data are related we plot the value of the string edit distance obtained

against the difference between K and Ktrue. Figure 3.8 shows the results obtained for

p = 10 using data from the model.

Spider and factor plots for each setting of p = {10, 20, 30} were produced for both

the variational and MCMC methods, under the model and non-model data. We only show

the results for p = 10 here with the remainder provided in Appendix A. The results are

discussed in the next section.

3.4.4 Analysis

The results of the simulation study for p = 10 are shown in Figures 3.7 - 3.10. The results

for the remaining experiments are included in the Appendix A but here we analyse the main

features observed over all experiments.
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(a) MCMC factors, p = 10
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(b) VB factors, p = 10

Figure 3.8: Results obtained for the comparison of the string edit distance between the true
q and that estimated by the MCMC (a) and variational (b) method. Each plot consists of 25
results and the size of the data point reflects multiple occurrences of the same integer value.
The x-axis shows the distance from true K with the origin representing correct estimation
of both q and K and negative distance implying underestimation.
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(a) MCMC spider plot, p = 10, uniform noise.
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(b) VB spider plot, p = 10, uniform noise.

Figure 3.9: Results obtained for estimation of K when data deviates from model assump-
tions i.e. is subject to uniform noise using the MCMC (a) and variational (b) methods.
The same trends are observed as in 3.7 however performance degrades more rapidly with
increasing difficulty of the experiment and the variational method suffers more than the
MCMC.
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(a) MCMC factors, p = 10, uniform noise.
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(b) VB factors, p = 10, uniform noise.

Figure 3.10: Results obtained for estimation of q when data deviates from model assump-
tions i.e. is subject to uniform noise. using MCMC (a) and variational (b) methods for
model estimation. Each plot consists of 25 results and the size of the data point reflects
multiple occurrences of the same integer value. The x-axis shows the distance from trueK
with the origin representing correct estimation of both q and K.

Clustering Performance

The results obtained for the inference of K show an interesting trend that persists through-

out all values of p. Comparison of the spider plots in Figures 3.7a and 3.7b highlight a

key difference between the methods. The correct value of K is estimated by both meth-

ods when nk is at its maximum value regardless of the difficulty of the clustering problem.

However as nk is reduced the performance observed changes very differently for either

method. Focussing on Figure 3.7a it can be seen that for the first three axes, starting from

the axis labelled ‘muDmax’, which represents the maximum distance between the cluster

means, and going anti-clockwise, the correct value of K is inferred for all nk apart from

the minimum, nk = 10. The subsequent axes show a range of different values for K. This

implies that for the BDMCMC it is not the number of points per cluster that is the key

factor but rather the difficulty of the clustering problem, as this increases, by reducing the

distance between the centres, results deviate more from the true value.

In contrast, if we consider the results for the variational method shown in Figure 3.7b

different behaviour is observed. While again for nk = 150 the correct K is inferred at all

distances, as the number of points is reduced below nk = 100 the correct value of K is not

inferred even at large distances between the centres. This implies that for the variational
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method, there is a greater dependence on the number of points per cluster than for the

MCMC method.

Another interesting feature observed is the tendency of the variational method to almost

exclusively underestimate the value of K when it is incorrect. In the MFA the problem of

inferring K is intrinsically linked to the problem of estimating qk and the next section

discusses this point further.

Factor performance

As we have previously commented the inference of K and q are coupled, therefore when

trying to convey the results of the estimation of q we plot the string edit distance against

the distance from the true value of K obtained. The tendency of the variational method to

underestimate the value of K can be seen in Figure 3.8b which is skewed to the left of true

K. This is linked to incorrect factor estimation as we see in cases when q is correct we also

infer K correctly, the origin of the plot. These results correspond to the high values of nk

observed in the corresponding spider plot 3.7b but also provide us with insight as to what

is happening in the underestimation of K, the string edit distance in these cases is quite

high indicating the number of factors has been over estimated to a large extent. This could

be due to the variational method’s oversensitivity to correlations in data identified in [21]

resulting in over estimation of the number of factors which in turn leads to under estimation

of K. In contrast to this we see that the MCMC results are robust to incorrect estimation

of q with a wide spread of results lying on the vertical zero axis.

Robustness to departures from the model assumptions

Figures 3.9 and 3.10 show the results of the experiments under conditions that deviate from

the model assumptions. Specifically, the synthetic data is generated as:

x = μ + zΛT + ε,

where:

ε = U(−3, 3).
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The noise the factor model is subjected to no longer follows a Gaussian distribution as per

the model assumptions but is drawn from a Uniform distribution, U(−3, 3). The results

obtained exhibit the main characteristics observed in the previous experiments however

performance is seen to degrade more rapidly, in comparison to the previous experiment,

with incorrect values for K inferred even with nk at its maximum. The performance of the

variational method suffers more with incorrect values ofK estimated at all but the simplest

setting, nk = 150 with maximum distance between the clusters. The results obtained

using MCMC are more robust to this departure from the model assumptions and correct

values of K are inferred for all nk = {150, 100, 50, 25} as the distance between clusters is

reduced from its maximum to 60% of this value. After this point the results obtained for K

deteriorate and this is observed for the higher dimensions, the results of which are included

in Appendix A. We conclude that the MCMC method is more robust. It should be noted

that as observed in the previous experiments in situations where the variational method has

incorrectly estimated K it exclusively underestimates the value of K. Figure 3.10b shows

the combined results of the estimation of q and K and again the results are skewed to the

left as in Figure 3.8b.

3.5 Analysis of ADI-R

The first half of this chapter has been dedicated to an exploration of the MFAmodel and the

techniques required to perform Bayesian model selection over the number of clusters and

their associated latent dimensionality in an unsupervised manner. We conclude this chapter

with the application of these methods to a data set consisting of diagnostic information

for a cohort of autistic subjects. Autism is known to consist of a heterogeneous mix of

subjects and we use the MFA to detect the presence of sub-populations within an autism

data set. To begin a brief introduction to the field of Autism Spectrum Disorders (ASDs) is

provided in Section 3.5.1. Autism is a complex and broad condition and a full description

would be beyond the scope of this thesis, instead we focus on the aspects relevant to our

analysis. The data was gathered from the Autism Diagnostic Interview - Revised (ADI-

R) which is described in Section 3.5.2. Previous research conducted on the same type of

data is also discussed. We outline how these methods motivate the application of the MFA
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model which as far as we are aware has never been performed. The data set used consists

of the behavioural attributes of a group of 625 autistic subjects and is described in detail

in Section 3.5.3. The results of the analysis are presented in Section 3.5.5 followed by a

discussion in Section 3.5.9.

3.5.1 Autism Spectrum Disorders

The term Autism Spectrum Disorders (ASDs) is used to describe the group of pervasive

developmental disorders characterised by qualitative abnormalities in reciprocal social in-

teractions and patterns of communication, and by a restricted, stereotyped, repetitive reper-

toire of interests and activities [33]. ASDs are developmental disabilities resulting from

dysfunction of the central nervous system and usually manifest before three years of age

[66]. The expression of these deficits encompasses a broad spectrum of individuals ranging

from idiopathic autism, the most severe form, to Asperger’s syndrome, a milder form of

autism in which individuals have relatively normal intelligence but experience great diffi-

culty with social interactions. This heterogeneity in the ASD population makes the analysis

of large samples of subjects a difficult issue and it is thought to be one explanation for the

difficulty in pinpointing genes involved in autism. Often researchers go to great lengths

to minimise this heterogeneity in their study samples by carefully selecting their subjects.

An alternative approach to this is to cluster the sample into more homogeneous groups

based on the behavioural abnormalities observed. The ADI-R provides a rich source of

behavioural information which allows such analysis.

3.5.2 The Autism Diagnostic Interview - Revised

The ADI-R is a semi structured interview, conducted by a clinician with the parents of a

subject, designed to differentiate those with autism from those with language impairments

and intellectual disability [81]. It is generally accepted by the field as a valuable assessment

instrument [120].

In order to make a diagnosis the ADI-R is used to quantify the abnormal behaviour

displayed by the subject in the key domains of autism; social interaction, communication

and repetitive and restricted interests. At the base or item level there is the raw data which
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consists of responses to individual questions or criteria, the order of 100 of these per in-

dividual. These item scores are then transformed to generate 12 sub-domain scores. Each
sub-domain has an interpretable meaning, for example providing a measure of a subject’s

‘failure to develop peer relationships’. The sub-domains are related to the three major do-

mains of autism symptoms (social interaction, communication and repetitive and restricted

behaviour). The scores of specific sub-domains are combined to give scores at the domain
level, if these scores are above specified ‘cut-off values’ a subject is diagnosed as autistic

[50], this is explained in further detail in Section 3.5.3.

The ADI-R provides a rich source of behavioural information for analysis. Given the

nature of the data set, measures of behavioural abnormalities linked to an underlying neu-

rological disorder, we believe the latent variable model of FA to be an appropriate method.

A key assumption of the FA model is that the data is continuous in nature. At the raw

level the ADI-R data is categorical and this assumption is not valid. Therefore analysis is

restricted to the domain and sub-domain levels. These are summary scores of the categori-

cal data that span a much broader range and for the purposes of the analysis will be treated

as continuous. Previous research has also used FA in this way and a brief overview of some

of this work is provided in the next section.

The fact that the ASD population is known to be a heterogeneous mix of subjects who

exhibit widely varying differences in symptoms demands the use of a class of models that

can capture such interactions, the fitting of a global model encompassing all subjects would

be a mistake. A mixture of factor analysers allows clustering of this population into homo-

geneous groups while simultaneously carrying out local latent structure analysis.

Understanding the structure of autism symptoms can move the field forward in three

important ways: it can improve our diagnostic and classification systems, provide valuable

information for genetic studies [120] as well as giving clues to the underlying differences

in manifestations of what is a wide and varied condition.

Research Involving the ADI-R

In the past there has been a large volume of work done analysing and manipulating large

sets of ADI-R data [120, 93, 123, 26, 66, 122, 30, 50]. Research efforts in this area gen-
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erally fall into two categories. There are numerous groups using dimensionality reduction

techniques for exploratory analysis of the structure of the ADI-R with the chief aim of

assessing and improving it’s capabilities to accurately diagnose individuals [120, 50, 30].

Other groups have used the ADI-R as a means of clustering a heterogeneous population

of subjects into homogeneous subgroups for whom more coherent analysis can be made

[66, 93, 122, 123]. These works are discussed in detail here.

Recent work has utilised the ADI-R as a means of ‘stratifying’ the heterogeneous

population into homogeneous groups with similar characteristics in terms of behaviour

[66, 93, 122, 123]. It is supposed that genetic analysis of these clusters will be much more

informative and suffer from less noise. Early work consisted of simply selecting one item
of the ADI-R, for example developmental regression [93] or language development [122],

and segregating patients as to the level of this feature. Most recently multivariate clus-

tering approaches have been employed to group patients into predetermined numbers of

clusters based on similarity of symptoms [66]. A feature that has emerged from this vein

of research is that of a ‘severity gradient’[123] as an underlying feature which controls

the allocation of patients to each cluster. Another paper found the use of non-probabilistic

clustering methods produced four distinct classes of subjects, two characterised by varying

degrees of language difficulties, one by the prevalence of savant skills, and another as being

of intermediate severity [66]. The need to specify the number of clusters a priori is a major
drawback of the clustering research described. The use of more sophisticated probabilistic

clustering methods is an improvement made by our approach.

Studies using the ADI-R to examine the structure of autism symptoms have been con-

ducted at the item [66, 93, 122, 30, 120, 26] and sub-domain levels [50, 123]. In the main

these studies have used PCA to reduce the data to fewer dimensions which account for most

of the variance in the data [30, 66, 93, 123, 50].

The two key themes which emerged from a review of the autism literature are that it

is generally accepted that decomposing the heterogeneous population into homogeneous

clusters aids analysis. Also the analysis of ADI-R data can reveal important differences in

patients’ behavioural characteristics which are of interest to the community in exploring

the autism phenotype. The work presented here combines elements of both these themes,

similar to the genetic studies we utilise the ADI-R domain and sub-domain scores to cluster,
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in an unsupervised manner, a population of subjects. We also carry out factor analysis to

gain insight about the latent structure of each cluster individually. This combination of

clustering and lataent structure analysis is a novel framework for the analysis of the ADI-

R.

3.5.3 The Data

The data analysed was collected as part of research conducted by the International Molec-

ular Genetic Study of Autism Consortium (IMGSAC) [98, 97]. IMGSAC specifically se-

lected subjects from multiplex families (families with multiple occurrences of autism) in

an effort to identify underlying genetic factors. Thus the data set used does not represent a

sample from the general autism population but rather the 10−15% of instances where more

than one child in the family has autism. The data consists of 625 ADI-R interviews in total

for individual subjects from 299 different families. The family arrangement is generally

pairs of siblings, but also features families with three and one instance of a family with

four affected subjects. From question ratings, the scores were formed using the standard

ADI-R algorithm. This included setting cut-offs of 10, 8, 7 and 3 respectively for social,

verbal, non-verbal and repetitive behaviour domains. For a diagnosis of autism to be made

a subject must score above these cut-off scores in every category [81]. Analysis was con-

ducted on the domain and sub-domain summary scores of the ADI-R. The sub-domains are

obtained by summing specific item level questions relating to the same type of behaviour

and are defined in Table 3.1.

In turn, the domain scores are the sum-scores of three to four question items that are quali-

tative measures of impairments in various sub domains:

• Social: ADI-R Social Interaction score S (= S1 + S2 + S3 + S4)
• Verbal: ADI-R Verbal Communication C (= C1 + C4 + C2V + C3V)
• Non-Verbal: ADI-R Non-Verbal Communication score (= C1 +C4)
• Repetitive Behaviour: ADI-R Repetitive Behaviour R (= R1 +R2 + R3 + R4)
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S1 failure to use non-verbal behaviour to regulate social interaction
S2 failure to develop peer relationships
S3 lack of shared enjoyment
S4 lack of socioemotional reciprocity
C1 delay in spoken language and failure to compensate through gesture
C2V relative failure to initiate or sustain conversational interchange
C3V stereotyped, repetitive or idiosyncratic speech
C4 lack of spontaneous make believe or social imitative play
R1 encompassing preoccupation or circumscribed interests
R2 apparently compulsive adherence to non-functional routines or rituals
R3 stereotyped and repetitive motor mannerisms
R4 preoccupation with parts of objects or non-functional elements of materials

Table 3.1: Sub-domains of ADI-R [50]

As part of initial analysis a group of seven outliers were uncovered. These were found

to be patients without verbal skills and are noted among the literature as being potential

confounding patients who’s age makes them unsuitable candidates for the diagnostic inter-

view.

3.5.4 The Rand Index

In the analysis we perform it will be necessary to compare clusterings or partitionings of the

data, for example between the domain and sub domain levels, to demonstrate consistency.

An objective performance measure for such a comparison is the Rand index [109]. The

Rand index is calculated as:

R =
a + b

a + b + c + d
(3.2)

where:

• a, is the number of pairs of elements that are in the same cluster in both partitions

• b, is the number of pairs of elements that are in different clusters in both partitions

• c, is the number of pairs of elements that are in the same cluster in partition one and

in different clusters in partition two



3.5 Analysis of ADI-R 78

• d, is the number of pairs of elements that are in different clusters in partition one and

in the same cluster in partition two.

The Rand Index has a value between zero and one, with zero indicating two partitions to-

tally disagree or one indicating they are exactly the same. We also use the Adjusted Rand

Index which is the Rand Index corrected for chance. This takes values in the range −1 to

1 where a score of 0 indicates the agreement obtained is no greater than what would be

expected by chance.

3.5.5 Results

In this section we present the results of the application of the MFA algorithm to both the

4-D domain data and the 12-D subdomain data.

Domain Data

The limited number of variables at the domain level only allows us to reliably estimate a

single factor solution. With qk = 1 the BDMCMC algorithm was used to estimate the

number of clusters in the data using the MFA model. The algorithm returned a distribution

over the number of clusters that was peaked aroundK = 5 but also placed high probability

on a K = 6 solution. The means of the posterior means and mixing proportions of each

cluster are shown in Table 3.2 and Table 3.3 for typical instances of both arrangements.

Cluster Social Verbal NonV Rep Population
1 27.3 15.5 13.36 8.24 33%
2 26.6 11.4 12.9 6.2 23%
3 24.2 10.0 9.7 5.7 23%
4 15.9 9.1 7.7 5.4 19%
5 1.5 3.1 0.2 5.1 1%

Table 3.2: Posterior means of the mean and relative sizes of each cluster for the K = 5
solution.
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Cluster Social Verbal NonV Rep Population
1 28.0 15.2 14.0 9.0 29%
2 27.4 12.1 12.7 6.5 20%
3 25.2 11.8 11.6 6.4 19%
4 22.43 10.0 10.7 5.3 16%
5 15.7 8.6 7.2 5.1 15%
6 1.5 3.4 0.7 4.6 1%

Table 3.3: Posterior means of the mean and relative sizes of each cluster for the K = 6
solution.

The two partitionings were compared using the Rand index. The Rand index obtained

was .75 indicating that many of the points clustered together in one partition are also clus-

tered together in the second partition. The Adjusted Rand index obtained was .28, the

adjusted Rand index takes values from −1 to 1 with zero indicating that the agreement is

exactly what would be expected just by chance. The positive score indicates that the agree-

ment between partitions is statistically significant. Examining the results for the means of

the clusters in Tables 3.2 and 3.3 it can be seen that the clusters are ordered in increasing

severity of symptoms. The relative sizes of the clusters also reveal that the sample popula-

tion is skewed towards subjects displaying a high level of disorder. Comparing the K = 5

and K = 6 solutions it appears that the extra cluster in the K = 6 clustering arises due to

a further decomposition of the three largest clusters in the K = 5 solution with the other

two clusters occurring almost identically in both partitions as clusters 4 and 5 in the first

and clusters 5 and 6 in the second partition. Given the greater probability placed on K = 5

we choose to proceed in our analysis with this solution but we note that the possibility of

further decomposition of the three largest clusters.

