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A hierarchy of length scales for weak solutions of the
three-dimensional Navier-Stokes equations

J. D. Gibbon!

Abstract

Moments of the vorticity are used to define and estimate a hier-
archy of time-averaged inverse length scales for weak solutions of the
three-dimensional, incompressible Navier-Stokes equations on a peri-
odic box. The estimate for the smallest of these inverse scales coincides
with the inverse Kolmogorov length but thereafter the exponents of
the Reynolds number rise rapidly for correspondingly higher moments.
The implications of these results for the computational resolution of
small scale vortical structures are discussed.
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1 Introduction

Resolution issues in computations of solutions of the three-dimensional
Navier-Stokes equations are not only closely associated with the problem
of regularity but they also raise the question of how resolution length scales
can be defined and estimated. The Kolmogorov school of statistical turbu-
lence suggests that a system of volume L? has a cut-off in its —5/3 energy
spectrum at k.= )\,;1 ~ L' Re3/*, which is known as the inverse Kolmogorov
length. The wave-numbers k > k. are considered to lie in what is called the
dissipation range [1, 2, 3]. Significant energy lying in this range can provoke
intermittent events in the vorticity and strain fields characterized by violent,
spiky departures away from space-time averages whose corresponding statis-
tics appear to be non-Gaussian in character [4, 5, 6, 7, 8|, although intermit-
tent events may also be associated with the inertial range (k <k.). Whether
significant energy actually cascades down to the micro/nano-scales where
the equation fails to be a valid model is intimately entwined not only with
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the open question of regularity but also with the role of the Navier-Stokes
equations as a limit of kinetic theory [9, 10]. This phenomenon continues to
pose severe computational challenges [11, 12, 13, 14]. In statistical physics
the objects that are used to study intermittency are the ensemble-averaged
velocity structure functions

(lu(@+7) = u(@)") g qv, ~ T (1.1)

the departure of whose exponents ¢, from linear? is thought to be caused by
inertial range intermittent behaviour [1, 2, 3]. It is clear, however, that these
structure functions are not best suited for Navier-Stokes analysis: the task of
this paper is to discuss what could replace these in the Navier-Stokes context
and what information could be gleaned from them. While higher gradients
of the velocity field would undoubtedly capture intermittent behaviour, they
would be unreachable computationally for all practical purposes. A better
diagnostic of spikiness in Navier-Stokes solutions is a sequence of LP-norms,
or higher moments, of the vorticity w =-curlu, defined through the set of
frequencies (p=2m for m>1)

Q(t) = (L—3 /v |w|2de> 1/2m, (1.2)

where the domain V=0, L] is taken to be periodic. The basic frequency
associated with the domain is given by wo=vL"2. Q2 is the enstrophy
per unit volume which is related to the energy dissipation rate, whereas the
higher moments will naturally pick up events at smaller scales.

The setting is the incompressible (divu=0), forced, three-dimensional
Navier-Stokes equations for the velocity field u(x, t)

ou+u-Vu=vAu—Vp+ f(x). (1.3)

Traditionally, most estimates in Navier-Stokes analysis have been found in
terms of the Grashof number Gr, which is expressed in terms of the root
mean square (f2,,=L73|f||3) of the divergence-free forcing f(x) (see [15,
16, 17, 18]) but it would be more helpful to express these in terms of the
Reynolds number Re to facilitate comparison with the results of statistical

physics. The definitions of Gr and Re are

Gr=L3frmsv 2, Re=UyLv~". (1.4)

2Kolmogorov predicted a linear relation between ¢, and p: departure from this is called
‘anomalous scaling’ and is usually manifest by (, lying on a concave curve below linear
for p>3 [1]. The two coincide for p=3.
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Doering and Foias [19] used the idea of defining Uy as

Ug =L7*(|lull3) (1.5)

where the time average <> over an interval [0,7] is defined by

T

(9()) = limsup . / (1.6)

9(0)

Clearly, Gr is fixed provided f is L?-bounded, while Re is the system re-
sponse to this forcing. A brief look at Leray’s energy inequality shows why
this definition of Uy is of value

