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 Emissions from landscape fires affect both climate and air quality1. In this 17 
study, we combine satellite-derived fire estimates and atmospheric modeling to 18 
quantify health effects from fire emissions in Southeast Asia from 1997 to 2006. This 19 
region has large interannual variability in fire activity due to coupling between El 20 
Niño-induced droughts and anthropogenic land use change2,3. We show that during 21 
strong El Niño years, fires contribute up to 200 µg/m3 and 50 ppb in annual average 22 
fine particulate matter (PM2.5) and ozone (O3) surface concentrations near fire 23 
sources, respectively. This corresponds to a fire contribution of 200 additional days 24 
per year that exceed the World Health Organization (WHO) 50 µg/m3 24-hour PM2.5 25 
interim target (IT-2)4 and an estimated 10,800 (6,800-14,300) person (~2%) annual 26 
increase in regional adult cardiovascular mortality. Our results indicate that 27 
reducing regional deforestation and degradation fires would improve public health 28 
along with widely established benefits from reducing carbon emissions, preserving 29 
biodiversity, and maintaining ecosystem services. 30  Fires are pervasive instruments of land management in the tropics for clearing 31 debris in the process of deforestation and agricultural management. These fires enable an 32 economical and effective method for expanding and maintaining agricultural production, 33 but release gases (including O3 precursors) and aerosols (mostly black and organic carbon) 34 that interact with the climate system5, degrade surface air quality1, and jeopardize public 35 health6. Fires associated with deforestation emitted ~1.0 Pg C/yr from 2000-107, with 36 considerable interannual variability from droughts in tropical forests8. Fires also 37 contribute to PM2.5 and O3 increases, which are both detrimental to public health1,4. 38 
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Projections of greater fire activity in a warming climate9 suggest increasing contributions 39 to atmospheric concentrations and population exposure.  40 Globally, most fires occur in Africa and South America8, but recent studies have 41 highlighted the importance of Southeast Asia because of high population densities near 42 high fire activity10. Regional emissions may differ by a factor of 50 between opposite 43 phases of the El Niño-Southern Oscillation (ENSO). In the Global Fire Emissions Database 44 version 3 (GFED3), regional fire emissions were 1069 Tg C during the 1997 El Niño but 45 only 21 Tg C during the 2000 La Niña8, illustrating the nonlinearity between fires and 46 drought11. During the warm phase of ENSO and the Indian Ocean Dipole, cool sea surface 47 temperature anomalies near Indonesia decrease regional rainfall2,12. Landowners ignite 48 fires to clear land and manage agricultural areas3, and although typically too wet to 49 combust, deforestation and degradation have enhanced the susceptibility of peatland 50 forests (with carbon-rich peat deposits) to human-ignited fire during droughts13. 51 PM2.5 and O3 exposure increases hospital admissions and mortality from respiratory 52 and cardiovascular diseases, even at low concentrations4. During the 1997-98 fires in 53 Southeast Asia, daily ground-level PM concentrations reached hazardous levels6, with 54 concomitant negative impacts on respiratory and general health14. Increases in respiratory 55 illnesses were also reported in Singapore from transported emissions15. While these 56 studies offer some information on the health effects of fires, they have been confined to 57 specific locations or time periods by limited data availability.  58 We expand on these local studies by using satellite data and two atmospheric 59 models, NASA GISS-E2-PUCCINI general circulation model (GCM) and Harvard University’s 60 GEOS-Chem chemical transport model (CTM) to estimate pollutant concentrations and 61 
