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Abstract 

The work presented in this thesis employed multiphoton microscopy of tissue autofluorescence to 

investigate spectrally and fluorescence lifetime resolved images obtained from normal skin and 

cutaneous malignancies. This was achieved by adapting a commercially available CE-marked 

multiphoton tomograph (DermaInspect®) to allow fluorescence lifetime imaging (FLIM) 

simultaneously in four spectral channels and corresponding steady-state hyperspectral images using 

a prism-based spectrometer to be acquired. 

The images generated were analysed through the manual identification of morphological criteria 

and through manual and automatic segmentation of individual cells within FLIM images followed by 

automated morphological and spectroscopic analysis. 

The analysis of FLIM images acquired from normal skin ex vivo and in vivo identified subpopulations 

of cells based on their autofluorescence characteristics and allowed intra- and interpatient variations 

to be assessed. The mean cellular lifetime was found to decrease between 691-1286 picoseconds 

(ps) with depth, increase between 199-550 ps with age and a statistically significant decrease 

between 286-1436 ps with skin phototype (I-IV) was found, depending on spectral channel. 

The manual identification of morphological features from BCC images acquired ex vivo allowed the 

correct diagnosis to be made with a sensitivity/specificity of 79%/93%. Cellular fluorescence 

lifetimes were statistically significantly longer by between 19.9-39.8% compared to normal skin. A 

linear discriminant analysis combining both spectroscopic and morphological cellular parameters 

allowed BCCs to be discriminated from normal skin with an AUC of 0.83. 

Manually identified morphological features were able to distinguish dysplastic naevi from 

melanomas with a sensitivity and specificity of 75% and 81% respectively from ex vivo FLIM images. 

However, no contrast in cellular fluorescence lifetime was observed. 

A motorised stage has also allowed multispectral FLIM image mosaics of depth resolved images from 

unsectioned skin to be presented for the first time. 

In conclusion tissue autofluorescence and FLIM detect clinically useful differences in the skin. 
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Chapter 1. Introduction to the skin 

1.1 Introduction 

The research presented in the thesis investigates the use of multiphoton microscopy to image the 

skin non-invasively. Both normal skin and skin cancer have been investigated. This chapter therefore 

provides a brief introduction to three topics – the structure and function of normal human skin; the 

most common malignancies that occur in the skin i.e. basal cell carcinoma, squamous cell carcinoma 

and melanoma; and finally a brief synopsis of the major non-invasive imaging modalities that have 

been applied to the skin. 

1.2 Normal Skin 

The skin is the largest organ system in the human body and has many functions. Its primary function 

is to act as a physical, chemical and biological barrier to exogenous substances and organisms. It is 

also involved in thermoregulation, sensation and calcium/vitamin D homeostasis. It is composed of 

three main layers – the epidermis, dermis and subcutis.  

 

Figure 1.1 An annotated H&E stained section of the epidermis and dermis of normal skin 

The epidermis is the most superficial layer of the skin and is structured into a number of distinct 

layers defined by their histological appearance, see figure 1.1. Keratinocytes account for 95% of the 

cells within this layer. The epidermis is separated from the dermis by the basement membrane and 

varies in thickness depending on age and body site (typically 60-100 µm (Sandby-Moller, Poulsen et 

al. 2003)). This multilayered membrane acts as a mechanical and functional barrier between the two 

layers. It serves many functions including orientating the proliferative basal keratinocytes’ direction 

of growth and anchoring the basal layer of the epidermis to the papillary dermis.  Both congenital 

and acquired defects in this layer give rise to many blistering skin disorders (Fassihi, Wong et al. 

2006). 
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After dividing in the basal layer, keratinocytes migrate towards the skin surface with an 

accompanying change in cellular morphology and function. The cells lose the ability to divide, 

undergo programmed cell death and change their expression of intracellular keratins in a process 

called terminal differentiation and apoptosis (Fuchs 2008) as they mature. The keratinocytes in the 

basal layer are cuboidal in shape, small in size and have a large nuclear to cytoplasm ratio. As cells 

progress to the Stratum Spinosum and Stratum Granulosum they become flatter in shape, 

progressively lose their nuclei and intracellular organelles and accumulate dense keratohyalin 

granules within them. The most superficial epidermal layer, the Stratum Corneum consists of 

compacted, water resistant, richly keratinised layers of dead keratinocytes termed corneocytes. 

Melanocytes are usually found alongside keratinocytes in the basal layer of the epidermis and in the 

papillary dermis. Their primary role is to synthesize and distribute melanin to the surrounding 

keratinocytes, thus protecting their nuclei from UV photodamage by absorbing light in the UV 

spectral range. Most melanocytes are found individually at regular intervals in the basal layer and 

provide melanin for on average 36 keratinocytes, collectively termed a epidermal melanin unit.  

The term melanocytic naevus or mole is used for benign proliferations of melanocytes. The location 

of these within the skin allow them to be classified as junctional naevi (along the basal layer), dermal 

naevi (in the papillary dermis), or compound naevi (containing both junctional and dermal 

components).  

Langerhans cells are present within the Stratum Spinosum of the epidermis but are poorly visible by 

Hematoxylin and Eosin (H&E) staining of fixed, sectioned tissue, (the most common stain used to 

evaluate skin samples). They are dendritic in morphology with numerous protrusions extending 

between keratinocytes. They are specialised cells that can ingest particulate matter around them 

and have an immune- surveillance role within the skin. 

Finally Merkel cells are involved in sensory perception and are situated in the basal layer near 

associated sensory nerve endings. They can’t be visualised using the H&E stain and require specific 

immunostaining to be seen histologically. 

Regional variation can be found in normal skin depending on body site e.g. thicker S.Corneum is 

found on the palms and soles. Changes also accompany malignancy, such as migration of malignant 

cells across the basement membrane and the destruction of normal epidermal/dermal architecture. 

The dermis lies beneath the basement membrane and provides physical support and nutrients for 

the epidermis above. The superficial dermis is called the papillary dermis and is defined by 

protrusions of the dermis, called dermal papillae, interdigitating with the epidermis. The reticular 
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dermis lies below this layer and can be distinguished by a change in the orientation of the collagen 

fibres within it.  

Structures found within the dermis include the pilosebaceous unit (hair and sebaceous gland), 

nerves, sweat glands, sensory receptors and the vasculature. The vasculature is arranged into a 

superficial plexus that lies in the papillary dermis and a communicating deep plexus, found deeper in 

the dermis. The structural support of the dermis is provided by a matrix of proteoglycan 

macromolecules, type I and III collagen and elastin. The collagen provides strength and accounts for 

on average 56% of the dry weight of the dermis (Lovell, Smolenski et al. 1987) whilst elastin provides 

the elastic recoil of the skin and accounts for 2-4% of the dry weight (Kielty, Sherratt et al. 2002; 

Burns, Breathnach et al. 2010). 

The lower reticular dermis has more densely packed collagen and provides more mechanical 

strength and elasticity to the skin than the papillary dermis.  

The subcutis lies beneath the dermis. It consists of loose connective tissue and attaches the skin to 

the underlying musculoskeletal system. Adipocytes account for the majority of the cells in this layer 

and contain approximately 80% of the body’s fat (Burns, Breathnach et al. 2010). Although the 

adipocytes main function is for insulation and mechanical cushioning, they also have an endocrine 

function. 

1.3 Skin Cancer 

The incidence of all types of skin cancer in the western world is rising (Diepgen and Mahler 2002). 

The most prevalent skin cancers are basal cell carcinoma and squamous cell carcinoma, which are 

often referred to as non-melanoma skin cancer (NMSC), and malignant melanoma. In the UK 

malignant melanoma has risen most  in incidence over the last decade compared to NMSC 

(CancerResearchUK 2010). 
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1.3.1 Basal Cell Carcinoma 

 

Figure 1.2 a-c) Different clinical presentations of BCCs a) nodular b) superficial c) pigmented. d-f) Histological 

images of BCCs stained with H&E showing clusters of BCC cells within the epidermis and dermis.  

Basal cell carcinoma (BCC) has high prevalence in the western world (Diepgen and Mahler 2002; 

Demers, Nugent et al. 2005). It is the most common skin malignancy in Caucasian populations with a 

rising incidence in all age groups (Christenson, Borrowman et al. 2005; Staples, Elwood et al. 2006). 

The incidence is estimated at between 105-128 per 100,00 in the UK (Holme, Malinovszky et al. 

2000). They arise through cumulative exposure to the sun (Kricker, Armstrong et al. 1995) and 

therefore typically occur in sun exposed sites, such as the face and mainly occur in fair skinned 

individuals. 

Its name derives from the histological resemblance of the malignant cells to those found in the basal 

cell layer of the epidermis. These tumours have a low metastatic potential and thus their mortality is 

very low. They can, however cause significant morbidity from local tissue destruction if lesions are 

not diagnosed and treated. The incidence of recurrent primary tumours in patients with a BCC is also 

high, with an estimated risk of developing a second tumour within 3 years of 44% (Marcil and Stern 

2000). 

A number of clinical/histological subtypes exist, see figure 1.2. Nodular BCCs are most prevalent and 

have a distinctive pearlescent texture, telangectasia (small blood vessels) with rolled edges 

developing in larger lesions. Histologically malignant cells are grouped into well-defined clusters with 

characteristic stroma between.  The treatment of choice for cure in most patients is surgical 

a) b) c)

d) e) f)
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excision. However excellent results are still gained by radiotherapy for patients not suitable for 

surgery (Telfer, Colver et al. 2008). 

Morphoeic and infiltrative BCCs are poorly defined clinically and histologically. They therefore 

require wider surgical margins to ensure complete excision (Wolf and Zitelli 1987) and have a higher 

recurrence rate than nodular BCCs. Mohs micrographic surgery is a tissue sparing technique that can 

be used in this context. It entails removing the tumour progressively. Frozen sections of the fresh 

tissue can be prepared quickly (in comparison to fixed sections) and are reviewed during the surgical 

procedure. Small amounts of tissue are removed progressively until surgical clearance of the tumour 

margin is gained. In this way, the amount of normal tissue removed and the incidence of 

incompletely excised tumour is minimised.  Unfortunately the technique is time consuming, labour 

intensive and expensive and therefore tends to be reserved for recurrent tumours or those in 

cosmetically sensitive sites.  

1.3.2 Squamous Cell Carcinoma 

 

Figure 1.3 (a) Clinical image of SCC (b) histological image of moderately differentiated SCC stained with H&E illustrating 

keratin deposits within the dermis (black arrow) within the tumour (c) histological image of poorly differentiated SCC 

stained with H&E illustrating strands of epithelial cells invading the dermis(black arrow) (Images courtesy of Dr A Robson, 

St Johns Institute of Dermatology, London). 

The incidence of squamous cell carcinoma (SCC) in the UK has been estimated at 25.5 per 100,000 

(Holme, Malinovszky et al. 2000) with an increase in incidence with age greater than BCCs. (Diepgen 

and Mahler 2002). 

This malignancy arises from keratinocytes and most often occurs in cells that have undergone 

photodamage induced by chronic, cumulative sun exposure (Armstrong and Kricker 2001). SCCs can 

also arise from sites of chronic infection, inflammation or previous radiotherapy.  

The premalignant lesion, actinic keratosis is a UV induced intraepidermal neoplasia and can lead to 

SCCs. The prevalence is as high as 25% in Caucasian populations above the age of 60, with up to 10% 

a) b) c)
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transforming into an invasive SCC (De Berker, McGregor et al. 2007). Once invasive, SCCs have the 

potential to metastasize, with mortality dependent on tumour characteristics. 

There is great variation in the clinical appearance of lesions that typically appear as raised areas of 

red skin with surface scale, see figure 1.3. This can make the distinction between actinic keratosis 

from early SCCs difficult.  

Histologically, key indicators for the risk of local recurrence or metastatic spread are depth of 

invasion of the tumour and cellular differentiation (well, moderate or poor). Poorly differentiated 

tumours greater than 6mm in depth carry the greatest risk of recurrence. The standard treatment is 

surgery for these tumours. However, radiotherapy can be used in selected situations. (Motley, 

Kersey et al. 2002). 

1.3.3 Melanoma 

 

Figure 1.4 a) Clinical image of a benign Junctional Naevus b) Clinical image of a Melanoma c) Histological image of the 

melanoma seen in (b) stained with H&E. Arrows indicate melanoma cells spreading to the epidermis and invading the 

dermis. 

Melanoma is a malignancy arising from melanocytes. Since melanocytes are not exclusively found in 

the skin, primary melanomas can arise within other organs. Cutaneous melanoma accounts for 4% of 

cancers in the UK with approximately 10,400 new cases diagnosed annually (CancerResearchUK 

2010). It is however responsible for 80% of skin cancer related deaths (Miller and Mihm 2006). Its 

incidence increases with age and has quadrupled over the last thirty years. It is currently the 3rd most 

common cancer in the 15-39 age group in the UK (CancerResearchUK 2010). An individual’s risk is 

influenced by family history, skin phototype (a measure of the skin’s ability to tan and easy of 

burning), sun exposure (Elwood and Jopson 1997) and having atypical naevi syndromes. 

Melanoma is suspected by a change in size, shape or colour of a mole accompanied by a supporting 

history, see figure 1.4. However these changes are not specific for malignant change and it can only 

be confirmed histologically by the presence of cytologically malignant melanocytes invading the 

a) b) c)
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dermis i.e. crossing the epidermal basement membrane. As most clinically suspicious moles for 

melanoma are not histologically confirmed as malignant, a large number of non-malignant naevi are 

excised, even with the aid of dermatoscopy (Argenziano, Cerroni et al. 2012). This is potentially 

unnecessary, invasive, scarring to the patient and has a financial cost. 

 A number of histological variants of melanoma are recognised. The most common is superficial 

spreading malignant melanoma. Nodular, lentigo maligna (found on chronically sun exposed skin) 

and acral lentiginous melanomas (occuring on palms and soles) are less common. Despite the use of 

histological criteria, it can remain difficult to classify some melanocytic proliferations as benign or 

malignant e.g. Spitz naevi are lesions that appear in childhood and are often histologically 

indistinguishable from malignant melanoma. However, they behave in a clinically benign manner. 

The primary treatment for melanoma remains surgery. The prognosis of patients correlates well with 

the Breslow thickness of the lesion at excision, defined as the maximum depth of tumour invasion 

from the stratum granulosum layer of the epidermis. Increased Breslow thickness increases the 

incidence of metastatic disease which is poorly responsive to chemotherapy or radiotherapy. Early 

diagnosis is therefore critical. Melanoma patients with a Breslow thickness of less than 1mm have a 

5 year survival of 95-100%. In contrast, a thickness of 2.1-4mm has a 60-75% survival rate at 5 years 

(Roberts, Anstey et al. 2002).  

1.4 Non-invasive imaging 

Financial and clinical pressures have led to the development of a number of non-invasive imaging 

modalities. Improvements to non-invasive diagnostic techniques have the potential to diagnose skin 

cancers earlier and more accurately, allow direct monitoring of the effects of treatment and avoid 

unnecessary over-treatment. These improvements in patient care could be matched by significant 

financial savings. 

Also, accurate non-invasive assessment of the depth of tumour invasion would be useful in planning 

surgical excision margins. For example the standard practice for the treatment of melanoma is to 

excise the tumour, determine the depth of invasion of the tumour histologically, then resect a 

further margin of tissue based on that depth. An accurate initial assessment would remove the need 

for a second surgical procedure. Similarly, the wide surgical margins currently used for surgical 

excision of infiltrative BCCs could be reduced in many cases. 

Finally, non-invasive imaging could play a role in monitoring response to topical chemotherapy 

agents. For example 5-fluorouracil can be used to treat superficial BCCs and actinic keratosis. 
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Current practice relies on clinical assessment alone to determine adequate response to therapy. This 

is commonly impaired in the short term by the degree of inflammation induced by the treatment. 

1.4.1 Dermatoscopy 

 

Figure 1.5 a) Dermatoscope (www.heine.com). b,c) Typical dermatoscopic images of melanomas with corresponding 

macroscopic image inset . 

Dermatoscopy is a technique that magnifies the skin and allows visualisation of structures to the 

depth of the papillary dermis. Dermatoscopes illuminate the skin around a central lens and are held 

either over the surface or in direct contact with the skin, see figure 1.5. Classical dermatoscopy uses 

a fluid interface (usually alcohol gel or oil) to interface between the instrument and the skin. The 

fluid eliminates reflected light and renders the stratum corneum transparent, allowing the structures 

beneath to be more clearly visible. Although dermatoscopy can be applied to all dermatoses, its 

primary role is in the assessment of solid lesions, particularly melanocytic lesions. It provides greater 

morphological information and increases clinical diagnostic sensitivity compared with clinical 

examination alone (Kittler, Pehamberger et al. 2002). 

A number of diagnostic algorithms using dermatoscopy have been validated for the diagnosis of 

melanoma. These include the ABCD system (asymmetry, boarder irregularity, colour, diameter) 

(Nachbar, Stolz et al. 1994), pattern analysis (Argenziano, Soyer et al. 2003), 7 point score (Dal Pozzo, 

Benelli et al. 1999) and the Menzies method (Menzies, Ingvar et al. 1996). All have been shown to 

have a high sensitivity (range 83-86%) and specificity (range 70-83%) for identifying melanomas from 

other pigmented lesions (7 point score, Menzies method) or from pigmented melanocytic lesions 

(ABCD system, pattern analysis). Although these algorithms have allowed more melanomas to be 

diagnosed at the bedside, they are most valuable for their negative predictive power i.e. to exclude 

melanoma and thus have reduced the rate of unnecessary biopsies. Computer algorithms have also 

been written to stratify dermatoscopic images by likelihood of malignancy, with varying success 

(Rubegni, Burroni et al. 2002; Rajpara, Botello et al. 2009). 

Despite the widespread use of dermatoscopy in clinical practice, the number of naevi excised for 

every melanoma still range from 8.7 to 29.4 between dermatology centres (Argenziano, Cerroni et 

(a) (b) (c)
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al. 2012). This creates potentially unnecessary procedures, cost and disfiguring scars for patients and 

creates a clinical and financial need for better non-invasive modalities to be developed. 

1.4.2 High Frequency Ultrasound 

 

Figure 1.6 a) HFUS image of a melanoma taken at 20MHz and b) corresponding histology stained with H&E. Key-E entry 

echo, T tumour, K stratum corneum/derims B blood, S subcutis, F fascia. Reproduced from (Marghoob, Swindle et al. 2003) 

Ultrasound imaging uses the echoes from reflected sound waves from interfaces between tissue 

types to reconstruct a 2 dimensional vertically sectioned image, see figure 1.6. The optimal 

ultrasound frequency balances the depth of penetration (deepest at low frequencies) with the 

resolution (highest at high frequencies). Traditional ultrasound equipment for medical imaging 

operates at 7.5 MHz which has inadequate resolution for skin imaging. High frequency ultrasound 

(HFUS) between 20 MHz to 1 GHz has been more successful when imaging skin, allowing axial image 

resolutions between 200µm and 16µm to be achieved respectively. They have been used to assess 

various aspects of normal skin and pathology e.g skin thickness (Alexander et al. 1979), vascular 

disorders (Betti et al. 1990), dermatological diseases (Gupta et al. 196; Machet et al. 2006) and skin 

tumours (Gupta et al. 1996). 

Desai et al. showed good correlation between tumour margins of superficial and nodular BCCs 

between HFUS at 20 MHz and histology. However, they were unable to detect margins from 

infiltrative or morphoeic BCCs (Desai, Desai et al. 2007). 

Their use for reliably differentiating between benign melanocytic nevi and melanomas diagnostically 

has not been possible to date using 20MHz (Harland et al. 2000). Hayashi et al. however showed that 

the depth of tumour invasion of melanomas assessed using HFUS at 30 MHz correlated sufficiently 

well with histology  to allow accurate classification of lesions into the correct AJCC/UICC staging 

category i.e. ≤1mm or >1.01mm depth (T1, T2). (Hayashi, Koga et al. 2009). Gambichler et al. too 

a) b)

a) b) 
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showed that the measured tumour depth was shown to correlate well to the histologically measured 

depth to within 33.9 µm for 20 MHz, increasing to 16 µm for 100MHz frequencies for melanomas 

under 1mm in depth (Gambichler, Moussa et al. 2007). For melanomas between 0.4-7.6 mm, 

moderate agreement was found in thickness between HFUS and histology with a mean thickness 

(±SD) of 1.96±2.15 mm and 1.95±2.62 mm respectively. This degree of accuracy was sufficient to 

predict the correct re-excision margins in 26/31 subjects investigated (84%, 95% CI 66-95)(Machet, 

Belot et al. 2009) .  

In summary the contrast and resolution of this modality is lower than reflectance confocal light 

microscopy and optical coherence tomography and it has been found to be best suited for providing 

dimensional rather than diagnostic information. Most recently, HFUS has been combined/directly 

compared with optical imaging modalities to combine the strengths of each modality e.g. optical 

coherence tomography (Mogensen et al. 2009) and multiphoton microscopy (König & Speicher 

2010). 

1.4.3 Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is the optical analogue to ultrasound. It uses a high bandwidth 

light source (typically infrared) and collects the back scattered light that arises between tissue 

interfaces with differing refractive indexes. It uses interferometry to compare the scattered light to 

light reflected from a second, known path length to calculate the tissue depth of these interfaces 

between tissue layers. It has a poorer resolution than reflectance confocal light microscopy (3-20μm 

laterally and axially) but has a greater depth of penetration of 1-2mm (Mogensen, Thrane et al. 

2009), see figure 1.7. 

 

Figure 1.7 (a) OCT device for skin imaging - Vivosight, Michelson Diagnostics Ltd. (b)H&E stained histological section of a 

nodular BCC and (c) corresponding OCT image taken in vivo. Reprinted from J. Dermatological Science  45(3),p170 
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Gamichler, Orlikov et al. In vivo optical coherence tomography of basal cell carcinoma. Copyright (2007), with permission 

from Elsevier. (Gambichler, Orlikov et al. 2007). 

An early study using OCT to diagnose NMSC was by Mogensen et al. (Mogensen, Joergensen et al. 

2009). They used a self-built system with illumination centred at 1,318 nm, a bandwidth of 66 nm, an 

axial resolution of 8 µm and lateral resolution 24 µm. 115 images of lesions clinically diagnosed as 

NMSC and imaged in vivo were compared with 105 images from peri-lesional normal skin.  

Histologically these lesions included 64 BCCs, 1 baso-squamous carcinoma, 39 actinic keratosis, 2 

malignant melanomas and 9 benign lesions. Blinded observers were able to distinguish these lesions 

correctly with a sensitivity ranging from 58-94 % and specificity between 43-96 %. A drawback of 

OCT found in the study was that only 59% of the OCT images taken were of sufficient 

quality/completeness for analysis and their inability to distinguish actinic keratosis from BCCs. 

Mogensen et al. also compared the accuracy of tumour thickness assessment of NMSC using both 

OCT and 20 MHz HFUS compared to histology (Mogensen, Nurnberg et al. 2009). They examined 34 

lesions that were <2 mm in depth (actinic keratosis and BCCs). Both methods overestimated lesion 

thickness compared with histology but OCT was more precise than HFUS (difference of 0.392 mm 

vs.0.713 mm). These results were reproduced by Hinz et al. (Hinz, Ehler et al. 2012) who also found 

OCT could determine the tumour depth more accurately than 20 MHz HFUS compared to histology 

(median difference 0.13 vs 0.3 mm). Both groups commented that peri-tumour inflammation made 

tumour depth assessment more difficult and led to an overestimate of tumour depth (Mogensen, 

Nürnberg et al. 2011). 

Coleman et al. also used OCT to measure tumour margins in NMSC (Coleman, Richardson et al. 

2012). They analysed OCT images taken in vivo from a 5 mm central area from 18 BCCs (4 superficial, 

12 nodular and 2 infiltrative) and 5 SCCs (4 in situ, 1 invasive). They used the VivoSight® (MDL Ltd, 

Orpington, UK) with light centred at 1305 nm wavelength, resolution of <7.5 µm laterally and 

<10 µm axially, and a maximum imaging depth of 1.5 mm. They found that tumours <1 mm in depth, 

such as superficial BCCs, correlated better with histology (0.17±0.3 mm) than tumours >1 mm in 

depth (-0.54±1.14 mm), which were underestimated in depth by OCT. This was in contrast to the 

findings by Mogensen et al. (outlined above). They also noted that hyperkeratosis in SCCs caused 

increased shadowing and made OCT images more difficult to interpret. In this study the difficulty 

acquiring usable OCT images in vivo was also highlighted. Although 78 patients were recruited, only 

23 (29.5%) image stacks were suitable for analysis. 

This same group also assessed the VivoSight® OCT system’s ability to diagnose remaining tumour 

within freshly excised tissue sections, taken during Mohs micrographic surgery compared with 
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frozen section histological (Cunha, Richardson et al. 2011).  75 sections from BCCs were assessed 

from 38 patients. They found that images were of insufficient quality or sections were incomplete in 

48/75 (64%) sections. In the remaining sections, concordance was poor with only 4/26 and 23/49 

OCT images able to confidently diagnose a histological section as positive or negative for tumour 

respectively. This gave a sensitivity of 19%, and specificity of 56%. 

Most recently Boone et al. found that a high definition OCT device (Skintell®; Agfa Healthcare, , 

Belgium) was able to identify features defining each histological sub-type of BCCs in vivo from 

images taken from  21 patients (Boone, Norrenberg et al. 2012). The device also imaged in the infra-

red spectrum but had a lateral and axial resolution of 3 µm, an maximum imaging depth of 570 µm 

and a field of view of 1.8x 1.5 mm. 

Although OCT has been used widely for the investigation of retinal and choroidal pathology, 

including naevi and melanomas (Say, Shah et al. 2011), its application in cutaneous melanoma has 

been limited. Two groups have tried to detect morphological changes associated with melanoma 

(Giorgi, Stante et al. 2005; Gambichler, Regeniter et al. 2007). However the assessment of tumour 

depth and diagnostic accuracy has not been validated for pigmented lesions yet. Hinz et al. 

compared the depth of 26 melanocytic lesions measured by OCT and 20 MHz HFUS to histology 

(Hinz, Ehler et al. 2011). They found a median lesion thickness of 0.31 mm (range 0.10–0.77 mm) 

with OCT compared to of 0.25 mm (range 0.06–1.5 mm) measured by histopathology, with a 

correlation coefficient of r=0.734. This was superior to HFUS, which had a correlation coefficient of 

0.390. 

In summary OCT has been shown to distinguish morphological features of NMSC non-invasively in 

vivo by several groups. It should be noted that many studies compared in vivo depth with measures 

taken from fixed, sectioned histopathological samples. This comparison inherently lead to 

artefactual errors such as shrinkage of the tissue after fixation with formalin and the sampling error 

for depth, as only a fraction of the tissue is sectioned. Despite this, OCT was shown to be accurate 

for assessing tumours <2 mm in depth but was less precise assessing thicker tumours. It has also 

been shown in several studies to be more accurate for tumour margin assessment than 20 MHz 

HFUS. As studies using OCT for melanocytic lesion are limited, its use for their assessment still 

remains unclear.  
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1.4.4 Reflectance Confocal Light Microscopy 

 

Figure 1.8 (a)BCC mosaic taken using RCLM (b) corresponding histology stained with H&E. Reproduced from(Karen, Gareau 

et al. 2009). (d) Commercially available RCLM - Vivoscope® 1500 (www.lucid-tech.com) 

The first report of reflectance confocal laser microscopy (RCLM) used to image skin in vivo was 1995 

(Rajadhyaksha, Grossman et al. 1995). It uses variation in the refractive index within tissue to 

provide contrast. RCLM focuses light to a point in the sample. The scattered and reflected light is 

then collected by a photomultiplier tube detector. To generate a horizontally sectioned image the 

point of focus must be scanned in two dimensions. Scattered/reflected light must pass through a 

point aperture before it reaches the detector which spatially rejects light from outside the focal 

plane. RCLM can provide high resolution, depth resolved images of the epidermis and papillary 

dermis to a cellular resolution, see figure 1.8. The range of RCLM instruments for use in skin, 

manufactured by Lucid® Inc (Rochester,NY) emit light at 830 nm with a maximum power of 35 mW. 

They have a resolution of 0.5-1 μm laterally, 4- 5 μm axially and a depth of penetration of 350 μm, 

with fields of view of 500 x 500 μm usually taken. 

Study Sensitivity % Specificity % 
Nos. of Diagnostic 

Features in Assessment 

Pellacani (2005) 97.3 72.3 6 

Pellacani (2007) 92 69 6 

c

a

b
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Langley (2007) 97.3 83 7 

Gerger (2008) 97.5 99 not  specified 
Table 1.1 Sensitivity and Specificity of RCLM for the diagnosis of melanoma (Pellacani, Cesinaro et al. 2005; Langley, Walsh 

et al. 2007; Pellacani, Guitera et al. 2007; Gerger, Hofmann-Wellenhof et al. 2008). Adapted from (Psaty and Halpern 

2009). 

As melanin has a high refractive index, it appears bright in images taken by RCLM (Rajadhyaksha, 

Grossman et al. 1995). This high contrast has allowed a number of morphological features to be 

defined that distinguish benign from malignant pigmented lesions (Busam, Charles et al. 2001; 

Langley, Rajadhyaksha et al. 2001; Scope, Benvenuto-Andrade et al. 2007). Several studies found 

that these criteria have a high sensitivity and specificity, see Table 1.1. A direct comparison between 

dermatoscopy and RCLM also published by Langley et al. found dermatoscopy to be more sensitive 

than RCLM for the diagnosis of melanoma (97.3% vs 89.2%). However, both modalities were found 

to have a similar specificity (84.1% vs 83%) (Langley, Walsh et al. 2007). 

A group from Modena, Italy found an 87.6% sensitivity and 70.8% specificity for the 7 criteria they 

defined for the diagnosis of melanomas from RCLM images taken in vivo (Guitera, Menzies et al. 

2012). Gerger et al. also examined 162 lesions that included images taken in vivo from (27) 

melanomas and (15) BCCs (Gerger, Koller et al. 2006). They found RCLM could distinguish these 

malignancies with a positive predictive value of 94.22%. 

RCLM has also been used to evaluate BCCs both ex vivo (Gerger, Horn et al. 2005) and in vivo 

(González and Tannous 2002) with promising results. When the 5 in vivo criteria defined by Gonzalez 

et al. were applied retrospectively to confocal images taken in vivo from 152 skin lesion (benign and 

malignant), containing images from 83 BCCs, a sensitivity of 82.9% and specificity of 95.7% was 

obtained when ≥4 criteria were met (Nori, Rius-Diaz et al. 2004). Another set of 8 criteria were 

tested by Guitera et al. by the group in Modena (Guitera, Menzies et al. 2012). They found that their 

criteria gave a 100% sensitivity and 88.5% specificity for the diagnosis of 52 BCCs. 

Work has also been performed to evaluate the accuracy of tumour margin assessment by RCLM. Pan 

et al. have shown that the surgical margins of BCC measured in vivo by RCLM correlated well to the 

margins assessed by frozen section in 12/13 cases (Pan, Lin et al. 2012).  

In summary RCLM has been shown to have a high degree of accuracy and reproducibility for imaging 

both pigmented and non-pigmented skin cancers in vivo. 
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1.4.5 Multiphoton Microscopy 

Multiphoton microscopy (MPM) is an emerging optical imaging technique (Denk, Strickler et al. 

1990) that excites fluorescence from the sample through the simultaneous absorption of two or 

more photons of infrared light. This process requires a high intensity of excitation light and so is 

confined to the tightly focused excitation spot. Images are generated by raster-scanning the 

excitation spot across the specimen in two dimensions. MPM offers a spatial resolution similar to 

histopathology at high power magnification (<1 µm lateral, <2 µm axial resolution, (König and 

Riemann 2003)) and is licenced for clinical use in vivo. 

The skin contains naturally occurring fluorophores that can be imaged using MPM without the need 

for exogenous contrast agents. These include collagen, elastin, melanin, keratins, porphyrins, 

NAD(P)H and flavins. Fluorescence intensity imaging using MPM has been used to study skin 

morphology with subcellular resolution (Masters, So et al. 1997; König, Raphael et al. 2011; Levitt, 

McLaughlin-Drubin et al. 2011). Further discrimination can be gained measuring the fluorescence 

emission spectrum (Palero, de Bruijn et al. 2007; Dimitrow, Riemann et al. 2009) and fluorescence 

lifetime (Cicchi, Sestini et al. 2008; Sanchez, Prow et al. 2010; Benati, Bellini et al. 2011; Seidenari, 

Arginelli et al. 2012), which measures the rate of decay of the fluorescence signal following a short 

pulse of excitation light. Manfredini et al. have found MPM images from BCCs to have a good 

concordance with reflectance confocal light microscopy (Manfredini, Arginelli et al. 2013). A more 

detailed account of MPM, tissue autofluorescence, fluorescence lifetime and fluorescence lifetime 

imaging can be found in chapter 2 (pp43). 

1.4.6 Optoacoutstics 

Optoacoustics (OA) also known as photoacoustics is a relatively new method for biological imaging. 

It combines the contrast and resolution benefits of optical imaging with the depth of penetration of 

ultrasound. During imaging, the tissue is first irradiated by a short pulsed laser beam (optical). The 

energy from the light is absorbed by the tissue and converted to heat. A rapid thermoelastic 

expansion then occurs within the tissue followed by a resulting pressure wave (acoustic) which 

propagates as an ultrasound wave and is detected by a standard ultrasound probe.  

Optoacoustics has been shown to be a promising modality for imaging of the skin. However, to date, 

the published literature remains limited. Early studies have demonstrated that cutaneous 

microvasculature can be imaged with a high resolution by this modality (Favazza, Jassim et al. 2011) 

and glucose could be monitored non-invasively through the skin (Pleitez, Lieblein et al. 2012). 

Grootendorst et al. used optoacoustics in a preliminary study to image freshly excised lymph nodes 

to look for metastatic melanoma (Grootendorst, Jose et al. 2012). The device had a Q-switched 
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Nd:YAG as its laser light source operating at 10 Hz which allowed imaging in the 720-800 nm spectral 

range. It had a lateral resolution of 150 µm and an axial resolution of 1 mm. They were able to 

detect the foci of metastatic disease in 3/6 positive nodes by the increased signal strength. They 

further stated that optical density of melanin would restrict the functional depth of imaging to 5 mm 

into the lymph node. 

A number of OCT devices have been designed that combine OCT with other imaging modalities such 

as OA & OCT (Zhang, Povazay et al. 2011) and OA & fluorescence confocal microscopy (Wang, 

Maslov et al. 2010). 

1.5 Conclusions 

I have described the structure and function of normal skin; the common skin cancers, namely BCCs, 

SCCs and melanoma. Finally, I have outlined the main non-invasive imaging modalities available to 

date, with a focus on their application to skin cancer assessment. The evidence behind the 

modalities described varies greatly between the more mature modalities, such as RCLM and those 

newer modalities, such as optoacoustics.  

Although all imaging modalities are promising, no modality alone has been able to match to 

resolution, depth of penetration and contrast that formalin fixed, sectioned, stained histological 

slides currently offer. As a result devices using multiple imaging modalities are being trialled e.g. 

Zhang et al. have combined OA, that gives better contrast for vasculature, with OCT, that gives 

optical contrast and has a good depth of penetration into the skin (Zhang, Povazay et al. 2011). 

Similarly König et al. have combined HFUS, that has good depth of penetration for skin imaging but 

gives poor resolution, with MPM, which gives cellular resolution images but has a poorer depth of 

penetration (König, Speicher et al. 2010). 

MPM currently provides the highest resolution images of all the modalities described above. This 

modality provides the greatest endogenous contrast (as multiple autofluorophores exist) and the 

only modality that can provide both structural and functional information about the skin. MPM 

would be excellent for the assessment of epidermal and upper dermal disease in vivo. Its depth of 

penetration would restrict the investigation of deeper dermal diseases to using ex vivo samples. 

MPM therefore offers the greatest information and therefore most likely to be useful diagnostically. 

In contrast, other imaging modalities, such as HFUS and OCT have a greater depth of penetration but 

offer lower resolution images. They would therefore be best suited to assess the size of lesions, once 

the diagnosis had already been made. 
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Chapter 2. Fluorescence in the skin 

2.1 Introduction 

This chapter provides an introduction to the principles, techniques and prior knowledge that directly 

relate to the work described in this thesis. The principles of fluorescence and fluorescence lifetime 

and the methods used for their measurement, including multiphoton excitation will be discussed. 

The endogenous fluorophores of the skin are then described in detail followed by an overview of the 

dynamic changes in fluorescence and fluorescence lifetime associated with malignancy. Finally a 

comprehensive literature review of the published literature on skin autofluorescence is given, 

focusing on research using multiphoton microscopy to study skin cancer. 

2.2 Fluorescence 

Fluorescence can arise in tissue autofluorophores, naturally present within the tissue or from 

artificially inserted fluorophores (physically or genetically). It is caused by the absorption of energy 

that promotes electrons from the S0 ground state to higher more energetic electronic states (Sn). 

Between these discrete, relatively stable electronic states, can exist less stable vibrational energy 

states (Vn) (Redmond 2003; Lakowicz 2006). This is illustrated by the Jablonski diagram, shown in 

figure 2.1 

 

Figure 2.1 Jablonski Diagram illustrating the change in singlet energy states of an electron excited by a photon of light and 

the loss of energy as fluorescence. 

When paired electrons in a molecule have balanced opposing spins, they are said to be in the singlet 

state. A drop of energy between singlet electronic energy states, in the form of emitted light, is 
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generally referred to as fluorescence. Following excitation of a molecule to an excited vibrational 

state through absorption of a photon, energy is typically lost by internal conversion to the lowest 

vibrational state (V0) of the excited singlet electronic energy state (Sn). This is typically S1 for most 

compounds. The molecule can then return to the ground singlet state (S0) by radiative (fluorescence) 

or non-radiative relaxation. A drop of energy to different vibrational levels in the ground state leads 

to fluorescence emission of varying wavelength. An excited molecule can undergo inter-system 

crossing, which results in it being in a triplet state. Radiative decay directly from a triplet state in the 

above way is forbidden and must occur via a slower process (lifetimes ~1 µs) known as 

phosphorescence. 

2.3 Multiphoton excitation 

Multiphoton excitation (MPE) typically refers to the simultaneous absorption of two photons instead 

of one, to increase the energy state of the molecule from the ground to a higher electronic state. 

The probability of this event is low and so excitation is usually focused in order to achieve a 

sufficiently high peak power using femtosecond duration pulses in a subfemtolitre volume. The 

fluorescence intensity induced varies quadratically with the excitation power in two photon 

excitation, and to the third power for three photon microscopy. The principle was first described in 

1931 by Göppert-Mayer in her PhD thesis (Göppert-Mayer 1931) but was not applied to microscopy 

until 1990 by Denk et al. (Denk, Strickler et al. 1990). It has a number of advantages over confocal 

microscopy for obtaining optically sectioned images from biological tissue. These include the 

following:- 

1. It is an intrinsically optically sectioning technique because fluorescence is restricted to the focal 

volume. Optically sectioned MPE images can be obtained if the focal spot is scanned across the focal 

plane without the need to reject light from out of focus planes using a pinhole, as is required by 

confocal microscopy. 

2. MPE is therefore a more optically sensitive technique than confocal microscopy when imaging in 

scattering media, as all emitted fluorescence is collected.  

3. NIR excitation light is absorbed and scattered less than UV or visible light and therefore tissue 

penetration is deeper. 

4. NIR photons have lower energy than the UV /visible light used for one photon excitation and is 

therefore less photo-damaging to cells away from the focal plane. 
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In addition to the emission of fluorescence, high intensity NIR illumination of non-centrosymmetric 

molecules (such as collagen) can cause energy to be converted via second harmonic generation 

(SHG) to visible light. This signal occurs near instantaneously and at exactly 1/2 of the excitation light 

wavelength, and is a dominant signal when imaging in the collagen rich dermis. 

2.4 Quantification of fluorescence 

The emitted fluorescence from a fluorophore can be described and quantified using a number of 

parameters – absorption and emission spectra, emission intensity, lifetime and polarisation. Each 

parameter contributes to the fluorescence signature for that fluorophore. 

2.4.1 Fluorescence intensity 

This measures the number of emitted fluorescence photons from a substance. It is proportional to 

the quantum yield of the substance but will also vary with the excitation power used to illuminate 

the sample and the absorption and scattering properties of the sample measured. Although simple 

to measure, reproducible quantitative measurements can be difficult to achieve. 

2.4.2 Fluorescence spectra 

The distribution of electronic and vibrational energy states varies between molecules. Their 

distribution determines the shapes of the absorption and emission spectra. As the vibrational energy 

states remain similar between electronic energy states in some molecules, the absorption and 

emission spectra of a molecule are often mirror images except for the Stokes Shift (shift towards 

longer wavelength of the emitted spectrum). 

The absorption and emission spectra of some molecules are affected by their local environment and 

this dependence can therefore be used to monitor pH, temperature, etc. As absolute measurements 

of fluorescence intensity are challenging due to variation in excitation efficiency, detection 

efficiency, scattering, etc... , ratiometric measures of the intensity taken at two discrete wavelengths 

are often used to cancel out these unknowns. 

2.4.3 Fluorescence polarisation 

Fluorophores with their absorption transition dipole moment parallel to the electric field vector of 

the illuminating light are preferentially excited. Therefore illumination using polarised light coupled 

with polarised detection can be used to monitor changes in the orientation of molecules, their 

binding state, their rotational mobility and the viscosity of their solvent. 
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2.4.4 Fluorescence lifetime 

The fluorescence lifetime is the average length of time an electron remains in its excited state before 

returning to the ground state (Lakowicz 2006). It can be defined as the inverse of the total decay 

rate, which is the sum of the radiative (  ) and non-radiative (    ) decay rates, see equation 2.1. 

  
 

      
        Equation 2.1 

Following excitation with a short pulse of light (such as with MPE), the fluorescence intensity decays 

exponentially with time, as described by the equation in figure 2.2 below. 

 

Figure 2.2 Schematic illustrating the fluorescence intensity decay over time following excitation from a short pulse of light. 

Key: t - time,   ( )- Intensity at time t,   - Intensity at time 0, τ – fluorescence lifetime. 

Biological fluorophores have different lifetimes in different states e.g. oxidised and reduced state, 

protein bound and unbound state, and for different species in tissue where multiple decay 

components are expected within each pixel. It is therefore useful to fit more complex fluorescence 

decay models, such as described by equation 2.2, where each decay constant,    has an initial 

contribution ai to the total fluorescence intensity. 

 ( )  ∑     
(    ⁄ ) 

          Equation 2.2  

As the number of lifetime decay components to be fitted increases, so must the number of photons 

to be collected in order for the model fit parameters to be determined accurately.  Tissue 

fluorophores typically have more species present than the number of lifetime components fitted 

that can reasonably be fitted to real data and so a compromise must be made.  
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A bi-exponential decay model is therefore commonly adopted and the mean fluorescent lifetime 

(τmean) can then be expressed as either a species (amplitude) weighted or a photon (intensity) 

weighted mean of the two lifetime components, see equation 2.3. 

 )               
(          )

(     )
 

 )              
    

      
  

         
       Equation 2.3  

The lifetime is a ratiometric measure and is not dependent on the absolute fluorescence intensity 

making it suitable for comparative assessment between fluorophores and between instruments. A 

fluorophore’s lifetime can be sensitive to its binding state or local environment and therefore can be 

used to monitor intracellular changes non-invasively in biological tissues.  

2.5 Fluorescence lifetime imaging microscopy (FLIM) 

FLIM refers to the acquisition of time resolved, fluorescence images acquired on the time scale of a 

fluorescence decay. Lifetimes are then typically displayed using a false colour map to provide 

spatially resolved lifetime information. The lifetime colour map is often merged with the 

fluorescence intensity image so as to provide both lifetime and intensity information. 

Experimental methods for FLIM can be divided into two categories– frequency domain or time 

domain. Both methods can provide equivalent information but require different equipment and 

analytical methods. 

2.5.1 Frequency Domain 

 

Figure 2.3 A diagram illustrating the changes measured in the excitation light with frequency domain FLIM. Key: A – 

amplitude of excitation light, B – amplitude of emitted light, φ - Phase shift angle  
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Frequency domain FLIM uses sinusoidally modulated excitation and requires the lifetime to be 

comparable to the reciprocal of the modulation frequency (ω) of the excitation wave. The phase 

shift angle (φ) in the frequency OR the reduction in intensity modulation ( =(B/b)/(A/a)) between 

the excitation and emission light (see figure 2.3) can then be used to calculate the lifetime using the 

following equations (2.4) in the case of a single exponential decay. 

         

   (   
    )           Equation 2.4. 

For samples with multiple lifetimes it is necessary to measure the phase shift angle and intensity 

modulation over a range of modulation frequencies (Lakowicz 2006). 

2.5.2 Time Domain 

Time domain FLIM uses a femtosecond, pulsed laser light source and measures the change in 

fluorescence intensity as a function of time following the excitation pulse. The fluorescence lifetime 

is then calculated by performing a fit to the measured decay data. Two techniques are used. 

 

 

Figure 2.4 A schematic illustrating widefield time domain FLIM. Key: GOI – Gated optical intensifier. 

Widefield time domain FLIM gives a high lifetime accuracy in a given acquisition time by acquiring 

the fluorescence intensity from whole field of view as a single image using a gated optical intensifier 
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(GOI) to act as a fast shutter and a CCD camera, see figure 2.4. Sequential images taken with varying 

time delays from the excitation pulse, using a time delay generator attached to the GOI, create time 

gated images. These can then be used to track the decay of the fluorescence in every pixel of the 

image simultaneously and allow a lifetime to be fitted to each pixel. Typical gate widths vary from 

100-1000 ps while the gate separation is chosen to cover the range of the fluorescence decay. 

 

Figure 2.5 A schematic illustrating time correlated single photon counting FLIM. 

Time Correlated Single Photon Counting (TCSPC) is the most common method of time domain FLIM 

and gives the highest lifetime accuracy per detected photon. It is usually implemented on confocal 

or multiphoton scanning microscopes and therefore collects the fluorescence from single pixels at a 

time. As illustrated in figure 2.5, the electrical signals from the pulsed light source and single photons 

detected by the PMT are passed through CFDs. The time difference between them is then converted 

into a voltage by the time to amplitude converter (TAC) and recorded. This technique can only 

detect a single photon per excitation pulse. Therefore, unless the excitation power is sufficiently low, 

further emitted photons are not detected which biases the measured lifetimes towards shorter 

lifetimes. The excitation power is therefore set below this power threshold and so the maximum 

count rate for the equipment is not exceeded over the imaging time period. This is typically set to 

produce a maximum of one single detected photon for every 100 excitation pulses (Lakowicz 2006).  
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As the focal point is scanned across the field of view, a histogram of photon arrival times is 

constructed. The lifetime is then calculated for each pixel by fitting an appropriate decay model to 

the decay histograms. 

2.6 Tissue Autofluorescence 

A number of endogenous molecules in living cells fluorescence. Although their fluorescence tends to 

be weaker in intensity than exogenous fluorophores, their advantage is that information can be 

recorded in biological systems and organisms without the need to administer exogenous labels and 

without the need to consider associated safety issues and pharmokinetics perturbing their 

homeostatic state. The addition of exogenous fluorophores into live cells can alter cell physiology 

and protein expression, sometimes creating uncertainty whether findings truly represent biological 

phenomena or are artefactual. 

Below is an introduction to the main tissue fluorophores found in skin that can be imaged using MPT 

without the need for exogenous contrast agents. These include collagen, elastin, melanin, keratins, 

porphyrins, NAD(P)H and flavins. Figure 2.6 illustrates the absorption spectra of these proteins, 

which is adapted from Wagnieres et al. (Wagnieres, Star et al. 1998). Emission spectra from these 

fluorophores and the spectral channels into which their fluorescence would be collected using the 

modified DermaInspect® used in this project (see chapter 4.4, pp89) can be seen in figure 2.7 

These spectra of complex proteins such as collagen, elastin, melanin and keratin vary between 

published sources because the fluorescence emission spectra and lifetimes will vary on how the 

proteins were prepared and their local environment. Also, NADH and flavins are known to shift their 

emission spectra and change lifetime when bound to enzymes. Therefore, a purified solution may 

have a slightly different fluorescent signature compared to when it has been fixed for histological  

tissue sections or measured in a live biological system. In addition, measurements made directly 

from tissue (in vivo or ex vivo) often contains fluorescence from other fluorophores as pure 

fluorophores rarely exist in isolation. 
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Figure 2.6 Excitation spectra adapted from (Wagnieres, Star et al. 1998) 

 

Figure 2.7- Emission spectra from fluorophores found in the skin. Adapted from (Wagnieres, Star et al. 1998; Palero, de 

Bruijn et al. 2007). Reprinted from Biophysical Journal 93(3): 992-1007.Palero, J. A., H. S. de Bruijn, et al. (2007). Spectrally 

resolved multiphoton imaging of in vivo and excised mouse skin tissues. Pages No. 1002, Copyright (2007), with permission 

from Elsevier. 
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Two studies have measured complete excitation-emission matricies (EEMs) for purified 

fluorophores. DaCosta et al. performed this using single photon excitation (DaCosta, Andersson et al. 

2003), and Yu et al. (Yu, Lee et al. 2012) performed a similar study using multiphoton excitation.  It 

has been shown that the single photon  and two photon excited emission spectra are similar for  

NAD(P)H and flavins  by  Kierdaszuk et al. (Kierdaszuk, Malak et al. 1996) and Huang et al. (Huang, 

Heikal et al. 2002) respectively. However Teuchner et al. demonstrated a red shift in the emission 

spectrum of melanin in solution using two photon excitation compared to single photon excitation 

(Teuchner, Freyer et al. 1999), see figure 2.8 below. 

