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Abstract

Robot learning by demonstration is key to bringing robots into daily social

environments to interact with and learn from human and other agents. How-

ever, teaching a robot to acquire new knowledge is a tedious and repetitive

process and often restrictive to a specific setup of the environment. We pro-

pose a template-based learning framework for robot learning by demonstra-

tion to address both generalisation and adaptability. This novel framework

is based upon a one-shot learning model integrated with spectral clustering

and an online learning model to learn and adapt actions in similar scenar-

ios. A set of statistical experiments is used to benchmark the framework

components and shows that this approach requires no extensive training for

generalisation and can adapt to environmental changes flexibly. Two real-

world applications of an iCub humanoid robot playing the tic-tac-toe game

and soldering a circuit board are used to demonstrate the relative merits of

the framework.
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1. Introduction

In the last few decades, robot learning by demonstration (LbD) has be-

come one of the most active research topics in robotics. It encapsulates

the imitation capability of a robot to perceive, learn, reproduce and adapt

according to environmental changes the motor skills for a given task demon-

strated by another agent with extrinsic parameters [1, 2], such as learning to

solder (Figure 1).

Figure 1: The iCub humanoid robot soldering a circuit component.

Owing to its relative merits over traditional methodologies for robot pro-

gramming primarily by offering a user-friendly teaching framework to pro-

gramme robots, LbD has spawned an array of research directions to make

robots interact in social environments [3, 4, 5, 6, 7, 8, 9, 2]. Many of these

works attempt to construct learning models to answer some of the 5 LbD

“W”s [10]: In a natural learning environment, it can be a cluttered scene

with multiple people and objects with movements happening at different
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times and places. Thus, identifying who to imitate at where and when on

what body-parts and objects as well as learning the actual how to imitate

are some of the key research questions.

In this paper, we present a morphable template learning framework to

address two “how-to” questions in LbD - namely how to reduce learning fa-

tigue and how to adapt the learning result to a similar but new environment.

This work incorporates online learning into a morphable one-shot learning

model to construct an incremental learning framework for action imitation,

such as the soldering task presented below. It segments a demonstration of

action into a sequence of basic trajectories and stores them as templates.

Each template is generalised and updated using an online learning model

when multiple demonstrations of an action are performed. To generate a

learned action in a new environment, plan adaptation is used to map the

template to the new situation. As the “what-to” question is not the focus of

this work, we avoid the correspondence problem [11] by using colour blobs,

SIFT features[12] and AR markers in our experiments.

The remainder of this paper is organised as follows: In Section 2, we

present some related work in robot learning by demonstration. Section 3 in-

troduces algorithms that are adopted in this work. In Section 4, the overview

of our proposed framework is introduced followed by the detailed description

of its building blocks. In Section 5, we describe the experiments to statisti-

cally evaluate our framework using a dataset of goal-oriented hand trajecto-

ries. Finally, two real-world applications of the iCub humanoid robot using

this framework are presented in Section 6 before Section 7 concludes this

paper with the overview of future work.
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2. Related Work

Most LbD work can be categorised into either learning a mapping func-

tion to approximate the state-action relationship or learning a system model

to represent the world dynamics [13]. The system model approach typically

involves reinforcement learning to find a policy from demonstrations for re-

lating its action and the world dynamics. While this approach is promising,

the learning complexity scales exponentially with respect to the number of

observed features which greatly increases learning fatigue and outcome un-

certainty.

The mapping function approach, which uses demonstrations to establish

a direct mapping from the state observations to the required actions, usually

performs batch learning, incurring no additional cost for model update in

between executions. The state-of-the-art mapping function approaches in

LbD investigate the use of probabilistic generative models, such as Gaussian

Mixture Regression (GMR) [14, 15], Hidden Markov Models (HMM) [16]

and Gaussian Process Regression (GPR) [2]. In particular, variants of GMR

have been shown to be useful in many LbD applications, such as HMM-

GMR [1] and Dirichlet Process GMR (DP-GMR) [13]. However, to update

these supervised learning models, re-training of the model is required. This

computationally expensive property hinders long-term interactions in a daily

set up, and the learned action generalised from demonstrations is highly

restricted to a specific setting. Thus, simple copying and normal function

approximation approaches may not always work well in reproducing observed

trajectories in an unseen situation. Moreover, additional constraints may

be present in a new situation, such as forced waypoints that require some
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minor modification to the observed action. Hence, a robot must possess

the ability to adapt to environmental variations for the same actions while

maintaining its generalisation capability. Previous work in the literature

focuses on approaches either to produce a unique but exactly-corresponding

imitation of the previously demonstrated action [17, 18] or to generate a

new trajectory based on a subset of the competent tasks to accommodate

additional constraints [19, 20, 21].

In order to work successfully, most LbD frameworks require first the task

to be demonstrated several times [19, 22]. This time-consuming and te-

dious process is not favoured by human demonstrators. To reduce fatigue

and accelerate the learning process in giving demonstrations will be crucial

for future robotic advances. Thus, one-shot learning [23], a popular niche

area in machine intelligence becomes a favourable approach in tackling this

problem [24, 25]. Some of this work focuses on explanation-based methods

[26] which use prior knowledge to explain how each observation satisfies the

target concept. This highly symbolic-reasoning approach is difficult to be

implemented on physical robots without hard-coding a large repertoire of

action primitives. Furthermore, one-shot learning methods alone do not ad-

dress the issue of generalisation should multiple demonstrations of an action

subsequently appear before the robot. A more sophisticated model based on

one-shot learning approach can be an answer to handle generalisation.

Friedrich et al. [27] argue that approaches generalising observations into

a set of intrinsic complex model statistics or internal states limit the ability

of user interaction with the model after demonstration. However, many

state-of-the-art paradigms make use of such models. For example, in the
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application of Gaussian mixture models [28, 29], the generalised parameters

are the weights with associated Gaussian parameters. These approaches

deter direct user intervention/interaction, as the users cannot easily interpret

and manipulate the implicit meaning of the parameters. When a robot is

deployed in a social environment for continuous learning, this becomes of

cardinal importance because users are not able to help robots to learn from

mistakes.

