Abstract: The Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere. The observations at closest approach (~1000 km) show evidence for negatively charged ions up to ~10 000 amu/q, as well as two distinct peaks at 22±4 and 44±8 amu/q, and maybe a third one at 82±14 amu/q. We present the first ionospheric model of Titan including negative ion chemistry. We find that dissociative electron attachment to neutral molecules (mostly HCN) initiates the formation of negative ions. The negative charge is then transferred to more acidic molecules such as HC3N, HC5N or C4H2. Loss occurs through associative detachment with radicals (H and CH3). We attribute the three low mass peaks observed by ELS to CN-, C3N-/ C4H- and C5N-. These species are the first intermediates in the formation of the even larger negative ions observed by ELS, which are most likely the precursors to the aerosols observed at lower altitudes.
1. Introduction

Titan has been an object of considerable scrutiny since the arrival of Cassini-Huygens in the Saturn system in July 2004. Titan is the only satellite in the Solar System with an extensive atmosphere, largely composed of N$_2$, with CH$_4$ (2%) and H$_2$ (0.4%) being the most abundant minor constituents (Flasar et al., 2005; Yelle et al., 2006). N$_2$ and CH$_4$ are dissociated or ionized in the upper atmosphere by solar EUV and soft x-ray radiation, and impact of supra-thermal electrons, protons and oxygen ions (Cravens et al., 2008; Lavvas et al., 2008a). The highly reactive radical and ion species produced in these processes react to form a plethora of hydrocarbons and nitrogen-bearing species that characterize Titan’s atmosphere (Cui et al., 2009; Teanby et al., 2006; Vinatier et al., 2007; Vuitton et al., 2007). The presence of CO, CO$_2$ and H$_2$O (De Kok et al., 2007), which likely originate from an influx of O$^+$ and micrometeorite ablation (Hörst et al., 2008), complete the collection of species that exist in Titan’s atmosphere. Observations by the Ion Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft showed that Titan has a complex ionosphere (950-2000 km), containing a rich positive ion population of organic molecules with mass-to-charge ratios (m/q) up to a few 100 amu and a maximum total density of a few 1000 cm$^{-3}$ (Cravens et al., 2006; Vuitton et al., 2006; Vuitton et al., 2007).

The presence of negative ions in Titan’s atmosphere had only been considered for the cosmic ray-induced ionosphere that lies below 200 km. The pre-Voyager model of Capone et al. (1976) considered the formation of CH$_3$ and H$^-$ by three-body electron attachment. They calculated a negative to positive ion ratio of \sim10$^{-4}$ in the nighttime ionosphere, which became approximately four orders of magnitude lower in the daytime ionosphere because of the high photo-detachment rate. A decade later, Borucki et al. (1987) considered the possible formation of negative ions by three-body electron attachment to radicals such as NH$_2$, CH$_3$, CN, C$_2$H, and H. While CN and C$_2$H form relatively stable negative ions (see section 3.1), the concentrations of these radicals, as calculated by Capone et al. (1980) and Yung et al. (1984), are too small for them to be a significant source of negative ions. Calculated equilibrium concentrations of CH$_3$, NH$_2$, and H are larger, but the negative ions they form are far less stable against photo-detachment (see section 3.1). Under nighttime conditions, their calculations predict that the negative to positive ion ratio is much less than 0.1.

Molina-Cuberos et al. (2000) calculated the concentration of anions based on a parametric study of the mixing ratio of a hypothetical electrophilic species present in the lower ionosphere of Titan. They include anion production by three-body electron attachment and destruction by ion-ion recombination. With the mixing ratio (10^{-15} to 10^{-14}) of electrophilic species (H, CH$_3$, C$_3$H$_2$) predicted by neutral models (Lara et al., 1996; Toublanc et al., 1995), they find a negative to positive ion ratio of less than 0.02. They also discuss the effect of electron detachment from negative ions by absorption of solar radiation.

Bakes et al. (2002) developed a model of photoelectric charging for polycyclic aromatic hydrocarbon (PAHs) macromolecules and carbonaceous sub-micrometer aerosols (radius > 10 Å). PAHs are moderately electrophilic, with electron affinities typically <1.0 eV. Bakes et al. (2002) consider the formation of negatively charged species by collisional charging and their loss by photo-detachment. They find that the macromolecules are mainly negative during the nighttime cycle, and that a substantial fraction of the macromolecule population is in the neutral state during the daytime, when photoelectric ejection of electrons via UV radiation is
possible. On the other hand, the aerosol population, depending on their size, becomes uniformly neutral or negatively charged during the night, but during the day, their dominant charge state is positive. Borucki et al. (2006), with a slightly more sophisticated model, find that the distributions of charge on the macromolecules show approximate agreement with those reported by Bakes et al. (2002).

These models of the lower atmosphere only considered three-body electron attachment to radicals or collisional charging of aerosols as a source of negatively charged species. Probably because the first process is negligible at high altitude (densities lower than 10^{15} cm$^{-3}$) and because aerosols were not expected to be present above ~500 km, the possible presence of negative ions in Titan’s upper atmosphere had not been considered before the Cassini-Huygens mission.

In this context, it came as a surprise when the Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS), revealed the existence of numerous negative ions in Titan’s upper atmosphere (Coates et al., 2007a; Waite et al., 2007). Waite et al. (2007) first reported a total negative ion density close to 10 000 cm$^{-3}$ but this incredibly high number was later corrected to ~200 cm$^{-3}$ in Coates et al. (2007a), giving a total negative to positive ion ratio of ~0.1. The spectrum (Figure 3 in Coates et al. (2007a)) shows evidence for negatively charged ions up to ~10 000 amu/q as well as two distinct peaks at 12-20 and 28-45 amu/q. Negative ions have been detected on all Titan encounters when the spacecraft altitude was low enough and pointing conditions were favorable (Coates, 2008; Coates et al., 2007a; Coates et al., 2008).

These results have profound implications on our understanding of Titan’s chemistry. Current photochemical models indicate that aerosol formation occurs through neutral chemistry in the stratosphere (Lebonnois et al., 2002; Wilson and Atreya, 2003) or around 800 km (Lavvas et al., 2008b). By analyzing the optical properties of the detached haze layer observed at 520 km in Titan’s mesosphere, Lavvas et al. (2009) retrieved a mass flux of haze particles (~2×10$^{-14}$ g cm$^{-2}$ s$^{-1}$) approximately equal to the mass flux required to explain the main haze layer. This is the first quantitative evidence that thermospheric, instead of stratospheric chemistry, is the main source of haze on Titan and supports the results of Lavvas et al. (2008b).

However, the detection of nanometer size particles (1000 amu ~ 1 nm), at an altitude as high as 1000 km, implies that molecular growth starts at even a higher altitude than this model predicts. The observation of a high density of charged molecules suggests that ion chemistry plays an important role in the formation of complex species. As a consequence, identifying the simplest negative ions observed by ELS as well as their production pathways is crucial for our understanding of not only Titan’s ionosphere but also the whole aerosol formation process.

In order to understand the presence of negative ions in Titan’s thermosphere and investigate their larger role in chemical cycles on Titan, we present here an ionospheric chemistry model of formation of low mass negative ion species. We first describe the CAPS observations and data reduction in Section 2. Possible negative ion candidates are presented in Section 3 where production and destruction processes included in the model are reviewed. In Section 4 we discuss the parameters used in our model with most of the discussion centered on the suprathermal electron flux and on the neutral atmosphere employed. Section 5 presents the model results and compares them with the observed negative ion mass spectrum. Section 6 discusses these results and Section 7 presents some concluding remarks.
2. CAPS-ELS Observations

Cassini CAPS-ELS observations of Titan's ionosphere have revealed the existence of heavy negative ions at altitudes between ~1200 and 950 km with masses up to ~10 000 amu/q (Coates, 2008; Coates et al., 2007a; Coates et al., 2008; Waite et al., 2007). The ELS sensor is a hemispherical, electrostatic top-hat analyzer, which sweeps through a 63-point energy spectrum ranging from 0.6 to 28 000 eV/q for negatively charged particles. The energy resolution, which corresponds to the energy bandwidth of the analyzer (ΔE/E), is 16.7% (Young et al., 2004). The spectrometer has an instantaneous fan-shaped field of view of 160° × 5°, with each of the 8 anodes covering 20° × 5° (Linder et al., 1998), thus providing directional information on the incident electrons. The CAPS instrument is mounted on a rotating platform called the actuator, which increases the angular coverage by rotating the instrument field of view around an axis parallel to the spacecraft z-axis. The maximum rotation is +/-104 degrees from the spacecraft –Y direction, at a nominal rate of 1°/s.

The T40 flyby occurred on January 5, 2008 with a latitude, longitude, and local time at closest approach of 12°S, 131°W, and 14.3 hours, respectively. Here, we focus on this flyby for 2 reasons: (i) the encounter occurred on the dayside with a solar zenith angle at closest approach (1015 km) of 37.5°. The main energy source upon Titan’s upper atmosphere was solar photons, thus the induced supra-thermal electron intensities can be predicted theoretically, as presented in Section 4. (ii) Neutral, positive and negative ions as well as thermal electrons observations are available from INMS, CAPS-ELS and the Cassini Radio Plasma Wave Spectrometer Langmuir Probe (RPWS-LP).