 

Figure 2.8 Fluorescence spectrum of melanin dissolved in DMSO. Solid curve – single photon excitation at 400 nm. Line 

with dots- two photon excitation at 800 nm. Reproduced from Teuchner et al. (Teuchner, Freyer et al. 1999). 

2.6.1 Keratin 

Keratins are structural proteins in the Intermediate Filament (IF) family and found mostly in the 

epidermis in the skin, hair and nails. The basic structural unit consists of dimers between acidic (Type 

I) and basic (Type II) keratin Intermediate Filaments. These polymerise into fibrils of increasing size. 

The structural and chemical properties depend on which acidic and basic subunits are paired. The 

expression of the intracellular keratins by the keratinocytes alters with migration from the basal 

layer towards the s.corneum in normal skin and in pathological states. For instance Type 14 and 5 

keratin IF are expressed in the basal layer, type 10 and 1 in the s.spinosum and Type 11 and 2 are 

expressed in the s.granulosum. Following terminal differentiation and apoptosis of the 

keratinocytes, the s.corneum has a high concentration of keratin (Fuchs and Cleveland 1998; Fuchs 

2008). It therefore fluoresces brightly in comparison to other intracellular fluorophores in the 

s.corneum. 
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Keratin autofluorescence varies with its local environment. Pena et al. (Pena, Strupler et al. 2005) 

studied the excitation and emission spectra from purified human epidermal keratin (intracellular 

keratins) dissolved in urea and sections of formalin fixed skin using both single and multiphoton 

excitation.  The keratin solution demonstrated a main absorption peak at 277 nm and another at 210 

nm in its absorption spectrum with single photon excitation. The absorption spectrum measured in 

solution using two photon excitation was significantly broader, with a peak at ~700 nm and reducing 

with wavelength to ~950 nm.  

A fluorescence emission peak at 382 nm was found with single photon excitation when excited at 

277 nm and was consistent with that of Kollias et al. who illuminating intact s.corneum with a xenon  

lamp at 295 nm and measured fluorescence in the range of 340-400 nm (Kollias, Zonios et al. 2002). 

Sterenborg et al. also excited healthy skin in vivo using volunteers but at  375 nm excitation 

wavelength from a filtered xenon arc lamp via a fibre optic cable (Sterenborg, Motamedi et al. 1994). 

They found a spectral peak at a longer wavelength than above of 435 nm and concluded that this 

was from keratin from the s.corneum because the fluorescence intensity significantly reduced 

following tape stripping of the skin. 

 

Figure 2.9 Fluorescence emission spectra from keratin solution when excited by TPE at varying wavelengths between 750-

900 nm. Reproduced from Pena et al. (Pena, Strupler et al. 2005) 

Pena et al. used TPE with various excitation wavelengths to study fluorescence from keratin solution 

and measured the emitted fluorescence spectrum, shown in Figure 2.9 (Pena, Strupler et al. 2005). It 

shows that the peak emission shifts towards longer wavelengths as the excitation wavelength is 

increased. At 760 nm excitation wavelength (used with our system) a peak around 475 nm was seen. 

This correlated well with an emission peak at 477 nm measured using the same excitation 

wavelength from the extracellular keratin in the s.corneum from fixed sections of normal skin also by 
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Pena et al. Palero et al. also used human epidermal keratin in solution to record a spectral peak at 

~465 nm using 764 nm excitation (Palero, de Bruijn et al. 2007). 

The lifetime for pure keratin can be fitted using a monoexponential decay model with a lifetime of 

1.4  ns (Ehlers, Riemann et al. 2007). Ehlers et al. also found that hair keratins had more complex 

decays which varied with hair colour. Breunig et al. recorded the lifetime from the s.corneum in vivo 

from human skin using an excitation wavelength of 720 nm. Fluorescence was filtered through a 

BG39 filter (~345–605 nm 50% transmittance) and the lifetime was fitted to a double exponential 

decay model with resulting lifetime components of τ1=200 ps and τ2=2600 ps. 

2.6.2 Collagen 

Collagen is a structural protein that is produced by fibroblasts and found mainly extracellularly in the 

dermis of the skin but can also be found in other connective tissues such as tendons, ligaments and 

cartilage. Currently 28 types of collagens exist which vary in their helical composition and post 

translational modification. Type I and III fibrillary collagen are found in the dermis, type IV and VII 

and XVII collagen can be found around the basement membrane between the epidermis and dermis 

and around blood vessels. Type I fibrillar collagen accounts for ~80% of the dermal collagen and is 

formed from a triple helix of two α1 (I) chains and a single α2 (I) chain in which every third amino acid 

is a glycine. Type III collagen accounts for ~15% and consists of three α1 (III) chains and can increase 

to account for ~25% of dermal collagen with photoaging (Lovell, Smolenski et al. 1987; Brinckmann, 

Açil et al. 1995).  

Lutz et al. have characterised the differences in fluorescence with the collagen subtype using MPT 

(Lutz, Sattler et al. 2012). They excited rat tail derived type I and placental derived type III collagen in 

vitro using a DermaInspect® at 750 nm and collected fluorescence between 400-700 nm. SHG signals 

were collected using 820 nm excitation wavelength and a 410 nm long pass filter. They found that 

both collagen types had similar emission spectra with a peak ~460 nm, see figure 2.10 a. In contrast, 

previous studies of collagen have found an emission peak around 420 nm for type I collagen derived 

from calf skin and 385 nm for placentally derived type III when excited at 337 nm i.e. using single 

photon excitation (Marcu, Cohen et al. 2000).  

The difference in the emission spectra found between the groups may be caused by the source and 

experimental conditions of the samples being measured. For example the placental collagen varied 

in purification method between sources. 
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Figure 2.10 a) Fluorescence Intensity of purified collagen type I and III. b) Fluorescence lifetime mixtures of collagen type I 

and III. Reproduced from Lutz et al. (Lutz, Sattler et al. 2012) 

Lifetimes were fitted by Lutz et al. using a double exponential decay model (Lutz, Sattler et al. 2012). 

A τmean of 2466 ps was found for type I collagen, and ~2400 ps for types II and and IV using collagen 

manufactured by Abcam® (UK) when excited at 750 nm. When collagen type I & III manufactured by 

Sigma-Aldrich® (USA) was tested, a lifetime between 2060-2295 ps was obtained. When varing 

proportions of type I and type III collagen (from Sigma-Aldrich®) were mixed, a linear reduction from 

2295 – 2060 ps in lifetime was found as the proportion of type III collagen was increased, see figure 

2.10b.  

When using MPE collagen can both emit fluorescence and a much stronger signal by second 

harmonic generation (SHG) as it is a non-centrosymmetric molecule. Lutz et al. also found that the 

intensity of the SHG signal reduced with an increasing ratio of collagen Type III:Type I and increased 

collagen crosslinking (Lutz, Sattler et al. 2012). 

The lifetimes calculated for collagen type I and III by Lutz et al. are in broad agreement with those 

found by Marcu et al. Marcu et al. measured a lifetime of  τ1=0.9 ps, τ2=5 ns with a1 of 0.65 when 

excited at 390 nm (τmean=2335 ps) for collagen I and τ1=~1.3 ns, τ2=~6.75 ns with a1 of 0.525 when 

excited at 390 nm (τmean=3880 ps) for type III collagen (Marcu, Cohen et al. 2000).  

The clinical significance of the change in lifetime with ratio of collagen subtypes is uncertain. From 

the data presented by Lutz et al. the 10% change in ratio between collagen subtypes (that could be 

expected with photoaging) would result in a 25 ps change in lifetime and no detectable change in 

the emission spectra. 

2.6.3 Elastin 

Elastic fibres can be found in the extracellular space in the dermis. They consist of about 2-4% of the 

dermis and consist of elastin and elastin associated microfibrils. Together they provide elastic recoil 

and tensile strength to the skin (Kielty, Sherratt et al. 2002; Burns, Breathnach et al. 2010).  

(a)
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The fluorescence properties of elastin have been studied by a number of groups using a number of 

sources. The emission spectra  of Bovine neck ligament elastin was found to have a peak at ~500 nm 

when excited at 764 nm (Palero, de Bruijn et al. 2007). The same group also found the fluorescence 

from dermal elastin from mouse skin in vivo to be similar. Pena et al. measured the fluorescence 

from elastin powder derived from human aorta at 760 nm and recorded an emission spectrum peak 

at ~ 445 nm. (Pena, Strupler et al. 2005). The same group also imaged the dermis of a sample of 

formalin fixed normal skin. When excited at 760 nm, a broad emission spectral peak at 471 nm was 

recorded and attributed to elastin fluorescence with weaker contributions from the fibroblasts and 

collagen. 

Maarek et al. measured the lifetime from elastin derived from bovine neck ligament (Maarek, Marcu 

et al. 2000). They found little difference in its lifetime between its dry and hydrated form when 

excited over a range of wavelengths using single photon excitation. They used a double exponential 

decay model and calculated at τ 1 1.3 ns, τ2 5.7 ns with f1 of 0.63 when exciting at 390 nm for dry 

elastin. This did not change significantly with hydration. From the values in the paper a τmean between 

2.93 and 3.08 ns can be calculated for dry and hydrated elastin respectively for this excitation 

wavelength.  

Several years later, Fang et al. (affiliated with Marcu et al.) calculated a τmean of 2.05 ns for elastin 

derived from human aorta when excited at 380 nm. They measured a similar τ1 1.5 ns, τ2 5.84 ns and 

τmean of 2.11 ns averaged over emission wavelengths 380-520 nm (Fang, Papaioannou et al. 2004). 

2.6.4 Melanin 

Melanin is synthesized by melanocytes in a number of organs including the inner ear, iris of the eye 

and the skin.  Within the epidermis, melanocytes can be found evenly spaced along the basement 

membrane. They can also be aligned adjacent to each other along the basement membrane to form 

junctional naevi or in nests in the dermis to form intradermal naevi. The malignant transformation of 

naevi gives rise to melanoma and has been discussed in Chapter 1.3.3 (pp32). 

The 2 melanin pigments found in the skin are eumelanin which is brown/black in colour and 

pheomelanin which is yellow/red. Both are derived through the oxidation of tyrosine by tyrosinase 

and packaged into intracellular organelles called melanosomes. These are then distributed by the 

melanocytes to their surrounding keratinocytes in the epidermis to confer the nucleus of the cells 

protection against UV light. Both types can be found in benign naevi and melanomas but the ratio of 

eumelanin to pheomelanin can increase in malignancy (Marchesini, Bono et al. 2009). It has been 

difficult to characterise the 2 types of melanin using conventional light or fluorescence microscopy 

because neither are found in their pure form biologically, their absorption spectra are similar and 
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their in vivo structure, which affects their fluorescence characteristics, have not been possible to 

reproduce. Recently however Matthews et al. have  used a non-linear optical pump-probe method 

to distinguish the pigments from fixed, sections from pigmented skin lesions (Matthews, Piletic et al. 

2011). 

The absorption spectrum of synthetic melanin (most similar to eumelanin) reduces with wavelength 

between ~250nm to 800nm. The emission spectrum of synthetic melanin is broad with a spectral 

peak at 550 nm (Teuchner, Freyer et al. 1999; Palero, de Bruijn et al. 2007). Recently, Krasieva et al. 

attempted to distinguish the emission spectra between eumelanin and pheomelanin in their in vivo 

state by imaging black, red and grey hair using MPM spectroscopy (Krasieva, Stringari et al. 2013). 

They assumed that the emission spectrum from grey hair arises from keratin only with the addition 

of eumelanin from black hair and pheomelanin from red hair. They subtracted the keratin spectrum 

and were able to distinguish the emission spectra between the melanin types when excited at 1000 

nm, see figure 2.11. This figure demonstrates a longer emission peak than that found with synthetic 

melanin and with a peak between 615-625 nm for pheomelanin and 640-680 nm for eumelanin. 

 

Figure 2.11 Emission spectra from eumelanin and pheomelanin from hair using MPM spectroscopy. Reproduced from 

(Krasieva, Stringari et al. 2013). 

Dancik et al. further showed that the fluorescence intensity of melanin increased linearly with 

melanin concentration in solution (Dancik, Favre et al. 2013).  

The fluorescence lifetime from melanin has been measured by a number of groups and been 

summarised in the paper by Dancik et al. (Dancik, Favre et al. 2013). A tri-exponential fluorescence 

decay lifetime model was found to provide the best fit with lifetimes components (and 

contributions) of 0.2 (0.56), 1.5 (0.32) , 5.8ns (0.11) (Teuchner, Freyer et al. 1999). This gives a 

calculated τmean of 1.23 ns. 

Eumelanin

Pheomelanin
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In vivo eumelanin forms complex granules intracellularly with aggregates of varying molecular 

weight. Nofsinger et al. confirmed that the absorption spectrum of eumelanin from Sepia officinalis 

was broad, ranging from the UV through the visible wavelength range (see figure 2.12 a) and was 

affected by the molecular weight of the granule aggregates. The emission spectrum was less 

affected by the molecular weight when excited at 375 nm (Nofsinger and Simon 2001). This study 

found an emission peak closer to 450 nm rather than the peak near 550 nm previously reported. 

They suggested that the difference could be explained by the polymerisation and oxidization status 

of the melanin being examined. 

 

Figure 2.12. a) Changes in absorption spectra of eumelanin from S. officinalis with molecular size. b) Changes in emission 

spectra of eumelanin with molecular size when excited at 375 nm. Key: Molecular Weight (MW) >10 000 (solid), 10 

000>MW>3000 (dot), 3000> MW>1000 (short dot) and MW< 1000 (dash). Reproduced from (Nofsinger and Simon 2001). 

This group also fitted the lifetime of eumelanin using a multi-exponential decay lifetime model but 

used four exponential components which they considered related to the molecular size of the 

aggregate (<1000, >10,000 molecular weight). Their calculated lifetime components (and 

contributions) were τ1= 121-144 (0.03-0.05) ps, τ2= 800-960 (0.14-0.15) ps, τ3= 5.03-5.37 ns (0.29-

0.3) and τ4= 11.8-12.8 ns (0.51-0.53). This gives a calculated τmean of 8.06 ns. 

As discussed above, Krasieva et al. separated the emission spectra between the types of melanins 

using hair. They demonstrated a difference in the fluorescence lifetime between eumelanin and 

pheomelanin on phasor plots using phasor FLIM analysis (Krasieva, Stringari et al. 2013) and their 

lifetimes were distinct from those of free and protein bound NADH. 

2.6.5 NAD(P)H 

NADH and NADPH are the reduced forms of two nucleotide molecules involved in redox reactions in 

cellular metabolism. 

a) b)
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NADH is derived from nicotinic acid, is a key co-enzyme in the oxidation of glucose to pyruvate in 

glycolysis and is involved in the Citric acid cycle/electron transport chain (part of cellular oxidative 

respiration) in the mitochondrion during the synthesis of ATP. Within the cell NADH acts primarily as 

a reducing agent and therefore the oxidised state (NAD+) predominates. 

NADPH binds to several enzyme complexes that are diverse in function. For example, it is involved in 

the anabolic synthesis of lipids and cholesterol, conversion of pyruvate to lactate and the generation 

of free radicals in cells of the immune system.  In contrast to NADH, it acts primarily as an electron 

donor in the cell and therefore the reduced state (NADPH) predominates.  

 Although NADH and NAD(P)H serve different functions within the cell, their fluorescence profiles 

(i.e. absorption, emission and lifetimes) are similar. Both NADH and NADPH only fluoresce at ~ 450 

nm in their reduced state and spectroscopically are typically considered together as NAD(P)H. 

However, the fluorescence of NADH dominates. It is found in greater concentrations within the cell 

(x5) and has higher quantum efficiency than NADPH (Avi-Dor, Olson et al. 1962; Wang, Wei et al. 

2009).  

At an excitation wavelength of 760 nm, NAD(P)H has an emission spectral peak between 450-470 nm 

(König and Schneckenburger 1994; Palero, de Bruijn et al. 2007). 

In aqueous solution, a double exponential decay can be fitted with a τ1=0.35 and τ2= 0.76 ns, with a 

τmean of 444 ps (Vishwasrao, Heikal et al. 2005). Skala et al. fitted a double exponential decay to 

NAD(P)H fluorescence measured from cheek epithelium and attributed the short component to free 

NAD(P)H (τ1=0.29) and the long component to protein bound NAD(P)H  (τ2= 2.03 ns (f2=0.37)), with a 

τmean of 934 ps (Skala, Riching et al. 2007).  

Lakowicz et al. was the first group to perform lifetime imaging of NADH. They determined that 

enzyme bound NADH had a longer lifetime than its free form (Lakowicz, Szmacinski et al. 1992). 

When Vishwasrao et al. measured the fluorescence lifetime in hippocampal tissue and fitted it using 

a quadruple exponential decay model, decay components ranging from 155ps to 6.04ns (τmean948ps) 

were calculated. In conjunction with fluorescence anisotropy measurements, the shortest and 3 

longer components were attributed to free and protein bound NADH respectively (Vishwasrao, 

Heikal et al. 2005). 

2.6.6 Flavins 

Flavins are co-enzymes derived from riboflavin and are involved in oxidation/reduction reactions in 

the cell. They act as electron carriers for redox reactions in the Citric Acid Cycle and the electron 

transport chain within the mitochondrion. The most studied fluorescent flavins are the co-enzymes 
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flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). In their oxidised form the 

fluorescence arise from their isoallozazine ring. However their reduced forms are not fluorescent. 

This distinction can be used to monitor changes in intracellular metabolism.  

The flavins have a broad absorption spectrum between 200 and 500 nm with an emission peak at 

525nm (König and Schneckenburger 1994; Palero, de Bruijn et al. 2007).  

Free FMN has been found to have a monoexponential decay lifetime between 4.6 -5.2 ns (König and 

Schneckenburger 1994; Yang, Luo et al. 2003) with protein bound FMN having a faster, 

multiexponential lifetime decay. For example, Yang et al. used four lifetime components to best fit 

the decay for protein (enzyme) bound FMN, which were 8 ps (19%), 50 ps (39%), 250 ps (39%) and 

4.5 ns (3.6%), with a τmean of 281 ps (Yang, Luo et al. 2003). They also fitted protein bound FAD using 

four similar lifetime components, which were 28 ps (25%), 200 ps (52.1%), 460 ps (21.5%) and 3.3 ns 

(1.2%), with a τmean of 250 ps. This lifetime is longer than that determined in 1980 by Nakashima et 

al. They found monomeric and dimers of protein (enzyme) bound FAD to have a mean lifetime of 

130 ps and 40 ps, whilst free FAD had a lifetime of 2.3 ns (Nakashima, Yoshihara et al. 1980). 

2.6.7 Porphyrins 

The porphyrins consist of a family of proteins derived from the tetrapyrrole molecule- porphyrin. 

They are found as intermediate metabolic products during the synthesis of haem. The most 

important ones are protoporphyrin IX, coproporphyrin III, uroporphyrin III and haematoporphyrin IX. 

Once haem is bound to iron in haemoglobin, its fluorescence is quenched and therefore cannot be 

detected. Normally the concentration of these molecules is low and the only detectable 

fluorescence from porphyrins in mammals arise from chlorophyll when a diet rich in plants has been 

ingested and from phototrophic bacteria, such as Propionibacterium acnes, that colonise sebaceous 

glands of the skin. The presence of porphyrins in these bacteria, that aggravate acne vulgaris, can be 

targeted by photodynamic therapy to improve acne. 

In pathology affecting this metabolic pathway, such as congenital enzyme defects (porphyrias) or 

acquired defects or malignancy, porphyrins can be detected in the skin, blood or internal organs. 

Red fluorescence from porphyrins arising  from malignancies was first detected by Policard et al. in 

1924 (Policard 1924). Protoporphyrin IX was later isolated as the main fluorophore found in 

squamous cell carcinomas (Ghadially and Neish 1960). 

Exogenously applied topical precursors to porphyrins, such as 5-aminolevulinic acid are used for 

photodynamic therapy in skin cancers. This photosensitising drug is preferentially taken up by 

rapidly proliferating cells such as malignant cells.  This artificially increases their intracellular 
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concentration of protoporphyrin IX and means that phototherapy can act preferentially on 

malignant tissue. This technique has used been for photodetection of tumour margins but still 

remains an area for research as current studies have had mixed results for the assessment of BCC 

margins (Wetzig, Kendler et al. 2010; Sandberg, Paoli et al. 2011; van der Beek, de Leeuw et al. 

2012). 

The absorption spectrum of porphyrins consists of 4 peaks, the Soret band at 400 nm and four 

smaller Q-bands ranging from 500-630 nm. Its fluorescence emission spectrum peaks between 624-

633 nm, depending on the porphyrin. For example, when excited at 407 nm protoporphyrin IX was 

found to have a fluorescence peak at 633 nm whilst coproporphyrin had its peak at 632 nm (König, 

Flemming et al. 1998).  

The fluorescence lifetime of protoporphyrin IX following incubation with the photosensitiser 

aminolaevulinic acid, measured in vivo from a chick embryo model, was found to have 2 lifetime 

components when excited at 390 nm. A dominant long lifetime component of ~19 ns (a2=0.9) was 

thought to be from the Protophorphyrin IX, whilst the short lifetime component of 5.2 ns (a1=0.1) 

was thought to arise from photoproducts (Schneckenburger, König et al. 1993). This has been used 

by Cubeddu et al. to enhance the lifetime of BCCs compared to normal skin in FLIM images acquired 

in vivo (Cubeddu, Comelli et al. 2002) 

2.6.8 Lipofuscin 

Lipofuscin is an intracellular pigment that has been found in a number of organs of the body, 

including the brain, heart, liver and retina. It consists of an aggregate of granules that can arise from 

the phagocytosis of degraded lipid from organelles. In the skin,  it is most visible in solar lentigenies  

(Berezin 2010) but can also arise as a result of amiodarone drug therapy for cardiac arrhythmias 

(Weedon 2002). 

Lipofuscin has an excitation spectrum between 440-470 nm, with an emission spectrum between 

510-700 nm (Schweitzer, Schenke et al. 2007). This falls within the excitation wavelength range of 

the DermaInspect®, with the emission spectrum expected to fall within the yellow and red spectral 

channels.  

Schweiter et al. have measured the emission spectra and lifetimes from fluorophores found within 

the retina of a healthy volunteer (Schweitzer, Schenke et al. 2007). They used an excitation 

wavelength of 468 nm and fluorescence was collected between 510-700nm and fitted using a tri-

exponential decay model. τ1= 190ps was attributed to the pigmented retinal epithelium (dominated 

by lipofuscin), τ2=750 ps to the neural retinal and τ3 = 3550 ps to connective tissue and the lens. 
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2.6.9 Amino Acids 

Only tryptophan, tyrosine and phenylalanine autofluoresce with emission wavelengths above the 

ultraviolet range (>300 nm). Tryptophan emits its fluorescence in the range 340-380 nm. It has 2 

lifetime components of ~0.5 ns and ~3 ns, although the longer lifetime component becomes 8.7 ns in 

alkaline environments (Ross and Jameson 2008).  

Both phenylalanine and tyrosine have poor quantum yields and therefore are often swamped by the 

signal from tryptophan. 

2.7 Dynamic Changes of Cellular Autofluorescence 

2.7.1 Changes with Metabolism 

As outlined above, the intracellular fluorophores NAD(P)H and flavins are co-enzymes involved in 

oxidation/reduction reactions in the citric acid cycle and electron transport chain, part of cellular 

oxidative respiration. The proportion of each co-enzyme in the oxidised or reduced state therefore 

can be used as an indirect measure of the redox state i.e. the metabolic state of a cell. As the 

fluorescence of NAD(P)H and flavins are confined to their reduced or oxidised state respectively, 

measuring their fluorescence emission allows the opportunity to gain an insight into the metabolic 

state of cells non-invasively and in vivo. In 1979, Chance et al. defined the Redox Ratio as FAD / 

(NAD(P)H +FAD). He suggested that this ratio was a more reliable indicator of cellular metabolism 

than measuring the absolute amounts individually  (Chance, Schoener et al. 1979). A reduced ratio 

indicated an increased metabolic state and vice versa.  Since this time NADH fluorescence 

individually and the redox ratio have been studied extensively and are reviewed elsewhere 

(Mayevsky and Rogatsky 2007; Wang, Wei et al. 2009).  

It has also be found that changes in the fluorescence lifetimes of NAD(P)H, arising from changes in 

the ratio of free to bound protein, could also be used to assess intracellular hypoxia, cell necrosis 

and malignancy. For example, Vishwasrao et al. measured the lifetime of NADH from slices of brain 

tissue and fitted its decay using four components. When using chemically induced hypoxia, they 

found a decrease in proportion of the longer lifetime components of NADH (reflecting decrease 

protein binding) and a shortening of all lifetime components (resulting in a reduced τmean from 948 to 

780 ps)(Vishwasrao, Heikal et al. 2005). Wang et al. used HeLa and 143B osteosarcoma cell lines in 

vitro to determine differences in lifetime between induced cell apoptosis (using staurosporine) and 

induced cell necrosis (using hydrogen peroxide). They found an increase in lifetime from 1.3 to 3.5 ns 

at the start of apoptosis but no increase when cell necrosis was induced (Wang, Gukassyan et al. 

2008).  



 

63 
 

2.7.2 Changes with Malignancy 

Changes in intracellular autofluorescence are also associated with the metabolic changes that occur 

with malignant transformation of cells. Under normal conditions non-dividing, differentiated cells 

use aerobic glycolysis and oxidative phosphorylation to synthesis ATP in the presence of oxygen for 

their energy requirements. In the absence of sufficient extracellular oxygen anaerobic glycolysis is 

used instead to generate ATP. However this process is less efficient for the production of ATP, 

generating 2 vs 36 molecules of ATP per glucose molecule.  

Warburg et al. noticed that proliferative tissues, including tumour cells, favour anaerobic glycolysis 

to generate ATP, despite the presence of sufficient oxygen (Warburg, Wind et al. 1927; Warburg 

1956). The exact reasons for this “Warburg Effect” are still speculative but  may arise from cancer 

cells favouring the accumulation of nutrients into the cell in anticipation of cell division over efficient  

energy production (Vander Heiden, Cantley et al. 2009).  This switch to anaerobic glycolysis is 

thought to occur in malignant cells before characteristic morphological/histological changes are seen 

and therefore presents the opportunity to detect malignant transformation early. 

An important paper linking the change in metabolism associated with malignancy to changes in 

cellular autofluorescence was published by Skala et al. in the Journal of Biomedical Optics. They 

measured the fluorescence lifetimes from epithelial cells in a hamster cheek pouch in vivo. The 

lifetimes were fitted using a double exponential decay model and τ1 and τ2 were calculated as 0.29 

and 2.03 ns in normal epithelium and attributed to the free and protein bound states of NADH 

respectively (Skala, Riching et al. 2007). Chemically induced dysplasia/ in situ carcinoma was 

associated with a decrease in τ2 (from 2.03 to 1.83 ns) caused by a decrease in protein bound 

NADH:free NADH ratio, and hence a reduced contribution (α2). This therefore reduced the mean 

lifetime. They then inhibited aerobic glycolysis in vitro using a breast cancer cell line (MCF-10A) and 

replicated the shortening of τ2. From this they suggested that the decrease in protein bound NADH 

was associated with the switch from oxidative glycolysis/phosphorylation to anaerobic glycolysis for 

ATP production in dysplastic cells.  

Skala et al. published a 2nd paper in PNAS in 2007. In this they reported an increase in the variability 

in the redox ratio with dysplasia.  In high grade dysplasia, they also found an increase in τ1 for 

protein bound FAD but a decrease in its contribution (Skala, Riching et al. 2007). 

Lin et al. examined the changes in extracellular fluorescence associated with BCCs using formalin 

fixed sections of tissue (Lin, Jee et al. 2006). They correlated the remodelling of the extracellular 

matrix surrounding the tumour with a reduced SHG signal from collagen, in comparison to normal 

skin. 
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2.8 Conclusions 

In conclusion, this chapter has introduced the principles of fluorescence and the main methods for 

fluorescence lifetimes imaging are then briefly outlined. The following section describes the main 

fluorophores to be found in the skin and details their fluorescence characteristics. Finally the 

changes in fluorescence and fluorescence lifetime described with alterations in cellular in 

metabolism and malignancy are outlined. 
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Chapter 3. Literature Review of tissue autofluorescence lifetime 

spectroscopy and imaging. 

3.1 Introduction 

As described in Chapter 2.6 (pp50), the skin contains a number of endogenous fluorophores 

including extracellular structural proteins such as keratin, collagen and elastin and intracellular 

functional molecules, such as NAD(P)H, flavins and melanin. These provide opportunities to use 

autofluorescence lifetime to investigate contrast in both normal skin and changes caused by disease. 

Fluorescence lifetime measurements of human skin have been carried out using a wide range of 

instruments, from non-imaging fibre-optic probe-based point measurements using single photon 

excitation through to multiphoton microscopy and tomography providing sub-cellular resolution 

images.  

This chapter aims to review the current literature concerning fluorescence and fluorescence lifetime 

measurements of skin, with a focus towards investigations of skin cancer and the use of multiphoton 

microscopy (MPM). It is important to consider this field in the context of the extensive work on 

steady-state and spectrally resolved measurements of autofluorescence of human skin. A number of 

studies have shown that the autofluorescence characteristics of neoplastic skin differ from those of 

normal tissue. Detailed reviews of this existing work are discussed in several reviews, e.g. (Richards-

Kortum and SevickMuraca 1996; Wagnieres, Star et al. 1998; Ramanujam 2000; Zeng and MacAulay 

2003).  

The chapter is organised by the type of instrumentation used and the type of disease studied. The 

initial sections cover results employing single photon excitation, while sections 3.4 (pp69) onwards 

consider multiphoton imaging. 

3.2 Fibre optic point-based probes 

3.2.1 Spectroscopy  

Most of the studies cited in this section have discriminated between normal and neoplastic tissue by 

detecting differences in the measured steady-state fluorescence intensities or spectra using a point-

based spectrometer. 

Using point-based measurements in vivo, Lohmann et al. (Lohmann and Paul 1988) reported an 

increase in 366 nm excited autofluorescence intensity from the edges of melanomas with a strong 

peak at 475 nm not present in benign naevi in a study of 82 patients. Later work using the same 
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instrument was still able to contrast benign naevi from dysplastic naevi/melanomas using fresh 

frozen samples (n=147), but could not contrast dysplastic naevi from melanomas (Lohmann, Nilles et 

al. 1991). Chwirot et al. used a digital imaging approach with the same excitation wavelength and 

collecting autofluorescence at 475 nm. They used the perilesional and lesional fluorescence intensity 

to distinguish melanomas from common/dysplastic naevi (Chwirot, Chwirot et al. 1998). When this 

technique was used to screen melanomas in a multicentre trial, they found a sensitivity of 82.7% in 

detecting the 56 melanomas from 7228 pigmented lesions, and specificity of 24% for discriminating 

common/dysplastic naevi in the 568 cases in which histology was taken (Chwirot, Chwirot et al. 

2001). 

A number of groups have applied point spectroscopy of autofluorescence in basal cell carcinomas 

(BCCs) with broadband near-ultraviolet excitation (350-375nm).  Both Na et al. and Brancaleon et al. 

have reported that the autofluorescence intensity from BCCs at these excitation wavelengths is 

significantly lower than that from normal skin (Brancaleon, Durkin et al. 2001; Na, Stender et al. 

2001). It has been suggested that this may be due to the degradation of dermal collagen by BCC 

tumour matrix metalloproteinases, resulting in reduced collagen fluorescence from the upper 

dermis (Brancaleon, Durkin et al. 2001).  Conversely, Sterenborg et al. demonstrated no significant 

differences between the autofluorescence from BCCs and normal skin (Sterenborg, Motamedi et al. 

1994). Other groups have successfully used longer (410-440nm) (Panjehpour, Julius et al. 2002; Zeng 

and MacAulay 2003) or shorter (295nm) (Brancaleon, Durkin et al. 2001) wavelengths of excitation 

light to differentiate BCCs from normal skin. 

The group of Tunnel et al. (Rajaram, Aramil et al. 2010) have applied an instrument combining 

diffuse reflectance spectroscopy and fluorescence spectroscopy to the study of non-melanoma skin 

cancers. The diffuse reflectance spectroscopy provided information on blood volume fraction, 

oxygen saturation, blood vessel size, tissue micro-architecture and melanin content and the 

fluorescence spectroscopy used excitation at 337 nm and 445 nm to provide native fluorophore 

contributions of NADH, collagen and FAD. This instrument was used to study non-melanoma skin 

cancer in 48 lesions from 40 patients and demonstrated differentiation of basal cell carcinomas from 

normal skin with a sensitivity and specificity of 94% and 89% respectively (Rajaram, Reichenberg et 

al. 2010). 

Although fluorescence intensity measures were used to distinguish normal from neoplastic skin in 

the studies described above, fluorescence intensity measurements are sensitive to fluctuations in 

excitation intensity, tissue scattering and absorption and are difficult to quantify and compare 

between samples. The spectrally-resolved measurements provided additional information in these 
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studies, but fluorescence emission spectra of many tissue fluorophores are broad and overlap 

significantly (Cubeddu, Pifferi et al. 1999).  

3.2.2 Fluorescence lifetime  

Autofluorescence lifetime measurements provide a further opportunity to contrast different tissue 

fluorophores for different disease states, beyond those provided by fluorescence intensity and 

spectral measures. The following studies have primarily measured fluorescence lifetimes from 

normal skin, skin from diabetics and from BCCs.  

Pitts and Mycek developed a fibre-optic point-probe device able to collect spectrally and temporally 

resolved fluorescence decays and this instrument was applied to measurements of human skin 

autofluorescence in 2001 (Pitts and Mycek 2001). The forearm from a healthy volunteer was excited 

using light from a pulsed nitrogen laser at 337 nm with a repetition rate of 10 Hz and fluorescence 

was collected above 460 nm. Fluorescence decays were fitted using a double exponential decay 

model, which yielded decay components τ,τ and τ2 of 0.938 ns and 5.3 ns respectively from the skin 

surface, which were thought to be compatible with the expected fluorescence decay of collagen. 

In 2006 Katika et al. (Katika, Pilon et al. 2006) used a pulsed LED excitation source at 375 nm and 

collected the fluorescence decays using time correlated single photon counting (TCSPC) in 4 emission 

bands between 442-496 nm. Their aim was to compare differences in the fluorescence lifetime with 

age, sex and skin type. The skin from both palms was recorded from 35 volunteers and various body 

sites were examined in one patient. A tri-exponential decay model was used to analyse the data and 

decay components at 0.4, 2.7 and 9.7 ns were observed with the 442 nm emission filter. Whilst the 

two shorter fluorescence decay components were thought to be due to NAD(P)H, the longest 

component was postulated to arise from advanced glycation end-products, which are described in 

the following paragraph. The authors found no correlation of the fluorescence lifetime with skin 

type, gender or age. 

Advanced glycation end products (AGEs) are the final product of chemical reactions between sugars, 

proteins, lipids and nucleic acids. Although these accumulate naturally with age, the rate increases in 

diabetics. Some AGEs, such as pentosidine, fluoresce and therefore there is the potential that 

fluorescence spectroscopy can be used for non-invasive monitoring of diabetics.  

Blackwell et al. (Blackwell, Katika et al. 2008) used the same fibre-optic probe instrument described 

by Katika et al. above to collect time-resolved fluorescence decays in vivo from the skin with the aim 

to screen for type 2 diabetes. Data was collected from the palms of 38 type 2 diabetic and 37 non 

diabetic patients in vivo and a triple exponential decay model was employed for the fluorescence 
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decay analysis. In normal skin, the decay component lifetimes of 0.5, 2.6 and 9.2 ns were calculated. 

The shorter two decay components were thought consistent with that of protein bound and free 

NADH respectively. No statistical differences in lifetime with age, gender, skin type or between the 

two patient populations were observed. They also made a comparison of the fluorescence decay 

from 18 diabetic patients with foot ulcers (a marker for microvascular disease) versus age-matched 

healthy controls. They showed a change in 1 (477 ps to 510 ps, p = 0.038) and both fractional 

components f1 (0.769 to 0.761, p = 0.012) and f2
 (0.196 to 0.217, p = 0.002). The authors speculated 

that the change was related to differences in the metabolic rate of the tissues, rather than the 

presence of AGEs. 

In 2007 De Beule et al. (De Beule, Dunsby et al. 2007) presented another point-based probe for 

measuring time (4096 time bins)  and spectrally resolved (16 spectral channels) fluorescence decays 

in skin. This instrument was used to measure the fluorescence from freshly excised lesions. Lesions 

were excited at both 355 nm and 435 nm using pulsed laser diodes and fluorescence decays were 

collected using TCSPC and were fitted using a double exponential decay model. The fluorescence 

lifetimes collected using 355 nm excitation showed little contrast between benign and malignant 

skin. However, excitation at 435 nm of basal cell carcinomas (BCCs) yielded a mean fluorescence 

lifetime (τmean) of 2.44 ns vs. 2.96 ns measured for surrounding uninvolved skin. Six samples allowed 

paired lesional and peri-lesional measurements, which showed a decrease in τmean of 620 ps for BCCs 

(p<0.03) using 435 nm excitation. Further spectrally resolved lifetime histograms for SCCs, naevi, 

melanomas and seborrhoeic keratosis were presented but there were insufficient patient numbers 

to support further statistical analysis.  

Thompson et al. (Thompson, Coda et al. 2012) applied similar equipment as De Beule et al. (except 

for the second laser wavelength being changed from 435 nm to 445nm) to measure the fluorescence 

from a number of lesions on the skin in vivo, including 10 BCCs. Consistent with the data collected by 

De Beule et al. from ex vivo samples, excitation at 355 nm did not show a consistent change in 

lifetime between normal skin and BCC. However, once again, when excited at 445 nm, they found 

that the spectrally averaged, intensity weighted τmean were consistently shorter for BCCs than paired 

peri-lesional normal skin (2240 ± 480 ps BCC vs 3130 ± 413 ps normal). This shift of 886 ps was 

statistically significant (p = 0.002) and greater than the average variability found in the surrounding 

normal skin of 175 ps. 

3.3 Wide-field FLIM of skin  
The studies described below have used wide-field FLIM to measure fluorescence images from the 

surface of the skin i.e. spatially resolved fluorescence lifetimes but not depth resolved. This allowed 
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variation in fluorescence lifetimes to be correlated with the clinical appearance of the skin and 

margins of a tumour. 

Galletly et al. (Galletly, McGinty et al. 2008) published work evaluating 25 freshly excised BCCs and 

their margins by collecting FLIM images from the tissue surface. Tissue was excited at 355 nm using a 

frequency tripled mode locked Nd:YVO4 laser with a repetition rate of 80 MHz and fluorescence was 

collected at wavelengths >375 nm and >445 nm using a wide-field time-gated FLIM system. Each 

pixel was defined manually as lesional or peri-lesional normal skin using the reflectance white light 

image and a single exponential decay was fitted to the data. Unlike many previous studies, e.g. 

(Brancaleon, Durkin et al. 2001), no consistent changes were seen in fluorescence intensity between 

normal and lesional skin. A significant difference was found in the fluorescence lifetime between 

BCCs and normal perilesional skin (means of 1.4 ns vs. 1.6 ns respectively, p<0.001). This contrasts to 

the studies discussed above by De Beule et al. (De Beule, Dunsby et al. 2007) and Thompson et al. 

(Thompson, Coda et al. 2012) who found no significant change in autofluorescence lifetime at this 

excitation wavelength. This may be explained by the differences in excitation/collection geometry 

between fibre-optic point-probe and wide-field imaging systems and the differences in detection of 

the wavelength bands employed.  

Wide-field FLIM has also been applied to skin following treatment with photosensitisers. In 1999, 

Cubeddu et al. (Cubeddu, Pifferi et al. 1999) and in 2000 Anderson-Engles et al. (Andersson-Engels, 

Canti et al. 2000) published studies investigating the potential to increase the contrast of 

fluorescence from BCC/SCCs by applying aminolevulinic acid (ALA) topically, which is a precursor to 

the fluorescent protoporphyrin IX and preferentially accumulates in cancerous tissue compared to 

normal tissue.  FLIM of the skin surface was implemented with excitation from a pulsed dye laser 

operating at 405 nm that provided sub-1 ns pulses. Subsequently an in vivo study of 48 lesions in 34 

patients (benign and malignant, mainly BCC) reported that, following application of ALA, tumours 

were found to have a longer lifetime of 18 ns compared to normal skin of 10 ns (Cubeddu, Comelli et 

al. 2002).  

3.4 Multiphoton imaging of normal skin 
The first publication of multiphoton imaging of human skin in vivo was published in 1997 by Masters 

et al. (Masters, So et al. 1997). This work contrasted autofluorescence spectra and lifetimes from 

images taken from two depths in the skin (0-50 μm and 100-150 μm), exciting fluorescence at 

730 nm and 960 nm using a tunable femtosecond pulsed Ti:Sapphire laser. An emission peak at 445-

460 nm consistent with that of NAD(P)H was found to dominate images at both depths when excited 

at 730 nm. When exciting at 960 nm, a spectral peak centred at 520 nm consistent with the emission 
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spectrum of flavins was found. Another peak at 450 nm was also found but its origin was not 

identified. Mean fluorescence lifetimes were calculated for each pixel using frequency domain FLIM 

and values ranging from 0.5 to 3 ns were observed. 

König et al. (Konig 2000; Konig, Wollina et al. 2002; König and Riemann 2003) developed a 

multiphoton tomograph (DermaInspect®, JenLab GmbH) capable of measuring both fluorescence 

intensity and lifetimes in optically sectioned images of skin both ex vivo and in vivo. A tunable 

modelocked Ti:Sapphire laser was used to excite the tissue and imaging with submicron lateral 

spatial resolution and TCSPC FLIM with 250 ps temporal resolution was implemented. In this initial 

work, ex vivo samples from a variety of dermatoses including psoriasis, naevi, a melanoma and 

fungal infection were studied and the forearms of two volunteers were also examined in vivo. The 

fluorescence decays acquired at each pixel were fitted to a double exponential decay model and the 

τmean of cellular autofluorescence was found to be in the range of 1.8-2.4 ns. The DermaInspect® 

instrument was subsequently CE marked for clinical use in vivo and currently remains the only 

commercially available multiphoton imaging device licenced for in vivo imaging of the skin. 

Koehler et al. (Koehler, Vogel et al. 2010) used the DermaInspect® to study epidermal thickness. 

Image depth stacks were acquired from the dorsal forearm and the dorsum of the hand in 30 

volunteers. Skin was excited at 800 nm and 2 spectral channels with filters were used to collect the 

SHG using a 400 nm band pass filter and the second channel collecting autofluorescence between 

410-490 nm. They described an objective method of distinguishing the levels in the skin using the 

number of photon counts per image of the autofluorescence and SHG signals. Using the peak in SHG 

signal to signify the papillary dermis, they used ~9000 images to calculate the epidermal thickness 

from the acquired image depth stacks. The dorsum of the hand was found to have thicker total 

epidermis, cellular epidermis and stratum corneum and higher depths of the papillary dermis than 

the forearm. No thickness differences were found with age. No significant variation was observed in 

the undulations of the dermo-epidermo junction with age.  

The same authors (Koehler, Zimmermann et al. 2011) also present a study of 30 patients with 

normal skin, discussing tissue morphology and quantifying three parameters for two different body 

sites (dorsal forearm and dorsum of the hand) in three age groups (young, mid-aged and old). The 

parameters investigated were the number of papillae per square millimetre, (in the stratum 

granulosum) the mean number of keratinocytes per unit area and the mean nuclear area. The total 

number of papillae was found to be significantly decreased in the old group compared with the 

young and keratinocytes were found to be smaller from the dorsum of the hand compared with the 

dorsal forearm. They also defined MPT features for distinguishing the layers in the epidermis (see 
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figure 3.1). They defined the s.granulosum as consisting of relatively large cells with a dark nucleus 

and a granular cytoplasm with a strong fluorescence signal. The dark inter-cellular spaces in this 

layer appeared wider compared with the s.spinosum. The s.spinosum has small cells and the 

cytoplasm is more homogenous than the s.granulosum. The basal layer appears as a lattice of 

densely packed small, round, homogenously fluorescing cells, resulting in a ‘cobblestone’ pattern. 

The bright cytoplasmic fluorescence is from melanin and the lack of a visible nucleus in some cells is 

caused by the vertical orientation of the basal cells because of the basal position of the nucleus 

within the cell. In some sections, the cobblestone pattern is interrupted by round structures which 

correspond to the apices of the dermal papillae. 

 

Figure 3.1. MPT images taken from different layers in the epidermis of normal skin. Reproduced from Koehler et 

al.(Koehler, Zimmermann et al. 2011) 

3.4.1 Spectrally resolved MPM 

This section includes studies that use MPM to acquire depth resolved images from the skin that are 

spectrally resolved. 

Early spectrally resolved multiphoton imaging of the dermal layer of ex vivo human skin was carried 

out by Buehler et al. (Buehler, Kim et al. 2005) using a 16 channel multi-anode photomultiplier tube. 

It allowed the emission spectra from collagen-rich and elastin-rich regions of the image to be 

compared. 

Laiho et al. (Laiho, Pelet et al. 2005) imaged 5 samples of normal skin that had been stored at -3C 

before use. Each sample was excited at 730, 780 and 830 nm using a tunable modelocked 

Ti:Sapphire laser and the fluorescence was detected in 10 spectral channels between 375 nm and 

600 nm using a filter wheel. The spatially and spectrally resolved images were collected at 5 µm 

intervals in depth throughout the sample. The spatially integrated emission spectrum from the 

whole sample correlated well with those taken from 4 specific depths. Within the emission spectra 

obtained from exciting the skin at 3 wavelengths they identified consistent peaks at 475 nm and 550 

nm which were thought to be consistent with NAD(P)H and melanin respectively. Fluorescence 
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lifetime measurements were also undertaken using TCSPC (64 time bins) for which the decay profile 

from each pixel was fitted to a double exponential decay model.  This allowed second harmonic 

generation (SHG) in collagen to be distinguished from elastin autofluorescence in images taken from 

the dermis. 

Pena et al. (Pena, Strupler et al. 2005) investigated autofluorescence from keratin using single- and 

two-photon microscopy and spectroscopy. They presented multiphoton imaging of autofluorescence 

and SHG from fixed sectioned normal human skin excited at 860 nm and their spectral analysis of 

autofluorescence indicated that keratin and elastin spectra are similar (with spectral peaks at 

477 nm and 471 nm respectively when excited at 760 nm). 

Chen et al. (Chen, Zhuo et al. 2006) performed multiphoton imaging with a modelocked Ti:Sapphire 

laser excitation source and a 32 channel hyperspectral detector. Emission spectra of both epidermis 

and dermis were recorded using two-photon excitation wavelengths in the range 790-830 nm. They 

observed that the spectral peak for the epidermis shifted towards longer wavelengths and the 

fluorescence intensity decreased with excitation wavelength. They also found the maximum SHG 

signal from dermis was obtained using 800 nm excitation. Zhuo et al. (Zhuo, Chen et al. 2006) used 

the same instrument to study spectrally resolved images of dermis of fresh frozen human skin and 

were able to identify dermal components such as collagen and elastin with high spatial and spectral 

contrast. 

The group of Gerritsen presented spectrally resolved multiphoton imaging of mouse skin in vivo 

using a prism-based spectrometer readout by a high speed EMCCD camera providing 100 spectral 

channels over the range 350-600 nm (Palero, de Bruijn et al. 2006; Palero, Latouche et al. 2008). 

Images were acquired using an excitation wavelength of 760 nm and images were converted into a 

RGB scale for real-colour visualisation. The authors performed a detailed analysis of the spectral 

signatures of mouse skin (Palero, de Bruijn et al. 2007) and determined the relative contributions 

and emission spectra of keratin, melanin, NAD(P)H, flavins, collagen and elastin. Subsequent work 

included a study of the effect of ischemia on the emission spectrum of NAD(P)H (Palero, Bader et al. 

2011) and of the two-photon excited emission spectra of human skin in vivo (Bader, Pena et al. 

2011). The images of normal skin from 2 people with different skin types clearly demonstrated the 

high spatial resolution of the system and its ability to distinguish collagen, elastin, NAD(P)H/FAD and 

melanin based on spectra alone. 

Subsequently, a prism-based spectrometer incorporating a fibre-bundle spot-to-line converter was 

incorporated into a DermaInspect®-based instrument and used to acquire spectrally resolved images 



 

73 
 

of human skin ex vivo from a suspected nodular BCC with excitation at 760 nm and 840 nm (Talbot, 

Patalay et al. 2011). 

Breunig et al. (Breunig, Studier et al. 2010) used the DermaInspect® to characterise the influence of 

the excitation wavelength on the fluorescence emission intensity from various depths within normal 

skin in vivo. As found by Chen et al. above, intracellular autofluorescence reduces whilst collagen 

SHG signal increases in intensity as the excitation wavelength was increased from 720 – 880 nm and 

the authors discussed the optimum excitation wavelength for each of the fluorescent species 

investigated. They concluded that the spectral contribution of each fluorophore changed with 

excitation wavelength, which contributed to the differences in fluorescence intensity seen. They also 

found a corresponding change in the calculated fluorescence lifetimes for a field of view in the 

papillary dermis with excitation wavelength resulting from this change in contribution. 