Many established LbD models focus on learning a task as one single action

[9, 30]. Actions learned with these models can be performed accurately but

more difficult to be partially reused in a novel scenario. Thus, [31] and [32]

argue for the representation of a task action by multiple movement primitives

as a prerequisite for imitation learning based upon biological evidence. By

segmenting an action into a sequence of basic movement primitives [33],

this representation expresses a task action as a chain-event of primitives

similar to the hierarchical action control structure in the human motor cortex

[34]. However, in various primitive-based LbD models [35, 36, 37], the list of

primitives is exhaustive and hand-coded for a particular set of actions which

has limited application in an unseen task. Another approach is to extract

the motion constraints as a criterion for segmentation [38]. However, little

literature to our knowledge addresses the issue of segmenting a primitive into

a logical set of smaller actions at the learning phase and piecing them up at

the action phase.

In image processing and motion planning, scenes are often warped from

the current context into new ones using a morphing technique which min-

imises the bending energy [39, 40, 41]. This technique preserves the spatial
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relationship between a set of features presents in both the original context

and the new one. We believe that the adaptability issue in LbD could get in-

spiration from this approach. A trajectory imitation problem can be treated

as a plan adaptation [25] which projects the demonstrated action with a

set of environmental features into a similar but novel situation. This will

generate a new trajectory by maintaining the spatial relations between the

corresponding environmental features.

3. Background

In this section, we will briefly introduce three key models used in our

learning framework, namely the thin-plate spline warping [42, 39] which is

extended from its original concept to a 3D environment to address the adapt-

ability issue, the online echo-state Gaussian process [43] which is used to

generalised repeated demonstrations of an action and the spectral clustering

algorithm [44] which is used for automatic action segmentation of a demon-

stration into smaller templates.

3.1. Thin-plate spline warping

Thin plate splines (TPS) were first introduced to geometric design and

became popular in non-rigid transformation models in image processing and

shape matching [42, 39]. As argued in Section 2, this template matching

algorithm can be extended to an LbD problem. We refer to a given demon-

stration as a template and generation of the learned action in a new situation

where the robot has to imitate as a task. An imitated trajectory can be seen

as a warped demonstrated trajectory in this approach.
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Given that there are k corresponding pairs of features present in both

the template and the task (called invariant features, such as the locations of

the target position), we can generate a distortional mapping to minimise the

bending energy for each spatial location present in the template trajectory

into a set of possible waypoints.

We define the k Cartesian invariant features in the template as the in-

variant control points (ICP) P and the corresponding ICPs in the task P′,

f as the mapping function from P to P′. [42] shows that in a 2D scenario,

to minimise the distortion of spatial features is equivalent to minimise the

following energy function:

E =
k∑

w=1

‖ P′w −Pw ‖ +λEf (1)

where

Ef =

∫ ∫
R2

(f
′′

xx + 2f
′

xy + f
′′

yy)dxdy (2)

λ, the regularisation parameter, is introduced to balance the trade-off

between the exact matching of points and the smoothness, which is particu-

larly useful in the presence of noise as TPS is sensitive to noise. The mapping

function f in a 2-D Cartesian space f(x, y)is defined as:

f(x, y) = α0 + αxx+ αyy +
k∑

i=1

ωiφ(‖ (xi, yi)− (x, y) ‖) (3)

and

φ(r) = r2log(r) (4)

where (3) is a 2nd order poly-harmonic spline also known as a Thin Plate

Spline. To ensure the existence of Ef , the 2nd derivatives of f(x, y) must be
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square integrable, which means that the following conditions have to be met:

k∑
i=1

ωi = 0 (5)

k∑
i=1

ωixi =
k∑

i=1

ωiyi = 0 (6)

By letting Φij = φ(‖ (xi, yi)− (xj, yj) ‖) and υi = f(xi, yi), we can form

a linear equation based on (4) - (6) as follows:

 Φ L

LT 0

 ω

ααα

 =

 υυυ

0

 (7)

where ω is a column vector of ωi, ααα is a column vector of [ α0 αx αy ]T

and the ith row of L, Li = [ 1 xi yi ].

Powell [45] shows the non-singularity of the square matrix in (7). We can

then define the upper left k×k sub-matrix of the inverse of this square matrix

by M′
k. It can be shown that Ef ∝ υυυTM′

kυυυ = ωωωTMωωω. Thus, depending

on the trade-off of accuracy and computational cost, the optimal solution of

ωωω and a with minimum bending energy can be solved either by analytical

method or approximation methods described in [46] and [47].

3.2. Online echo state Gaussian process

While many LbD models use supervised learning techniques to achieve

model generalisation, it presents a dilemma to be used in a real-world HRI

environment where tedious training before the robot can learn a task may

not be feasible. Moreover, once trained, these models are fixed until the next

programmer-defined update. Such huge model updates are computationally
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Figure 2: The Online Echo-State Gaussian Process [43]

expensive and the definition of when to update can be tricky. Thus, we

require a model that can perform learning on the fly for spatial-temporal

data. The online echo state Gaussian process (OESGP) proposed in [43] is

a Bayesian-based online learning method that is capable of learning complex

temporal relationships iteratively between sequential observations. It is a

regular echo state network (ESN) trained with a sparse approximation of

Gaussian process (GP). This allows the output prediction to contain both

the mean and an uncertainty estimate. Moreover, kernels can be used to

allow non-linear mappings between the reservoir states of the ESN and the

outputs which helps modelling a wider range of dynamical systems.

Figure 2 is an illustration of the OESGP. When a given time-series data

sequence is presented to the model, the state of the ESN is trained and

updated. Then the updated ESN posterior is fed to the sparse online GP

where the more informative states are retained in a closest GP and generates

a mean prediction with an uncertainty estimate.

The non-parametric property of OESGP allows learning of temporal dy-

namics without having the problem of the GP growing unbounded while al-
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lowing the system to learn on the fly. Although the accuracy of the OESGP

depends on kernel selection, noise parameter setting and also the size of

the “novelty” covariance matrix which affects the computational cost of the

model, however, many successful benchmarks [43] in machine-learning and

robotics together with the merits of the model suggests that it is a suitable

candidate module in our LbD model.