The scores of the subjects in the IMGSAC data set for the first three domains (social

interaction, verbal and non-verbal communication skills) are plotted in Figure 3.11 with the

data points colour coded according to their cluster membership. The loading matrices for

the first four clusters in Table 3.2 are shown as Hinton diagrams [61] in Figure 3.12. Given

the distribution of the clusters observed in Figure 3.11 it could be supposed that the single

factor in each loading matrix could be thought of as a ‘severity factor’. It is interesting

that the loading matrices for each group are markedly different indicating that this severity
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Figure 3.11: Results from the application of the MFA to the ADI-R at domain level, model
estimated using BDMCMC. (a): Scores of the subjects in IMGSAC data set, first three
domains. Data points are colour coded according to posterior mean cluster assignment with
the group of outliers plotted as crosses. The posterior means of the clusters are overlaid
as larger markers. (b): Sample path output for K displaying convergence to final value of
K = 5.

factor is a different combination of features for each group.

Sub-Domain Data

The following results were obtained at the p = 12 sub-domain level where the attributes

correspond to those specified in Table 3.1. Given the higher dimensionality of the data

it was possible to investigate the number of factors per cluster in more detail than at the

domain level. It was found that the number of factors qk varied across the clusters. Figure

3.13 shows the results obtained for K and qk. The posterior distribution over K peaks at

K = 5 but also places significant probability on a K = 3 and K = 4 solution. Further

investigation of the K = 3 and K = 4 solutions showed these configurations to be unsta-

ble over repeated estimation and only the more probable and stable K = 5 solution was

considered.

The samples obtained from the posterior distribution of qk are plotted in Figure 3.13.

The figures clearly shows that for two of the clusters qk = 1 is the dominant solution.

However the distribution for the three remaining clusters is much broader and peaks at

qk = 3 and qk = 5. We take the median of the samples to obtain integer solutions which
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Figure 3.12: Hinton diagrams [61] of the factor loading matrices of the ADI-R clusters at
domain scale. A Hinton diagram illustrates the sign and magnitude of the values of the
loading matrix. The sign is described by the colour, green positive or red negative and the
magnitude of the features is represented by the size of the individual blocks.

results in q = {1, 1, 4, 5, 5}.

Comparison of the partitioning obtained at the sub-domain level with the domain level

K = 5 solution produces a Rand index of .8 and an adjusted Rand index of .4. The latter

indicates that there is a strong agreement between the partitions that is greater than what

would be expected by chance.

3.5.6 Analysis of ADI-R Using the VBMFA

For completeness the variational method of estimating the MFA, utilised extensively in

the empirical study in Section 3.4, was also used to examine the cluster and factor struc-

ture of the data. At the domain level the method converged to a K = 5 solution and a

K = 4 solution at the sub-domain level. The Rand index and adjusted Rand index showed
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Figure 3.13: (a): Histogram of the samples obtained from the posterior distribution over
qk at the sub-domain level for K = 5. The number of factors per cluster is displayed on
the x-axis and ranges from a minimum of one to a maximum of six. The different colours
of the bars are to denote different clusters so it can be seen that for two of the clusters
the posterior probability for qk is concentrated at qk = 1 while two other clusters peak at
qk = 5. (b): Samples obtained from the posterior distribution over K.
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Figure 3.14: Loading matrices of two clusters at the sub-domain level of ADI-R data.
Comparison of (a) and (b) reveals that the latent structure varies between different clusters.

strong agreement between both partitions and also between the results obtained using the

BDMCMC, adjusted Rand scores all greater than zero. Analysis is restricted to the MCMC

results which encapsulate the variational but seem to explore the space better having picked

out the non-verbal patients described earlier. Before this the variational results are com-

pared with those obtained using a variational Gaussian Mixture Model in the next section.
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3.5.7 Comparison with Mixtures of Gaussians Model

To ascertain whether the clustering obtained using the MFA model on the ADI-R is driven

purely by the different means of the clusters or whether Λk has a significant impact on

the allocation of patients to different clusters, we compare the partitioning obtained with

the MFA solved using the variational method to that of a full Gaussian Mixture Model

(GMM) estimated by Bayesian variational approximations [14]. The GMM solved in this

way requires us to specify the value of K but for the purpose of comparison we use the

value obtained from the earlier experiments at both the domain and sub-domain levels. At

the domain level we have K = 5 and Table 3.4 shows the sizes of the clusters obtained

using GMM. It can be seen from the table that no subjects are assigned to the fifth cluster

and the model is favouring aK = 4 solution using the mixtures of Gaussians. Comparison

of this partitioning with the results of the variational MFA partitioning produces an adjusted

Rand Index of .25. This indicates that there is some agreement in the partitioning obtained

using the two methods beyond what would be expected by chance, despite them choosing

different values of K.

Cluster 1 2 3 4 5
K = 5 66.1% 19.4% 13.8% 1.0% 0.0%

Table 3.4: Relative sizes of the clusters obtained for K = 5 using the GMM on the domain
level data. No subjects are assigned to the fifth cluster.

Comparison of results at the sub-domain level using K = 4 yielded an adjusted Rand

Index of .08 which indicates that there is almost no agreement between the partitioning

using the GMM and that obtained from the MFA. This confirms that the clustering ob-

served is not being solely driven by the mean vectors as the differences in latent structure

uncovered by the MFA model impact the clustering. The relative sizes of the clusters at the

sub-domain level using the GMM are shown in Table 3.5.

Figure 3.15 shows the partitioning obtained by running the GMM at both the domain

and sub-domain levels, but plotted only over the first three dimensions of the domain level.

This can be compared visually with the partitioning obtained using the MFA model in
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Cluster 1 2 3 4
K = 4 48.0% 45.4% 4.6% 2.0%

Table 3.5: Relative sizes of clusters obtained forK = 4 using the GMM on the sub-domain
data.
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Figure 3.15: Partitioning of the patients obtained using the GMM at domain(a) and sub-
domain(b) levels. Cluster centers are plotted using large black markers and data points are
coloured according to their cluster membership allowing visual comparison with Figure ??
which shows the partitioning obtained using the MFA.

Figure 3.11 The structure obtained in both cases is dominated by one much larger cluster

‘super-cluster’ which dominates the centre of the data in the GMM results. In the MFA

model this cluster is further decomposed into smaller more homogeneous clusters however

the overall structure observed is still quite similar even if the composition of the clusters

and membership is different, but with the MFA adding more fine detail than the GMM.

3.5.8 Family Structure Analysis

The IMGSAC data is composed of subjects drawn from 299 unique families. This gives us

a natural structure or partitioning of the data to compare with that obtained using the MFA.

Once again the Rand index can be used to compare the cluster structure with the family

structure, by treating each unique family as a cluster. This allows us to investigate whether

the partitioning produced by the MFA clusters subjects from the same family together.

This may be informative about the clustering mechanism. Upon analysis it was found
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that approximately 200 subjects from the total population are partitioned into clusters with

a sibling. The Rand indices obtained were .74 and .79, at the domain and sub-domain

levels, respectively which seems to imply that the family structure is highly related to the

partitioning obtained. However this is due to the fact that we are essentially comparing a

K = 299 to aK = 5 orK = 4 solution and the adjusted Rand index value obtained at both

levels is approximately zero. This is an effect of the huge disparity between the numbers

of clusters. The lack of meaningful agreement between the partitioning obtained and the

family structure of the data is still an interesting outcome and will be discussed further in

the next section.

3.5.9 Discussion

The results obtained from the analysis of the ADI-R using the MFA are of interest for

a number of reasons. Firstly at both levels sub-populations were uncovered within the

sample set. This may not be surprising given the heterogeneous nature of ASD, however

this specific data set was gathered as part of a genetic study and great effort had been

made to obtain homogeneity even using related subjects from the same family. The fact

that clusters were still uncovered highlights the difficult problem the heterogeneity of ASD

poses. It is reassuring that a group of outliers, that were not a priori known to be present in

the data, were picked out and that this cluster has a meaningful interpretation as consisting

of patients who need to be assessed in different manner. We now discuss the results at the

domain and sub-domain levels in more detail.

Results from the domain level indicate the presence of five clusters within the data.

Comparison of the mean of the posterior distribution of the mean for each cluster with

the threshold values discussed in Section 3.5.3 reveals that differences in severity exist

between each cluster. Subjects in the first three clusters have an average score that is well

above the threshold values for diagnosis. However the posterior mean of cluster 4 has

much lower deficits in the communication domains and it is possible that within these sub-

populations there may be subjects who do not meet the required levels of impairment in all

domains to be considered autistic. With this in mind we hypothesise that the single factor

could be considered a measure of severity. This ties in with previous findings in [123]
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of a continuous severity gradient observed in behavioural data. Under this assumption

the different factor loadings obtained for each cluster, defining the latent structure, imply

that different domains are more prominent in the level of autism observed for each cluster.

Cluster 1 for example is more strongly affected by the social interaction domain that any

other clusters.

Interpretation of the results at the sub-domain level is more challenging than at the

domain level. Given the broader range of features it becomes more difficult to ascribe

meaning to features or judge the level of severity. What is clear from the results at this

level though is that clusters are obtained with different intrinsic dimensionalities. This is

evidence that the partitioning is not just due to points being located in different regions of

space but due to the presence of different latent structures. This is confirmed by the results

of the comparison with the GMM and implies that within the population of subjects there

are different latent structures being expressed through the manifest behavioural variables.

Comparison of the clustering obtained with the family structure in the data revealed

that there was no great tendency for subjects from the same family to be clustered together,

beyond what would be expected by chance. This is perhaps unexpected but interesting in

itself, the data is behavioural in nature and if we ascribe to the interpretation that the clus-

tering produced at the domain level is illustrative of a severity gradient then what the data is

telling us is that within families the severity of symptoms observed can vary widely, to an

extent that members of the same family are separated out. This might provide another way

of conducting a genetic analysis, rather than group members of the same family together

perhaps subjects exhibiting similar behavioural traits should be grouped together to obtain

a behaviourally homogeneous sample for genetic analysis.

3.6 Conclusions

This chapter has focused on a Bayesian formulation of the MFA model and two methods

for tackling the difficult issue of model selection. In the MFA model this is a two tiered

problem with the number of clusters, K, and their intrinsic dimensionalities, qk, to be

determined. We reviewed two methods developed to solve this problem; the variational

Bayesian approximation and the stochastic Birth-Death MCMC approach. A simulation
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study was conducted to examine the differences in performance obtained from the two

methods. This complements a similar study comparing the methods for variable selection

in linear regression and extends it to the unsupervised setting for the first time. The results

indicated that in situations where the data is sparser the BDMCMC method for estimation

provides more consistent results and more accurate detection of clusters within the data.

However given sufficient data the variational method can produce matching performance

with a fraction of the computational overhead of MCMC. This insight motivates our work

in Chapter 5.

Finally we have applied the MFA model estimated using the BDMCMC method to a

set of behavioural data from autistic subjects. Analysis of this type data at the domain and

sub-domain levels has never previously been conducted using this method. At both levels

evidence was found for the existence of sub-populations within the data set which was

believed to be homogeneous. At the domain level a key finding was that the clusters formed

a severity gradient and the factor loadings of each cluster showed a different relationship

between the variables and this factor. Interpretation of results at the sub-domain level

was more difficult, however we did find evidence of varying numbers of factors between

different clusters, indicating the presence of groups with different latent structures in the

data.

The model estimation and selection techniques explored in this chapter will feature

again throughout this thesis. The next chapter introduces a latent variable model for analysing

network data. The BDMCMC machinery will be used again here allowing us to perform

model based clustering of a network in an unsupervised manner, this is a non-trivial prob-

lem for which few other methods exist.
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Chapter 4

Modelling Network Data using Latent

Variables

The previous chapter focussed on the analysis of multivariate data using a latent variable
model, the MFA. The remaining chapters of this thesis explore the analysis of relational
data using latent variable methods. More specifically we study network data. This type
of data has a number of unique characteristics not encountered in multivariate statistics

and requiring the development of models and methodology specific to the network repre-

sentation. The interconnected nature of the data means that the entities or nodes in the

network cannot be considered independent. The conditional independence framework of

latent variable models provides a convenient way of handling these dependencies, the nodes

are independent of each other conditional on an associated latent variable. As well as be-

ing convenient the latent variables can also be informative revealing information about the

structure of the network for example the number of communities present or allowing the

network to be visualised. The Bayesian approach to latent variables utilised thus far will

be maintained and we now introduce the particular latent variable models that will be used.

This chapter introduces the Latent Position Model (LPM) [63] and its extension, the

Latent Position Cluster Model (LPCM) [58], which incorporates clustering. The model

infers a latent space from a network where the positions of the points in latent space are

determined by the connections in the network. The model is a latent variable model that

generates a multivariate representation of relational data and forms the basis of the remain-
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der of the thesis. A number of the ideas introduced in Chapter 3, relating to latent variable

models, will feature in this chapter again, for example we extend the LPCM using the

birth-death MCMC framework as previously to incorporate inference over the number of

clusters, K, in the data. This gives us an unsupervised model based approach for perform-

ing community detection in a network which is deployed on both synthetic and real world

data.

The chapter is organised as follows: Section 4.1 gives an introduction to the charac-

teristics of network data and some basic models. In Section 4.2 we review the concept of

embedding networks into Euclidean space starting with Multi-Dimensional Scaling (MDS)

and then introducing the latent variable approach. The model estimation method is then

described in Section 4.3. This is an MCMC based approach for which the computational

time required scales withO(n2). This limits the size of network that the model can feasibly

be applied to and in Section 4.4 an approximation to the likelihood, developed in [108], is

described that borrows ideas from epidemiology. This case-control likelihood scales lin-

early with n allowing larger networks to be tackled in reasonable time scales and allowing

the model to be extended to incorporate BDMCMC. Section 4.5 describes the applica-

tion of the Birth-Death MCMC approach to estimating the LPCM for unknown K and we

demonstrate this on some synthetic and real data before concluding the chapter.

4.1 Models for Network Data

Networks are becoming an increasingly prevalent method for representing relational data in

fields as diverse as social network analysis [78] and neuroscience [124]. This increase in the

interest of network structures reflects a shift in approach to the study of complex systems,

from concentrating on the elementary system components to encompass knowledge of the

ways in which these components interact and the emergent properties of these interactions

[124]. Connectivity comes in many forms, for example molecular interactions, metabolic

pathways, synaptic connections, emails, social networks, semantic associations, or citation

patterns.

The origins of network science can be traced all the way back to Euler in the 18th

century and the Konigsberg bridge problem. The problem was to find a path by which a
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person could cross each of the seven bridges spanning the city, exactly once and return

to the starting point. Euler proved that no such path existed and found a general solution

that could be applied to an arbitrary arrangement of bridges and landmasses [41]. More

importantly he realised that the problem could be resolved by solely taking into account

the relative position of bridges and landmasses and that precise geographical position or

physical distance was unimportant. In doing so Euler is generally credited with founding

the field which he referred to as the ‘geometry of position’ (geometria situs) and which is
now known as graph theory [124]. Although graph theory is considered a branch of pure

mathematics it has made a major impact in real-world applications and was used in the

derivation of Kirchhoff’s laws of voltage and current which laid the foundations of modern

circuit theory in electrical engineering [25].

Formally a graph, G = (V,E), is a mathematical structure consisting of a set V of

vertices (also referred to as nodes) and a set E of edges denoting the links between vertices.

Elements of E are unordered pairs {u, v} of distinct vertices u, v ∈ V . In this thesis we

focus on simple graphs for which a graph has no edges where both ends connect to a single

vertex (called loops) and no pairs of vertices with more than one edge between them (called

multi-edges). A graph with either of these properties is called a multi-graph [78].

One of the most elementary representations of a graph is the adjacency matrix. The
adjacency matrix defines the topology of the graph by representing nodes as matrix rows

and columns and representing edges as binary or weighted matrix entries [124]. The ties

or edges between nodes may be directed or more simply undirected which results in a

symmetric adjacency matrix with

(
n

2

)

possible pairs of connections or dyads [25].

The adjacency matrix allows the derivation of one of the most fundamental graph mea-

sures, the degree, k. In an undirected graph the degree of a node is the number of edges con-
nected to that node. In directed graphs the indegree and outdegree correspond to the num-

ber of incoming and outgoing edges, respectively. The degrees of all nodes together form

the degree distribution of the network which shows whether the network contains nodes

with approximately equal degrees or whether node degrees vary over a broader range. The

degree distribution can be highly informative about the network architecture and we will

encounter it again in the following section when discussing some simple network models
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and the characteristics of the networks they produce.

Although the origins of network science derive from graph theory, which provides the

necessary mathematical foundations and formalism for a coherent study of networks, it has

grown and evolved thanks to contributions from a myriad of other fields over the last 70

years. such as sociology [92], statistical physics [38] and probability and statistics [139].

Before 1960 graph theory mainly dealt with the properties of specific individual graphs.

In the 1960s, Paul Erdős and Alfred Rényi initiated a systematic study of random graphs

[38, 39, 40]. Random graph theory is not the study of individual graphs but the study of a

statistical ensemble or probability space of graphs. The ensemble is a class consisting of

many different graphs where each graph has a probability attached to it. We will discuss

these random graphs as models for networks in more detail in the following section and

explain the associated limitations. This development was an important first step in the

statistical modelling of networks.

The unique relational nature of network data means that one can encounter certain

challenges in statistical analysis that are not present in standard statistics [78]. Statistical

modeling is often based on assumptions of independence [119] that samples are i.i.d. ob-

servations from a larger population and inference can be made about this population from

the sample. This approach does not translate well to the network setting where there are

inherent dependencies between nodes and edges due to reciprocity, transitivity, homophily
and assortativity which are all characteristics observed in networks that we will describe
further. As a side note the idea of a network as a set of observations, or subnetwork, from

a larger population, analogous to the i.i.d. observations of a population referred to above,

is an active area of research with models for networks said to be ‘projective’ if the same

parameters can be used for the full network and for any of its subnetworks [44]. Finding

models of this type that can take dyadic dependence into account is an open problem in

network science and this problem will not be considered in this thesis.