3.4.2 Lifetime resolved MPM 

The studies outlined below focus on lifetime resolved images from normal skin. In addition, the 

study discussed immediately above by Breunig et al. investigated both spectrally and lifetime 

resolved images.  

Sugata et al. (Sugata, Sakai et al. 2010) applied the DermaInspect® to evaluate the fluorescence 

lifetime of melanin within normal skin in vivo and compared it to melanin found in the hair bulb and 

from melanocytic 3D cell cultures. Ultrafast excitation pulses at 760 and 800 nm were employed and 

fluorescence decays collected using TCSPC were fitted to a double exponential decay model. 

Fluorescence lifetimes in the basal epidermal layer of 1 = 132 ps and 2 = 1762 ps were obtained 

using 760 nm excitation. The authors concluded that, for all samples, the short 1 component was 

dominated by melanin fluorescence and while the longer 2 component mainly represented other 

fluorophores. The authors then fixed the lifetimes of the two decay components (to 120 and 

1100 ps) in the fitting software and used the resulting ratio maps of the amplitude of the short and 

long fluorescence decay components (a1/a2) to produce maps of melanin concentration.  

Benati et al. (Benati, Bellini et al. 2011) have published a comprehensive in vivo study of the 

fluorescence lifetimes from normal skin using  multiphoton imaging. 49 patients in total from 2 age 

groups had images taken from different body sites and depths. A DermaInspect® was used with 

760 nm excitation and fluorescence decays were collected using TCSPC and fitted using a single 

exponential decay model to estimate the mean fluorescence lifetime. The fluorescence lifetimes in 

the skin were found to vary with body site, to increase with age and shorten with tissue depth. The 

shorter lifetimes lower in the skin were partially attributable to the higher melanin content in the 
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basal layers of the skin. A more detailed summary of this paper can be found in discussion sections 

of Chapter 6.5 (pp146) & 6.6 (pp155) 

In 2011, Sanchez et al. (Sanchez, Prow et al. 2010) outlined the effect of excision, temperature and 

the use of culture media on the autofluorescence from NAD(P)H in freshly excised human skin. A 

detailed discussion of this paper and that of Palero et al. whom also examined the effects of 

ischaemia on mouse skin using spectrally resolved images (Palero, Bader et al. 2011), can be found in 

the Chapter 5.2.1 (pp115). 

A number of further studies of diseased tissue have studied normal tissue as part of the 

investigation. Therefore, to avoid repetition, these papers are discussed in sections below covering 

diseased tissue. 

3.4.3 MPM of skin to study the effects of aging 

The SHG signal to autofluorescence (AF) aging index of dermis (SAAID) has been defined as  

SAAID = (SHG-AF)/(SHG+AF), which provides a useful numerical index to assess the age of skin using 

multiphoton imaging (Lin, Wu et al. 2005). Lin et al. (Lin, Wu et al. 2005) investigated 3 samples of 

vertically sectioned, formalin fixed sections of facial skin from patient of differing ages. Multiphoton 

images were obtained exciting the tissue at 760 nm and collecting the fluorescence from areas in the 

superficial dermis at 380 nm for SHG and >435 nm for autofluorescence. The SAAID was found to 

decrease with age to -0.93 in a 70 year old patient and correlated with an increase in elastin in the 

dermis in the form of solar elastosis and decrease in SHG signal from collagen causing an increase in 

the collagen:elastin ratio.  

Koehler et al. (Koehler, König et al. 2006) looked at the skin from the inside forearm from 18 

volunteers in vivo. The skin was excited at 820 nm with the SHG collected at 410 nm and 

autofluorescence collected above 470 nm. Five fields of view were acquired from each patient from 

the upper dermis and the SAAID was calculated for each pixel. The results showed that SAAID 

generally reduced with age (linear regression R2=0.57) but there was large inter-patient variability. 

This drop was greater for women (R2=0.89) compared with men (R2=0.68). In subsequent work, the 

same group (Koehler, Hahn et al. 2008) assessed quantitatively the dermal matrix composition and 

showed characteristic changes with aging. In methodology identical to their 2006 study, 18 

volunteers had the inside of their forearm imaged using the DermaInspect® and 5 images were 

acquired from the upper dermis. The dermis was evaluated using a multiphoton imaging-based 

dermis morphology score (MDMS). Images were evaluated for 8 parameters in the following 

categories – fibre spread and fibre aspect, network pattern and image homogeneity (SHG images 

only), clot formation (autofluorescence images only). A single MDMS score was calculated, which 
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correlated strongly (linear regression R2=-0.9) with age, less strongly with SAAID (R2=0.66) and did 

not show gender specific differences.  

In 2009 Koehler et al. looked at the skin of 60 healthy volunteers including the young, old and 

women using tanning salons (Koehler, Preller et al. 2009). The skin elasticity was measured using 

both mechanical methods and SAAID. The skin was excited at 800 nm from the volar and dorsal 

aspect of the forearm and SHG was collected at 400 nm and fluorescence collected from 410-

490 nm. 16 regions at approximately 180 µm below the stratum granulosum were measured and 

averaged for each patient. The authors found that older patients had lower SAAID scores. Sun 

exposed areas had a lower SAAID (significant in old men, old women and young women using 

tanning but not in young men and young women). Mechanical measurements of skin elasticity 

(cutometry) indicated loss of elasticity with age and a higher elasticity on the outside forearm than 

the inside was found in all groups. The procedures used in this study reduced the intra- and inter-

patient variability compared to the 2006 and 2008 studies and this study confirmed that SAAID 

decreased with age in a larger sample size. The authors found a lower SAAID in sun exposed dorsal 

forearm compared to the sun-protected volar forearm in the old and in young women using tanning 

salons, but were not able to detect any damage done by tanning beds.  

Kaatz et al. examined the influence of depth and epidermal thickness on the SAAID index (Kaatz, 

Sturm et al. 2010). The forearms of 30 healthy volunteers divided into 3 age groups were examined 

in vivo. Skin was excited at 800 nm using a DermaInspect® and SHG was collected at 400 nm and 

autofluorescence at 410-490 nm. The fluorescence intensities from the images were then analysed 

based on changes in the autofluorescence and SHG intensity with depth. The maximum penetration 

depth was found to be 130-180 µm based on the plateau in the autofluorescence and SHG 

intensities below this depth and the authors determined the papillary dermis was reached at 

91±16 µm. The position of the basal layer and the presence of solar elastosis in older patients could 

be seen through small peaks in the plots of tissue autofluorescence intensities as a function of 

depth. A sharper decline in the SHG signal after the dermis was reached was found in the elderly 

compared to the young. The SHG peak in the upper dermis was due to the high content of fibrillar 

collagen (types I and III). The most significant differences between ages were found in the SAAID 

index when a constant depth below the surface was assessed (below the SHG peak and above the 

penetration depth) e.g. 150 µm. 

Koehler et al. looked at the variation of tissue autofluorescence lifetimes using TCSPC from the 

dermis with age, sex and body site (Koehler, Preller et al. 2011). They used the DermaInspect® to 

excite both the medial and lateral forearms of 47 volunteers at 800 nm wavelength. 
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Autofluorescence was collected from 16 fields of view using a 450±40 band pass filter. Due to the 

low photon counts per pixel, fluorescence was summed for each image at each time point and bi-

exponential decays were fitted to the data to find τ1 and τ2. They found the mean of τ1 to be 

between 700-1000 ps and τ2 to be between 3475 – 3600 ps. They found no variation between the 

sexes and no consistent variation with body site. They did however find that the fluorescence 

lifetimes in the dermis increased with age, which is consistent with the findings by Benati et al. of 

the changes in fluorescence lifetime of the epidermis with age (Benati, Bellini et al. 2011). They 

attributed this change to the replacement of collagen and elastin in the dermis with the 

accumulation of solar elastosis. 

Puschmann et al. attempted to refine the SAAID index to quantify aging of the skin and described 

the elastin to collagen ratio (ELCOR) (Puschmann, Rahn et al. 2012). They used the DermaInspect® to 

acquire images from normal skin in vivo from 45 women to assess aging and 12 to assess 

photodamage. The skin was excited at 820 nm and collected at 410 nm for collagen SHG, and excited 

at 750 nm and collected between 548±150 nm for elastin autofluorescence. Although both methods 

measure SHG to determine dermal collagen, the ELCOR uses a manually defined mask to remove 

autofluorescence from other dermal structures before calculating the ratio. This index showed a 

progressive statistically significant increase with age and a statistically significant increase for sun-

exposed (temple) body sites compared to photo-protected sites (upper arm). In contrast the 

sensitivity of the SAAID index was only sufficient to detect a statistically significant difference 

between the young/middle aged groups and the elderly age groups’ skin. 

3.5 MPM in non-melanoma skin cancer 
In one of the first studies of skin cancer using multiphoton imaging (Lin, Jee et al. 2006) 

autofluorescence intensity images were collected from 9 fixed, sectioned slices from BCCs. Serially 

acquired images were montaged together to generate an autofluorescence image covering a large 

area crossing tumour margins and this was presented with an exact correlative histopathological 

image. The SHG from dermal collagen was spectrally filtered from the emitted fluorescence and the 

authors used an index of multiphoton-excited autofluorescence to SHG (MFSI, equivalent to the 

negative of the SAAID index, see section 3.4.3) to distinguish cancer cells/stroma from normal 

dermis in BCCs. The authors found that the MFSI ratio was greatest within the tumour, lower in 

cancer stroma and lowest in normal dermal stroma and could be used to identify the tumour. 

Paoli et al (2008) published a study of the morphological features observed in multiphoton-excited 

autofluorescence intensity images. 14 freshly excised specimens of non-melanoma skin cancer – 

including squamous cell carcinoma in situ, superficial BCCs and nodular BCCs – were imaged using 
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780 nm excitation. They looked for the presence of 8 features in squamous cell carcinoma in situ 

(bowenoid dysplasia, multinucleated cells, widened intercellular spaces, hyperkeratosis, keratin 

pearls, dyskeratosis, loss of cell polarity and speckled perinuclear fluorescence) and 5 features in 

superficial BCCs (hyperkeratosis, thickened subcorneal epidermis, elongated cells and nuclei 

polarisation, peripheral palisading and speckled perinuclear fluorescence). Their study confirmed 

that many of the established histopathological features could be seen using the en face multiphoton 

imaging although image features characteristic of disease were only found in one of three nodular 

BCCs due to the limited penetration depth.  

The group of Pavone has applied en face multiphoton imaging and FLIM to assess freshly excised 

BCCs (Cicchi, Massi et al. 2007; Cicchi, Sestini et al. 2008; De Giorgi, Massi et al. 2009). Using 

autofluorescence excitation at 740 nm and SHG imaging at 840 nm, they presented examples of the 

morphological features seen in multiphoton imaging images of BCCs and compared them directly to 

correlative histology. The SAAID index (see section 3.4.3) was used to distinguish BCC tumours 

(negative index), stromal interface (marginally positive index) and the dermis (negative index). The 

autofluorescence emission spectrum of 4 BCCs was studied and found to be shifted towards the blue 

for BCC compared to normal skin (shift in fluorescence to <525 nm) with this shift being greatest for 

depths in the range 30-50 µm. They also studied fluorescence lifetime histograms obtained from 

FLIM images acquired at different depths and found the fluorescence lifetime to be longer for BCC 

compared to normal skin tissue for most depths with a peak difference of +91 ps at 30 µm depth. 

Our group, Patalay et al. (Patalay, Talbot et al. 2011) evaluated BCCs ex vivo using a DermaInspect® 

to acquired FLIM data in two emission spectral channels (300-500 nm & 500-640 nm) prior to the 

investigation described in this thesis. Whole excised, fresh tissue samples were imaged using 

excitation at 760 nm. Each cell in every image was identified manually and all pixels within each 

region of interest (ROI) summed to provide a single fluorescence decay per cell. This approach 

increased the number of photons available in order to fit a double exponential decay model to the 

data. In total, fluorescence decays from 615 cells from 3 nodular BCCs and 566 cells from 4 naevi 

were defined and fitted. The mean fluorescence lifetimes for naevi vs nBCC were calculated as 2516 

vs 2786 ps (<500 nm channel) and 1334 vs 2085 ps (>500 nm channel). Shorter fluorescence 

lifetimes were observed in both spectral channels for naevi and this was attributed to the increased 

melanin content in the naevi. Fitting fluorescence decays on a cell-by-cell basis allowed populations 

of naevi cells to be contrasted with nBCC via their lifetime and it was suggested that the variation in 

the melanin content in cells could be responsible for the lifetime histograms obtained. This study 

also indicated a large inter-patient variability in fluorescence lifetimes of skin lesions.  
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Seidenari et al. (Seidenari, Arginelli et al. 2013) investigated a range of morphological image 

descriptors – building on those identified by Paoli et al. (Paoli, Smedh et al. 2008) – with the aim to 

optimise the differentiation of BCC from normal skin using multiphoton imaging . Initially, training 

image stacks acquired at 10 depths from one field of view per sample were acquired ex vivo, imaging 

24 BCCs and 24 samples of normal skin. These multiphoton imaging stacks were used to identify 9 

morphological criteria/descriptors. Figure 3.2(a,b) illustrate the 3 epidermal descriptors and (c)-(h) 

illustrate the remaining dermal descriptors. 

In the main study, image stacks from a further 66 BCCs, 66 other lesions (23 nevi, 8 melanomas, 17 

skin tumours and 18 other skin lesions) and 66 normal regions of skin were acquired. The resulting 

images were then assessed by three independent observers who assessed each sample for the 

presence or absence of each descriptor. The mean number of descriptors per lesion was 2.64 for 

BCCs, 0.17 in other lesions and 0 for normal skin. The presence of ‘Aligned elongated cells’ was 

found in 73% of BCCs but in only 5% of other lesions. An overall sensitivity/specificity of 95/89% was 

achieved when using the presence of one or more BCC descriptor(s) as the diagnostic criterion, 

whereas 83/95% was obtained when using the presence of two or more descriptors. These results 

indicate the potential utility of multiphoton imaging as a diagnostic tool.  

Figure 3.2.Morphological criteria/descriptors for defining BCCs from MPT images defined by Seidenari et al. (a) detached 

cells with increased intercellular spaces (b) cells with irregular contours & random arrangement of cells (c) Elongated cells 

aligned along a single axis (d) cells aligned in two directions.(e) Palisading i.e. cells at the periphery of a BCC nest aligning 

perpendicularly to the surrounding dermis. (f) BCC nodule (asterix) surrounded by fibres (arrow) (g) sheets of cells 

intermingled with fibres. (h)BCCs cells are not seen when excited at 800 nm causing the appearance of ‘phantom cells’. 

Images (a)-(g) Excited at 760 nm, (h) excited at 800 nm. Reproduced from Seidenari et al. (Seidenari, Arginelli et al. 2013). 



 

79 
 

Seidenari et al. extended this approach to the combination of multiphoton intensity imaging and 

FLIM for the diagnosis of BCC, distinguishing them from a range of other skin lesions (Seidenari, 

Arginelli et al. 2012). A preliminary study of 35 BCCs and 35 healthy skin samples were imaged and 

morphological descriptors were identified using the resulting FLIM images. In the main study 63 

BCCs, 66 other skin lesions (24 nevi, 8 melanomas, 15 inflammatory lesions and 19 skin tumours) and 

63 samples of healthy skin were imaged and the presence or absence of each descriptor assessed by 

three independent observers. 15 FLIM images were acquired at different depths for each sample 

using an excitation wavelength of 760 nm. Cells with a longer fluorescence lifetime were always 

observed for BCCs and this descriptor provided the highest sensitivity/specificity (100/70%) of all of 

the descriptors investigated. The mean fluorescence lifetime values, calculated on three 

representative cells in the lower layers of each of the 98 (preliminary and main study samples 

combined) healthy skin lesions and each of the 98 BCC lesions were found to be 1012 ps and 1475 ps 

respectively (a significant difference at p < 0.001)i.e. longer and  in agreement with earlier work on a 

smaller number of samples (Cicchi, Sestini et al. 2008). The mean number of BCC descriptors per 

lesion was higher in BCC (3.86 ± 1.45) compared to miscellaneous lesions (0.54 ± 0.86). The presence 

of at least one BCC descriptor was observed in all BCCs but only in 36% of other skin samples. An 

overall sensitivity for the diagnosis of BCC from other lesions and healthy skin of 97% was achieved 

when the diagnostic criterion was chosen to be the presence of two or more descriptors and this 

produced no false positives, either in other lesions or healthy skin. A specificity of 100% was 

obtained when considering the presence of five descriptors or more.  

Seidenari’s group then compared the morphological features seen in images from 16 BCCs acquired 

in vivo using reflectance confocal light microscopy to MPT FLIM images from the same lesion 

acquired ex vivo using the DermaInspect®(Manfredini, Arginelli et al. 2013). They concluded that 

there was a good concordance of morphological features between both modalities but found 

limitations in their ability to compare images directly due to the difference in field of view size 

between them. 

3.6 Multiphoton spectroscopy and imaging of pigmented lesions 
Teuchner et al. presented emission spectra and fluorescence lifetime measurements of synthetic 

melanin and melanin in ex vivo specimens of normal human skin (Teuchner, Freyer et al. 1999) 

reporting a complex fluorescence decay profile with a dominant short decay component at about 

200 ps. Melanin excitation can also occur via a stepwise multiphoton excitation (Teuchner, Freyer et 

al. 1999), which allows for preferential excitation of melanin, particularly when using longer 

(nanosecond) NIR excitation pulses (Eichhorn, Wessler et al. 2009). In subsequent work, Teuchner et 

al. (Teuchner, Ehlert et al. 2000) studied the emission spectra of normal skin, naevi and melanoma 
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and noted a shift in the peak of the fluorescence emission spectrum of the melanoma sample 

(~550 nm) compared to naevi (~520 nm) and normal skin (~500 nm). The same group observed the 

same trends in a larger study of 10 specimens in each of the three lesion types (Hoffmann, Stucker et 

al. 2001).  

Eichhorn et al. (Eichhorn, Wessler et al. 2009) exploited selective excitation of melanin using 2.5 ns 

excitation pulses at a wavelength of 810 nm to study the fluorescence emission spectra of melanin in 

formalin fixed paraffin embedded samples. A total of 27 lesions were studied, including 9 malignant 

melanomas. For common and junctional naevi, spectral emission peaks of ~480 and ~490 nm were 

observed respectively. For malignant melanoma, the autofluorescence was characterised by a peak 

at ~600 nm. A dysplastic compound naevus exhibited both peaks. Similar spectra were observed for 

a fresh unfixed specimen of malignant melanoma. These results were confirmed in a more detailed 

subsequent study by Leupold et al.(Leupold, Scholz et al. 2011), where the authors measured the 

emission spectra of 167 cases of naevi and melanomas. Melanoma gave a characteristic emission 

peak at 640 nm with common melanocytic naevi presenting a peak at 590 nm. This difference was 

thought to be due to changes in the ratio of eumelanin to pheomelanin. For each sample the 

emission spectrum was acquired for an array of 129 positions on the surface of the specimen that 

were spaced laterally in steps of 50 µm. The fluorescence signal at each point was compared in two 

bands (483-520 nm and 585-620 nm) in order to classify the measurement as benign or malignant. 

Overall, this study reported a sensitivity, specificity and diagnostic accuracy of 94, 80 and 83% 

respectively for distinguishing malignant melanoma from naevi.  

Ehlers et al. (Ehlers, Riemann et al. 2007) used a DermaInspect® to investigate the fluorescence 

lifetime of human hair, which is rich in melanin. Fluorescence lifetime analysis of hair of different 

colours revealed differences in the lifetime between blond (0.4, 2.2ns) and black hair (0.2, 1.3ns) and 

these lifetimes were compared to pure melanin and melanin measured in vivo from a mole. When a 

fast multichannel plate photomultiplier tube providing a 24 ps response time was used to detect the 

fluorescence decays, eumelanin in black hair (0.03, 0.8ns) could be distinguished from pheomelanin 

in red/blonde hair (0.34, 2.3ns) and white hair (0.3, 2.1ns).  

Cicchi et al. (Cicchi, Sestini et al. 2008; De Giorgi, Massi et al. 2009) applied spectrally resolved 

multiphoton imaging and FLIM to study 2 melanoma specimens with excitation at 740 nm. 

Melanomas were found to have a shorter fluorescence lifetime than normal skin and BCCs but were 

not compared to other pigmented lesions. Spectral analysis showed a reduction in fluorescence 

intensity below 520 nm for melanoma compared to normal skin. However, the shift towards longer 
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emission wavelengths for melanoma compared to normal skin reported by Teuchner et al. 

(Teuchner, Ehlert et al. 2000) was not seen.  

Dimitrow et al. applied the DermaInspect® to study pigmented lesions. In their first study (Dimitrow, 

Ziemer et al. 2009), they initially studied 15 ex vivo specimens (healthy skin, melanocytic lesions and 

melanoma) using multiphoton imaging with excitation at 760 nm and identified 6 morphological 

features to distinguish melanomas from naevi. A further 83 lesions (42 both in and ex vivo, 11 only in 

vivo and 30 only ex vivo) were then imaged and the data assessed by four independent observers for 

the occurrence of each feature. The feature of ‘large intercellular distance’ provided the greatest 

sensitivity of 80% and ‘dendritic cells’ provided the greatest specificity of 96% (when considering all 

lesions). Binary logistic regression showed that the features of ‘architectural disarray’, ‘poorly 

defined keratinocyte cell borders’, ‘pleomorphic cells’, and ‘dendritic cells’ should also be included in 

diagnostic decisions, which yielded an overall diagnostic accuracy of 85/97% for analysis of images 

acquired in/ex vivo. MPT images of these features have been reproduced in figure 3.3 below. 

 

Figure 3.3. MPT features seen in melanomas (a) Ascending highly fluorescent melanocytes (white arrows) appear within 

the upper epidermal layers. (b) Large intercellular distance and poorly defined keratinocyte cell borders. (c,d) Cell 

fragments, pleomorphic cells (asterisk) and dendritic structures (white arrows) in the s.spinosum. Scale bar: 40 mm. 

Reprinted by permission from Macmillan Publishers Ltd: Journal of Investigative Dermatology 129(7): 1752-1758.Copyright 

(2009), (Dimitrow, Ziemer et al. 2009). 

In a second study (Dimitrow, Riemann et al. 2009) Dimitrow et al. examined 13 naevi and 10 

melanomas, mostly from ex vivo samples. In this study they found that multiphoton excitation at 
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800 nm enhanced many of the morphological features in the intensity images associated with 

melanoma, compared to excitation at 760 nm. Fluorescence lifetimes were calculated for a total of 

84 manually selected pixels of the cytoplasm from either keratinocytes or melanocytes and a bi-

exponential decay model was fitted to the data. The authors found that both the short/long decay 

components were shorter for melanocytes than keratinocytes (140/1076 ps vs. 445/2269 ps 

respectively) and that melanocytes had a more dominant short lifetime component than 

keratinocytes (93%/7% and 76%/24% respectively). The differences in the fluorescence decay 

parameters between the two cell populations were attributed to a dominant NAD(P)H fluorescence 

in keratinocytes and a dominant melanin fluorescence in melanocytes. The observed fluorescence 

lifetimes were able to distinguish keratinocytes from melanocytes but not naevi from melanomas. 

The authors also investigated the fluorescence emission spectrum of 4 lesions (two of normal skin, 

one naevus and one melanoma) and found a peak at 550 nm occurring in the melanoma sample, but 

not the naevus or normal skin. This peak was more pronounced when exciting at 800 nm compared 

to 760 nm. 

Arginelli et al. performed a comparison of MPT FLIM images acquired ex vivo from 51 melanocytic 

naevi and compared them to 51 miscellaneous lesions with the aim to define diagnostic 

morphological features for melanocytic naevi (Arginelli, Manfredini et al. 2012). The miscellaneous 

lesions consisted of a wide variety of lesions including pigmented and non-pigmented diagnoses e.g. 

BCCs, SCCs, dermatofibroma, actinic keratosis and seborrhoeic keratosis. Initially images taken from 

16 naevi ex vivo were used to define a number of morphological features. Their presence was then 

assessed blinded on the images acquired ex vivo from the 102 lesions. They determined that ‘small 

short-lifetime cells’ in the upper and lower epidermal layers, ‘edged papillae’, ‘junctional nests of 

short-lifetime cells’ and ‘dermal cell clusters’ as 5 sensitive and specific descriptors for diagnosing 

benign naevi, see figure 3.4. They also confirmed the presence of the descriptors for benign naevi 

defined by Dimitrow et al. of monomorphic cells with regular histo-architecture, evenly distributed 

keratinocytes, well defined cell borders and rarely seen dendritic cells (Dimitrow, Ziemer et al. 2009). 
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Figure 3.4. MPT FLIM images taken from benign naevi illustrating morphological descriptors for naevi defined by Arginelli 

et al. (a) Small cells with short lifetimes in the upper epidermis; acquired at 760 nm excitation wavelength. (b) Small cells 

with short lifetimes in the lower epidermis; acquired at 760 nm excitation wavelength. (c) ‘edged papillae’ constituted by  a 

rim of short lifetime cells surrounding an oval space with collagen fibres; acquired at 800 nm excitation wavelength. 

(d)Junctional nest of short lifetime cells at the dermo-epidermal junction. acquired at 760 nm excitation wavelength. 

(e)’Dermal cell clusters’ in the papillary dermis; acquired at 820 nm excitation wavelength. Reproduced from (Arginelli, 

Manfredini et al. 2012). 

3.7 Multiphoton imaging of other skin diseases 

3.7.1 Actinic keratosis 

Keohler et al. (Koehler, Zimmermann et al. 2011) performed an in vivo study using the 

DermaInspect® to compare normal skin from 30 patients with actinic keratosis (AK) from 27 patients. 

The skin was excited at 760 nm and 820 nm for autofluorescence intensity (470 nm long-pass filter) 

and SHG imaging respectively. The authors observed wider inter-cellular spaces and the presence of 

a fluorescence perinuclear rim for AK. A number of cellular size parameters were compared, but only 

the nuclear to keratinocyte size ratio was deemed significantly different with AK. They also found an 

increase in the SAAID index with AK. In addition they observed increased thicknesses of the total and 

viable epidermis consistent with epidermal acanthosis seen histologically. 

3.7.2 Atopic dermatitis 

Huck et al. (Huck, Gorzelanny et al. 2010) presented results comparing the changes in 

autofluorescence intensity images and lifetimes seen with the inflammatory dermatosis ‘atopic 

dermatitis’ compared with normal skin in vivo using a DermaInspect® with an excitation wavelength 
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of 710 nm. In three patients with control, mild and severe atopic dermatitis, they found that the 

peak mean lifetime lengthened from ~1150 to ~1300 to ~1500 ps respectively. In addition, non-

lesional skin in atopic dermatitis patients was found to have a longer mean lifetime than patients 

with normal skin (Huck, Gorzelanny et al. 2011).  

3.7.3 Psoriasis 

Pavone’s group, based in Florence have used MPM to acquire images from the skin from patients 

with psoriasis in vivo (Kapsokalyvas, Cicchi et al. 2011; Kapsokalyvas, Cicchi et al. 2011). They noted 

an abnormal epidermis, smaller cells than normal in the s.spinosum and were able to detect the 

longer and larger dermal papilla, which is histologically characteristic of the disease. 

In a review paper Roberts et al. also present FLIM images from the skin from patients with psoriasis 

but do not perform any analysis on them (Roberts, Dancik et al. 2011) 

3.7.4 Scleroderma 

Lu et al. (Lu, Chen et al. 2009) studied sclerodermatous skin ex vivo using frozen vertically sectioned 

tissue. Three samples from scleroderma patients and two from normal skin were imaged with 

multiphoton excitation at 810 nm, with SHG detected between 393-414 nm and autofluorescence 

between 430-650 nm. Intensity images from the dermis were analysed and general morphological 

differences were discussed. The net orientation of collagen bundles was assessed via the fast Fourier 

transform of the images and found to be higher in scleroderma compared to normal skin. In 

addition, the spacing of collagen fibrils and the epidermal thickness was found to be reduced in 

scleroderma. The SHG/autofluorescence ratio (similar to the SAAID index) was found to be increased 

in the lower dermis in scleroderma patients.  

3.7.5 Scarring 

Scarring of the skin occurs after full thickness epidermal injury and repair of the skin by the 

fibroblasts in the dermis. In some individuals this process becomes overactive and leads to the 

formation of raised hypertrophic scars or, if larger, keloid scars.  

In 2004, Brewer compared multiphoton excited image depth stacks of an excised keloid scar with 

normal skin (Brewer, Yeh et al. 2004). In 2008 Cicchi et al. (Cicchi, Sestini et al. 2008) acquired 5 

images for each of four different regions in one keloid specimen, showing that regions of fibroblastic 

proliferation and keloid demonstrated a strongly positive SAAID index compared to normal tissue.   

Chen et al. (Chen, Chen et al. 2009) applied multiphoton imaging with 32 spectral channel detection 

to acquire multispectral image depth stacks from 5 hypertrophic scars and 1 sample of normal skin 

in frozen sectioned tissue excited at 850 nm. They recorded the SHG between 414-436 nm and 
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elastin autofluorescence between 457-714 nm, and presented the morphological features of the 

collagen and elastin fibres in normal and scar tissue. Their further work examined frozen sections 

from 5 freshly excised keloids. Tissue sections were excited at 810 nm and SHG was collected 

between 398-409 nm and elastin autofluorescence between 430-697 nm. In this paper they 

quantified the increase in collagen throughout the entire dermis of a keloid compared to normal skin 

and also measured an increase in elastin confined to the deep dermis (Chen, Zhuo et al. 2011). 

Zhu et al. constructed mosaics of MPM images to assess scar margins from 15 normal scars on the 

abdomen of various ages using freshly frozen, sectioned samples of the scars (Zhu, Zhuo et al. 2011). 

The tissue was excited at 810 nm and fluorescence collected at 405 nm for collagen SHG and 430-

697 nm for elastin autofluorescence. They were able to delineate scar margins based on the change 

in collagen and elastin morphology and signal. They also found a significant negative correlation with 

scar age/patient age and collagen/elastin content in the scar. i.e. the increased collagen and elastin 

found in fresh scars reduced with time. The sample was too small to conclude if this difference was 

caused by patient’s age or the age of the scar. 

3.8 Combining MPM with other modalities 
MPM has for the first time allowed sub-cellular resolution depth resolved images to be acquired 

from skin in vivo. One deficiency of this modality is its limited depth of penetration in comparison to 

other non-invasive imaging modalities (which have poorer image resolutions). In recent years 

imaging with combined modalities has been reported with the aim to allow them to be used 

synergistically in the future. For example, MPM has been combined/compared with optical 

coherence tomography (König, Speicher et al. 2009), high frequency ultrasound (König, Speicher et 

al. 2010), reflectance confocal laser microscopy (Koehler, Speicher et al. 2011; Ulrich, Klemp et al. 

2013) and epi-coherent anti-Stokes Raman scattering (CARS) (Breunig, Bückle et al. 2011) which 

images intercellular lipids and water. 

3.9 Conclusions 
Autofluorescence provides a rich range of contrast parameters for studying diseased human skin. 

These fluorescence signals have been investigated using a range of instrumentation including single-

point fibre probes, wide-field imaging with single photon excitation and multiphoton imaging. 

Autofluorescence intensity can be complemented by measurements using multiple excitation 

wavelengths, multiple emission detection bands and measurements of fluorescence lifetime. This 

chapter aimed to summarise the key papers studying autofluorescence in the skin, focusing on 

multiphoton microscopy of both normal skin and skin malignancies. 
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Chapter 4. Materials, Methods & Analysis 

4.1 Introduction 

This chapter describes the details of patient recruitment and associated ethics approval, the 

instrumentation and its development, the imaging protocols, and the methods used for image 

analysis. 

4.2 Patients 

Patients were recruited from those attending the Dermatology Department at the Hammersmith 

Hospital site of Imperial College Healthcare NHS Trust.  

Patients with the following criteria were excluded: age 18 years or less, in state custody, carrying a 

blood borne infection, having a photosensitive skin disorder, currently pregnant. In addition, 

patients unlikely to tolerate in vivo imaging were excluded from in vivo imaging. In vivo imaging of 

the skin not scheduled for excision were excluded from transplant patients to avoid any possible 

increased risk of genetic damage from the laser light source. Once recruited, all patients gave their 

written informed consent to participate in the study. 

Patients with lesions clinically diagnosed as BCCs, naevi or melanomas were recruited for in vivo and 

ex vivo imaging from the skin cancer clinic. Patients attending non-cancer dermatology clinics were 

recruited for in vivo imaging of normal skin and SCCs in the pilot phase. 

All patients were allocated a pseudo-anonymised identification number that identified the images 

and could be used to access the diagnostic histological slides without identifying the patient when 

lesions were excised. This was generated by either The Human Biomaterials Resource Centre of 

Imperial College Healthcare NHS Trust (Tissue Bank) or the clinical research team.  

Once eligibility and pseudo-anonymisation had occurred, a minimum data set from each patient was 

collected, either from the medical records, clinical examination or verbally from the patient. Details 

included patient demographics, presence of a family history of melanoma, past history of skin 

cancer, if an organ transplant recipient, whether currently immunosuppressed, skin phototype, 

presence of solar lentigenies as a marker of actinic damage (none, few, numerous), number of 

melanocytic naevi (<50, 50-100, 100+) and current medication. In addition details regarding the site 

of imaging and clinical diagnosis for lesions were recorded.  



 

88 
 

 

Figure 4.1 (a) G10 Cannon Camera shown with dermatoscopic attachment. (b) DermliteFOTO® dermatoscopic lens 

detached from camera.  (c) DermliteFOTO® ring light attachment for macroscopic imaging. 

Finally a Cannon® G10 camera was used with a DermliteFOTO® macroscopic or dermatoscopic 

attachment to photograph the lesion, see figure 4.1.  

The excitation wavelength, magnification, imaging depth, acquisition time (using the image save 

time) and a unique daily ID number was recorded for all FLIM images. The excision time for ex vivo 

samples was also recorded.  

4.3 Ethics approval 

4.3.1 ex vivo imaging 

Application Title: Autofluorescence spectroscopy and fluorescence lifetime imaging (FLIM) of human 

tissues. (REC reference number: 09/H0706/28). 

National Research Ethics Committee (NREC) approval was sought to acquire and image fresh ex vivo 

tissue using FLIM by Imperial College London. Provisional approval was granted on 16/3/2009 by the 

Riverside REC office. Local hospital trust approval from Imperial College Healthcare NHS Trust (LREC) 

was granted (project reference STAG1025) on 26/6/2009. 

An amendment was requested to the study protocol including changes to the Chief Investigator’s 

primary workplace (Professor G Stamp), amendment of the consent form for photography, changes 

to allow pseudo-anonymisation to be performed by clinical researches when necessary, the addition 

of Charing Cross Hospital (Imperial College Healthcare NHS Trust) and The Royal Marsden Hospital as 

recruitment sites, and changes to allow imaging using ultrasound and optoacoustic modalities in 

addition to FLIM. This was approved on 14/3/2011 by the LREC committee. 

A further site specific approval was granted by the Research & Development office and LREC 

committee of The Royal Marsden Hospital on 10/8/2011 (CCR3610). 

a) c)b)
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4.3.2 in vivo imaging 

Application Title: 09/H0706/83.‘Multimodal skin inspection with hybrid acoustic and optical 

spectroscopic imaging: SKINSPECTION A (REC reference number: 09/H0706/83) 

NREC approval was sought by Imperial College London to image skin in vivo using FLIM. This 

application was provisionally approved on 22/1/2010 by the Riverside REC office. Local hospital trust 

approval from Imperial College Healthcare NHS Trust (LREC) was granted (project reference 

CHUA1039) on 08/3/2010. 

A substantial amendment was submitted to allow modification and consolidation of consent forms, 

to allow peudo-anonmisation by clinical researchers when necessary and to add Charing Hospital 

(Imperial College Healthcare NHS Trust) as a recruitment site.  This was approved by the LREC 

committee on 14/3/2011. 

4.4 Instrumentation 

 

Figure 4.2. An annotated imaged of the modified DermaInspect® 

The work in this thesis used a modified DermaInspect® instrument. The fluorescence detection 

module was adapted to allow fluorescence lifetime imges to be collected in four spectral channels 

and a spectrometer module was constructed to allow hyperspectral images to be acquired. The 

DermaInspect® (JenLab GmbH) is a CE marked, Class 1M femtosecond laser scanning system that 

allows non-invasive optical imaging, see figure 4.2. It incorporates a mode-locked 80 MHz 

Titanium:Sapphire laser (MaiTai, Spectra Physics®, CA, USA) equipped with a prism-based chirp 

compensation unit (DeepSee™ module, Spectra Physics®) generating femtosecond pulses with pulse 
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length <100fs, average power 1.3W, TEM00, Noise <0.15% as its excitation light source. The laser has 

a tuning range between 710-920 nm with excitation power attenuated to a maximum of 50 mW at 

the sample (measured at 800 nm) by a step motor driven half-wave plate and polarising beam 

splitter system (software controlled). The excitation beam passes through two galvoscanners, 

allowing scanning in the x-y plane, before passing through a 40x/1.4NA oil immersion objective.  The 

objective has a working depth of 200 µm in the z plane, with a lateral resolution of 0.7 µm and axial 

resolution of 1.5-2 µm for a maximum field of view of 350 x 350 µm2.  

Sliders, situated on the detector module casing allow the beam path for the emitted fluorescence to 

be directed either to the internal MPT fluorescence intensity PMT (BG39 filter & Hammamatsu 

H7732 PMT, Hamamatsu Photonics K.K., Japan), the FLIM detector module or the spectrometer. 

4.4.1 FLIM detector module 

 

Figure 4.3 (a) A schematic of the original design of the 4 spectral channel FLIM detector unit. (b) A photograph of the 

completed unit with the module casing removed. Key –White line -The beam path. Colour of PMT outline- spectral range as 

per the schematic.  

The FLIM detector module (see figure 4.3) was designed by Dr Clifford Talbot and had an optical 

transmission efficiency of 85% across 200 µm in the x-y plane. The figure 4.3(a) illustrates the 

excitation beam (in red) directed to the skin. The two photon fluorescence emitted from the skin 

passes through the excitation short pass dichroic filter (position 1), allowing fluorescence below 640 

nm wavelength to pass to the FLIM detector module in the original configuration. The beam is then 

focused and spit into 4 spectral channels through a number of further filters and dichroic mirrors. 

The fluorescence is then collected by 4 Hammamatsu H7422P-40 PMTs (with peak quantum 
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efficiency of 40%)  defining the spectral channels as blue (360-425 nm), green (425-515 nm), yellow 

(515-620 nm) and red (620-640 nm). Fluorescence decays are collected by time correlated single 

photon counting (TCSPC) using an SPC-830 module (Becker & Hickl, GmbH). The PMTs were 

controlled using a DCC-100 module (Becker Hickl) and wide band amplifiers with overload detection 

(Becker Hickl part number HFAC-26dB) were placed after each PMT. Routing of the timing signals 

from the four channels was achieved using a HRT-411 module (Becker Hickl). The spectral cut-off of 

the dichroic in position 1 was changed to 655 nm for the modified design and is discussed below in 

section 4.5.1, pp91. 

4.4.2 Spectrometer Module 

 

Figure 4.4. Schematic of the prism based spectrometer unit. The inset diagram illustrates the mapping of the fibres in the 

fibre bundle collecting the fluorescence of position (A) to those that relay it to the spectrometer at position (B). 

 

Figure 4.5 An annotated photograph of the prism-based spectrometer. The inset shows a detailed image of the spot end of 

the spot-to-line fibre bundle. 

A prism based spectrometer that was designed and constructed by Dr Clifford Talbot allowed steady 

state fluorescence emission spectra to be collected from the plane of focus by the DermaInspect®, 

see Figures 4.4-4.5. The emitted fluorescence collected by the objective was initially relayed by two 

lenses onto spot-to-line fibre bundle (FiberTec Optica, Canada). This system had a geometric 
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transmission efficiency of 100% up to a calculated geometrical radial distance of 0.18mm from the 

centre of the field of view. The fibre bundle had an active area of 63% of the fibre spot end and was 

coupled into the prism based spectrometer, which used a LucaEM R (Andor™, Northern Ireland) 

EMCCD as the detector. The EMCCD camera had a detection spectral range between 360-877 nm 

with a quantum efficiency of between 40-65% in the range 380 – 655 nm. The EMCCD was 

configured to record the fluorescence signal into 50 spectral bins over this range. The start/stop 

signal and pixel clock from the DermaInspect® could be routed to the spectrometer, allowing a 

spectrum to be acquired from a pixel, line or frame of the imaged FOV. Image acquisition was 

performed using a user interface written in LabView™ 7.1 (National Instruments®,USA). Initially this 

was executed on a standalone laptop PC but was ultimately installed on the PC running the 

DermaInspect® control software. 

When acquiring a spectrum from each pixel, the spectral image resolution was limited by the 

acquisition rate of the EMCCD camera. The image resolution was either 32x256 or 41x256 pixels in 

size and acquired over 49.9 seconds. 

4.5 System Development 

4.5.1 Spectral Channels of FLIM module 

Minor modifications were made to the system during the study to improve the spectral separation 

between channels and to broaden the red channel’s detection bandwidth from 620-640 to 620-

655 nm. To achieve this, the 640 nm DCSP (Chroma Technology Corp., Vermont, USA; position 1, 

figure 4.3) was replaced with a 670 nm DCSP, the BG39 filter (position 2, figure 4.3) was replaced 

with a 680 nm short pass filter and a number of band pass filters were inserted, see table 4.1. 

Installation date Position Manufacturer’s Description 

before 7/6/2010   As Above 

07/06/2010 2 BG39 to 680 SPF 

1-7/10/2010 6 (Blue) Short pass 440nm 

  1 640 DCSP to 670 DCSP 

25/05/2011 8 (Red) Band pass 601-657 nm 

01/07/2011 7 (Yellow) Band pass 506-594 nm 

  9 (Green) Band pass 420-520 nm 

 Table 4.1 Chronological list of the modification of the spectral filters made between then original design of the FLIM 

detector module and its final design. Position references to figure 4.3 
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As the spectral range of the optical filters inferred from the name given by the manufacturers had 

slight differences to their actual spectral ranges, a comparison of the listed spectral range and the 

50% transmission spectral range of the filters used is given in table 4.2. Once the spectral 

sensitivities of the PMTs were accounted for, the overall detector efficiency for each channel 

following is illustrated in figure 4.6 for both before and after the modifications. Following the failure 

of a PMT, the red spectral channel was missing from FLIM images acquired between 27/7/11 and 

6/10/11 and therefore data was collected for just three spectral channels over this time. 

Channel Spectral range stated in 

Manufacture’s filter description 

50% transmission 

spectral range 

Blue 360-425 nm 370-429 nm 

Green 425-515 nm 430-515 nm 

Yellow 515-620 nm 517-600 nm 

Red 620-655 nm 617-655 nm 

Table 4.2 A comparison of the listed spectral range of filters used and their 50% transmission range. 

Figure 4.6 Wavelength range of detection for fluorescence for each spectral channel (a) in the original design and (b) 

following all modifications. 

FLIM images were either 128 x128 pixels before the integration of TCSPC FIFO (first-in first-out) 

acquisition mode (occurred on 15/8/2011) or 256x256 pixels after, with all acquired over 25.5 

seconds. 

The changes to the dichroic filter in position 1 (figure 4.3) to increase the spectral range of the red 

channel, consequently meant that a greater spectral contribution came from the channel after the 

change. The remaining filter changes had a minimal effect on this parameter. The calculated lifetime 

parameters were independent from these changes as a calibrated spectral response of the system 

was made daily using a blue fluorescence slide as a reference (Chroma Technology Corporation, 

USA). 
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4.5.2 Articulated Arm 

 

Figure 4.7 Photograph of the articulated arm with annotations of the two planes of rotation that can be made. 

The fixed objective and its proximity to the edge of the optical bench significantly restricted the 

range of body sites that could be imaged in vivo. This was because of a number of reasons :- 

- The physical restriction caused by the size and position of the optics. 

- Insufficient comfort for the patient. 

- Inability of microscope objective of the DermaInspect® to angle to the contour of a patient. 

As a consequence imaging in vivo was effectively restricted to lesions on the extremities for most 

cases. On 25/5/2011 an articulated arm (JenLab GmbH) was installed to allow greater flexibility in 

positioning the objective, see figure 4.7.  It could rotate in the horizontal plane about the detector 

module, and the objective head could rotate around the end of the arm, which allowed a greater 

range of body sites to be imaged. 

4.5.3 Detector Overload Protection 

Two safety mechanisms were incorporated into the system to protect the PMTs from potentially 

damaging high light levels caused by accidental exposed to room light or bright fluorescence. These 

electronic mechanisms were an internal overload trigger in the PMT and another inside the external 

amplifier. Images containing bright fluorescent spots (usually of from keratin or melanin) would 

trigger an overload circuit, resulting in a failed attempt to acquire a FLIM image.  The internal 

overload circuit was very sensitive and typically triggered first. Unwanted triggering of either 

overload circuit increased the number of failed attempts to acquire a complete FLIM image and 

prolonged the time taken to obtain a complete image stack from a patient. This was especially 

noticeable when imaging lesions in vivo. As a result, over the period of July to September 2010, the 

internal PMT overload trigger was removed from all 4 detectors. This left the external overload 

trigger which was more tolerant of single bright pixels within an image. 
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4.5.4 Motorised Stage 

 

Figure 4.8 (a) An image of the DermaInspect® with the motorised stage and articulated arm attached. (b) An image from 

above the motorised stage illustrating the position of the microscope objective in relation to the stage. (c) A side image of 

the position of the microscope objective, tissue sample within a petri dish and motorised stage. 

A motorised microscope stage (Scan IM 120 x 80, Märzhäuser Wetzlar Gmbh, Germany) , mounted 

on a custom built frame, attached to the DermaInspect® trolley was used for the sequential 

acquisition of data from several adjacent fields of view from ex vivo samples to create mosaic 

images, see Chapter 7.3.6. Course positioning of the sample in the z plane was made using a 

micrometer screw (figure 4.10f) in addition to the computer controlled piezo positioner controlled 

through the DermaInspect® acquisition software.  The stage could be positioned in the horizontal 

tissue plane with a smallest step size of < 0.1 µm using a joystick or keyboard using software written 

in LabView™ running on a standalone laptop PC. The stage is illustrated in figure 4.8. 

4.6 Tissue Imaging 

4.6.1 Pre-Imaging Tissue Preparation 

 

Figure 4.9 Illustration of how to attach the coupling ring to the skin and the microscope objective of the DermaInspect®. 

Adapted from the DermaInspect User Manual (JenLab 2009). 

a) c)b)

X-Y positioning screws

DermaInspect® microscope objective
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Once an area of skin was selected to be imaged in vivo, it was moistened with a drop of water. A 

coupling ring, with a size 0 (thickness 80-120 µm) and 18 mm diameter cover slip (Assistent®, 

Glaswarenfabrik Karl Hecht GmbH & Co KG,Germany) was then attached to the skin using double 

sided adhesive. Finally, a drop of Immersol ™ 518 F DIN 58.884 (Carl Zeiss Ltd., Germany) was placed 

on upper surface of the cover slip. The patient was then moved to magnetically couple the metal 

ring surrounding the DermaInspect® microscope objective (see figure 4.9). 

 

Figure 4.10 (a) Inverted glass bottomed petri dish used to image ex vivo samples. (b) Metallic coupling rings. Left- used for 

in vivo imaging. Right- coverslip groove removed to allow attachment to petri dish for ex vivo imaging. (c) Transparent 

plastic ring placed over metal coupling ring to indicate the centre of FOV that will be imaged. (d,e) Stage with clips to 

prevent lateral movement of the petri dish/sample during imaging. (f) Sample in petri dish mounted on stage ready to 

image. 

Freshly excised ex vivo tissue was rinsed with Hanks Balanced Salt Solution buffer (HBSS) without 

phenol red, calcium or magnesium (Gibco®, Invitrogen™, CA, USA), its surface moistened with the 

buffer solution and placed on damp gauze in an inverted glass bottomed petri dish containing either 

a size 0 (thickness 80-130 µm) or size 1.5 (thickness 160-190 µm) cover slip (Matek®, USA), figure 

4.10a. Once the lid (containing the cover slip) was replaced, a coupling ring (designed for ex vivo 

use), was adhered to the cover slip surface, so that the FOV of interest would align with the centre of 

the coupling ring and therefore the objective of the DermaInspect®, see figure 4.10b. This was aided 

by the use of a transparent plastic ring with a 1mm central hole (figure 4.10c) which indicated the 

centre of the coupling ring. A metallic plate was designed to accommodate the petri dish under the 

objective and prevent its movement during imaging which could be used with the motorised stage if 

necessary, for imaging ex vivo samples (figure 4.10d-f).  

b)a) c)

e)d) f)
Positioning Screws
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The objective could be adjusted to remain centred within the coupling ring by adjusting the positions 

of two screws shown in figure 4.10f, thereby ensuring that the image was taken from the centre of 

the FOV defined by the plastic ring. 

Ex vivo samples imaged using the motorised stage to create mosaics required lateral movements of 

the petri dish in relation to the objective. Therefore, although the dish was fixed to the stage, it was 

not fixed to the objective using the coupling ring, as outlined above. Instead, a drop of the 

Immersol™ was placed on the surface of the cover slip, the objective was focused and the dish was 

allowed to move under the objective lens as controlled by the motorised stage. 