3.3. Spectral clustering algorithm

When an action is demonstrated, unless the notion of primitive actions

is given to the demonstrator, the demonstration usually comprises an un-

interrupted series of subactions. This makes it difficult to “recycle” partial

learned actions in a new scenario without segmenting the observation ap-

propriately. If we assume that a demonstrated action consists of subactions

which are separable in spatial-temporal manner, a suitable clustering algo-

rithm can be used as an action segmentation algorithm. Like most of its

counterparts, the original spectral clustering algorithm treats the temporal

input just as an input feature. However, assuming time and space with the

same “resolution” can lead to undesirable clustering results.

An adapted version of the spectral clustering algorithm was proposed in

[44] to address this issue and achieve spatial scaling, rotation and action

speed invariances. This property allows similar segmentation outcome for

demonstrated actions performed by different users in different environment

at different spatial scales. It can be used to generate primitive actions from

demonstrations and eliminate the need to provide a list of exhaustive and

hand-coded primitives.
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4. The Morphable Template Learning Framework

Figure 3: The schematics of the Morphable Template Learning Framework. This frame-

work consists of four modules and a database which stores the labelled morphable tem-

plates. A demonstrated action is first segmented by Template Segmentation into a se-

quence of template trajectories. Any template trajectory demonstrated before will be

updated by Online Template Learning and stored into the Primitive Template Database.

When a task action is requested, it will be decomposed by Primitive Decomposition into

a sequence of learned templates. With their associated invariant features, the Template

Adaptation morphs the template trajectory into the required task trajectory.

This section presents our proposed LbD framework, a mapping function

approach based on template adaptation integrated with an online learning

paradigm [43], a spatial-temporal segmentation algorithm [44] and a Finite

State Machine (FSM). In this work, we assume that all required input fea-

tures are fully observable. This can be realised using either colour blob

tracking, SIFT feature detection or AR markers to avoid the correspondence

problem which is a research topic on its own. Our morphable template learn-

ing framework is built on the following four concepts and illustrated in Figure

3:

• The basic building block of Template Adaptation acts as an efficient
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module for generating an action given the task based on constraints

mapping with a template.

• A suitable template segmentation algorithm that segments a demon-

strated template into a set of sub-templates.

• An online learning framework to update a stored template/sub-template

with a new demonstration of the template.

• An algorithm that decomposes the task into an action plan made up

from a sequence/hierarchy of templates and/or sub-templates.

4.1. Template Adaptation

Figure 4: The schematics of Template Adaptation Module

We consider the case of trajectory planning in a 3D environment from

a demonstration of a similar task. The ultimate aim of this module is to

produce a desirable trajectory in a given scenario. This template adaptation

algorithm consists of three components illustrated in Figure 4. In summary,

it first generates a set of waypoints based on distortional warping of a set
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of corresponding constraints extracted from both a template and the task.

Using minimum-energy planning, a probable trajectory is then created from

the time-series information associated with these possible locations. Finally,

the generated path is subject to an Interactive Plan Adjustment for trajectory

correction. This implementation is based on our previous work on one-shot

imitation learning approach [25].

The use of a template based approach also has three main benefits: 1) It

reduces demonstration fatigue by allowing LbD from the very first demonstra-

tion, as all useful demonstrations are stored as templates; 2) The templates

and environmental features are human-readable; and 3) Templates can be

easily broken down into sub-templates and used as primitive actions.

4.1.1. Definitions and Assumptions

For a given demonstration, we describe the motion trajectory as a set

of p discrete spatial feature points ml : (xl, yl, zl), l ∈ {1...p} in time series

obtained either from stereo-vision or motion capture devices. We also as-

sume that the invariant feature points, including the target location in the

scene can be fully described by a set, F of n point-like features, where each

is described by (ai,Ai), i ∈ {1...n}. While ai represents the Cartesian coor-

dinates of the feature point, Ai captures the additional information that will

help to match invariant points of similar objects/targets, such as SIFT [12]

features and textual features.

In a novel situation described similarly by a set F ′ : (a′j,A
′
j), j ∈

{1...n′}, we assume that there exists an evaluation function of correspon-

dence, fc(Ai,A
′
j), where
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fc(Ai,A
′
j) =

 0 if Ai & A′j are uncorrelated

1 if Ai matches A′j
(8)

Depending on the context, we can use different feature mapping algo-

rithms to match As and A′s, such as SIFT in image-based data. In this

work, we use existing feature extraction tools for this correspondence prob-

lem. In the Section 5, we hard-code the features while SIFT matching and

AR Markers are used respectively in Sections 6.1 and 6.2. We can then iden-

tify a maximum k pairs of Cartesian coordinates in the both the task space,

a′j, and one of the learned templates, ai, where fc(Ai,A
′
j) = 1, k ≤ n,

k ≤ n′. This k pairs of coordinates also include the pair of starting positions

in the template and the task.

In a general path planning situation, we may be able to obtain more in-

variant features in both the task and the templates than the necessary set

for mapping. Although more invariant features present in the scene help to

guide the mapping more precisely, however, there are cases where inclusion

of such features undesirably generates excessive output distortion. One ex-

ample can be objects at a distance and textual features of the background.

Detection of these invariant features is a problem in computer vision, and

is beyond the scope of this work. In order for our work not to impose the

matching constraints for excessive number of invariant features and hence to

preserve the spatial relationship among the cardinal features, we filter out

these features by setting a region of interest (ROI) for the observations. The

generated trajectory for the task m′ : (x, y, z) is then based on the mapping

of the invariant features between the ROIs of the template and the task.

In a more complex situation, when the robot is required to route through
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waypoints or to avoid obstacles, where an additional set F ′x(bj,Bj) can de-

scribe these extra feature points. If F ′x exists in a task, these additional

feature points will only be used when the planned trajectory m′ contradicts

any bj. For example, if bj represents a forced waypoint where the trajectory

has to route through, when the generated trajectory does not pass through

bj, this is considered as a contradiction. In the following sections, the map-

ping algorithm will be described in detail.

4.1.2. Constraint Distortion Warping

Section 3.1 describes the TPS in its 2-dimensional (2D) form; we extend

this mapping definition f to a 3D case by adding a z-axis into (3):

f(x, y, z) = α0 + αxx+ αyy + αzz +
k∑

i=1

ωiφ(‖ (xi, yi, zi)− (x, y, z) ‖) (9)

And the boundary conditions in (6) become:

k∑
i=1

ωixi =
k∑

i=1

ωiyi =
k∑

i=1

ωizi = 0 (10)

By letting Φij = φ(‖ (xi, yi, zi)− (xj, yj, zj) ‖) and υi = f(xi, yi, zi), the

variables in (7) are updated to ωi, ααα = [ α0 αx αy αz ]T and the ith row

of L, Li = [ 1 xi yi zi ].