The spacecraft potential becomes negative when the spacecraft passes through Titan’s dense ionosphere where the ambient negative particle flux (mainly electrons) dominates the current balance to the spacecraft. The data is therefore shifted by a spacecraft potential of -0.5±0.3 V for T40. This value is based on comparing the INMS and CAPS-IBS (Ion Beam Spectrometer) ion data and requiring the peak positive ion flux to be at mass 28 (Crary et al, 2008). A key feature observed in Titan’s supra-thermal spectra is the photoelectron peak at 24.1 eV associated with the ionization of N\textsubscript{2} by the strong He II (30.4 nm) solar line (see Section 4.1). Applying a spacecraft potential correction of -0.5 eV gives a photoelectron peak value of 22.7±1.9 V. The error is due to the ELS energy resolution of 16.7% and the spacecraft potential correction. This spacecraft potential value is therefore consistent with the theoretical prediction for the photoelectron peak location.

As the CAPS actuator moves the ELS field of view through the ram direction in Titan’s ionosphere, distinct spikes in energy appear in the ELS spectrogram, as presented in Fig. 1. These spikes are the signatures of negative ions rather than electrons because ions have thermal velocities that are small compared to the spacecraft velocity whereas electrons are more isotropic due to their supra-thermal velocities and thus are detected from any actuator position. Negative ions were detected for approximately +/- 3.5 minutes around closest approach, corresponding to an upper altitude of 1250 km.

The spacecraft ram velocity separates the masses of the cold ions in detected energy per charge. The peak energy per charge, once corrected for the spacecraft potential, can then be converted to mass per charge knowing the spacecraft speed. For example, a 6 km s-1 flyby speed gives m\textsubscript{amu/q}=5.32E\textsubscript{eV/q} (Coates et al., 2007a). It is assumed that ions are singly charged, which is probably reasonable for the lighter ions (<100 amu). However, this assumption may
be questionable for high m/q, giving an even higher m in the aerosol range in those cases (Coates et al., 2007a; Waite et al., 2007)

As seen on the spectrogram in Fig. 2, two negative ion peaks centered at 22±4 and 44±8 amu/q are clearly identified. A third peak at 82±14 amu/q may be present as well. Keeping in mind the finite energy width of the detector (ΔE/E=16.7%), the peak width is consistent with the presence of a single ion species per peak, though the presence of multiple species cannot be rejected.

3. Chemistry

Various negative ions have been suggested as potential candidates for the low mass peaks observed by ELS (Coates et al., 2007a; Waite et al., 2007). In this section, we discuss the ions likely present in Titan’s ionosphere based on their electron affinity and gas phase acidity (Table 1). Production mechanisms for negative ions include radiative and dissociative electron attachment and ion-pair formation, while loss processes are photodetachment, ion-ion recombination and ion-neutral associative detachment. Chemical reactions such as proton transfer reactions and polymerization reactions can also influence the ion distribution. In the following, we review all these mechanisms in the context of Titan’s ionosphere. Photochemical reactions and chemical reactions included in our model are listed in Tables 2 and 3, respectively.

3.1. Negative ion candidates

The stability of a negative ion can be characterized by the electron affinity (EA) of its parent molecule, which describes its efficiency towards electron attachment,

\[M + e^- \rightarrow (M^-)^* \rightarrow M^- . \]

The larger the EA for molecule M, the more stable M^- will be. Adding an electron to the filled valence shell of a molecule is difficult because the associated anion lies at a higher energy than the neutral ground state and as a consequence the activated complex (M^-)^* has a very short lifetime against autodetachment. For this reason, negative ions are expected to be mostly deprotonated neutrals and we do not consider closed-shell molecules such as C_2H_2^- or HCN^- to be plausible negative ion candidates.

Another relevant thermodynamic constant is the gas phase acidity of the molecule AH, which characterizes the ability of the molecule to lose a H^+

\[AH \rightarrow A^- + H^+. \]

Table 1 provides a list of the EA of 16 different atoms and radicals and the gas phase acidity of 14 different molecules considered as potential sources of negative ions. The species included in Table 1 are based on observations, such as the positive ion mass spectra obtained by INMS (Vuitton et al., 2007).

We can see in Table 1 that species containing the cyano (CN, C_3N) or the ethynyl (C_2H, C_4H, C_6H, C_8H) group have a very high EA (≥ 3eV). Oxygen-bearing species (O, OH) have a moderately high EA (∼ 1.5 eV) and acidity, while other hydrocarbons and non-saturated
nitrogen-bearing species have a somewhat low EA (≤ 1.0 eV) and moderate acidity. HCN, HC$_3$N and the polyyne family are strong acids, while H$_2$O, aromatic hydrocarbons and other nitrogen-bearing species are moderately acidic. Finally, H$_2$ and CH$_4$ are very weak acids. Based on these considerations, we selected 19 neutrals and 11 anions to be included in our ionospheric chemistry model: O$^-$, OH$^-$, CH$_3^-$, C$_2$H$^-$, C$_3$H$^-$, CN$^-$, C$_4$N$^-$ and C$_5$N$^-$. Despite the fact that H and CH$_2$ have a low EA (≤ 0.75 eV), H$^-$ and CH$_2^-$. are readily formed by electron attachment to CH$_4$ (see section 3.2.1) and because of the high mole fraction of CH$_4$ in Titan’s atmosphere, we consider these ions as well in the model.

3.2. Sources of negative ions

3.2.1. Radiative electron attachment

Radiative attachment of thermal electrons to atoms or radicals is a process that can lead to the formation of negative ions,

$$X\cdot + e^{-} \rightarrow (X\cdot\cdot)^{+} \rightarrow X\cdot^- + \text{hv}.$$

As mentioned previously, attachment to stable molecules is of negligible efficiency because the resulting anion is unstable with respect to auto-detachment. In the following, we consider radiative attachment to radicals predicted to be abundant in Titan’s thermosphere by photochemical models. Table 2 contains some relevant attachment rate coefficients.

Electron attachment reactions to C$_2$H, C$_4$H, C$_6$H and C$_3$N lead to the formation of negative ions, C$_2$H$^-$, C$_4$H$^-$, C$_6$H$^-$, and C$_3$N$^-$, respectively. The radiative attachment to these species has not been studied experimentally. Herbst and Osamura (2008) used phase-state theory in order to calculate the rate coefficients of these reactions. As expected, the attachment efficiency increases with the size of the molecule, from a tiny value for C$_2$H (2×10$^{-15}$(T_e/300)$^{-0.5}$ cm3 s$^{-1}$) to the collisional rate for C$_6$H radicals (3×10$^{-10}$(T_e/300)$^{-0.5}$ cm3 s$^{-1}$).

The H$^-$, CH$_2^-$. CH$_3^-$. OH$^-$ and CN$^-$ anions can be produced by thermal electron capture by the neutral molecules but the rate coefficients have not been determined. These are small species and thus have few rotational and vibrational degrees of freedom available for energy dispersal. As a consequence, radiative attachment is likely to proceed at a rate only slightly faster than that of an atomic species. We adopt a rate constant of 10$^{-14}$ cm3 s$^{-1}$, as suggested by Petrie (1996) in his study of CN$^-$ formation pathways in interstellar clouds and circumstellar envelopes.

3.2.2. Dissociative electron attachment

Dissociative attachment is endothermic for most species because the energy of the bond broken exceeds the electron affinity. For example, the H-C bond energy in acetylene is 5.7 eV (Ervin et al., 1990), greater than the electron affinity of C$_2$H (3.0 eV). As a consequence, dissociative attachment reactions require supra-thermal electrons that can overcome the energy difference,

$$\text{AB} + e^{-} \rightarrow \text{A}^- + \text{B}.$$

The CN$^-$ anion can be produced by dissociative electron capture on various nitrile species. The presence of HCN, C$_2$N$_2$, CH$_3$CN, C$_2$H$_3$CN and HC$_3$N has been inferred from analysis of INMS spectra with mixing ratios ranging from 2×10$^{-4}$ to 2×10$^{-6}$ as detailed in Section 4.2 (Cui et al., 2009; Vuitton et al., 2007). Inoue (1966) performed a systematic study on the formation
of negative ions in hydrogen cyanide and cyanogen. They estimated the cross section for electron attachment on HCN and C$_2$N$_2$ at the maximum of the resonance peak to be 2×10^{-16} cm2 (at 2.5 eV) and 2×10^{-17} cm2 (at 5.3 eV), respectively. Sailer et al. (2003) reported low energy electron attachment cross sections for acetonitrile (CH$_3$CN) in the energy range from about 0.1 up to 10 eV. The cross section for formation of CN$^-$ is small with peak values of $\sim 4 \times 10^{-21}$ cm2 at 1.8 eV and $\sim 10^{-20}$ cm2 at 9.2 eV. For acrylonitrile (C$_2$H$_3$CN), the CN$^-$ yield curve exhibits 3 peaks at ~ 2, ~ 3 and ~ 6 eV (Heni and Illenberger, 1986; Tsuda et al., 1973). Comparison of the yield of CN$^-$ with that of C$_2$H$_3$CN$^+$ gave the value 47.6 for C$_2$H$_3$CN/CN$^-$ at 9.5 eV (15 eV for the positive ions) (Tsuda et al., 1973). The total impact cross section of C$_2$H$_3$CN is unknown and we have estimated it to be equal to that of C$_4$H$_2$ (Kim and Irikura, 2000).

The supra-thermal electron impact on HC$_3$N has two possible product channels regarding negative ion formation: (C$_3$N$,^-$, H) and (CN$,^-$, C$_2$H). Dibeler et al. (1961) provide information about the magnitude at the peak of the resonance profiles relative to the total electron impact cross section of HC$_3$N at 70 eV, with values of 0.02 and 0.018 for each channel, respectively. In the absence of any further information for this molecule, we have assumed a Gaussian profile for the cross section of each pathway with a FWHM of ~ 1 eV, which is in the order of typical widths found in all other measured resonance profiles of negative ion production induced by electron impact. The location of the peak for each profile was derived from the assumed width of the distribution and the observed apparition energy for each pathway, 3.5 eV for C$_3$N$^-$ and 6.0 eV for CN$^-$. The total impact cross section of HC$_3$N is also unknown and we have estimated it to be equal to that of C$_4$H$_2$ (Kim and Irikura, 2000).