Transitivity is a key dependency structure seen in networks but most often evident in

social network analysis where it is known as the ‘friend of a friend is a friend’ effect [63]. If

there is a tendency toward transitivity the existence of two edges yij = yjk = 1 will lead to

an increased probability of there being an edge yik, the closure of the triangle. Homophily,

the tendency of nodes with similar attributes to relate to each other is also common and
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leads to a higher probability of links being formed between nodes with similar values on

relevant covariates. Reciprocity is the tendency in a directed network for an increase in the

probabilty of an edge from node i to j if there is a link from j to i, for example a response

email in a communication network. Additionally there is also evidence for correlations

between the degrees of nodes a feature known as assortativity [124] which adds to the

complexity of the data we are trying to model. There is also evidence for clustering beyond

what can be explained by transitivity in many networks such as the formation of cliques in

social networks [58].

The above description of the many dependency features observed in networks serves to

highlight the complexity of the challenge of modelling such data and developing models

that can accurately represent these features. In the next sections we will describe a number

of simple network models from the literature which although too simple to account for all

these features give further insight to the nature of network data. They will also be useful

in later experiments for generating test data. We begin our discussion with the previously

mentioned Erdős-Rényi graph.

4.1.1 Simple Network Models

The simplest class of network model is the random network or Erdős-Rényi graph,G(n, p),

which for a network of n nodes sets the probability of an edge between each pair of nodes

equal to p independently of all other edges [55]. ER graphs can neatly illustrate a key

feature of network behaviour known as a ‘phase change’. The key to this behaviour is the

value λ = pn. The value λ = 1 is referred as the percolation threshold in the statistical

physics literature and marks the point at which we shift from seeing many small connected

components in the form of trees to the emergence of a single ‘giant connected component’

and the graph becomes fully connected [44]. An example of a fully connected random

graph is shown in Figure 4.1 plotted in two dimensions.

In the introduction to this chapter we referred to the degree distribution of a network

as being a key characteristic. Erdős-Rényi graphs are characterised as having a Poissonian

degree distribution:

P (k) = e−λλk/k!. (4.1)
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A Poisson degree distribution produces graphs with nodes that have a fairly uniform degree

that has a characteristic scale defined by the mean, λ, of the distribution in Equation 4.1.

Empirical analysis of the degree distributions of real-world graphs found that this form of

degree distribution was a poor match for many real-world examples.

Another simple class of networks is known as the regular lattice graph. In contrast to

random graphs, lattice graphs have an ordered pattern of connections between nodes where

all nodes have the same number of edges [124]. Examples of regular graphs include the

ring, which is shown in Figure 4.2 or grid lattice, where edges link nearby nodes in one or

two dimensions.

Random and regular graphs are idealised models that permit some very elegant formal

descriptions and analysis. Although these two models are at opposite extremes of the struc-

tural spectrum, they both share the essential characteristic that their local structure mirrors

(either exactly or statistically) their global structure and hence analysis based on strictly

local knowledge is sufficient to capture the statistics of the entire network [139] . However

most real world networks are not well described by either random or regular graphs. In the

next section a model that combines features of both regular and random graphs is described

which has been found to have properties associated with many real world networks.

4.1.2 Watts-Strogatz Model

The modern era of network studies was launched by Duncan Watts and Stephen Strogatz

in 1998 [124]. Watts and Strogatz not only devised a deceptively simple network model

that explained the origin of the ‘small world’ phenomenon but also discovered that these

patterns are present in a broad range of natural social and technological networks [140].

The model interpolated between a ring lattice and a random network by variation of a

single parameter, the probability that an edge of the ring lattice is randomly rewired. If

this probability is zero the network is fully regular, if the probability is one the network

is fully random. For intermediate settings of the rewiring parameter the graph contains

a mixture of regularity and randomness. These random rewirings act as ‘shortcuts’ in

the network connections between nodes and give rise to the ‘small world’ effect. This is

more popularly known as ‘six degrees of separation’ a trait uncovered by Milgram [92]
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Figure 4.1: Erdős-Rényi network plotted in two dimensions, every node connects randomly
with the same probability to create a network with little structure.

in his famous experiment where randomly selected individuals in Kansas and Nebraska

were asked to forward a document to target people in Boston. The origin and destination

participants were not acquainted and so participants had to forward the document to other

acquaintances in a manner that would bring the document closer to its intended target [139].

The average number of intermediary steps was 5.7 which was much smaller than might be

expected given the size of the social network, providing empirical evidence of a small world

network topology.

4.1.3 Barabási-Albert Model

Traditionally, networks of complex topology were described with the random graph model

described in Section 4.1.1. However in the absence of data on large networks the predic-

tions of the ER theory were rarely tested in the real world. When advances in processing

power and data acquisition technology allowed for direct measurements of the degree distri-

bution for real networks such as the internet, citation networks, email networks, metabolic
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Figure 4.2: Examples of a ring (a) and small world (b) network. The structure of the ring
graph is highly regular with connections only existing between neighbouring nodes. In
contrast the small world network introduces an element of randomness to the edges.

networks, airline networks, trust networks and neuronal networks, it was found that they

did not follow the degree distribution predicted by random graph theory [124]. Rather than

a Poissonian degree distribution these networks were found to exhibit a degree distribution

that followed a power law:

p(k) ∼ k−γ. (4.2)

A power law implies that the probability of finding a node with a degree that is twice as

large as an arbitrary number decreases by a constant factor. This result indicates that large

networks self organise into a scale free state [25]. Barabasi and Albert [8] demonstrated

that these power-law degree distributions could be generated by a preferential attachment
growth process. This process involves the gradual addition of nodes and the attachment of

these nodes to already existing nodes proportional to their degree. A network generated

using this process is shown in Figure 4.3 and exhibits the characteristic hubs expected. A

common feature of the ER and Watts-Strogatz models is that the probability of finding a

highly connected or hub node (large k) decreases exponentially with k; thus vertices with

large connectivity are practically absent. In contrast, the power-law tail characterising the

degree distribution for the Barabási-Albert model indicate that highly connected nodes have

a large chance of occurring and dominating connectivity.
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Figure 4.3: Barabási-Albert network generated using a preferential attachment growth
method, starting with an initial four nodes, subsequent nodes are added iteratively and
link to current nodes dependent upon their degree. Leads to the formation of hubs which
we highlight by letting the size of each node be proportional to the degree. Note the last
node added in the top left corner connecting to one of the largest hub nodes.

4.1.4 Summary

The simple network models described in this section are parameterised by only one or

two parameters which limits the flexibility of the model significantly. While the choice of

such a model may be justified in specific cases where the architecture of the network is well

understood, for general analysis more complex models are required to accurately model the

topology of real networks. As alternatives a number of n-parameter models have emerged

in the literature each of which associates a single parameter to every node [105]. The model

we have chosen to utilise is the Latent Position Model (LPM) [63] which associates each

node with a point in a latent Euclidean space. This has a number of associated advantages

which will be discussed in Section 4.2.1 but requires a brief review of the concept of graph

embedding which is provided in the next section before the model itself is presented.
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4.2 Embedding Networks in Euclidean Space

The concept of distance arises naturally in a network by considering the path length. A path
is an ordered sequence of unique edges and intermediate nodes that link two nodes. Nodes

may be linked directly by an edge, the shortest possible path, or indirectly via sequences of

nodes and edges [124]. The geodesic distance between two nodes in a network is simply
the minimum number of edges one would have to traverse in order to get from one node to

the other [95]. All pairwise distances in a network can be represented in the distance matrix

[124]. The distance matrix can give insight into the structure of the network. The longest

distance or path between two nodes is referred to as the diameter of the network and the
size of this can be informative as to whether connections are sparse or whether the graph

is highly connected with the distance between nodes being small in all cases. In a fully

connected undirected graph G the following hold for geodesic distance d between nodes:

d(u, v) ≥ 0,

d(u, v) = 0, if and only if u = v

d(u, v) = d(v, u),

d(u, v) + d(v, w) = d(u,w),

for all u and v vertices of G. In an unconnected graph, nodes for which no path exist are

said to have infinite distance between them.

Distance naturally implies a set of positions exist. More specifically any given graph

can be thought of as a set of points embedded in a Euclidean space, where the Euclidean

distance between any two points is just the shortest path length between the corresponding

vertices, to within some distortion [140]. The question then arises what is the appropriate

dimension of this Euclidean embedding space? Obviously given an n × n distance matrix

it is always possible to embed the network in an n-dimensional space. However, for fixed

n, graphs with different topologies will in general have different embedding dimensions.

For instance a regular lattice graph such as the ring network shown in Figure 4.2a will have

an embedding dimension, q = 2, for all n as n 7→ ∞ whereas an ER graph will have an

embedding dimension q = ∞ as n 7→ ∞. A study of appropriate embedding dimensions
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for specific instances of different graphs was conducted in [37] and this question and its

relation to the topology of a network continues to be a source of much research [12].

Given a set of distances and an embedding dimension multidimensional scaling (MDS)

[28] can be used to determine the optimum positions in that space to minimise a distortion

measure. However the distances defined are somewhat arbitrary, for example so far we

have only considered the geodesic distance but we could just as easily have used the detour
distance which utilises the longest path length. Another weakness of the MDS approach
is that clusters are better tackled as separate graphs. The limitations of this approach lead

us to consider a more principled probabilistic model based approach for the embedding of

networks, the Latent Position model.

4.2.1 Latent Position Model

The Latent Position Model (LPM) [63] is a stochastic model of the network in which each

node has a latent position in a Euclidean space, and the latent positions are estimated

using standard statistical principles; thus no arbitrary choice of dissimilarity is required.

The model was originally developed for social network analysis where the probability of

an edge between nodes depends on the positions of individuals in an unobserved ‘social

space’. Various concepts and interpretations of social space have been discussed by [88]

and [43] however it is sufficient for our purposes to simply consider this space as a space

of unobserved latent characteristics that represent potential transitive tendencies in network

relations. Indeed since its conception the model has been further extended and applied to

protein-protein interaction data [108] expanding its scope beyond social network analysis.

In Section 4.1 some of the the key features observed in network data, such as transitiv-

ity and reciprocation of ties, were discussed as essential elements a suitable network model

must capture. The latent position model provides an elegant means of taking transitivity

and dependence between dyads into account. The edges in the network are assumed to be

conditionally independent given the latent positions, and the probability of a specific edge

between two nodes is modeled as some function of their positions such as the distance be-

tween the actors in Euclidean latent space [63]. This conditional independence assumption
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is defined as:

p(y|z, θ) =
∏

i6=j

(yi,j|zi, zj, β), (4.3)

where yi,j is the presence or absence of a link between nodes i and j, zi is the position

of node i in latent space and β is a parameter to be determined. This should be familiar

following our general discussion of latent variable models in Section 2.1.

A convenient parameterisation of p(y|z, θ) is the logistic regression model in which

the probability of a link depends on the Euclidean distance between zi and zj:

ηi,j = log-odds(yi,j = 1|zi, zj, β) = β − |zi − zj|, (4.4)

β ∈ <, x ∈ <q.

In Equation 4.4 the distance measure is simply the standard Euclidean norm, in Section

5.3 we will find it convenient to utilise an alternative distance metric, the cosine angle

distance. The latent position model is inherently reciprocal and transitive: if yi,j = yj,k =

1 then di,j and dj,k are probably not too large making the events yj,i = 1 (reciprocity)

and yi,k = 1 (transitivity) more probable. The model also provides a framework for the

inclusion of covariate information about the nodes to incorporate homophily however we

will not require this extension in the thesis where attention is restricted to simple undirected

networks with no additional information.

There is often more clustering in a network than can be accounted for purely by tran-

sitivity, which can be explained as evidence of cliques or subgroups [58]. A natural exten-

sion of this model to incorporate clustering within a network is the Latent Position Cluster

Model (LPCM) described in the following section.

4.2.2 Latent Position Cluster Model

The LPCM [58], combines the LPM introduced in the previous section with the mixture

model framework described in Section 2.1.4. The model assumes that each node has an

unobserved position in a q-dimensional Euclidean latent space as before however to in-

corporate clustering the latent positions, zi, are assumed to have been drawn from a finite
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mixture of G multivariate Gaussian distributions:

zi ∼
G∑

g=1

πkN (μg, σ
2
gIq), (4.5)

where πg are the mixing coefficients and μg is the mean vector of component g. Note that

σ2
g is a variance parameter specific to each component.

The original paper was received as a read paper in the Royal Statistical Society and we

address a number of the comments raised in the accompanying discussions extending the

model to allow for automatic variable selection over the value of G.

4.3 Model Estimation Using MCMC

The LPCM is fully specified by Equations 4.3, 4.4 and 4.5 and in contrast to many other

network models the log-likelihood of the model is relatively simple and takes the following

form:

log p(y|η) =
n∑

j 6=i

n∑

i6=j

ηi,jyi,j − log(1 + eηi,j ), (4.6)

where η is defined by Equation 4.4. Calculation of this log likelihood involves a sum over
1
2
n(n − 1) terms for undirected graphs, which increases O(n2) for increasing n. The com-

putational burden of calculating the likelihood will make it infeasible for graphs of large

n and this is a problem we will address in Section 4.4. However likelihood based estima-

tion methods such as maximum-likelihood and Bayesian inference are feasible [63]. The

methods used will be broadly similar to the methods used in Chapter 3 for estimating mix-

ture models, utilising a missing data formulation and MCMC methods. However we must

specify the number of clusters, G, a priori. Prior distributions for the model parameters are
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specified as in [58]:

β ∼ N (ξ, Ψ),

π ∼ Dir(υ),

σ2
g ∼ σ2

0Invχ
2
2, g = 1, . . . , G

μg ∼ N (0p, ω
2Iq), g = 1, . . . , G.

where ξ, Ψ, υ, σ2
0 and ω are hyperparameters to be specified. The MCMC algorithm iterates

over the model parameters with the priors given above, the latent positions zi methods,

where possible Gibbs sampling from fully specified posteriors and where this is not possible

using Metropolis-Hastings acceptance steps, for the latent positions. We make use of the

missing data formulation for mixture models, discussed in Section 2.1.4, and introduce the

binary latent allocation vector ki, for each position giving us an n × G matrix K. This

is not to be confused with the degree, k, as used earlier. The full conditional posterior

distributions are:

p(zi|kig = 1) ∼ N (zi; μg, σ
2
gIp)p(y|z, β), (4.7)

p(β) ∼ N (β; ξ, Ψ)p(y|z, β), (4.8)

p(π) ∼ Dir(m + υ), (4.9)

p(μg) ∼ N

(
mgz̄g

mg + σ2
g/ω

2
,

σ2
g

mg + σ2
g/ω

2
I

)

, (4.10)

p(σ2
g) ∼ (σ2

0 + qs2
g)Invχ

2
2+qmg

(4.11)

p(kig = 1) =
πgN (zi; μg, σ

2
gIp)

∑G
g=1 πgN (zi; μg, σ2

gIp)
, (4.12)
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where

mg =
n∑

i=1

[kig = 1]

s2
g =

1

q

n∑

i=1

(zi − μg )
T (zi − μg )I[kig = 1],

z̄g =
1

mg

n∑

i=1

zi [kig = 1].

The Metropolis-Hastings algorithm (described in Section 2.3.1) is then used to sample zt+1

and βt+1 using Equations 4.7 and 4.8. Each position is updated in random order and then

parameters ki, μg, σ
2
g and πg are updated from expressions 4.9 - 4.12.

4.3.1 Implementation Issues

As we are usingMCMCmethodology a number of issues arise when computing the stochas-

tic average over all iterations. The chief difficulty encountered is that as the likelihood is a

function of the latent positions, z, only through their distances, it is invariant to reflections,

rotations and translations of the latent positions. Thus averaging over the latent positions

can produce meaningless results without additional processing. We use the Procrustes

transformation [28] which involves translation, rotation, and uniform scaling, to match the

posterior draws of latent positions, to a template. This requires the specification of a tem-

plate position which is chosen as the set of positions which produce the highest value of

the likelihood function during the burn-in period. The label switching problem is again

encountered and is resolved by the same method used previously in Section 3.2.4.

4.4 Case-control Likelihood

The computational cost of model estimation is of O(n2) where n is the number of nodes.

This is due to the structure of the likelihood function of the LPCM and makes it infeasible

to apply this method to large networks. In order to reduce the computational burden so

that it scales linearly with the size of the network we make use of an approximation to the

full likelihood known as a case-control likelihood developed and applied to the LPCM in
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[108]. In epidemiology case-control studies are widely used to compare a group having an

outcome of interest (‘case’) to a control group with regard to one or more characteristics

[17]. Usually the cases are so rare that it is impossible or too expensive to draw a random

sample with enough cases. In a case-control study available cases are collected and cor-

responding controls are sampled from the disease free cohort. Large networks are usually

sparse and in this setting the indication of a link (denoted as one in the adjacency matrix)

can be considered a case and the absence of a link as controls (indicated by zeros). This

analogy suggests an approximation to the log-likelihood function which can be written as

follows:

ln ≡
∑

j 6=i

ηijyij − log(1 + eηij), (4.13)

=
∑

j 6=i,Yij=1

ηij − log(1 + eηij) +
∑

j 6=i,Yij=0

−log(1 + eηij), (4.14)

= li,1 + li,0. (4.15)

The quantity li,0 in Equation 4.15 can be viewed as a population total statistic and can be

estimated by a simple random sample of the population i.e.:

l̂i,0 =
ni,0

n̂i,0

ni,0∑

k=1

−log(1 + eηik),

where ni,0 is the total number of zeros in the ith row of the adjacency matrix, n̂i,0 is the

number of samples selected from the ith row and the sum is over those selected entries.

A relatively small n̂i,0 can be chosen to get an unbiased estimator of li,0 and thus greatly

reduce the amount of computation. This method can be further refined using a stratified

sampling approach. The zeros are divided into M strata based on the shortest path length

from node i to node j and compute the contribution of the likelihood in the same manner as

before. This has the added advantage of increasing the contribution of nodes close together

in latent space.
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Figure 4.4: Case control likelihood computational times plotted in red against increasing
size of network scales linearly in contrast to the full likelihood shown in blue which scales
O(n2).