4.6.2 FLIM Imaging Protocol 

All FLIM images were acquired with the room lights off and the computer screen covered to 

minimise the background light. 

Once the patient/tissue sample was in place, the s.corneum layer was visualised using the 

fluorescent intensity MPT detector by adjusting the depth of focus using the piezo driven objective 

positioner. Initially, the excitation power was restricted to < 12 mW for this layer (as per the 

DermaInspect® manual). 

If required, imaging parameters such as excitation wavelength, magnification, x-y adjustment of the 

objective position were adjusted. The tissue depth reading on the control software was then reset to 

0 µm in preparation for imaging the s.corneum layer. 

The fluorescence beam path was then set to direct fluorescence to the FLIM detector module. The 

excitation power was adjusted to optimise the signal strength for the current imaging depth before a 

FLIM image was acquired (with the computer screen covered to further reduce the background 

light). Once acquired, the image was saved immediately and the objective was repositioned using 

the piezo positioner to image a different depth. Images were taken at approximately 10 µm depth 

intervals in the sample until the dermis was reached. The excitation power was adjusted for each 

image depth. Although most images were acquired using an excitation wavelength of 760 nm, paired 

images at two different wavelengths were taken for some samples. 

FLIM images were acquired over 25.5 seconds. Images were initially acquired using 128 x 128 pixel 

resolution. From 15/8/2011 (from patient ID 4108) acquisition using FIFO FLIM mode was 

successfully implemented and allowed for images with an improved 256 x 256 pixel resolution. Most 

FLIM images were 107 µm x 107 µm2 in size; however a range of sizes between 56 µm x 56µm2 and 

271 µm x 271 µm2 were used. Fluorescence decays were collected with 256 time bins over 12.5 ns. 
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Should the emitted fluorescence from a pixel exceed the detector overload protection threshold, an 

audible warning was produced, the detectors would cut out and require resetting before the image 

could be re-acquired at a lower excitation power. 

At the start of each session, two calibration fluorescence decay measurements were taken. One 

from a blue fluorescent slide (Chroma Technology Corp. USA) with a known lifetime of 0.9 ns for use 

as a lifetime standard and another from gold nanorods with an ultrafast response for use as an 

instrument response function (IRF), see section 4.10.1, pp103. 

A time limit of 3 hours from surgical excision was set for imaging ex vivo samples for imaging i.e. 

before sample fixation in formalin for subsequent histology. This limit was chosen to maintain the 

tissue close to its in vivo state whilst still allowing sufficient time for imaging. Previously published 

studies vary considerably in this regard. For example, many do not define the length of time imaging 

was performed post excision (König and Riemann 2003; Dimitrow, Riemann et al. 2009; Dimitrow, 

Ziemer et al. 2009). In those that have, Benati et al. limited imaging to 45 minutes (Benati, Bellini et 

al. 2011), whilst some had imaging protocols extending from 3 to 6 hours post excision (Cicchi, 

Sestini et al. 2008; Ericson, Simonsson et al. 2008; Paoli, Smedh et al. 2008; De Giorgi, Massi et al. 

2009).  

In our studies a few samples were imaged longer than 3 hours to allow larger montaged mosaic 

images to be acquired. In these cases, images taken after this time limit were used for illustration of 

the image mosaic only and not for the lifetime analysis of the data. 

It was difficult for patients to remain sufficiently still during the entire acquisition time of an image in 

vivo for a number of reasons including the difficulty in maintaining many body sites correctly and the 

long duration of imaging (25 seconds). This caused many images to have significant movement 

artefacts. Improvement was seen after the addition of the articulated arm. However, despite its 

addition, many patients were unable to remain comfortable during imaging. The most successful 

images acquired in vivo were from patients seated in a chair with their arm resting on a couch. 

Further changes such as reducing the acquisition time were not found to make a significant 

difference. 

4.6.3 Spectrometer Imaging Protocol 

Hyperspectral images were always taken following FLIM image acquisition as they required greater 

excitation powers to acquire reasonable images. Typically, after a FLIM image was acquired and 

saved, the fluorescence and necessary electronic signals were directed to the spectrometer. Due to 

limitations in the frame rate of the spectrometer camera, images were acquired over 49.9 seconds 
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at either 32x256 or 41x256 pixel resolution. A background image, (using zero excitation power) was 

acquired in most cases for each individual FOV.  

4.7 Histology 

 

Figure 4.11 Images of sample 4126 recording the stages of the protocol. (a) Macroscopic image of a BCC taken in vivo. (b) 

Dermatoscopic image of BCC taken in vivo (c) Image of freshly excised BCC. (d) Image of sample attached to metallic 

coupling ring with plastic ring placed over to indicate the centre of the FOV/area of BCC to be imaged. (e) BCC after fixation 

with formalin. (f) Ink tattoo to indicate the area of BCC imaged, based on photograph d. (g) BCC cut into 5 sections prior to 

embedding, microtome sectioning and staining. (h) Photograph of stained vertically sectioned slides used to make the 

histological diagnosis. 

Following imaging, ex vivo samples were placed in an aqueous solution of 10% formalin for fixation 

for at least 12 hours. Sectioning of the fixed tissue, prior to embedding was performed by myself or a 

histopathology technician. Following embedding, microtome sections were generated, mounted and 

stained with Haematoxylin & Eosin (H&E). The diagnosis of all ex vivo samples were confirmed 

histologically by a consultant pathologist. Figure 4.11 a-h shows a single lesion photographed at all 

the stages of the imaging and histological processing. 

4.8 Image Co-registration 

Dermatoscopic, FLIM and histological images are all viewed at scales of different orders of 

magnitude and orientation. Dermatoscopic and FLIM images are viewed en face, whilst histological 

slides are cut in vertical sections. These differences in scale and orientation created challenges when 

aligning the FLIM FOV with a specific skin surface feature and when correlating the FLIM images with 

histological structures. It was therefore important to develop a method to co-register the different 

types of images. A plastic ring, as described above and seen in figure 4.10 d, was found to be the 

best method to align the surface features of the lesion with the area being imaged. This method was 

tested and found to allow imaging to within 1x1 mm2 of the defined spot.  

a) c)b) d)

f)e) h)g)
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The following procedure was used for co-registration of features seen in the FLIM images and 

sectioned slides. For samples that were cut-up by myself, the area imaged (as correlated with the 

photographs taken during imaging) was marked on the surface of the tissue by scoring superficially, 

perpendicular to the sectioning plane and tattooing with permanent ink. Histological sections were 

then aligned as accurately as possible using this tattoo.  This is demonstrated in figure 4.11 f-g. For 

the majority of samples either the ink tattoo or the superficial score could be seen in the sectioned 

slides. When these markers could not be seen on the sectioned slides under the microscope, the 

slides from the sections nearest the area imaged (e.g. the 3rd and 4th sections in figure 4.11 g) were 

used as the closest correlate. 

Prior to this method, a number of techniques were tried and were found to be less successful. These 

included marking the tissue with ink prior to imaging & collecting a reflected white light image of the 

sample through the DermaInspect® objective in order to orientate the position of the FOV within the 

sample. These methods were unsuccessful because the ink would often run over the surface of the 

tissue and/or it was very difficult to find the pre-marked spot, once the sample was under the 

DermaInspect®. The white light image was unsuccessful because of the difficulty in acquiring a 

focused image. 

4.9 Experiences with the Modified DermaInspect® 

4.9.1 DermaInspect® Characteristics 

 

Figure 4.12 Graph of emitted power from the excitation laser of the DermaInspect® with software set to the maximum 

power of 50 mW. 

Figure 4.12 plots the peak power output of the DermaInspect ® against excitation wavelength. It 

shows that the peak power of the instrument has been set to 50 mW which can only be achieved at 

800 nm. The pulse length of the excited light is ~150 fs without the articulated arm. Breunig et al. 
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have shown that the pulse duration is maintained at ~150 fs in the image plane when the arm is 

attached (Breunig, Studier et al. 2010) over most wavelengths. 

4.9.2 Detector Cross Talk 

    % signal recorded 

    Blue Green Yellow Red 

Activated Blue   0 0.000891 0 

Detector Green 0   0.023234 0 

  Yellow 0 0   0 

  Red 0 0 0.00049   

Table 4.3 shows the % of electrical crosstalk between the PMT detectors when the gold nanorod slide is excited and each 

detector it activated in turn with the photon count measured in all. 

The electrical cross talk was assessed by measuring the luminescence decay in all 4 spectral channels 

when the gold nanorod IRF slide was excited at 760 nm. A reading was performed for each PMT 

activated in turn. Table 4.3 shows that the % electrical crosstalk between the detectors is <0.05%. 

The optical cross talk can be seen by the transmission curves previously shown in figure 4.6. 

4.9.3 Clinical Experience 

This section describes experiences using the DermaInspect® to acquire clinical images. 

Figure 4.13 Fluorescence intensity & false colour FLIM images for each spectral channel are shown of an image taken at 

110 µm depth of the basal layer of normal skin (ID 4117 fov3).  

In the first instance, figure 4.13 is a typical image taken with the 4 spectral channels from normal 

skin and shows fluorescence intensity and FLIM images. All images have been taken from the same 

field of view of normal skin. It illustrates the increased contrast benefits of acquiring fluorescence 

lifetimes in more than one spectral channel. Figures 4.13a-d show that contrast between different 

structures can be seen in the fluorescence intensity images recorded in the 4 spectral channels that 
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is not visible in the calculated total fluorescence intensity image (Figure 4.13e). The second harmonic 

generation (SHG) signal from collagen, seen in the tips of the dermal papilla, dominates the blue 

spectral channel (Figure 4.13a) and can be visually separated from the weaker intracellular 

fluorophores (c.f. Figure 4.13b-d). It is however difficult to visually separate the multiple 

fluorophores contributing to the green, yellow and red channels (Figure 4.13b-d) using the 

fluorescence intensity images alone. The addition of the fluorescence lifetime information (Figures 

4.13f-i) allows NAD(P)H autofluorescence (blue-green on false colour scale), dominant in the green 

spectral channel to be easily distinguished from melanin (short lifetime (Teuchner, Freyer et al. 

1999) red on false colour scale), which is dominant in the red spectral channel. The yellow spectral 

channel includes fluorescence from flavins, NAD(P)H and melanin. The multiple FLIM spectral 

channels also allow SHG from collagen, (with an instantaneous decay) seen in the blue channel, and 

elastin (with a long fluorescence lifetime (König and Schneckenburger 1994)), seen in the 

green/yellow channels, to be distinguished from the same spatial location within the dermal papilla. 

One disadvantage of the method of tissue preparation prior to imaging is that the useful imaging 

depth is reduced by the distance between the bottom surface of the cover slip and the s.corneum. 

For example, this can significantly affect the ability to image the epidermis when the surface of the 

tissue is not flat. Despite this, images with a good signal to noise ratio were obtainable to a tissue 

depth of 100 – 150 µm in the majority of cases. However, this restriction excluded imaging of 

lesions/normal skin that had significant hyperkeratosis (thick s.corneum), including many actinic 

keratosis and cutaneous squamous cell carcinomas. In these cases, only images from the s.corneum 

were possible. 

A difficulty in developing the DermaInspect® was that software changes were difficult and costly to 

approve, as the CE marking of the device could not be compromised. It prevented the integration of 

all the software into a single user friendly interface. Instead, the following software tools were used 

to acquire the images presented in this thesis: JenLab GmbH software controlled the excitation 

parameters; Mai Tai laser software controlled the laser excitation wavelength; SPCM (Becker & 

Hickl) was used for FLIM acquisition; Spectometer control/acquisition software (Andor™) controlled 

the spectrometer; and in house software (written in LabVIEW®) was used to control the motorised 

stage.  Some integration was instituted through AutoIT, an automating and scripting language for 

windows GUIs. For the future, improved software integration for image acquisition would reduce the 

risk of errors and allow images to be acquired in vivo more easily. 

Over the project, the incremental changes made to the DermaInspect® improved the clinical 

experience both for the patient and the clinician. Initially, limited automation of the control software 
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using AutoIT (Jonathan Bennett & AutoIt Consulting Ltd), as described above, improved efficiency. 

This included code to automatically reset the PMTs once the overload protection was triggered and, 

code to co-ordinate the JenLab GmbH and Becker Hickl software to allow automatic image 

acquisition and automatic saving & standardised image file names. Much time was also saved by 

raising the internal PMT overload protection threshold, which reduced the likelihood that the 

overload trigger was tripped.  

Finally the addition of the articulated arm had a significant impact on the number of body sites that 

could be imaged in vivo. Furthermore, as patients were no longer required to physically strain to be 

imaged, the extremities could be imaged for longer periods of time and less movement artefact was 

seen in the images acquired. 

4.10 Analysis 

4.10.1 Instrument Response Function 

 

Figure 4.14 (a) A plot of the recorded SHG signal from Urea Crystals above and below 500 nm. (b) A plot of the measured 

luminescence of the signal from gold nanorods in each spectral channel. (c) A plot comparing the signals measured 

between urea crystals and gold nanorods using the DermaInspect®. (d) A electron microscope image of the gold nanorods 

used. Image courtesy of Fulvio Ratto. Inst. di Fisica Applicata, Consiglio Nazionale delle Ricerche, Fiorentino, Italy. 

In order to accurately fit acquired fluorescence decay data, it is necessary to convolue the 

fluorescence decay model with an instrument response function (IRF).This process adjusts the model 

for the artefactual effects caused by the instrument itself. For this purpose, an IRF was collected by 

exciting a substance with a very short luminescence prior to each imaging session and allowed the 

fluorescence decay model to be adjusted as the system was modified over time. 
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For the preliminary studies using a modified DermaInspect® and 2 emission spectral channels 

(Patalay, Talbot et al. 2011), the IRF was measured by excited urea crystals to generate an SHG 

signal. This had the disadvantage that the SHG signal was only emitted at ½ the excitation 

wavelength and therefore was only detectable in a single spectral channel, see figure 4.14a. 

Since that time, the method of collecting an IRF in multiple spectral channels by exploiting the 

broadband ultrafast luminescence (< 50fs) from gold nanorods was described  by Talbot et al. 

(Talbot, Patalay et al. 2011). Gold nanorod luminescence provides a similar IRF to that emitted by 

urea crystals, as can be seen in figure 4.14c, and due to the broadband nature of their emission, they 

were better suited to providing an IRF in this multispectral system, see figure 4.14b.  

4.10.2 Fluorescence Decay Models 

In MPT of live biological tissue, the number of photons collected per pixel is limited because of 

restrictions on imaging duration and maximum allowed excitation power.  This in turn restricts the 

complexity of the decay models that can be used to fit the data. Two fluorescence decay models 

were used for the work presented in this thesis – a single exponential decay model for generating 

FLIM images and a double exponential decay model for the FLIM analysis. 

Fluorescence images were acquired at either 128 x 128 pixels or 256 x 256 pixels resolution, over 12 

ns into 256 time bins. 

4.10.3 Single Exponential Decay Model 

 

Figure 4.15 (a) Fluorescence intensity image (b) Colour map of the fluorescence lifetime calculated for each pixel (c) A 

merged fluorescence intensity and lifetime image taken from the green spectral channel (ID 4210 image 2). 

For the purposes of displaying an image, a single exponential decay model was used to fit the 

fluorescence decay at each pixel of the images in each spectral channel, as insufficient photons were 

collected to calculate a more complex decay reliably. This was performed using fitting software 

written in C++ and Matlab® (R2010b, The Mathworks Inc., USA) by Sean Warren and with a user 

interface written by Dr Clifford Talbot.  

2000 ps

200 psa) c)b)
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For 128x128 resolution images the decay data was smoothed spatially using a 3x3 kernel prior to 

fitting each pixel. The fitting model accounted for effects of incomplete decays and the IRF obtained 

from gold nanorods was used with a temporal offset fixed to zero. The resulting FLIM map was then 

merged with the fluorescence intensity image. 

Initially the 256x256 resolution images were binned to 128x128 prior to fitting. The FLIM image was 

then merged with the 128x128 resolution intensity image and upscaled using linear interpolation to 

256x256 pixels again (see figure 4.15c). The final method used was to spatially smooth 256x256 

resolution images using a 5x5 kernel without binning prior to fitting. The fitted FLIM image was then 

merged with the intensity image. This image could then be upscaled as necessary, depending on the 

monitor size and resolution to 384x384. This final method was chosen to allow FLIM images similar 

in resolution to that used in SPCImage (Becker & Hickl, GmbH) to be generated. 

The intensity merged FLIM images were then used to assess the morphological features in the 

samples. 

4.10.4 Manual Regions of Interest (ROI) segmentation 

 

Figure 4.16 (a) Fluorescence intensity image (b) Intensity image with overlay indicating the manually defined ROIs 

corresponding to each cell in the image. 

To allowing a more complex decay model to be used, images were segmented to combine the 

fluorescence from multiple pixels and increase the number of photons available for fitting.  The 

photons were binned spatially for the area corresponding to each cell within each image into regions 

of interest (ROI), see figure 4.16. 

ROI were defined manually using software written in Labview™ 7.1 by Dr Chris Dunsby, Dr Sunil 

Kumar and Dr Clifford Talbot. A threshold of 1000 photons in the total cell fluorescence decay was 

deemed sufficient to reliably fit a double exponential decay model for the lifetime analysis. Decay 

curves from a single spectral channel containing fewer than 1000 photons were therefore excluded 

from the analysis.  

a) b)
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Although smoothing was used to increase the number of photons available to fit the single 

exponential decays used to generate the merged FLIM images, it was not used here. A disadvantage 

of smoothing is that it is performed over the entire image indiscriminately, counting light from both 

intracellular and extracellular regions and, for our data, would still have insufficient photons to fit a 

more complex decay model.  

The use of ROI-integrated decays allowed sufficient photons to fit a double exponential decay model 

and the calculated lifetimes to reflect intracellular fluorophores only. This allowed each lifetime to 

be biologically meaningful by corresponding to a single cell. It further enabled analysis of different 

cell populations within a sample and comparison between different samples and disease states to be 

performed. 

 

Figure 4.17 (a) A fluorescence intensity image with a pixel (red) and cell (green) highlighted. (b) Plot of the fluorescence 

decay curves of the pixel and cell shown in (a). (c) The fluorescence  emission spectrum from the pixel shown in (a). (d) The 

fluorescence emission spectrum from the cell shown in (a). 

Figure 4.17a shows a single pixel (red) within a cell (outlined in green) in a fluorescence intensity 

image. Figure 4.17b shows the resulting decays from the single pixel and cell ROI. Figure 4.17c-d 

demonstrates this same improvement with the emission spectra gained from the spectrometer from 

the same FOV. 

4.10.5 Double Exponential Decay Model 

For the fluorescence decay analysis, it was desirable to employ a more complex decay model than a 

single exponential decay. A double exponential decay model was chosen as it provided a reasonable 
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fit to the data and allowed information to be gleaned regarding the complex nature of the 

underlying fluorescence decay, which is considerably more complex. The skin autofluorescence 

originates from multiple fluorescent species, each of which are themselves likely to exhibit complex 

decay profiles. For example, free NADH in solution is known to have a double exponential decay and 

the fluorescence lifetimes of both components can change when they bind to proteins.  

Furthermore, there are a large number of potential protein binding partners and therefore more 

than 4 decay components are required for intracellular NADH alone (Vishwasrao, Heikal et al. 2005). 

Similarly, melanin is known to have at least 3 fluorescence decay components (Teuchner, Freyer et 

al. 1999).  

Given the limited number of detected photons available, only two decay components were chosen 

to fit to the fluorescence signal from each ROI. Therefore, the short and long fluorescence decay 

components (τ1 and τ2) serve to summarise the changes occurring in a complex biological system 

exhibiting a multi-exponential decay. 

The measured fluorescence decay per ROI for each channel was calculated by spatially summing the 

photons. This was then fitted to a double exponential model using non-linear least squares 

minimization (Levenberg-Marquardt method). Software was written in Matlab® by Dr Yuriy 

Alexandrov. Figure 4.18 illustrates a typical lifetime fitted to a double exponential decay model (the 

cell ROI signal highlighted in green in figure 4.17a). 

 

Figure 4.18 Illustration of a fluorescence decay fitted using a double exponential decay model with the residuals of the fit 

shown below. 
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The double exponential decay model used is described in Patalay et al. (Patalay, Talbot et al. 2012) 

and briefly below and was implemented using Matlab®.  It accounted for incomplete exponential 

decays, background noise and detector after-pulsing. It was then convolved with the measured IRF  

to calculate a predicted fluorescence (Lakowicz 1999;P103), which was then used to fit to the 

measured data for each time point. 

Prior to convolution, the IRF was pre-processed by subtracting the horizontal long-time asymptote 

or ‘pedestal’ and normalised to the unit area.  The main contributing factors to this pedestal were a 

small signal-independent contribution from background noise (stray light, electronic noise and 

cosmic rays) and a much larger signal-dependent contribution from after-pulsing (caused by a 

delayed response of the PMT to a small fraction of preceding laser pulses) (Becker 2005 ;P233). 

    ∑
[          (  )          (  )]

 

         (  )

     
        Equation 4.1 

The ‘data-weighted’ definition of the fitting error function 2  was used as it was found to be less 

biased when fitting a double exponential decay model, equation 4.1, see also (Lakowicz 1999 ;P119). 

Here, tk is the time delay of the kth bin (Nbins = 256 for our system), Ipredicted is the predicted 

fluorescence and Imeasured is the recorded fluorescence signal at each time delay. The fluorescence 

lifetime parameters fitted were 1, 2, and the f1 (fractional component of τ1).  f2 was calculated as 1- 

f1. The fitting was implemented using the Matlab® “lsqnonlin” function to find the four fitting 

parameters ]min[arg},,,{ 2

211  fittedtot fI . Individual decays with fewer than 1000 photons per ROI 

per channel were discarded. 

4.10.6 Fluorescence Decay Quantifiers 

The following section lists the parameters that were calculated from the fluorescence decays.  

a) The total fluorescence signal was calculated by first correcting for the PMT background and 

after-pulsing effects, and then calibrating against the signal acquired daily from a reference 

fluorophore with a known fluorescence emission spectrum (blue fluorescent slide from 

Chroma Technology Corp., Vermont, USA). 

b) The relative fluorescence (RF) in each channel was calculated for each ROI using the total 

fluorescence (F) in each channel using the equation 4.2 below where the relative 

fluorescence and total fluorescence from each spectral channel in indicated by the subscript 

letter. 

rygb

b
b

FFFF

F
RF


       Equation 4.2
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c) τ1 is the short lifetime component.    is the short lifetime component contribution. τ2 is the 

long lifetime component.    is the long lifetime component contribution. τmean is calculated 

using the equation 4.3 below 

 τmean =            (    )         Equation 4.3 

 

d) The coefficient of variation (CV) was defined as the ratio of standard deviation of ROI pixels’ 

intensities to their mean. In order to exclude the contribution of the Poisson pixel noise to 

CV values, the corrected formula was applied, where VarROI and EROI are the estimates of the 

variance and expectation (average) of the intensity of ROI pixels, respectively. See equation 

4.4 

  2/12 )(/1)(/)( IEIEIVarCV ROIROIROI      Equation 4.4 

4.10.7 Cellular Morphological Quantifiers 

Parameter Description 

Perimeter Perimeter of ROI’s boundary (µm) 

Major Axis Length The length of major axis of the effective ellipse (µm) 

Minor Axis Length The length of minor axis of the effective ellipse (µm) 

Gyration Radius A linear measure of distance of a point on the ROI from the 

centre, an indirect measure of effective linear size (µm) 

Area Area of ROI (µm2) 

Shape Factor Perimeter2/(4πArea). A measure of how circular an object is 

(equals 1 for a circle and >1 for any other figure) 

Solidity Ratio of cell area to the area of a convex hull. A measure of 

negative curvature. Equals maximum of 1 for a shape with no 

concave parts e.g. a circle or square 

Flattening Factor Ratio of minor to major axis. A measure of flatness. 

Table 4.4 Description of the cellular morphological quantifiers that were measured and calculated for the analysis. 

The cellular morphology quantifiers were based on cell ROI geometry and are defined in table 4.4 

above. A standard Matlab® morphometry routine “regionprops” was applied to obtain several 

geometric features such as Solidity and Major and Minor Axis Lengths. The dimensional geometric 
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parameters (e.g. area and distance measured in microns) were calculated taking into account image 

magnification. 

 

Figure 4.19 (a) Fluorescence Intensity image with ROI overlaid. (b-d) Adjacency graphs generated using 3 methods to define 

the nearest neighbour ROIs. 

Another group of morphology features was designed to study properties of groups of neighbouring 

cells.  These methods first define local neighbourhood relations via adjacency graphs in the image 

between a ‘central’ cell and its neighbouring cells. The Delaunay triangulation, Gabriel and Sphere of 

Influence (SOI) graphs (Bivand, Pebesma et al. 2008;P245) were constructed for this purpose for 

each field of view, see figure 4.19 .  

Parameter Description 

Cell Density The effective number of ROIs per µm2 

Cell Confluency Relative area occupied in the image by a ROI and its neighbouring 

ROIs. Indirect measure of the area of cytoplasm present and 

therefore scales inversely with the amount of extracellular matrix 

present. 

Orientation SD Standard deviation of the angle of the major axis of a ROI and its 

neighbouring ROIs (degrees) 

Number of 

Neighbours 

The number of neighbouring ROIs 

Distance to 

Neighbours 

The average distance to a neighbouring ROI (µm) 

Table 4.5 Description of the descriptors used to evaluate the density and relationship of ROIs/cell between each other. 

The morphological features used to quantify the relationship of each cell with its neighbours are 

listed in table 4.5. Every cell was characterised (for every adjacency graph) by its number of 

Sphere Of Influence Gabriel Delaunay triangulationIntensity image with ROIs

(a) (b) (d)(c)
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neighbours (   ) and average distance to the neighbour(   ). The local cell density and the cell 

confluency were estimated using the area of the effective influence circle as defined below in 

equation 4.5 where dnb is the distance to neighbour. 

         
         Equation 4.5  

The cell density, defined below in equation 4.6 and is calculated using the number of neighbouring 

cells to a central cell and the area of influence, where Ainf is the effective influence circle and nnb is 

the average number of nearest neighbours. It is independent of cell size.  

             
  ∑

 

   ( )

     

   

    
       Equation 4.6  

The calculation for cell confluency (equation 4.7) uses the area of a central cell (Areacell) as a 

reference and calculates the ratio of average cell area of the neighbouring cells to the area of ‘formal 

free space’ for this cell, where Ainf is the effective influence circle and nnb is the average number of 

nearest neighbours. 

                

 

        
(∑     ( )             
      

   )

    
    Equation 4.7  

Therefore, if cells have the same geometrical position but are larger in size, this ratio will be bigger, 

whereas cell density will not. 

4.10.8 Automatic Segmentation 

Manual segmentation of images was very time consuming for the number of images acquired. 

Therefore an algorithm to automatically segment images into ROIs was attempted. Automatic image 

segmentation was performed using size-tuned non-linear top-hat detection which has been 

previously used by Santos et al. (Santos, Zaltsman et al. 2008). This method applied a pixel-wise 

transformation to the image (formula A2.1 in Santos et al.) that enhanced the brightness of a pixel if 

its close vicinity was also bright and its distant vicinity was dim. A user defined threshold was then 

applied to the transformed image. The resulting binary images were then morphologically smoothed 

using the Matlab® ‘imopen’ function and spatially distinct regions identified. These regions were 

then size-sieved using standard Matlab® image processing functions to remove objects smaller than 

35 µm2. The same procedure, including all parameters, was applied uniformly across all images. 
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Figure 4.20 (a) Fluorescence Intensity Image and (b) Intensity image shown in (a) with manually segmented ROIs overlaid. 

(c) Intensity image with automatically segmented ROIs overlaid. 

The automated approach was used to segment the images used for the analysis of normal skin to 

follow the changes in lifetime over time post excision, described in Chapter 5 (pp115). The 

application of the automatic ROI segmentation greatly reduced input from the user but was not 

found to be as accurate as defining individual cells as the manually defined ROIs, typically generating 

many more ROIs. This can be appreciated in figure 4.20c.  As this analysis focused on the average 

changes in the lifetimes of cells over the whole FOV, the difference in the manual and automated 

segmentation was not important as long as each was internally consistent between images. 

4.10.9 Statistics 

The data within most summary tables were compiled using SPSS 18 (SPSS Inc. IL, USA).All the 

spectroscopic, lifetime and morphological parameters and the statistical calculations were 

performed by Dr Yuiry Alexandrov. The Wilcoxon Rank Sum test (Lupton 1993;P119-28) was applied 

to study the difference in distribution and their significance between BCC and normal skin or 

between pigmented lesions groups.  

The discriminative ability of the individual spectroscopic and morphological ROI measurements were 

assessed using 2 parameters which were implemented using Matlab®  

- Receiver Operator Characteristic  Area Under the Curve (AUC,(Mathews 2010;P158)) which 

measures the probability that the source diagnosis of the cell/ROIs would be correctly 

identified. 

- Cohen’s d  statistic (Gravetter and Wallnau 2009;P262) measures the difference between 

the means of two populations e.g. normal skin and BCC ROIs and is a marker for the 

discrimination between them. 

To determine discrimination using multiple parameters, linear discriminant analysis (LDA) was 

performed. To reduce the dimensionality of the data, which included spectroscopic +/- cellular 

a) b) c)
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morphology parameters, a correlation-matrix based principal component analysis (PCA) was 

performed first (Joliffe 2002;P24). The initial 4 principal components were then selected to be used 

in the LDA.  To perform this, the Matlab® functions “cov” was used to get a covariation matrix. This 

was transformed into a correlation matrix before the Matlab® function “pcacov” was used to 

calculate PCA coefficients. The Matlab® function “classify” was then used to perform LDA for each 

ROI using a leave one out approach, to classify which diagnostic group it arose from e.g. either BCC 

or normal skin, or naevi or melanoma. Initially each patient was characterised by the fraction of 

malignant and Normal ROIs determined by LDA. These fractions could then be used to build ROC 

curves from which AUC could be calculated and sensitivities and specificities for a given diagnostic 

threshold to diagnose a patient correctly could be generated. 

This process was applied using manually segmented ROIs, automatically segmented ROIs and for 

unsegmented images. Cellular morphological parameters were removed from the PCA when using 

automatically segmented images, due to its lack of accuracy defining individual cells, and for 

unsegmented images. Unsegmented images were analysed by first spatially integrating the 

fluorescence decay profiles over each field of view, fitting the resulting decays and then calculating 

the mean spectroscopic parameters for each patient.  

Sensitivity and specificity were also calculated for the visual assessment of morphological features 

present in the FLIM images. For the example of BCC vs normal skin, the sensitivity was calculated as 

the number of patients correctly determined to have a BCC using a given threshold number of 

diagnostic features divided by the total number of patients with BCCs. The sensitivity was calculated 

as the number patients correctly determined not to have a BCC using this threshold divided by the 

total number of patients without BCCs. 

4.11 Summary 

This chapter has described the methods, instrumentation and the analytical techniques used to 

obtain the results discussed in this thesis. 

In Section 4.2 the criteria for patient recruitment and the minimum data set collected from each is 

first described. This is followed by  the details of the ethics approvals that were gained in order to 

perform this research. 

Sections 4.4 – 4.5 describe the technical details of the original DermaInspect® and the modifications 

made over time to allow collection of FLIM in 4 spectral channels and of hyperspectral images.  
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Section 4.6 outlines the procedure used to prepare the skin (both in vivo and ex vivo) prior to 

imaging and the imaging protocol for acquiring FLIM and hyperspectral images.  

A discussion can then be found of the methods used to process the tissue histologically to improve 

the co-registration of FLIM images with the dermatoscopic and histological images in section 4.7 and 

4.8. The final section regarding methods (Section 4.9) outlines the characteristics of the 

DermInspect® and our clinical experiences using the device. 

Finally the methods of analysis of the collected fluorescence and fluorescence lifetimes are 

discussed in section 4.10. 
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Chapter 5. An analysis of the effect of surgical excision on tissue 

autofluorescence of normal skin. 

5.1 Aim 

In this chapter, the changes in tissue autofluorescence and lifetime are monitored over a 3 hour time 

period after excision. This is the first time this has been performed using multispectral FLIM and the 

first time over this time period using human skin. The lifetimes from cells acquired in vivo vs. ex vivo 

are then compared directly. 

5.2 Introduction 

Multiphoton tomography (MPT) intensity imaging and multispectral MPT FLIM has been used to 

investigate changes in normal and cancerous skin, both in vivo and ex vivo. In many cases 

investigating skin in vivo is not possible for ethical reasons or practical concerns, e.g. motion 

artefacts and difficulty imaging highly curved surfaces. In these circumstances the use of excised, 

unfixed ex vivo skin is a necessary surrogate for in vivo imaging.  

As soon as skin is excised, it is removed from its homeostatic environment. Hypoxia and hypercapnia 

start to occur immediately which affect the metabolism of the cells in the tissue sample, ultimately 

leading to cell death. The rate at which these changes affect intracellular metabolism (and therefore 

autofluorescence) is dependent on many factors, including cell type and origin and whether normal 

or malignant tissue is used. 

The published studies performed using unfixed, excised skin have varied in the length of time post-

excision imaging was performed.  Some studies had imaging protocols extending from 3 to 6 hours 

post excision (Cicchi, Sestini et al. 2008; Ericson, Simonsson et al. 2008; Paoli, Smedh et al. 2008; De 

Giorgi, Massi et al. 2009), whilst other had no times reported (König and Riemann 2003; Dimitrow, 

Riemann et al. 2009; Dimitrow, Ziemer et al. 2009). 

In this study, freshly excised normal human skin samples were taken and the changes seen in 

autofluorescence and lifetime were measured regularly up to 3 hours post excision. A further 

comparison was then made between normal skin in vivo and ex vivo. 

5.2.1 Previous Literature 

Two studies have been published to date to evaluate the changes in autofluorescence following 

ischaemia/excision of the skin. Sanchez et al. studied the changes in autofluorescence intensity and 

lifetimes of human skin daily over a 7 day time period (Sanchez, Prow et al. 2010).  Palero et al. 
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investigated the changes in autofluorescence emission spectra emitted from mouse skin both in vivo 

and post euthanasia over a 3.3 hour time period (Palero, Bader et al. 2011). These studies will be 

described in detail below. 

5.2.1.1 Sanchez et al. 2010 

Following surgical excision, Sanchez et al. monitored the effect of ischaemic necrosis over time on 

tissue autofluorescence when incubated with/without culture medium and at different 

temperatures (-20 oC, 4 oC , 37 oC and room temperature) daily for 7 days. Up to 3 samples of human 

abdominal skin were tested in each environment and an in vivo control image was also acquired 

from the forearm of one volunteer. Tissue was excited using 740 nm at 25 mW and images of 52 x 52 

µm in size were collected over 13.6 s. The s.spinosum was imaged using cellular morphology to 

assess when the correct depth of imaging was attained. Band pass filters were used to selectively 

collect autofluorescence from NAD(P)H (350-450 nm), keratin (450-515 nm) and FAD (515-620 nm).  

 

Figure 5.1 Change in autofluorescence of ex vivo human skin with time over 7 days relative to baseline. Total mean 

fluorescence intensity (350-620 nm) (a) at room temperature and (b) at 37oC. Mean photon count from the NAD(P)H 

spectral channel (350-450 nm) (c) at room temperature and (d) at 37oC. Key: Solid line – without culture medium. Dotted 

line - with culture medium. Reproduced from Sanchez et al. (Sanchez, Prow et al. 2010). 

They found that without culture medium and storage at room temperature, tissue autofluorescence 

could still be detected after 7 days duration. The presence of culture medium accelerated changes in 

autofluorescence intensity seen over time, whilst reducing the temperature slowed them. The 

autofluorescence intensity for each day was calculated by averaging the photon counts for each 

image in the 3 samples and normalising by the image taken at day 0 from the excised skin. See figure 

5.1 reproduced from the paper. Over the first 24 hours, when the tissue was incubated without 

culture medium (solid black line), the total autofluorescence intensity reduced to ~50% at room 

temperature (panel a) but to less than 25% at 37 oC (panel b). This drop in intensity plateaued over 
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the ensuing 24 hours and ultimately increased to 200% of its initial intensity on day 4 at room 

temperature. Although the same trend was seen at 37 oC, the intensity only recovered to 50% of its 

initial value.  

Without medium, the NAD(P)H channel showed a slight increase in its fluorescence intensity after 24 

hours at room temperature (panel c), and fluctuating around the baseline intensity over the 

remaining 6 days. At 37oC (panel d), the same drop in intensity over time as that seen with total 

intensity (panel b) was found. 

Fluorescence lifetimes for NAD(P)H were calculated for each pixel using a double exponential model 

using SPCImage (Becker & Hickl, GmbH). Some ex vivo samples showed a new lifetime peak at ~ 800 

ps in τ1 at day 0 in addition to the previously seen peak at ~400 ps seen in vivo.  τ2 showed a 

broadening of the peak at ~2500 ps seen in vivo following excision. τmean showed a progressive 

increase from ~1000 ps to 2000 ps with time whilst autofluorescence was still present over the 7 

days period. No information was included in the paper of the time post-excision the images taken on 

day 0. 

5.2.1.2 Palero et al. 2011 

Palero et al. looked at NAD(P)H autofluorescence in the epidermis of mouse skin over 3.3 hours 

(Palero, Bader et al. 2011). They used MPT but recorded spectrally resolved fluorescence images, 

without lifetime information. The abdomens of two mice were imaged in vivo whilst anaesthetised. 

The changes following euthanasia of the mouse was monitored every 3 minutes for 3.3 hours whilst 

the animal was on a temperature-controlled stage. The epidermis was illuminated using an 

excitation wavelength of 765 nm and power of 5 mW. Images of 224 x 224 pixels covering 100 µm x 

100 µm were acquired over a 2 minute period. The spectral resolution was 0.5 nm over 350 – 600 

nm range i.e. sufficient to detect the small shift in the peak spectral emission between protein 

bound (445 nm) and free (460 nm) NAD(P)H, despite their large spectral overlap. Spectral changes 

were examined over a fixed area within the image sets covering approximately 25 cells from the 

s.spinosum. A spectral shift in the peak fluorescence emission wavelength was detected with time. 

An in vivo spectral peak of 456 nm seen at t= -29 minutes moved to 450 nm after 20 minutes, 455 

nm at 80 minutes and 460 nm at 150 minutes. This suggested a shift from protein-bound to free 

NAD(P)H with time. 
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Figure 5.2 The change in relative amplitude of the fluorescence from a sample of mouse skin over time pre/post 

euthanasia. Key: A1 -protein bound NAD(P)H component, A2 - free NAD(P)H component, A3 - flavins (in the figure). 

Reproduced from Palero et al. (Palero, Bader et al. 2011). 

The total fluorescence intensity was seen to increase initially in all wavelengths, peaking at 80 mins 

(x1.7 fold). It then fell to below the initial intensity after 110 mins.  Linear spectral unmixing was 

performed using 3 spectral components to estimate the changes in protein-bound peak (fixed at 448 

nm), free NAD(P)H peak (fixed at 459 nm) and flavins peak (fixed at 528 nm), see figure 5.2. A good 

fit was obtained using this method and showed that flavins (A3 in the figure) had the smallest 

contribution to the emission spectra of ~5% which remained unchanging over time. They found a 

doubling (x113%) in the amplitude of protein bound NAD(P)H component (A1 in the figure) at 50 

mins, which returned to baseline at 100 mins and remained reduced for the duration of the 

experiment (~70%). The free NAD(P)H component (A2 in the figure) also increased with a broad peak 

at ~100mins (85%) which fell slowly to 25% of baseline amplitude. The greatest change in the 

free/bound NAD(P)H ratio was seen at ~50 mins. 

5.3 Method 

5.3.1 Instrumentation 

Lifetime resolved imaging was performed using the instrument previously been described in Chapter 

4.4. FLIM images were acquired by four emission spectral channels defined as blue (360-425 nm), 

green (425-515 nm), yellow (515-620 nm) and red (620- 655nm). All images were acquired at 760 nm 

excitation wavelength. 

Euthanasia protein bound NAD(P)H

free NAD(P)H

flavins
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5.3.2 Tissue samples 

 

Figure 5.3 An exemplar tissue sample used in our study (ID 4210). (a) Image of BCC in vivo. (b) Image of lesion excised. (c) 

Image following removal of peri-lesional normal skin prior to imaging.  

Patients attending the Dermatology Department, Imperial College Healthcare NHS Trust, having 

suspected skin cancers requiring excision, consented to have their tissue imaged. Larger lesions with 

sufficient peri-lesional normal skin for imaging were selected for this study. 5 skin samples were 

collected, with a typical example presented in figure 5.3. Once excised, the peri-lesional normal skin 

was separated and prepared for imaging as previously outlined in Chapter 4.6.1 (pp95). Briefly, it 

was rinsed and moistened using HBSS and mounted on damp gauze in an inverted plastic petri dish 

containing an embedded cover slip. A field of view (FOV) centrally within the sample without 

obvious superficial blemishes was then selected for imaging. All imaging was conducted at room 

temperature. 

5.3.3 Imaging protocol 

Once the tissue was in focus, the s.spinosum layer of the epidermis was identified visually by cellular 

morphology and used for imaging in all samples. This layer is the thickest in the epidermis and 

therefore easiest to remain within in spite of the large degree of tissue movement that occurred in 

some samples during imaging. Images were acquired and saved as outlined previously in Chapter 

4.6.2 (pp97). Initially, the excitation power was optimised in a plane of focus within 5 µm away from 

that used for imaging, to minimise possible photobleaching/ phototoxicity. Once the imaging plane 

of focus was selected, the excitation power was fixed throughout each experiment. Images were 

acquired over 25.5 seconds using excitation powers between 4-10 mW. All images had a field of view 

of 107 x 107 µm2 and were taken with a resolution of 256x256 pixels with pixel size of 0.42 µm (FIFO 

images, zoom=800). Images were acquired until 3 hours post time of excision. 

The time of excision was noted to the closest minute. Thereafter the time was recorded to the 

second using the PC clock on the DermaInspect®. The time post excision of each image taken was 

extracted from the save time of the FLIM image file.  This save time included a delay of less than a 

minute between completion of image acquisition and the time stamp given to the saved file. This 

a) c)b)
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time delay consisted of manually removing the shielding of the PC computer screen, activating the 

automated save macro following the emitted ‘end of imaging’ audible warning and a relatively fixed 

delay for the PC to save the 128 Megabyte image.  The total delay was in the range of 30-60 seconds. 

This delay however was short compared to the time scale of the experiment. 

When this imaging method was trialled, it was found that the tissue relaxed and moved away from 

the objective and therefore down in relation to the fixed depth of view of the microscope. This 

movement was most pronounced initially but continued to occur over the whole imaging period. To 

maintain a static FOV for the experiment, the depth of focus was adjusted as follows.  

As a reference, the first FLIM image acquired was left on screen, adjacent to the imaging acquisition 

window on the DermaInspect® PC desktop. This reference image was compared by eye to every 

subsequent image taken to ensure the FOV remained static. During period of large tissue movement, 

typically within the initial hour, frames of 2.5 seconds were viewed (with no change to the excitation 

power) to confirm no change occurred from the reference FOV and adjust the FOV depth if 

necessary. Scans of 2.5 seconds were used for this purpose to minimising possible photobleaching 

effects to the tissue, before acquiring the actual FLIM image over 25.5 seconds. If the FOV of the 

reference image could not be found due to excessive movement, another reference image was 

taken and used for successive image acquisitions.  

5.3.4 Image analysis 
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Figure 5.4. A series of sequentially taken FLIM images from sample 4210 taken in the yellow channel, numbered in the 

bottom left corner of each image. FLIM images 1,3,7 were discarded due to changes in FOV compared to the remaining 

images. The FLIM scale bar is shown on the right of each image. The image acquisition time given in min:seconds is shown 

centrally under each image. 

FLIM images were generated, fitting each pixel with a single exponential decay model, as described 

in Chapter 4.10.3 (pp104). This allowed images with a difference in their FOV, not identified during 

image acquisition, to be discarded. An exemplar set of acquired images including those discarded 

from further analysis is presented in figure 5.4. 

Due to the large number of images acquired and the variability of manually defining the same region 

of interests (ROIs) over a series of near identical images, an automated image segmentation 

algorithm was used. The segmentation was based on multiscale nonlinear local thresholding (Santos, 

Zaltsman et al. 2008) and is described further in Chapter 4.10.8 (pp111) and illustrated for a number 

of sequentially acquired images in figure 5.5. The fluorescence lifetimes parameters (τ1, τ2, f1, τmean) 

of each ROI in the images were then fitted using a double exponential decay model as described in 

Chapter 4.10.5 (pp106). 

 

Figure 5.5 Set of sequentially acquired images (ID 11, 12, 13) taken in the yellow channel from sample 4117. 1st column 

(a,e,i) - FLIM images with lifetime scale bar on the right of each panel. 2nd column (b,f,j) – fluorescence intensity images. 3rd 

column (c, g,k) – automatically segmented ROIs overlaid on each intensity image. 4th column (g,h,l) – close up of top left 

hand corner of images of automatically segmented ROIs. Images 107 µm x 107 µm, 256x256 pixels. Scale Bar 25 µm. 
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In order to monitor the changes in lifetime between images, the average ROI lifetime parameters 

were calculated for each image. 

5.4 Results 

Tissue   Patient Details     Time  (seconds)     

Sample Lesional Diagnosis Body Site Sex Age 
Skin 

Type 
Initial 

Image 
1st Analysed 

Image 
Last Analysed 

Image 
Images 

Analysed 
4117 Seborrhoeic Keratosis Back m 69 2 994 1354 9950 15 
4120 Melanoma Back m 32 3 1356 2428 10208 14 
4121 Seborrhoeic Keratosis Lower Leg m 75 2 1084 1434 10264 20 
4122 BCC Face m 46 3 688 792 10068 18 
4210 BCC Back m 50 3 868 2075 10881 16 

Table 5.1 Details of the 5 tissue samples and imaging parameters used in the study. 

The origin of the 5 tissue samples and imaging timings are shown in table 5.1. Although all samples 

originated from males, they varied in age (range 32-75 years), body site and lesional diagnosis. 

The time taken to prepare tissue for imaging prevented immediate assessment following excision. 

The first image was taken an average of 16:38 minutes (range 11:28 - 22:36) after excision. Once 

prepared however, tissue movement prevented tracking a stable FOV until an average of 26:56 

minutes (range 13:12 – 40:28) after excision. Once tracked, the average movement of this FOV was 

of 20 µm (range 5 – 33 µm) over the remaining imaging time. The tissue movement before this time 

was greater but could not be recorded. 

Figure 5.6. FLIM images of the stratum spinosum taken from each sample in the study (sample number labelled in the left 

lower corner) taken from the yellow spectral. Images 107 µm x 107 µm, 256x256 pixels channel. Lifetime scale bar shown 

to the right of each panel. Scale Bar 25 µm. 

Exemplar FLIM images of the s.spinosum taken from each sample are illustrated in figure 5.6. 

Although the cells shown in this figure appear to have similar morphology, the FLIM images show 

that their melanin content varies between samples, indicated by its short fluorescence lifetime.  No 

reduction in the signal to noise ratio was noticed in the images over time to suggest loss of cell 

4117 4120 41224121 4210
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integrity and leakage of intracellular fluorophores into the extracellular space. This was assessed by 

visually assessing the images over time but was not quantitatively assessed. 

5.4.1 Fluorescence Intensity 

 

Figure 5.7 Change in average pixel brightness per image over time for each sample and spectral channel. 

The mean pixel brightness was calculated for each time-point imaged by taking the sum of (time-

integrated) counts over ROI pixels and dividing by the total number of ROI pixels. Only ROIs for 

which fluorescence lifetimes were fitted in all 4 channels, were considered.  This is plotted for each 

spectral channel and sample in figure 5.7. The percentage change in the mean pixel brightness over 

all samples between the first and last image analysed were 106%, 105%, 112% and 112% for the 

blue, green, yellow and red spectral channels respectively. This indicates that no significant 

photobleaching was seen. 

5.4.2 Fluorescence Lifetime 

 

  Emission Spectral Channel 

Lifetimes Blue Green Yellow Red 

 τ1 (ps) 120 347 199 160 

 τ2 (ps) 4040 3610 2677 2928 

 f1 0.39 0.38 0.45 0.57 

 τ mean (ps) 2460 2366 1563 1343 
Table 5.2 shows the average τ1, τ2, f1 and τmean over all ROIs and images, by the emission spectral channel.  

0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

140

160

180

200

Time after excision [seconds]

A
v
e
ra

g
e
 b

ri
g
h
tn

e
s
s
 p

e
r 

p
ix

e
l 
[c

o
u
n
ts

]

 

 
B 4121

G 4121

Y 4121

R 4121

B 4120

G 4120

Y 4120

R 4120

B 4117

G 4117

Y 4117

R 4117

B 4122

G 4122

Y 4122

R 4122

B 4210

G 4210

Y 4210

R 4210



 

124 
 

Table 5.2 summarises τ1, τ2, f1 and τmean for all ROIs over all images by emission spectral channel. It 

shows that the lifetime parameters for ROIs are similar in the yellow and red spectral channels in 

comparison to the blue and green channels. A trend for the f1 to increase and τmean to decrease with 

emission wavelength is also seen. 

 

Figure 5.8 The average change in lifetime for all ROIs in each image from baseline over time, for each sample. (a) Blue 

channel (b) Green channel (c) Yellow channel (d) Red channel.  