The C$_2$H$^-$ anion is produced by dissociative attachment on C$_2$H$_2$. Rutkowski et al. (1980) investigated the negative ion formation of a few simple hydrocarbons in the energy range 0.1-15 eV and measured the cross section for the dissociative attachment to C$_2$H$_2$. Two separate peaks with a sharp resonant-like behavior can be distinguished around 3 and 8 eV with a maximum of $\sim 7 \times 10^{-20}$ cm2. Two overlapping, unresolved peaks are present in the dissociative attachment in methane. The lower-energy peak at ~ 9 eV is due to H$^-$ and the higher-energy peak at ~ 10 eV to CH$_2^-$. The maximum cross section is close to 10^{-19} cm2 (Sharp and Dowell, 1967).

The absolute total cross sections for O$^-$ formation from CO by electron impact has been measured by Rapp and Briglia (1965) to be 2×10^{-19} cm2 at its peak (9.9 eV). Using this value, Stamatovic and Schulz (1970) determined that the maximum cross section for C$^-$ formation is about 6×10^{-23} cm2 at 10.4 eV. Because of the small magnitude of the cross section, we do not consider the formation of C$^-$ in our model. Ion yields for the formation of the three fragments H$^-$, O$^-$ and OH$^-$ as a result of dissociative attachment to water were measured as a function of the incident electron energy by Fedor et al. (2006). The experimental data, which do not have absolute normalization, are normalized to agree with the Compton and Christophorou (1967) H$^-$ + OH peak height for the lowest energy resonance at 6.5×10^{-18} cm2. Cross sections for dissociative electron attachment are presented in Fig. 3.

3.2.3. Ion-pair formation

In some cases, photo-ionization can induce the formation of a positive ion / negative ion pair,

$$AB + h\nu \rightarrow A^- + B^+.$$
The cross section for ion-pair production is usually 10^2 to 10^5 times smaller than that for the formation of a positive ion and a neutral. In the model, ionization of CH$_4$ and H$_2$ produces H$^-$ (Chupka et al., 1975; Mitsuke et al., 1991). We also include ionization of C$_2$H$_2$ and HCN as a source of C$_2$H$^-$ and CN$^-$, respectively (Berkowitz et al., 1969; Ruscic and Berkowitz, 1990). Finally, CO and H$_2$O produce O$^-$ and OH$^-$, respectively (Berkowitz 1996; Oertel et al., 1980). Thresholds and cross sections for these processes are listed in Table 2.

3.3. Losses for negative ions

3.3.1. Photo-detachment

For the photo-detachment rates, we have assumed the cross section σ to depend on photon energy ε via the relation

$$\sigma = \sigma_0 (1 - \frac{\varepsilon}{\varepsilon_{EA}})^{0.5}, \quad \varepsilon \geq \varepsilon_{EA},$$

where $\sigma_0 = 10^{-17}$ cm2 and ε_{EA} is the electron affinity of the neutral molecule (Millar et al., 2007). Relevant electron affinities have been obtained from theoretical and experimental results, shown in Table 1.

3.3.2. Ion-ion recombination

Not much information is available on this process. A complex potential model has been used to treat the mutual neutralization of positive and negative ions (Hickman 1979). The numerical results of the theory have been parameterized in terms of the reduced mass of the collision and the electron affinity of the electron donor,

$$k = 5.34 \times 10^{-7} \varepsilon_{EA}^{-0.4} m_{ij}^{-0.5} (T_{gas}/300)^{-0.5} \text{cm}^3 \text{s}^{-1}.$$

This is consistent with experimental results, rate constants varying from about 5×10^{-8} to 10^{-7} cm3 s$^{-1}$ at room temperature with power law temperature dependencies of ~ 0.5 for both simple and cluster ion reactions (Smith et al., 1978).

3.3.3. Ion-neutral associative detachment

In associative detachment, the negative ion attaches to the neutral, and the metastable species thus produced is stabilized by the ejection of the electron,

$$A^- + B \rightarrow (AB)^* \rightarrow AB + e.$$

Such reactions can only occur when the electron detachment energy is less than the energy of the bond that is produced. Therefore, these reactions usually involve radical species that produce stable molecules. In the model, we consider the reaction of the negative ions with the two most abundant radicals in Titan’s upper atmosphere, H and CH$_3$. The rate constants for reaction with H are usually an appreciable fraction of the collisional value (see Table 3). For reaction with CH$_3$, no data was found in the literature and we adopted the same rate constants as for reaction with H.

Viggiano and Paulson (1983) measured the temperature dependences of the rate coefficients for the associative detachment reactions O$^+$ + NO, S$^+$ + CO, S$^+$ + O$_2$, O$^+$ + C$_2$H$_2$, and O$^+$ +
\(\text{C}_2\text{H}_4 \). The first three rate coefficients varied as \(T^{-0.74\pm0.1} \), while the last two exhibited more complicated temperature dependences. Because of the lack of data for the reactions of interest here, we did not consider any temperature dependence for associative detachment reactions in the model.

3.4. Chemical reactions

3.4.1. Proton transfer reactions

Since we consider singly charged anions (\(A^- \)) of acids AH, the most obvious chemical reaction is proton abstraction from HA by a strong base \(B^- \),

\[
\text{AH} + \text{B}^- \rightarrow \text{BH} + \text{A}^-.
\]

In Table 1 a list of the gas phase acidities of the molecules included in the ionospheric chemistry model is given. Methane and molecular hydrogen are the least acidic of all molecules, and the methyl and hydrogen anions will readily abstract a proton from other neutral species. Exothermic proton transfers are almost always extremely fast in the gas phase, generally occurring at every collision. Therefore we adopt a rate constant equal to the Langevin rate for all reactions that have not been studied (Lequeux 2005).

3.4.2. Polymerization reactions

Incorporation of anions in neutral molecules can lead to higher mass anions. According to the spectral pattern of the mass spectrum of the negative ions in an acetylene discharge, the repeated insertion of acetylene molecules results in an anion sequence with anions that peaks at the \(\text{C}_2\text{H}_2^- \) species (Deschenaux et al., 1999). Therefore, \(\text{C}_2\text{H}^- \) anions can trigger a consecutive chain of polymerization reactions that evolves as follows:

\[
\text{C}_2\text{H}^- + \text{C}_2\text{H}_2 \rightarrow \text{C}_4\text{H}^- + \text{H}_2,
\]

\[
\text{C}_{2n}\text{H}^- + \text{C}_2\text{H}_2 \rightarrow \text{C}_{2n+2}\text{H}^- + \text{H}_2.
\]

So far no precise rate coefficients for these anion chain reactions can be found in the literature. Based on ions growth rate in silane discharges (Howling et al., 1994; Perrin et al., 1994), the rate coefficient for these reactions is set to \(10^{-12} \text{ cm}^3 \text{ s}^{-1} \).

4. Model Calculations

In order to investigate how the above processes define the formation of negative ions in Titan's atmosphere we extend the ionospheric chemistry model described in Vuitton et al. (2007). This model was successfully used for the investigation of the processes controlling the positive ion formation in Titan's ionosphere at the abundances observed by the INMS measurements. Furthermore, it was used for the investigation of the ion-neutral chemical processes controlling the formation of the observed thermospheric benzene abundance (Vuitton et al., 2008).

The ionospheric chemistry model solves the continuity equation in one-dimension assuming local chemical equilibrium. It takes into account production and loss processes that include photo-ionization, photo-detachment, energetic electron impact, and chemical reactions between ions and ion-neutral species in the altitude range between 700 and 1200 km. Due to
the small chemical lifetime of ions compared with the characteristic time for diffusion at these altitudes, the latter is not included in the calculations. Here, we will only describe the ionization mechanisms that lead to the production of negative ions, and the background atmospheric conditions assumed in the calculations regarding the neutral species abundances. Yet, the model includes the complete formation of positive ions as well, the details of which along with a complete description of the model can be found in Vuitton et al. (2007).

4.1. Ionization mechanisms

The solar flux used in the calculations is the measured flux by the TIMED/SEE instrument during the T40 flyby, scaled to Saturn’s location (Woods, 2008; Woods et al., 2005). The daily average level 3 data product was used, which provides the solar flux on a 1-nm interval over the 0.5 to 194.5 nm range [http://lasp.colorado.edu/see/]. The solar zenith angle for T40 flyby is 37.5\(^\circ\) at closest approach. The contribution of magnetospheric electrons as ionization source has been neglected since the latter is much smaller than the solar component over the illuminated side of Titan (Galand et al., 2006).

During the production of positive ions from the photo-ionization of neutral species, supra-thermal electrons are also produced. The energy of these photoelectrons depends on the energy difference between the ionizing photon energy and the energy required to ionize the neutral species. After their formation, photoelectrons lose energy through collisions with neutral species, which can lead to the production of secondary electrons. In order to realistically estimate the production of negative ions due to electron impact on neutral species, the flux of energetic electrons at all possible energies must be known. This can be calculated by solving the Boltzmann kinetic equation assuming stationarity, which provides the intensity (electron cm\(^{-2}\) s\(^{-1}\) eV\(^{-1}\) sr\(^{-1}\)) of electrons at different energies, pitch angles and altitudes within the atmosphere (Galand et al., 1999 and references therein).