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corresponding regional mortality from 1997 to 2006, applying existing concentration-62 response functions from the epidemiological literature (See Methods). Atmospheric models 63 simulate the transport of fire emissions and formation of pollutants, offer a continuous 64 spatiotemporal dataset in a region with limited ground monitoring but large rural 65 populations, and allow us to examine how climate and emissions influence aerosol and 66 trace gas concentrations interannually.  67 Our study region is a 50°x30° area (92.5°E-142.5°E, 20°N-10°S) encompassing the 68 Association of Southeast Asian Nations (ASEAN). In 2005, the population was 69 approximately 540 million (Fig. 1a). Fire activity, predominately in the Indonesia islands of 70 Sumatra and Borneo (Fig. 1b), peaks during the dry southern monsoon of September and 71 October, along with potential spring burning2,6.  72  The additional contribution of fires to annual surface PM2.5 and O3 concentrations in 73 1997, a strong El Niño year, greatly increases the number of days that exceeded the WHO 74 interim targets of 50 µg/m3 24-hour PM2.5 (IT-2) and 80 ppb 8-hour maximum O3 (IT-1), 75 which are both twice the WHO’s air quality guidelines (Fig. 2; Supplementary Table S1). In 76 1997, both models show two distinct areas of fire-derived PM2.5 over Sumatra and Borneo 77 with concentrations elevated by 50-200 μg/m3 and with increases of 50-150 days over the 78 WHO interim targets. O3, in contrast, had widely distributed increases of 25-50 ppb and up 79 to 150 exceedance days. Corresponding results with all sources in 1997 are in 80 Supplementary Fig. S1, this simulation captured the general temporal evolution seen in 81 ground observations (Supplementary Figs. S2, S3, S4; Supplementary Table S2).  82  We explored how modeled concentrations with and without fire emissions affect 83 population exposure to WHO interim targets (Supplementary Table S1)4. Decadal exposure 84 
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over these interim targets, along with the fraction of exposure due to fire, shows how the 85 major influence of fires was not confined to the 1997-98 El Niño (Fig. 3). Interannual 86 variability in exposure for both short- and long-term guidelines is dominated by the fire 87 contribution of PM2.5 and O3; the WHO’s 25 µg/m3 annual PM2.5 interim target (IT-2) is 88 never exceeded without including fire emissions.  89 We also tested the sensitivity of regional health impacts, including exceedances and 90 cardiovascular disease mortality, to using the original model or satellite-scaled model PM2.5 91 estimates (Supplementary Figure S5). The mortality estimates combine modeled pollutant 92 concentration changes from fires with published epidemiological relationships between 93 exposure to O3 or PM2.5 total mass and cause-specific mortality (See Methods). In Table 1, 94 1997 and 2000 highlight the considerable differences in health effects between years with 95 high and low fire contributions. For example, PM2.5 annual exposure in 2000 hardly 96 exceeds the WHO interim target and O3 exposure is 100 times lower than in 1997. During 97 high fire years, fire emissions increase the adult cardiovascular disease mortality burden 98 by approximately 10,800 (6,800-14,300) annual deaths from PM2.5 exposure and an 99 additional 4,100 (2,300-5,900) annual deaths from O3. 100  Modeled annual adult cardiovascular disease mortality shows a strong correlation 101 with the multivariate El Niño Index (MEI)16, which was averaged over the July to October 102 dry season (Fig. 4). We present the most conservative mortality estimates, but this 103 relationship holds with varying relative risk (RR) relationships or durations of exposure 104 (Supplementary Fig. S6). Reduced convection during El Niño years likely increases 105 exposure by elevating emissions5,11 and increasing aerosol lifetimes by reducing wet 106 deposition..  107 