The deviation of τmean from baseline over time, for each sample and spectral channel is plotted in 

figure 5.8. On visual examination, although there are changes in lifetime over time seen, no clear 

trends could be identified.   

 

Figure 5.9 Dot Plot of average reduction in lifetime over time for each sample (diamonds) with the mean lifetime reduction 

per channel highlighted (dashes). 
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(a) Blue channel
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(c) Yellow channel
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(d) Red channel

(b) Green channel
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To evaluate the τmean over time further, linear regression was used to fit a trend line for each sample 

for each spectral channel. The slope calculated for each sample has been plotted in figure 5.9. It 

shows an average drop of 61, 18, 21 and 75 ps/hour in the blue, green, yellow and red spectral 

channels respectively over all samples. This small but consistent change in all spectral channels 

represents a 5.6%, 1.7%, 3.2% and 8.0% reduction in τmean from the baseline over the time period 

investigated. A summary of the variation in τmean for each spectral channel and the percentage 

change in lifetime broken down by sample and spectral channel is shown in table 5.3. 

 

  Emission Spectral Channel 

 

Blue Green Yellow Red 

Variation in mean lifetime from start(ps) 8 - 338 16 -218 38 - 205 32 - 283 

Sample 4117 (% change)  -13.4 -9.0 -13.4 -13.0 

Sample 4120 (% change)  -0.8 3.4 2.7 -22.6 

Sample 4121 (% change)  -14.8 -1.5 -5.4 -2.8 

Sample 4122 (% change)  0.3 0.6 4.6 4.2 

Sample 4210 (% change)  0.7 -2.2 -4.5 -5.7 

Mean % change from start -5.6 -1.7 -3.2 -8.0 
Table 5.3 Summary of the variation in τmean and percentage change in lifetime over time for each sample and spectral 

channel. 

Table 5.3 shows that the percentage change in lifetime varies between 1.7-8.0% from the start of 

the experiment. However the variation in lifetime over this period is greater. This can be seen in the 

graphs shown in figure 5.8 that track the average lifetimes per FOV in each spectral channel over 

time and by the data in the first row of table 5.3. In an attempt to put this variation in context to the 

normal variation in lifetimes found in the skin, we calculated the variation in τmean between cells 

from images taken from the s.spinosum layer of the skin on a per FOV basis. This allowed the data to 

reflect intrapatient variation in the lifetimes of cells in this skin layer and exclude the variations 

caused by imaging different body sites and an interpatient comparison. Therefore ranges of τmean for 

all the cells imaged from the s.spinosum layer in normal skin on a FOV basis (and therefore patient) 

were calculated by subtracting the cellular τmean at 25th from the 75th percentile. The spread of 

ranges from all these FOVs are listed in Table 5.4 for each spectral channel. The results shown in this 

table indicates that the maximum variation in lifetime seen following excision of the skin (see row 1 

in table 5.3) is close to the minimum intracellular variation in lifetime seen in this skin layer for 

normal skin. 
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Spectral Channel FOVs 
Minimum Lifetime 

Range (ps) 
Maximum Lifetime 

Range (ps) 

Blue 33 159 817 

Green 33 105 779 

Yellow 33 197 1651 

Red 31 84 5171 
Table 5.4 The range in τmean between cells found in the s.spinosum of normal skin. Calculated as the difference between the 

75th and 25th percentile on a per FOV basis.  

It has been previous described in Chapter 2.6.5 (pp58), that intracellular fluorescence from NAD(P)H 

is expected to dominate in the spectral range defined by the green spectral channel. Changes in free 

and protein bound NAD(P)H reflect changes in intracellular metabolism and are thought to be 

described by τ1 and τ2 respectively in this spectral range (Vishwasrao, Heikal et al. 2005).Table 5.3 

has already shown that the change in τmean over all samples averaged 1.7% over time in the green 

channel, suggesting that there may not be a large change in τ1, τ2 or f1. In order to investigate if this 

is the case τ1, τ2 and f1 from the green channel are plotted in figure 5.10. This graph shows an 

average of -0.80%, +0.60% and +4.80% change in τ1, τ2 and f1 respectively between the first and last 

plotted values. Therefore, as suggested by no significant change in τmean, no significant changes over 

time for any of these lifetime parameters was seen in the green channel. 

 

Figure 5.10 Graphs showing the change in ROI average fluorescence lifetime with time for the green spectral channel 

representing NAD(P)H fluorescence, illustrated per sample. (a) τ1 (b) τ2 (c) f1. 
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5.4.3 Lifetimes in vivo vs ex vivo 

 

Figure 5.11 The difference in median τmean per sample per spectral channel for images acquired ex vivo and in vivo. Error 

bars show 25th and 75th percentiles. 

Finally the median τmean from cells from normal skin are compared in images acquired ex vivo (n=8) 

and in vivo (n=19). The median τmean was recalculated per sample (not per cell) in an attempt to 

remove bias in the calculations from some samples having more cells than others. The median τmean 

for the samples were found to be 1886, 2127, 1389 and 1033 ps in the blue, green, yellow and red 

spectral channels respectively for samples imaged in vivo, see figure 5.11 The ex vivo samples were 

found to have a % difference in median τmean of -0.73%, -0.75%,-1.68% and +11.9% in the blue, 

green, yellow and red spectral channels respectively. This difference between ex vivo and in vivo 

measurements was not found to be statistically significant using the Wilcoxon rank sum test (p = 

0.98, 0.70, 0.63 and 0.23 in the blue, green, yellow and red spectral channels respectively).  

5.5 Discussion 

5.5.1 Methods 

In this study the changes that occur in tissue autofluorescence of normal skin over time following 

surgical excision has been investigated. An ideal study design would have allowed precisely the same 

area and depth in the skin to be measured continuously in vivo and following excision. Experience 

using the DermaInspect ® in vivo has shown that image acquisition is very sensitive to movement 

artefacts when attempting to acquire images at a fixed depth with submicron precision over 25.5 

seconds. This difficulty tracking a set FOV in vivo and the difficulty in finding this set FOV ex vivo, 

made this ‘ideal study’ unachievable. In the literature, the images presented by Sanchez et al. show 

that they were not able to use identical FOV for sequential images either (Sanchez, Prow et al. 2010). 

Palero et al. only managed to both maintain a fixed FOV and monitor changes in autofluorescence 
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emission spectra in vivo and ex vivo in mouse skin by euthanising the mouse during monitoring 

(Palero, Bader et al. 2011).  

The tissue movement that occurred during imaging also prevented the basal layer (which is a single 

cellular layer thick) from being monitored in this way consistently. This is the most metabolically 

active layer in the skin and most likely produced that greatest response following surgical excision. 

One disadvantage of the method used in this study were the delays that occurred between excision 

of the tissue sample, tissue preparation and securing a trackable FOV to image. Although the time 

taken to prepare the samples for imaging did improve with practice to < 5 minutes, tissue movement 

within the petri dish caused a seemly random variation in the time to the first acquired image and 

first tracked image. This prevented any data being collected from any sample before 13 minutes 12 

seconds (seen for sample ID 4122).  

Lateral movements of the tissue within the petri dish were prevented by placing the sample on 

moistened gauze and firmly securing the petri dish under the microscope objective. These measures 

were successful as little lateral movement was seen. However, it is possible that the pressure 

required to close the petri dish lid, so as to ensure the embedded cover slip lay firmly against the 

sample, compressed the tissue. The compression may have acted on both the tissue itself, with the 

loss of extracellular fluid from the cut tissue margins, and supportive underlying gauze leading to a 

vertical shift away from the microscope objective. Another possible contributing cause for the tissue 

contraction is the cooling of the tissue from body temperature to room temperature during the 

investigation. 

The methods used for fixing the FOV to within a micron during imaging are detailed in the methods 

section above. This method was necessary because movement by just a few microns in depth 

affected lifetimes. For example, a 5 µm shift in depth noted between  9060 and 9162 seconds after 

excision in sample ID 4120 caused a change of 29, 3, 2, 2 ps in τ1, a 147, 70, 97, 77 ps in τ2 and 9, 74, 

86, 78  ps in τmean in the blue, green, yellow and red channels respectively. Some of these differences 

can be attributable to the automatic segmentation algorithm, as discussed in the following 

paragraph. However a true difference in the fluorescence lifetime may be accounted for by slight 

changes in quantity of fluorophores fluorescing between the images such as NAD(P)H and melanin. 

This lifetime change is small compared to the variability in lifetimes seen between cells in the 

s.spinosum (as shown in Table 5.4), however any artifactual changes affect the ability to detect small 

‘true’ changes in lifetime. 
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The automatic segmentation algorithm for ROIs was also found to be sensitive to small changes in 

FOV between images. It resulted in slight changes in the defined ROIs between almost identical 

images. This has been illustrated in figure 5.5. It shows 3 consecutively taken images from sample ID 

4117 (image 11, 12 and 13) taken at 5752, 6428 and 6956 seconds. As can be seen from the 

fluorescence intensity images (panels b, f, j), the images are almost identical. Panels d, h and I show 

a close up of the top left hand corner of the automatically segmented images. These pictures clearly 

highlight the differences in the segmentation process between these fluorescence images. These 

differences were not felt to significantly affect the average lifetime parameters per image used in 

the analysis. However, its influence is difficult to quantify and distinguish from changes in lifetimes 

for other reasons e.g. movement, change in cellular metabolism. 

5.5.2 Fluorescence Intensity Changes 

The results from this study have shown that no photobleaching occurred during the imaging process. 

The mean pixel brightness actually increased steadily over the period imaged between 105-112% 

dependent on spectral channel, as can be seen in figure 5.7. In comparison to the experimental set 

up by Sanchez et al., our study would be the equivalent to using no culture medium and at a 

temperature between 37 oC and room temperature (Sanchez, Prow et al. 2010). In contrast to our 

results, they found a drop in fluorescence intensity over the first 24 hours, followed by an increase 

until day 4. As only daily readings were taken, it is impossible to extrapolate what their findings at 3 

hours might have been (the end time for this experiment). Palero et al. did demonstrate a peak in 

total fluorescence intensity at 80 minutes (x1.7 fold from baseline) followed by trough to below the 

initial intensity after 110 minutes (Palero, Bader et al. 2011) over the 3.3 hour time period they 

monitored the mouse skin.  Although these results are more consistent with those found in this 

study, a large increase in intensity was not seen and no ensuing decrease was seen. Our data 

demonstrated a steady rise in the fluorescence intensity over time. The nature of this change was 

not investigated further in this study, but one can speculate it was caused by either a change in the 

metabolic state of the tissue as a direct result of the excision or a photochemical induced reaction.  

5.5.3 Fluorescence Lifetime Changes 

Table 5.2 shows that τ1 and τ2 in the yellow and red spectral channels are significantly shorter than in 

the remaining channels. This is likely to reflect an increase in the contribution of melanin to the 

fluorescence in these channels. The data shown in this table can also be used to summarise the 

fluorescence lifetime parameters found in normal human skin. A direct comparison of these 

lifetimes with the published literature is complicated by differences in the excitation parameters, 

emission spectral filters and spectral channels used and method of lifetime calculation used between 

studies despite imaging similar tissue with the same device (the DermaInspect®). Benati et al. 
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performed FLIM analysis of normal skin in vivo (Benati, Bellini et al. 2011). They also used 760 nm 

excitation power, 25.5 seconds acquisition times and similar sized FOVs. They used higher powers of 

20-45 mW and only measured lifetimes in one very broad spectral channel. Cellular lifetimes 

calculated using a single exponential decay model for the lower epidermis (s.spinosum/basal layer) 

ranged between 882-1145 ps depending on age and body site. This was shorter than those 

calculated for our data for any spectral channel (range 1343-2460 ps). Breunig et al. also published 

lifetimes of each layer of human skin taken in vivo from the forearm (Breunig and König 2011). In 

keeping with our data, pixels were fitted with a double exponential lifetime model. Images were 

taken over 7-13 seconds but at 740 nm excitation wavelength, using excitation powers of 10 – 40 

mW and the fluorescence was not separated into multiple spectral channels. τ1 and τ2 were found to 

be 450 ps and 3.0-3.2 ns respectively in the stratum spinosum. His co-author, Karsten König cites τ2 

of 2.3 ns for the lifetime of cells in this same skin layer in vivo (τ1 fitting the SHG IRF) in his review 

article using the same equipment (König 2008). These published figures for lifetimes  calculated 

using a double exponential decay model are most similar to the mean lifetimes calculated for the 

green channel of τ1 of 347 ps and τ2 of 2366 ps in our data and attributed to mainly NADP(H) 

fluorescence. 

Figure 5.8 shows that there is change in τmean of the skin over time following excision in all spectral 

channels. The calculations presented in the first row of table 5.3 and in table 5.4 also show that this 

variation is small compared to the natural variation found in intracellular τmean between cells in this 

skin layer.  

The results illustrated in figure 5.9 demonstrate a small but consistent drop in τmean of between 18-

75 ps/hour over the time imaged, dependent on spectral channel. This trend was difficult to 

appreciate in the plots of τmean over time in figure 5.8 and represents between 1.7-8.0 % drop in 

lifetime over time over the study. To determine if this change could be due to changes in NAD(P)H 

fluorescence, lifetime parameters in the green spectral channel were examined, see figure 5.10. It 

shows that the reduction in lifetime over time was not a direct consequence to changes in NAD(P)H 

metabolism, as τ1 and τ2 changed by just < 1% over this time. These results do not support the 

findings by Sanchez et al. They noted a new peak in τ1 at ~800 ps and a broadening of the lifetime 

peak of τ2 following excision on day 0 in the fluorescence lifetime of their NAD(P)H spectral channel. 

Palero et al. did not measure lifetimes but did conclude that changes occurred in the free to protein 

bound NAD(P)H ratio over time, based on their analysis using spectral unmixing. As stated above, 

this was not seen in our data as no changes were seen in NAD(P)H metabolism based on the 

lifetimes from our green spectral channel.  
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The papers by Sanchez et al. and Palero et al. do have some similarities. They both describe 

increases in the total fluorescence intensity, followed by a decrease with time. They also both 

describe some change to the fluorescence from NAD(P)H over time. These changes may relate to the 

differences in the metabolic rates between the human skin and mouse skin used for these 

investigations. The human skin appears to have a slower metabolic rate than the mouse skin and 

therefore more resistant to the ischaemic changes caused by excision/euthanasia. It is possible that 

these changes may have been reproduced if the skin had been investigated over a longer time 

period. 

Finally, images taken from 27 patient samples acquired from normal skin in vivo and ex vivo were 

analysed and compared. The median τmean per sample between ex vivo and in vivo measurements 

was not found to be statistically significant using the Wilcoxon rank sum test in any spectral channel. 

5.6 Conclusions 

In conclusion the changes in tissue autofluorescence of normal human skin following surgical 

excision between 11 minutes and 3 hours in 5 samples have been investigated using multispectral 

FLIM for the first time. The skin was excited at 760 nm wavelength and the autofluorescence was 

collected from the s.spinosum using four emission spectral channels. A steady increase in the mean 

pixel fluorescence intensity of 105-112% with time was demonstrated, dependent on spectral 

channel suggesting that photobleaching did not occur. A small but consistent drop in the τmean over 

time of 1.7-8.0% was also demonstrated. A <1% change was seen τ1 and τ2 in the green spectral 

channel in which NAD(P)H fluorescence dominates. 

The changes described by Sanchez et al. in human skin over 7 days and those described by Palero et 

al. in mouse skin over 3.3 hours were not seen in this study. This difference may be caused by the 

difference in the metabolic rates between human skin and mouse skin. 

It has then been shown that there is no statistical difference in lifetime between samples of normal 

skin acquired in vivo vs. ex vivo. These results support the use of freshly excised human skin as a 

surrogate for in vivo imaging for MPT and MPT FLIM investigations over the initial few hours post 

excision. It also validates the conclusions draw by previous authors using MPT whom have studied 

freshly excised skin to extrapolate changes seen in vivo. 
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Chapter 6. An analysis of cellular morphology and FLIM of 

normal human skin using MPT.  

6.1 Introduction 

In this chapter multiphoton tomography (MPT) FLIM images and spectral images taken from normal 

skin both in vivo and ex vivo are examined. The results & discussion section of this chapter can be 

divided into 3 sections. This is the first time a detailed analysis has been performed on normal skin 

using multispectral FLIM. 

A- Morphological features seen in multispectral MPT images from normal skin are presented 

and discussed. Emission spectra from depth resolved images and spectrally resolved images 

are then presented and correlated with the lifetime resolved images. 

B- Investigation of the differences in cell morphology and lifetimes between cells from different 

epidermal skin layers within normal skin. 

C-  Investigation of the differences in cell morphology and lifetimes between cells from normal 

skin in patients with differing age, sex, skin type and body site. 

6.2 Methods 

6.2.1 Instrumentation 

The instrument used and the minor modification made during the acquisition of data analysed in this 

section have previously been described in chapter 4. The FLIM detection module acquired FLIM 

images using time correlated single photon counting (TCSPC) using 256 time bins. The emitted 

fluorescence was spectrally separated using four emission spectral channels, defined as blue (360-

425 nm), green (425-515 nm), yellow (515-620 nm) and red (620- 640/655nm). The emission spectral 

filter in the red channel was altered so that its long edge was broadened from 640 to 655 nm over 

the period of data collection and 5/30 samples were imaged prior to this alteration.  This could be 

accounted for by daily calibrating by acquiring an IRF and fluorescence decay from a blue 

fluorescence slide. A spectrometer module was used to collect the steady state hyperspectral 

images separately. 

6.2.2 Tissue preparation 

For this investigation imaging was performed both in vivo (n=18) and on freshly excised ex vivo 

samples (n=12). Patients attending the dermatology clinic at the Hammersmith site of Imperial 

College London Healthcare NHS Trust gave written informed consent to participate. 
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In vivo imaging was performed on either the inside (medial) and/or outside (lateral) forearm of 

patients. An area was selected without skin pathology or obvious skin blemishes for imaging of 

‘normal skin’. 

Excised samples of suspected malignancies with sufficient normal peri-lesional skin were selected for 

imaging of ex vivo ‘normal skin’. The peri-lesional normal skin was separated from the lesion using a 

surgical blade immediately following excision of the lesion. Freshly excised tissue was rinsed with 

Hanks Balanced Salt Solution buffer without phenol red, calcium or magnesium (Gibco®, 

Invitrogen™, CA, USA), its surface moistened with the buffer solution and placed on damp gauze in 

an inverted glass bottomed petri dish (80-170 µm cover slip Matek®, MA,USA) following excision. A 

field of view (FOV), sited centrally within the sample, without obvious superficial blemishes, was 

then selected for imaging. 

6.2.3 Imaging protocol 

Imaging was performed as outlined previously in Chapter 4.6 (pp95). Image stacks were typically 

taken from each FOV at 10 µm depth intervals until the dermis was reached. In 10/144 images tissue 

movement had occurred, rendering the depth readout inaccurate.  

All images were taken using 760 nm excitation wavelength, unless specifically stated otherwise. FLIM 

images were acquired over 25.5 seconds. These images were taken using either 128 x 128 pixel or 

256 x 256 pixel resolution with FOV varying between 56 µm x 56µm2 and 203 µm x 203 µm2 (usually 

107 µm x 107 µm2). Therefore pixel size ranged from 0.42-0.84 µm between images. The ex vivo 

cells/ROIs used in the analysis were imaged on average ±SD of 60 ±41 minutes from excision. 

Hyperspectral images acquired using the spectrometer required higher excitation powers to achieve 

an adequate photon count and were always taken following FLIM image acquisition. Images were 

either 32x256 or 41x256 pixels in size and acquired over 49.9 seconds. 

6.2.4 Image Analysis 

A detailed description of the lifetime analysis is outlined in chapter 4.10 (pp103). In summary, FLIM 

images in each channel were generated by fitting a single exponential decay to the fluorescence in 

each pixel in the image. For the lifetime analysis fluorescence decays for each ROI (not pixel) in each 

channel were fitted to a double exponential decay model. ROI fluorescence decay curves from a 

single spectral channel containing fewer than 1000 photons were felt to have insufficient photons to 

allow the double exponential decay fitting to be sufficiently reliable and so were excluded from the 

analysis. The number of ROIs (± SD) per patient was 230 (±179). 
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For the analysis of lifetime changes with depth, each image containing cells was defined as 

originating from the stratum granulosum, stratum spinosum or the basal layer based on the 

morphology of the cells in the image. The keratinocyte morphology from MPT images from each 

epidermal layer published by Koehler et al. (Koehler, Zimmermann et al. 2011) was used as a guide 

to label the epidermal layer of each image and is reproduced in Chapter 3.4. The actual depth 

recorded by the piezo objective positioner was not felt to be sufficiently accurate or reliable as great 

variability existed in the thickness of all cellular layers of the epidermis between patients. The 

undulated shape of the basal layer also meant that the cell layer would vary for a given depth within 

a small area, even within the same patient, depending on the depth of the dermal papilla. 

As the stratum corneum is acellular in normal skin, no ROIs were defined from this layer. Due to the 

angle of the sectioned images and the undulating nature of the basal layer, a number of images 

spanned more than one layer. In such cases images were labelled according to the layer of the 

majority of the cells in the image. 

Morphological features in the images were identified from the MPT intensity and FLIM images. 

6.3 Results & Discussion 

The results and discussion have been separated into 3 distinct sections that examine different 

aspects of normal skin fluorescence.:-  Sections A-C. 
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6.4 SECTION   A – Image Analysis 

The results presented in section A show that depth resolved spatially co-registered multispectral 

fluorescence intensity and FLIM images can be acquired using this instrument. Initially a complete 

set of fluorescence images from a single sample of ex vivo skin is presented. The data sets acquired 

were sufficiently detailed to perform an analysis of emission spectra and lifetimes from user defined 

ROIs within each image, which is also demonstrated.  

Following this, specific features seen in the acquired images and an analysis of the spectral images & 

FLIM images of the dermis is presented. 

6.4.1 Fluorescence Images 

Figure 6.1 is split over two pages demonstrating a montage of images taken from a sample of ex vivo 

normal skin. Both multispectral FLIM images and hyperspectral images were taken in succession 

from the same FOV at each depth. The FLIM images were acquired using the FLIM detector module 

and were 107 µm x 107 µm2 in size, 256x256 pixels in resolution and taken over 25.5 seconds. The 

hyperspectral images were acquired using the spectrometer module (described in Chapter 4.6.3) 

over 49.9 seconds. They were from the same area but were 32x256 pixels in resolution. For each 

depth, the following images are presented:- a combined fluorescence intensity image from the four 

FLIM module PMTs; false colour FLIM/intensity images from the blue, green, yellow and red 

channels; a total fluorescence intensity image collected from the spectrometer camera and a false 

colour hyperspectral/intensity image. 

From figure 6.1, little structure can be seen from the s.corneum layer (column a). Cells in the 

epidermis can be seen in the s.granulosum (column b &c) & s.spinosum (column d &e). An increase 

in the nuclear to cytoplasm ratio can then be seen with depth. Cells with increased melanin content 

have shorter τmean and appear redder in colour in the FLIM images (rows 2-5). The images from the 

basal layer (column f) demonstrate the transition from the basal layer (identified by the cellular 

areas on the bottom left of the images in column f, except f2) to the dermis (identified by the lack of 

cells in the top right of the images, except f2). Panel f2 shows the images taken from the blue FLIM 

channel and identifies collagen fibres by their SHG signal. The emission wavelength spectral range in 

the blue channel is too short for cellular fluorescence to be detected and is therefore relatively 

‘selective’ for dermal collagen, except for some melanin fluorescence, which has a broad emission 

spectrum. Melanin fluorescence can be seen in panel d2, whilst dermal collagen is seen in panel g2 

clearly. Panels g3 and g4, also taken from the dermis, show cord like structures. The emission 

spectra from these structures (i.e. in the green and yellow channels), their shape and their presence 

in the dermis would suggest dermal elastin fibres. However, the lifetime of these fibres from the 
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FLIM images would suggest that their lifetime is ~1-1.5 ns with is shorter than a τmean ~2-3 ns found 

in previous studies of elastin (see Chapter 2.6.3). One explanation is the presence of other 

fluorophores in proximity to the fibres affecting the calculated lifetimes due to the binning and 

smoothing that occurs to generate the FLIM images. When elastin fibres are imaged in isolation (see 

section 6.4.4), their lifetime is closer to that found in the literature. 

Rows 6 and 7 in figure 6.1 show the images acquired from the spectrometer. The images in row 7 

merge the wavelength of peak intensity with the intensity image. The cell outlines appear less well 

defined than the merged FLIM images (in rows 2-5) because they have a reduced horizontal 

resolution, as described above. Despite this, the resolution remains sufficient to co-register 

individual cells from images taken using the FLIM PMTs and the spectrometer. The images in row 7 

of the spectral images illustrate the low spectral contrast between the cellular and acellular areas in 

the images, ranging from ~425 -450 nm. 
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Figure 6.1 Fluorescence images from a number of depths from a sample of normal skin acquired ex vivo. Images were 

acquired using the FLIM module detectors and the hyperspectral camera in the spectrometer module of the 

DermaInspect®. Scale Bar 25 µm. FLIM scale shown to right of each row for each spectral channel. Spectral images plot the 

mean spectral emission wavelength. 
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6.4.2 Cellular Emission Spectra and lifetimes 

The software allows the emission spectrum from manually defined ROIs within the spectral images 

to be extracted from the data collected. This allows the emission spectra from individual cells at 

different depths to be compared. 

 

Figure 6.2 Figure plotting the emission spectra from cells at different depths taken from the sample of freshly excised 

normal skin illustrated in figure 6.1 using the hyperspectral depth resolved images. 

Figure 6.2 shows emission spectra from ROIs taken from the spectral images illustrated in figure 6.1. 

The emission spectrum taken from the  s.corneum (7 µm) combined the fluorescence signal from the 

entire image. The spectra shown for the remaining layers were taken by drawing a ROI around either 

single cells or small groups of cells in an image, depending on their size.  

The figure shows that the emission spectrum acquired from the s.corneum (7 µm layer) is noticeably 

shorter than the remaining layers. A peak intensity between 440-480 nm can be seen which is 

expected to arise from keratin fluorescence, since this is the major constituent in this layer. It 

correlates well with the emission spectrum published for keratin in solution, which peaks at 450 nm 

when excited at 750 nm (Pena, Strupler et al. 2005) and ~465 nm when excited at 760 nm (Palero, 

de Bruijn et al. 2007).  

The cellular fluorescence from the s.granulosum (depths 30 µm) and s.spinosum (60µm) have similar 

emission spectral shapes and peak intensities ~470 nm. This is at the upper limit of the range 

expected for NAD(P)H and may be longer because of contributions from flavins that have a spectral 

peak ~525 nm. A shift in the emission spectrum towards longer wavelengths in the basal layer and 

dermis (depths 100 µm and 120 µm) can also be seen in figure 6.2. This might represent a greater 

contribution from melanin autofluorescence or a different metabolic rate of the cells in these lower 

layers affecting the emission spectra of NAD(P)H between bound and unbound fractions (Palero, 
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Bader et al. 2011).The fluorescence emission spectrum taken from the cells in the dermis (120 µm 

depth) has a large peak present at 365 nm. This wavelength corresponds to SHG from extracellular 

collagen when excited at 760 nm which should have been rejected by the manually defined ROIs 

used for the lifetime analysis. It proves that, although a cluster of cells in this layer were defined, 

some collagen was also selected. As collagen is ubiquitous in the dermis and its SHG signal is very 

strong, this signal is not surprising. 

 

Figure 6.3 The variation of τmean acquired from cells/cell clusters plotted according to spectral channel and cell layer/depth 

in the sample from the ex vivo skin illustrated in figure 6.1. 

As paired spectral and FLIM images were acquired from the same FOV, intracellular fluorescence 

lifetimes could also be calculated from these cells/cell clusters. The results of τmean of these ROI are 

shown in figure 6.3. As stated in the previous section, the greatest contribution to the lifetime in the 

s.corneum is from keratin. The lifetimes calculated from this layer in the 4 spectral channels (1033-

1625 nm) are in keeping with the lifetime for pure keratin taken from a single spectral channel of 

1400 ps (Ehlers, Riemann et al. 2007). Also as stated in the previous section, a SHG signal from 

extracellular collagen in the cellular ROIs from the basal layer and dermis (100 µm, 120 µm depth) 

accounts for the spuriously short intracellular lifetimes calculated for these layers in the blue 

channel. 

The lifetimes from the green channel in the s.granuolsum, s.spinosum and basal layer are expected 

to to be dominated by NADP(H) but also include a contribution from flavins. The τmean of NAD(P)H is 

dependent on environment and has been reported to vary between 444-948 ps, with the protein 

bound component (τ2) calculated to vary between 2.03 and 6.04 ns (Vishwasrao, Heikal et al. 2005; 

S.Corneum
(7 µm)

S.Granulosim
(30 µm)

S.Granulosim
(40 µm)

S.Spinosum
(60 µm)

S.Spinosum
(80 µm)

Basal Layer
(100 µm)

Dermis
(120 µm)

Blue 1625 2340 2745 1546 2482 150 83

Green 1375 2198 2302 1890 1831 1858 1871

Yellow 1438 1548 1704 1370 1392 1545 1461

Red 1033 1035 982 1040 1059 927 1010

0

500

1000

1500

2000

2500

3000

Li
fe

ti
m

e
 (

p
s)

Cell Layer/ Depth 

Variation of intracellular τmean with cell layer/depth



 

142 
 

Skala, Riching et al. 2007). The lifetime of free flavins varies between 2.3-5.2 ns when free and ~250 

ps when protein bound (Nakashima, Yoshihara et al. 1980; König and Schneckenburger 1994; Yang, 

Luo et al. 2003). These values compare with an average τmean calculated from the data presented 

above over all the images of 2.02 ns. This figure is in reasonable agreement with the published 

values. We suggest that the drop in τmean between the s.granulosum and the deeper layers either 

reflects an increased melanin contribution to the fluorescence in this channel or reflects a difference 

in fluorescence arising from NAD(P)H & flavin in these metabolically more active cells deeper in the 

epidermis. 

The cellular lifetimes in the red spectral channel shows little variation with depth and an average 

τmean of 1.01 ns over the cellular layers (30-100 µm). The lifetime of melanin is expected to  dominate 

in this channel and this value is consistent with a  τmean of 1.23 ns reported for synthetic melanin 

(Teuchner, Freyer et al. 1999). 

6.4.3 Epidermal Cytoplasmic Autofluorescence 

 

Figure 6.4 Illustrates paired images of the same FOV within the s.spinosum using different excitation wavelengths and 

acquired from the green spectral channel. Scale Bar 25µm 

Figure 6.4 shows a selection of paired images taken in the green channel, from identical FOVs and 

depths, but using different excitation wavelengths (760 and 880 nm). The images were taken from 

the s.spinosum from an ex vivo sample of normal skin (ID 4038 fov1). The images taken using an 

excitation wavelength of 760 nm illustrate the typical appearance of non-fluorescent nuclei, 

fluorescent peri-nuclear cytoplasm and the presence of apparent intercellular spaces with little/no 
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fluorescence. The brighter ring of autofluorescence around the nucleus of the cell may reflect the 

higher concentration of mitochondria, and therefore NAD(P)H in this area of the cell. 

Different contrast can be seen in the images shown when excited at 800 nm. This reflects the 

different fluorophore absorption and emission profiles at 880 nm compared to 760 nm. These 

images appear to now show the cell membrane, which was absent from the images taken at 760 nm. 

They show that the cells are in fact confluent. The appearance of intercellular spaces was therefore 

an artefact of low/absent autofluorescence from the peripheral cellular cytoplasm in images when 

excited using 760 nm. This is consistent with images of the skin acquired in vivo using confocal 

microscopy, which show cellular confluence in the epidermis (Rajadhyaksha, Grossman et al. 1995). 

It is noted that this artefact will therefore affect all morphological assessments of cells, including 

calculations of the cell size and shape when images acquired at 760 nm are used. This artefact was 

not as apparent in the images acquired from the basal layer. It is postulated that the cytoplasmic 

volume for cells in the basal layer was sufficiently small compared to the size of the nuclei and their 

cytoplasm was sufficiently metabolically active, that the artefact of spaces between cells was not 

seen for images from this layer. 

6.4.4 The Dermis 

 

Figure 6.5 (a-d) Fluorescence images of the reticular dermis taken using the FLIM detector module, with close up image (e). 

Box in (d) indicates a representative area of collagen for ROI analysis. Box in (e) indicates representative area of elastin for 

ROI analysis. (f-h) Corresponding images taken using spectrometer detector module from FOV (e). 
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Figure 6.5 shows both intensity and spectral images taken from the underside of a sample of normal 

skin (the reticular dermis). The top images (a-e) show a combined fluorescence intensity images and 

the intensity images taken from three spectral channels (b-d, no red channel image taken). The last 

panel (e) shows a close up image of the same FOV. These images are of collagen and elastin. 

Collagen SHG is very strong in the blue channel (b), appearing as the only visible feature. As collagen 

fibres are fine, individual fibres cannot be resolved at this image resolution and they appear as 

diffusely fluorescent. The remaining spectrally segmented images (c,d) show a weaker collagen 

autofluorescence compared to a more dominant elastin fluorescence in this spectral range. The 

elastin fibres are coarser, allowing individual fibres to be distinguished. 

Figure 6.5e-h show images taken at a higher magnification of an elastin fibre. The spectral images 

mapping the mean emission spectrum (g,h) suggest that elastin has a mean emission spectrum ~490 

nm. 

 

Figure 6.6 Emission spectra from areas of collagen and elastin from image FOV shown in figure 6.5  

To examine these dermal structures further, emission spectra were extracted from the hyperspectral 

images from areas representative of collagen and elastin, e.g. highlighted boxes in figure 6.5d,e. 

These are plotted in figure 6.6. The emission spectrum of elastin shows a peak spectral intensity at 

507 nm. This is slightly higher than those found in the literature of peak emission spectrum between 

445-500 nm (Pena, Strupler et al. 2005; Palero, de Bruijn et al. 2007). 

Collagen has two signals evident from this graph. The emission spectrum shows a small peak at 

360 nm consistent with its SHG signal when excited at 760 nm. This SHG peak is smaller than 

expected as the signal is known to be very strong compared to autofluorescence. It is not clear from 

the data why this is the case. It may have been caused by a low excitation power used to acquire the 

preceding FLIM image and not sufficiently increased prior to acquiring the spectral image. Figure 6.2 

showed a significantly larger SHG peak when the dermis was imaged on another occasion suggesting 

again that a user defined parameter was suboptimal. 
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The collagen autofluorescence spectrum has a peak ~490 nm. This is longer than that reported in the 

literature by Lutz et al. who excited purified collagen at 750 nm using the DermaInspect® and saw a 

spectral peak ~460 nm (Lutz, Sattler et al. 2012). This longer peak may be related to the slight 

changes in emission spectra associated with collagen subtype, its post-translational modification 

with additional proteins or its environment. Another contributing factor could be autofluorescence 

from the brighter elastin fibres. 

 

Figure 6.7 Bar Graph of τmean from ROIs corresponding to collagen and elastin derived from the FLIM images illustrated in 

figure 6.5 b-e, categorised by spectral channel. 

Figure 6.7 show the τmean for selected ROI within the FLIM images illustrated in figure 6.5 of collagen 

in the unmagnified FLIM images (figure 6.5b,c,d), and elastin from the set of magnified images (of 

which the total intensity images is shown in figure 6.5e). The lifetime from collagen in the blue 

channel is short (137 ps) due to the dominance of its SHG signal in this channel. The average collagen 

lifetime calculated from ROIs in the green & yellow channels were τ1 =568, τ2= 3186 and τmean =2672 

ps. This is consistent with lifetimes reported in the literature. As discussed in the introduction ~80% 

of dermal collagen is type I that has a reported τmean ranging between 2466-2335 ps (Marcu, Cohen 

et al. 2000; Lutz, Sattler et al. 2012). 

The lifetime calculated for elastin in the blue channel is also short and probably reflects contaminant 

signal from the much stronger collagen SHG signal in this channel. The average lifetime for an elastin 

fibre averaged between the green and yellow channel is τ1 =437, τ2= 2869, τmean =2471 ps. The τmean is 

close to that found for collagen in these channels so contaminating fluorescence from collagen 

cannot be excluded. This lifetime is also longer than that reported in the literature of 2.05 ns for 

elastin (Fang, Papaioannou et al. 2004).  
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6.5 SECTION B - Epidermal Cell Layers 

In this section MPT FLIM data is used to investigate differences in lifetimes between the cellular 

layers of the epidermis. The MPT images taken from the skin were initially acquired as controls 

against images taken of skin cancers. Therefore, the data presented in sections B and C was not 

collected with this analysis in mind. The analysis focuses on the data that has been collected, not 

necessarily that needed to perform a conclusive study. 

6.5.1 Introduction  

As described in detail in the introduction chapter 1.2 (pp27), the epidermis can be subdivided into a 

number of layers based on cell morphology in normal skin. The stratum corneum lies on the surface 

and is acellular. Beneath this are the cellular layers, namely the stratum granulosum, the stratum 

spinosum and finally the basal layer. These layers become progressively more metabolically active 

with depth.  

A number of groups have published lifetime data from different layers in the skin previously. For 

example, Cicchi et al.(Cicchi, Massi et al. 2007) performed a pixelwise fit using a single exponential 

decay model to images taken from various depths from ex vivo normal skin, excited at 740 nm. They 

found an increase in the lifetime to 50 µm depth, followed by a sharp decrease with a maximum 

positive shift of ~+90 ps and negative shift of -10 ps from zero depth. In their conference 

proceedings, Breunig et al. performed a pixelwise fit using a double exponential decay model to 

images taken from different layers in the skin after excitation using 720 nm in vivo (Breunig and 

König 2011). The data was not spectrally separated so τ1 was dominated by collagen SHG and may 

have masked a fluorescence decay arising from free NAD(P)H in their results. They found τ2 shorter 

in the basal layer (2700 ps) compared to the s.spinosum (3000 ps) which they felt in keeping with the 

lifetime for protein bound NAD(P)H. 

The only systematic analysis was performed by Benati et al. (Benati, Bellini et al. 2011). They 

compared the lifetimes between the upper and lower epidermis in two age groups and body sites 

(forearm, thigh). They performed a single exponential decay fit to a pixel within a cell (after binning 

5x5 pixels) and made an average over 5 cells for each group. In the 20-35 year old age group, they 

found a statistically significant differences in the lifetimes between layers  in all body sites e.g. 

1171±116 upper vs 935±174 ps lower epidermis on the outside forearm (difference of 236 ps). 

However, this was not found in the >60 years age group. They suggested that the reduction in 

lifetime with depth related to the cellular melanin content of the cells and speculated that 

differences in the metabolic activity between the layers also contributed to these differences. 
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6.5.2 Methods 

The differences in lifetime with depth in the epidermis using the MPT FLIM images collected from 

normal skin has been investigated. Images of normal skin acquired both in vivo and ex vivo have 

been investigated and it has already been shown in Chapter 5 (pp115) that fluorescence lifetime 

does not alter significantly post excision over the initial few hours. 

To combine data from multiple patients, images were categorised by cell layer and not absolute 

depth. The thickness of each cellular layer in the epidermis varies widely between patients and body 

sites. This renders the absolute depth of the images taken (in relation to the s.corneum) unhelpful. 

Therefore the skin layer of each image of normal skin analysed was manually assigned. This was 

based on the MPT exemplar images and definitions of each layer described by Koehler et al. 

(Koehler, Zimmermann et al. 2011) and illustrated in figure 3.1 in Chapter 3.4 (pp69). 

Number of 

Patients   30 

Demographics Male/Female 17/13 

  Age (Range) 45.1 (17-88) 

  Skin Type (Range) 2.5 (1-4) 

In vivo/Ex vivo    18/12 

FOV by Inner Forearm 17 

body site Outer Forearm 8 

  Back 8 

  Face 3 

  Lower Leg 1 

Images Taken   144 

Total Cells/ROIs   6904 

Cells/ROIs per S.Granulosum 973 (14.1%) 

Skin Layer (%) S.Spinosum 3647 (52.8%) 

  Basal Layer 2284 (33.1%) 

 Table 6.1 Summary of the images taken from normal skin that were analysed. 

Table 6.1 outlines the images that were analysed in this section. It lists details of the patients from 

which the images were taken, whether the images were acquired in vivo or ex vivo and the number 

of images and ROIs analysed. As previously stated, all images were acquired with an excitation 

wavelength at 760 nm. The table shows that more than ½ of the cells arise from the s.spinosum, the 

thickest layer in the epidermis. 
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6.5.3 Change in cell size with depth 

It is known that cells in the epidermis reduce in size with depth (i.e. reducing from the s.granulosum 

to the basal layer. It should also be noted that the elongated polygonal cells in the s.granulosum and 

s.spinosum are orientated horizontally (with their long axis parallel to the skin), whilst the columnar 

cells of the basal layer lie vertically (with their long axis perpendicular to the skin). It might therefore 

be expected that a sharp reduction in the measured size of cells from the s.spinosum would be seen, 

when imaged en face, (as is the case in MPT images compared) to the basal layer due to the change 

cell orientation. 

To investigate this, the shapes and sizes of the manually defined ROIs were analysed. It has already 

been shown in Section 6.4.3 (pp142) that the autofluorescence does not extend to the cell periphery 

for the larger cells seen in the s.granulosum and upper s.spinosum. The size of cells in these layers 

will therefore be underestimated, making it difficult to make an accurate comparison. In addition, 

the cell density between cell layers has been compared, which is not subject to the inaccuracy 

outlined above. 

 

Figure 6.8 Plots the distribution of (a) cell area and (b) cell density (calculated using the Gabriel method) of cells 

categorised by cell layer. Key: Blue-S.Granulosum, Black- S.Spinosum, Red- Basal Layer. 

Figure 6.8 shows histograms of the cell area and density of the analysed ROIs by cell layer. Figure 

6.8a shows that a small proportion of cells in the s.granuosum are very large in size compared with 

cells in other layers. As the sizes of cells in the s.spinosum are underestimated, it is not possible to 

assess for a sharp reduction in the cell area from the s.spinosum compared to the basal layer. 

Figure 6.8b shows the density of the cells between layers. The methods used to calculate the density 

have been outlined in Chapter 4.10.7 (pp109). The histogram shows a smoother progression of 

increased density with depth between the layers with a median density of 0.00221, 0.00522 and 

0.00561 cells/µm2 for the cells in the s.granulosum, s.spinosum and basal layer respectively. 
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However, this too does not demonstrate a sharp decrease between the s.spinosum and the basal 

layer. 

6.5.4 Change in lifetime with depth 

Previous groups have found a decrease in fluorescence lifetime with depth of between 236-300 ps 

(Benati, Bellini et al. 2011; Breunig and König 2011). It is suggested that this drop in lifetime with 

depth reflects an increase in melanin content from melanocytes and keratinocytes. Melanin has a 

short lifetime  with components as short as 200 ps (Teuchner, Freyer et al. 1999) and is expected to 

contribute most to fluorescence detected in the yellow and red spectral channels, based on its 

emission spectrum (refer to figure 2.7,pp51; & figure 2.11;pp57 of the emission spectrum of 

melanin).  However changes are likely to be seen in all spectral channels as melanin has a broad 

emission spectrum that covers the whole detection emission spectral range. 

An increase in the melanin content would therefore be expected to present as a decreasing τ1 (& 

possibly τ2) and an increasing f1, reflecting a greater contribution and increasing quantity of melanin 

to the shorter lifetime component. This would result in a progressive shortening in τmean with depth 

that would predominantly affect the yellow and red spectral channels. 

Figure 6.9 Distribution of τmean with epidermal cell layer. Key: Blue-S.Granulosum, Black- S.Spinosum, Red- Basal Layer.  

Figure 6.9 shows the distribution of τmean in all spectral channels categorised by cell layer. A trend 

towards shorter lifetimes can be seen in all channels as the cell layer progresses from the 

s.granulousm to s.spinosum to the basal layer. 

        Percentile   

 

Channel Level 25 50 75 

τmean (ps) Blue S.Granulosum 2087 2313 2575 

    S.Spinosum 1563 1892 2157 

    Basal Layer 696 1027 1513 

  Green S.Granulosum 2411 2705 2990 

    S.Spinosum 1999 2393 2826 

    Basal Layer 937 1499 1981 
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  Yellow S.Granulosum 1616 1925 2346 

    S.Spinosum 1220 1594 2132 

    Basal Layer 428 755 1163 

  Red S.Granulosum 1079 1410 1620 

    S.Spinosum 851 1204 1548 

    Basal Layer 456 719 1035 

Table 6.2 Distribution of τmean with epidermal cell layer, categorised by spectral channel 

This can be confirmed by the median τmean for each layer in each channel, listed in table 6.2. It shows 

a decrease in the median τmean between the s.granulosum and the basal layer of 1286, 1206, 1169 

and 691 ps for the blue, green, yellow and red spectral channels respectively. This difference is 

significantly larger than has been previously reported of up to 300ps and is consistent with the 

presence of increased melanin content with cell layer.  

Figure 6.10 Histograms showing the changes seen in τ1, f1 & τ2 with cell layer. Key: Blue-S.Granulosum, Black- S.Spinosum, 

Red- Basal Layer. 

To explore this trend further, individual lifetime parameters can be examined.  Changes to τ1 and τ2 

will reflect differences in the contributions to each lifetime component of each intracellular 

fluorophore between layers. 
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Figure 6.10a-d shows the distribution of τ1 categorised by cell layer. The median τmean is very short 

(between 31-73 ps) in the blue channel for all cell layers (not just the basal layer). This suggests that 

melanin fluorescence contributes significantly to this channel, as other tissue fluorophores have 

significantly longer lifetimes. This short lifetime is not thought attributable to collagen SHG because 

no collagen should be seen in the upper cell layers and a large peak ~0 ps can be seen for the basal 

layer that is distinct from the other peaks and would account for collagen SHG. 

The τ1 lifetime component of the cells in the basal layer, tend to be the shortest for all spectral 

channels. The peaks seen for the basal layer with a median τ1 ~ 50 ps in the green and yellow 

channels cannot be attributed to collagen SHG, as this should only be detected in the blue channel. 

This finding strongly suggests that the shorter lifetimes of cells in the basal layer are caused by an 

increased presence of melanin. Interestingly, a median τ1 of 80 ps in the red channel for cells in the 

basal layer is longer than the median τ1 for other channels, despite the dominance of melanin in this 

channel. One would expect the lifetime to be even shorter. It has been shown previously that the 

emission spectrum and lifetime of melanin can depend of the size of its aggregates (Nofsinger and 

Simon 2001), see Chapter 2.6.4 (pp56). This discrepancy might therefore be attributable to melanin 

aggregates that have longer emission spectra (i.e. 1000 – 10,000 MW) also having longer lifetimes. 

Unfortunately, Nofsinger et al. did not correlate the lifetime differences with emission spectra to 

support this theory. It might also be accounted for by the presence of another fluorophore that 

emits strongly in the red spectral channel with a longer lifetime than melanin contributing to the 

fluorescence e.g. porphyrins. 

Figure 6.10 e-h show the contribution of the short lifetime component (f1) to τmean. These histograms 

confirm a greater f1 seen for the basal layer for all spectral channels. As τ1 has already been shown to 

be more strongly influenced by melanin in the basal layer, a high f1 strongly supports the conclusion 

that these cells have higher cellular melanin content. 

Figure 6.10 i-l shows τ2 for all channels categorised by cell layer. These histograms show many of the 

trends described above for τ1. For example, cells in all layers exhibit similar lifetimes in the blue 

channel and cells from the basal layer have a shorter τ2 than the other layers for all spectral 

channels. These features are consistent with an increased melanin content in cells from the basal 

layer. 

6.5.5 Change in metabolism with depth 

The basal layer of the epidermis is metabolically more active than the layers above. It was 

investigated if this might be detected as a change in the autofluorescence from NAD(P)H and FAD 

which fluoresce in the green and yellow spectral channels respectively. The assumption that the 
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changes in NAD(P)H and FAD autofluorescence associated with the increased metabolism in normal 

skin mimic those seen with epidermal malignancy has been made.  

Skala et al. studied malignancy in a hamster cheek pouch model and found these changes to include  

a decrease in the contribution and lifetime of the protein bound component of NAD(P)H (f2 & τ2 in 

the green channel), a less significant decrease in the lifetime of the free component of NAD(P)H (τ1 

in the green channel), increase in the lifetime of protein bound FAD (τ1 in the yellow channel) and a 

decrease in its contribution (f1 in the yellow channel) (Skala, Riching et al. 2007). The changes in 

NAD(P)H fluorescence could therefore be screened for by a decrease in τmean in the green channel. 

It has been suggested above (section 6.5.4) that melanin strongly influences the lifetimes in many 

channels. As the highest melanin content has been suggested to be in the basal layer, our ability to 

use lifetime to detect changes in metabolic rate in this layer is adversely affected. One method to 

account for this is to attempt to separate the cells that have high melanin content. This might allow 

other trends in fluorescence lifetime to be detected more easily in the remaining cells. 

Figure 6.11 The distribution of spectral contributions from each channel categorised by cell layer. Key: Blue-S.Granulosum, 

Black- S.Spinosum, Red- Basal Layer. 

Figure 6.11 a-d are histograms that show the distribution of spectral contributions for each spectral 

channel, separated by cell layer. The histograms in yellow and red channels show 2 peaks for the 

s.granulosum and s.spinosum. Further analysis (not shown) show that these peaks represent two 

distinct populations of cells. By assuming that these populations differ primarily in their melanin 

content all cells can be described as having a low melanin content (with < 0.1 contribution in the 

yellow channel) or a high melanin content (with > 0.1 contribution in the yellow channel).  
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Figure 6.12 The distribution of τmean for ‘low melanin content’ cells with a spectral contribution in the yellow channel <0.1, 

categorised by cell layer and spectral channel. Key: Blue-S.Granulosum, Black- S.Spinosum, Red- Basal Layer. 