Here we solve a simplified version of the kinetic equation by integrating in all angles in order to calculate the mean intensity at each altitude and by assuming that the local flux of electrons is constant (which is equivalent to assuming that transport of the electrons is not important). Comparison with a model solving the full transport Boltzmann equation (Galand et al., 2006) shows that this approximation is valid up to 1200 km. Under these conditions the mean intensity of electrons at energy, \(\bar{I}(z,E)\), can be described as:

\[
0 = \sum_{Z} \frac{\partial I(z,E)}{\partial E} + \sum_{k,pr} n_k(z) \sigma_k^T(E) \int_{E_0}^{E_\text{max}} dE' R_{k,pr}(E,E') \bar{I}(z,E') - \sum_{k} n_k(z) \sigma_k^T(E) \bar{I}(z,E)
\]

with \(R_{k,pr}\) the redistribution function associated with the neutral \(k\) through the process, \(pr\). The first term on the right side of the equation is the angle-integrated production of photoelectrons at energy \(E\). The second term describes the energy transfer from supra-thermal to thermal electrons through Coulomb collisions. The third term describes the degradation of higher energy electrons to energy \(E\) through collisions with neutral species, along with the production of secondary electrons with energy \(E\) through the ionization of the neutrals by higher energy electrons, and the last term is the loss of energy \(E\) electrons due to collisions with neutral species, with \(n_k(z)\) the density of neutral species \(k\) at altitude \(z\) and \(\sigma_k^T(E)\) the total electron impact cross section between an electron of energy \(E\) and a neutral species \(k\).
We solve the above kinetic equation on an energy grid of 200 bins ranging from 0.1 to 10^4 eV, with exponentially increasing bin width. Based on the above description, the electron mean intensity at each energy depends on that of higher energies. Hence, under the finite description of the energy grid, the mean intensity can be calculated at each energy starting at the highest energy bin and working downwards.

The resulting electron flux at 1015 km is presented in Fig. 4. A key feature is the peak at 24.1 eV associated with the ionization of N$_2$ by the strong He II (30.4 nm) solar line while the minimum in the region between 1 and 5 eV is due to the vibrational excitation of N$_2$ (e.g., Cravens et al., 2004; Galand et al., 2006, Coates et al., 2007b).

4.2. Abundance of neutral constituents

The ionospheric chemistry model requires density profiles for the neutral species. Furthermore, due to the large abundance of some radicals that have a high electron affinity, their inclusion in the calculations is necessary since they can also participate in the production of negative ions, as for example, C$_3$N. The neutral species included in the kinetic model are listed in Table 4. We base our vertical profiles on the INMS observations and the Lavvas et al. (2008b) photochemical model. The profiles presented in Vuitton et al. (2008) for the hydrocarbons and Hörst et al. (2008) for the O-bearing species are in good agreement with the results of Lavvas et al. (2008b).

Fig. 5 shows INMS measurements of the ion composition obtained during the T40 pass. The spectrum represents the average composition in the 1015-1050 km region of the atmosphere, obtained near the time of closest approach. Error bars shown in the figure represent the uncertainty due to counting statistics. Identification of the ions is discussed in Vuitton et al. (2007). The solar zenith angle was 37.5°, so the encounter was squarely in the sunlit atmosphere. The large ion densities compared with, for example, the twilight T5 pass (Vuitton et al., 2007), supports earlier conclusions that solar energy deposition dominates over magnetospheric energy deposition in the sunlit atmosphere (Galand et al., 2006).

The N$_2$, H$_2$, and CH$_4$ densities are inferred from the T40 INMS neutral data. The densities at 1015 km of HCN, CH$_3$CN, HC$_3$N, C$_2$H$_3$CN, HC$_5$N, C$_4$H$_2$, and C$_6$H$_2$ are tuned for the ionospheric chemistry model to produce agreement with the observed densities of their associated protonated species for the T40 flyby, as explained in Vuitton et al. (2007). For these species, the vertical profiles from the Lavvas et al. (2008b) photochemical model are scaled to the mole fractions thus retrieved at 1015 km. For the radical species (CN, C$_3$N, C$_5$N, C$_2$H, C$_4$H, C$_6$H), the abundances calculated by the model of Lavvas et al. (2008b) are scaled with the correction factor of their corresponding closed-shell species (HCN, HC$_3$N, C$_2$H$_2$, C$_4$H$_2$, C$_6$H$_2$). Finally, for H, CH$_3$, C$_2$N$_2$, H$_2$O, and CO, we did not apply any correction to the model results of Lavvas et al. (2008b). The mole fractions of some important molecules and radicals are presented in Fig. 6. The corresponding mole fractions at 1015 km are gathered in Table 4.

Fig. 5 (dotted line) shows the positive ion densities calculated with the neutral densities presented on Fig. 6. The relatively good fit indicates that the neutral composition is approximately correct. The main peaks at 28, 52, 76, and 51, 75 amu define the densities of HCN, HC$_3$N, HC$_5$N and C$_4$H$_2$, C$_6$H$_2$, respectively. Further details for the ion-chemical processes involved in the simulation of the positive ions chemistry can be found in Vuitton et al. (2007).
5. Results

The densities of the 11 negative ion species inferred from these neutral densities, the suprathermal electron intensity and our reaction list are given in Fig. 7. At the negative ion density peak, located around 1050 km, the total negative ion density reaches a magnitude of ~1 cm$^{-3}$. This is a quite small abundance of negative ions, about 1/1000 of the total positive ion density. The altitude of the peak for individual ions varies from ~800 to ~1100 km, depending on the dominant production/loss processes and the scale height of the parent molecule.

CN$^-$ and C$_3$N$^-$ are the 2 most prominent ions around 1000 km, with densities of ~1 and ~0.2 cm$^{-3}$, respectively. C$_5$N$^-$ becomes the most abundant ion below ~850 km, because of the larger scale height of HC$_5$N. The anions issued from polyyne species, C$_4$H$^+$ and C$_6$H$^+$, also contribute to the total ion density at lower altitude. The density of the other ions is negligible (<2×10$^{-3}$ cm$^{-3}$) at all altitudes.

At higher altitude, negative ion production usually occurs through electron attachment and at lower altitude, proton exchange reactions of the ions with more acidic neutrals tend to dominate the loss and production of the ions. Loss occurs mostly through associative detachment with radicals (H, CH$_3$) throughout the ionosphere with recombination with positive ions and photo-detachment becoming progressively more important as the altitude increases. The major production and loss channels for the most abundant ions at 1000 km, CN$^-$ and C$_3$N$^-$, are illustrated in Fig. 8.

Throughout the ionosphere, CN$^-$ is produced by dissociative electron attachment on HCN and HC$_3$N. Proton transfer of HCN to C$_x$H$^-$ also contributes below 800 km. Dissociative electron attachment to other nitriles, radiative attachment to CN, and ion-pair formation are largely negligible. Associative detachment with H and CH$_3$ is responsible for most of the CN$^-$ destruction. Proton transfer of HC$_3$N to CN$^-$ also contributes at lower altitude while the contribution of photo-detachment becomes more important in the upper ionosphere. Recombination with positive ions is small for all altitudes.

For C$_3$N$^-$, proton transfer to CN$^-$ and below 800 km, to C$_4$H$^+$ is the dominant formation process. Radiative attachment to C$_3$N also contributes to a lesser extend. While dissociative electron attachment is responsible for most of the CN$^-$ formation, it is a minor mechanism for C$_3$N$^-$ because of the lower cross section for HC$_3$N by comparison to HCN (Table 2 and Fig. 3). We could not find any cross-section for the ion-pair formation from HC$_3$N and do not include it in the model. As discussed in the next section, the production rate associated with this process is systematically negligible for other ions and it most probably does not significantly contribute to the formation of C$_3$N$^-$ either.

Similarly to CN$^-$, loss of C$_3$N$^-$ occurs mostly through associative detachment with radicals. As shown in Table 1, we could not find any data for the gas phase acidity of HC$_3$N and since the EA of C$_3$N and C$_5$N are similar (4.59±0.25 and 4.5±0.05 eV, respectively), we do not include the proton transfer reaction from HC$_3$N to C$_3$N$^-$ in the model. Finally, because of the high electron affinity of C$_3$N, photo-detachment is a minor channel, even at higher altitude.

6. Discussion
The ionospheric chemistry model demonstrates that two ions have a significant density (> 0.1 cm$^{-3}$) at ~1000 km: CN$^-$ (m/q = 26) and C$_3$N$^-$ (m/q = 50). As shown on Fig. 2, ELS detected two negative ions peaks centered at 22±4 and 44±8 amu/q. The uncertainty in m/q is quite large because of the finite energy width of the ELS detector, as discussed in Section 2. However, the good agreement between the model results and the observations leaves little doubt that the two main negative ions in Titan’s upper atmosphere are CN$^-$ and C$_3$N$^-$. The third most abundant ion at ~1000 km according to our model calculations is C$_5$N$^-$, with m/q = 74. The ELS spectrum presents a small peak centered at m/q = 82±14 that is consistent with the model prediction. Because of the increasing importance of C$_4$H$^-$ over C$_3$N$^-$ with altitude, C$_4$H$^-$ will also contribute to the second negative ion peak for negative ions mass spectra obtained above 1100 km. C$_2$H$^-$ is systematically more than two orders of magnitude less abundant than CN$^-$ despite the fact that C$_2$H$_2$ and HCN have similar densities in the upper atmosphere (Table 4). This is due to the larger cross section for dissociative electron attachment to HCN as presented on Fig. 3.

Major sources of uncertainties for the calculated ion mole fractions arise from: (i) uncertainties in the energetic electron flux, (ii) uncertainties in the neutral vertical profiles, (iii) uncertainties in the reaction list.

