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For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular
dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups
along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example,
the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains
excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase
fivefold to 5 fs.
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1. Introduction

The dynamics of polymers span a wide range of time scales.
Carbon–hydrogen covalent bonds have a vibration period of
∼10 fs [1], while macromolecules such as proteins undergo
conformational changes over microseconds [2]. In practice,
the maximum time scale accessible to molecular dynamics
(MD) is limited by the time step required to capture the
fastest degree of freedom in the system. It is desirable,
therefore, to include only the degrees of freedom that are
physically relevant to the problem under consideration.

In polymers, the fastest oscillations are usually associ-
ated with covalent bonds between heavy atoms (e.g., carbon,
nitrogen, oxygen) and hydrogen. However, conformational
changes are always associated with considerably longer
time scales. Consequently, these fastest oscillations are of-
ten suppressed by applying constraints to fix bond lengths
at their equilibrium values. This is usually accomplished
by the SHAKE [3,4] or LINCS [5,6] constraint algorithms.
Often, it is desirable to go further and to constrain other
bond lengths and angles, enabling time steps of up to 2 fs
[7]. While this approach can result in an increase in the
duration of time that may be simulated, parallel scalability
and algorithm stability can be affected when the constraints
are highly coupled [6].

An alternative approach to applying constraints is the
use of generalised coordinates representing rigid multi-
body elements [8], whereby atoms are grouped into rigid
dynamical units. The removal of fast degrees of freedom
may also be achieved through the introduction of ‘virtual
sites’ for the hydrogen atoms, whereby the position of each
hydrogen atom is defined by the positions of nearby heavy
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atoms, which can allow time steps of up to 7 fs [1]. A draw-
back of this approach is that the moment of inertia tensor of
the molecule is not conserved [1] (e.g., the principal values
for benzene can have errors greater than 10%) which may
affect the large scale dynamics of the system.

In this paper, we present a coarse-graining approach that
addresses this limitation for the case of aromatic groups in
polymers. Each aromatic group is mapped onto a rigid tri-
angle, defined by three vertices, in a manner that conserves
key dynamical quantities, namely, the total mass, the cen-
tre of mass, and the moment of inertia tensor. As a result,
this triangle has the same dynamical response as a rigid,
planar aromatic group. The fast degrees of freedom as-
sociated with bond vibrations and out-of-plane buckling
modes within each group are removed. At the same time,
the slower degrees of freedom, which are responsible for
conformational changes, associated with variations in bond
and torsion angles between adjacent groups are retained.
The fixed relationship between the coordinates of the ver-
tices of the triangle and the true atomic positions associated
with the aromatic group uniquely determine the force and
torque on the triangle for a given set of positions and a
given all-atom (AA) force field. Our approach is equivalent
to coupled rigid body dynamics [9], but critically does not
require altering the core integration routine of an existing
MD code. Our coarse-grained (CG) method is equally ap-
plicable to aromatic groups that form the polymer backbone
as well as those present in side chains.

We have tested our approach across a wide range
of temperatures and system sizes for polyether ether ke-
tone (PEEK), a widely used industrial polymer [10–12].
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Molecular Physics 2673

Structural and dynamical properties are found to be in ex-
cellent agreement with both AA and AA rigid bond (AA-
RB) simulations, and the increased MD time step (∼5 fs)
enabled by our method results in a fivefold increase in
the time scale of a given simulation as compared to AA
approaches.

The remainder of the paper is organised as follows. An
introduction into the principles of rigid dynamics and how
these can be applied to aromatic polymers to obtain a CG
representation of planar units. The application to PEEK
is used to illustrate this approach. A comparison of the
results obtained from AA, AA-RB, and CG simulations of
PEEK for a variety of polymer lengths and temperatures.
Finally, an analysis of the coarse-graining technique and its
applicability to other aromatic polymers.

2. Method

Considerable computational savings may be realised by re-
moving the fast degrees of freedom normally associated
with planar units in molecules, such as aromatic groups.
Any rigid two-dimensional object has six independent
quantities that govern its dynamics. For a planar object
in the x–y plane, where x and y denote Cartesian axes, these
are the position coordinates associated with the centre of
mass, R0 = (X0, Y 0), the total mass MT, and the three in-
dependent components of the moment of inertia tensor I,
which we denote as Ixx, Iyy, and Ixy. Any two rigid bodies
having these properties in common will exhibit the same dy-
namical response when subjected to the same set of forces.
Our coarse-graining approach, described below, explicitly
conserves these properties.

2.1. Two-dimensional rigid bodies

Consider a two-dimensional rigid object composed of N
atoms.1 Let the x- and y-axes be aligned with the princi-
pal axes of I and let the origin be at R0, without loss of
generality. Therefore,

R0 =
(

0
0

)
, (1)

MT =
N∑

i=1

mi, (2)

I =
(∑N

i=1 miy
2
i 0

0
∑N

i=1 mix
2
i

)
, (3)

where the ith atom has position coordinates (xi, yi) and mass
mi. In order to evolve the positions of this rigid body using
MD, a naive approach might be to apply a set of constraints
among the atoms such that only the rigid body degrees of
freedom remain. However, this introduces 3(N − 2) con-
straints, the enforcement of which becomes unstable as N

Figure 1. A schematic demonstration of the coarse-graining
procedure of a para-substituted aromatic group in an organic
molecule. (a) The coordinate system and chemical formula for
the aromatic group with the remainder of the aromatic molecule
indicated by R1 and R2. (b) The relevant bond angles and lengths
where lCC and lCH are the equilibrium lengths of the carbon–carbon
and carbon–hydrogen bonds. The atoms in this AA representation
are labelled for reference. (c) The resulting triangle of the CG
representation with the vertices labelled 1, 2, and 3 to match the
text. The underlying molecule in grey is the AA group being re-
placed. All three figures are to scale using the parameters from
the OPLS-AA force field [13]. The positions and masses of the
triangle vertices in (c) are given in Table 1. The orientations of
the triangles in the PEEK monomer are arbitrary as it would have
been equally possible to place vertex 1 at the position of C4 at the
beginning of the coarse-graining procedure. Figure 2 shows the
orientation used in all CG simulations.

increases owing to the coupled nature of the constraints.
Furthermore, constraints on light atoms such as hydrogen
become unstable as the time step increases [1]. It is desir-
able, therefore, to develop a coarse-graining scheme that
exhibits stability at large time steps while preserving dy-
namical properties.