 

Figure 6.12 replots τmean for all spectral channels for this population of cells that have a spectral 

contribution in the yellow channel <0.1 and have been described as having a low melanin content. 

These histograms for τmean are very similar to those shown in figure 6.9. Slight changes in the 

distribution and size of the peaks can be seen but the overall trends have not changed. A reduction 

in τmean in the green channel with depth is not seen, which could be caused by a higher metabolic 

rate affecting NAD(P)H fluorescence. However, as no significant changes are seen in the histograms 

between figure 6.9 and 6.12, melanin cannot be excluded as the cause for all the trends seen and 

are unable to confidently attribute any findings to changes in NAD(P)H fluorescence . The individual 

lifetime parameters have therefore not been analysed further because confident conclusions cannot 

be made. 

 

6.5.6 Section B - Conclusions 

In this section it has been shown that the cell density increases with cell layer for normal skin. In 

addition we have demonstrated a shortening in τmean with increasing depth which is summarised in 

table 6.2. The data demonstrated a decrease in the median τmean between cells in the s.granulosum 

and the basal layer of 1286, 1206, 1169 and 691 ps for the blue, green, yellow and red spectral 

channels respectively. This is a larger difference detected than previous groups, whom have found 

lifetime changes of between 236-300 ps (Benati, Bellini et al. 2011; Breunig and König 2011). 

Evidence has then been presented that this change can be attributed to increasing melanin with 

depth. Like Benati et al., we also proposed that the shorter lifetime with depth is contributed to by 

increased metabolic activity. However, the data collected in this study does not support this. 

Also, melanin was expected to be the most dominant fluorophore in the red channel, especially for 

τ1. An interesting finding from the data is that the lifetimes seen for τ1 in the red channel (figure 

6.10d) had longer than expected lifetimes for all cell layers, especially the basal layer, which is 
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expected to have the highest melanin content. The cause for this difference remains unclear and 

was not investigated further. It may represent aggregates of melanin with longer lifetimes 

fluorescing in this channel or may be attributable to another fluorophore such as porphyrin. 
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6.6 SECTION C- Changes with demographics 

In this section the variation in fluorescence lifetimes between patients is examined. Despite inter-

patient variation, the presence of distinct populations of cells are presented and discussed. Finally a 

more detailed analysis of the changes in lifetime with patients age, sex and skin type and body site is 

made. 

As previously stated, the MPT images taken from normal skin, both in vivo and ex vivo, were initially 

acquired as controls against images taken of skin cancer. Therefore, the images were not collected 

with the purposes of this analysis in mind. As a result, the analysis focuses on the trends seen in the 

data collected, not the ideal data set. 

6.6.1 Lifetime variability by patient 

Initially intrapatient vs interpatient variability in fluorescence lifetimes is evaluated. Intrapatient 

variation was made by comparing MPT FLIM images taken from a patient (ID 5010) in vivo, from 

their outer forearm in 2 separate FOVs (1 & 3). As lifetimes have been shown to alter with cell layer 

in section B, the comparison has been restricted to cells from the s.spinosum. 



 

156 
 

 

Figure 6.13 Scatter plots comparing various lifetime parameters in images acquired in the green spectral channel from cells 

from (a,b) 2 FOVs within the same patient. (c,d) Cells from the s.spinosum between patients. (e,f) Cells from the basal layer 

between patients.  

Figure 6.13 a,b are scatter plots contrasting the fluorescence parameters from these two FOVs. Two 

sets of parameters calculated for the green spectral channel were chosen for this comparison, τ1 vs 

τ2 and τmean vs the spectral contribution. In the plots, cells from each FOV are distinguished by colour 

(blue vs red). Both scatter plots show that the cells have similar fluorescence profiles, however 

distinct clusters of points derived from each FOV exist, despite matching all possible parameters.  

To assess interpatient variability, two further patients (ID 4061 and 5009)with normal skin imaged in 

vivo were matched for sex, skin type, body site to patient 5010. Ages were similar but not matched 
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(29, 36, 43 years). Figure 6.13c,d shows scatter plots of cells from the s.spinosum between these 

patients using the same lifetime parameters as figure 613a,b. ROIs from each patient (not FOV) are 

distinguished by colour in these plots. Figure 6.13e,f plots cells from the basal layer between these 

patients. 

In the plot of τ1 vs. τ2 of cells from the s.spinsoum (panel c), the distribution from patient 4061 (blue) 

are very similar to those from patient 5010 (red). However, the plot of τmean vs. spectral contribution 

(panel d) clearly distinguishes the cells from these patients. The plots of the cells from the basal layer 

(panel e,f) show greater separation between them than the cells from the s.spinosum.  

In conclusion, the plots (panels c-f) show a greater interpatient variability between lifetimes than the 

intrapatient variability shown between FOVs. The cells from the s.spinosum between patients 

(panels c,d) do demonstrate some interpatient overlap between clusters and the plots also 

demonstrate that the spectral contribution parameter seems to contrast cell fluorescence more than 

either τ1 or τ2. 

These findings are consistent with those described previously  by our group using a 2 spectral 

channel detector module with the DermaInspect® (Patalay, Talbot et al. 2011). In this paper, greater 

separation of cells was seen on scatter plots of τmean vs spectral contribution between FOVs taken 

from dysplastic naevi within the same patient than between different patients. This trend was not 

detected in images taken from basal cell carcinomas. 

6.6.2 Cell Populations 

In section 6.6.1, we have shown the clustering of cells between FOVs from the same patient on 

scatter plots of lifetime parameters. Figures 6.13c,d also demonstrate some overlap between 

clusters of cells between patients. It is known from the anatomy and physiology of the cells in the 

epidermis that cells have specific structural and functional properties. The finding that cells from 

different patients exhibit similar fluorescent properties raises the possibility that cells types with 

similar properties may be distinguished by their spectral properties.  To investigate this, fluorescence 

from all cells and all patients were plotted. 
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Figure 6.14 Scatter plot of spectral contribution from the green and yellow spectral channels for all cells from normal skin. 

4 distinct clusters of cells have been identified. 

Our research group has previously found the spectral contribution parameter to maximally contrast 

the autofluorescence between cells in section 6.6.1 above. Figure 6.14 shows that a number of 

spectrally separated clusters of cells can clearly be defined when plotting the spectral contribution in 

the green against the yellow channel for all cells from normal skin in all patients. These channels 

have been selected to find clusters of cells with similar metabolism as NAD(P)H is the brightest 

fluorophore in the green channel and melanin & FAD are the brightest fluorophores in the yellow 

channel.  

It could be speculated that cells clusters with a similar spectral contributions in these channels (i.e. 

clusters 2 & 3) would have similar NAD(P)H and melanin (&FAD) quantities and function. The 

remaining clusters (1 & 4) appear to be distributed in a linear arrangement. This might represent a 

structural link between the cells. For example cluster 4 has low contribution from the yellow 

channel, which would suggest that these cells contain little melanin. The range of contribution to the 

green channel of these cells might represent variation in NAD(P)H fluorescence (secondary to 

metabolism) or the effect of other fluorophores that emits in the blue or red spectral channels. 

In summary, distinct clusters of cells could be identified from the plot in figure 6.14. One method to 

assess these clusters further is to see how these vary with the origin of the normal skin imaged. 

Figure 6.14 has therefore been re-plotted, but colour coded the data based on sex, skin type, age 

group and body site. These can be seen in figure 6.15. 
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Figure 6.15 Scatter plots of the spectral contribution from all cells from normal skin, categorised by (a) sex (b) skin type (c) 

age group (d) body site.  

These plots show that the cells from all sexes, age groups, skin types and body sites (panel a-d) 

contribute to clusters 2 and 4 (defined in figure 6.14). Cells from every cell layer of the epidermis are 

also found to contribute to all clusters (data not shown). Cluster 1 contains cells from all sexes and 

age groups but appears not to contain cells from the outer forearm (panel d) or from skin type 1 

(panel b). As no cells from skin type 1 are seen in cluster 1, cells in this cluster might represent 

melanocytic cells. Contrary to this would be our expectation that the cells from the outside forearm 

have more melanin that those on the inside forearm which is the opposite of our findings. 

Finally the presence of cells into cluster 3 varies with category. Patients from the 30-42 year old age 

group and cells from the outside forearm are absent from group 3. Also, cells plotted on the right 

side of group 3 seem to be restricted to cells from males, patients <30 years old and those with skin 

type 4. Similarly the left of this group only contains cells from females, >42 years old and those with 

skin type 3. These findings are difficult to explain easily from the data collected and require further 

work in the future. 

In conclusion, different populations of cells based on their spectral characteristics have been 

identified. Although it has been speculated that these differences are based on cell pigmentation 

and metabolism, no definitive conclusions can be drawn from our data alone.  These findings would 

benefit from further investigation such as using a larger population of cells or using cells grown in 

culture so the biological basis for the spectral changes described could be observed more directly 

and investigated. 
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6.6.3 Age 

In this sub-section trends in the fluorescence lifetime from the cells from normal skin with the age of 

the patient are examined. Although Keohler et al. have shown a statistically significant increase in 

the fluorescence lifetime of the dermis with age (Koehler, Preller et al. 2011), just one publication 

has attempted to quantify the changes in lifetime of the epidermis with age. Benati et al. (Benati, 

Bellini et al. 2011) compared the lifetimes of skin in vivo between patients aged 20-35 and >65 years. 

They showed that a statistical increase in fluorescence lifetime with age for comparisons between 

the upper and lower epidermal layers. When fitted using a single exponential decay model, a 

lifetime of 1171±116 ps vs 1280±85 ps was found in the upper epidermis for the younger (n=21) and 

lower age groups (n=21) respectively (difference of +109 ps with age). For the lower epidermis 

lifetimes of 935±174 ps vs 1145±167 ps were found between the age groups (difference of +210 ps 

with age). 

Our aim was to compare the cells from patients with different age groups and determine if a similar 

trend in lifetime existed with our cohort of patients. Initially patients were allocated into 3 roughly 

equal age group categories :-  <30, 30-42 and >42 years. 

      

Age Group 

(years)     

    < 30 30 - 42 > 42 Total 

Patient 

Numbers   9 9 12 30 

Demographics Sex (M/F)  6/3  4/5  7/5 17/13 

  Skin Type (Range) 2.4 (1-4) 2.4 (1-4) 2.6 (1-4)   

In vivo/Ex vivo    8/1  7/2  3/9  18/12 

FOV by Inner Forearm 7 7 3 17 

body site Outer Forearm 2 5 1 8 

  Back 1 2 5 8 

  Face 0 0 3 3 

  Lower Leg 0 0 1 1 

Images Taken   41 50 53 144 

Total 

Cells/ROIs   1897 2300 2707 6904 

Cells/ROIs per S.Granulosum (%) 262 (13.8) 335 (14.6) 376 (13.9) 973 

Skin Layer (%) S.Spinosum (%) 912 (48.1) 1007 (43.8) 1728 (63.8) 3647 
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  Basal Layer (%) 723 (38.1) 958 (41.7) 603 (22.3) 2284 

Table 6.3 Characteristics of samples used and images taken for comparison of ages with fluorescence lifetime. 

Table 6.3 summarises the characteristics from the 3 age groups and shows that all are broadly 

matched. The eldest group includes samples from a wider variety of body site and a slight bias 

towards ex vivo samples. They also have slightly more cells from the s.spinosum than other groups 

(63.6% vs. 48.1% & 42.8%) with a corresponding fall in the proportion of cells from the basal layer.  

 

Figure 6.16 Histogram of the distribution of densities of cells from images of normal skin, categorised by age group 

calculated using the Gabriel method. 

In section 6.5.3 (pp148) it has already been shown that cell density is a more reliable surrogate 

indicator for cell size. The cell density of the cells by age group has therefore been plotted in figure 

6.16. The median density is 0.00301, 0.00435 and 0.00141 cells/µm2 for the <30, 20-42 and >42 year 

old age groups respectively. It shows that the density of cells is similar for the age groups <42 year. 

The median density would appear lower for the eldest age group. From this sample, it is not clear if 

this difference is a true finding or caused from a lower proportion of cells arising from the basal layer 

in the eldest age group. Fewer cells in this layer, which have already been shown to have a higher 

density, would have the effect of decreasing the density measured (see figure 6.8 in section 6.5.3). 

Figure 6.17 Distribution of τmean with spectral channel categorised by age group. 

Figure 6.17 shows the distribution of τmean for all spectral channels categorised by age group. Like the 

cell densities, the distribution is very similar between the 2 age groups below 42 years. However, the 

>42 years group shows longer lifetimes in the green, yellow and red channels. Apart from the blue 
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channel, there is an increasing median τmean with age group seen in all channels. The increase in the 

median τmean between the 30-42 and >42 year old groups are +199, +550, +514 and +417 ps in the 

blue, green, yellow and red channels respectively. This is a larger lifetime difference between closer 

age groups than the difference of +109 and +210 ps found between patients 25-35 years and >65 

years old seen by Benati et al. using a single spectral detection channel (Benati, Bellini et al. 2011). 

The differences in τmean between all age groups was found to be significant when analysed on a per 

cell basis but was not found to be statistically significant when compared on a per patient basis using 

the Wilcoxon rank sum test. 

It has already been discussed in section 6.5.5 (pp151) that Skala et al. had associated specific lifetime 

changes from the fluorescence of NAD(P)H (green channel) and FAD (yellow channel) with an 

increased metabolism associated with dysplasia (Skala, Riching et al. 2007). By inference the reverse 

of these changes might suggest a decrease in cellular metabolism. The individual lifetime 

components from our data were therefore examined to look for clues to the underlying cause for 

this increase in lifetime with age. However no changes were seen in the lifetime components with 

age consistent with either a faster or slower cellular metabolism.  

In conclusion, a decrease in the cell density was found in the >42 year old age group. However, it 

was not clear if this change was caused by a reduced proportion of the smaller cells from the basal 

layer in this category. Also a trend of longer median τmean was found with age. Between the 30-42 

and >42 year old groups a lifetime difference of +199, +550, +514 and +417 ps in the blue, green, 

yellow and red channels respectively was found. The data supports the trends found by Benati et al., 

but our data does not demonstrate a significant difference in median τmean between age groups. 

6.6.4 Sex 

In this sub-section the changes in lifetime between the sexes is investigated. No work has previously 

been published on this and no difference is expected. 

      Sex   

    Male Female Total 

Patient 

Numbers   17 13 30 

Demographics Age (Range) 45.4 (18-81) 44.7 (17-88)   

  Skin Type (Range) 2.5 2.5   

In vivo/Ex vivo    7/10  11/2  18/12 

FOV by Inner Forearm 7 10 17 
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body site Outer Forearm 1 7 8 

  Back 8 0 8 

  Face 1 2 3 

  Lower Leg 1 0 1 

Images Taken   74 70 144 

Total 

Cells/ROIs   3559 3345 6904 

Cells/ROIs per S.Granulosum (%) 300 (8.4) 673 (20.1) 973 

Skin Layer (%) S.Spinosum (%) 1978 (55.6) 1669 (49.9) 3647 

  Basal Layer (%) 1281 (36.0) 1003 (30.0) 2284 

Table 6.4 Characteristics of samples used and images taken for comparison of sexes with fluorescence lifetime. 

Table 6.4 summarises the characteristics from the two sexes. From the table, it can be seen that 

there are a significant proportion of samples from the back in males and a similar proportion from 

the outer forearm in females. Also, a greater proportion of ROIs arise from the s.granulosum in 

females compared to males (20.1 vs 8.4%). 

Figure 6.18 Distribution of τmean with spectral channel categorised by sex. 

Figure 6.18 shows the distribution of τmean in all spectral channels, categorised by sex. Although 

histograms are similar, there is a noticeable population of cells with a longer lifetime in the green, 

yellow and red channels in the female group. In particular there is a population of cells with a τmean of 

1500 ps in the red channel. 

Further analysis found that 50% of the cells above a threshold of 1250 ps for τmean in the red channel 

arose from a single tissue sample (id 5010). The sample came from a patient who was skin type 1 

and images were taken from both the inside and the outside forearm. The remaining cells arose 

from a further 8 samples, pointing against an outlier data set i.e. from id 5010, as the sole cause for 

this finding.  

It was also found that the cells above this threshold in the red channel accounting for the peak seen 

for females were also the cells that formed the highest peak in the green channel (above threshold 
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of 2750 ps) and the peak with the longest τmean for females in the yellow channel (above threshold of 

2250 ps). Further analysis was performed as it was not clear what the underlying cause for this 

finding was. 

    % of ROIs   

 Red Channel τmean threshold Layer Male Female Difference 

<1250 ps s.granulosum 6.46 13.57 7.11 

  s.spinosum 49.68 40.16 -9.51 

  basal layer 43.87 46.26 2.40 

>1250 ps s.granulosum 15.37 27.93 12.56 

  s.spinosum 76.37 61.51 -14.86 

  basal layer 8.26 10.56 2.30 

Table 6.5 Percentage of cells in each cell layer categorised by sex, above and below a threshold of 1250 ps for τmean in the 

red channel. 

To investigate if this could be explained by an increased proportion of cells arising from the 

s.granulosum (where cells have longer lifetimes) in the female group, the % of cells above and below 

a threshold of 1250 ps for τmean in the red channel for each sex and categorised by cell layer was 

calculated, see table 6.5. If this was a cause, it would be expected that the population of cells above 

this threshold in the female group would have a greater proportion of cells from the s.granulosum. 

The table shows that 27.93% of cells vs 13.57% cells arose from the s.granulosum above and below 

the threshold respectively for females. The table also shows that there is an increase in the % of cells 

in the s.granulosum for females compared to males above this threshold (7.11 to 12.56%). The net 

effect would be a rise in the median τmean in the population of cells above the threshold for females 

because it has been shown in section 6.5.4 (pp149) that lifetimes increase with distance from the 

basal layer.  

In summary, a difference in the lifetime was found between the sexes. However, further analysis 

revealed that this difference was heavily contributed to by a single ‘outlier’ patient’s data and may 

have arisen from the differences in the proportion of cells from each cell layer. 

6.6.5 Skin type 

The difference in lifetime with the Fitzpatrick skin type of patients was then investigated. The 

Fitzpatrick skin type measures the skin pigmented by clinical phenotype and its ability to tan and 

burn in the sun. The scale extends from 1 (pale skin, blue eyes, blond/red hair, always burns and 

never tans) to 6 (dark brown or black skin, easily tans and never burns). FLIM images have been 

taken from patients of skin type 1-4. Although the number of melanocytes in the basal layer remains 



 

165 
 

similar for all skin types, their activity increases with skin type. One would therefore expect to see an 

increase in melanin content in both the melanocytes and keratinocytes in the epidermis with skin 

type and thus expect to see a decrease in τ1, τmean and increase in f1, with a possible increase in 

spectral contributions from the yellow and red channels. Although studies have investigated the 

differences in fluorescence between skin types in vivo (Krasieva, Stringari et al. 2013), to our 

knowledge, a detailed investigation of fluorescence lifetime has not been performed before. Dancik 

et al. measured arms from patients with each skin type using colourimetry and MPM. They noted a 

positive correlation of b* (a measure of colour along the blue-yellow axis), which also correlates with 

skin type, to τ1 with R2 of 0.71 for the inside forearm and R2 of 0.81 for the outside forearm (Dancik, 

Favre et al. 2013). 

      Skin Type       

    1 2 3 4 Total 

Patient 

Number   5 10 10 5 30 

Demographics Age (Range) 

30.8 

(18-43) 

50.9 

(21-88) 

51.5 

(17-81) 

35 

(25-60)   

  Sex (M/F)  2/3  7/3  5/5  3/2 

 

17/13 

In vivo/Ex 

vivo    5/0  4/6  4/6  5/0 

 

18/12 

FOV by Inner Forearm 4 4 4 5 17 

body site Outer Forearm 3 3 1 1 8 

  Back 0 4 4 0 8 

  Face 0 1 2 0 3 

  Lower Leg 0 1 0 0 1 

Images Taken   31 50 37 26 144 

Total 

Cells/ROIs   1578 2246 1849 1231 6904 

Cells/ROIs per S.Granulosum (%) 327 (20.7) 322 (14.3) 182 (9.8) 142 (11.5) 973 

Skin Layer (%) S.Spinosum (%) 922 (58.4) 1313 (58.5) 917 (49.6) 495 (40.2) 3647 

  Basal Layer (%) 329 (20.8) 611 (27.2) 750 (40.6) 594 (48.3) 2284 

Table 6.6 Characteristics of samples used and images taken for comparison of skin type with fluorescence lifetime. 

Table 6.6 summarises the characteristics from the different skin types. The sample size is small 

(n=30) for this number of categories and the 4 groups are not of equal size which may confound the 
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results. For example, the table shows skin types 1 and 4 have ½ the number of patients compared to 

skin types 2 and 3. In addition they are younger, all images were taken in vivo and taken from the 

forearm only. Also, a greater proportion of ROIs were taken from the s.granulosum and s.spinosum 

for skin types 1 and 2 with smaller contribution from the basal layer, compared to skin types 3 and 4.  

To summarise, groups with skin type 1 and 4 are younger (decreasing the expected median τmean, see 

section 6.6.3, pp160) and skin type groups 1 and 2 have ROIs from higher skin layers (increasing the 

expected median τmean , see section 6.5.4, pp149).The net effect is difficult to predict. 

        Percentile 

Index Channel 

Skin 

Type 25 50 75 

τmean (ps) Blue 1 1571 1928 2256 

    2 1149 1659 2126 

    3 1232 1915 2202 

    4 1021 1642 2081 

  Green 1 2456 2926 3079 

    2 1867 2277 2587 

    3 1490 2084 2493 

    4 921 1590 2045 

  Yellow 1 1649 2254 2564 

    2 1072 1464 1838 

    3 778 1287 1685 

    4 388 818 1232 

  Red 1 1246 1484 1611 

    2 885 1150 1491 

    3 604 867 1141 

    4 403 569 742 

Table 6.7 Summary of the distribution of τmeanfor each spectral channel, categorised by skin type. 

Figure 6.19 Distribution of τmean with spectral channel categorised by skin type.  
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The quartiles of τmean for each skin type and spectral channel is listed in table 6.7. Figure 6.19 

illustrates the distribution of τmean with channel and skin type. All groups have similar distributions of 

τmeanin the blue channel. There is also a consistent trend (that can be confirmed in table 6.7) that the 

median τmean decreases with increasing skin type (i.e. darker skin colour) across the remaining 

channels. The median τmean decreases between skin type 1 and 4 by 286, 1336, 1436 and 915 ps in 

the blue, green, yellow and red channels respectively. This difference was found to be statistically 

significant when τmean was averaged and comparing on a per patient basis using the Wilcoxon rank 

sum test for the green (p=0.016), yellow (p=0.016) and red (p=0.016) spectral channels. 

Figure 6.20. The distribution of τ 1 , τ2 and f1 by spectral channel for each skin type. 

To investigate this trend further, histograms of the distribution of τ1and τ2 and f1 in all spectral 

channels for each skin type were plotted, see figures 6.20. Again, there is very little difference 

between the skin types in the blue channel. In the remaining channels there is a progressive shift 

towards shorter lifetimes with skin type for both τ1 and τ2. f1 shows an increased contribution from 

the shorter lifetime component with increasing skin type.  

Can these changes be attributable to differing melanin content between patients with different skin 

types? A large population of cells with a τ1 of <100 ps in all channels from all skin types suggests that 

melanin is a dominant fluorophore for the short lifetime component. Therefore the progressively 
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higher f1 with skin type supports the conclusion that an increased melanin content accounts for the 

changes seen in τmean with skin type.  

As noted previously in section 6.5.4 (pp149), either a particular melanin aggregate or contribution 

from a fluorophores other melanin may account for a population of cells, with a τ1 >200 ps in the red 

channel. This lifetime is most noticeably from patients with skin type 1 (whom have lower baseline 

melanin quantities in their skin and a greater pheomelanin: eumelanin ratio in their pigment) and 

raises a further possibilities as to the origin of this difference. 

In summary a progressive shortening of the median τmean was seen with skin phototype. This was 

greatest between type 1 and 4 skin and caused a 286, 1336, 1436 and 915 ps decrease in the median 

τmean in the blue, green, yellow and red channels respectively. This trend was reflected in τ1, τ2 and f1 

and felt to arise from increasing melanin content of the cells with increasing skin type. As a clear 

trend was detected, the biases described above between the groups known to affect lifetime i.e. age 

and cell layer do not appear to have affect the results significantly.  

6.6.6 Body site 

In this section, the differences in the fluorescence lifetime between body sites is investigated. Dancik 

et al. measured the fluorescence intensity and  lifetimes from the forearms from 5 patients with 

different skin types from the inside and outside forearms (Dancik, Favre et al. 2013). They were 

unable to measure a difference in the fluorescence intensity between these sites in African skin, but 

measured between 1.4-2 times increase from Asian skin in the outside compared to the inside 

forearm. They also compared the fluorescence lifetimes from the skin against the fluorescence 

intensity within the images for body site and skin type, but did not make a direct comparison of the 

fluorescence lifetimes between body sites. 

Benati et al. did study the fluorescence lifetime variation with body site (Benati, Bellini et al. 2011). 

They recorded the lifetimes of skin in vivo in 21 patients aged 20-35 years from the inside forearm, 

outside forearm and the thigh. They fitted single pixels (after binning 5x5) using a single exponential 

decay model. They found that the average lifetimes were found to be 1215±100, 1171±116 and 

1080±103 ps from cells in the upper skin layers and 882±201, 935±174 and 931±101 ps from the 

lower skin layers in the inside forearm, outside forearm, and thigh respectively. The only statistically 

significant difference in lifetime they found was between the inside forearm and the thigh in the 

upper skin layers.  

No explanation was offered for these differences in the paper. One may have expected less sun 

exposure to the skin on the thigh and possibly the inside forearm leading to a longer τmean than the 
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outside forearm. As this was not seen, one could conclude that either the melanin induction from 

photo-exposure does not have a significant contribution towards the changes seen between body 

sites, or differences between the patients, such as skin type, obscure this effect. 

      Body Site     

    

Inside 

Forearm 

Outside 

Forearm Back Total 

FOV imaged   17 8 8 33 

Demographics Age (Range) 

34.1 

(17-60) 

35.6 

(25-43) 

58 

(28-81)   

  Sex (M/F)  7/10  1/7  8/0   

  Skin Type (Range) 2.6 (1-4) 2 (1-4) 2.5 (2-3)   

In vivo/Ex vivo    17/0  8/0  0/8  25/8 

Images Taken   72 26 34 132 

Total Cells/ROIs   3295 1288 1560 6143 

Cells/ROIs per S.Granulosum (%) 511 (15.5) 290 (22.5) 67 (4.3) 868 

Skin Layer (%) S.Spinosum (%) 1699 (51.6) 493 (38.3) 859 (55.1) 3051 

  Basal Layer (%) 1085 (32.9) 505 (39.2) 634 (40.6) 2224 

Table 6.8 Characteristics of samples used and images taken for comparison of body site with fluorescence lifetime 

From our data sets, the greatest numbers of images were taken from the inside forearm, outside 

forearm and the back, see Table 6.8. As more than one body site was imaged from some patients 

(inside and outside forearm), the number of sites imaged (n=33) is greater than the number of 

patients (n=30). There are a number of key differences between the groups. The images taken from 

the back were all taken from ex vivo tissue, all tissue originated from males who were older than the 

remaining groups. The skin type of the inner forearm group was higher (i.e. darker skin) than those 

of the outside forearm group, potentially obscuring changes of melanin related to photo-exposure. 

Finally, apart from the different number of images taken & ROIs between groups, the proportion of 

cells in the s.granulosum and s.spinosum varied.  

        Percentile 

Index Channel Body Site 25 50 75 

τmean (ps) Blue Back 1194 1820 2155 

    Inside Forearm 1208 1741 2145 

    Outside Forearm 1167 1823 2257 

  Green Back 1670 2148 2463 



 

170 
 

    Inside Forearm 1486 2070 2636 

    Outside Forearm 1709 2337 2825 

  Yellow Back 923 1320 1676 

    Inside Forearm 747 1298 1933 

    Outside Forearm 873 1434 2026 

  Red Back 823 1053 1496 

    Inside Forearm 579 866 1447 

    Outside Forearm 831 1156 1393 

Table 6.9 Distribution of τmean with body site, categorised by spectral channel 

Table 6.9 shows the distribution of τmean by body site for each spectral channel. The median cell 

densities were 0.00174 cells/µm2 for the back, 0.00323 cells/µm2 for the inside forearm and 0.00286 

cells/µm2 for the outside forearm. The median cell density taken from the back was lower than 

those taken from the forearm. Table 6.9 shows a progressive reduction in the median τmean from the 

outside forearm to the back to the inside forearm for in all spectral channels. This decrease was 

found to be 82, 267, 136 and 291 ps between the outside and inside forearm in the blue, green, 

yellow and red spectral channels respectively. This difference was not found to be statistically 

significant when lifetimes were averaged and compared on a per patient basis using the Wilcoxon 

Rank Sum Test. This compares to an increase of +44 ps in the upper skin layer and a decrease of -53 

ps in the lower skin layer between these same body sites found by Benati et al. (Benati, Bellini et al. 

2011). There is no clear explanation for this finding. 

Figure 6.21 Distribution of τmean with spectral channel categorised by body site. 

On closer analysis of the data, the trends in τmean detailed above and seen in the table are not as 

clearly visible from the histograms of τmean, shown in figure 6.21. These histograms suggest a more 

complex picture than originally implied by table 6.9. It has already been noted that the groups are 

not ideally matched and although real differences in lifetime may have been detected with our data, 

a more carefully controlled study would be necessary to investigate further. 

One method to minimise such discrepancies is to analyse paired data taken from different body sites 

but from the same patient. In this way each patient acts as their own control for all parameters 
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except the number of cells arising from each cell layer. It is a more sensitive approach and might 

therefore be more successful with our small sample size. This approach was tried for 5 patients who 

were imaged in vivo from the inside and outside forearm. The results showed that no trends could 

be seen in τmean between pairs.  

Figure 6.22 The spectral contribution in the red channel from 5 patients imaged from inside and outside forearm in vivo. 

Patient ID and number of cells indicated. 

The only consistent change found was a larger spectral contribution from the outside forearm in the 

red channel in all patients. This is illustrated in figure 6.22 which shows the spectral contribution of 

the red channel from the 5 patients. This difference was not detected in the unpaired data. It was 

not possible to attribute this to increased melanin in the skin from the outside forearm as no 

consistent reduction in τmean or increase in f1 in the yellow or red channels was seen, which might be 

expected with increased melanin. Therefore this trend also requires further study in order to verify it 

and investigate its origin. 

In conclusion, a decrease in fluorescence lifetime was found between the outside and inside forearm 

of 82, 267, 136 and 291 ps in the blue, green, yellow and red spectral channels respectively. 

However, as the groups of cells analysed were not well matched, it was not clear if this difference 

represents a true finding. A difference in the fluorescence lifetime was also not found when paired 

images taken from the same patient of the inside and outside forearm. The only consistent 

difference detected in the paired images was a larger spectral contribution in the red channel from 

the outside forearm. This is of uncertain significance and should be confirmed in future studies. 

These findings are in agreement with those reported by Benati et al. (Benati, Bellini et al. 2011), that 

no difference could be concluded between the 2 sides of the forearm. The fact that differences were 

seen in the lifetimes between the inside forearm, outside forearm and the back suggests that a 

larger, more controlled study may find statistically significant differences that our study did not have 

the power to detect. 
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6.6.7 Section C- Conclusions 

In the first half of section C the intra and interpatient variability in lifetimes in normal skin has been 

evaluated. It has been shown that cells from the same patient have a tendency to cluster together in 

respect to their spectral and lifetime properties. A greater interpatient variability between lifetimes 

has also been shown than the intrapatient variability shown between the FOV.  

When all cells were plotted by their spectral contribution in the green and yellow channels, the 

appearance of distinct cell populations that transcend individual patients emerged.  Although it was 

speculated that the differences in these populations were based on cell pigmentation and 

metabolism, no definitive conclusions could be drawn. 

The second half of section C investigated the changes in the fluorescence lifetime with a number of 

parameters including age, sex, skin type and body site. A longer median τmean was found between the 

30-42 and >42 year old groups of +199, +550, +514 and +417 ps in the blue, green, yellow and red 

channels respectively. The data supports the trends found by Benati et al., but our data demonstrate 

a significantly longer median τmean between age groups than their cohort, although not statistically 

significant. 

Although a difference in the fluorescence lifetime between the sexes was initially seen, it became 

unclear if this was a true finding and further work was suggested to investigate this. 

A progressive shortening of the median τmean was seen with skin phototype of 286, 1336, 1436 and 

915 ps in the blue, green, yellow and red channels respectively between skin type 1 and 4. This trend 

was reflected in τ1, τ2 and f1 and felt to arise from increasing melanin content of the cells with 

increasing skin type and was found to be statistically significant using the Wilcoxon Rank Sum Test 

for the green (p=0.016), yellow (p=0.016) and red (p=0.016) spectral channels. 

Finally, a decrease in fluorescence lifetime was found between the outside and inside forearm of 82, 

267, 136 and 291 ps in the blue, green, yellow and red spectral channels respectively. However, as 

the groups of cells analysed were not well matched, it was not clear if this difference represented a 

true finding and further work was suggested. 

6.7 Summary 

The results in this chapter are the first study of normal skin using multispectral FLIM. This 

conclusions section aims to highlight the findings from all sections in this chapter. 

In section A the morphological features seen in MPT images from normal skin are presented and 

discussed. An example of paired multispectral MPT FLIM images is presented with hyperspectral 
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images taken from the same FOV using a modified DermaInspect®. It is then demonstrated that a 

detailed spectral and lifetime analysis can be performed from these images using a set of epidermal 

and dermal images as an example. Following this, a number of morphological features noted in the 

FLIM images are discussed. 

Section B specifically investigates the fluorescence lifetime changes seen between the different cell 

layers of the epidermis. In conclusion the cell density was found to increase with depth in the 

epidermis. A decrease in the median τmean between the s.granulosum and the basal layer of 1286, 

1206, 1169 and 691 ps for the blue, green, yellow and red spectral channels respectively was then 

found, which is significantly longer than the difference reported previously (300ps). Further analysis 

of the lifetime parameters support the conclusion that this related to increased melanin content in 

the cells from the basal layer. There was however insufficient evidence from this data that a change 

in NAD(P)H lifetime (reflecting an increased metabolic activity) accounted for some shortening of the 

lifetime with depth. 

On a number of occasions the lifetime seen in the red channel, especially for τ1 , had a longer than 

expected lifetime than could be expected for melanin. The cause for this difference remains unclear 

and might be attributable to an aggregate of melanin of a size that has a longer emission spectrum 

and a longer than average lifetime than other aggregate sizes. Another possibility is the presence of 

another fluorophore in the red spectral channel, other than melanin. 

Section C evaluated intra- and interpatient variability in fluorescence lifetimes of normal skin. A 

greater variability between lifetimes has been shown between patients than the intrapatient 

variability shown between the FOV.  The presence of distinct cell populations has also been 

demonstrated, for the first time using cellular fluorescence from the green and yellow channels. 

Although it has been speculated that the differences in these populations were based on cell 

pigmentation and metabolism, no definitive conclusions could be drawn without further 

investigation. 

The changes in the fluorescence lifetime with age, sex, skin type and body site was then 

investigated. A longer median τmean was found between the 30-42 and >42 year old groups of +199, 

+550, +514 and +417 ps in the blue, green, yellow and red channels respectively which was larger 

than found by previous groups. Although this was a significant difference when analysed on a per 

cell basis, it was not found to be statistically difference on a per patient basis. 

A progressive shortening of the median τmean was also seen with skin phototype of 286, 1336, 1436 

and 915 ps in the blue, green, yellow and red channels respectively between skin type 1 and 4. This 
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trend was reflected in τ1, τ2 and f1 and felt to arise from increasing melanin content of the cells with 

increasing skin type. This difference was found to be statistically significant when comparing on a per 

patient basis using the Wilcoxon Rank Sum Test for the green (p=0.016), yellow (p=0.016) and red 

(p=0.016) spectral channels which has not been recorded in the literature previously. 

Finally, a decrease in fluorescence lifetime was found between the outside and inside forearm of 82, 

267, 136 and 291 ps in the blue, green, yellow and red spectral channels respectively. However, as 

the groups of cells analysed were not well matched, it was not clear if this difference represented a 

true finding and further work was suggested.  
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Chapter 7. The use of autofluorescence to evaluate Basal Cell 

Carcinoma 

7.1 Aim 

The aim of the work described in this chapter was to evaluate MPT FLIM as a means to discriminate 

basal cell carcinomas (BCCs) from normal skin. Fluorescence intensity and FLIM images were 

collected from normal skin (in & ex vivo) and freshly excised BCCs using four emission spectral 

channels. This is the first time images from BCCs have been analysed using multispectral MPT FLIM 

and the first detailed analysis of their lifetime parameters.  

A selection of FLIM images is initially presented and the visual architectural features associated with 

BCCs (basal cell carcinoma) are discussed. The diagnostic accuracy of using these features is then 

calculated. Next the diagnostic accuracy and degree of discrimination provided by the spectroscopic, 

lifetime and automatically calculated cellular morphological parameters are then explored.  

7.2 Introduction 
Basal cell carcinoma  is most common in Caucasian populations and has a high prevalence in the 

western world (Diepgen and Mahler 2002; Demers, Nugent et al. 2005) with a rising incidence in all 

age groups (Christenson, Borrowman et al. 2005; Staples, Elwood et al. 2006). They are tumours that 

are thought to arise from the basal layer of the epidermis and can manifest as a number of clinically 

and histologically defined sub-types. A further introduction can be found in Chapter 1.3.1, pp30. 

Initial assessment of a possible BCC is currently made on clinical examination. If a lesion arises on the 

face (the most common site of presentation), a diagnostic biopsy is typically performed to confirm 

the diagnosis. The biopsy rate is driven by the desire for a high threshold of diagnostic certainty and 

different subtypes can be treated differently e.g. superficial BCCs can be treated with topical cream 

instead of surgical excision which has cosmetic implications for the patient. This threshold for biopsy 

is higher for BCCs on the body and definitive excisions are more often performed based on a clinical 

diagnosis alone. Sometimes a biopsy may not be fully diagnostic e.g. superficial biopsies may miss 

the presence of deeper infiltrative components of tumour. Furthermore, identifying recurrence on 

biopsy may be challenging and skin with lots of adnexal elements and actinic change can add to the 

difficulty in the interpretation of the biopsy slides. 

As a result, a large proportion of suspected BCCs have diagnostic biopsies. This involves a portion of 

the tumour first being excised, fixed, processed, sectioned and stained before it can be reviewed. 

Biopsies can be both uncomfortable, cosmetically disfiguring to the patient, time-consuming and 
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expensive to the clinician. As the biopsy does not always confirm a BCC or other lesion that requires 

further treatment, it can be seen an unnecessary in some cases.  

In these circumstances a non-invasive imaging modality capable of producing optically sectioned 

images in situ with high spatial resolution and correlation with histology would be highly desirable in 

terms of time, cost and patient experience. Such a device could also, for the first time allow real time 

monitoring of the response to topical chemotherapy. The assessment of clearance or recurrence 

following non-invasive topical therapy is also only performed on clinical judgement, with only 

clinically apparent recurrences being biopsied/treated. Real time non-invasive monitoring would 

allow recurrences to be diagnosed earlier and facilitate more lesions to be treated with topical 

chemotherapy i.e. without surgery. Therefore modalities such as multiphoton tomography (MPT) 

FLIM have the potential to be relevant in the clinical management for patients with BCCs.  

7.3 Methods 

Further details regarding all aspects of the methods are outlined in Chapter 4, pp87. 

7.3.1 Instrumentation 

MPT was performed using the modified DermaInspect®, as described in Chapter 4.4 & 4.5, pp89,92. 

Fluorescence was recorded using time correlated single photon counting (TCSPC) into 256 time bins 

and 4 spectral channels. The spectral channels were defined as 360-425nm (blue), 425-515nm 

(green), 515-620nm (yellow) and 620-640/655nm (red). Minor modifications were made to the 

system during the study to broaden the longest wavelength channel’s detection bandwidth from 

620-640 to 620-655 nm and to improve the spectral separation between the 360-425 nm and 425-

515 nm channels.   

A motorised microscope stage (Scan IM 120 x 80, Märzhäuser Wetzlar Gmbh, Germany) was used for 

the sequential acquisition of data from several fields of view in a number of ex vivo samples (without 

the use of the metallic coupling ring) to allow image mosaics to be created.  

Ex vivo specimens in an inverted glass bottomed petri dish were coupled to the DermaInspect® 

magnetically using a metallic coupling ring, attached to the dish with an adhesive tape prior to 

imaging. For in vivo imaging, a glass coverslip was attached to the metallic ring and then attached to 

the patient using an adhesive tape. 

7.3.2 Patients and Samples 

Patients attending clinics at the Department of Dermatology at Imperial College Healthcare NHS 

Trust were recruited. Patients gave written informed consent to participate.  Images were collected 
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from normal skin (in & ex vivo) and freshly excised BCCs. Further details of the patient selection and 

sample preparation are described in Chapter 4.2 & 4.6 (pp87,95).  

Freshly excised BCCs were rinsed with Hanks Balanced Salt Solution buffer without phenol red, 

calcium or magnesium (Gibco®, Invitrogen™, CA, USA), its surface moistened with the buffer solution 

and placed on damp gauze in an inverted glass bottomed petri dish (80-170 µm cover slip Matek®, 

MA,USA) immediately following excision.  

Ex vivo normal skin was acquired from the margins of larger surgical excisions for suspected skin 

cancers. This normal skin was sufficiently distant from the tumour site to not be affected and 

appeared normal by clinical inspection of the surface. Ex vivo samples were kept at room 

temperature and imaged 66±38 minutes (mean±SD) after excision and prepared for imaging as 

outlined above for BCC samples. Images of normal skin in vivo were taken from patients from areas 

without cutaneous disease or malignancy.  

The diagnoses of all excised suspected BCCs were confirmed histologically. 

7.3.3 Imaging 

The excitation wavelength was fixed at 760 nm. The power was adjusted according to the depth of 

imaging (<50 mW) and was restricted by the manufacturers to <12 mW for imaging the s.corneum. 

Each FLIM image was either 128×128 or 256x256 pixels and was acquired over 25.5 s. The mean 

depth imaged per sample and range (25th - 75th centile) was 65 µm (range 40-85 µm) for the BCCs 

and 62 µm (range 40-72µm) for normal skin, i.e. within the lower epidermis for most samples of 

normal skin. All images from BCCs were acquired from intact skin and not areas of ulceration. 

7.3.4 Data Analysis 

FLIM images were generated by fitting a single exponential decay to the fluorescence from each 

spectral channel of each pixel in the image using software written in Matlab® (R2010b, The 

Mathworks Inc.,USA). Regions of interest (ROI) were defined manually in each image corresponding 

to each cell. An example is illustrated in Chapter 4.10.4, pp105. Each ROI in each channel was then 

fitted to a double exponential decay model. ROI fluorescence decay curves from a single spectral 

channel containing fewer than 1000 photons were excluded from the analysis as they contained too 

few photons to reliably fit to a double exponential mode for that channel. Morphological parameters 

were calculated from the manually segmented ROIs within each image. These included descriptors 

of each ROI individually and how these relate to each other spatially. A full description of the 

parameters can be found in Chapter 4.10.7, pp109. 
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The linear discriminant analysis (LDA) was initially performed on the data using the manually 

segmented ROIs.  ROIs containing <1000 photons in any spectral channel were also excluded from 

the analysis in addition to the photon threshold criteria outlined above. All the ROIs from two 

patients (one normal, one BCC) had <1000 photons in all spectral channels and so were excluded 

from the LDA entirely. Finally, the LDA was repeated using ROIs defined by automatic image 

segmentation as described in Chapter 4.10.8 (pp111) and using unsegmented images. 

7.3.5 Image montaging 

The motorised microscope stage was used to image a total of 12x8 FOVs. Each image in the montage 

was acquired over 25.5 s with an image resolution of 256x256 pixels. The total acquisition time for 

the montage was ~100 minutes. Fitting a single exponential decay model to every pixel in an image 

required approximately 2.5 s using an 8-core, 3.16 GHz PC with 32 GB RAM running MATLAB R2011a 

under Windows 7, 64 bit. Therefore the FLIM decay fitting process required a total of ~4 minutes for 

the entire montage in one spectral channel. Due to backlash when reversing the direction of stage 

motion, fully automatic image stitching using the programmed stage translation distance did not 

provide satisfactory results. Therefore, semi-manual image registration was employed using a 

software package developed in-house in LabVIEW, which required approximately 1 hour aligning the 

whole montage. 

7.3.6 Statistics 

It should be noted that all the spectroscopic, lifetime and morphological parameters and the 

statistical calculations were performed by Dr Yuiry Alexandrov. The Wilcoxon Rank Sum test (Lupton 

1993;P119-28) was applied to study the difference in distribution of lifetimes parameters between 

BCC and normal groups and assess their significance. The discriminative ability of the spectroscopic 

and morphological ROI measurements were assessed using 2 parameters: Receiver Operator 

Characteristic  Area Under the Curve (AUC,(Mathews 2010;P158)) and the Cohen’s d  statistic 

(Gravetter and Wallnau 2009;P262).  

As described in Chapter 4.10.9 (pp112), principal component analysis (PCA) was used to reduce the 

dimensionality of the large number of spectroscopic and cellular morphological parameters. The first 

4 principal components were then used in the linear discriminant analysis (LDA).  

 The LDA was performed for each ROI to classify it as arising within a BCC or normal skin. The fraction 

of cells classified as BCC could then be determined for each patient and an AUC and sensitivity and 

specificity for the correct diagnosis of each patient was then calculated. 



 

179 
 

All spectroscopic and cellular morphology parameters were included for the analysis of the manually 

segmented ROIs. For the automatically segmented data, only the spectroscopic parameters were 

included as the ROIs correlated less accurately to individual cells compared to the manually defined 

method, as illustrated in Chapter 4.10.8 (pp111). Unsegmented images were binned per FOV 

analysed by first spatially integrating the fluorescence decay profiles over each field of view, fitting 

the resulting decays and then calculating the mean spectroscopic parameters for each patient. These 

mean parameters were then included in a PCA and the first 4 components were selected for the 

LDA, as previously described in Chapter 4.10.9 (pp112).  

7.4 Results & Discussion 

          

 Median τmean (ps) 

(Inter-quartile range) 

Diagnosis 

Patients 

(M/F) 

Mean 

Age 

(Range) Images 

ROIs/

Cells Blue Green Yellow Red 

BCC 

19  

(11/8) 

64  

(44-86) 110 4259 2419 2624 1908 1448 

     

(1759-2773) (2412-2819) (1582-2200) (1240-2013) 

Normal 

Skin 

27  

(15/12) 

42  

(17-80) 122 6203 1797 2189 1380 1036 

     

(1282-2175) (1656-2709) (888-1974) (709-1428) 

% difference from 

Normal       34.6 19.9 38.3 39.8 

Table 7.1 Patient characteristics and median lifetimes for each spectral channel. 

Table 7.1 summarises the patients and data used in the analysis. 19 patients with normal skin were 

imaged in vivo, the remaining samples in the study were imaged ex vivo. Patients had skin 

phototypes I-IV with a mean of 2.5 and 2.2 for normal skin and BCCs respectively. All BCCs except 2 

had nodular components and 8 were mixed subtypes including infiltrative and superficial. Skin was 

imaged from the scalp, face, neck, chest, forearm and back for BCCs and face, forearm, back and 

lower leg for normal skin. The difference in median τmean between BCC and normal samples 

(compared on a per patient basis) was found to be statistically significant to p<0.01 using the 

Wilcoxon rank sum test (p = 0.0013, 0.0049, 0.0061, 0.0006 in the blue, green, yellow and red 

channels respectively). The fluorescence lifetimes are further discussed in section 7.4.3 (pp187). 

Figure 7.1 shows an exemplar image stack taken from a BCC. 
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Figure 7.1 Multispectral FLIM images taken at multiple depths from a nodular/superficial BCC. 
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7.4.1 Visual Morphological Analysis 

 

Figure 7.2 FLIM images acquired from BCCs. (a-g) FLIM images taken from the green channel illustrating visual architectural 

features seen in BCC using MPT. (h) FLIM image taken from the blue channel of a BCC. (i,j) paired FLIM images taken from 

the green and blue channels respectively of a BCC nest. Depth of image acquisition stated in bottom left corner of each 

panel. Scale bar 25 µm. 

Figures 7.2a-j illustrates architectural changes seen in BCCs using MPT. These were identified by 

comparing the differences between the MPT FLIM images taken from BCCs to those from normal 

skin. A number of features described previously (Paoli, Smedh et al. 2008; Seidenari, Arginelli et al. 

2012) (images from Seidenari et al. reproduced in Chapter 3.5, pp78) were observed. These include 

‘detached cells with enlargement of intercellular spaces’ (panel a), ‘cells with irregular contours’ and 

‘random arrangement of cells’ (both seen in panel b), ‘aligned elongated cells’ (panel c, white 

arrow), ‘double alignment of monomorphous cells’ (panel d, white arrows), ‘palisading’ (panel i) and 

‘sheets of cells intermingled with fibres’ (panel h).  The paired images in panel i, j are taken from the 

green and blue channels respectively and show the proximity of BCC nests to the surrounding 

collagen fibres (‘cell islands surrounded by fibres’). 