4.4.1 Comparison of Case-control and Full

A full comparison of the behaviour of the exact and case-control likelihoods is carried out

in [108] where both methods are shown to perform equally well. A brief comparison is pro-

vided here to demonstrate how the time required for the same number of iterations scales

linearly using case-control andO(n2) using the full likelihood. In the experiment we gener-

ate a ring network with increasing number of nodes n = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

and plot the time taken for a fixed number of iterations. The results are shown in Figure 4.4

and shows that the increasing network size greatly slows down the full likelihood estima-

tion but not in the case-control likelihood. In the next section the increase in computational

efficiency is exploited to extend the LPCM to incorporate fully Bayesian model selection

of the number of clusters K.
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4.5 Automatic Selection of the Number of Clusters

The advantages of the case-control likelihood method for estimation described above are

twofold. Firstly now that computational time scales linearly with n it is feasible to apply the

model to a much broader range of networks. Secondly this increase in computational speed

allows us to consider extensions to the basic model. One issue that needs to be addressed

in the model is how to specify the number, K, of mixture distributions used in the latent

model. The original paper [58] used the Bayes risk as a method for choosing between

different values of K but this requires the model to be estimated for each value of K

individually. This is a model selection problem similar to that encountered in Chapter 3 and

the methods explored in that chapter are utilised here to perform automatic model selection

over K using the birth-death process. This process is described in detail in Chapter 3 but

in brief; a Poisson distribution prior is placed on K and the birth-death mechanism is used

to draw new clusters from the prior distributions of the parameters using a continuous time

Markov chain. An important point to note is that during the model selection process we

are not utilising the likelihood function in Equation 4.4 but rather once the positions z have

been drawn the mixture distribution likelihood is used to calculate death rates based on

these positions. Essentially this is a two stage procedure where first the positions are drawn

and then model selection and clustering is performed over these positions.

4.5.1 Example of LPCM with variable K

An example of the birth-death LPCM model’s ability to correctly determine the number

of clusters present in a network is provided using simulated data obtained by inverting the

model. Data is generated composed of three connected clusters of 20 nodes each in two
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Figure 4.5: Plot of the original positions in space used to generate adjacency matrix and
connections subsequently obtained. Data consists of three separate clusters however the
network is fully connected.

dimensions. The adjacency matrix Y was simulated in the following manner:

β = 2.0,

μ =







μ1

μ2

μ3





 =







3.27 5.22

0.63 2.67

2.32 −1.03





 ,

σ2 = 0.3,

zi|kig = 1 ∼ N2(μg, σ
2I),

yij ∼ Bernoulli(logit
−1(β − |zi − zj|).

A plot of the positions and connections generated is shown in Figure 4.5. In Figure 4.6 we

show the results obtained using the adjacency matrix as input and running the model for

5000 iterations, after a burn-in period of 5000. As part of the thinning process only every
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Figure 4.6: Output of the Birth-Death MCMC over K. Figure 4.6a shows the sample
path of K for a run of 10,000 samples thinned by taking every 10th sample. The posterior
distribution ofK is shown in Figure 4.6b and is sharply peaked about the true valueK = 3.

fifth sample is retained. The posterior distribution over K is shown and is sharply peaked

at the correct value of K = 3. The model is initialised with K = 1 however it is able to

determine the number of clusters in the network easily.

4.5.2 VAST Challenge Data

The LPCM with variable K is now used to perform exploratory analysis on a data set of

mobile phone records from the IEEE VAST Challenge [56]. The data consists of simulated

phone records for an island with 400 unique cell phones. While the data is synthetic it is

simulated with sufficient realism that it captures daily cycles in call patterns and can be

treated as real. The data consists of ten days worth of cell phone calls and the challenge

was to detect a change in the patterns of communication. Previous work on the challenge

detected anomalous activity beginning on the eighth day of recording [60]. If the particular

change that occurs is sufficient to produce a change in the community structure of the net-

work then by monitoring the value of K in the LPCM we will be able to detect the day the

anomalous activity occurs. The data was divided into daily bins embedded with automatic

selection of K. The results obtained strongly favoured a K = 1 solution on all days and

so our community detection method has not allowed us to detect the change. In Section

6.4.2 we will deploy a more sophisticated approach that makes use of the LPCM embed-

ding, to detecting changes in the structure of a network beyond variations in the community



4.6 Conclusion 108

structure. The method makes use of the LPCM as a means of obtaining a multivariate rep-

resentation of two graphs which can then be compared using CCA as described in detail in

Section 6.2.

4.6 Conclusion

This chapter introduced a core element of the thesis, the analysis of network data, main-

taining the latent variable approach from the previous chapter. The unique dependency

structures inherent in network data were discussed and some simple models introduced

that served to highlight some prominent network architectures. These models will be used

in later chapters for generating synthetic networks with different structures.

The LPCM was introduced as a method for model based clustering of a network and it

will be used extensively in the following two chapters. The model has a number of advan-

tages that make it attractive. The latent positions allow us to take the dependence between

dyads naturally into account using the conditional independence framework introduced in

Section 2.1. It also provides a model based approach to visualising a network which is an

important area of interest in itself.

Crucially the structure of the likelihood of the LPCM makes it amenable to Bayesian

analysis. This allows us to take a principled Bayesian approach to model estimation using

MCMC which was extended to incorporate a faster approximation to the likelihood devel-

oped in [108]. This allowed us to develop perform model selection over the number of

clusters,K, using the Birth-Death framework described in Section 3.2.1. The combination

of stochastic model selection and this model has not to our knowledge been done before

and is a novel contribution. The advantages of Bayesian analysis and model selection have

been discussed in the introduction and Section 2.2.1. These are even more pertinent in

the network setting. Generally authors in the network literature have often relied upon the

extraction of key features of the related graphical network representation, for example, the

use of power laws to represent degree distributions or measures of centrality and cluster-

ing without any indication that they are either necessary or sufficient as descriptors for the

actual network data [44]. The approach favoured here represents a more statistically sound

alternative and we will review some methods in Chapter 6 based on the previous approach
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for detecting changes in networks and discuss the weaknesses associated.

As well as visualisation of the network the latent positions provide a multivariate repre-

sentation of the network which allows standard statistical methodology to be deployed on a

network, indirectly through this representation. The power of this approach is discussed in

[19] as a means of adapting the universe of statistical methodology to the structural pattern

recognition field. An unresolved issue here is the embedding dimension of the network,

which was briefly discussed in Section 4.2 and made reference to the characteristic embed-

ding dimension of a network. As we have discussed in Chapter 3, from the point of view of

factor analysis, the number of factors can have an impact on the cluster structure observed

in the network and ideally we would infer the embedding dimension in combination with

K as in Section 3.2.3. However this is a very complex task and some of our initial efforts

in this area proved unsuccessful, the idea will be addressed again in Section 7.1.2.

In the next chapter we look at an alternative method for model estimation based on

variational approximation. Variational theory was introduced in Section 2.3.2 and it has

the advantage of generally being a much faster means of estimating model parameters than

MCMC methods. The methods for deriving the variational updates can be quite involved

and the next chapter is dedicated to deriving these updates for the LPM and LPCM.
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Chapter 5

Estimation of the Latent Position Cluster

Model by Variational Approximation

A number of complications make the analysis of network data challenging. In the previous

chapter we showed how a latent variable model could be deployed to handle the prob-

lems posed by the inherent dependencies between nodes in network data. The analysis of

network data also suffers from the issue of scale due to the nature of the data which is

typically in the form of an n × n adjacency matrix. As the size of the network increases

the associated computational burden rises rapidly. The LPCM, a model based clustering

method for embedding graph data in a Euclidean space, was introduced in Chapter 4 and

extended to incorporate model selection over the number of clusters. This was based on

a MCMC method for model estimation which placed limitations on the sizes of graphs to

which we could realistically apply our method to due to the high computational burden. In

an effort to overcome these limitations a case-control approximation to the likelihood was

introduced which reduced the scaling of the computational burden from O(n2) to O(n).

However while this extends the range of networks that can be tackled, MCMC based meth-

ods are still prohibitively costly. This chapter is concerned with developing an alternative

method for model estimation, based on variational Bayesian approximations. In Chapter 3

an empirical comparison between MCMC and variational approximations was performed.

This comparison illustrated that given a large dataset the performance obtained from the

variational approach was comparable to the MCMC estimation but orders of magnitude
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faster.

This insight motivates the following chapter where a method for estimating the LPCM

based on variational approximations is developed. An attempt at this has been made re-

cently by other authors in [114], however they were unable to develop fully analytic so-

lutions and resorted to a large number of numerical optimisation routines to obtain model

parameters. We tackle the problem from a different perspective utilising an alternative

phrasing of the model, as a projection model, as well as a local variational approxima-

tion to the logistic function. This approximation has been used extensively in the machine

learning literature [14, 94, 69] and has the useful property of having the functional form

of a Gaussian. This lends itself to obtaining solutions for the posterior distributions of the

model without resorting to numerical approximation.

The chapter is organised as follows. Section 5.1 briefly outlines the ‘local’ variational

approach and then deploys this method to find an approximation to the logistic function.

We then attempt to estimate the Latent Position model by variational estimation making use

of this approximation to the logistic function. An alternative phrasing of the Latent Position

model is presented in Section 5.3 and combining this with the variational approximation

from earlier we present a fully variational solution to the Latent Position model in Section

5.4. Building on this in the final section we describe the solution to the more complex

LPCM which incorporates clustering in the network.

5.1 Variational Approximation to the Logistic Function

The theory behind variational methods for model estimation in a Bayesian setting is pro-

vided in Chapter 2. These methods have been deployed in Chapter 3 as part of the Mix-

tures of Factor Analysers framework and an empirical comparison with competing MCMC

methods was also performed. These can be thought of as ‘global’ applications of varia-

tional methods. In this section a ‘local’ variational approach will be employed to find an

approximation to the logistic function that will allow us to derive fully analytic posteriors

for the parameters of the LPCM.

Section 2.3.2 emphasised the importance of the concavity of the log function in de-

veloping the lower bound in the global framework. Convexity also plays a central role in
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the local variational framework. Consider any continuously differentiable convex function

f(x). Convexity of the function guarantees by definition that any tangent line always re-

mains below the function itself. We may thus interpret the collection of all tangent lines

as a parameterised family of lower bounds for this convex function [112]. The tangents

in this family are naturally parameterised by their locations. From the point of view of

approximating the convex non-linear function f it seems natural to use one of the simpler

tangent lines as a lower bound. To formulate this a little more precisely let L(x; x0) be the

tangent line at x = x0,

L(x; x0) = f(x0) + f ′(x0)(x − x0),

then it follows that f(x) ≥ L(x; x0) for all x, x0 and f(x0) = L(x0; x0). L(x; x0) is

now a variational lower bound of f(x) and x0 is known as the variational parameter. We

have succeeded in approximating the convex function by a simpler, linear function at the

expense of introducing an additional parameter x0 which we must optimise to obtain the

tightest bound.

A key component of the Latent Position model and LPCM, see Sections 4.2.1 and

4.2.2, is the logistic function used in Equation 4.4 to estimate the probability of a link or

edge based on the distance in latent space between two nodes. The logistic sigmoid arises

frequently in probabilistic methods over binary variables, such as presence or absence of an

edge, because it is the function that transforms a log odds ratio into a posterior probability.

It is defined by

σ(x) =
1

1 + e−x
.

As it stands the function is neither convex nor concave and so we take transformations of

both the input variable and the function itself as in [69] to obtain a convex form. First we
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take the log of the logistic function and decompose it so that:

ln σ(x) = −ln (1 + e−x), (5.1)

= −ln {e−x/2(ex/2 + e−x/2)}, (5.2)

= x/2 − ln(ex/2 + e−x/2). (5.3)

We now note that the function f(x) = −ln (ex/2 + e−x/2) is a convex function of the

variable x2, as can be verified by taking the second derivatives. As discussed above, a

tangent surface to a convex funtion is a global lower bound for the function and thus we

can bound f(x) globally with a first order Taylor expansion in the variable x2:

f(x) ≥ f(ξ) + f ′(ξ)(x2 − ξ2),

= −
ξ

2
+ ln σ(ξ) +

1

4ξ
tanh

(
ξ

2

)

(x2 − ξ2),

= −
ξ

2
+ ln σ(ξ) + λ(ξ)(x2 − ξ2),

where

λ(ξ) =
1

4ξ
tanh

(
ξ

2

)

.

now substituting into Equation 5.3 and taking exponentials the bound on the logistic func-

tion is obtained as:

σ(x) ≥ σ(ξ)exp {(x − ξ)/2 − λ(ξ)(x2 − ξ2)}. (5.4)

This bound has the form of the exponential of a quadratic function of x, which will prove

useful when we seek Gaussian representations of posterior distributions defined through

logistic sigmoid functions.

5.2 Estimation of the Latent Position Model

As mentioned in the introduction to this chapter there have been previous attempts to use

variational Bayesian approximations to estimate the latent position cluster model. How-
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ever, due to the complexity of the model the update equations for the variational posteriors

were analytically intractable requiring numerical optimisation routines to obtain solutions

[114]. The performance obtained from this attempt proved to be inferior to that of the orig-

inal MCMC solution, with the method failing to correctly capture the cluster structure of a

benchmark dataset-the Sampson’s monk dataset [115]. A variational solution though with

performance equal to the original MCMC would be highly desirable due to the superior

speed of computation, which would allow application of these methods to ever larger net-

works. In an effort to obtain a solution we take a different approach to the authors in [114]

and make use of the local variational approximation to the logistic function from Section

5.1. The form of this approximation lends itself to computing Gaussian posterior distribu-

tions and the hope is this will allow us to compute a fully analytic solution without having

to resort to numerical optimisation routines to determine parameters. This will give us a

two-fold variational method, taking a ‘global’ approach to inferring the model while also

using a ‘local’ approach to optimising an approximation to the logistic function.

To begin with we will consider the simpler Latent Position model introduced in Section

4.2.1:

p(yij) = σ(β − |zi − zj|).

Here the probability of an edge between two nodes is determined by the Euclidean

distance between the respective positions of the nodes in latent space, which are assumed

to follow a Gaussian distribution. We replace |zi − zj| with uij which now follows the

Rayleigh distribution and utilising the approximation to the logistic function derived previ-

ously as Equation 5.4 we have:
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ln p(y|u, β) ≥ ln h(β, U , ξ)

=
n∑

i

n∑

j

ln σ(ξij) +

(
(yij(β − uij)) − ξij

2
− λ(ξij)((β − uij)

2 − ξ2
ij)

)

,

=
i∑ j∑ yij(β − uij)

2
− λ(ξij)(β

2 − 2βuij + u2
ij)

+
i∑ j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

.

In order to determine the variational posterior distribution for u we follow the standard

variational approach described in Section 2.3.2 and consider:

ln q∗(u) = ln h(β, u, ξ) + ln p(u),

Substituting in for the appropriate distributions and dropping all terms with no dependence

on u we have:

ln q∗(u) =
i∑ j∑(

−yijuij

2
− λ(ξij)(−2βuij + u2

ij) + ln uij −
u2

ij

2σ2

)

,

=
i∑ j∑(

−
1

2
(yij + 4λ(ξij)β) uij − {λ(ξij) +

1

2σ2
}u2

ij + ln uij

)

.

The variational posterior distribution for u has a squared, log, and linear term and as

there is no distribution of this form a solution is intractable. Our attempts at a variational

estimation of the LPM have been thwarted by the Euclidean distance function inherent in

the model. However one possible solution is to re-formulate the model as a projection

model which will be discussed in the next section.

5.3 Projection Model of Latent Position Model

The Latent Position Model finds an embedding of an adjacency matrix in latent space based

on the Euclidean distance between nodes. However alternative distance metrics are equally
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valid, for example the Manhattan or Mahalanobis distance. The cosine angle distance,

d =
ziz

T
j

|zj |
, was proposed as a potentially suitable measure in the original derivations of

the LPM [63]. The cosine angle distance is a commonly used measure in content based

information retrieval and a comparison of its properties with the Euclidean measure can be

found in [107]. In our setting it corresponds to the assumption that nodes i and j are prone

to having an edge if the angle between them is small and the model can be reparameterised

as:

p(y|z, β) =
n∏

i

n∏

j

σ(yij(β +
ziz

T
j

|zj |
)).

Note that in particular we no longer have the problematic |zi − zj| term. Instead we now

have the unit vector zj

|zj |
which we replace with the unit vector uj as in Section 5.2 but no

longer referring to |zi − zj |. The unit vector uj lies on the unit circle so it also cannot be

said to follow a Gaussian distribution. Instead we will make use of a distribution commonly

used in the study of directional data, the von Mises distribution.

5.3.1 Von Mises Distribution

Mapping data to the unit circle allows it to be described in polar form simply by the angle

θ, measured in radians, as z1 = (cos θ, sin θ). The angle θ is a periodic variable and the

use of standard statistical methods to study its distribution is inappropriate. To illustrate

the potential problems encountered with periodic variables we briefly switch to measuring

angles in degrees, if the mean of angles θ1 = 1o and θ2 = 359o is modeled as a standard

univariate Gaussian with origin at 0o the value would be 180o with standard deviation 179o

which is clearly counterintuitive [84]. Instead we require specific distributions for periodic

variables p(θ) and these must satisfy the three conditions [14]:

p(θ) ≥ 0,
∫ 2π

0

p(θ)dθ = 1,

p(θ + 2π) = p(θ).
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The most widely used distribution on the circle is the von Mises distribution [47]. It has a

number of features which make it appealing for our uses, particularly it’s close relationship

with the Gaussian distribution. The von Mises distributionM(μ, κ) has probability density

function:

f(θ; μ, κ) =
1

2πI0(κ)
eκcos(θ−μ0),

where I0 denotes the modified Bessel function of the first kind and order 0 which can be

defined by:

I0(κ) =
1

2π

∫ 2π

0

eκcos θdθ.