If a set of feature points in space maintain an invariant spatial relation-

ship, the spatial correspondence of all points in both spaces can be described

using a minimum distortion function called Thin Plate Spline (TPS) warp-

ing [40]. It is possible to generate a set of candidate waypoints for the task

trajectory using this constraint distortion warping algorithm, by assuming
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a given scene-matching algorithm, such as SIFT, can provide a set of corre-

sponding ICPs from both the template and the task. Thus, for each ml in

the template, there exists q ≥ 0 mapped coordinates as possible candidates

for m′l in the task defined by (4). This set of candidate waypoints are then

subject to Minimum-Energy Route Plan to generate a task trajectory.

4.1.3. Minimum-Energy Path Planning

Given the time-series candidate waypoints m′, the goal-directed action

can be represented simply by stepping through the variable l and choosing

the best point from each m′l to form the trajectory. As we use energy

consumption as our main selection criterion, the optimisation criterion CE

is to minimise the cost function proportional to the square sum of the changes

in positions, i.e. translational energy:

CE =

p∑
i=2

(‖m′i −m′i−1 ‖)2 (11)

To simplify the computation of the optimisation process, we can define

SDij =‖ m′i − m′j ‖2, in a given time-stage l a possible waypoint as U ,

CEl(U) as the minimum energy from the waypoint U to the starting point.

Instead of evaluating the full discrete energies mesh through time-steps, we

can reduce it to a dynamic programming problem [48]:

CEl(U) = min
waypoints v in l−1

{SDuv + CEl−1(V )} (12)

4.1.4. Iterative Plan Adjustment

In a complex and dynamic environment, the generated trajectory is then

checked against the extra invariant feature points F ′x present in the task
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Algorithm 4.1: Iterative Plan Adjustment Algorithm (IPA)

Set number of contradiction (Nc) = 0 ;

for all j do

Compute Ct(bj) ;

if Ct(bj) = 1 then

Find the point m′l on the task trajectory nearest to bj;

Locate the corresponding point ml in the template;

Put these ml into set F and bj into F ′;

Nc = Nc +1 ;

end

end

if Nc > 0 then
Re-iterate the distortion warping algorithm to find a new task

trajectory;

Run IPA with the new trajectory and constraints;

end

space, such as forced waypoints or obstacles, i.e. whether any m′l contra-

dicts with bj in F ′x. For forced waypoints, we can define the contradiction

evaluation Ct as

Ct(bj) =

 1 if bj 6⊆m′

0 otherwise
(13)

After generating the possible trajectory for the task, the model should

perform the algorithm described in Algorithm 4.1 until all Ct(bj) = 0, i.e.
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no contradiction between the set of invariant features and the generated

trajectory. It is worthwhile to note that this module alone can be used as a

standalone one-shot learning model for trajectory imitation [25].

4.2. Template Segmentation

As it has been hypothesised with biological evidence that an action con-

stitutes a sequence of basic movements [33], we believe that an LbD frame-

work that encodes actions as a sequence of subtasks is useful even from an

engineering perspective:

1. It significantly reduces the learning redundancy. For instance, a robot

is given demonstrations of a series of grasping actions of a range of

objects. Every demonstration comprises of an end-effector approaching

an object, grasping it and bring it back. The robot is then asked

to imitate all the actions. In the case without action decomposition,

we can see that although the kinematics of reaching and retracting

actions are likely to be similar for all objects, they are learned as part

of grasping a particular object. This redundancy can be minimised if

the robot can smartly learn these actions as a series of basic movements

and avoid classifying the same subtask as part of a new action.

2. The learned subactions become reusable. A generative model can in-

tegrate them to produce new actions without further learning. For

instance, an observed action consists of a subaction sequence A-B-C.

The robot is then asked to learn a new task that constitutes the se-

quence C-B-A-A-C. If the robot would have segmented these actions

before, it would have realised that no new learning is required for the
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kinematics of this action. What it needs to do is to label the new action

as a chain-event of these subactions.

3. Segmentation during observation makes the learning generative. In

traditional primitive-based learning, primitives are often pre-defined

by humans with their intrinsic definitions and knowledge of the ba-

sic primitive actions. This set of primitive actions are not generative

and not always the most efficient for machine representation. In con-

trast, segmenting and learning new basic action primitives in perception

phase gives more generative flexibility to adopt new primitive actions

without subjecting them to human intrinsic knowledge.

To simplify the problem, we will assume that all task actions are com-

posed of simple subactions which are separable spatial-temporally. There-

fore, a spatial-temporal clustering algorithm can serve this problem well. In

clustering algorithms used for LbD motion segmentation [49], the tempo-

ral information is treated as an extra feature dimension. Some undesirable

clustering results arisen from treating time and space with the same “reso-

lution” are addressed in [44] by introducing different scaling parameters for

time and spatial features in spectral clustering with the Gaussian affinity

measure. By setting the scaling parameters to our sampling resolutions for

time and space respectively, we can employ this algorithm to segment our

templates naturally into clusters of primitive actions.

Once the templates are segmented, the representation among these tem-

plates changes from continuous to discrete with symbols representing each

segmented subaction. Apart from the original demonstrated task, if the robot

is required to perform an action made up of the learned symbols, the issue of
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continuity or smooth transition between each action symbol becomes a prob-

lem. This appears to be a main hurdle for a number of symbolic LbD models

to be useful in action execution. However, one property of the trajectory

template adaptation approach makes continuity possible - the set of invari-

ant features. For every segmented template, we make sure that not only the

starting position but also the last waypoint in the segmented trajectory are

added as invariant feature points.

4.3. Online Template Learning

One-shot learning, to a large extent, is favourable in real-world LbD and

HRI because users are not required to repeat the same actions over many

trials in a given time frame. Moreover, in some extreme cases, repetition of

the same action is not possible. However, a one-shot learning model has a

few assumptions/disadvantages:

• As it is similar to a winner-take-all strategy, the underlying assumption

is that the demonstration for each action is close to perfect. Once

learned, it can only be replaced by a better demonstration of the same

action.