15 el av <o [ Py slaul. (1.7
because it leads to
(QF), <@sGrRe+0 (T1). (1.8)

With some very mild technical restrictions on the forcing®, Doering and
Foias [19] then showed that Navier-Stokes solutions obey Gr <cRe?. This
turns (1.8) into

<Q%>T§cw3Re3—|—O(T_l) . (1.9)

In fact V<Q%>T is the time-averaged energy dissipation rate per unit vol-
ume over [0,7] and allows us to form and bound from above the inverse
Kolmogorov length scale )\,;1

—4_ V<Q%>T —1 3/4 ~1/4
An estimate for the inverse Taylor micro-scale A;}n s can also be found from
(1.9)

LA

Tms

(wl3)g )
=L w2 <cReM 4+ O(T7Y?). (1.11)
<||u||%>T

Both these upper bounds gratifyingly coincide with the results of statistical
turbulence theory [1, 2, 3] although the fact that they are bounds allows
for structures to occur in a flow whose natural scales are larger [20]. The
question is now clear: can we construct and bound from above a sequence of
inverse length scales associated with the higher moments €, ?

3Doering and Foias [19] took narrow-band forcing around a specific wave-number but
a wave-number spectrum which is cut off both above and below is sufficient.
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2 A scaling property and length scale estimates

Leray’s energy inequality (1.7) is valid for weak solutions and thus the es-
timate (1.9) is rigorous, although the existence and uniqueness of solutions
for arbitrarily long times remain an open problem. While it is possible to
subscribe to the view that difficulties in flow resolution could be a symptom
of the lack of uniqueness of weak solutions, in tandem it ought also to be
acknowledged that these difficulties may simply be caused by the practical
challenges of working on a system where even the naturally largest scale
(other than L) lies close to the limit of what can currently be resolved. The
spirit of this paper is such that results on weak solutions are assumed to
be sufficiently physical to reflect the reality of turbulent flows, provided T’
is taken large enough®. This strategy allows the estimation of an infinite
hierarchy of time averages of powers of the ,, for weak solutions on [0, 7]
without having to appeal to point-wise estimates that the solution of the
regularity problem would require. In turn, these time averages allow us to
define and explore the natural length scales inherent in the system. The fol-
lowing result was proved in [21] under the assumption that strong solutions
exist. Here it is demonstrated for weak solutions:

Theorem 2.1 Weak solutions of the three dimensional Navier-Stokes equa-
tions satisfy

((=3"m)"" ), <cRe*+O(T7), 1<m<oo, (2.12)
where ¢ is a uniform constant and
2m
= . 2.1
Am 4m—3 (2.13)

Remark : The exponent o, =2m/(4m —3) within (2.12) appears as a nat-
ural scaling of the Navier-Stokes equations, consistent with the application
of Holder and Sobolev inequalities. Note that when m =1 the value oy =2
is consistent with (1.9).

Proof: The proof is based on a result of Foias, Guillopé and Temam [22]
(Theorem 3.1) for weak solutions which, when modified in the manner of
Doering and Foias [19], furnishes us with the following time averaged esti-
mate

_1
<HJ2VN1 >T <enL WINIRES 4O (T71), (2.14)

4While existence and uniqueness of solutions is easily proved for small values of T
[15, 16, 17], larger values than this are necessary to make sense of long-time averages.
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where

HN:/ \vNude:/ k2N @) d3k, (2.15)
v Vi

where H; = [\, Vul|? dV:fV\w|2 dV. An interpolation between |w||2m, and
||w]|2 is found using Hy

3(m—1)

ol < cxm VY 3 ol "= om(N 1)’

(2.16)
for N >3. ||w||2m is now raised to the power a,,, which is to be determined,
and the time average of this is estimated as

_ 1—
<Hng$>T Sc%’”m<HvN 1wH(QzameHé a)ocm>

T

1
1 §ao<m(2N—1) 14
— c%mm<(H§,N1) " a)am>
T

1

1 ao,(2N—1) (1—a)am 1-Laam(2N-1)
S c%mm <H]%N_l > <H12aam(2Nl) > (217)
T T

An explicit upper bound in terms of Re is available only if the exponent of
H; within the average is unity; that is