The uncertainties on the description of the electron flux arise from photo-absorption, photo-ionization and electron impact cross-sections (20% for ionization, up to 50% for the other processes). The uncertainties on the EUV solar flux are minor (a few percent) while the uncertainties on the X-rays are major (a factor of 2 to 5). However, this affects only lower altitudes (below 900 km at closest approach for T40). Finally, the thermal electron density and temperature affect the low energy supra-thermal mean intensities as well as the electron recombination rates of positive ions. They are constrained by RPWS and INMS, respectively, and represent only a minor source of uncertainty (<20%).

HCN and HC$_3$N neutral densities are tuned to reproduce the INMS positive ion densities at 1015-1050 km (Fig. 5). Based on the Carrasco et al. (2007) sensitivity study of a Titan ionospheric model to the ion-molecule reaction parameters, Vuitton et al. (2006; 2007) estimated a factor of uncertainty of 2 to 5 in the neutral densities determined with this technique. Carrasco et al. (2007) sensitivity study is based on the uncertainties of measured ion-molecule reaction rates and branching ratios. However, it doesn’t take into account the uncertainties induced by reactions that have never been studied and that are, as a consequence, lacking in the model. The impact of these missing reactions on the inferred neutral densities is difficult to quantify but it is potentially large, especially for N-bearing species that have been poorly studied.

Cravens et al. (2009) investigated the temporal/vertical structure of Titan’s night-side ionosphere in the context of the electron intensities measured by CAPS. They find that for the T5 encounter, a relative HCN abundance at 1100 km of ~10$^{-3}$ provides the best fit to the observed C$_3$H$_5^+$ and HCNH$^+$ densities, a factor of ~5 higher than our nominal value. This highlights the fact that a different description of the supra-thermal electron deposition, major neutral profiles, etc. can significantly affect the retrieved neutral densities.

Based on the HCN abundance retrieved by Cravens et al. (2009), we consider that an upper limit for the HCN mixing ratio of 8×10$^{-4}$ at 1015 km is reasonable. The CN$^-$ density increases linearly with the HCN density and with this high HCN mixing ratio, the CN$^-$ density at 1015
km reaches 3.5 cm\(^{-3}\). Because of proton transfer from HC\(_3\)N to CN\(^-\), C\(_3\)N\(^-\) increases as well, to reach a density at 1015 km of 0.6 cm\(^{-3}\).

The H and CH\(_3\) densities control the negative ions loss through dissociative attachment reactions. Observations do not provide direct values for radicals and we have used the mole fractions calculated by the photochemical model of Lavvas et al. (2008b). This model provides a good fit to the H\(_2\) and C\(_2\)H\(_6\) densities measured by INMS suggesting that the calculated H and CH\(_3\) mole fractions are probably correct within a factor of a few.

Negative ion chemistry, especially when involving N-bearing species, is extremely poorly known and potentially induces large uncertainties in the ion densities. Ion-pair formation typically amounts to \(\sim 10^{-3}\) of the ionization cross-section and requires fairly high energies (~15 eV). Because of the sharp decrease in the solar spectrum towards shorter wavelengths, this process is systematically negligible on Titan. Photo-detachment cross sections are largely unknown but this process is only important in the very upper atmosphere. While most anion-molecule reactions considered in the model have not been studied, exothermic proton transfer and associative detachment reactions generally occur at every collision and the assumption that they occur at the Langevin rate is probably accurate within a few 10\%. The same comment applies for positive-negative ion recombination. Generally, the highest source of uncertainty in the reaction list arises from cross sections for electron attachment. For CN\(^-\), dissociative electron attachment to HCN has been characterized experimentally (Inoue, 1966) but more studies are required to confirm these results. Such studies are of the uttermost importance since electron attachment is the dominant formation process of CN\(^-\) and its density profile strongly depends on the cross sections associated with this process.

Radiative electron attachment rate coefficients, like all two-body radiative attachment rate coefficients, are extremely difficult to measure in the laboratory, and are generally evaluated via a statistical theory. With this technique, Herbst and Osamura (2008) derived the rate of radiative attachment for C\(_3\)N to be \(3\times10^{-10}(T_e/300)^{0.5}\) cm\(^3\) s\(^{-1}\). However, from the ratio of the observed abundances of C\(_3\)N\(^-\) and C\(_3\)N in the molecular envelope of IRC+10216, Thaddeus et al. (2008) derived the same rate to be \(1.9\times10^{-9}(T_e/300)^{0.5}\) cm\(^3\) s\(^{-1}\), on the assumption that the steady state approximation applies and photo-detachment may be neglected. This is almost an order of magnitude higher than the calculated rate. When using the rate inferred from the InterStellar Medium (ISM) observations instead of the theoretical value, our modeled C\(_3\)N\(^-\) density increases by a factor of 2 at 1000 km. This moderate increase in the C\(_3\)N\(^-\) density, relative to the difference in the applied rates, is due to the proton transfer reaction to CN\(^-\) being the dominant process controlling the C\(_3\)N\(^-\) abundance in this region.

CAPS and MIMI (Magnetospheric IMaging Instrument) onboard Cassini measured energetic O\(^+\) ions in Saturn’s outer magnetosphere (Hartle et al., 2006; Krimigis et al., 2005). Cravens et al. (2008) suggested that, when entering Titan’s atmosphere, a few percent of the most energetic ions (27 keV-4 MeV) is converted to negative oxygen ions as a consequence of charge exchange collisions with N\(_2\). O\(^-\) ions would then transfer electrons to atmospheric species such as NH\(_3\) or CH\(_4\), thus initiating atmospheric negative ion chemistry.

We anticipate that the fraction of O\(^-\) in the beam is likely to be smaller than calculated by Cravens et al. (2008). The lack of cross section data at low energy makes estimating the O\(^-\) fraction difficult. Cravens et al. (2008) used cross sections at \(~1\) keV, the lowest energy available, for their estimates of the O\(^-\), but the determining factor for the final state of the incident ions are the cross sections at tens of eV. Until these cross sections are available we
can only say that the O- fraction should be between negligible and the ~5% estimated by Cravens et al. (2008).

In order to test the O- hypothesis, we added a flux of O\(^-\) in our ionospheric chemistry model of 10\(^5\) cm\(^{-2}\) s\(^{-1}\), corresponding to 5% of the “typical” Cassini MIMI case presented in the figure 1 of Cravens et al. (2008). The altitude of deposition is centered at 900 km based on their figure 3. Because of its strong basicity, O\(^-\) can subsequently proton exchange with a variety of neutral species to produce ions such as C\(_2\)H\(^+\), CN\(^-\) and C\(_3\)N\(^-\), as detailed in Table 3. The retrieved ion vertical profiles are shown on Fig 9. With this O\(^-\) flux, the O\(^-\) density increases by ~10\(^4\) at the peak, reaching 2\(\times\)10\(^{-2}\) cm\(^{-3}\). This essentially translates into higher densities for OH\(^-\) and C\(_2\)H\(^-\) (4\(\times\)10\(^{-3}\) and 8\(\times\)10\(^{-2}\) at 1015 km, respectively). CN\(^-\) and C\(_3\)N\(^-\) are only slightly affected because the production rate from the other processes described previously still dominates. We conclude that the O\(^-\) flux suggested by Cravens et al. (2008), even if real, cannot account for the negative ion densities measured by CAPS-ELS.

Four negative ions have been detected so far in the interstellar medium: C\(_4\)H\(^-\) (Cernicharo et al., 2007), C\(_6\)H\(^-\) (McCarthy et al., 2006), C\(_8\)H\(^-\) (Brünken et al., 2007; Remijan et al., 2007) and C\(_3\)N\(^-\) (Thaddeus et al., 2008). The ratio of the abundance of these 4 ions to the corresponding radical is presented in Table 5. This ratio decreases in the following order: C\(_8\)H/C\(_6\)H > C\(_6\)H/C\(_8\)H > C\(_3\)N/C\(_3\)N > C\(_4\)H/C\(_4\)H, with a value of 3 \(\times\) 10\(^{-1}\) for the first pair down to 3 \(\times\) 10\(^{-3}\) for the last one. By comparison, at the negative ion peak on Titan, we find CN/CN > C\(_3\)N/C\(_3\)N > C\(_5\)N/C\(_5\)N and C\(_6\)H/C\(_6\)H > C\(_4\)H/C\(_4\)H > C\(_2\)H/C\(_2\)H, with values ranging from \(\sim\)10\(^{-2}\) to \(\sim\)10\(^{-5}\).

It is striking that for a common ion, the ion/radical ratios are very similar in both environments. In the interstellar medium, radiative electron attachment to open-shell species is believed to be the main mechanism leading to negative ions. Loss occurs through association with H atoms and neutralization with positive ions. We find that the same mechanisms govern the C\(_4\)H and C\(_6\)H\(^-\) densities below 1200 km on Titan, except that recombination with positive ions is negligible. Because radiative electron attachment is proportional to T\(^{-0.5}\), higher electron temperature on Titan (close to 1000 K) and smaller electron to atomic hydrogen densities (~10\(^{-4}\) at 1000 km) explain the small difference in ion to radical density found on Titan compared to the ISM.

7. Conclusion

We developed the first negative ion chemistry model of Titan’s upper atmosphere. We determined the production and loss processes for 11 negative ions constituted of C, H, O and N. We found that the total negative ion density reaches 1 cm\(^{-3}\) but that it is sensitive to the supra-thermal electron intensities, neutral densities and chemical kinetics. A sensitivity analysis similar to the work performed for positive ion chemistry by Carrasco et al. (2007) would be valuable. It would be especially interesting to show in more detail which rate data are most needed and with what accuracy.