• It also assumes that the noise associated with each perceived demon-

stration is minimal so that the learned action can be executed without

using a generalisation technique to remove noise over repeated trials.

• It is further assumed that the demonstrated action does not evolve over

time. Or every improvement can be evaluated by a metric, and hence

replaces the previous template.
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The direct application of a template based approach suffers from the same

problem as one-shot learning paradigms - only the best-fit trajectory gets

stored as a template. This drawback becomes prominent when all demon-

strated actions for a particular template are noisy. The noise gets also stored

into the template due to the lack of generalisation capability over multiple

training samples. However, treatment using an online learning technique [43]

can be applied to address this problem. When multiple demonstrations for a

template are given, the template can be updated each at a time to produce

a more generalised template.

To allow continuous learning and generalising a particular template, we

propose to insert an online learning (OL) module into the framework. The

chosen OL model has to possess the flexibility to adapt to a wide range of

dynamic demonstrations as many trajectory demonstrations may be highly

non-linear. Thus, non-parametric approaches are preferred as tuning of a

generative model can be time-consuming and demand the users to possess

the expertise. It is also preferred for an OL model to provide a confidence es-

timate so that we can evaluate if generalising a particular template is suitable

by setting a confidence threshold for the update.

The Online Echo-State Gaussian Process (OESGP) illustrated in Figure

2, to our best knowledge, is the only model that possesses all the qualities

we require. This sparse Bayesian formulation of echo-state network enables

fast iterative learning with uncertainty feedback. In our application, we use

the available OESGP implementation in a two-stage manner:

Stage 1 : When a new template is presented, it gets recorded directly into

the database while an OESGP model is trained to represent the action.
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However, the output from the online learning does not overwrite the

recorded template.

Stage 2 : When a new demonstration of an existing template is presented,

the associated OESGP model is updated with the new demonstration.

The mean output of the model then overwrites the template in the

database.

4.4. Primitive Decomposition

Figure 5: An example of primitive decomposition. Assuming a robot learns the primitive

actions D and F and the compound actions H and I in 4 demonstrations. The template

segmentation module thus segments H and I into a list of subactions. The template

database now has all primitives from A to G which can be used to construct a new action

J.

Another difficulty in direct use of templates lies in the partial reuse of

the learned actions to form a new action, thereby reducing the learning re-

dundancy. Thus, the learned action template needs to be segmented into a

sequence of basic movement primitives [33] and expressed as a chain-event

of subactions similar to the hierarchical action control structure in human

cortex [34].
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Koechlin and Jubault [34] suggest that a hierarchical control structure ex-

ists in the human brain which executes actions at the levels of superordinate

chunks, simple chunks and single acts. Since an action has been segmented

into a series of primitive templates and tagged, a new action can therefore

be formed by integrating multiple learned actions and primitive templates

as illustrated in Figure 5. For example, given an unseen action J which is

composed of learned subactions H-D-E-I, the robot can perform this action

by using a simple finite state machine (FSM) to piece the subactions up.

This can be achieved in two ways:

• The user manually creates the FSM with a relevant set of invariant

constraint features in the task space hard-coded into each of the subtask

or extracted from the scene of the task.

• The user can also demonstrate the new action J before the robot, this

allows the robot to extract the invariant features from the perceived

environment and also segment the action. Once segmented, the subac-

tions are compared against the database using the constraint distortion

warping method, in which the energy measure (1) can be used to eval-

uate the template similarity with a threshold value. It then labels the

unseen subactions, if any, and composes a FSM to represent action J.

We will demonstrate the first case in Section 6.1 with the implementation

from our previous work in [50] and the second case in Section 6.2.
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5. Statistical Experiments

In this section, we report on a series of experiments designed to statis-

tically investigate the relative performance of each module using the same

benchmark dataset.

5.1. The Benchmark Dataset

(a) (b) (c)

Figure 6: The experiment set-up for collection of the benchmark dataset. (a) The 53

Degrees-of-Freedom open-sourced iCub robot is developed by the RobotCub Consortium

[51, 52]. (b) and (c) are an example of the human subject with colour markers captured

by the iCub cameras.

We use the on-board cameras of the iCub humanoid robot for the exper-

iments. All demonstrations are performed in front of the iCub cameras with

a fixed configuration. Throughout data collection, the stereo cameras of the

iCub were set at 20Hz frame rate and 320 X 240 pixel resolution (example

shown in Figure 6b & 6c). To avoid the tracking issues in computer vision at

this resolution, a number of colour trackers are placed along the hand of each

human subject. The recorded demonstrations are processed offline using the

standard OpenCV blob tracking.
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(a) (b) (c) (d) (e)

Figure 7: The sketches of the 5 sets of tasks. The hand indicates the starting point for

each task. The blue strip denotes the approach plane that the hand approach has to be

perpendicular to which is indicated by an array normal to the strip marked on the cover

of the cylinder.

In our experiment, we consider a real-world task of grasp-oriented reach-

ing actions. To benchmark the robustness of the proposed framework, a total

of five different experimental tasks are carried out as described below and

illustrated in Figure 7:

1. Task 1 (Figure 7a): The demonstrator is to approach a standing can

from the left of the scene; the approach plane, denoted as a blue strip,

is perpendicular to the direction of motion. The whole movement is

expected to be planar.

2. Task 2 (Figure 7b): The demonstrator is to approach the object from

the far side of the scene. The only difference to Experiment 1 is the

whole set-up is rotated 90◦ clockwise.

3. Task 3 (Figure 7c): The demonstrator is to approach the object from

the left, however, the approach plane is facing up. The movement is

expected to gradually become 3-dimensional when the hand approaches

the object.

4. Task 4 (Figure 7d): The demonstrator is to approach the object from

the left, however, the approach plane is facing the far side.
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5. Task 5 (Figure 7e): The set-up is similar to that of Experiment 4 with

addition of an extra waypoint, denoted by the black patch, that the

demonstrator has to navigate through.

Each task consists of 15 trials performed by different subjects. All sub-

jects are requested to perform the demonstrations as naturally as possible.