(1—a)am
=1. 2.18
2—ao, (2N —-1) (2.18)
This determines «,, uniformly in N, as
2m
= . 2.1
am 4m—3 (2.19)

Using the estimate in (2.14), and that for (H;), the result follows. The
constant ¢y, can be minimized by choosing N =3. c3,, does not blow up
even when m =00 ; thus we take the largest value of Cgﬁ% and call this c.

3 Definition of the inverse length scales

Based on the definition of the inverse Kolmogorov length A, in (1.10) a
generalization of this to a hierarchy of inverse lengths ! suggests the
definition

(LA o= (5" 2m) ™) (3.20)
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The )\, are interpreted as resolution lengths in the space-time averaged
sense for 1 <m<oo:

LA <cRe3/%m 4.0 (T‘l/%‘m). (3.21)

Many turbulent structures have natural inverse gross length scales lying in
the range between Re!/? and Re®/4, but crinkles forming at finer scales may
ultimately grow to be dominant and then become the cause of resolution dif-
ficulties [1, 2, 3, 13, 14]. For m > 1 the \,, are interpreted here as the length
scales corresponding to these deeper intermittent events. The upper bounds
displayed in (3.21), as the Table shows, range from the inverse Kolmogorov
length Re®/* at m=1 to Re® for m=oc0. Computationally it may be hard
to get far beyond m=1: for example, m=9/8 corresponds to Re!, which
is close to modern resolutions even for modest values of Re. Thereafter the
rise in the exponent 3/2ay, is steep. Indeed, in the very high m limit, the
Re? bound has an exponent four times greater than the Kolmogorov length ;
this lies well below molecular scales where the equations are invalid.

m 1 [9/8]3/2] 2 [ 3 [... [
32am | 3/4| 1 |3/2[15/8[9/4 ... |3
dn | 3 | 2 [ 1 [ 3/ [1/2]...]0

Table 1: Values of the Re-exponent 3/2a,, =3 (1—2), and dy, = -2

m—3"

An interesting question is how the existence of this continuum of finer scales
might be interpreted physically? To do so rigorously without a regularity
proof is difficult but a very informal physical interpretation is possible in
terms of the familiar concept of a cascade. One of the simplest cascade
models is the so-called S-model of Frisch, Sulem and Nelkin [23] who, in
analogy with Mandelbrot’s ideas [24], modelled a Richardson cascade by
taking a vortex of scale fg =L and then allowed a cascade of daughter vor-
tices, each of scale ¢,. The idea was based on domain halving at each step
such that ¢y/¢,, =2". The self-similarity dimension d (similar to fractal di-
mension) was then introduced by considering the number of offspring at
each step as 2¢: 2 for the halving of a line; 4 for the halving of each direc-
tion in the plane; and likewise 8 for the cube. d is then formally allowed
to take non-integer values. In d dimensions the corrections to the usual
Kolmogorov scaling calculations for velocity, turn-over time etc appeared as
multiplicative factors proportional to (£o/fn)® %/3: see [1, 23]. Equating
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the turn-over and viscous times in the standard manner one arrives at ({4
is their viscous dissipation length)®

0o/ g~ Redri. (3.22)
This gives the usual Kolmogorov inverse scale of Re®/4 in a fully three-
dimensional domain but is shifted upwards for smaller values of d. Taking
this idea as our physical analogy we compare (3.22) to the upper bound in
(3.21) to get

3

4m—3’
where an m-label has been appended to d. Thus we are able to assign
a corresponding self-similarity dimension d,, to lower-dimensional vortical
structures that require values of m >1 for their resolution. Note that d,,
never goes negative. Models more sophisticated than the (-model, such
as the bi-fractal and multi-fractal models [1], are more difficult to use as
analogies as they would require data fitting.

dm+1=20,; =  dp= (3.23)
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