The two major peaks detected by ELS at m/q = 22±4 and 44±8 are identified as CN\(^-\) and C\(_3\)N\(^-\). A smaller peak observed at m/q = 82±14 is likely due to C\(_5\)N\(^-\). Ions with a polyyne-like structure (C\(_4\)H\(^-\) and C\(_6\)H\(^-\)) are also fairly abundant (up to 5\(\times\)10\(^{-2}\) and 10\(^{-2}\) cm\(^{-3}\), respectively) and contribute significantly to the total ion density below 800 km. Above 1100 km, C\(_4\)H and
C$_3$N$^-$ densities are comparable and both ions contribute to the ELS negative ion peak centered at 44±8 amu.

The CAPS-ELS detectors were designed to measure electrons, not negative ions, as these were not expected in Titan’s upper atmosphere as detailed in the introduction. The instrument response was therefore not calibrated in the laboratory for ions, and hence the micro-channel plate efficiency can only be estimated based on nominal ion efficiencies. Better characterization of the detectors is under way and a quantitative comparison of the calculated negative ion densities to the observations will be presented in a subsequent paper.

Observation of a large abundance of negatively charged aerosols does not necessarily implies that chemical growth occurs through negative ion chemistry, as particles could attach electrons after having already reached a substantial size. In Titan’s cold environment, only exothermic reactions with a small energy barrier (< 2 kJ mol$^{-1}$) can take place. This is generally the case for reactions involving either positively or negatively charged ions. Another possibility is the chemistry driven by highly energetic radicals, which proceeds efficiently even at the lowest temperatures (Smith et al., 2006). Finally, radical-radical reactions are a third possibility. In the thermosphere, the pressure is too low for 3-body reactions to occur but it is possible that radiative emission releases the excess energy associated with the recombination (S.J. Klippenstein, personal communication).

Determining which of these processes dominates aerosol formation on Titan will require the development of chemical models that include positive and negative ion and neutral chemistry, and trace formation of molecules with masses up to a few 1000 amu. This is a daunting task because of the huge number of species and reactions involved. General rules describing different classes of species and reactions will have to be established. In order to do so, a good knowledge of the reaction kinetics and mechanisms is required. Data on the positive and negative ion chemistry of hydrocarbons and N-bearing species as well as on the radiative recombination of radicals is desperately needed.

Acknowledgements

We acknowledge useful discussions with Roland Thissen, Odile Dutuit, Chris Arridge and Geraint Jones. We are very grateful to the TIMED/SEE PI, Tom Woods, and his team for providing us with the solar flux dataset and associated routines of extrapolation to planets [http://lasp.colorado.edu/see/].

References

Figure captions

Fig. 1. Energy-time spectrogram retrieved by ELS and the corresponding actuator / ram angle during the T40 encounter. The vertical spikes systematically occur at a 0° angle between the actuator and ram and can consequently be attributed as negative ions.

Fig. 2. Negative ions measured in each CAPS-ELS energy bin at an altitude of 1015 km during the T40 encounter. The attribution of the peaks is based on the ionospheric chemistry model.

Fig. 3. Electron attachment cross-sections considered in the ionospheric chemistry model. References can be found in Table 2.

Fig. 4. Calculated energetic electrons flux at 1015 km.

Fig. 5. Positive ions mass spectrum measured during the T40 encounter, averaged between the altitudes of 1015 and 1050 km and including both ingress and egress data. The black dots show the INMS measurements, and the black line connects the points. Error bars represent the uncertainty due to counting statistics. They are smaller than the symbol size for larger densities. They do not include a systematic error of 20% due to calibration uncertainties. The dotted line represents the modeled spectrum with densities of selected neutrals tuned to reproduce the observations.

Fig. 6. Neutral species mole fraction versus altitude used as input in the ionospheric chemistry model. The same N₂ and CH₄ mole fractions are used in the photoelectron model. The way these profiles have been retrieved is described in the text and in Table 4.

Fig. 7. Negative ions density versus altitude as calculated by the ionospheric chemistry model.

Fig. 8. Important production/destruction rates versus altitude for CN⁻ and C₃N⁻ as calculated by the ionospheric chemistry model.

Fig. 9. Negative ions density versus altitude as calculated by the ionospheric chemistry model with an O⁻ flux of 10⁵ cm⁻² s⁻¹.
Table 1. Electron affinity and gas phase acidity of some molecules present on Titan. No data was found for the acidity of HC$_3$N.

<table>
<thead>
<tr>
<th>Species</th>
<th>Electron Affinity (eV)</th>
<th>Reference</th>
<th>Species</th>
<th>Acidity (kJ/mol)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.75</td>
<td>Hotop and Lineberger (1985)</td>
<td>H$_2$</td>
<td>1649</td>
<td>Shiell et al. (2000)</td>
</tr>
<tr>
<td>Hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_2$</td>
<td>0.65</td>
<td>Leopold et al. (1985)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$</td>
<td>0.08</td>
<td>Ellison et al. (1978)</td>
<td>CH$_4$</td>
<td>1710</td>
<td>Ellison et al. (1978)</td>
</tr>
<tr>
<td>Polynes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H</td>
<td>3.0</td>
<td>Taylor et al. (1998)</td>
<td>C$_2$H$_2$</td>
<td>1547</td>
<td>Ruscic and Berkowitz (1990)</td>
</tr>
<tr>
<td>C$_3$H</td>
<td>3.6</td>
<td>Taylor et al. (1998)</td>
<td>C$_3$H$_2$</td>
<td>1474</td>
<td>Taylor et al. (1998)</td>
</tr>
<tr>
<td>C$_4$H</td>
<td>3.8</td>
<td>Taylor et al. (1998)</td>
<td>C$_4$H$_2$</td>
<td>1467</td>
<td>Taylor et al. (1998)</td>
</tr>
<tr>
<td>C$_5$H</td>
<td>4.0</td>
<td>Taylor et al. (1998)</td>
<td>C$_5$H$_2$</td>
<td>1451</td>
<td>Taylor et al. (1998)</td>
</tr>
<tr>
<td>Aromatic hydrocarbons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_6$H$_5$</td>
<td>1.1</td>
<td>Gunion et al. (1992)</td>
<td>C$_6$H$_6$</td>
<td>1644</td>
<td>Davico et al. (1995)</td>
</tr>
<tr>
<td>CH$_2$C$_6$H$_5$</td>
<td>0.9</td>
<td>Gunion et al. (1992)</td>
<td>CH$_3$C$_6$H$_5$</td>
<td>1557</td>
<td>Gal et al. (2001)</td>
</tr>
<tr>
<td>Nitriles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>3.8</td>
<td>Bradford et al. (1993)</td>
<td>HCN</td>
<td>1438</td>
<td>Bradford et al. (1993)</td>
</tr>
<tr>
<td>CH$_2$CN</td>
<td>1.5</td>
<td>Moran et al. (1987)</td>
<td>CH$_3$CN</td>
<td>1528</td>
<td>Bartmess et al. (1979)</td>
</tr>
<tr>
<td>C$_2$N</td>
<td>4.6</td>
<td>Graupner et al. (2006)</td>
<td>HC$_3$N</td>
<td>1435</td>
<td>Taft et al. (1988)</td>
</tr>
<tr>
<td>C$_3$N</td>
<td>4.5</td>
<td>Botschwina (1996)</td>
<td>HC$_5$N</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Non-saturated nitrogen-bearing species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NH$_2$</td>
<td>0.8</td>
<td>Wickham-Jones et al. (1989)</td>
<td>NH$_3$</td>
<td>1657</td>
<td>Wickham-Jones et al. (1989)</td>
</tr>
<tr>
<td>CH$_2$N</td>
<td>0.5</td>
<td>Cowles et al. (1991)</td>
<td>CH$_2$NH</td>
<td>1594</td>
<td>Kass and DePuy (1985)</td>
</tr>
<tr>
<td>Oxygen-bearing species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>1.5</td>
<td>Hotop and Lineberger (1985)</td>
<td>H$_2$O</td>
<td>1605</td>
<td>Schulz et al. (1982)</td>
</tr>
<tr>
<td>OH</td>
<td>1.8</td>
<td>Schulz et al. (1982)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Reaction list: Photochemical reactions. For ion-pair formation and dissociative electron attachment reactions, the maximum of the cross section (cm2) and its location (eV) are given. For radiative electron attachment, the rate constant (cm3 s$^{-1}$) is given. e_{S}^- and e_{T}^- stand for supra-thermal and thermal electrons, respectively.