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Uncertainty in our health effect estimates comes primarily from: 1) the fire 108 emissions dataset, 2) atmospheric modeling, and 3) concentration-response equations. 109 First, van der Werf et al. (2010) estimated fire carbon emissions uncertainty at 20% 110 globally, though higher in equatorial Asia due to peat carbon stock uncertainties and in 111 years before MODIS data8. Second, although the lack of ground stations precludes an in-112 depth evaluation, available ground data and satellite AOD indicate that both models are 113 likely conservative (Supplementary Figs. S3, S4, S5). The range between the two model 114 scenarios (PM2.5 and O3) and two satellite AOD optimized results (PM2.5 only) provide some 115 insight about uncertainty related to transport and deposition processes. There is up to a 116 factor of two difference between models (less among satellite-optimized estimates), but 117 this range is expected given previous findings that model physics and parameterizations 118 drive more variation in aerosols than emissions17. Differences in our PM2.5 concentrations 119 are primarily driven by lower precipitation and wet deposition in the GISS model, which 120 increase aerosol lifetime relative to GEOS-Chem (data not shown). However, for the 121 purposes of health impacts the results are much closer (Table 1). This is due to the 122 nonlinear relationship between the RR and exposure, which reduces differences between 123 mortality estimates at high concentrations. Finally, we address mortality equation 124 uncertainties through 95% confidence intervals around the concentration-response 125 estimates (Table 1) and various estimates of the RR and PM2.5 exposure relationship 126 (Supplementary Tables S3 and S4; Supplementary Fig. S6). Additional epidemiological 127 factors that we did not address are extrapolation of RR equations to high concentrations 128 and applying equations developed in the U.S. to non-U.S. populations. In addition, evidence 129 for potential differences in PM2.5 toxicity between urban pollution in U.S. cities and 130 
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Southeast Asian fire emissions is too limited to warrant using separate epidemiological 131 equations18, so we assume that total PM2.5 mass is the most appropriate metric. 132 These uncertainties and additional factors contribute to our substantially lower 133 regional PM2.5 mortality estimates relative to the global analysis of Johnston et al. (2012)10. 134 The two estimates are not directly comparable. Our conservative estimates 135 (Supplementary Table S5) are based on a tailored regional analysis for ASEAN countries 136 and use updated fire emissions, multiple atmospheric models, epidemiological equations 137 developed over a wide concentration range, and cause-specific disease estimates 138 (Supplementary Table S6). We did not include children since the epidemiological equations 139 were developed for adults over 30 years; this cuts out more than half of the population and 140 ignores risks to infants and children. 141 While previous work in Borneo has emphasized the value of avoided deforestation 142 in terms of carbon emissions19, it is important to also account for health. By demonstrating 143 the direct link between climate variability and health impacts from fire emissions 144 throughout Southeast Asia, we offer additional support for policies that use regional 145 climate forecasts to restrict burning during high fire risk seasons. Fire emissions during 146 1997 to 2006 repeatedly exposed 1-11% of the population in Southeast Asia to PM2.5 and 147 O3 above WHO interim targets during El Niño years. Although the regional influence of 148 climate change is uncertain20, these observed trends would be exacerbated by the potential 149 for more frequent droughts related to El Niño and increased baseline cardiovascular 150 disease caused by demographic shifts towards sedentary lifestyles and increased animal 151 product consumption. Reducing fires from deforestation and land management would 152 