And we extract the action trajectories from all trials and attach the relevant

set of environment-invariant features to them. This set of constraint features

includes the start position of the hand and the corresponding corners of the

bounding box and centroid of cylinder.

5.2. Experiment Descriptions

The 75 collected human trials are firstly labelled and grouped according

to their original task numbers before we carry out the following statistical

experiments:

1. Take the constraint features of each of the 75 trials as both template

and task constraints, run the template adaptation module to obtain a

set of 75 self-mapped trajectories. The output and the demonstrated

trajectories are compared according to their task numbers to estimate

the amount of distortion introduced by the model.

2. Take the constraint features of each of the 75 trials as the template

constraints, and map them to the constraints of all trials to obtain a

75×75 set of generated trajectories using only the template adaptation

module. The output and the demonstrated trajectories are grouped in

each of the input/output pair for quantitative analysis of how well the

model can generalise templates to different scenarios.
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3. Take each of the 75 trials as input, run the online template learning

module to generate outputs for other trials within the same task. This

generates 5 × 15 × 15 pairs of trajectories for benchmarking analysis

against the performance of two other LbD models.

4. For each task, we carry out 2 further experiments: a) Train the model

with 14 input trajectories and test the model on the last trajectory; b)

Use all 15 trials as both training and testing samples. The statistical

difference between the standard leave-one-out training and trained all

will provide an indication of possible model over-fitting.

5. Uniformly segmented in to N ∈ 2 . . . 4 segments in time after applying

dynamic time warping (DTW) [53]. We hypothesise that the decom-

position of actions into smaller templates helps to improve the learning

outcome, as the constraint features are broken down specifically and

locally for each subaction. We will perform mesh-mapping for all 75

trials with different levels of segmentation using template adaptation

to generate the corresponding trajectories. This yields a 75 × 75 × 4

tensor of trajectories for cross-validation to test for improvement of

performance after template segmentation.

5.3. Statistical Evaluation Metrics

We introduce two performance metrics to statistically evaluate the per-

formance of the framework - Correlation Coefficient and Mean Squared Dif-

ference. We denote the generated trajectory as m and that to be compared

as m′. Both consist of N corresponding waypoints after DTW.

Assuming that the proposed algorithm could estimate the resulted tra-

jectory performed by human under similar circumstances, the Correlation
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Coefficient R is a likeliness indicator of our proposed framework to predict

the human demonstrated trajectories.

R =

∑N
i=1(mi − m̄) · (m′i − m̄′)√

(
∑N

i=1(mi − m̄)2)(
∑N

i=1(m
′
i − m̄′)2)

(14)

where m̄ denotes the arithmetic mean of mi.

We also use the Mean Squared Difference (MSD) to estimate the closeness

between the generated trajectories and the human demonstrations.

MSD =
1

N

N∑
i=1

‖mi −m′i ‖2 (15)

5.4. Results and Discussion

Table 1: Performances of the template adaptation module for all self-mapping cases

Indicators Tsk 1 Tsk 2 Tsk 3 Tsk 4 Tsk 5

R 0.996 0.999 0.991 0.991 0.994

MSD 24.6 10.7 41.2 38.6 27.0

First, the performance of the template adaptation module on the ability

to preserve the original trajectory before and after mapping was evaluated.

This can be measured by the performance of applying the same input and

output constraints associated with a particular demonstration. We tabulate

them according to the experiments they belong to as shown in TABLE 1. All

five experiments have correlation coefficients greater than 99% and very low

MSDs, which suggest that the template adaptation module do not impose

distortion to the original signals.
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Table 2: Mean R/MSD for mapping from one task to another. Columns and rows indicate

input and output respectively.

Tsk 1 Tsk 2 Tsk 3 Tsk 4 Tsk 5

Tsk 1 0.961/176 0.953/298 0.817/1222 0.414/7388 0.380/8390

Tsk 2 0.993/117 0.995/57 0.941/1899 0.740/2809 0.711/5095

Tsk 3 0.861/799 0.444/2832 0.891/399 0.774/962 0.747/2869

Tsk 4 0.757/1548 0.817/667 0.871/1164 0.957/203 0.938/343

Tsk 5 0.835/1139 0.816/834 0.872/1286 0.885/459 0.962/280

We grouped the mean of the performance indicators according to each in-

put/output task to tabulate how well the trajectories generated from demon-

strations of a particular task can be generalised into other task scenarios with

the template adaptation module. The results are shown in TABLE 2. The

R statistics suggest that the proposed module is capable of generating tra-

jectories that are very close to those performed by humans as 88% of the R

statistics are above 0.7. It also indicates that mapping a less complex route,

e.g. a straight line or the trajectories without forced waypoints, to any given

scenario results in performance closer to those of humans. The likely reason

for such observation is the lack of corresponding extra invariant feature infor-

mation in the target situation for mapping the complex case to simpler ones

which can result in poor performance. It can also be inferred that mapping

demonstrations of similar scenarios, for example Task 4 and Task 5, may

produce similar results even when some defining conditions are different. We

can further see that mapping trajectories from Tasks 1-4 to Task 5 yields
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good performance which implies that the IPA algorithm works sensibly well

in these situations. The above results indicate that the template adaptation

algorithm can, while maintaining good adaptability, reduce the burden and

cost of repeated demonstrations; thus our aim to address this issue in LbD

can be met by the Template Adaptation Module [50].

Table 3: Mean MSD using online template learning module (using OESGP) against the

benchmark results of other ESN models. ESN and CESN denote echo-state network and

Copula echo-state network respectively.

MSD Task 1 Task 2 Task 3 Task 4 Task 5

ESN [54] 1447 914 1166 8212 721

CESN [55] 1097 150 787 601 627

OESGP 613 45 301 151 120

We then targeted the online template learning module (OTL). In all our

experiments, the OESGP in the OTL module is implemented with noise pa-

rameter set to 0.1 and memory size of 20 which is significantly lower than

the length of any demonstration. The memory size here refers to the maxi-

mum number of the reservoir states retained at each OESGP iteration. With

this set-up, the trained model using any demonstration as both training and

testing sample yield R = 1.000. Thus, we further evaluate the generalisation

ability of the model by training it with one demonstration from an exper-

iment and testing on the other 14 trials. The results are then compared

against the results in the literature using the same dataset as shown in TA-

BLE 3. The table shows that the OTL module performs better than the
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ESN models proposed in [54, 55] with approximately doubled improvement

over the figures in MSD.