<table>
<thead>
<tr>
<th>#</th>
<th>Reaction</th>
<th>Cross Section/Reaction Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion-pair formation:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$ + hv → H$^-$ + H$^+$</td>
<td>2.5 × 10$^{-23}$ @ 17.3</td>
<td>Berkowitz (1996); Chupka et al. (1975)</td>
<td></td>
</tr>
<tr>
<td>CH$_4$ + hv → H$^-$ + CH$_3$+</td>
<td>1.0 × 10$^{-20}$ @ 21.5</td>
<td>Berkowitz (1996); Mitsuke et al. (1991)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_2$ + hv → C$_2$H$^-$ + H$^+$</td>
<td>6.0 × 10$^{-21}$ @ 18.8</td>
<td>Berkowitz (1996); Ruscic and Berkowitz (1990)</td>
<td></td>
</tr>
<tr>
<td>HCN + hv → CN$^-$ + H$^+$</td>
<td>4.4 × 10$^{-20}$ @ 15.2</td>
<td>Berkowitz (1996); Berkowitz et al. (1969)</td>
<td></td>
</tr>
<tr>
<td>CO + hv → O$^-$ + C$^+$</td>
<td>1.1 × 10$^{-19}$ @ 20.9</td>
<td>Berkowitz (1996); Oertel et al. (1980)</td>
<td></td>
</tr>
<tr>
<td>H$_2$O + hv → OH$^-$ + O$^+$</td>
<td>1.1 × 10$^{-20}$ @ 16.9</td>
<td>Berkowitz (1996)</td>
<td></td>
</tr>
<tr>
<td>Dissociative electron attachment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4 + $e{S}^-$ → CH$_2$$^-$ + H$_2$</td>
<td>9.5 × 10$^{-20}$ @ 10.3</td>
<td>Sharp and Dowell (1967)</td>
<td></td>
</tr>
<tr>
<td>→ H$^-$ + CH$_3$</td>
<td>7.2 × 10$^{-20}$ @ 8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H2 + $e{S}^-$ → C$_2$H$^-$ + H</td>
<td>7.0 × 10$^{-20}$ @ 2.7, 7.7</td>
<td>Rutkowski et al. (1980)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H2 + $e{S}^-$ → C$_2$H$^-$ + H</td>
<td>Est. from C$_2$H$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H2 + $e{S}^-$ → C$_2$H$^-$ + H</td>
<td>Est. from C$_2$H$_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCN + e_{S}^- → CN$^-$ + H</td>
<td>2.0 × 10$^{-16}$ @ 2.5</td>
<td>Inoue (1966)</td>
<td></td>
</tr>
<tr>
<td>CH3CN + $e{S}^-$ → CN$^-$ + CH$_3$</td>
<td>4.2 × 10$^{-25}$ @ 2.0</td>
<td>Sailer et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H3CN + $e{S}^-$ → CN$^-$ + C$_2$H$_3$</td>
<td>1.1 × 10$^{-24}$ @ 8.0</td>
<td>Tsuda et al. (1973)</td>
<td></td>
</tr>
<tr>
<td>HC3N + $e{S}^-$ → CN$^-$ + C$_2$H</td>
<td>4.0 × 10$^{-18}$ @ 4.9</td>
<td>Dibeler et al. (1961)</td>
<td></td>
</tr>
<tr>
<td>→ C$_3$N$^-$ + H</td>
<td>3.8 × 10$^{-18}$ @ 2.6</td>
<td>See text</td>
<td></td>
</tr>
<tr>
<td>HC5N + $e{S}^-$ → CN$^-$ + C$_2$H</td>
<td>Est. from HC$_3$N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ C$_3$N$^-$ + H</td>
<td>Est. from HC$_3$N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$N2 + $e{S}^-$ → CN$^-$ + CN</td>
<td>1.9 × 10$^{-17}$ @ 5.5</td>
<td>Inoue (1966)</td>
<td></td>
</tr>
<tr>
<td>CO + e_{S}^- → O$^-$ + C</td>
<td>2.0 × 10$^{-19}$ @ 9.8</td>
<td>Rapp and Briglia (1965); Stamatovic and Schulz (1970)</td>
<td></td>
</tr>
<tr>
<td>H2O + $e{S}^-$ → H$^-$ + OH</td>
<td>5.5 × 10$^{-18}$ @ 6.6</td>
<td>Haxton et al. (2007)</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\rightarrow \ O^- & \quad + \quad H_2 & \quad 9.0 \times 10^{-19} \quad @ \quad 12. \\
\rightarrow \ \text{OH}^- & \quad + \quad H & \quad 4.9 \times 10^{-20} \quad @ \quad 7.0 \\
\end{align*}
\]

Radiative electron attachment:

\[
\begin{align*}
\text{H} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{H}^- & \quad + \quad h\nu & \quad 3.0 \times 10^{-16}(T/e/300) & \quad \text{Ohio State University Database (2007)}^a \\
\text{CH}_2 & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{CH}_3^- & \quad + \quad h\nu & \quad \text{Est. from CN} \\
\text{CH}_3 & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{CH}_3^- & \quad + \quad h\nu & \quad \text{Est. from CN} \\
\text{C}_2\text{H} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{C}_2\text{H}^- & \quad + \quad h\nu & \quad 2.0 \times 10^{-15}(T/e/300)^{0.5} & \quad \text{(Herbst and Osamura, 2008)} \\
\text{C}_3\text{H} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{C}_3\text{H}^- & \quad + \quad h\nu & \quad 1.1 \times 10^{-8}(T/e/300)^{0.5} & \quad \text{(Herbst and Osamura, 2008)} \\
\text{C}_5\text{H} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{C}_5\text{H}^- & \quad + \quad h\nu & \quad 6.2 \times 10^{-8}(T/e/300)^{0.5} & \quad \text{(Herbst and Osamura, 2008)} \\
\text{CN} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{CN}^- & \quad + \quad h\nu & \quad 1.0 \times 10^{-14} & \quad \text{Petrie (1996)} \\
\text{C}_2\text{N} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{C}_2\text{N}^- & \quad + \quad h\nu & \quad 2.6 \times 10^{-10}(T/e/300)^{0.5} & \quad \text{(Herbst and Osamura, 2008)} \\
\text{C}_5\text{N} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{C}_5\text{N}^- & \quad + \quad h\nu & \quad \text{Est. from C}_6\text{H} \\
\text{O} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{O}^- & \quad + \quad h\nu & \quad 1.5 \times 10^{-15} & \quad \text{Ohio State University Database (2007)}^a \\
\text{OH} & \quad + \quad e_T^- & \quad \rightarrow & \quad \text{OH}^- & \quad + \quad h\nu & \quad \text{Est. from CN} \\
\end{align*}
\]

\(^a\text{http://www.physics.ohio-state.edu/~eric/research.html}\)
Table 3. Reaction list: Chemical reactions. Rate constants are given in cm3 s$^{-1}$.

<table>
<thead>
<tr>
<th>#</th>
<th>Reaction</th>
<th>Rate Constant</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$^-$ + X$^+$ → Products</td>
<td>1.0×10^{-7}</td>
<td>Hickman (1979); Smith et al. (1978)</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + R → Products + e^-_r</td>
<td>1.8×10^{-9}</td>
<td>Fehsenfeld et al. (1973)</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + C$_2$H$_2$ → C$_2$H$^+$ + H$_2$</td>
<td>4.4×10^{-9}</td>
<td>Mackay et al. (1977)</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + C$_4$H$_2$ → C$_4$H$^+$ + H$_2$</td>
<td>6.4×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + C$_6$H$_2$ → C$_6$H$^+$ + H$_2$</td>
<td>6.3×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + HCN → CN$^-$ + H$_2$</td>
<td>1.5×10^{-8}</td>
<td>Mackay et al. (1976)</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + HC$_3$N → C$_3$N$^-$ + H$_2$</td>
<td>1.0×10^{-8}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>H$^-$ + HC$_3$N → C$_3$N$^-$ + H$_2$</td>
<td>1.0×10^{-8}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>CH$_2^-$ + X$^+$ → Products</td>
<td>1.0×10^{-7}</td>
<td>Hickman (1979); Smith et al. (1978)</td>
<td></td>
</tr>
<tr>
<td>CH$_2^-$ + R → Products + e^-_r</td>
<td>1.0×10^{-9}</td>
<td>Adams (1996)</td>
<td></td>
</tr>
<tr>
<td>CH$_3^-$ + X$^+$ → Products</td>
<td>1.0×10^{-7}</td>
<td>Hickman (1979); Smith et al. (1978)</td>
<td></td>
</tr>
<tr>
<td>CH$_3^-$ + R → Products + e^-_r</td>
<td>1.0×10^{-9}</td>
<td>Adams (1996)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + X$^+$ → Products</td>
<td>1.0×10^{-7}</td>
<td>Hickman (1979); Smith et al. (1978)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + R → Products + e^-_r</td>
<td>1.6×10^{-9}</td>
<td>Barckholtz et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + C$_4$H$_2$ → C$_4$H$^+$ + C$_2$H$_2$</td>
<td>1.5×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + C$_6$H$_2$ → C$_6$H$^+$ + C$_2$H$_2$</td>
<td>2.3×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + HCN → CN$^-$ + C$_2$H$_2$</td>
<td>3.9×10^{-9}</td>
<td>Mackay et al. (1976)</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + HC$_3$N → C$_3$N$^-$ + C$_2$H$_2$</td>
<td>2.5×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + HC$_3$N → C$_3$N$^-$ + C$_2$H$_2$</td>
<td>2.9×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_2$H$^-$ + C$_2$H$_2$ → C$_4$H$^+$ + H$_2$</td>
<td>1.0×10^{-12}</td>
<td>De Bleecker et al. (2006); Howling et al. (1994)</td>
<td></td>
</tr>
<tr>
<td>C$_4$H$^+$ + X$^+$ → Products</td>
<td>1.0×10^{-7}</td>
<td>Hickman (1979); Smith et al. (1978)</td>
<td></td>
</tr>
<tr>
<td>C$_4$H$^+$ + R → Products + e^-_r</td>
<td>8.3×10^{-10}</td>
<td>Barckholtz et al. (2001)</td>
<td></td>
</tr>
<tr>
<td>C$_4$H$^+$ + C$_6$H$_2$ → C$_6$H$^+$ + C$_2$H$_2$</td>
<td>1.8×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_4$H$^+$ + HCN → CN$^-$ + C$_2$H$_2$</td>
<td>2.0×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
<tr>
<td>C$_4$H$^+$ + HC$_3$N → C$_3$N$^-$ + C$_2$H$_2$</td>
<td>2.0×10^{-9}</td>
<td>k_L</td>
<td></td>
</tr>
</tbody>
</table>
\[
\begin{align*}
& C_4H^- + HC_3N \rightarrow C_5N^- + C_2H_2 & 2.3 \times 10^{-9} & \text{De Bleecker et al. (2006); Howling et al. (1994)} \\
& C_6H^- + C_2H_2 \rightarrow C_8H^- + H_2 & 1.0 \times 10^{-12} & \text{Hickman (1979); Smith et al. (1978)} \\
& C_8H^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Barckholtz et al. (2001)} \\
& C_8H^- + R \rightarrow \text{Products} + e^- & 5.0 \times 10^{-10} & \text{De Bleecker et al. (2006); Howling et al. (1994)} \\
& C_8H^- + HCN \rightarrow C_3N^- + C_2H_2 & 1.9 \times 10^{-9} & \text{Hickman (1979); Smith et al. (1978)} \\
& C_8H^- + HC_3N \rightarrow C_3N^- + C_2H_2 & 1.8 \times 10^{-9} & \text{Fehsenfeld (1975)} \\
& C_8H^- + HC_3N \rightarrow C_3N^- + C_2H_2 & 2.1 \times 10^{-9} & \text{De Bleecker et al. (2006); Howling et al. (1994)} \\
& C_8H^- + C_2H_2 \rightarrow CXH_3N^- & 1.0 \times 10^{-12} & \text{Hickman (1979); Smith et al. (1978)} \\
& CN^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)} \\
& CN^- + R \rightarrow \text{Products} + e^- & 1.3 \times 10^{-9} & \text{Fehsenfeld (1975)} \\
& CN^- + HC_3N \rightarrow C_3N^- + HCN & 4.6 \times 10^{-9} & \text{Hickman (1979); Smith et al. (1978)} \\
& CN^- + HC_3N \rightarrow C_3N^- + HCN & 5.4 \times 10^{-9} & \text{Petrie and Herbst (1997)} \\
& C_3N^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)} \\
& C_3N^- + R \rightarrow \text{Products} + e^- & 1.0 \times 10^{-9} & \text{Est. from C_3N^-} \\
& C_5N^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)} \\
& C_5N^- + R \rightarrow \text{Products} + e^- & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)} \\
& O^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)} \\
& O^- + R \rightarrow \text{Products} + e^- & 5.0 \times 10^{-10} & \text{UMIST Database (2005)}^a \\
& O^- + CH_4 \rightarrow OH^- + CH_3 & 1.0 \times 10^{-10} & \text{Bohme and Fehsenfeld (1969)} \\
& O^- + C_2H_2 \rightarrow \text{Products} + e^- & 1.1 \times 10^{-9} (300/T)^{0.39} & \text{Viggiano and Paulson (1983)} \\
& O^- + C_2H_2 \rightarrow C_4H^- + OH & 1.8 \times 10^{-9} e^{-289/T} & \text{Viggiano and Paulson (1983)} \\
& O^- + C_4H_2 \rightarrow C_6H^- + OH & 1.6 \times 10^{-9} & \text{Bohme (1975)} \\
& O^- + C_6H_2 \rightarrow C_8H^- + OH & 1.6 \times 10^{-9} & \text{Bohme (1975)} \\
& O^- + HCN \rightarrow CN^- + OH & 3.7 \times 10^{-9} & \text{Bohme (1975)} \\
& O^- + HC_3N \rightarrow C_3N^- + OH & 2.9 \times 10^{-9} & \text{Bohme (1975)} \\
& O^- + HC_3N \rightarrow C_5N^- + OH & 2.8 \times 10^{-9} & \text{Bohme (1975)} \\
& OH^- + X^+ \rightarrow \text{Products} & 1.0 \times 10^{-7} & \text{Hickman (1979); Smith et al. (1978)}
\end{align*}
\]
\[
\begin{align*}
\text{OH}^- + R & \rightarrow \text{H}_2\text{O} + e^-_r, \quad 1.4 \times 10^{-9} \quad \text{Howard et al. (1974)} \\
\text{OH}^- + C_2H_2 & \rightarrow C_2H^+ + \text{H}_2\text{O}, \quad 2.2 \times 10^{-9} \quad \text{Raksit and Bohme (1983)} \\
\text{OH}^- + \text{HCN} & \rightarrow \text{CN}^- + \text{H}_2\text{O}, \quad 3.5 \times 10^{-9} \quad \text{Raksit and Bohme (1983)} \\
C_XH_YN_Z^- + X^+ & \rightarrow \text{Products}, \quad 1.0 \times 10^{-7} \quad \text{Hickman (1979); Smith et al. (1978)} \\
C_XH_YN_Z^- + R & \rightarrow \text{Products} + e^-_r, \quad 1.0 \times 10^{-9} \quad \text{Adams (1996)} \\
\end{align*}
\]