In addition to these features, a pattern of monomorphous cells, often heterogeneous in size, with 

large nuclear/cytoplasmic ratios, poorly defined cell margins and appearing to overlap was 

repeatedly observed. This new feature of ‘merging cells’ can be seen in Figure 7.2 c,e,f,g. 
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Criteria for BCCs 
BCC  

(N=19) 
Normal Skin 

(N=27) 
Sensitivity Specificity 

Random arrangement of cells 1 0 5.3 100 

Cells with irregular contours 0 0 N/A N/A 
Detached cells with enlargement of 

intercellular spaces 2 0 10.5 100 
Aligned elongated cells 6 1 31.6 96.3 

Double alignment of monomorphous 
cells 1 0 5.3 100 

Palisading 2 0 10.5 100 

Sheets of cells intermingled with fibres 4 0 21.1 100 

Cell islands surrounded by fibres 1 0 5.3 100 

Merging Cells 8 1 42.1 96.3 
Table 7.2 The sensitivity and specificity for the diagnosis of BCC listed by individual morphological feature. 

Blinded to the diagnosis, all FLIM images were assessed for the presence of the MPT diagnostic 

morphological features for BCC described above. The results are outlined in table 7.2 which outlines 

the specificity and sensitivity of each feature individually. The sensitivity and specificity have been 

calculated as follows:- 

Sensitivity = 
              

                                
    =   

                          

               
               (Equation 7.1) 

Specificity = 
             

                                  
 =    

                                      

                
  (Equation 7.2) 

As can be seen from Table 7.2 the frequency that each individual morphological feature is present in 

both samples of normal skin and BCCs is low. The highest frequency was the presence of ‘merging 

cells’ that was detected in 8/19 samples of BCC (42.1%).  

In situations where multiple diagnostic criteria have been identified, using a threshold number of 

positive criteria to positively identify a disease is commonly used. . For example, this approach has 

been applied to diagnose systemic lupus erythematosus (threshold of 4 out of 11 criteria) (Tan, 

Cohen et al. 1982). More recently it has been applied to optimize the accuracy of the diagnosis of 

BCCs using confocal microcopy (threshold of 4 out of 5 criteria) (Nori, Rius-Diaz et al. 2004). Table 

7.3 outlines the sensitivity and specificity of these criteria using several example thresholds and 

shows a sensitivity/specificity of 79%/93% for the presence of at least one feature. 
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Number of features 
present 

BCC 
(N=19) 

Normal Skin 
(N=27) Sensitivity (%) Specificity (%) 

>=1 15 2 78.94 92.59 

>=2 6 0 31.58 100 

>=3 2 0 10.53 100 
Table 7.3. The number, sensitivity and specificity for the diagnosis of BCC by the presence of multiple morphological 

features. 

Although the incidence of each morphological criterion was low in our images, the presence of more 

than one per sample was only detected in BCCs. As a result, no images from normal skin reached the 

increased threshold of 2 or more criteria present, leading to a high specificity for the test. We can 

speculate that this arises from sampling bias in the location the images were taken within the BCC, 

as tumours are heterogeneous in structure. 

Similarly, the number of BCC images that also have more than 2 criteria present is also lower (but 

not zero). Consequently the sensitivity also reduces from 15/19 for 1+ criterion to 6/19 for 2+ 

criteria (as calculated from equation 7.1). The sensitivity reduces further for 3 or more criteria as 

only two specimens meet this condition. 

An alternate but similar method of expressing the presence of the morphological criteria is to list the 

actual score and not the threshold. This data has been listed in Table 7.4. Clearly the greater the 

score, the higher the probability that the images are from a BCC. Using this method and for this data, 

we can select a threshold of 1 for diagnosis of a BCC. This ultimately calculates the same 

sensitivity/specificity as above of 78.94% / 92.59%. 

Score 
BCC 

(N=19) 
Normal Skin 

(N=27) 

0 4 25 

1 9 2 

2 4 0 

3 1 0 

4 0 0 

5 1 0 
Table 7.4. Outline of numerically scoring the presence of morphological features in images of BCCs and normal skin. 

In summary, it has been shown that the morphological features described by Seidenari et al. 

(Seidenari, Arginelli et al. 2012) together with the newly proposed feature of ‘merging cells’ provide 

a good specificity and sensitivity for identifying BCCs from FLIM images using a visual architectural 

analysis. The presence of at least one morphological feature was able to diagnose BCCs from the 

images taken by a sensitivity/specificity of 79%/93%.The added contrast provided by the colour FLIM 
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images and the spectral selectivity of features using multispectral FLIM, aided the identification of 

many features, especially when assessing cells within fibres, e.g. see Figure 7.2 h, j.  

7.4.2 Spectroscopic & morphological analysis 

        Percentile 

Index Channel Diagnosis 25 50 75 

τmean (ps) Blue BCC 1759 2419 2773 

    Normal 1282 1797 2175 

  Green BCC 2412 2624 2819 

    Normal 1656 2189 2709 

  Yellow BCC 1582 1908 2200 

    Normal 888 1380 1974 

  Red BCC 1240 1448 2013 

    Normal 709 1036 1428 

f1 Blue BCC 0.268 0.312 0.428 

    Normal 0.299 0.397 0.589 

  Green BCC 0.326 0.349 0.380 

    Normal 0.307 0.342 0.415 

  Yellow BCC 0.378 0.406 0.448 

    Normal 0.374 0.455 0.617 

  Red BCC 0.490 0.532 0.585 

    Normal 0.488 0.564 0.652 

τ1 (ps) Blue BCC 56 115 302 

    Normal 34 47 71 

  Green BCC 325 418 470 

    Normal 67 178 397 

  Yellow BCC 187 293 368 

    Normal 53 94 232 

  Red BCC 200 263 388 

    Normal 80 130 208 

τ2 (ps) Blue BCC 3053 3379 3766 

    Normal 2800 2986 3205 

  Green BCC 3512 3857 4122 

    Normal 2812 3141 3786 

  Yellow BCC 2630 3058 3476 

    Normal 2217 2475 2985 

  Red BCC 2301 2917 3790 

    Normal 1803 2211 2634 

Spectral Blue BCC 0.2533 0.2740 0.3149 

Contribution   Normal 0.2263 0.2527 0.2964 

  Green BCC 0.5269 0.5633 0.5923 

    Normal 0.5301 0.5653 0.6633 

  Yellow BCC 0.1199 0.1601 0.1994 

    Normal 0.0314 0.1828 0.2185 

  Red BCC 0.0002 0.0006 0.0036 
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    Normal 0.0001 0.0005 0.0011 

Total Photons Blue BCC 5722 11739 22650 

per ROI   Normal 2363 5540 11220 

  Green BCC 32062 66009 120605 

    Normal 17529 31816 58006 

  Yellow BCC 15051 28605 54824 

    Normal 10994 20143 37669 

  Red BCC 743 3822 24041 

    Normal 4386 8837 15841 
Table 7.5 – Summary of all spectroscopic parameters calculated for each ROI/cell. 

A number of spectroscopic and cellular morphology parameters were calculated using code written 

in MATLAB to process the manually defined regions of interest (ROI), as described and illustrated in 

Chapter 4.10.7 (pp109). The median ROI τmean is summarised for each spectral channel in Table 7.1. 

The complete table of the calculated lifetime parameters, categorised by diagnosis and spectral 

channel is shown in Table 7.5 

Parameter Index Channel 
Cohen's 

d AUC 

Fluorescence Spectral Contribution Blue 0.45 0.63 

Intensity Spectral Contribution Red 0.73 0.61 

  Fluorescence Coefficient of Variation Yellow 0.17 0.59 

  Spectral Contribution Green 0.48 0.58 

  Fluorescence Coefficient of Variation Blue 0.17 0.53 

  Spectral Contribution Yellow 0.03 0.52 

  Fluorescence Coefficient of Variation Red 0.20 0.52 

  Fluorescence Coefficient of Variation Green 0.06 0.51 

Fluorescence τ1 Red 1.44 0.82 

Lifetime τ1 Blue 1.22 0.80 

  τ1 Yellow 1.00 0.77 

  τ2 Red 0.20 0.74 

  τ2 Green 0.87 0.73 

  τ2 Blue 0.38 0.73 

  τ1 Green 0.83 0.72 

  τ2 Yellow 0.53 0.71 

  f1 Blue 0.40 0.63 

  f1 Yellow 0.57 0.62 

  f1 Red 0.34 0.59 

  f1 Green 0.29 0.52 

Table 7.6 The AUC for Spectroscopic parameters. 

 
      

  
 



 

186 
 

Parameter Index 
Adjacency 
Calculation 

Cohen's 
d AUC 

    Method     

 Cellular Number of Neighbours Delaunay 0.14 0.66 

 morphology Number of Neighbours Gabriel 0.12 0.64 

  Number of Neighbours SOI 0.17 0.62 

  Cell Confluency Gabriel 0.02 0.60 

  Cell Confluency SOI 0.02 0.60 

  Cell Confluency Delaunay 0.29 0.60 

 
Solidity   0.27 0.58 

  Area   0.00 0.58 

  Cell Density Delaunay 0.29 0.57 

  Cell Density SOI 0.02 0.57 

  Distance to Neighbours SOI 0.14 0.57 

  Distance to Neighbours Delaunay 0.11 0.56 

  Cell Density Gabriel 0.02 0.56 

  Distance to Neighbours Gabriel 0.11 0.56 

  Distance to Neighbours SOI 0.13 0.56 

  Distance to Neighbours Delaunay 0.04 0.55 

  Distance to Neighbours Gabriel 0.02 0.54 

  Orientation SD Gabriel 0.12 0.53 

  Orientation SD Delaunay 0.14 0.53 

  Orientation SD SOI 0.13 0.53 

  Flattening Factor SOI 0.18 0.53 

  Flattening Factor Gabriel 0.17 0.52 

  Gyration Radius   0.16 0.52 

  Flattening Factor Delaunay 0.16 0.52 

  Shape Factor   0.05 0.52 
Table 7.7 The AUC for cellular morphology parameters. 

The discriminating parameters of area under the curve (AUC) the Cohen’s d statistic were then 

calculated for individual spectroscopic and morphological parameters. The results are listed in table 

7.7 and 7.7. Although the Cohen’s d suggests that many of the morphological parameters are poor 

discriminators between BCCs and normal skin, differences can be seen in some cases. 

 

Figure 7.3 Histograms of cellular morphology features demonstrating the difference between normal skin (Blue) and BCCs 

(Red). 
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Figure 7.3a-c present histograms of the three cellular morphology parameters, namely the flattening 

factor (ratio of minor to major axis length), orientation SD (the standard deviation of the ROI major 

axis angle of a cell and its neighbours), and the cell confluency (combined area of ROI and adjacent 

ROIs relative to intercellular space). The difference in the median value for the orientation SD and 

cell confluency between BCC and normal samples was found to be statistically significant at the 5% 

level using the Wilcoxon rank sum test (p = 0.03, 0.05 respectively), but was not significant for the 

flattening factor (p = 0.33). The difference in orientation SD reflects the increase in BCCs of aligned 

and elongated cells and of “palisade”-like structures. The differences seen in cell confluency suggest 

that cells from BCCs are, on average, more sparsely arranged in an x-y plane than those from normal 

skin. These differences are in accordance with visual assessments of tissue morphology discussed by 

Seidenari et al. (Seidenari, Arginelli et al. 2012). 

7.4.3 Fluorescence Lifetime 

 

Figure 7.4 Histograms of τ1, τ2, spectral contribution for all spectral channels for BCC and normal skin. Curves are color-

coded according to channel. 

Histograms of fluorescence lifetime parameters (Figure 7.4a-f) show a shift toward longer lifetimes 

for BCCs in τ1 and τ2 for all channels compared with normal skin. Strong peaks are seen in the BCC 

histograms at τ1 = 450 ps and τ2 = 4000 ps in the green channel, the peak in τ2 shifts from 2400 ps to 

3000 ps in the yellow channel and new peaks in τ1 around 250 and 500 ps are present in the red 

channel in BCCs. The difference in median τmean between BCC and normal samples were compared 

on a per patient basis and was found to be statistically significant to p<0.01 using the Wilcoxon rank 

sum test (p = 0.0013, 0.0049, 0.0061, 0.0006 in the blue, green, yellow and red channels 

respectively). 
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Analysis with respect to the fraction of the total fluorescence signal in each spectral channel 

(spectral contribution, Figure 7.4c) indicates a population of cells with a high contribution in the 

green channel in normal skin and a broader distribution in the yellow channel in normal skin 

compared to BCC (figure 7.4f). There is also an increase in spectral contribution in the red channel 

for BCCs which can also be seen from table 7.5. 

In the cell-based spectroscopic analysis, longer τmean in all spectral channels for BCC compared to 

normal were observed, in agreement with earlier non-spectrally resolved FLIM MPT studies of BCC 

(Cicchi, Massi et al. 2007; De Giorgi, Massi et al. 2009; Seidenari, Arginelli et al. 2012). It is important 

to note that since normal keratinocytes are present within BCC, many cells/ROIs in the BCC FLIM 

images will have actually been normal cells, yet statistically significant differences were observed 

between groups in spite of this. From a spectroscopic perspective, it could be argued that the 

observed fluorescence lifetime contrast is due to a higher concentration of melanin (with a short 

fluorescence lifetime) in normal samples. It was not believed to be the case in this instance because 

the BCC dataset includes some pigmented BCCs and well matched spectral contributions were 

observed between groups in the melanin dominated yellow and red spectral channels (see Table 

7.4). It is interesting to note that the spectroscopic parameters providing the highest discrimination 

(AUC) between groups are the fluorescence lifetimes of the red and yellow channels. It is possible 

that increased porphyrins, a dominant fluorophore in this spectral range, may account for finding. 

Policard originally described increased endogenous autofluorescence due to porphyrins associated 

with cancer in 1924 (Policard 1924). This phenomenon has since been described and commented on 

by others (Wagnieres, Star et al. 1998) in other tumour types. Further research is required to verify if 

this is the case for BCCs and if not, to elucidate the origin of this contrast. 

Previous in vivo measurements in a hamster cheek pouch model of oral cancer by Skala et al.(Skala, 

Riching et al. 2007) show a decrease in the fluorescence lifetime of NAD(P)H and flavins associated 

with malignancy. The measurements found in our study have the opposite trend. This which may be 

due to differences between animal model and human, in disease pathophysiology or the absence of 

melanin in mucosal epithelium. 

Potential confounding factors in fluorescence lifetime measurements include (Benati, Bellini et al. 

2011) imaging depth in the skin (τmean decreases with depth) and patient age (τmean increases with 

age). In this study, image depths were well matched between groups (62 v. 65 µm mean cell/ROI 

depth) and are not expected to influence the results significantly. In a previous study of two very 

distinct age populations (20-35 and >60 years) using a single spectrally broad FLIM channel (Benati, 

Bellini et al. 2011), lifetimes were observed to differ between age groups by 109 ps for upper skin 
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layers and by 210 ps for lower layers. In this study the age disparity was much lower (mean age 42 v. 

64, Table 7.1) and the observed changes in fluorescence lifetime between normal and BCC are much 

larger (412-622 ps, Table 7.1).  

7.4.4 Lifetime variation of BCC vs normal skin 

It has already been shown in Chapter 5 that there is no significant difference in the fluorescence 

lifetimes between in vivo and ex vivo samples over the time scale of these experiments. One factor 

that was explored was the variation in the median τmean for BCCs compared to normal skin.  

 

Figure 7.5 Bar chart showing sample median ROI/cell mean fluorescence lifetime per sample for BCCs, in vivo normal and 

ex vivo normal skin for the four spectral detection channels. Error bars indicate value of 25th and 75th percentile. 

Figure 7.5 illustrates the median and variation in τmean between samples (not ROIs) of normal skin (in 

vivo and ex vivo) compared to BCCs. It highlights that the lifetimes calculated for BCCs are 

significantly longer than those seen in either in vivo or freshly excised normal skin in all channels, 

despite the range in lifetimes calculated. 
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7.4.5 Discrimination 

 

Figure 7.6. Histograms of the fraction of cells classified as BCC for the samples of actual BCCs and of those from normal 

skin. This analysis was performed using (a) manually segmented ROIs & spectroscopic and morphological parameters or (b) 

automatically segmented ROIs & spectroscopic parameters only. 

 

In this section the use of LDA to discriminate between normal skin and BCCs is explored. PCA-based 

dimensionality reduction was employed to develop a diagnostic algorithm using all of the 

spectroscopic and cellular morphology parameters, as discussed in section 7.3.4 (pp177). LDA was 

then applied to the first 4 principal components of the data. This allowed each ROI to be classified as 

either ‘Normal’ or ‘BCC’. The fraction of cells/ROIs classified as ‘BCC’ was then determined for all 

patients and is illustrated in figure 7.6a. The separation of these variables’ distributions as measured 

using the AUC, was 0.83. For example, if the threshold for classifying a patient as having BCC is set at 

having 30% of cells classified as BCC, then this yields a sensitivity/specificity of 89%/73%. 

To further automate the discrimination, the step of manual segmentation was replaced by 

automatic ROI segmentation. This procedure identified 2343 BCC and 4034 normal ROIs. Here, the 

cellular morphology parameters were not included in the PCA because the automatic ROI detection 

did not provide a clean outline of the cells and did not always correctly identify individual cells. 

Examples are illustrated in Chapter 4.10.8 (pp111) and Chapter 5.3.4 (pp119). However, the cellular 

morphology parameters only provide very weak discrimination between normal and BCC, as 

illustrated by the low AUC and Cohen’s d values seen in table 7.6, so their exclusion was not 

expected to significantly affect the outcome.  

(a) (b)
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Although the resulting fraction of cells/ROI’s classified as ‘BCC’ using automatic segmentation (see 

Figure 7.6b) is different to that obtained with manual segmentation, the separation of these two 

distributions also yielded an AUC of 0.83. One might expect the discrimination based on 

automatically segmented ROIs to score lower than the one based on manual segmentation, due to 

the loss of information on the cellular morphology, the occasional grouping of more than one cell 

into the same ROI and erroneous inclusion of some extracellular fluorescence by the segmentation 

algorithm. In practice, however, the exact shape of the ROI around a single cell was not expected to 

greatly affect the spatially integrated fluorescence decay from that ROI or the derived fluorescence 

lifetime parameters. This is because the fluorescence decay profile is reasonably uniform across 

individual cells and the erroneous inclusion of extracellular fluorescence makes only a small 

contribution to the total signal analysed.  Although the automatic segmentation is not perfect, it did 

allow bi-exponential fluorescence decay parameters to be measured at multiple regions across an 

image and was much less time-consuming than manual segmentation. Further work and larger 

numbers of patients/samples will be required to compare the relative performance of these two 

methods more precisely. An analysis that did not include any image segmentation was also 

performed for comparison and resulted in a reasonable sensitivity/specificity of 72%/84% 

respectively. 

7.4.6 Mosaic 

Figure 7.7 False colour mosaic FLIM image from the green channel of a BCC consisting of 12x8 FOVs covering an area of 

1.86x1.24 mm2. Bar 0.2 mm. 
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To observe the variation of spectroscopic and morphological parameters of a lesion across a larger 

field of view than is possible with the MPT instrument (350 µm x 350 µm2), a motorised stage was 

employed to move ex vivo samples within the x-y plane and mosaics of high resolution images were 

then assembled. Figure 7.7 shows an example comprising 12x8 individual FLIM images from the 

green spectral channel acquired from a BCC.  It illustrates the potential of this technique to be used 

for high resolution label-free histology over a large field of view. 

Combining the subcellular resolution of multispectral MPT FLIM with a motorised stage to facilitate 

imaging over large fields of view provides a means to identify small nests of BCCs in normal skin, 

such as those seen with infiltrative BCCs, whose margins are notoriously difficult to define. Currently 

the manual acquisition and processing of montage data is slow with data acquisition, FLIM data 

analysis and montaging requiring approximately 100, 4 and 60 minutes respectively for 12x8 images. 

In the future, full automation of the image acquisition process would reduce the image acquisition 

time to ~45 minutes. Further reductions in image acquisition time may be possible by reducing the 

time required to acquire each sub-image, at the expense of signal-to-noise ratio in the final image. A 

wide range of sophisticated image stitching algorithms exist that could be used to greatly speed up 

the montaging compared to the current manual image stitching. While the current depth of 

penetration of MPT is too limited to assess the margins of many infiltrative BCCs in vivo, its high 

sensitivity, specificity and high spatial resolution can be exploited by stitching multiple images 

together to provide an extended multidimensional mosaic of such lesions. This could be useful for 

clinical ex vivo margin assessment for the future, e.g. during Mohs procedures where currently, 

assessment of fresh frozen sectioned tissue can take several hours. 

7.5 Conclusions 

This chapter presents a detailed study using multispectral MPT FLIM imaging to differentiate BCCs 

from normal skin for the first time. Images were acquired from 19 freshly excised BCCs and 27 

samples of normal skin (in & ex vivo).  

In this chapter existing MPT morphological features have been assessed and, together with a newly 

proposed feature (‘merging cells’), demonstrated that visual assessment of the images provides a 

sensitivity/specificity of 79%/93%. Statistically significant increases were found in the fluorescence 

lifetimes of cells from BCCs in all spectral channels, ranging from 19.9% (425-515 nm spectral 

emission) to 39.8% (620-655 nm emission). These differences are greater than those found between 

in vivo and ex vivo normal skin. 
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In addition, a detailed analysis of the discrimination between BCCs and normal skin has been 

performed using a number of spectroscopic and cell-based morphologic parameters for the first 

time. They have then been ranked them by their discriminatory power.  

The first semi- and fully-automated diagnostic algorithms based on manual and automatic 

segmentation of MPT FLIM images is also reported. Segmentation of images into ROIs followed by 

principal component analysis based dimensionality reduction yielded an AUC of 0.83 for the 

discrimination of BCC from normal skin using LDA with both methods of segmentation. 

Finally, a mosaic of BCC fluorescence lifetime images covering >1mm2 is also presented for the first 

time, demonstrating the potential for tumour margin delineation. 

In the future, the combination of automatically calculated spectroscopic information together with 

manually identified visual architectural features could lead to higher diagnostic accuracies. This work 

demonstrates the diagnostic potential of multispectral MPT FLIM for the evaluation of BCC and its 

margins. 
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Chapter 8. The use of autofluorescence to investigate pigmented 

lesions: Dysplastic Naevi & Melanoma 

8.1 Aim 

This chapter describes the evaluation of melanocytic lesions using MPT multispectral FLIM. To 

achieve this, clinically dysplastic naevi and melanomas were imaged ex vivo and the images 

analysed. Morphological features are identified that characterise melanomas from naevi and an 

analysis of the cellular lifetimes comparing naevi with melanomas is made with a quantitative 

discrimination of lifetime parameters being made, for the first time. Also mosaic MPT FLIM images 

acquired from both naevi and melanomas are presented for the first time. 

8.2 Introduction 

A naevus can be defined as benign collection of melanocytes in the skin. Melanocytes are the cells in 

the skin that synthesise melanin. Naevi can be subdivided into congenital naevi (those present at 

birth) and acquired. The acquired naevi arise from a proliferation of melanocytes at the dermo-

epidermal junction after birth. Over time the natural evolution of some acquired naevi is to migrate 

into the dermis (Burns, Breathnach et al. 2010). This can be seen clinically as a change in appearance 

such as decrease in pigment and increase in nodularity. During this process they are described as 

compound naevi (when part of the naevus has migrated) or intradermal naevi (when the naevus has 

completed its migration into the dermis). 

When the proliferation of a naevus deviates from that described above, its clinical appearance can 

be described as atypical or dysplastic in regards to size, shape and colour compared to benign naevi. 

These naevi are typically >5 mm in size and have some asymmetry in shape or colour. Ultimately, 

most of these naevi cease to proliferate and revert to the path of maturation outlined above. Their 

significance is that they are likely to be a precursor to and often indistinguishable from early 

melanoma i.e. a malignant naevus. 

A clinical history from the patient and clinical examination of the lesion can help evaluate the 

likelihood that a dysplastic naevus is malignant. However many cases cannot be distinguished 

clinically and a definitive diagnosis can only be made from a histological examination of the lesion, 

which requires the lesion to be surgically removed. The prognosis of melanoma is critically 

dependent on its depth of invasion at diagnosis. Clinicians therefore have a low index of suspicion 

for surgical excision because the consequences of clinically monitoring a growing melanoma by a few 

millimetres can impact on the prognosis significantly (Roberts, Anstey et al. 2002). 
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In recent decades, the use of a dermatoscope, to more clearly visualise the epidermis and upper 

dermis, has made a significant impact on a clinician’s ability to diagnose melanomas at the bedside 

compared to clinical examination alone (Kittler, Pehamberger et al. 2002). A number of diagnostic 

algorithms have been validated such as the ABCD system (asymmetry, boarder irregularity, colour, 

diameter) (Nachbar, Stolz et al. 1994), pattern analysis (Argenziano, Soyer et al. 2003), 7 point score 

(Dal Pozzo, Benelli et al. 1999) and the Menzies method (Menzies, Ingvar et al. 1996). These have 

been shown to have a high sensitivity (range 83-86%) and specificity (range 70-83%) for identifying 

melanomas from other pigmented lesions (7 point score, Menzies method) or from pigmented 

melanocytic lesions (ABCD system, pattern analysis). They have allowed more melanomas to be 

diagnosed at the bedside, and by confidently excluding melanoma, reduce the rate of unnecessary 

biopsies. 

Despite this tool, the number of naevi excised for every melanoma still range from 8.7 to 29.4 

between specialist and non-specialist dermatology centres respectively (Argenziano, Cerroni et al. 

2012). This range highlights the continued importance of clinical experience, even between 

dermatologists for the recognition of melanomas, despite the use of a dermatoscope. This number 

of ‘unnecessary’ excisions creates a physical and financial burden on hospital services and causes 

unnecessary, potentially disfiguring scars for patients. 

A number of non-invasive imaging modalities have been used to assess pigmented lesions, including 

high frequency ultrasound, optical coherence tomography and reflectance confocal light microscopy. 

The studies examining pigmented lesions using these modalities have been previously summarised 

in Chapter 1.4 (pp33-42). 

This work used MPT FLIM to assess dysplastic naevi and melanomas and attempts to distinguish 

them using spectroscopic and morphological parameters. Although other groups have presented 

studies investigating lesion margins and the thickness using other non-invasive imaging modalities, 

this has not been measured here due to the limited penetration depth of MPT. 

8.2.1 Prior studies investigating autofluorescence of pigmented lesions 

Previous studies investigating tissue autofluorescence from pigmented lesions are limited with most 

studies investigating the emission spectra and/or fluorescence intensity images only. In 1988 

Lohmann et al. (Lohmann and Paul 1988) used excitation at 366 nm (bandwidth of 11 nm) and 

recorded the emission spectrum  from melanomas and naevi in 82 patients  in vivo. They found that 

melanomas had a maximum emission peak at 475 nm wavelength which was not present in benign 

moles or the other inflammatory skin diseases that were measured.  
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Ten years later Chwirot et al. used similar equipment and an identical excitation wavelength to 

record fluorescence images from 408 pigmented lesions that included 90 melanomas and 205 naevi  

in vivo (Chwirot, Chwirot et al. 1998). Images were acquired through a transmission filter centred at 

475 nm and were used to distinguish melanomas from naevi with as sensitivity of 82.5% and 

specificity of 78.6%. 

In contrast Sterenborg et al. were unable to detect a difference when comparing fluorescence 

intensity images and emission spectra from 8 melanomas and 8 benign pigmented lesions, using and 

excitation wavelength of 375 nm (Sterenborg, Motamedi et al. 1994). 

In 2007 De Beule et al. published the autofluorescence lifetime taken from melanocytic lesions (De 

Beule, Dunsby et al. 2007). They used picosecond pulsed lasers to excite various freshly excised skin 

lesions, including 2 melanomas and 6 benign naevi at 355 nm and 435 nm wavelength.  The 

autofluorescence was collected using a fibre optic point probe and was spectrally and time resolved. 

They found that melanomas exhibited a redshift in the emission spectrum and a lower average 

fluorescence lifetime than benign neavi when excited at 435 nm. However this was not quantified in 

the paper and the sample size was too small to perform any statistical evaluation. 

The investigation of melanocytic lesions using MPT has been reported by three groups. Pavone’s 

group published spectral and lifetime resolved fluorescence histograms from samples of normal skin, 

BCCs and a single melanoma (Cicchi, Sestini et al. 2008; De Giorgi, Massi et al. 2009).  

Arginelli et al. used MPT images from 16 ex vivo benign naevi to define descriptors for naevi. These 

were then tested blindly on 102 lesions that were imaged ex vivo, of which 51 were melanocytic 

naevi and 51 were a miscellaneous group of conditions, both malignant and benign (Arginelli, 

Manfredini et al. 2012). They determined that ‘small short-lifetime cells’ in the upper and lower 

epidermal layers, ‘edged papillae’, ‘junctional nests of short-lifetime cells’ and ‘dermal cell clusters’ 

were 5 sensitive and specific descriptors for diagnosing benign naevi. These have been reproduced 

in figure 3.4 in Chapter 3 (pp.83) They also fitted the lifetimes from 3 cells per image using a single 

exponential decay model for images taken from 48 naevi and 48 areas of normal skin imaged ex vivo. 

They recorded a lifetime ± SD for normal skin of 1000±200 ps and 360±120 ps for naevi. 

König et al. have published both a morphological analysis (Dimitrow, Ziemer et al. 2009) and a 

lifetime analysis (Dimitrow, Riemann et al. 2009) comparing melanocytic lesions using MPT. In the 

former study, 83 melanocytic lesions were imaged both in vivo and ex vivo using the DermaInspect® 

with an excitation wavelength of 760 nm. They found the following morphological features to be 

statistically significant for the diagnosis of melanoma: architectural disarray of the epidermis, poorly 
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defined keratinocyte cell boarders, the presence of pleomorphic cells and the presence of dendritic 

cells. These features are reproduced in figure 3.3 in Chapter 3 (pp81) and were found to have 

sensitivities ranging from 71-95% and specificities between 69-97% for each feature individually. The 

features of large intercellular distance and ascending melanocytes were also noted but not found to 

be statistically significant. The feature of pleomorphic cells associated with melanomas was also 

illustrated in Seidenari et al.’s review paper (Seidenari, Arginelli et al. 2012). 

In Dimitrow et al.’s second paper, fluorescence lifetimes (13 naevi, 10 melanomas) and emission 

spectra (4 lesions) were collected from pigmented lesions. Images from lesions were taken both in 

vivo and just after excision using both 760 nm and 800 nm excitation wavelengths. They found that 

although FLIM could distinguish between the keratinocytes and melanocytic cells within the images, 

it was unable to distinguish between benign naevi and melanoma (Dimitrow, Riemann et al. 2009). 

8.3 Methods 

The methods for patient recruitment, image acquisition, image analysis are outlined in Chapter 4 (pp 

87). In summary, patients were recruited from those attending the dermatology department at the 

Hammersmith Hospital site of Imperial College Healthcare NHS Trust, London. Those patients with 

clinically suspicious dysplastic naevi that required surgical excision were invited to participate in the 

study. Only lesion that were histologically confirmed as naevi or melanomas were then included in 

the analysis. Only image sets with all 4 spectral channels present and for which a gold nanorod IRF 

could be applied to the analysis were included. 

All images were acquired ex vivo, from freshly excised samples. The time from excision for all 

melanomas and 26/32 naevi were recorded, allowing the imaging time post excision to be calculated 

for 92.9% of the cells (ROIs). The mean±SD of the acquisition time post excision were 80.6±35 

minutes for the cells from naevi and 81.9±34 minutes for the cells from melanomas.  

All images were acquired at 760 nm excitation wavelength with the power (<50mW) adjusted 

according to the depth of the image and restricted to <12mW for the s.corneum. A number of 

samples were imaged from more than field of view (FOV) with images acquired at ~10 µm intervals 

for most samples. The mean depth imaged was 45.5 µm for naevi and 59.0 µm for melanomas. 

The FLIM images were generated by fitting a single exponential decay to the fluorescence from each 

spectral channel of every pixel in the image, as outlined in Chapter 4.10.3 (pp104). The FLIM analysis 

used ROI defined manually in each image corresponding to each identifiable cell. A double 

exponential decay was then fitted to the spatially integrated fluorescence from each ROI for each 

channel independently, as outlined in Chapter 4.10.5 (pp106). For each ROI in each spectral channel, 
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the total fluorescence was recorded and a τ1, τ2, f1, f2 , and τmean were calculated. ROIs with fewer 

than 1000 photons in a channel had insufficient photons to reliably fit a double exponential decay 

and were excluded. 90.5%, 100%, 100% and 98.6% of the ROIs were fitted for melanoma and 85.3%, 

99.1%, 98.4%, 95.9% of the ROI for naevi were fitted for the blue, green, yellow and red channel 

respectively. 

In addition the ROIs were used to make assessments of the cell shape, area and the spatial 

orientation between them. The parameters calculated are outlined in Chapter 4.10.6 (pp108). 

The image montages presented in this chapter were acquired using the methods outlined in the 

Chapter 4.5.4 (pp95).  

A more detailed description of the statistical methods used can be found in Chapter 4.10.9 (pp112). 

The statistical tests were performed using MATLAB®.  

The discrimination between melanomas and naevi was made using the first 4 components of a 

principle component analysis (PCA) of the spectral, lifetime and morphological parameters. This was 

then categorised using linear discriminant analysis (LDA). Only ROIs that had >1000 photons for all 

spectral channels were included for this analysis. 89.3% and 81.2% of ROIs for melanoma and naevi 

respectively had sufficient ROIs in all spectral channels to be included in the analysis. 

8.4 Results Summary 

Diagnosis 

Patients 

(M/F) 

Mean Age 

(Range) Images ROIs/Cells 

Melanoma 8   (5/3) 38.3 (27-73) 81 2177 

Naevus 32 (11/21) 34.6 (20-65) 221 12632 

Table 8.1 Summary of the patients and images taken from pigmented lesions used. 

Table 8.1 summarises the data used in the analysis. 40 patients with histologically confirmed 

dysplastic naevi or a melanoma were selected for the analysis. The mean skin phototype was 2.5 for 

the patients with naevi and 1.9 for those with melanomas. The site of origin of the 32 naevi were as 

follows : 14 from the back, 6 from the arms, 4 from the legs, 4 from the abdomen, 2 from the chest 

and 2 from the shoulder. These were histologically classified as 14 junctional, 6 intradermal and 8 

compound naevi. The sites of origin of the 8 melanomas were 4 from the back, 2 from the lower leg, 

1 from the chest and 1 from the forearm. They were histologically classified as 2 in situ melanomas, 

6 superficial spreading malignant melanomas of which 1 containing a nodular component. The mean 

Breslow thickness of the 6 invasive melanomas was 1.03 (range 0.7-1.4) mm. 
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8.5 Manual Morphological Analysis 

8.5.1 Naevi 

Figure 8.1 (4207 fov1) shows a typical image stack from a junctional neavus. Melanocytes lining the 

basal layer around the dermal papilla can most clearly be seen in the images taken between 80-100 

µm by their short lifetimes (false colour coded in red). 

Minimal differences in architectural features were seen between the FLIM images taken from 

dysplastic naevi and those from normal skin. One difference between FLIM images from normal skin 

and those from the pigmented lesions was the presence of increased melanin within the cells of the 

lower epidermis and basal layer in the pigmented lesions. 
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Figure 8.1 illustrates MPT FLIM images of a junctional naevus (4207 fov1) acquired using the DermaInspect® showing 

images taken from each spectral channel at various depths of the epidermis. 

8.5.2 Melanomas 

Figure 8.2 (4205 fov1) shows an image stack including all spectral channels from a superficial 

spreading melanoma. These images demonstrate the lack of architectural order with depth and the 

transition between the different layers within the epidermis has been lost. 
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Figure 8.2 illustrates MPT FLIM images of a superficial spreading melanoma (4205 fov1) acquired using the DermaInspect® 

showing images taken from each spectral channel at various depths of the epidermis. 

A selection of characteristic features of melanoma seen from our MPT FLIM images can be seen in 

figure 8.3. The identification of a number of features defined by Dimitrow et al. for the diagnosis of 

melanoma was difficult, particularly the presence of pleomorphic cells and poorly defined cell 

borders, due to the subjective nature of their identification (Dimitrow, Ziemer et al. 2009).  
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Figure 8.3 illustrates characteristic features found in melanomas. All MPT FLIM images were acquired from the green 

channel at various depths.(a) Melanocyte dendritic cell (arrow). (b) Multiple melanocytic dendritic cells. (c) Ascending 

melanocytes. (d,e) Cells with poorly defined cell borders and large intercellular distance. (e,f) Pleomorphic cells 

(asterisk).(g,h) Areas of fragmented cells and architectural disarray. 

In Figure 8.3a a melanocyte and melanocytic dendrites (arrows) can be seen. The short lifetime 

(colour coded red) of the cell body and the dendrite highlighted by the arrows identify these 

structures as containing melanin and distinguish them from other dendritic cells that may be present 

in the epidermis, such as Langerhans cells. This distinction and the identification of the dendrite 

would be difficult without the lifetime information merged with the fluorescent intensity image. 

Figure 8.3b shows many dendritic cells with varying melanin content and exhibiting architectural 

disarray. The image in figure 8.3c was taken from the s.corneum and illustrates the presence of 

ascending melanocytes. Figure 8.3d,e illustrate images of cells with poorly defined boarders and 

large intercellular distance. It has been our experience that these two features co-existed together in 

6/8 cases of melanoma. 

It has previously been discussed in chapter 6.4.3 (pp142) that the feature of large intercellular 

distance is an artefact of fluorescence imaging and represents a lack of cellular autofluorescence at 

the cell periphery. Cells in figure 8.3e and 8.3f are pleomorphic cells (asterisk), as defined by the 

description and fluorescence images provided in the paper by Dimitrow et al. (Dimitrow, Ziemer et 

al. 2009). Figure 8.3g and 8.3h illustrate areas of fragmented cells, architectural disarray and cells 

with unusually morphology and increased heterogeneity of intracellular lifetimes. 

8.5.3 Quantification of morphological features  

The accuracy of the morphological diagnostic criteria for melanomas discussed and illustrated above 

(Dimitrow, Ziemer et al. 2009) were then assessed using our data. The presence of the six defined 
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features was assessed from the MPT FLIM images taken from each lesion. This assessment was 

blinded to the histological diagnosis and performed by myself. 

  
Melanoma 

(N=8) 
Naevi 
(N=32) AUC Sensitivity % Specificity % 

Large intercellular distance 5 1 0.797 62.5% 96.9% 
Dendritic cells 5 2 0.781 62.5% 93.7% 
Ascending melanocytes 3 2 0.656 37.5% 93.7% 
Poorly defined cell boarders 3 2 0.656 37.5% 93.7% 
Architectural disarray 2 2 0.594 25.0% 93.7% 
Pleomorphic cells 1 2 0.531 12.5% 93.7% 

Table 8.2 summarises the frequency of each morphological feature identified in images from melanomas and naevi and the 

calculated area under the curve (AUC), sensitivity and specificity for each feature for the diagnosis of melanoma. n=40. 

Table 8.2 lists the number of times that each of the morphological features was identified in the 

images from melanomas and naevi. The diagnostic accuracy for each feature is then calculated for 

each feature. The table shows that all features appear specific to the diagnosis of melanoma but 

have poorer sensitivities. In part, this disparity arose through the difference in the numbers of 

patients with each diagnosis (melanoma n=8, naevi n=32). The number of patients with melanoma is 

small. Therefore small differences in the number of times a morphological feature is detected 

translate into a large difference in the sensitivity. For example, the sensitivity for ‘ large intercellular 

distance’ is calculated as 5/8 = 62.5%. If another 2 patients were included with melanoma and this 

feature was seen in both sets of images (likely), the sensitivity would increase to 7/10 = 70%. In 

contrast, the number of naevi is comparitatively large. If another 2 patients were included with naevi 

and this feature was seen (unlikely) then the specificity would change from (32-1)/32 = 96.9% to (34-

3)/34=91.2%. This is a smaller percentage difference. 

These results compares to a sensitivity range of 90-95% and specificity range of 69-86% found by 

Dimitrow et al. for pigmented lesions imaged ex vivo (n=72)(Dimitrow, Ziemer et al. 2009). In 

comparison our data had a similarly high specificity but lower sensitivity. Dimitrow et al. used logistic 

regression to determine the optimal discriminatory features. They agreed with our findings that the 

presence of dendritic cells was important but did not find large intercellular distance a good 

discriminator. However, they found that architectural disarray, poorly defined keratinocytes and the 

presence of pleomorphic cells as important discriminators, whilst this was not found from our data, 

assessed by AUC. 

The study population appeared to be similar between the studies and therefore not likely to have 

caused the differences in the results seen between the studies. Both studies imaged naevi that were 

sufficiently dysplastic/suspicious to require surgical excision. Dimitrow et al. imaged melanocytic 
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lesions either in vivo or ex vivo or both. Although 26/83 (31.3%) patients had melanomas in the 

Dimitrow et al. paper, compared to 8/40 (20%) in our data (all imaged ex vivo), the proportion of 

these were imaged ex vivo was not explicitly stated.  

  

Melanoma 

(N=8) 

Naevi  

(N=32) sensitivity %   specificity % 

N>=1 6 6 75.0%   81.3% 

N>=2 5 3 62.5%   90.6% 

N>=3 4 2 50.0%   93.8% 

N>=4 2 0 25.0%   100.0% 

N>=5 2 0 25.0%   100.0% 

N=0   Negative Predictive Value of 92.8% 

Table 8.3 shows the effect of changing the threshold of the number of features necessary for the diagnosis of melanoma to 

be made.  . 

Another approach was to assess the presence of 1 or more of the diagnostic criteria for melanoma in 

the images from each lesion. The results are outlined in Table 8.3. It shows that the presence of 1 or 

more features would have a sensitivity and specificity of 75.0% and 81.3% respectively.  This 

compares with a sensitivity and specificity of 93% and 74% respectively by Dimitrow et al.  

The sensitivity significantly reduces as the number of features required increases. When tests have a 

high specificity but lower sensitivity, as is the case for the presence of multiple features, they are 

useful in clinical practice to exclude a condition confidently. In this case, the absence of all 6 features 

has a negative predictive valve against melanoma of 92.8%. 

In summary the morphological features defined by Dimitrow et al. for the identification of 

melanomas from MPT intensity images has been applied to MPT FLIM images successfully. In many 

instances the false colour coded FLIM images facilitated the identification of the features. The 

features were found to have high specificities but varied in their sensitivities for the diagnosis of 

melanoma. Importantly the absence of all features had a negative predictive value of 92.8%. 

8.5.4 Mosaics 

Figure 8.4 and 8.5 are image mosaics made from images taken in the green spectral channel from 

junctional naevi. The image in figure 8.4 has been manually assembled and arranged within 

Microsoft® Powerpoint whilst the image in figure 8.5 has be semi-automatically stitched together, as 

described in Chapter 7.3.5 (pp178) for the BCC image montage. Figure 8.4 illustrates the distribution 

of the melanocytes around the dermal papilla. The lifetime information in the image allows the 
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keratinocytes between the dermal papilla (coloured green), the melanocytes (coloured red) and the 

elastic fibres in the dermis (coloured blue) to be easily distinguished. The two green vertical lines 

toward the right of the image the mosaic are hair follicles. Figure 8.5 (4201 fov2) shows a larger 

mosaic taken higher within the epidermis, above the level of the dermal papilla and shows individual 

cells clearly. These two image mosaics demonstrate the ability of this device to assess large areas of 

skin. 

 

Figure 8.4 shows a montage of 7x5 MPT FLIM images taken from the green channel at a depth of 95 µm from a junctional 

naevus (4207 fov2). It represents an area of 1055 x 715 µm2.  Scale Bar 250 µm. 
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Figure 8.5 shows a montage of 10x7 MPT FLIM images taken from the green channel at a depth of 50 µm from a junctional 

naevus (4201 fov2). It represents an area of 1055 x 715 µm2. Scale Bar 250 µm. 

 

Figure 8.6 (4205 fov3) shows a mosaic generated manually within Microsoft ® PowerPoint taken 

from the green channel at a depth of 100 µm from a superficial spreading malignant melanoma.  

Many of the features described and illustrated in figure 8.3, can be seen within this mosaic. 
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Figure 8.6 shows a montage of 10x7 MPT FLIM images taken from the green channel at a depth of 100 µm from a 

superficial spreading melanoma (4205 fov3). It represents an area of 1055 x 715 µm2. Scale Bar 250 µm. 

8.6 Analysis of calculated morphological and lifetime parameters 

A comparison of the autofluorescence from manually segmented ROIs from images of naevi and 

melanomas was then performed. 

8.6.1 Morphological Comparison 

The morphological parameters and parameters describing the relationship between cells, previously 

outlined in Chapter 4.10.7 (pp109) were calculated using the manually defined ROIs. Table 8.4 lists 

these parameters in descending order of their discriminatory ability using AUC (area under the 

curve), which is a combined measure of the sensitivity and specificity and Cohen’s d, a measure of 

discrimination between two populations. 

Parameter Index 

Adjacency 

Calculation Cohen's d AUC 

    Method     

Morphology Gyration Radius   1.38 0.85 

  Area   1.27 0.75 

  Cell Density SOI 0.02 0.74 

  Distance to Neighbours SOI 1.36 0.74 

  Cell Density Gabriel 0.06 0.74 



 

209 
 

  Distance to Neighbours Gabriel 1.23 0.74 

 

Cell Density Delaunay 0.61 0.73 

  Distance to Neighbours Delaunay 0.96 0.73 

  Distance to Neighbours SD SOI 1.15 0.72 

  Shape Factor   0.58 0.68 

  Distance to Neighbours SD Delaunay 0.36 0.66 

  Distance to Neighbours SD Gabriel 0.50 0.66 

  Flattening Factor Delaunay 0.55 0.62 

  Flattening Factor Gabriel 0.55 0.62 

  Flattening Factor SOI 0.54 0.62 

  Solidity   0.01 0.54 

  Orientation SD Delaunay 0.12 0.54 

  Number of Neighbours Gabriel 0.25 0.54 

  Orientation SD Gabriel 0.09 0.53 

  Orientation SD SOI 0.07 0.53 

  Cell Confluency SOI 0.02 0.52 

  Number of Neighbours Delaunay 0.35 0.52 

  Number of Neighbours SOI 0.31 0.52 

  Cell Confluency Gabriel 0.01 0.51 

  Cell Confluency Delaunay 0.04 0.51 

Table 8.4 lists the morphological parameters with corresponding spectral channel showing the greatest discrimination 

between melanoma and naevi as measured by the area under the curve (AUC) and Cohen’s d. 

The gyration radius (an indirect linear measure of size), area, cell density, distance to neighbour and 

distance to neighbour standard deviation all having a AUC of > 0.65. The gyration radius and cell area 

have a high Cohen’s d, suggesting that they are good parameters for distinguishing melanomas from 

naevi. However, it has previously been shown that the manually defined ROI using the fluorescence 

intensity images can underestimate the cell area, especially in the s.granulosum (see Chapter 6.4.3) 

and is not a reliable parameter to use for discrimination. As the cell density parameter has been 

shown to be a more reliable surrogate marker for cell area, the discrimination for this was expected 

to be even higher. However, Table 8.4 shows that in contrast to the gyration radium and area, 

discrimination using cell density has less discrimination between the two groups (Cohen’s d of 0.06 

using the Gabriel calculation method). 

The manual assessment of morphological features above in section 8.5.3 found larger intercellular 

spaces to show the best discrimination between melanomas and naevi with an AUC of 0.797. The 
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cell confluency (the closest equivalent measure), might be expected to give a similar result. 

However, this parameter was the worst discriminating index with an AUC of 0.51- 0.52, depending 

on the adjacency method used. 

In conclusion, the calculated morphological and architectural parameters vary in their ability to 

distinguish melanomas from naevi using the AUC and Cohen’s d measures of discrimination. They 

appear to be less sensitive at highlighting the differences observed in the FLIM images than by eye. 

This could be improved on in the future by using more sophisticated image analysis methods that 

are better able to detect the six morphological criteria defining melanomas automatically. 

8.6.2 Lifetime Comparison 

Table 8.5 below lists the 25th, 50th and 75th centiles for the distribution of the calculated lifetime 

parameters for the manually defined ROIs for melanomas and naevi. 