Table 4: Mean R/MSD for the 3 experiments conducted on the online template learning

module.

Tasks 1 2 3 4 5

Train 1 0.956/613 0.993/45 0.951/301 0.970/151 0.981/120

Train 14 0.9997/2.9 0.9998/0.8 0.9995/3.8 0.9994/2.6 0.9996/2.1

Train 15 0.9999/1.2 0.9998/0.5 0.9997/1.4 0.9996/1.4 0.9997/1.3

To further evaluate the generalisation capability of the OTL module, the

results of the two further sets of experiments are tabulated in TABLE 4.

The R statistics is well above 90% positively correlated right from only 1

training sample. This suggests that the dynamics of the demonstrated data

can be well explained by the model. Moreover, no significant improvement

by increasing the training samples from 14 to 15, which is the full set. There

may be an issue of over-fitting for supplying all samples as both training

and testing data. However, the high R statistics right from training with 1

example together with insignificant improvement by increasing the training

from 14 to 15 samples suggests that the model is unlikely over-fitted.

We tabulated the R and MSD statistics for the number of segments we

introduced to a learned template. TABLE 5 shows the R and MSD statistics

for the 75 self-mapping trials arranged by the number of segments. We can

see that in all cases, the correlation coefficient is almost 100% with extremely

low MSD. The statistics is improved as soon as segmentation is introduced.
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Table 5: Mean R/MSD of self-mapping cases with different number of segments

Segments Task 1 Task 2 Task 3 Task 4 Task 5

1 0.996/24.6 0.999/10.7 0.991/41.2 0.991/38.6 0.994/27.0

2 0.999/12.1 1.000/7.2 0.999/11.8 1.000/6.6 1.000/6.9

3 0.999/11.8 1.000/6.7 0.999/11.1 1.000/6.2 1.000/6.5

4 0.999/10.3 1.000/6.5 0.999/10.9 1.000/5.9 1.000/6.0

Two inferences can be drawn from this observation: 1) The system does not

introduce significant distortion to the original signals with and without the

template segmentation module; 2) The introduction of template segmenta-

tion module, may help to reduce noise in the mapping by preserving only

the local constraint features which as a consequence helps to preserve the

original signal further.

TABLE 6 shows the statistics of the mappings with the template adap-

tation module for the uniformly cut segments. As previously mentioned, we

hypothesised that the observation of poor performance for mapping from

complex cases to simpler ones is expected due to the lack of corresponding

extra feature points. This is confirmed by the statistics for the segmented

templates as the R surge to more than 80% as soon as template segmenta-

tion was introduced. When the number of segment reaches four, almost all

R statistics are above 0.95.

The above results indicate that our previous claim can be sustained while

maintaining good adaptability the template adaptation algorithm reduces

the need of repeated demonstrations [56]. Moreover, our template segmenta-
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Table 6: Mean R/MSD for mapping from one task (1-4 segments) to another.

Tsk 1 Tsk 2 Tsk 3 Tsk 4 Tsk 5

Tsk 1

0.961/176 0.953/298 0.817/1222 0.414/7388 0.380/8390

0.979/74 0.941/177 0.860/682 0.800/538 0.791/562

0.987/31 0.976/63 0.948/133 0.949/120 0.934/156

0.989/18 0.984/30 0.977/58 0.978/55 0.966/76

Tsk 2

0.993/117 0.995/57 0.941/1899 0.740/2809 0.711/5095

0.970/436 0.998/26 0.877/2448 0.972/378 0.964/444

0.989/152 0.999/8 0.970/356 0.994/78 0.990/136

0.995/70 0.999/4 0.988/122 0.997/28 0.995/56

Tsk 3

0.861/799 0.444/2832 0.891/399 0.774/962 0.747/2869

0.910/385 0.896/316 0.941/231 0.877/619 0.847/852

0.952/143 0.948/117 0.967/122 0.963/110 0.954/140

0.966/70 0.968/55 0.982/62 0.980/57 0.973/68

Tsk 4

0.757/1548 0.817/667 0.871/1164 0.957/203 0.938/343

0.872/606 0.845/551 0.798/2317 0.977/148 0.967/176

0.929/211 0.922/219 0.938/397 0.987/69 0.981/94

0.944/115 0.954/111 0.969/175 0.992/41 0.987/59

Tsk 5

0.835/1139 0.816/834 0.872/1286 0.885/459 0.962/280

0.875/758 0.879/478 0.840/1963 0.966/222 0.977/133

0.937/255 0.935/261 0.935/428 0.979/124 0.987/75

0.952/151 0.960/172 0.965/215 0.984/92 0.991/44
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tion approach can help introduce further invariant features into the template

and make the adaptation more accurate while the online template learning

module maintains model generalisation capability.

6. Real-World Applications

6.1. The Tic-tac-toe Game

In this section, we present a demonstration of robot playing the tic-tac-

toe game with only one demonstration. It demonstrates the relative merits of

our framework in teaching the moves to a robot in LbD. The iCub humanoid

robot is shown one demonstration of how to move in the grid of the tic-tac-toe

game sheet and place a mark of a given shape illustrated in Figure 8.

Figure 8: The iCub camera view of demonstration of placing a circle in the grid-space of

the tic-tac-toe game.

Although the human subject is asked to perform a planar movement as

much as possible, the arm of the iCub is randomly parked outside and above

the grid space. Moreover, the iCub is required to play the game in a new

tic-tac-toe grid with different location, size and orientation.

In this game, we assumed that the marker to place the mark was always

in the hand of the iCub and the invariant features can be fully extracted

from the sheet of paper containing the grid space. We demonstrated two
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applications of this game - without and with template segmentation of the

demonstrated movement. In the set-up without template segmentation, the

iCub hand always returned to its initial position as it follows the entire

demonstration. In the latter, the iCub hand would only return to its home

position when it finishes playing the game. As the template actions were

recorded in Cartesian space, we used the on-board inverse kinematics of the

iCub to execute all the actions.

Figure 9 shows snapshots of the iCub playing the game. The difference

between the two applications are denoted by the plots in Figures 10b and 10c.