 8

benefit public health in addition to global-scale benefits for carbon storage and 153 biodiversity. 154  155 Methods 156 Fire emissions estimates are from GFED3, a global gridded monthly emissions 157 dataset that combines surface reflectance and active fire detection data from several 158 satellites to detect the spatiotemporal variability of burned area21. This drives a 159 biogeochemical model that estimates fuel loads, combustion completeness, and emissions8. 160 GFED3 is available since 1997 at 0.5°x0.5°. We define landscape fires to include all burning 161 sources; in Southeast Asia this includes peat, forest, agricultural waste burning, 162 deforestation and degradation. 163 We use two models: the NASA GISS-E2-PUCCINI GCM from 1997-2007 and Harvard 164 University’s GEOS-Chem CTM22 from 1997-2006. See Supplementary Information for 165 descriptions of the models, spin-up, and boundary conditions. Both were run at 2°x2.5°, 166 including a control run without fire emissions and a perturbed run with GFED3 emissions. 167 We define years from July 1st to June 30th to avoid splitting a burning season into two years. 168 Since meteorological fields for GEOS-Chem are available through December 2006, we only 169 have a complete 2006 “fire-year” from GISS. For PM2.5, we analyzed 24-hour and annual 170 average concentrations. For O3, we used 1-2pm concentrations as a proxy for the 8-hour 171 maximum (Supplementary Fig. S4) and 24-hour concentrations for mortality calculations. 172 Aerosol optical depth (AOD) data from MISR and MODIS satellite instruments, 173 available from 2001-2006, were used to scale modeled AOD; these scaling factors were 174 then applied to modeled PM2.5 (Supplementary Fig. S5). While AOD represents total column 175 
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aerosol loading, it is often closely related with surface abundance23, and hence provides 176 some measure of large-scale biases in the models. Scaling factors were applied to surface 177 PM2.5 for all grid boxes, maintaining the modeled spatial and temporal distribution of 178 aerosols.  179  We evaluate health effects by estimating: 1) exposure above WHO short-term and 180 annual air quality targets, and 2) cause-specific adult mortality. Mortality attributable to 181 fires combines the relative risk (RR) from changes in pollutant exposure with baseline 182 observed mortality rates. We focus on cardiovascular disease because it is a proximal 183 outcome from exposure that will be experienced annually. However, this underestimates 184 total mortality due to other long-term effects and short-term exposure. The equations that 185 we use were developed for adults (less than half of the regional population24).  186 We applied a power-law relationship between RR and PM2.5. Due to the lack of data 187 on differential health effects of biomass smoke particles18, we use an equation developed 188 for total PM2.5 mass: 189  (1) Cardiovascular RR=1+ α(I*C)β 190 which describes the relationship between PM2.5 exposure and cardiovascular disease 191 mortality risk over a large concentration range25. Pope et al. (2011) published values for α 192 and β by reanalyzing previous estimates of RR and dose of PM2.5 (in mg) from ambient air 193 pollution, second-hand smoke, and cigarette smoke. For cardiovascular disease, α=0.2685 194 and β=0.2730. Although ambient PM2.5 concentrations from fires will not reach the 195 cigarette smoke doses included in Pope et al. (2011), this equation was essential due to our 196 high ambient concentrations above the range of other studies. Since 95% confidence 197 intervals were given for each individual study but not the overall relationship, we refit a 198 
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power-law relationship to approximate the uncertainty based on the individual studies’ 199 upper or lower limits, respectively. The annual average of 24-hour total mass PM2.5 200 concentrations were used for (C), assuming a constant average inhalation rate (I) of 18 201 m3/day to convert to PM2.5 dose (in mg)25. We separately calculated the RR using 202 concentrations with and without fires due to the equation’s nonlinearity. We then followed 203 the approach of Ostro et al. (2004)26 to calculate the attributable fraction (AF) and annual 204 mortality (ΔM): 205 (2) AF= (RR-1)/RR 206 (3) ΔMannual= Mb*P*(AFfire – AFnofire) 207 where the average annual baseline mortality rate (Mb) was calculated from adult deaths 208 due to cardiovascular disease, averaged over the countries in ASEAN27. Population with 209 ages greater than 30 years was from the UN Population Division24 and CIESIN’s Gridded 210 Population of the World version 3 and Future Estimates, aggregated to the model 211 resolution28,29; both were interpolated from 5 yearly data to annual estimates.  212  For O3, the linear RR is given by: 213 (4) Cardiovascular RR= exp[δ(Cfire – Cnofire)] 214 where δ=1.11 (0.68-1.53) is the percent increase in cardiovascular disease morality per 10 215 ppb increase in 24-hour O3 concentrations, based on a meta-analysis of U.S. and non-U.S. 216 studies30. Daily mortality due to fire pollution is then estimated with: 217 (5) ΔMdaily= (Mb/365)*P*(AFfire – AFnofire) 218 using the population characteristics described above. We assume that mortality is evenly 219 spread throughout the year (Mb is not year-specific so we divide consistently by 365), and 220 sum by days per year to obtain annual estimates. GEOS-Chem includes leap years, but GISS 221 