The parameter μ0 is the mean direction and the parameter κ is known as the concentration

parameter [84], not to be confused with the sufficient statistic, variance. The von Mises

z1 ∼ N (μ, κI)

(a) Data in plane

θ ∼ M(μ0, κ
−1)

θ

(b) Data mapped to unit circle

Figure 5.1: Relationship between Gaussian and von Mises distribution. (a): the data is
shown in a plane and can be described by a bivariate Gaussian distribution. (b): data
mapped to the unit circle and they are now described using a von Mises distribution on the
angle θ.

distribution is related to the bivariate Gaussian distribution as follows. Let x and y be

independent Gaussian variables with means (cos μ0, sin μ0) and equal variances 1/κ. This

construction ensures that the mean lies on the unit circle. The p.d.f. of the polar variables
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(r, θ) is proportional to:

r exp
(
−

κ

2
{r2 − 2rcos(θ − μ0)}

)
.

Since the range of r does not depend on θ the conditional distribution for r = 1 is the von

Mises distribution M(μ0, κ). The above relations of the von Mises distribution with the

Gaussian distribution clearly indicate that μ0 behaves like the mean while 1/κ influences

the von Mises distribution in the same way that σ2 influences the Gaussian distribution. For

κ = 0 the distribution is uniform while for large κ the distribution is clustered around the

direction μ0 [14].

As part of the variational estimation we will be inferring distributions over the positions

of the individual nodes in latent space. These calculations require the evaluation of expec-

tations with respect to these positions, z, projected on to the unit circle, u. The relationship

between the von Mises distribution and the Gaussian distribution described above allows

us to estimate the parameters of the appropriate von Mises distribution on the circle from

the distribution of the latent positions. This is illustrated in Figure 5.1 where we show data

in the plane which is then mapped to the unit circle. If the latent position has an associated

Gaussian distribution, z1 ∼ N (μ, κI), then the angle of the transformed variable has an

associated von Mises distribution θ ∼ M(μ0, κ
−1).

The relationship between the Gaussian distribution and the von Mises distribution al-

lows us to infer the parameters of the distribution of the transformed positions, u, from

the original positions, z. These are required to evaluate the expectations in the variational

updates equations. A drawback of using this distribution however is that we are now re-

stricted to a 2-D latent space as well as using isotropic covariances matrices to preserve this

relationship. The Latent Position model was originally derived using isotropic covariance

matrices so this is not that much of a limitation. However the restriction of the embedding

dimension is undesirable. The Fisher-Bingham distribution [74]is a distribution that gener-

alises the von Mises distribution to spaces of higher dimension and its use could potentially

allow for more flexibility in the choice of embedding dimension in the algorithm. However,

the increased complexity that this involves means that for the time being we will work with

the 2-D embedding space. The dimension of the embedding space is an important issue
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which was touched upon in Section 4.2 and will be discussed again in Section 7.1.

In the following section we perform a simulation with synthetic data generated from

the von Mises distribution and a Gaussian distribution mapped to the unit circle to further

demonstrate the transformation property that makes it so useful in our application.

5.3.2 Empirical Demonstration of Relationship Between the Gaussian and

von Mises distributions

In this section we conduct a simulation with synthetic data to demonstrate the relationship

described previously between the von Mises and bivariate Gaussian distribution. The ex-

periment is described in Algorithm 2. The results from the experiment are displayed in

Algorithm 2 Comparison of Gaussian and von Mises distributions

for κ = 1 : 9 and n = 100 do
Draw n samples z ∼ N (μ, κI)
Map these samples to the unit circle z 7→ u, u = z

||z || .
Calculate μ0 and κ for the von Mises distribution that match N (μ, κI).
Draw n samples θ ∼ M(μ0, κ

−1)
Plot transformed z against von Mises samples θ
end for

Figure 5.2. The results show that samples drawn from the Gaussian distribution and then

mapped to the unit circle are closely matched by those drawn from the von Mises distribu-

tions whose parameters are chosen to match that of the original Gaussian distribution but

on the circle. As we change the variance of the Gaussian distribution the resulting change

in the value of κ produces the same effect observed in the mapped samples.

5.4 Estimation by Variational Approximation

We now return to determining the variational update equations for the Latent Position

model utilising the new tools we have just described, the von Mises distribution and pro-

jection form of the model. As before the approximation to the logistic is:

σ(z) ≥ σ(ξ)exp

(
z − ξ

2
− λ(ξ)(z2 − ξ2)

)

,
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Figure 5.2: Plots of mapped samples from the Gaussian distribution in red with the samples
drawn from the corresponding von Mises distribution overlaid in blue. As the variance of
the Gaussian distribution is reduced σ2 = 1, 1

5
, 1

10
the corresponding value of the concentra-

tion parameter κ increases and the behaviour of the samples from the vonMises distribution
closely follows that of the mapped samples.

which admits a conjugate prior in the exponential family. According to the latent position

model:

p(y|z, β) =
n∏

i

n∏

j

σ(yij(β − |zi − zj |)).

Replacing |zi − zj | with β +
ziz

T
j

|zj |
the Latent Position model now takes the form:

p(y|z, β) =
n∏

i

n∏

j

σ(yij(β +
ziz

T
j

|zj |
))

We now substitute the variable uj for
zj

|zj |
which follows the von Mises distribution,

utilising the lower bound for the logistic function, Equation 5.4, the log marginal likelihood

of the data is lower bounded by:
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ln p(y|u, β) ≥ ln h(U , β, ξ) (5.5)

=
n∑

i

n∑

j

ln σ(ξij) +

(
(yij(β + ziu

T
j )) − ξij

2
− λ(ξij)((β + ziu

T
j )2 − ξ2

ij)

)

,

(5.6)

=
i∑ j∑ yij(β + ziu

T
j )

2
− λ(ξij)(β

2 + 2βziu
T
j + ziu

T
j ujz

T
i ),

+
i∑ j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

.

(5.7)

Now to update the model we consider the posterior distribution of the individual zi as-

suming independence. The latent positions are initialised, and the statistical properties of

the individual uj inferred and the parameters of the distribution of u. The variational pos-

teriors are evaluated by standard variational methods for factorised distributions, described

in Section 2.3.2:

ln q∗(zi) = Eu,β [ln h(zi, u, β, ξ) + ln p(z)] ,

= Eu,β

[
j∑ yij(β + ziu

T
j )

2
− λ(ξij)(β

2 + 2βziu
T
j + ziu

T
j ujz

T
i )

+

j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

−
1

2
ziIzT

i

]

.

Now dropping terms with no dependence on zi and rearranging:

= Eu,β

[
j∑ yij(ziu

T
j )

2
− λ(ξij)(2βziu

T
j + ziu

T
j ujz

T
i ) −

1

2
ziIzT

i

]

,

= Eu,β

[

zi

(
j∑ yij

2
uj − 2βλ(ξij)uj

)

−
1

2
zi

( j∑
I + 2λ(ξij)u

T
j uj

)
zT

i

]

.



5.4 Estimation by Variational Approximation 122

Taking expectations with respect to β:

= zi

(

Eu

[
j∑ yij

2
uj − 2Eβ[β]λ(ξij)uj

])

−
1

2
zi

( j∑
I + 2λ(ξij)Eu[u

T
j uj ]

)
zT

i ,

which is a Gaussian distribution with parameters:

Σ−1
zi

=
( j∑

I + 2λ(ξij)Eu[u
T
j uj ]

)
,

μzi
= Σzi

(

EU

[
j∑ yij

2
uj − 2Eβ[β]λ(ξij)uj

])

.

The variational posterior requires the evaluation of E[β] and as expected the variational

update equations are coupled.

5.4.1 Posterior Update Equations for β

We place a zero mean unit variance Gaussian prior on β and utilise the same approximation,

the optimal solution for the variational posterior distribution is:

ln q∗(β) = Eu,z[ln h(z, u, β, ξ) + ln p(β)],

= Eu,z

[ i∑ j∑ yij(β + ziu
T
j )

2
− λ(ξij)(β

2 + 2βziu
T
j + zju

T
i uiz

T
j )

+
i∑ j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

−
1

2
βIβ

]
.

Dropping terms with no dependence on β we have:

ln q∗(β) = Eu,z

[ i∑ j∑ yij

2
β − λ(ξij)(β

2 + 2βziu
T
j ) −

1

2
βIβ

]
,

= β

(
nedges

2
−

i∑ j∑
2λ(ξij)Ez[zi]Eu[u

T
j ]

)

−
1

2
βT

(

I + 2
i∑ j∑

λ(ξij)

)

β.
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which we recognise as a Gaussian distribution with parameters:

Σ−1 =

(

I + 2
i∑ j∑

λ(ξij)

)

, (5.8)

μβ = Σ

(
nedges

2
−

i∑ j∑
2λ(ξij)Ez[zi]Eu[u

T
j ]

)

, (5.9)

where nedges is the number of edges in the network.

5.4.2 Variational Parameters

To estimate the values of the variational parameters we need only consider the factors that

depend on ξ, the approximation to the log-likelihood:

ln h(ξ, β, z) =
i∑ j∑

ln σ(ξij) − ξi,j/2 − λ(ξij)
(
(β + ziu

T
j )2 − ξ2

ij

)
. (5.10)

Taking derivatives with respect to ξ and setting to zero as in [14] we obtain:

0 = λ′(ξij)
(
(β + ziu

T
j )2 − ξ2

ij

)
,

we now note that λ′(ξ) is a monotonic function of ξ for ξ ≥ 0, and that we can restrict

attention to nonnegative values of ξ without loss of generality due to the symmetry of the

bound around ξ = 0. Thus λ′(ξ) 6= 0 and hence we obtain the following re-estimation

equation:

ξ2
ij = Eβ,z,u(β

2 + 2βziu
T
j + ziu

T
j ujz

T
i ), (5.11)

= μ2
β + Tr(Σβ) + 2μβziu

T
j + Tr(SiSj), (5.12)

where

Si = zT
i zi + ΣZ , (5.13)

Sj = uT
j uj + κ−1. (5.14)
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Figure 5.3: Results from the embedding of four different adjacency matrices, ER, star, tree
and ring graphs. n = 10 in all cases.

5.4.3 Results

The equations derived in the previous sections allow us to use the variational method to fit

the Latent Position model for a given adjacency matrix. This is done by repeatedly cycling

through the distributions which are dependent upon each other in the same manner as an

EM algorithm. To verify the algorithm is working correctly we test it on four standard

networks previously encountered in Chapter 4, the Erdos-Renyi network, star network, tree

network and ring network. The results obtained from deploying the variational Bayesian

latent position model on instances of these networks with n = 10 nodes are shown in

Figure 5.3 and match what would be expected given the form of the networks. The varia-

tional model estimation method has been verified to function as expected on a set of small

networks. However, the motivation for the method’s development was the belief it would

be better suited to large scale networks than the MCMC equivalent. We now demonstrate

estimation of larger scale versions of the same four networks with n = 500 using the varia-

tional approach. This is a challenging sized network with such methodology but still within

the reach of the case-control version of MCMC, see Section 4.4, however the experiment
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Figure 5.4: Results from the embedding of four different adjacency matrices, ER, star, tree
and ring graphs. n = 500 in all cases.

involving all four networks terminates considerably faster than the computations required

for a single MCMC estimation. The results are shown in Figure 5.4. Although there are

difficulties in visualising such large networks the general structure observed matches what

we would expect.

5.5 Variational Estimation of the LPCM

We now extend the approach demonstrated in the previous sections to the more complex

LPCM. The LPCM, introduced in Section 4.2.2, is an extension of the Latent Position

model that incorporates clustering in the data. To represent the clustering the latent posi-

tions, z, are modeled as coming from a mixture of K multivariate Gaussian distributions:

zi ∼
K∑

k=1

πkN (μk , σ2
kI).
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For convenience we will work with the precision, Λk rather than the variance. The param-

eters β, π, λ and μ are also given prior distributions and the full set of priors is:

zi ∼
K∑

k=1

πkN (μk ,Λ−1
k ), (5.15)

p(S|π) =
N∏ K∏

πsnk
k , (5.16)

p(z|S, μ, σ2) =
N∏ K∏

N (zn|μk, Λ
−1
k )sng , (5.17)

p(π) ∼ Dir(π|α) = C(α)
K∏

πα−1
k , (5.18)

p(μ,Λ) ∼ N (m0, (ω0Λk)
−1)W(Λk|W0, ν0). (5.19)

The relationships between the parameters of the model are best expressed in the form of

a Directed Acyclic Graph shown in Figure 5.5 This shows the structure of the joint dis-
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Figure 5.5: Directed acyclic graph for the latent position cluster model where Z represents
the latent positions and Y the data in the form of the adjacency matrix of connections.

tribution of all of the random variables in the model and allows us to write the marginal

likelihood as:

p(y) =

∫
p(y|z, β)p(z|s, μ,Λ−1)p(s|π)p(π)p(μ,Λ)p(β|μβ, σ2

β). (5.20)



Chapter 5. Estimation of the Latent Position Cluster Model by Variational
Approximation 127

The optimal variational distributions can be found using the standard variational method-

ology of taking expectations with respect to the other parameters:

ln q∗(z) = Eβ[ln p(y|z, β)] + Es,μ,Λln [p(z|s, μ,Λ], (5.21)

ln q∗(S) = Eπ[ln p(z|π)] + Eμ,Λ−1 [ln p(z|s, μ,Λ]), (5.22)

ln q∗(π) = ln p(π) + Es[ln p(s|π)], (5.23)

ln q∗(μ,Λ) = ln p(μ,Λ) + Es[ln p(z|s, μ,Λ)]. (5.24)

We now introduce Equation 5.7 utilising the projection form of the model and the varia-

tional approximation to the logistic function:

ln (P (y|β, z)) ≥ lnh(β, z, ξ),

=
i∑ j∑ yij(β + ziu

T
j )

2
− λ(ξij)(β

2 + 2βzju
T
i + ziu

T
j ujz

T
i )

+
i∑ j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

,

(5.25)

where again ξ is a variational parameter that must be optimised for each link and uj is

the unit vector corresponding to zj . In order to estimate the variational distributions we

substitute the distributions in equations 5.16-5.19 into 5.21-5.24 where appropriate and

evaluate the expectations. We start with the latent positions Z.

ln q∗(zi) = Eβ,u j
[ln p(y|zi, β)] + EK,μ ,Λln [p(zi|K, μ,Λ)],

ln q∗(zi) = Eβ,u j

[
j∑ yij(β + zT

i uj )

2
− λ(ξij)(β

2 + 2βzT
i uj + ziu

T
j ujz

T
i )

]

+

j∑(

ln σ(ξij) −
ξij

2
+ λ(ξij)ξ

2
ij

)

+ Es,μ,σ

K∑
sik{lnπk − ln

|Λ−1
k |
2

−
1

2
(zi − μk)(Λk)(zi − μk)

T},

(5.26)
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lnq∗(zi) =
n∑

j

yi,j

(
Eβ[β] + ziEu[u

T
j ]

2

)

−
∑

j

λ(ξij)
(
Eβ[β2] + 2Eβ[β]ziEu[u

T
j ] + zT

i Eu[u
T
j uj ]zi

)

+
G∑
EK [kig]{Eπ[ln πg] − EΛ[ln

|Λ−1
k |
2

] −
1

2
Eμ,Λ[(zi − μk)

T (Λk)(zi − μg)]}.

Now dropping all terms independent of zi we have:

ln q∗(zi) =
N∑

j

yi,j

(
ziEu[u

T
j ]

2

)

−
∑

j

λ(ξij)
(
2Eβ[β]ziEuj

[uT
j ] + ziΩjz

T
i

)

+
K∑
Es[sik]{

1

2
Eμ,Λ[(zi − μk)(Λk)(zi − μk)

T ]},

= zi

(
N∑

j

yi,jEuj
[uj]

2
− 2λ(ξij)Eβ[β]Euj

[uj]

)

−
n∑

j

λ(ξij)z
T
i Ωjzi

+
K∑
Es[sik]{−

1

2
zT

i EΛ[(Λk)]zi + zT
i EΛ[(Λk)]Eμ[μk]},

where

Ωj = Eu[u
T
j uj ] = diag(uT

j uj + σ2
j ).

At this point if we assume a hard clustering framework then the contribution from the mix-

ture model is reduced to simply the component responsible for zi and we have a distribution

for q∗(zi) that follows a Gaussian distribution:

ln q∗(zi) = zi

(
n∑

j

yi,jEu[uj]

2
− 2λ(ξij)Eβ[β]Eu[uj]

)

−
1

2

N∑

j

2λ(ξij)ziΩjz
T
i

−
1

2
zT

i EΛ[(Λ)]zi + zT
i Eλ[

1

Λ
]Eμk

[μk].
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with parameters:

Σ−1
zi

= EΛ[Λ−1] +
n∑

j

2λ(ξij)Ωj,

μzi
= Σzi

(
N∑

j

yi,jEu[uj]

2
− 2λ(ξij)Eβ[β]Eu[uj] + Eμ[μk]

)

.

From the structure of the model in Figure 5.5 we observe that the variational update for β

will be the same as in the latent position model and follows a Gaussian distribution with

mean and variance given by Equations 5.8 and 5.9. It can also be seen from the DAG

that the estimation of the remaining parameters in the model is equivalent to inferring a

variational Mixtures of Gaussians over the positions z. We therefore utilise the standard

variational updates provided in [14] to obtain the following equations for the remaining

parameters starting with the cluster labels:

q∗(s) =
N∏

n=1

K∏

k=1

rsnk
nk ,

where

rnk =
ρnk

∑K
k=1 ρnk

,

ln ρnk = E[ln πk] +
1

2
E[ln |Λ|] −

p

2
ln 2π

−
1

2
Eμk,Λk

[(zn − μk)
T Λk(zn − μk)].