The demonstration is naturally divided into three segments by the template

segmentation module, as illustrated in Figure 10a. These segments corre-

spond to “reach”, “act” and “withdraw” actions. We therefore implemented

an FSM for the primitive decomposition module to control the iCub to finish

playing the game before returning the arm to its home position.

(a)

(b)

Figure 9: iCub playing tic-tac-toe game without (a) and with (b) template segmentation.

In (a), the iCub returned its arm to the parking position after completing its turn while

in (b) the iCub returned its arm only after completing the entire game.
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(a)

(b) (c)

Figure 10: Plots of the demonstrated and imitated movements. (a) shows the demon-

strated trajectory in the iCub-camera view segmented by the Template Segmentation

module. (b) and (c) show the generated trajectories for the game without and with Tem-

plate Segmentation.

The correlation coefficients of the all the circles generated by the frame-

work are above 0.9. Figures 10b and 10c. Figures 10b and 10c shows the

difference between the games played without and with the Template Segmen-

tation Module. When the Template Segmentation Module was in use, the

iCub removed the redundancy having to constantly move between the park-
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ing position and the desired cells. From Figure 9, we can see that the iCub

marked all the symbols in the right cells with fair accuracy. The iCub drawn

circles are much more jerky compared to those generated by the framework

shown in Figures 10b and 10c. This may be due to the control commands

executed by the iCub’s inverse kinematics module which do not try to move

across two points using the shortest route. However, the discrimination be-

tween the 2 different symbols in the game is clearly not affected by this.

6.2. Soldering Task

Figure 11: Human demonstration of the soldering task. Each scene with a new coloured

trajectory represents a segmented phase of action by the template segmentation module.

We showcase the full framework on the task of robot soldering a simple

circuit board learned in an LbD setting. The human demonstrates the entire

sequence of picking up a soldering iron and applying it at the circuit board.

The sequence is illustrated in Figure 11. Two demonstrations of the task

were used to train the framework as illustrated in Figure 12.

Both the scene objects and the human hand have been marked by the

2D AR Markers for accurate tracking, convenient location of invariant fea-

tures and to minimise correspondence issues. Figure 12 shows the extracted

38

Preprint version; final version available at www.sciencedirect.com
Robotics and Autonomous Systems (2014), vol: 62(10), pp: 1517-1530
Published by: Elsevier
DOI: 10.1016/j.robot.2014.05.010



(a) (b)

Figure 12: The 3D plot of the template soldering trajectories. The coloured segments

correspond to the trajectories illustrated in Figure 11. (a) is the plot of the templates

after 1 demonstration while (b) is the plot after 2 demonstrations.

and segmented primitive templates in a 3D plot after 1 and 2 training ex-

amples . Each coloured segment represents a primitive template segmented

by the framework. They are “approach tool”, ”grasping”, ”withdraw tool”,

”approach target”, ”soldering” and ”leave target” respectively.

Figure 13: The scenes where the soldering task are performed by the human (left) and the

iCub (right).
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The robot is then given the same soldering task, however, with the loca-

tion and pose of the scene objects changed as illustrated in Figure 13. As the

gross movement of the end-effector during grasping and soldering is infinites-

imal and the hand of the iCub is under-actuated, dexterous manipulation

and grasping tasks with this hand which has to readily react to rapid envi-

ronmental changes [57] are a separate topic beyond LbD [58, 59]. Thus, the

templates for these two actions are supplied to the grasping model proposed

in [58] and the manipulation model proposed [59] for analysis and action ex-

ecution in the primitive decomposition module. Furthermore, to reduce the

jerky controller response, we increased the template recording frequency by

using an external camera with 40Hz frame-rate to capture the demonstra-

tion. This allowed us to send continuous commands of small displacements

to the controller without having to wait for the execution to finish.

Table 7: Statistics of the learned template kinematics

After nth Demo Speed(µm/s) Acceleration(µm/s−2) Jerk(µm/s−3)

n=1 2986±7830 3248±10253 2853±9852

n=2 1697±3013 241±531 94±196

To analyse the difference between the templates after the first and sec-

ond demonstrations, we calculated the trajectory difference and tabulated

the kinematic statistics for each template in TABLE 7. The mean path

difference of the templates before and after the second demonstration is

0.0029±0.0057m. Although this difference is negligible, the 1st, 2nd and

3rd derivatives between the template trajectories are in different orders of
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magnitude. This can be confirmed from the plots in Figure 12. The tem-

plate recorded after the first demonstration is the perceived demonstration

itself. Due to visual localisation errors of the AR markers, noise is present

in every perceived demonstration. This is represented by the high path jerk-

iness. This problem can either be treated using a filtering technique on the

current trajectory with some noise estimate or a learning technique over re-

peated demonstration of the task. Thus, after the 2nd demonstration, the

online template learning module generalised the demonstrations to produce

a “cleaner” template trajectory as the jerk after the 2nd dropped by two

orders of magnitude.

The soldering task executed by the iCub is shown in Figure 14. The

sequence was executed using the iCub inverse-kinematics module. It can be

clearly identified that the LED light was been lit after the soldering task

had completed. A video of this demo can be found at http://www.yan-

wu.com/index.php?page=videos.

7. Conclusion

In this paper, we presented a morphable primitive template-based learn-

ing framework to address the “how-to” problem in robot learning by demon-

stration. The proposed framework is a mapping function approach used at

trajectory learning level with the incorporation of some relative merits of

system models. It decomposes a demonstration into a series of primitive

templates with recordings of their associate constraints. Multiple demon-

strations of the same templates are treated using an online learning method

for generalisation. We extended the Thin-Plate Spline Warping algorithm for
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Figure 14: The iCub performing the soldering task. The coloured segments correspond to

the trajectories illustrated in Figure 11.
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3D trajectory adaptation in order to generate actions in a new environment

with different constraint locations.

Our proposed framework was statistically evaluated using a set of bench-

mark experiments. All modules were evaluated to show statistically that the

framework components have the flexibility to adapt to situations, are able

to generalise well and outperformed some benchmarked approaches. We also

implemented the framework on the iCub humanoid robot to play a real-life

tic-tac-toe game and perform a soldering task. As mentioned earlier on, the

current framework applying on an under-actuated hand relies on external

control-based models to aid the execution. We plan to extend the framework

further to incorporate imitation learning at dynamics level.
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