ahttp://www.udfa.net/
Table 4. Mole fraction at 1015 km of the neutral species considered in the ionospheric chemistry model.

<table>
<thead>
<tr>
<th>Species</th>
<th>Mole fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons:</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>(9.9 \times 10^{-4})</td>
</tr>
<tr>
<td>H(_2)</td>
<td>(3.8 \times 10^{-3})</td>
</tr>
<tr>
<td>CH(_3)</td>
<td>(2.7 \times 10^{-4})</td>
</tr>
<tr>
<td>CH(_4)</td>
<td>(2.8 \times 10^{-2})</td>
</tr>
<tr>
<td>C(_2)H</td>
<td>(2.3 \times 10^{-8})</td>
</tr>
<tr>
<td>C(_2)H(_2)</td>
<td>(9.9 \times 10^{-4})</td>
</tr>
<tr>
<td>C(_4)H</td>
<td>(9.3 \times 10^{-10})</td>
</tr>
<tr>
<td>C(_4)H(_2)</td>
<td>(1.1 \times 10^{-5})</td>
</tr>
<tr>
<td>C(_6)H</td>
<td>(3.5 \times 10^{-11})</td>
</tr>
<tr>
<td>C(_6)H(_2)</td>
<td>(1.1 \times 10^{-6})</td>
</tr>
<tr>
<td>Nitrogen-bearing species:</td>
<td></td>
</tr>
<tr>
<td>N(_2)</td>
<td>(9.6 \times 10^{-1})</td>
</tr>
<tr>
<td>C(_2)N(_2)</td>
<td>(9.3 \times 10^{-6})</td>
</tr>
<tr>
<td>CN</td>
<td>(7.1 \times 10^{-9})</td>
</tr>
<tr>
<td>HCN</td>
<td>(1.9 \times 10^{-4})</td>
</tr>
<tr>
<td>CH(_3)CN</td>
<td>(9.9 \times 10^{-7})</td>
</tr>
<tr>
<td>C(_2)H(_3)CN</td>
<td>(2.2 \times 10^{-6})</td>
</tr>
<tr>
<td>C(_3)N</td>
<td>(2.0 \times 10^{-8})</td>
</tr>
<tr>
<td>HC(_3)N</td>
<td>(3.4 \times 10^{-5})</td>
</tr>
<tr>
<td>HC(_3)N</td>
<td>(1.3 \times 10^{-6})</td>
</tr>
<tr>
<td>Oxygen-bearing species:</td>
<td></td>
</tr>
<tr>
<td>H(_2)O</td>
<td>(2.6 \times 10^{-7})</td>
</tr>
<tr>
<td>CO</td>
<td>(9.8 \times 10^{-6})</td>
</tr>
</tbody>
</table>

\(\text{a}^\text{Photochemical model of Lavvas et al. (2008b).}\)
\(\text{b}^\text{INMS neutral measurements obtained on the Cassini T40 flyby.}\)
\(\text{c}^\text{Photochemical model of Lavvas et al. (2008b) scaled to the observed density of the parent molecule (see text).}\)
\(\text{d}^\text{Inferred from INMS ion measurements obtained on the Cassini T40 flyby (see text).}\)
\(\text{e}^\text{Unpublished results from the photochemical model of Lavvas et al. (2008a,b).}\)
Table 5. Negative ion/radical density ratio in Titan’s ionosphere and the molecular envelope of IRC+10216. For Titan, the ratios are taken at the maximum of the negative ion density. For IRC+10216, the ratios are from Thaddeus et al. (2008) and references therein.

<table>
<thead>
<tr>
<th></th>
<th>Titan</th>
<th>IRC+10216</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂H⁻/C₂H</td>
<td>2.4 × 10⁻⁵</td>
<td>-</td>
</tr>
<tr>
<td>C₄H⁻/C₄H</td>
<td>1.6 × 10⁻⁴</td>
<td>2.6 × 10⁻⁴</td>
</tr>
<tr>
<td>C₆H⁻/C₆H</td>
<td>4.7 × 10⁻²</td>
<td>6.2 × 10⁻²</td>
</tr>
<tr>
<td>C₈H⁻/C₈H</td>
<td>-</td>
<td>(2.6-3.6) × 10⁻¹</td>
</tr>
<tr>
<td>CN⁻/CN</td>
<td>1.9 × 10⁻²</td>
<td>-</td>
</tr>
<tr>
<td>C₃N⁻/C₃N</td>
<td>1.9 × 10⁻³</td>
<td>5.2 × 10⁻³</td>
</tr>
<tr>
<td>C₅N⁻/C₅N</td>
<td>3.5 × 10⁻³</td>
<td>-</td>
</tr>
</tbody>
</table>
Figure 1
Figure 7a

The graph shows the variation of various ion densities with altitude. The y-axis represents altitude in kilometers, while the x-axis represents density in cm$^{-3}$. The ions depicted are H$^-$, CH$_2^-$, CH$_3^-$, O$^-$, and OH$^-$. Each ion is represented by a different line style, with H$^-$ being a solid line, CH$_2^-$ a dotted line, CH$_3^-$ a dashed line, O$^-$ a dash-dotted line, and OH$^-$ a dot-dash line.
Figure 7b

The graph shows the altitude (km) versus density (cm$^{-3}$) for various species: C_2H^-, C_4H^-, C_6H^-, CN$^-$, C_3N^-, and C_5N^-, along with a total density curve. The density values range from 10^{-5} to 10^0. The altitude range is from 700 km to 1200 km.