For the discrete distribution q∗(S) we have the standard result

E[snk] = rnk,

from which we see that the quantities rnk are playing the role of responsibilities. The op-

timal solution for q∗(s) depends on moments evaluated with respect to the distributions

of other variables and so the variational update equations are coupled and must be solved

iteratively.
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It is convenient for the remaining distributions to define three statistics of the latent posi-

tions evaluated with respect to the responsibilities given by [14]:

Nk =
N∑

n=1

rnk,

z̄k =
1

Nk

N∑

n=1

rnkzn,

sk =
1

Nk

N∑

n=1

rnk(zn − z̄k)(zn − z̄k)T .

The mixing proportions πk follow a Dirichlet distribution with parameters given by

q∗(π) = Dir(π|α).

where α has components αk given by:

αk = α0 + Nk.

The updates for the means and precisions of the components are coupled and we have:

q∗(μk ,Λ) = N (μk |mk , (ωkΛk))W(Λ|Wk, νk).

where we have defined

ωk = ω0 + Nk,

mk =
1

ωk

(ω0m0 + Nkz̄k),

W−1
k = W−1

0 + NkSk +
ω0Nk

ω0 + Nk

.

5.5.1 Experiments

The LPCM estimated by variational approximation as described in the previous section is

now applied to synthetic and real data. For these experiments we will be required to supply
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Figure 5.6: Simulated networks withK = 4 and the model correctly allocates the points to
their respective clusters in both cases.

the value of K and extension to incorporate inference over K is an avenue for future work

to be discussed in Section 7.1. To begin with synthetic data is generated from the LPCM

with K = 4. For the real data we will use a standard data set from social network analysis

- the Sampson’s monks dataset which will be described in more detail later.

Data from the Model

Two sets of data were generated from the LPCMmodel withK = 4 and nk = {5, 30}. The

clusters are of equal size and distributed in a cross shape as shown in Figure 5.6. The nodes

are densely connected within a cluster with one disconnected from the rest of the network,

highlighting one of the advantages of our approach over those that are restricted to fully

connected graphs. The model estimated by the variational method from the corresponding

adjacency matrix correctly clustered the nodes into their distinct groups. A small value of

nk = 5 was chosen to generate a data set comparable in size with the Sampson data set

studied in the next section while the larger data set with clusters of size nk = 30 produces a

network that would require a long runtime using MCMC methods but is easily manageable

using the variational approach.



5.5 Variational Estimation of the LPCM 132

Sampson’s Monk Data

The well studied Sampson’s monk dataset [115] was used in both the original LPCM paper

[58] and the initial variational solution [114] and thus we choose to use it here to allow

comparison of results. The data stem from an ethnographic study of community structure

in a New England monastery. The study describes several social relations among a group of

men (novices) who were preparing to join a monastic order. We only consider the ‘liking’

social relationship, at five different time points the novices were asked to indicate whom

they liked the most and to provide a first, second and third choice. The study captures

a period of great turmoil and division and shortly after the fourth measurement four of

the novices were expelled. To generate the network we follow the method used in [58],

only answers from the first three interviews are considered and any indication of ‘liking’ is

taken as an edge between two individuals, the ‘dislike’ relation is not considered. Sampson

provided a description of the clustering based on information that was collected at the end

of the study period. He identified three main groups: the Young Turks (seven members),

the Loyal Opposition (five members) and the Outcasts (three members). The other three

monks wavered between the Loyal opposition and the Young Turks which he described

as being in intense conflict [115]. With this in mind we initially began our experiments

with the value of K = 4 however the results obtained were highly unstable and generally

resulted in two empty clusters. The value of K = 2 was then chosen and a stable solution

obtained which is shown in Figure 5.7, where the allegiance to the different factions is

indicated using a letter for each node. The results show clear separation of the data into

two clusters. The clusters are defined by the two opposing factions, the Young Turks and

the Loyal Opposition, with two members of the waverers joining the opposition and one the

Young Turks. The Outcasts are absorbed into the Young Turks which is the one negative

as the MCMC method in [58] was able to separate these novices into their own cluster to

produce a K = 3 solution. The central position of the third ‘waverer’ is interesting and

justifies the name ascribed to this particular group of novices as the node has links to both

factions which defines its position. While the embedding in Figure 5.7 shows the Outcasts

somewhat separated from the Turks they do not form their own cluster and it could be that,

as we have remarked previously, we are suffering from a lack of data, which has a negative
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Figure 5.7: Results obtained using the variational approximation method to estimate the
LPCM with K = 2 for Sampson’s monk data. The colours of the nodes signify cluster
membership and the letters above each node indicate which of the four factions the corre-
sponding person was affiliated with, according to [115].

impact on the performance of variational methods. In the main however the results obtained

agree with those found in the original paper estimating the LPCM using MCMC [58].

5.6 Conclusion

Chapters 4 and 5 both are devoted to improving the model based embedding approach for

network data. This chapter concentrated on the development of a method for estimating the

Latent Position and LPCM models by variational approximations. This required the use of

an alternate phrasing of the model using the cosine angle distance and a local variational

approximation to the logistic function. After calculating analytical update equations for the

model parameters the models were deployed on a number of synthetic networks and the
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LPCM was tested on a benchmark dataset. The synthetic networks used were significantly

larger than those tackled with the MCMC approach. The performance on the Sampson’s

monks dataset demonstrated the method’s ability to correctly capture the major cluster

structure in the data and closely matches that obtained by the original MCMC method in

[58] with the exception of the ‘Outcasts’ cluster which were not separated into their own

group but assigned to the larger ‘Young Turks’ cluster.

The method developed is a more satisfactory solution to the problem of estimating the

LPCM by variational approximations than that of previous efforts. However this comes

at the cost of a fixed embedding dimension of p = 2, due to the use of the von Mises

distribution. As mentioned the use of the Fisher-Bingham distribution is one potential

solution that could be explored in future work. Inference over the value of K is another

aspect that could be extended following the same method as those seen in Chapter 3 with

the MFA model estimated by variational approximations [10]. These are two aspects in

which the variational approach could be extended and that for the time being lead us to

favour the BDMCMC approach developed in Chapter 4. In the next chapter we will use

this framework to develop a method for detecting changes in graphs that unlike current

state of the art methods does not monitor specific features of the graph. Instead we utilise

Canonical Correlation Analysis to compare successive embeddings of networks.
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Chapter 6

A Latent Variable Framework for

Comparing Networks

The Latent Position Cluster Model, studied in Chapters 4 and 5, provides us with a fully

Bayesian model for embedding graph data. Extension of the estimation method to incorpo-

rate inference on K, the number of mixture components in the model, allows for fully un-

supervised community detection of a network. An advantage of a model-based approach is

that it allows for further analysis and interrogation of the model. For example the inference

on K can in itself be used as a means of detecting changes in a network, albeit only those

that manifest as simple changes in the community structure. As we demonstrated using the

VAST challenge data in Section 4.5.2 this can be insufficient to capture more subtle differ-

ences between networks and in this chapter we propose a novel method utilising the LPCM

representation that allows comparison of networks to detect further differences in network

structure. The main strength of the method is its generality as there is no a priori selection

of any particular graph metric or feature as a means of defining change. This distinguishes

it from other state of the art methods for mining graph data. Another key distinction is that

due to the nature of the LPCM, we are essentially analysing a vector representation of the

network which allows us to deploy standard multivariate analysis techniques rather than

structural pattern recognition methods associated with graph data.

The chapter proceeds as follows, in Section 6.1 we review the current literature and

comparable methods for detecting changes in graphs. This is a rapidly developing field with
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some of the earliest papers from just a decade ago containing only a handful of references.

Section 6.2 then describes the proposed method for comparing networks. This is based

on Canonical Correlation Analysis which was introduced earlier in Section 2.1.3. Change

detection requires the use of a test statistic to allow confidence intervals to be set and

we derive one based on the transformation matrices associated with CCA in Section 6.3.

In Section 6.4 a number of experiments are conducted using synthetic data to assess the

performance of the method under known conditions and then finally applied to real data in

the form of mobile phone data from the VAST challenge and email communication data

from the Enron Email Corpus.

This chapter features expanded versions of material published in [99] and reproduced

with permission from the IEEE, c©2012.

6.1 Review of Change Detection in Networks

The field of statistical change detection is an area that has been extensively researched over

the years with a vast catalogue of literature behind it. By comparison change detection in

a graph setting is an under researched area although the number of papers in the field is in-

creasing rapidly from just a handful a decade ago. The applications of graph based change

detection are as numerous as the use of graphs themselves. Network intrusion detection

for computer networks [96], credit card fraud detection [4], drug trafficking [34], epilepsy

seizure onset [79] and social network analysis [87] have all made use of such methods.

Graph based change detection methods can broadly be divided into two categories, meth-

ods for detecting changes or anomalies within a graph and methods for detecting changes
between a sequence of graphs. The method we have developed is for detecting structural
differences between graphs however there is a great deal of crossover between both objec-

tives with methods and principles from each being applied in both domains. With this in

mind we will give an overview of both approaches starting with anomaly detection within

a graph.

For a graph based anomaly there are several situations that may occur, including:

1. A node exists that is unexpected.
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2. An edge exists that is unexpected.

3. The node label is different than expected.

4. The edge label is different than expected.

5. An expected node is absent.

6. An expected edge between vertices is absent.

There are three general categories of anomalies: insertions(1,2), modifications(3,4) and

deletions(5,6) [34]. Anomalies can be individual nodes themselves or anomalous substruc-

tures within the graph. The dominant theme or method in this area is the use of Mini-

mum Description Length (MDL) based algorithms. The MDL is the lowest number of

bits needed to encode a piece of data [96]. Methods based on this heuristic iteratively

cycle through the graph finding the most common substructure and compressing these sub-

structures into new nodes, anomalies can then be detected as substructures with a high

compression cost that occur infrequently. This approach is similar to the graph matching

approach utilised in structural anomaly detection or detecting changes between graphs and

has been used in a number of papers for network intrusion detection [96, 18, 34] and drug

trafficking detection [34].

A property that is inherent in graphs is the presence of graph spectra. Analysis of the

eigenvalues of the graph Laplacian of the adjacency matrix can be used for graph cluster-

ing [136]. This spectral analysis approach can also be applied to anomaly detection and

analysis of the principal eigenvectors of the graph was used to detect anomalous nodes in

[68] as part of a network monitoring system.

The extraction of features such as the spectra above can be extended to incorporate

some of the infinitely many other possible graphs features. In [4] specific features of a

node’s local neighbourhood, referred to as an egonet, are extracted including the principal
eigenvalues. The relationship between pairs of the specifically selected features are shown

to follow a power law and anomalous nodes can be picked out as those deviating from this

relationship.

The egonet method has also been applied to detect changes in a time series of mobile

communication graphs [3]. This involved the extraction of a set of 12 features for each node
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in the network. The correlations between these attributes for each node are monitored and

deviations from this correlation structure indicates a change in the network. The method

effectively works in a multivariate space rather than the graph space and it appears to be

quite similar to the approach we have taken except rather than extracting particular features

we embed the network in a low dimensional multivariate space using the LPCM. Indeed

many of the features selected such as the degree, number of neighbours, number of triangles

etc. influence the positions of the nodes in the LPCM.

A network feature extraction approach has also been employed to detect changes in

social networks [87, 86]. The authors monitored two specific node features, betweenness

centrality, a measure of how often a node lies along the shortest path between two other

nodes for all other nodes in a graph, and closeness centrality which measures the sum of

the distances from a particular node to all other nodes in the graph. An overall network

feature, the density was also monitored. The density of a network is the measure of how

many links exist in the graph divided by the total possible number of links. Organisations

with high density are well connected internally. The key issue with this approach and the

egonet method described above is that there are hundreds of different network measures

that can be calculated from the entire graph or for individual nodes. Selecting a specific

subset of features to monitor for changes a priori implicitly limits the types of changes that

can be detected as to just those that produce changes in those features. For example it is

possible for the structure of a network to change while the overall density of the network

remains the same simply by maintaining the same number of nodes and edges.

An alternative approach that has been used widely for comparing graphs for either clas-

sification or change detection is the graph matching approach [18, 27]. The most stringent

form of graph matching is graph isomorphism, where a one-to-one correspondence must

be found between each node of the graphs. A weaker form of matching is subgraph iso-

morphism, that requires that an isomorphism holds between one of the two graphs and a

node induced subgraph of the other. Finally the maximum common subgraph approach

maps a subgraph of the first graph to an isomorphic subgraph of the second one, since such

a mapping is not uniquely defined, the goal is to find the largest subgraph for which such a

mapping exists. Graph edit distance [116] can be used as a measure of the distance or dis-

similarity between two graphs. In graph edit distance computation, one applies a sequence
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of edit operations on the two given graphs so as to make the first graph identical, or iso-

morphic, to the second one. The length of the shortest edit sequence of this kind is defined

as the edit distance of the two graphs under consideration. Often a cost is assigned to each

edit operation. In this case, edit distance is defined as the cost of the cheapest sequence of

edit operations that make the two graphs isomorphic [18]. This graph edit distance can be

used as a measure of change in a sequence of graphs however there is a high computational

complexity associated with computation

6.2 Comparison of Networks using Canonical Correlation Analysis

Applying the LPCM to network data produces a q-dimensional vector representation of the

network embedded in Euclidean space. In Section 2.1.3 Canonical Correlation Analysis

(CCA) [7, 65, 137] was introduced as a latent variable model and a Bayesian treatment

described. The DAG for this model is shown in Figure 6.1 illustrating the dependencies in

the model. CCA is a latent variable model that gives a measure of the correlation between

two sets of multivariate data.

?>=<89:;α1

!!CCCCCCCCC α0, β0
oo // ?>=<89:;α2

}}{{{{{{{{{

GFED@ABCW1

""DDDDDDDDD
/.-,()*+z

{{wwwwwwwwww

##GGGGGGGGGG GFED@ABCW2

||zzzzzzzzz

76540123ε1 // 76540123x1 76540123x2 76540123ε2oo

?>=<89:;μ1

OO

?>=<89:;μ2

OO

Figure 6.1: Directed Acyclic Graph of the Bayesian CCA model. The correlations between
data setsX1 andX2 are explained by the shared latent variable Z.

The embedding representation obtained from the LPCM can be used in conjunction

withs CCA to compare two networks. The canonical weights, W1 andW2, obtained from

CCA, describe the linear transformations required to map the network embeddingsX1 and

X2 to a common latent variable Z. These weight matrices provide a means of comparing

the networks in that it is assumed similar networks will share similar mappings. To test this
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assumption we construct an identity:

W−1
1 × W2 = Iq, (6.1)

which allows us to compare two networks, this is one possible choice but we note that

other variations are possible too. Networks that obey this identity are perfectly matched

whereas for networks which violate this identity there will be a difference in structure. It is

convenient at this point to appeal to a frequentist approach and we construct a hypothesis

test with the null hypothesis that the two networks are the same. However the test statistic

is matrix valued and the next section describes how to construct confidence intervals for

the elements of the matrix which are then tested individually.

6.3 Test Statistic for Canonical Weights

Using the latent variable model formulation of CCA from Section 2.1.3, if the data X1

andX2 are highly correlated then the translation to the latent variable space should respect

the identity in Equation 6.1. In order to determine whether the networks are different we

need to determine the distribution of this matrix-valued test statistic and whether a value

falls outside the expected range given the distribution. This could be tackled using methods

from random matrix theory [35] however for simplicity we choose to make inference about

each element of the matrix separately. Also as a consequence of the Bayesian approach to

model estimation outlined in Section 2.1.3 which we will follow, the ARD priors discussed

will drive the columns ofW1 andW2 to zero if there are no correlations in the data along

this dimension. This gives us a second flag to detect changes however we note that the test

statistic will capture this indicator as a large spike in the test values caused by inverting a

value close to zero.

The prior distribution of each column of the canonical weights matrix, W , is an in-

dependent Gaussian distribution and utilising the conjugate prior distributions set out in

Section 2.1.3 in Equations 2.11 and 2.14 it is possible to calculate the posterior distribution

of each column to also be a Gaussian. Full posterior distributions for the model can be

found in [76, 135]
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If we partition the joint Gaussian appropriately we can obtain the marginal distribution

for each element of the column:

wij ∼ N (ŵij, σ̂i),

where ŵij is the posterior expectation and σ̂i is the posterior variance. We restrict ourselves

to the simplest case, q = 2, for which we obtain the test matrix:

(
a b

c d

)−1

×

(
e f

g h

)

=
1

|W |

(
de − bg df − bh

−ce + ag −cf + ah

)

,

where each element is given by a sum of products of Gaussians. The next section describes

a method to calculate the distribution of such a sum.

6.3.1 Products of Gaussians

The distribution of a sum of products of Gaussians is not available in closed form. Thus we

will approximate the distribution via a set of moments. The moment generating function,

Mz(t), for a product of Gaussians was found by [29] who calculated it to be:

Mz(t) =(
√

[1 − (1 + ρ)t][1 + (1 − ρ)t])−1

× e
2δ1δ2t+(δ21+δ22−2ρδ1δ2)t2

2[1−(1+ρ)t][1+(1−ρ)t]

(6.2)

where z = x1x2

σ1σ2
, x1 ∼ N (μ1, σ1), x2 ∼ N (μ2, σ2) and δ1 = μ1/σ1. By manipulating

Mz(t) we can find as many moments as required. These moments can be used to calculate

the mean, and variances of the product of two Gaussian variables which are:

E(z) = μ1μ2 + ρσ1σ2,

V (z) = μ2
1σ

2
2 + μ2

2σ
2
1 + σ2

1σ
2
2 + 2ρμ1μ2σ1σ2 + ρσ2

1σ
2
2,

A further simplifying assumption is needed. In the case when ρ = 0, x1 and x2 are
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independent, the mean and variance reduce to:

E(z) = μ1μ2,

V (z) = μ2
1σ

2
2 + μ2

2σ
2
1 + σ2

1σ
2
2,

which are simple to evaluate once the moments of the original variables are known. The

assumption of independence between the variables presents another advantage. Although

Equation 6.2 shows that the analytic result of the product of two Gaussian distributions is

not a Gaussian distribution, in the case of independence the limit, as δ1 and δ2 approach

infinity, ofMz(t) is a Gaussian distribution. In other words, the product of x1 ∼ N (μ1, σ
2
1)

and x2 ∼ N (μ2, σ
2
2) tends towards a N (μ1μ2, μ

2
1σ

2
2 + μ2

2σ
2
1 + σ2

1σ
2
2) distribution as δ1 and

δ2 increase [138].