 11
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Figure 1. Study area population and locations of fire activity. a, 2005 population 321 density, in persons per km2, for countries belonging to the Association of Southeast Asian 322 Nations (ASEAN). Data from CIESIN GPWv329 at 0.25° resolution. b, 1997-2006 mean fire 323 emissions, in g C/m2/month at 0.5° resolution, from the Global Fire Emissions Database 324 version 38. 325 
 326 
Figure 2. Modeled annual mean 1997 surface concentrations and corresponding 327 
additional daily exceedances in 1997 due to fires only. a, PM2.5 b, O3 annual 328 concentrations and daily exceedances over World Health Organization (WHO) interim 329 targets (50 μg/m3 daily PM2.5 (IT-2) and 80 ppb 8-hour maximum O3 (IT-1)). Annual 330 concentrations are from 24-hour PM2.5 and 8-hour maximum O3. GISS refers to GISS-E2-331 PUCCINI and G-C refers to GEOS-Chem.  332 
 333 
Figure 3. Population exposure above World Health Organization (WHO) interim 334 
targets. a, Exposure over 50 μg/m3 24-hour PM2.5 interim target (IT-2). b, Exposure over 335 25 μg/m3 annual PM2.5 interim target (IT-2). c, Exposure over 80 ppb 8-hour maximum O3 336 interim target (IT-1). d, Fraction of population exposure above each WHO interim target 337 that is attributable to fires. Each case is calculated with and without GFED3 fire emissions 338 using GISS-E2-PUCCINI results, which was close to the average concentration estimate. 339 Refer to Supplementary Table S1 for estimated health effects. Note the logarithmic scale for 340 (a) and (c). 341 
 342 
Figure 4. Additional annual cardiovascular disease (CVD) mortality from exposure to 343 
fire-contributed annual PM2.5 and 24-hour O3, along with the Multivariate El Niño 344 
Index (MEI)16. Results for 1997-2006 are from the baseline GISS-E2-PUCCINI and GEOS-345 Chem concentrations, with the power-law RR relationship for CVD mortality. R2=0.87-0.91 346 for PM2.5 and R2=0.82-0.89 for O3. AOD-scaled results and sensitivity analysis are in Table 1, 347 Supplementary Table S4, and Supplementary Fig. S6.  348  349 
Table 1. Fires-only concentration, exposure, and mortality using different models for 350 
an El Niño (1997) and La Niña (2000). Average ASEAN annual concentration due to fires 351 only (from 24-hour PM2.5 and 8-hour maximum O3); additional exposure due to fires above 352 the annual 25 μg/m3 PM2.5 interim target (IT-2; x106 person-years) and above the 80 ppb 353 daily 8-hour maximum O3 interim target (IT-1; x107 person-days); cardiovascular mortality 354 due to fires only (x103 people), with the range from 95% confidence intervals from 355 epidemiological studies. GISS refers to GISS-E2-PUCCINI and G-C refers to GEOS-Chem, also 356 with satellite scaling factors. 357 



 14

 358 a) PM2.5 359  Concentration 
(μg/m3) 

Exposure above IT-2 
(x106 person-years)  

Mortality  
(x103 people)  1997 2000 1997 2000 1997 2000 GISS 7.8 0.3 55.6 0.0 9.9 (8.0-11.4) 1.0 (0.8-1.2) G-C 3.7 0.2 25.8 0.0 8.7 (6.8-10.7) 1.5 (1.1-1.9) GISS MISR 10.7 0.4 57.0 0.0 11.2 (9.6-13.5) 1.3 (1.0-1.6) G-C MISR 7.4 0.5 59.1 4.7 10.1 (8.1-11.8) 1.7 (1.4-2.1) GISS MODIS 12.0 0.4 66.6 0.0 12.5 (10.1-14.2) 1.5 (1.1-1.8) G-C MODIS 8.3 0.5 50.3 0.0 12.1 (9.7-14.3) 2.3 (1.8-2.8) 

AVERAGE 8.3 0.4 52.4 0.8 10.8 (6.8-14.3)* 1.6 (0.8-2.8)* *Maximum error range. 360  361 b) O3 362  Concentration  
(ppb) Exposure above IT-1

(x106 person-days) 
Mortality 
(x103 people)  1997 2000 1997 2000 1997 2000 GISS 9.0 1.4 395 3.5 4.3 (2.6-5.9) 1.0 (0.6-1.4) G-C 7.1 1.3 346 0.0 3.8 (2.3-5.2) 1.0 (0.6-1.4) 

AVERAGE 8.0 1.4 371 1.8 4.1 (2.3-5.9)* 1.0 (0.6-1.4)*  363 