        Percentile 

Index Channel Diagnosis 25 50 75 

τmean (ps) Blue Melanoma 1440 1860 2300 

    Naevus 1105 1480 1919 

  Green Melanoma 1525 1948 2417 

    Naevus 1286 1735 2207 

  Yellow Melanoma 1027 1293 1635 

    Naevus 698 1027 1410 

  Red Melanoma 580 748 1002 

    Naevus 516 711 922 

f1 Blue Melanoma 0.303 0.390 0.520 

    Naevus 0.378 0.515 0.645 

  Green Melanoma 0.346 0.397 0.463 

    Naevus 0.351 0.409 0.521 

  Yellow Melanoma 0.395 0.447 0.532 

    Naevus 0.452 0.560 0.677 

  Red Melanoma 0.568 0.628 0.689 

    Naevus 0.583 0.659 0.733 

τ1 (ps) Blue Melanoma 53 70 106 

    Naevus 37 46 63 

  Green Melanoma 90 147 239 
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    Naevus 58 92 202 

  Yellow Melanoma 69 97 143 

    Naevus 56 73 112 

  Red Melanoma 71 83 102 

    Naevus 75 94 125 

τ2 (ps) Blue Melanoma 2781 3070 3424 

    Naevus 2687 2942 3284 

  Green Melanoma 2780 3111 3561 

    Naevus 2609 2843 3206 

  Yellow Melanoma 2087 2353 2694 

    Naevus 2025 2253 2505 

  Red Melanoma 1608 1908 2322 

    Naevus 1584 1850 2157 

Spectral Contribution Blue Melanoma 0.12127 0.15324 0.19174 

    Naevus 0.18247 0.20841 0.23530 

  Green Melanoma 0.44752 0.51903 0.58275 

    Naevus 0.52299 0.55204 0.59021 

  Yellow Melanoma 0.18264 0.31657 0.42360 

    Naevus 0.16768 0.22879 0.26678 

  Red Melanoma 0.00048 0.00104 0.00152 

    Naevus 0.00056 0.00084 0.00131 

Total Photons Blue Melanoma 1725 3578 6667 

per ROI   Naevus 1347 2417 5029 

  Green Melanoma 23340 49433 84359 

    Naevus 14572 24976 42678 

  Yellow Melanoma 23276 49273 97096 

    Naevus 10821 19508 36582 

  Red Melanoma 4334 10982 27808 

    Naevus 3124 5585 12173 

Table 8.5 outlines the 25th, 50th and 75th centiles of the fluorescence intensity, fluorescence lifetime of melanomas and 

naevi imaged. Fluorescence parameters are subcategorised by spectral channel. 

Using the data summarised in Table 8.5, histograms of the τmean and f1 for each spectral channel 

were plotted between the naevi and melanomas (figure 8.7a-h). The histograms of τmean show a 

tendency for τmean to be longer in all spectral channels for melanomas than naevi. This consistent 
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difference between spectral channels reflects a longer τ1 and τ2 in the melanoma group for all 

channels except τ1 in the red channel. The shorter median f1 for all spectral channels for melanoma 

also contributes to the differences in τmean seen (see table 8.5), with a noticeable difference in its 

distribution seen in the blue and yellow channels (see figure 8.7e,g).  

This change in distribution of f1 between naevi and melanomas would suggest the presence of cells 

with a different fluorophore mix favouring the fluorophores contributing to the long lifetime 

component.  

Figure 8.7 shows the τmean and f1 for each spectral channel comparing fluorescence between naevi and melanomas.  

The difference between the median τmean of naevi and melanoma are +380, +213, +266 and +37 ps 

for the blue, green, yellow and red spectral channels respectively and were found to be statistically 

significant using the Wilcox Rank Sum Test with P<0.001 for all spectral channels when compared on 

a per cell basis. However, when the median τmean was averaged per patient and compared, no 

statistically statistical difference was found between patients with melanoma and naevi. 

Figure 8.8 The distribution of the spectral contribution for the ROIs between the spectral channels comparing naevi with 

melanomas. 

To investigate further the spectral contribution from each channel was analysed and can be seen in 

figure 8.8. The histograms in figure 8.8 show that the distribution of spectral contribution differs 
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significantly between the groups for all channels. The multi-peaked distribution of the histograms for 

melanoma, again suggest the presence of different population of cells contributing to the 

‘melanoma’ group. As the spectral contribution in the red channel remains almost identical between 

groups (difference in median τmean of 0.0002), the increase in spectral contribution in the yellow 

channel for melanomas of 0.0878 is matched by a decrease in the blue and green channels. It shows 

that melanomas fluoresced relatively more brightly in this channel (515-620 nm). This increased 

peak in fluorescence intensity is slightly longer in wavelength than the increased fluorescence 

intensity commented on in Section 8.2.1 (pp198), and seen at ~475 nm by Lohmann et al. (Lohmann 

and Paul 1988). 

The increased spectral contribution seen in the yellow channel for melanomas supports the 

supposition that melanoma cells have increased melanin content, which increases the relative 

fluorescence intensity above 500 nm. However, against this is the finding that the median τmean is 

increased for melanomas in the yellow channel from 1027 to 1293 ps, which does not support this 

theory. 

The underlying cause for the differences in τmean and spectral contribution is not clear from the data 

collected and warrants further study for more biological correlation and to investigate further the 

possibility of multiple cell populations. 

Parameter Index Channel Cohen's d AUC 

Fluorescence Fluorescence Coefficient of Variation Red 1.05 0.79 

Intensity Fluorescence Coefficient of Variation Blue 0.98 0.78 

  Fluorescence Coefficient of Variation Green 0.89 0.76 

  Spectral Contribution Blue 0.83 0.75 

  Fluorescence Coefficient of Variation Yellow 0.86 0.75 

  Spectral Contribution Yellow 1.03 0.71 

  Spectral Contribution Green 0.37 0.64 

  Spectral Contribution Red 0.05 0.55 

Fluorescence τ1 Blue 0.58 0.74 

Lifetime f1 Yellow 0.74 0.71 

  f1 Blue 0.60 0.67 

  τ2 Green 0.41 0.63 

  τ1 Green 0.19 0.63 

  τ1 Yellow 0.16 0.62 

  τ1 Red 0.36 0.60 
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  f1 Red 0.34 0.59 

  τ2 Yellow 0.26 0.58 

  τ2 Blue 0.02 0.56 

  f1 Green 0.27 0.56 

  τ2 Red 0.10 0.55 

Table 8.6 lists the fluorescence intensity and lifetime parameters with corresponding spectral channel showing the greatest 

discrimination between melanoma and naevi as measured by the area under the curve (AUC) and Cohen’s d. 

The ability of the fluorescence and fluorescence lifetime to discriminate between naevi and 

melanomas can also be evaluated. Table 8.6 lists the florescence intensity and lifetime parameters. 

The results in the table support the findings above that the spectral contribution and the coefficient 

of variation (a measure of the variability of the fluorescence intensity) differ between the groups and 

can be used to discriminate between them. It also shows that although f1 is ranked amongst the 

highest fluorescence lifetime parameters for discrimination using Cohen’s d, overall they rank poorly 

compared to the fluorescence intensity and morphological parameters. 

If all calculated fluorescent and morphological parameters are ranked in order of Cohen’s d, 

morphological parameters account for the top 6/10 and fluorescence intensity for the remaining 4. 

The highest ranking fluorescence lifetime parameters rank 13th, 15th and 16th out of 45. 

These results mirror the findings of  Dimitrow et al. who concluded that lifetimes were unable to 

distinguish between melanoma and naevi (Dimitrow, Riemann et al. 2009). 

8.6.3 Discrimination of combined parameters 

The methods used to assess discrimination have treated each ROI as independent data and assigned 

it to either the naevi or melanoma categories. Whilst this approach is the most simple and 

appropriate for this sample size, it does not account for ROIs being clustered into distinct 

samples/patients, i.e. the sample identification for each ROI is discarded. 

Therefore, to combine the discriminatory ability of combining multiple parameters (based on the 

manually defined ROIs) and making an assessment of diagnosis at the patient level, a linear 

discriminant analysis (LDA) was employed. The methods are described further in Chapter 4.10.9 

(pp112). In brief, principle component analysis (PCA) was initially performed to reduce the 

dimensionality of the data using the calculated parameters. The first 4 components where then 

selected for inclusion in the LDA. The proportion of ROIs identified as malignant for each patient 

could then be used to calculate an AUC. 
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Using the manually segmented ROI data, when all spectral intensity, fluorescence lifetime and 

morphological parameters were included for the PCA, an AUC of 0.66 was calculated for the 

discrimination on a per patient basis. This reduced to 0.54 when the morphological parameters were 

excluded. This reduction in AUC is consistent with the results above that each individual 

fluorescence parameter has a poor discriminatory ability. 

As a comparison, just the spectral intensity and fluorescence lifetime parameters were used for the 

LDA using automatically segmented images, as described in Chapter 4.10.8 (pp111). The AUC 

calculated on a per patient basis was 0.65. Finally, these parameters were used to compare non-

segmented images using LDA. An AUC of 0.65 was also found for this comparison. Although this 

suggests segmentation is unnecessary, the large difference in the number of images included 

between melanomas and naevi (43 vs 145) makes this a less valid comparison to make and further 

work would need to be undertaken to quantify this difference further. 

These calculations show that although the discrimination using manually characterised images for 

features of melanomas is good, the spectral, lifetime and automatically defined morphological 

features are poor at discriminating them. 

8.7 Conclusions 

In conclusion, a detailed qualitative and quantitative assessment of the autofluorescence and 

autofluorescence lifetime from pigmented lesions has been made for the first time. Fluorescence 

lifetime images acquired ex vivo using multispectral MPT FLIM between 8 melanomas and 32 

dysplastic naevi were compared. A number of exemplar image stacks from naevi and melanomas 

including mosaic images taken from both naevi and melanomas of larger fields of view are shown. 

A sensitivity and specificity for identifying melanomas using 6 features previously identified by 

Dimitrow et al. (Dimitrow, Ziemer et al. 2009) was made. Specificities ranging between 93.7 – 97% 

were calculated for all parameters, with only the sensitivity of ‘large intercellular distance’ and the 

presence of dendritic cells reaching >50%. However, when the presence of 1 or more feature was 

assessed, a sensitivity and specificity of 75% and 81% respectively was found, with the absence of all 

6 features having a negative predictive valve against melanoma of 92.8%.  

A qualitative and quantitative analysis of the morphological/architectural features calculated from 

the manually segmented ROIs was then performed. These parameters varied widely in their ability 

to distinguish between the two groups, as measured by AUC and Cohen’s d.  
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For the first time, a detailed analysis of the cellular fluorescence intensity and lifetimes was made 

between naevi and melanomas using multispectral FLIM. Although no statistical difference was seen 

comparing the τmean between the two groups when compared on a per patient basis, differences in 

the distribution of fluorescence lifetime parameters on a per cell basis were clearly detectable. 

However, the degree of separation between these distributions was insufficient for most 

fluorescence intensity and lifetime parameters to be used for discrimination. These differences, 

detected for the first time, do raise interesting questions as to their biological origin, for which 

further work is suggested. 
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Chapter 9. Conclusions 

9.1 Aims 

The aim of the work presented in this thesis was to investigate the skin and skin disease by 

measuring tissue autofluorescence and fluorescence lifetime using multiphoton microscopy (MPM). 

In particular we have focused on the differences in autofluorescence and fluorescence lifetime found 

in normal skin compared to those found in skin malignancies such as basal cell carcinoma (BCC) and 

melanoma. 

9.2 Instrumentation 

In order to achieve this aim, a clinically licensed device for in vivo imaging of the skin using 

multiphoton excitation (the DermaInspect®, JenLab, Germany) was adapted. The Mai-Tai laser 

remained the excitation light source allowing a range between 710-920 nm to be selected. The 

focusing optics also remained unchanged, allowing an image resolution of 0.7 µm in the X-Y plane 

and <2 µm in the Z plane to be achieved to a working distance of 200µm depth. In addition to the 

ability to record fluorescence intensity images, fluorescence could be diverted to a detector module 

allowing FLIM to be achieved in four spectral channels simultaneously i.e. a blue channel (360-425 

nm), green channel (425-515 nm), yellow channel (515-620 nm) and red channel (620-655 nm) with 

an image resolution of up to 256x256 pixels. Dr Clifford Talbot designed this to achieve an optical 

transmission efficiency of 85% and the H7722P-40 PMTs used allowed a high peak quantum 

efficiency of 40%. 

In addition a prism-based spectrometer using an EMCCD detector was designed to allow steady state 

hyperspectral images to be acquired in the spectral range of 380-655 nm with a high quantum 

efficiency of 40-65% and an image resolution of up to 41x256 pixels. 

The results, demonstrated in Chapter 6 (figure 6.1, pp138-9), show that sets of depth resolved FLIM 

images can be acquired from unfixed, unsectioned tissue with corresponding hyperspectral images 

and emission spectra. The analysis described in section 6.4 (pp136) then demonstrate that the 

information within these images can be used to made a detailed analysis of the fluorescence of the 

skin. This instrument therefore provides a powerful and versatile tool for investigating the skin. 

MPM and fluorescence lifetime imaging microscopy (FLIM) of the skin using modified versions of the 

DermaInspect® has been reported elsewhere. For example, the research group of Dr Roberts et al. in 

Brisbane, Australia have described measuring multispectral FLIM using a DermaInspect® in up to 

four spectral channels. Their work initially used the instrument to monitor the penetration of Zinc 
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Oxide into the skin (Roberts, Roberts et al. 2008). Subsequently they have investigated the changes 

in autofluorescence over time following excision (Sanchez, Prow et al. 2010) and skin pigmentation 

(Dancik, Favre et al. 2013).  

Similarly, Professor König’s group have presented depth resolved paired FLIM images and emission 

spectra from normal skin by measured the fluorescence emission with a DermaInspect® and using an 

attached spectrometer (Breunig and König 2011). However, the instrument described in this thesis is 

the first time both multispectral FLIM and hyperspectral images have been acquired from a 

significant number of patients. 

A motorised stage was attached to the modified DermaInspect® for the acquisition of image mosaics 

from BCCs, naevi and melanomas. Although a large mosaic image of a BCC acquired using MPM has 

been presented previously by Lin et al. (Lin, Jee et al. 2006), they measured autofluorescence 

intensity from fixed, sectioned tissue. In contrast, for the first time, the images presented in this 

thesis of a BCC (figure 7.7, pp191), naevi (figures 8.4, 8.5, pp206/7) and a melanoma (figure 8.6, 

pp209) were acquired using MPM using freshly excised, unfixed, unsectioned tissue and of FLIM 

images taken with multiple spectral channels. 

9.3 Analysis 

The analysis of the fluorescence lifetime from the skin presented in this thesis has attempted to 

define the cellular fluorescence on a cell by cell basis using the FLIM images acquired. The aim of this 

approach was to exclude extracellular fluorescence from adversely affecting the lifetime analysis, 

which may have occurred if each field of view (FOV) was analysed as a whole. In addition it could 

allow the identification of subpopulations of cells within the skin, based on their autofluorescence 

signature. In contrast to previous studies using FLIM to investigate the skin, most images were 

acquired at comparatively high magnification (107µm x107µm) so as to be able to delineate 

individual cells within the image and, where possible, every cell from every image has been manually 

defined as a region of interest (ROI). This prevents possible selection bias compared to manually 

choosing specific cells from the FLIM images or manually selecting individual pixels from within a cell 

to analyse. This approach has allowed differences in the intra- and interpatient variation in cellular 

lifetimes to be evaluated (Chapter 6.6.1, pp155) and subpopulations of cells based on 

autofluorescence to be described (Chapter 6.6.2, pp157) for the first time. 

9.4 Normal skin following excision 

Chapter 5 (pp115) describes the changes in autofluorescence and autofluorescence lifetimes seen 

over time following surgical excision of normal human skin (n=5, s.spinosum layer) over a 3 hour 
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time period for the first time. Previous studies have reported changes over this time period in mouse 

skin, using fluorescence spectral imaging (Palero, Bader et al. 2011) and in human skin daily, over 

seven days using multispectral FLIM (Sanchez, Prow et al. 2010). 

In this study, a steady increase in the mean pixel fluorescence intensity of 105-112% with time was 

demonstrated, dependent on spectral channel which suggests that the imaging parameters outlined 

in Chapter 5.3 (pp118) did not cause photobleaching. 

A small but consistent drop in the τmean over time of 1.7-8.0% was also demonstrated, dependent on 

the spectral channel. Further analysis showed that a <1 % change was seen τ1 and τ2 in the green 

spectral channel in which NAD(P)H fluorescence dominates, suggesting that the cellular metabolism 

remains minimally affected over this time period. As a comparison, the variation found in lifetime 

over time was compared to the range in variation in lifetime between field of views from cells in the 

s. spinosum (n=31-33 depending on spectral channel). This showed that the changes seen in lifetime 

over time for all spectral channels was small compared to the variation found between cells. In 

addition, it has been shown that there is no statistical difference in lifetime acquired in vivo from 

samples of normal skin (n=19) and from freshly excised ex vivo samples (n=8) over the initial 3 hours.  

In summary the study showed that the fluorescence lifetimes remained fairly constant over the 

initial 3 hours post excision. We were not able to detect the changes described by Sanchez et al. 

described over a 7 day period, as expected, or the changes seen in mouse skin over a 3 hour period 

by Palero et al. It can be speculated that this difference may be caused by the difference in the 

metabolic rates between human and mouse skin but further work would be necessary to validate 

this supposition. 

These results support the use of freshly excised human skin as a surrogate for in vivo imaging for 

MPT and MPT FLIM investigations over the initial few hours post excision. It also validates the 

conclusions draw by previous authors using MPT whom have studied freshly excised skin to 

extrapolate changes seen in vivo (Cicchi, Sestini et al. 2008; Ericson, Simonsson et al. 2008; Paoli, 

Smedh et al. 2008; De Giorgi, Massi et al. 2009). 

9.5 Normal Skin 

A detailed analysis has also been presented in Chapter 6 (pp133) of the variation seen in lifetimes in 

normal skin with cell layer, age, sex, skin phototype and body site. For this analysis, although the 

patient numbers were sub-optimal for a definitive comparison, an attempt has been made to match 

each comparative group. To date, Benati et al. have published the only report to evaluate the 
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changes systematically in fluorescence lifetime of normal skin with age and skin layer (Benati, Bellini 

et al. 2011). 

In the analysis of cell layer, a decrease in the median τmean between the s.granulosum and the basal 

layer of 1286, 1206, 1169 and 691 ps for the blue, green, yellow and red spectral channels 

respectively was found, which is significantly longer than the decrease reported previously of  236 ps 

between the upper and lower epidermis of the forearm (Benati, Bellini et al. 2011) and of 300 ps 

between the s.spinosum and the basal layer (Breunig and König 2011). The data supported the 

conclusion that this change relates to increased melanin content in the cells in the basal layer. 

The cellular lifetime was found to increase with age. A longer median τmean was found between the 

30-42 and >42 year old groups of +199, +550, +514 and +417 ps in the blue, green, yellow and red 

channels respectively. These results support the trend reported by Benati at al., who detected a 

smaller increase in lifetime with age of 109-210 ps (Benati, Bellini et al. 2011) but the data presented 

here was not found to be statistically different. 

A progressive shortening of the median τmean was also seen with skin phototype of 286, 1336, 1436 

and 915 ps in the blue, green, yellow and red channels respectively between skin type 1 and 4. This 

trend was reflected in τ1, τ2 and f1 and felt to arise from increasing melanin content of the cells with 

increasing skin type. This difference was found to be statistically significant using the Wilcoxon rank 

sum test in the green (p=0.016), yellow (p=0.016) and red (p=0.016) spectral channels and has not 

been recorded in the literature previously. 

No difference in lifetime was detected between the sexes. Finally, when the lifetimes from the skin 

from different body sites were compared, a decrease in the median τmean was found between the 

outside and inside forearm of 82, 267, 136 and 291 ps in the blue, green, yellow and red spectral 

channels respectively. However, this finding may have been affected by sub-optimal matching of the 

patient groups and further work is suggested to determine if this represents a true finding. In 

comparison, Benati et al. did not detect a difference in lifetimes between the inside and outside 

forearm, but did detect a significant difference between the inside forearm and the thigh (Benati, 

Bellini et al. 2011). 

9.6 Basal Cell Carcinoma 

Chapter 7 (pp175) presents a detailed ex vivo study using multispectral FLIM imaging to differentiate 

BCCs from normal skin. Previously defined morphologically features for the identification of BCCs in 

MPT images were tested (Seidenari, Arginelli et al. 2012) and a newly proposed feature  of ‘merging 

cells’ was defined (illustrated in figure 7.2, pp181). These features allowed image stacks from BCCs 
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to be identified correctly with a sensitivity/specificity of 79%/93%. The fluorescence lifetimes of cells 

from BCCs were also found to be statistically significantly longer in all spectral channels compared to 

normal skin ranging from 19.9% (425-515 nm green spectral emission channel) to 39.8% (620-655 

nm red emission spectral channel). 

The fluorescence lifetime changes measured using MPT associated with BCCs have been investigated 

by a number of groups previously. For example, Cicchi et al. to record a modest increase in lifetime 

of 90 ps from BCCs compared to normal skin (Cicchi, Massi et al. 2007; Cicchi, Sestini et al. 2008). 

Seidenari et al. repeated the comparison of lifetimes taken from BCC cells and cells from normal skin 

(Seidenari, Arginelli et al. 2012) and confirmed an increase in lifetime between normal skin and BCCs 

of 463 ps. The study of BCCs presented in this thesis, and now published (Patalay, Talbot et al. 2012), 

represent the most comprehensive analysis of fluorescence lifetimes of BCCs and the only study to 

use multispectral FLIM and the results are in agreement with these previous studies. 

In addition, cell-based morphological parameters and the relationship between cells and their 

neighbours could be calculated as all cells were manually identified and delineated in the FLIM 

images. This allowed comparisons to be made in the distributions of these parameters between 

normal skin and BCCs. For the first time also, a quantitative discrimination index of individual 

spectroscopic and cell-based morphologic parameters have been calculated. The discriminatory 

ability of using multiple parameters were then assessed using principal component analysis (PCA) 

based dimensionality reduction and linear discriminant analysis (LDA). This yielded an AUC of 0.83 

for the discrimination of BCC from normal skin. 

Finally, the discrimination using PCA and LDA was repeated using a fully automated image 

segmentation algorithm ‘define’ each cell automatically from the FLIM images. This also yielded an 

AUC of 0.83 for the discrimination of BCC from normal skin and is the first time that this image 

segmentation technique has been applied to this application. 

9.7 Pigmented melanocytic lesions 

Chapter 8 (pp195) investigates the application of multispectral FLIM to pigmented melanocytic 

lesions, namely comparing the fluorescence lifetimes from dysplastic naevi to melanomas. A detailed 

qualitative and quantitative assessment of the autofluorescence and autofluorescence lifetime from 

pigmented lesions has been made for the first time using multispectral FLIM detection. A sensitivity 

and specificity for identifying melanomas using previously defined morphological features in MPT 

intensity images was made (Dimitrow, Ziemer et al. 2009). Specificities ranging between 93.7 – 97% 

were calculated for all parameters. However the sensitivity for these morphological features using 
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this data was generally poor, with only the sensitivity of ‘large intercellular distance’ and the 

presence of dendritic cells reaching greater than 50%. However, when the presence of 1 or more 

feature was assessed, a sensitivity and specificity of 75% and 81% respectively was found and the 

absence of all 6 features had a negative predictive valve against melanoma of 92.8%.  

Cell-based morphological parameters and the relationship between cells and their neighbours were 

calculated for all cells using the manually defined ROIs and this was this first time this was 

performed for these diagnostic groups. Although differences in these parameters could be seen 

between dysplastic naevi and melanomas, they generally had a poor ability to discriminate between 

dysplastic naevi and melanomas. 

Some differences in the distribution of fluorescence lifetimes between the two groups was found, 

however no statistical difference was seen comparing the median τmean. The degree of separation 

between these distributions was insufficient however for most fluorescence intensity and lifetime 

parameters to be used for discrimination. These differences raise interesting questions as to their 

biological origin, for which further work is suggested. 

These findings regarding the fluorescence lifetime are consistent with and build upon the work by 

Dimitrow et al. whom also performed a lifetime comparison of naevi with melanomas (Dimitrow, 

Riemann et al. 2009). They were also unable to detect a difference between naevi and melanomas 

based on lifetime but could distinguish keratinocytes from melanocytes. 

9.8 Future Work 

The work presented in this thesis has used multispectral MPT FLIM to investigate tissue 

autofluorescence and fluorescence lifetime variability in normal skin, between normal skin and BCCs 

and between dysplastic naevi and melanomas. 

The modifications made to the DermaInspect® have produced a useful tool to investigate skin 

disease. Its application could extend to the wide variety of skin diseases, including inflammatory 

dermatoses, which were not possible within the time constrains of this project. 

Future work has been suggested in Chapter 6.6.1 (pp155) to extend the sample size and scope to 

investigate the variability seen in lifetimes in normal skin. Only limited data could be collected to 

delineate the extent of changes in lifetime seen within patients e.g. between body sites and 

between patients e.g. changes with age. 

The fluorescence data collected from normal skin identified population of cells with distinct 

fluorescence characteristics. Further work is suggested to correlate these populations with their 
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morphological appearance in the MPT FLIM images and to correlate the biological basis for the 

changes seen. The greater understanding gained about the autofluorescence of normal skin would 

aid the interpretation of changes detected with malignancy. 

An important result was gained using the automatically segmented images instead of the manually 

segmented images when calculating the discrimination index between BCCs and normal skin. This 

finding is promising because it potentially allows the labour intensive manual segmentation step to 

be automated. This advance would be necessary for high throughput of FLIM images in the future, as 

MPT FLIM becomes increasingly clinically used. 

Finally, as MPT matures as a clinical imaging modality, like reflectance confocal microscopy, the 

barriers to its use will be the availability and clinical awareness of large, blinded, randomised 

controlled trials assessing its usefulness in clinical practice 
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All content posted to the web site must maintain the copyright information line on the bottom of 
each image, and the permission granted is limited to the personal version of your paper. You are not 
allowed to download and post the published electronic version of your article (whether PDF or 
HTML, proof or final version), nor may you scan the printed edition to create an electronic version. A 
hyper-text must be included to the Homepage of the journal from which you are licensing at 
http://www.sciencedirect.com/science/journal/xxxxx . As part of our normal production process, 
you will receive an e-mail notice when your article appears on Elsevier’s online service ScienceDirect 
(www.sciencedirect.com). That e-mail will include the article’s Digital Object Identifier (DOI). This 
number provides the electronic link to the published article and should be included in the posting of 
your personal version. We ask that you wait until you receive this e-mail and have the DOI to do any 
posting. Central Storage: This license does not include permission for a scanned version of the 
material to be stored in a central repository such as that provided by Heron/XanEdu. 
 
18. Author website for books with the following additional clauses: Authors are permitted to place a 
brief summary of their work online only. A hyper-text must be included to the Elsevier homepage at 
http://www.elsevier.com . All content posted to the web site must maintain the copyright 
information line on the bottom of each image. You are not allowed to download and post the 
published electronic version of your chapter, nor may you scan the printed edition to create an 
electronic version. Central Storage: This license does not include permission for a scanned version of 
the material to be stored in a central repository such as that provided by Heron/XanEdu. 
 
19. Website (regular and for author): A hyper-text must be included to the Homepage of the journal 
from which you are licensing at http://www.sciencedirect.com/science /journal/xxxxx. or for books 
to the Elsevier homepage at http://www.elsevier.com 
 
20. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be 
submitted to your institution in either print or electronic form. Should your thesis be published 
commercially, please reapply for permission. These requirements include permission for the Library 
and Archives of Canada to supply single copies, on demand, of the complete thesis and include 
permission for UMI to supply single copies, on demand, of the complete thesis. Should your thesis 
be published commercially, please reapply for permission. 
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21. Other Conditions: 
 
v1.6 
 
If you would like to pay for this license now, please remit this license along with your 
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 
48 hours of the license date. Payment should be in the form of a check or money order referencing 
your account number and this invoice number RLNK500985425. Once you receive your invoice for 
this order, you may pay your invoice by credit card. Please follow instructions provided at that time. 
 
Make Payment To: 
Copyright Clearance Center 
Dept 001 
P.O. Box 843006 
Boston, MA 02284-3006 
 
For suggestions or comments regarding this order, contact RightsLink Customer Support: 
customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978 646- 2777.  
 
Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for your 
reference. No payment is required. 
 

III.  Nature Publishing Group License Terms and Conditions. 

Nature Publishing Group hereby grants you a non-exclusive license to reproduce this material for 

this purpose, and for no other use, subject to the conditions below: 

1. NPG warrants that it has, to the best of its knowledge, the rights to license reuse of this material. 

However, you should ensure that the material you are requesting is original to Nature Publishing 

Group and does not carry the copyright of another entity (as credited in the published version). If 

the credit line on any part of the material you have requested indicates that it was reprinted or 

adapted by NPG with permission from another source, then you should also seek permission from 

that source to reuse the material. 

2. Permission granted free of charge for material in print is also usually granted for any electronic 

version of that work, provided that the material is incidental to the work as a whole and that the 

electronic version is essentially equivalent to, or substitutes for, the print version. Where print 

permission has been granted for a fee, separate permission must be obtained for any additional, 

electronic re-use (unless, as in the case of a full paper, this has already been accounted for during 

your initial request in the calculation of a print run). NB: In all cases, web-based use of full-text 

articles must be authorized separately through the 'Use on a Web Site' option when requesting 

permission. 

3. Permission granted for a first edition does not apply to second and subsequent editions and for 

editions in other languages (except for signatories to the STM Permissions Guidelines, or where the 

first edition permission was granted for free). 
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4. Nature Publishing Group's permission must be acknowledged next to the figure, table or abstract 

in print. In electronic form, this acknowledgement must be visible at the same time as the 

figure/table/abstract, and must be hyperlinked to the journal's homepage. 

5. The credit line should read: 

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), 

copyright (year of publication) 

For AOP papers, the credit line should read:  

Reprinted by permission from Macmillan Publishers Ltd: [JOURNAL NAME], advance online 

publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].XXXXX) 

Note: For republication from the British Jou rnal of Can cer, the following credit lines apply. 

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL 

NAME] (reference citation), copyright (year of publication) For AOP papers, the credit line should 

read: 

Reprinted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: [JOURNAL 

NAME], advance online publication, day month year (doi: 10.1038/sj. [JOURNAL ACRONYM].XXXXX) 

 

6. Adaptations of single figures do not require NPG approval. However, the adaptation should 

be credited as follows:  
Adapted by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference citation), 

copyright (year of publication) 

Note: For adaptation from the British J ournal of Cancer, the following credit line 

applies. 

Adapted by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: 

[JOURNAL NAME] (reference citation), copyright (year of publication) 

 

7. Translations of 401 words up to a whole article require NPG approval. Please visit 

http://www.macmillanmedicalcommunications.com for more information. Translations of up 

to a 400 words do not require NPG approval. The translation should be credited as follows: 

Translated by permission from Macmillan Publishers Ltd: [JOURNAL NAME] (reference 

citation), copyright (year of publication). 

Note: For translation from the British J ournal of Cancer, the following credit line 

applies. 

Translated by permission from Macmillan Publishers Ltd on behalf of Cancer Research UK: 

[JOURNAL NAME] (reference citation), copyright (year of publication)  

 

We are certain that all parties will benefit from this agreement and wish you the best in the use of 

this material. Thank you. 
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license date. Payment should be in the form of a check or money order referencing your account 

number and this invoice number RLNK500985421. Once you receive your invoice for this order, you 

may pay your invoice by credit card. Please follow instructions provided at that time. 

 

Make Payment To: 

Copyright Clearance Center 

Dept 001 

P.O. Box 843006 

Boston, MA 02284-3006 

 

For suggestions or comments regarding this order, contact RightsLink Customer Support: 

customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646- 

2777. Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable 

license for your reference. No payment is required. 

 

IV.  John Wiley and Sons license terms and conditions 

1. The materials you have requested permission to reproduce (the "Materials") are protected by 

copyright. 

2.You are hereby granted a personal, non-exclusive, non-sublicensable, non-transferable, worldwide, 

limited license to reproduce the Materials for the purpose specified in the licensing process. This 

license is for a one-time use only with a maximum distribution equal to the number that you 

identified in the licensing process. Any form of republication granted by this license must be 

completed within two years of the date of the grant of this license (although copies prepared before 

may be distributed thereafter). The Materials shall not be used in any other manner or for any other 

purpose. Permission is granted subject to an appropriate acknowledgement given to the author, title 

of the material/book/journal and the publisher. You shall also duplicate the copyright notice that 

appears in the Wiley publication in your use of the Material. Permission is also granted on the 

understanding that nowhere in the text is a previously published source acknowledged for all or part 

of this Material. Any third party material is expressly excluded from this permission. 

3. With respect to the Materials, all rights are reserved. Except as expressly granted by the terms of 

the license, no part of the Materials may be copied, modified, adapted (except for minor 

reformatting required by the new Publication), translated, reproduced, transferred or distributed, in 

any form or by any means, and no derivative works may be made based on the Materials without 

the prior permission of the respective copyright owner. You may not alter, remove or suppress in 

any manner any copyright, trademark or other notices displayed by the Materials. You may not 

license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Materials, or any of the 

rights granted to you hereunder to any other person. 

4. The Materials and all of the intellectual property rights therein shall at all times remain the 

exclusive property of John Wiley & Sons Inc or one of its related companies (WILEY) or their 

respective licensors, and your interest therein is only that of having possession of and the right to 

reproduce the Materials pursuant to Section 2 herein during the continuance of this Agreement. You 

agree that you own no right, title or interest in or to the Materials or any of the intellectual property 



 

244 
 

rights therein. You shall have no rights hereunder other than the license as provided for above in 

Section 2. No right, license or interest to any trademark, trade name, service mark or other branding 

("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any 

such right, license or interest with respect thereto. 

5. NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND 

TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS 

OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT 

LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, 

FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL 

SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU. 

6. WILEY shall have the right to terminate this Agreement immediately upon breach of this 

Agreement by you. 

7. You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, 

officers, agents and employees, from and against any actual or threatened claims, demands, causes 

of action or proceedings arising from any breach of this Agreement by you. 

8. IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY 

OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY 

OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE 

DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM 

OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, 

INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF 

PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER 

OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION 

SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY 

PROVIDED HEREIN. 

9. Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, 

invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible 

the same economic effect as the original provision, and the legality, validity and enforceability of the 

remaining provisions of this Agreement shall not be affected or impaired thereby. 

10. The failure of either party to enforce any term or condition of this Agreement shall not constitute 

a waiver of either party's right to enforce each and every term and condition of this Agreement. No 

breach under this agreement shall be deemed waived or excused by either party unless such waiver 

or consent is in writing signed by the party granting such waiver or consent. The waiver by or 

consent of a party to a breach of any provision of this Agreement shall not operate or be construed 

as a waiver of or consent to any other or subsequent breach by such other party. 

11. This Agreement may not be assigned (including by operation of law or otherwise) by you without 

WILEY's prior written consent. 

12. Any fee required for this permission shall be non-refundable after thirty (30) days from receipt 
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13. These terms and conditions together with CCCs Billing and Payment terms and conditions (which 

are incorporated herein) form the entire agreement between you and WILEY concerning this 

licensing transaction and (in the absence of fraud) supersedes all prior agreements and 

representations of the parties, oral or written. This Agreement may not be amended except in 

writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the 

parties' successors, legal representatives, and authorized assigns. 

14. In the event of any conflict between your obligations established by these terms and conditions 

and those established by CCCs Billing and Payment terms and conditions, these terms and conditions 

shall prevail. 

15. WILEY expressly reserves all rights not specifically granted in the combination of (i) the license 

details provided by you and accepted in the course of this licensing transaction, (ii) these terms and 
conditions and (iii) CCCs Billing and Payment terms and conditions. 

16. This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was 

misrepresented during the licensing process. 

17. This Agreement shall be governed by and construed in accordance with the laws of the State of 

New York, USA, without regards to such states conflict of law rules. Any legal action, suit or 

proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be 

instituted in a court of competent jurisdiction in New York County in the State of New York in the 

United States of America and each party hereby consents and submits to the personal jurisdiction of 

such court, waives any objection to venue in such court and consents to service of process by 

registered or certified mail, return receipt requested, at the last known address of such party. 

A. Wiley Open Access Terms and Conditions 

Wiley publishes Open Access articles in both its Wiley Open Access Journals program 

[http://www.wileyopenaccess.com/view/index.html] and as Online Open articles in its subscription 

journals. The majority of Wiley Open Access Journals have adopted the Creative Commons 

Attribution License (CC BY) which permits the unrestricted use, distribution, reproduction, 

adaptation and commercial exploitation of the article in any medium. No permission is required to 

use the article in this way provided that the article is properly cited and other license terms are 

observed. A small number of Wiley Open Access journals have retained the Creative Commons 

Attribution Non Commercial License (CC BY-NC), which permits use, distribution and reproduction in 

any medium, provided the original work is properly cited and is not used for commercial purposes. 

Online Open articles  Authors selecting Online Open are, unless particular exceptions apply, offered 

a choice of Creative Commons licenses. They may therefore select from the CC BY, the CC BY-NC and 

the Attribution-NoDerivatives (CC BY-NC-ND). The CC BY-NC-ND is more restrictive than the CC BY-

NC as it does not permit adaptations or modifications without rights holder consent. 

Wiley Open Access articles are protected by copyright and are posted to repositories and websites in 

accordance with the terms of the applicable Creative Commons license referenced on the article. At 

the time of deposit, Wiley Open Access articles include all changes made during peer review, 

copyediting, and publishing. Repositories and websites that host the article are responsible for 

incorporating any publisher-supplied amendments or retractions issued subsequently. Wiley Open 
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Access articles are also available without charge on Wiley's publishing platform, Wiley Online Library 

or any successor sites. 

Conditions applicable to all Wiley Open Access articles:  

 The authors' moral rights must not be compromised. These rights include the right of 

"paternity" (also known as "attribution" - the right for the author to be identified as such) 

and "integrity" (the right for the author not to have the work altered in such a way that the 

author's reputation or integrity may be damaged). 

 Where content in the article is identified as belonging to a third party, it is the obligation of 

the user to ensure that any reuse complies with the copyright policies of the owner of that 

content. 

 If article content is copied, downloaded or otherwise reused for research and other 

purposes as permitted, a link to the appropriate bibliographic citation (authors, journal, 

article title, volume, issue, page numbers, DOI and the link to the definitive published 

version on Wiley Online Library) should be maintained. Copyright notices and disclaimers 

must not be deleted. 

Creative Commons licenses are copyright licenses and do not confer any other rights, 

including but not limited to trademark or patent rights. 

 Any translations, for which a prior translation agreement with Wiley has not been agreed, 

must prominently display the statement: "This is an unofficial translation of an article that 

appeared in a Wiley publication. The publisher has not endorsed this translation." 

B. Conditions applicable to non-commercial licenses (CC BY-NC and CC BY-NC-ND) 

For non-commercial and non-promotional purposes individual non-commercial users may access, 

download, copy, display and redistribute to colleagues Wiley Open Access articles. In addition, 

articles adopting the CC BY-NC may be adapted, translated, and text- and data-mined subject to the 

conditions above. 

C. Use by commercial "for-profit" organizations 

Use of non-commercial Wiley Open Access articles for commercial, promotional, or marketing 

purposes requires further explicit permission from Wiley and will be subject to a fee. Commercial 

purposes include: 

 Copying or downloading of articles, or linking to such articles for further redistribution, sale 

or licensing; 

 Copying, downloading or posting by a site or service that incorporates advertising with such 

content; 

 The inclusion or incorporation of article content in other works or services (other than 

normal quotations with an appropriate citation) that is then available for sale or licensing, 

for a fee (for example, a compilation produced for marketing purposes, inclusion in a sales 

pack) 

 Use of article content (other than normal quotations with appropriate citation) by forprofit 

organizations for promotional purposes 

 Linking to article content in e-mails redistributed for promotional, marketing or educational 

purposes; 
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 Use for the purposes of monetary reward by means of sale, resale, license, loan, transfer or 

other form of commercial exploitation such as marketing products 

 Print reprints of Wiley Open Access articles can be purchased from: 

corporatesales@wiley.com 

The modification or adaptation for any purpose of an article referencing the CC BYNC- ND License 

requires consent which can be requested from RightsLink@wiley.com 

D. Other Terms and Conditions: 

BY CLICKING ON THE "I AGREE..." BOX, YOU ACKNOWLEDGE THAT YOU HAVE READ AND FULLY 

UNDERSTAND EACH OF THE SECTIONS OF AND PROVISIONS SET FORTH IN THIS AGREEMENT AND 

THAT YOU ARE IN AGREEMENT WITH AND ARE WILLING TO ACCEPT ALL OF YOUR OBLIGATIONS AS 

SET FORTH IN THIS AGREEMENT. 

v1.8 

If you would like to pay for this license now, please remit this license along with your payment made 

payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the 

license date. Payment should be in the form of a check or money order referencing your account 

number and this invoice number RLNK500985419. Once you receive your invoice for this order, you 

may pay your invoice by credit card. Please follow instructions provided at that time. 

Make Payment To: 

Copyright Clearance Center 

Dept 001 

P.O. Box 843006 

Boston, MA 02284-3006 

 

For suggestions or comments regarding this order, contact RightsLink Customer Support: 

customercare@copyright.com or +1-877-622-5543 (toll free in the US) or +1-978-646-2777. 

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable license for your 

reference. No payment is required. 

  

mailto:corporatesales@wiley.com
mailto:RightsLink@wiley.com


 

248 
 

V.  Permissions 

A. Arginelli 2012 

This is a License Agreement between Rakesh Patalay ("You") and John Wiley and 
Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The 
license consists of your order details, the terms and conditions provided by John 
Wiley and Sons, and the payment terms and conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of 
this form. 
License Number 3116170404706 
License date Mar 25, 2013 
Licensed content publisher John Wiley and Sons 
Licensed content publication Skin Research and Technology 
Licensed content title High resolution diagnosis of common nevi by multiphoton laser tomography and fluorescence 
lifetime imaging 
Licensed copyright line © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd 
Licensed content author Federica Arginelli,Marco Manfredini,Sara Bassoli,Christopher Dunsby,Paul French,Karsten 
König,Cristina Magnoni,Giovanni Ponti,Clifford Talbot,Stefania Seidenari 
Licensed content date Dec 29, 2012 
Start page n/a 
End page n/a 
Type of use Dissertation/Thesis 
Requestor type University/Academic 
Format Print and electronic 
Portion Figure/table 
Number of figures/tables 1 
Original Wiley figure/table number(s) figure 1 - 5 panels only 
Will you be translating? No 
Total 0.00 USD 

B. Dimitrow 2009 

This is a License Agreement between Rakesh Patalay ("You") and Nature Publishing 
Group ("Nature Publishing Group") provided by Copyright Clearance Center ("CCC"). 
The license consists of your order details, the terms and conditions provided by 
Nature Publishing Group, and the payment terms and conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of 
this form. 
License Number 3116170719911 
License date Mar 25, 2013 
Licensed content publisher Nature Publishing Group 
Licensed content Publication Journal of Investigative Dermatology 
Licensed content title Sensitivity and Specificity of Multiphoton Laser Tomography for In Vivo and Ex Vivo Diagnosis 
of Malignant Melanoma 
Licensed content author Enrico Dimitrow, Mirjana Ziemer, Martin Johannes Koehler, Johannes Norgauer, Karsten 
Konig et al. 
Licensed content date Jan 29, 2009 
Volume number 129 
Issue number 7 
Type of Use reuse in a thesis/dissertation 
Requestor type academic/educational 
Format print and electronic 
Portion figures/tables/illustrations 
Number of figures/tables/illustrations 1 
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High-res required no 
Figures Figure 5 
Author of this NPG article no 
Your reference number 
Title of your thesis / dissertation The clinical application of multispectral fluorescence lifetime imaging of human skin 
using multiphoton microscopy 
Expected completion date Apr 2013 
Estimated size (number of pages) 200 
Total 0.00 USD 

C. Gambichler 2007 

This is a License Agreement between Rakesh Patalay ("You") and Elsevier ("Elsevier") 
provided by Copyright Clearance Center ("CCC"). The license consists of your order 
details, the terms and conditions provided by Elsevier, and the payment terms and 
conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of 
this form. 
Supplier Elsevier Limited The Boulevard,Langford Lane Kidlington,Oxford,OX5 1GB,UK 
Registered Company Number 1982084 
Customer name Rakesh Patalay 
Customer address Optics, Dept of Physics, Blackett Lab London, SW7 2AZ 
License number 3116170978998 
License date Mar 25, 2013 
Licensed content publisher Elsevier 
Licensed content Publication Journal of Dermatological Science 
Licensed content title In vivo optical coherence tomography of basal cell carcinoma 
Licensed content author Thilo Gambichler,Alexej Orlikov,Remus Vasa,Georg Moussa,Klaus Hoffmann,Markus 
Stücker,Peter Altmeyer,Falk G. Bechara 
Licensed content date March 2007 
Licensed content volume Number 45 
Licensed content issue Number 3 
Number of pages 7 Start Page 167 End Page 173 
Type of Use reuse in a thesis/dissertation 
Intended publisher of new Work other 
Portion figures/tables/illustrations 
Number of figures/tables/illustrations 1 
Format both print and electronic 
Are you the author of this Elsevier article? No 
Will you be translating? No  
Order reference number 
Title of your thesis/dissertation The clinical application of multispectral fluorescence lifetime imaging of human skin 
using multiphoton microscopy 
Expected completion date Apr 2013 
Estimated size (number of pages) 200  
Elsevier VAT number GB 494 6272 12 
Permissions price 0.00 USD 
VAT/Local Sales Tax 0.0 USD / 0.0 GBP 
Total 0.00 USD 

D. GmbH 2009 

NO CONFIRMATION OF USAGE RECEIVED BEFORE PUBLICATION 

_____________________________________________________ 
Patalay, Rakesh 
Subject: FW: permission to reproduce 
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From: Patalay, Rakesh 
Sent: 26 March 2013 00:52 
To: 'karsten koenig' 
Subject: permission to reproduce 

 
Dear Karsten, 
I hope that you are well. At Imperial College, Chris and I are just finalising the details to submit my 
PhD thesis. In the thesis I have cited the DermaInspect® Manual and would like to reproduce this 
image. Can I formally ask for your permission to reproduce this adapted figure in my thesis? 
Yours 
Dr Rakesh Patalay 
____________________________________________________________ 

 

E. Karen 2009 

This is a License Agreement between Rakesh Patalay ("You") and John Wiley and 
Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The 
license consists of your order details, the terms and conditions provided by John 
Wiley and Sons, and the payment terms and conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of 
this form. 
License Number 3116191089458 
License date Mar 25, 2013 
Licensed content publisher John Wiley and Sons 
Licensed content Publication British Journal of Dermatology 
Licensed content title Detection of basal cell carcinomas in Mohs excisions with fluorescence confocal mosaicing 
microscopy 
Licensed copyright line © 2009 The Authors. Journal Compilation © 2009 British Association of Dermatologists 
Licensed content author J.K. Karen,D.S. Gareau,S.W. Dusza,M. Tudisco,M. Rajadhyaksha,K.S. Nehal 
Licensed content date Mar 30, 2009 
Start page 1242 End page 1250 
Type of use Dissertation/Thesis 
Requestor type University/Academic 
Format Print and electronic 
Portion Figure/table 
Number of figures/tables 1 
Original Wiley figure/table number(s) Figure 1 
Will you be translating? No 
Total 0.00 USD 

F. Koehler 2011 

This is a License Agreement between Rakesh Patalay ("You") and John Wiley and 
Sons ("John Wiley and Sons") provided by Copyright Clearance Center ("CCC"). The 
license consists of your order details, the terms and conditions provided by John 
Wiley and Sons, and the payment terms and conditions. 
 
All payments must be made in full to CCC. For payment instructions, please see information listed at the bottom of 
this form. 
License Number 3116171271346 
License date Mar 25, 2013 
Licensed content publisher John Wiley and Sons 
Licensed content Publication Skin Research and Technology 
Licensed content title Keratinocyte morphology of human skin evaluated by in vivo multiphoton laser tomography 
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Licensed copyright line © 2011 John Wiley & Sons A/S 
Licensed content author M. J. Koehler,S. Zimmermann,S. Springer,P. Elsner,K. König,M. Kaatz 
Licensed content date Mar 31, 2011 
Start page 479 End page 486 
Type of use Dissertation/Thesis 
Requestor type University/Academic 
Format Print and electronic 
Portion Figure/table 
Number of figures/tables 1 
Original Wiley figure/table number(s) Figure 2 - 3 panels 
Will you be translating? No 
Total 0.00 USD 

G. Krasieva 2013 

___________________________________________ 
From: Tromberg, Bruce <bjtrombe@uci.edu> 
Sent: 02 April 2013 19:57 
To: Patalay, Rakesh 
Subject: Re: Permission to reproduce figure 
Follow Up Flag: Follow up 
Flag Status: Flagged 

 

Hi Rakesh,  

Great to hear from you, I do remember meeting you and talking to you about your work (and 

other topics!). Of course, I am very glad for you to use figure 1 from our JBO paper. If you 

have a chance, send me a pdf of your thesis, we have a skin cancer group here that will be 

very interested in reading it and following your work. How have your patient measurements 

been going? Have you managed to get FLIM from patients in the clinic? Best, Bruce 

 
Bruce J. Tromberg, Ph.D. 
Director, Beckman Laser Institute and Medical Clinic 
Professor, Departments of Biomedical Engineering and Surgery 
Principal Investigator, Laser Microbeam and Medical Program (LAMMP) 
An NIH National Biomedical Technology Research Center 
University of California, Irvine 
949-824-4713, 949-824-8705 
bjtrombe@hs.uci.edu, www.bli.uci.edu 
______________________________________ 
Patalay, Rakesh 
From: Patalay, Rakesh 
Sent: 29 March 2013 00:16 
To: 'bjtrombe@uci.edu' 
Subject: Permission to reproduce figure 

Dear Professor Tromberg, 
My name is Dr Patalay and I am currently a PhD student and doctor working in the optics group of 
Professor Paul French at Imperial College London. I have been researching FLIM applied to skin and 
skin cancer during my thesis and would like to use figure 1 from your recent JBO 2013 paper in my 
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