One way to predict the adequacy of the Gaussian approximation is by considering the

skewness of z from the analytic result. As the skewness decreases the approximation im-

proves. Using the approximation the sum of products becomes a simple sum of Gaussian

distributions which are additive. It should be noted that summing a sufficient number of

independent random variables together will produce a Gaussian distribution as per the cen-

tral limit theorem. Increasing the embedding dimension would result in the addition of

more products of Gaussians which may improve the validity of the approximation used

[99] c©2012 IEEE.

6.3.2 Empirical Analysis of Test Statistic

To verify that the approximation in Section 6.3.1 is satisfactory we generate a Monte Carlo

sample of the sums of product of Gaussians by taking 10000 samples from two independent

Gaussian distributions and then multiplying and summing individual samples together to

get 10000 samples from the corresponding sum of product of Gaussians. A histogram

of these samples is shown in Figure 6.2, with the Gaussian distribution with parameters

calculated as discussed in Section 6.3.1 overlaid in red. The Kolmogorov-Smirnov(K-S)

test [85] was used to evaluate the goodness of fit. This test was conducted 100 times, with



Chapter 6. A Latent Variable Framework for Comparing Networks 143

four randomly chosen examples shown in Figure 6.2, using randomly chosen parameters

and in all tests we fail to reject the null hypothesis at the 95% confidence level. A more

thorough analysis of the approximation can be found in [138].
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Figure 6.2: Monte Carlo samples of a sum of products of Gaussians in blue with the approx-
imated Gaussian distribution overlaid in red. The samples and approximated distribution
were compared using the Kolmogorov-Smirnov test.

6.4 Experiments

This section describes a number of experiments carried out using simulated and real net-

work data to evaluate the ability of our approach to detect a change in network structure.

As mentioned in Section 6.3 the embedding dimension is fixed to the simple case of q = 2.

This value of q is preferred partially for computational simplicity but also because the de-

velopment of the LPCM favours q = 2 for the purpose of visualisation. The identity,

Equation 6.1, is evaluated and each element tested at a 95% confidence level, +/ − 1.96σ.
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Figure 6.3: Outline of the steps involved in the network comparison method.
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With q = 2 there are four variables to consider and we deem the networks to be different

if the results of at least 3 tests are in agreement. This is perhaps an overly conservative

method of combining the information and a weighted voting scheme could be considered

in future work as well as a multivariate test comparing posterior distributions over W . A

schematic outlining the full process for comparing two graphs is outlined in Figure 6.3.

The experiments are organised as follows, using synthetic data generated from the mod-

els introduced in Section 4.1 we initially verify that no change is detected when the network

is presented with two networks that are the same, we then conduct a change detection ex-

periment comparing networks with completely different architectures. To conclude the

synthetic experiments we attempt to gain further insight into the capabilities of the method

by quantifying the magnitude of the change that can be detected. This is performed in two

ways, first by introducing increasing levels of randomness into the network by randomly

rewiring increasing numbers of randomly chosen nodes. As an attempt to introduce more

subtle changes into the network a second experiment is performed where the nodes are

rewired but the degree of the node remains unchanged. Thus the degree sequence of the

graph, which is a generally a sufficient statistic [44] to identify a graph, is unchanged.

To conclude we deploy our method on two datasets, the VAST challenge data encoun-

tered previously in Section 4.5.2 and the Enron Email Corpus.

6.4.1 Simulated Networks

In this section the performance of the method is assessed using simulated data. First we

verify that the method is consistent in detecting no change and that the identity, Equation

6.1, holds. Networks with different topologies are then compared to demonstrate the ability

of the method to detect differences between networks. The data used will be made up of

four, non-trivial network topologies. We use a tree network which is a regular network

that obeys the LPCM. The other three networks are different network models with specific

characteristics described in Section 4.1. A fully random network or Erdős-Rényi graph

in which the probability of a link between two nodes is the same for all nodes. A Watts-

Strogatz network which is a type of small world network and a Barabási-Albert network

which is similar to real world networks demonstrating preferential attachment. Examples
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of these networks are shown in Figure 6.4.
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Figure 6.4: Tree, Erdős-Rényi, Watts-Strogatz and Barabási-Albert networks, n = 30,
visualised in two dimensions. The networks provide a good evaluation for our method each
having different network characteristics, such as average degree and betweeness centrality.

Consistency Experiment

To verify that the method does not detect spurious changes we perform a comparison of

successive embeddings of the same network, for each of the four networks in Figure 6.4.

As discussed earlier the networks are embedded in two dimensions and the test matrix

obtained from Equation 6.1 consists of four elements. The distributions of these individual

elements were obtained utilising the approximation to a product of Gaussians outlined in

Section 6.3.1 and the means are plotted in Figure 6.5a. Having the distribution of the test

statistic elements allows us to calculate confidence intervals corresponding to +/ − 1.96σ

these are plotted around the elements of the Identity matrix. A change is said to have
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(b) Different architectures

Figure 6.5: Test statistics obtained for two different experiments. (a): consistency exper-
iment, the combined embedding-CCA method is presented with two adjacency matrices
that are the same, no change is detected. (b): comparison of networks with different archi-
tectures. A change is detected at each comparison step. The expectation of each of the four
elements of the test statistic are plotted in blue and confidence intervals at the 95% margin
are plotted in red or green.

occurred if the mean of three elements of the test statistic fall outside these values and

Figure 6.5a shows that no change is detected for any of the networks.

Network Comparison

The previous experiment confirms that Equation 6.1 holds and that no change is detected

when the method is presented with two adjacency matrices that are the same. The next

step is to test the method’s capability to detect differences between adjacency matrices

with different structure. The four networks shown in Figure 6.4 are compared and the

test statistics obtained are shown in Figure 6.5b. The networks are compared successively

starting with the tree and through to the Barabási-Albert network. A value outside the

confidence intervals is obtained in at least three of the test statistics in each comparison

indicating a change has been detected.
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Change Magnitude Experiment

The previous experiments demonstrated the ability of the combined embedding-CCAmethod

to detect a change when there is a large shift in the structure of a network, i.e. from reg-

ular to random. To gain further insight into the capabilities of this approach a further

set of experiments was performed studying the behaviour of the method for incrementally

larger changes to a network. This section presents the results of these experiments where

a network, generated from the Latent Position Model, is subjected to increasing amounts

of structural change. This is done in two ways: in the first set of experiments nodes are

selected at random and then randomly rewired with probability p as in an Erdős-Rényi

graph. The number of nodes is increased in stages increasing the magnitude of the change

in the network. The second set of experiments follows the same idea however the nodes are

rewired so that the degree sequence is preserved. This introduces a change into the network

while still preserving some of the original structure, indeed the degree sequence is consid-

ered a sufficient statistic for defining a graph [44]. This makes the test a more challenging

task for a change detection algorithm as in some sense we are comparing a network that

can be considered the same. The original network is generated from the Latent Position

model, drawing a set of points from a Gaussian distribution and generating links between

the corresponding nodes. A link is drawn as a Bernoulli random variable with probability

defined by Equation 4.4 to create the adjacency matrix. The size of the network is var-

ied with n ∈ {10, 25, 50, 100} and the number of nodes randomly rewired is increased in

steps of 20% starting from a single node. The canonical correlations, defined in Section

2.1.3, obtained during the random rewiring experiment are shown in Figure 6.6a and show

that as the amount of randomness introduced to the network increases the correlation of

the embedding with that of the original decreases. The test statistic obtained comparing

the original network with the degree rewired networks with n = 100 is shown in Figure

6.6b. The test statistics obtained for both rewiring experiments for all n are provided in

Appendix B and we now summarise the main features observed. The results obtained from

this experiment reveal some interesting characteristics of the method. For both forms of

rewiring the points at which a change is detected are the same at:

• n = 10 a change is detected at step 3, when 50% of nodes have been changed.
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Figure 6.6: Canonical correlations and test statistics obtained for the change magnitude ex-
periment. (a): canonical correlations for the random rewiring experiment. Each iteration of
the network is compared to the original. As the magnitude of the change induced increases
the correlation between embeddings is reduced, the first canonical correlation is plotted in
blue and the second in green. (b) first four steps of the degree rewiring experiment for
n = 100, no change is detected with each test statistic value within the 95%confidence
intervals.

• n = 25 a change is detected at step 3 when 44% of nodes have been changed.

• n = 50 a change is detected at step 4 when 62% of the nodes have been changed.

• n = 100 a change is detected at step 5 when 81% of nodes have been changed.

Interestingly the results show that the type of change that occurs makes no difference in

terms of detection but that the magnitude of change is important and as the size of the

network increases so does the fraction of the network that needs to change for a detection

to occur. Informed by these results the method is applied to data from real networks.

6.4.2 Real Network Data

The data tested so far has consisted of networks that obey a single simple structure. Real

networks are much less ordered and to test our method under more realistic conditions we

now apply it to two datasets of communication networks. The first is simulated phone call

data from the IEEE VAST 2008 Challenge [56] and the second consists of the patterns of

emails between employees in the Enron corporation.
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VAST Challenge Data

While the data is synthetic it is simulated with sufficient realism that it captures daily cycles

in call patterns and can be treated as real. The data consists of ten days of cell phone calls

made by 400 unique cell phones. Previous work on the challenge detected anomalous

activity beginning on the eighth day of recording [60]. The data is binned into daily calls

to generate separate networks for each day. The latent representations of two of these days

are shown in Figure 6.8. In this case visual inspection of the embedding is insufficient to

suggest a change in network structure. We test over a nine day period leading up to and

including the change day. The results are shown in Figure 6.7 where the days are compared

consecutively, day 1 with day 2 and day 2 with day 3 etc. A large spike is observed in all

four elements of the test matrix on the anomalous day. There is some variability observed

throughout the run but the largest change by far is on the anomalous day. According to the

results of the VAST challenge [56] at this point three of the major players in the network,

i.e. nodes with the largest degrees, switch phones. This produces a massive shift in the

network with the original nodes going silent and the new nodes taking their place. This

change in the structure is then detected by the embedding-CCA method.
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Figure 6.7: Test statistic for the VAST networks comparing each day with the previous.
We see an abrupt change on the day when the pattern of activity shifts. The activity in the
proceeding days is also shown to be broadly similar with some variability from day to day
but not of sufficient magnitude to flag a change. [99] c©IEEE 2012.

Enron Dataset

The Enron email corpus is one of the largest and best known datasets of real email data.

The data was made public by the Federal Energy Regulatory Commision following their

investigation into the collapse of the Enron corporation, which at one point had been the

seventh largest, by revenue, business organisation in the United States. The data was col-

lected from the email documents of 150 senior executives in the Enron company. The full

corpus represents a large collection (about half a million emails) and temporal record of

email conversations over a period of 2.5 years [32]. The data has been the subject of a great

deal of research for both social network analysis of the communication patterns and natural

language processing of the email content.

A consequence of the data being analysed with different scientific objectives is that
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Figure 6.8: Embeddings of VAST network activity on two different days. The network on
the right is taken on the anomalous day. The nodes are plotted in red with the size of a node
being proportional to the degree of the node. Visual inspection of the graphs is insufficient
to determine whether a change has occurred. [99] c©IEEE 2012.

different variants of the original complete data are utilised. For example every email ad-

dress found in the sent or received folder of one of the 150 employees can be considered

as a unique node producing a network with n = 34, 275 [127]. Alternatively a network

of just 150 nodes can be obtained by considering just the communication between the 150

employees who’s emails were published [117, 24]. The data can also be analysed using

different time slices, on a daily, weekly or monthly basis.
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Our analysis concentrates on the original 150 senior executives and only considers the

email communications between these individuals. Individuals who send and receive less

than 5 emails are removed, reducing the total number of users to 148. The data is aggre-

gated into traffic over a month. The initial months yield low email traffic thus we only

consider the time period from September 2000 to March 2002 following the same reason-

ing of [128] but including more of the earlier months as they [128] only consider the final

11 months. We form an undirected network where the identity of the sender or receiver

is irrelevant and an email indicates a link between the two nodes. Figure 6.9a plots the

number of unique connections per month in the data and serves to illustrate the overall

activity in the network. During this period of time Enron was going through a crisis with

a number of significant events occurring such as the resignation of CEO Jeffrey Skilling

in August 2001 and the company filing for bankruptcy in December 2001. The hypothesis

that motivates our analysis is that during a crisis the normal communication patterns within

a large organisation may change and we seek to detect any significant differences between

consecutive months.

The first step in analysis was to examine the community structure of the network to

determine whether employees were separated into distinct clusters or if there was a more

integrated community structure. The LPCMwas deployed using BDMCMC to estimate K,

as described in Section 4.5. The label switching problem associated with applying MCMC

to mixture models is resolved using the method outlined in Section 3.2.4. The sampler was

run for a burnin period of 10, 000 samples and then a further 10, 000 samples were drawn

with every 10th retained. The results obtained for each month are shown in Figure 6.9b

where the medians of the posterior distributions ofK are plotted. The posterior distribution

ofK for September 2000 and October 2001 are shown in Figure 6.10. The distributions are

both peaked at a single value however there is still significant support for a number of other

configurations. Table 6.1 shows the numbers of employees in each cluster for each month,

these are calculated as the mean of the posterior distribution of the mixing proportions, πk

for k = 1, . . . ,K .

From Figure 6.9b we can see immediately that the community structure of the network

changes over time with K = 4 being the most frequent arrangement. These changes in K

could themselves be used as indicators of change in the network however the differences
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Figure 6.9: Activity in the Enron email network from April 2001 to March 2002. (a): the
number of unique connections per month. (b): the median value of the posterior distribution
ofK for each month, obtained using BDMCMC to estimate the LPCM. Values range from
a minimum of K = 2 to maximum K = 5.
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Figure 6.10: Posterior distribution overK for two months of activity of the Enron network.
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Month 1 2 3 4 5
Sept 77 46 25 0 0
Oct 77 47 24 0 0
Nov 57 53 39 0 0
Dec 50 41 34 23 0
Jan 86 40 21 0 0
Feb 49 38 34 27 0
Mar 44 40 38 27 0
Apr 47 42 38 21 0
May 72 41 35 0 0
Jun 70 50 27 0 0
Jul 53 41 28 26 0
Aug 62 36 35 15 0
Sept 47 36 35 29 0
Oct 39 37 30 28 15
Nov 44 29 28 28 18
Dec 49 39 39 21 0
Jan 53 40 31 23 0
Feb 82 50 16 0 0
Mar 100 48 0 0 0

Table 6.1: Mean of the posterior distributions of the mixing proportions of the clusters, for
the Enron dataset, September 2000 - March 2002
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are never large, generally going from K = 4 to K = 3 or 5. Example posterior distribu-

tions over K for September 2000 and October 2001 show that there is a broad distribution

overK that is peaked but still places significant probability on the values of K mentioned.

Table 6.1 shows the number of employees in each cluster and it can be seen that there is

often agreement between months with the same K where the community structure is con-

sistent for example the period of February through April shows the network is made up of

4 clusters of roughly the same size.

To conclude our analysis we compared the series of embeddings obtained from the

LPCM, four examples of which are shown in Figure 6.11, using the CCAmethod described

in Section 6.2 and outlined in Figure 6.3. The four elements of the test statistic are plotted

in Figure 6.12 where again 95% confidence intervals are chosen.

The plots show some volatility but the only ‘real’ changepoint occurs when comparing

the activity of January with February. At this time Enron has been declared bankrupt and

suffered the resignation of the CEO, email traffic from this period is low, see Figure 6.9a,

and what is observed is effectively a breakdown of the network. Table 6.1 reveals that

February marks a shift in both K and the relative sizes of the clusters from the generally

similar network structure observed from September to January.

It is perhaps surprising that during a period of so many significant events more changes

in the activity are not detected. The fact that we are taking snapshots of the network on

a monthly basis may not be a fine enough scale to detect the effect of these events. The

counter argument however is that this broader snapshot reduces the probability of false pos-

itives and also increases the amount of activity observed rather than comparing numerous

empty nodes.

Considering these results in conjunction with those obtained from the experiments in

Section 6.4.1 it may be that the types of changes that are occurring are not sufficient to

produce a changepoint detectable by this method. Unlike the VAST data where there is a

complete shift in the structure of the network due to the main actors in the network changing

phones, it is hard to imagine such a change naturally occurring in an email network.
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Figure 6.11: Embeddings of the activity in the Enron email network for four months. The
posterior means of the positions, z, are plotted and coloured according to cluster member-
ship.

6.5 Comparison with Existing Approaches

The method presented in this chapter is a novel contribution to the network change detec-

tion literature that makes use of a well studied model in a novel way. We have demonstrated

empirically the properties and effectiveness of this approach in terms of real data analysis

but it is also useful to consider how the method fits with the existing approaches outlined in

Section 6.1. The methods that are most related to our approach are those based on the use

of network features. The egonet approach [4, 3] closely resembles our combined LPCM-

CCA approach making use of changes in correlation between calculated features to give

an indication of the occurrence of a change in a network. The key difference however is

in the consistent use of latent variable framework to transform the network and also when
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Figure 6.12: Test statistics for the Enron Email network from September 2000 to March
2002. T1, T2 and T4 all show a change occurring upon the comparison of January 2002
with February 2002.

calculating correlations. This allows us to define a test statistic and associated probabilities

of a change based on observed correlations rather than their approach of monitoring the

pearson’s correlation coefficient associated. The use of a latent variable model approach

to extract a multivariate representation of a network also contrasts between the arbitrary

selection of features as in both the egonet approach and that advocated by [87, 86]. This

makes explicit assumptions about the existence of an embedding space for the network

and that the observed network behaviour can be explained by a model of this type. This

assumption lends more power to the overall change detection method and in the case of

comparing networks generated by different models we have demonstrated it’s ability to

detect changes. As stated previously the drawback of monitoring specific features is that

changes may occur that do not manifest as changes in these specific features and lead to

undetected events. However it must also be pointed out that we have defined a model and

that for some networks such a model may be inappropriate and this method invalid. In

such situations, for example monitoring changes in random graphs these feature based ap-
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proaches may be more appropriate. The methods based on graph spectra [136] are another

alternative approach that has proved popular however they tend to be more suited to the

task of anomaly detection and fully connected graphs. Given that many efficient methods

for computing the eigen-decomposition of large matrices exist and are a constant area of

research this approach may be more suited to large graphs than that outlined here however

questions do remain over which form of the graph Laplacian to use and this can produce

different results based on different choices. In contrast the graph matching approach pro-

posed in [18, 27] is extremely computationally intensive in comparison to our method. This

approach coming from the structural pattern recognition branch of research [19] is most dif-

ferent in philosophy to the combined embedding-CCA approach outlined here, however it

can be useful for identifying particularly unusual subgraphs in a network as opposed to

our approach which simply states whether a global change has occurred. This makes the

subgraph matching approach more suited to fraud detection based applications looking to

detect unusual cliques or subgraphs within an otherwise healthy network, in this setting

our approach would not be suitable and in contrast sits well with applications where we

are expecting large shifts in network structure such as epilepsy seizure onset detection or

in applications where the LPCM is appropriate for example monitoring changes in social

networks.

6.6 Conclusion

Throughout this thesis we have made use of latent variables as a convenient means of in-

ference and also as the target of inference themselves. In this chapter we utilised the latent

positions associated with the LPCM as a representation of a network rather than just a con-

venient means of taking into account dependencies in the network as previously. This al-

lowed us to deploy CCA to compare two such representations of a network. The advantages

of this approach are that it is less computationally demanding than iterative graph search-

ing methods and more rigorous than feature selection based methods to detect changes in a

network. A latent variable model phrasing of CCA allows us to define probability distribu-

tions over the associated transformation matrices to create a test statistic with confidence

intervals allowing us to say how likely it is that a change has occurred. The method was
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tested on synthetic and real data and from the results obtained we learned that the types of

changes detected tend to be of a large scale network breakdown type and as the size of the

network increases the number of nodes disturbed must be increased. These characteristics

may make the method attractive for network monitoring systems as the types of changes

that we can pick up may be precursors to a breakdown of the network. This behaviour is

a consequence of the assumptions made as part of the test statistic procedure, our require-

ment for at least three elements to individually flag a change. Different assumptions may

alter the behaviour of the approach, but under the assumptions here the method may be

more appropriate for applications such as epilepsy seizure onset detection that produce a

large shift in the overall network rather than more localised changes such as detecting fraud

in a network of financial transactions where the majority of interactions will be healthy and

the change occurs in a significantly smaller portion of the network.



161

Chapter 7

Discussion and Future Work

We now conclude with a discussion of some of the key findings and potential avenues for

future work.

The bulk of this thesis has been concerned with methods for analysing network data,

however to begin with we studied the MFA model and Bayesian methods for simultane-

ously inferring both the value of K, the number of mixtures in the model, and qk the

number of factors in each factor analyser. The complexity of the model estimation task in

this setting called for the use of sophisticated approximation techniques with the ability to

compare model spaces of varying dimensions. We studied two such methods and provided

an empirical comparison of their performance in a range of different settings in a simulation

study with synthetic data. The study is related to very recent work by [21] but extended

from a regression setting to unsupervised analysis. The key finding here was that given

sufficient amounts of data, estimation by variational approximation can give comparable

performance to MCMC based methods, measured in terms of correct estimation of K and

qk, but in compute times that are orders of magnitude faster. This also highlights the need

for care when deploying variational methods to tasks where the data is sparse.

Following the simulation study the MFA model was applied to the IMGSAC ADI-

R data set, containing behavioural information on a cohort of Autistic subjects from the

IMGSAC study. This work represents the first use of such sophisticated methods to anal-



Chapter 7. Discussion and Future Work 162

yse ADI-R data and the inference over both K and qk revealed both the presence of sub-

populations in a carefully selected sample and the differences in latent structure between

these sub-groups. These variations in latent structure when combined with our interpre-

tation of a latent ‘severity factor’ suggest that the different groups can be characterised

as having different levels of impairments in the four domains of autism (social interac-

tion, verbal and non-verbal communication skills and repetitive and restricted behaviour).

However the different factor structure highlights that we are not just seeing reduced or in-

creased levels of the same traits but that the characteristics of the between cluster behaviour

are markedly different. This implies that the condition manifests differently between clus-

ters. This is important information in the context of further analysis, large sample studies

aimed at pinpointing autism phenotypes have been frustrated by the heterogeneous struc-

ture of the data. The method we have demonstrated provides an unsupervised approach for

clustering the data into homogeneous sub-populations, further analysis for example of the

genetic structure of patients could then be focused on these individual groups as more co-

herent samples. Additionally correct identification of the group a patient belongs to could

allow for more appropriate treatment to meet their specific needs.

Chapter 4 introduced the LPCM which featured for the remainder of the thesis. The

model allows for Bayesian model based embedding of a network in Euclidean space. The

original MCMC model estimation method was extended to incorporate the Birth-Death

mechanism from Chapter 3 which allowed for inference over K and was the first instance

of the application of stochastic model selection methods to the model. This represents an

improvement over the original approach to model selection which estimated the model for

different values of K and compared pairs of models using Bayes factors. Indeed it was

remarked as part of the discussion on the original RSS read paper [58] that the stochastic

model selection approach is a superior method of tackling this problem. The full frame-

work from Chapter 3, combining inference over K with that of the embedding dimension,

did not translate well into the network setting and this is something to be addressed further

in future work. Another issue with the analysis of network data is the massive computa-

tional burden associated with scaling up to larger networks. Informed by our findings from

the simulation study we developed an approach to estimating the LPCM based on varia-
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tional approximation. Previous work on this had been forced to result to a large amount

of numerical optimization routines to estimate model parameters however an alternative

phrasing of the model allowed us to develop a fully probabilistic solution.

The embedding produced by the LPCM was originally used simply to visualise the

network and to determine the community structure. In Chapter 6 we make use of this

representation of the network as a convenient means of deploying standard multivariate

analysis techniques in a network setting. We developed a change detection method based

on comparing representations of networks produced by the LPCM using CCA. This is the

first combination of these techniques and comparable methods from the current state of

the art rely on feature extraction as a means of detecting changes in a network. We see

this approach as a less principled method than embedding the network as arbitrary choices

of feature can be made. The method is demonstrated on some synthetic experiments and

we make an effort to characterise the type of changes that can be detected. The behaviour

obtained indicates that as the size of the network increases the magnitude of the change

required also increases and an appropriate application may be the monitoring of networks

for breakdown as these seem to be the types of changes that can be detected. We followed

our simulation study with the application of our method to some data sets with mixed

results. The method was able to detect the induced change in the VAST network however in

the Enron data the only major change point detected occurs at the very end of the period of

analysis and events such as the resignation of the CEO did not have a noticeable effect. This

again implies the most appropriate deployment of our method may be in the monitoring for

serious network breakdown.

7.1 Future Work

There are a number of areas for further exploration deriving from the work carried out thus

far. Chief amongst these is the question of the embedding dimension and its implications

but there is also potential for further analysis of the ADI-R data and development of more

sophisticated methods for the test statistic.
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7.1.1 ADI-R Data

The ADI-R is a structured interview consisting of approximately 100 questions scored as

integers from 0− 3. These are transformed using an algorithm to obtain the 12 sub-domain

scores which are then combined to obtain the scores in the four domains of autism to allow

diagnosis to be made. The analysis carried out has been restricted to the domain and sub-

domain levels for which we have data. It would however also be of interest to study the

raw data itself and learn what kind of structure can be detected at this level. The MFA

is designed for continuous data and would be unsuitable for this task however the logistic

function used in the LPCM can be adapted to multiclass settings. Combined with the

mixture framework again as in the LPCM this would allow us to explore the data at the

item level for cluster structure.

The analysis of complementary gene expression data, informed by the results of our ADI-R

analysis is another avenue of potential interest. Using the ADI-R to separate a sample into

more homogeneous groups may enhance the strength of the subsequent analysis and allow

for the detection of autism phenotypes linked to particular classes of subjects.

7.1.2 Embedding Dimension and Model Fit

When working with the LPCM we have generally considered the size of the embedding

dimension to be fixed with q = 2. Section 4.2 made reference to the idea of a characteristic

dimension for a network and that different graphs inhabit spaces of different size. For

example the ring graph can be perfectly embedded in a 2-D space for all n, while the star

graph requires q = (n − 1)/2.

In Section 3.1 we stressed the advantages of joint estimation of the number of factors qk

and K in the MFA model and many of those arguments also apply here to reinforce the

importance of the embedding dimension. Correct estimation of the embedding dimension

could potentially have an effect on the number of clusters detected in a network and ideally

we would want to infer it in a Bayesian fashion from the data. The dimension may be of

interest in itself and also provides a further means of detecting changes in network structure

which could be incorporated into a three tiered approach:

• Infer q for networks.
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• If q is the same compare the community structure of the graphs by comparing K.

• If q and K are the same compare with CCA.

We can try to reason about the effect of changing embedding dimension in the LPCM

by considering the relationship between distance and dimension. The LPCM computes the

likelihood of a link between two nodes based on the distance between them in latent space.

Increasing the dimension of the latent space can be seen as reducing the overall tendency to

form links in the network. This can be understood by considering a hub or star network. In

this network a number of nodes connect to a single hub node. In low dimensions there are

fewer ways to arrange this network without positioning nodes that are disconnected closer

to each other than the hub node. This would break the distance rule of the Latent Position

model, that nodes closer together in latent space are more likely to have a link. The model

assumptions could only hold if the network became more connected and if the embedding

positions were re-used to generate the network it would be more heavily connected. In-

creasing the dimension however increases the number of positions available for a node to

inhabit while still maintaining the same distance. In the model β, see Equation 4.4, per-

forms a similar role modulating the overall preference for forming links in the network. In

some preliminary experiments we conducted to estimate the embedding dimension, by in-

tegrating over all possible dimensions, we found that there was an interplay between β and

the embedding dimension. We found that β acted as a counterweight adapting between dif-

ferent states of dimension making it impossible to correctly choose between them. Further

research is needed to fully understand and resolve this problem.

7.1.3 Estimation of the LPCM by Variational Approximations

There are a number of ways the estimation of the LPCM by variational approximations pre-

sented in Chapter 5 could be extended. Incorporation of inference over hyperparameters

would be an obvious means of making the model more flexible. As remarked in the chapter

the use of the von Mises distribution restricts the embedding dimension to q = 2. It may

be possible to generalise q to other dimensions by using the Fisher-Bingham distribution

which a generalisation of the von Mises distribution to higher dimensions. However the
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relationship between the von Mises distribution and the bivariate Gaussian distribution was

a key component in the derivation of the variational posteriors and whether this relation-

ship would still hold remains unclear. Finally model selection over the value of K could be

incorporated by following the same approach used in Chapter 3 for the MFA model esti-

mated by variational approximations. This would allow unsupervised community detection

in a network as demonstrated in Chapters 4 and 6 using the birth-death MCMC approach

but with the added advantage obtained by the superior speed of the variational algorithm.

Clearly there is scope for additional work here however much is dependent upon a solution

to the embedding dimension problem.

7.1.4 Test Statistic

In Chapter 6 we have a matrix valued test statistic to detect change in a network, each

value has a distribution and we compare each individual element with the corresponding

element of an identity matrix to determine whether a change has occurred. However if we

are to allow the embedding dimension to grow then the size of this matrix will also increase

making our current scheme impractical, a method based on weighted combinations of the

elements would be an improvement on this and is an area that could be considered for

further study. Methods based on random matrix theory could also be considered as an

alternative to evaluating each element individually.
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Appendix A

Simulation Study Results

In Chapter 3 we conducted an empirical comparison of the MCMC and variational ap-

proaches to estimating the MFA model is a range of different settings. The results obtained

for the experiments with p = {20, 30} are provided here with spider plots used to sum-

marise the performance obtained estimating K as the difficulty of the clustering problem is

increased for the number of points per cluster nk ∈ {10, 25, 50, 150}. The results from es-

timating qk are summarised by plotting the string edit distance between the results and the

true q = [1, 2, 3, 4]. Results are shown for data drawn from the model in Section A.1 and

for data that features a departure from the model assumptions in Section A.2, the departure

being additive noise from a Uniform rather than Gaussian distribution.

A.1 Results for Data from the Model

The results obtained for p = {20, 30} using synthetic data generated from the model.
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(a) MCMC spider plot for K, p = 20.
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(b) VB spider plot for K, p = 20

Figure A.1: Results obtained from estimation of K varying the number of points per clus-
ter and the distance between clusters, using the MCMC (a) and variational (b) methods
respectively.
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(a) MCMC spider plot for K, p = 30.
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(b) VB spider plot for K, p = 30

Figure A.2: Results obtained from estimation of K varying the number of points per clus-
ter and the distance between clusters, using the MCMC (a) and variational (b) methods
respectively.
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(a) MCMC factors, p = 20
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(b) VB factors, p = 20

Figure A.3: Results obtained for the comparison of the string edit distance between the true
q and that estimated by theMCMC (a) and variational (b) methods. Each plot consists of 25
results and the size of the data point reflects multiple occurrences of the same integer value.
The x-axis shows the distance from true K with the origin representing correct estimation
of both q and K.
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(a) MCMC factors, p = 30
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(b) VB factors, p = 30

Figure A.4: The results obtained for the comparison of the string edit distance between the
true q and that estimated by the MCMC (a) and variational (b) methods. Each plot consists
of 25 results and the size of the data point reflects multiple occurrences of the same integer
value. The x-axis shows the distance from true K with the origin representing correct
estimation of both q and K.
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A.2 Results for Data with Uniform Noise

The results obtained for p = {20, 30} using synthetic data that does not obey the model, is

subject to random noise from a Uniform distribution.
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(a) MCMC spider plot, p = 20, uniform noise.
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(b) VB spider plot, p = 20, uniform noise.

Figure A.5: Results obtained for estimation of K when data deviates from model assump-
tions i.e. is subject to uniform noise by MCMC (a) and variational (b) methods.
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(a) MCMC spider plot, p = 30, uniform noise.
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(b) VB spider plot, p = 30, uniform noise.

Figure A.6: Results obtained for estimation of K when data deviates from model assump-
tions i.e. is subject to uniform noise by MCMC (a) and variational (b) methods.
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(a) MCMC factors, p = 20, uniform noise.
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(b) VB factors, p = 20, uniform noise.

Figure A.7: Results obtained for estimation of q using MCMC (a) and variational (b)
methods when data deviates from model assumptions i.e. is subject to uniform noise with
p = 20. Each plot consists of 25 results and the size of the data point reflects multiple
occurrences of the same integer value. The x-axis shows the distance from true K with the
origin representing correct estimation of both q and K.
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(a) MCMC factors, p = 30, uniform noise.

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12

14

16
Edit distance

Distance from true number of clusters

D
is

ta
nc

e 
fr

om
 tr

ue
 fa

ct
or

 a
rr

an
ge

m
en

t

(b) VB factors, p = 30, uniform noise.

Figure A.8: Results obtained for estimation of q using MCMC (a) and variational (b)
methods when data deviates from model assumptions i.e. is subject to uniform noise with
p = 30. Each plot consists of 25 results and the size of the data point reflects multiple
occurrences of the same integer value. The x-axis shows the distance from true K with the
origin representing correct estimation of both q and K..
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Appendix B

Change Magnitude Experiment Results

The results of the experiments conducted in Chapter 6 to assess the magnitude of the change

that can be detected using the combined embedding-CCA method are provided here. The

general trends observed in the experiment are discussed in Section 6.4.1 but here the raw

results are provided for completeness. The test statistics for the comparison of networks

subjected to increasing levels of change against an original network generated from the

latent position model are shown for different network sizes n = {10, 25, 50, 100}. Section

B.1 shows the results obtained for the random rewiring experiment, and Section B.2 pro-

vides the results for the experiment in which nodes are randomly rewired but the degree

sequence of the graph preserved.

B.1 Random Rewiring Experiment

In this experiment nodes were randomly selected and rewired starting with a single node

and increasing in steps of 20% to 80% of the total network. These networks were embedded

using the latent position model and compared with the original network using CCA and the

test statistics obtained by comparison of the transformation matrices are shown.
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(a) Test Statistic n = 10 random rewiring

1 2 3
-1

0

1

2

3

4

5
T1

1 2 3
-1.5

-1

-0.5

0

0.5

1

1.5
T2

 

 
μ
+1.96σ
-1.96 σ

1 2 3
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

14 T3

1 2 3
-2

0

2

4

6

8
T4

(b) Test Statistic n = 25 random rewiring
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(c) Test Statistic n = 50 random rewiring
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(d) Test Statistic n = 100 random rewiring

Figure B.1: Results for the random rewiring change detection experiment. The test statis-
tics obtained from the comparison of an original network to networks where a number of
the nodes have been randomly rewired. The number of nodes rewired is increased in steps
of 20% from a single node to 80% off all nodes for n ∈ {10, 25, 50, 100}.
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B.2 Degree Sequence Rewiring Experiment

In this experiment nodes were randomly selected and rewired but the degree sequence of the

graph preserved. The number of nodes rewired starts from a single node and increases in

steps of 20% to 80% of the total network. These networks were embedded using the latent

position model and compared with the original network using CCA and the test statistics

obtained by comparison of the transformation matrices are shown
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(c) Test Statistic n = 50
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(d) Test Statistic n = 100

Figure B.2: Results for the random rewiring change detection experiment. The test statis-
tics obtained from the comparison of an original network to networks where a number of
the nodes have been rewired but the degree sequence of the network is unchanged. The
number of nodes rewired is increased in steps of 20% from a single node to 80% off all
nodes for n ∈ {10, 25, 50, 100}.
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