2.2. Coarse-grained representation of aromatic
polymers

We consider the case of a para-substituted aromatic group
in a polymer backbone, as shown schematically in Figure 1.
An example of a polymer that exhibits this structural fea-
ture is the macromolecule PEEK, as shown in Figure 2(a).
Assuming planarity, rigidity, and symmetry, and using the
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2674 R.J. Broadbent et al.

Figure 2. The chemical structure of PEEK, and the correspond-
ing CG representation. The suffixes on the oxygen atoms are for
identification purposes only – they do not indicate molecular or
atomic oxygen. The constraints used for the middle triangle con-
nect the pairs: O2–1, 1–2, 1–3, 2–3, and 1–O1. The constraints
for the other triangles are analogous to this, and the oxygen in the
ketone group is connected with a single constraint to the carbon
atom.

notation of Equations (1)–(3), the AA representation of the
aromatic unit (Figure 1(b)) is characterised by

R0 =
(

0
0

)
, (4)

MT = 6mC + 4mH, (5)

Ixx = 3mCl2
CC + 3mH (lCC + lCH)2 , (6)

Iyy = 3mCl2
CC + mH (lCC + lCH)2 , (7)

Ixy = 0, (8)

where mC and mH are the masses of a carbon atom and a
hydrogen atom, respectively, and lCC and lCH are the lengths
of a carbon–carbon and carbon–hydrogen bonds in the unit,
respectively. The choice of coordinates in Figure 1(a) is
convenient as these axes are the eigenbasis for I, as can be
seen from Equation (8).

Table 1. The positions (Xα , Yα) and masses Mα of the vertices
α of a triangle with the same dynamics as a rigid aromatic group
along the backbone of PEEK.

Vertex α Xα (nm) Yα (nm) Mα (g mol−1)

1 −0.140 0.000 25.871
2 0.072 0.133 25.114
3 0.072 −0.133 25.114

The six independent quantities expressed in Equa-
tions (4)–(8) can be conserved exactly by a CG repre-
sentation composed of three point masses at the vertices
of a triangle (Figure 1(c)). These vertices, which we label
α ∈ {1, 2, 3}, are associated with nine parameters: position
coordinates (Xα , Yα) and masses Mα . However, since there
are only six independent constraints embodied in Equations
(4)–(8), there is no unique solution.

Further constraints are added by the requirement that the
group be connected via distance constraints to the rest of
the organic molecule, which leads to the convenient choice
that one of the vertices of the triangle should coincide with
the position of an atom connecting the aromatic group to the
rest of the polymer. We place vertex 1, therefore, directly at
the position of the carbon atom labelled C1 in Figure 1(b),
thus specifying X1 = −lCC and Y1 = 0, reducing the num-
ber of free parameters associated with the vertices of the
triangle to seven.

Furthermore, by symmetry, X3 = X2, Y3 = −Y2, and
M3 = M2, thus simultaneously satisfying Equation (8) and
the requirement that Y0 = 0 (Equation (4)), while also re-
ducing the number of free variables associated with the CG
representation to four:

X0 = −M1lCC + 2M2X2

MT
, (9)

MT = M1 + 2M2, (10)

Ixx = 2Y 2
2 M2, (11)

Iyy = l2
CCM1 + 2X2

2M2. (12)

Solving these equations for M1, M2, X2, and Y2 in terms of
the known AA quantities (Equations (4)–(8)), we find that

M1 = MTIyy

Iyy + l2
CCMT

, (13)

M2 = 1
2

(MT − M1), (14)

X2 = lCC

(
MT

2M2
− 1

)
, (15)

Y2 =

√
Ixx

2M2
. (16)

Taking equilibrium parameters for the AA representation
from the OPLS-AA force-field [13] results in the positions
and masses associated with the CG representation given in
Table 1.

The CG representation shown in Figure 1(c) and defined
by the parameters given in Table 1 has identical dynami-
cal properties to the original rigid AA aromatic group of
Figure 1(b). However, in order to use the CG representation
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Molecular Physics 2675

in an MD simulation of a polymer such as PEEK, it is also
necessary to constrain the ‘bond lengths’ associated with
the CG representation. For the central aromatic group in
the PEEK monomer, as shown in Figure 2(b), these con-
straints are denoted as 1–2, 1–3, 2–3, 1–O1, and 1–O2, and
are enforced using the SHAKE [3,4] algorithm.

2.3. Forces on rigid groups

The procedure set out in the previous subsection gives a CG
representation composed of point masses that define a set
of rigid, planar triangles with the same centre of mass, total
mass, and moment of inertia as a rigid, planar AA represen-
tation. It is also necessary to ensure that the CG triangles
experience the same force and torque of interaction with
other objects as the groups they replace. This is achieved
via the concept of ‘virtual sites’ [14], in a manner similar
to the generalised coordinate approach of POEMS [8].

The virtual sites are the positions of the atoms in the
AA representation of the aromatic group, and their position
coordinates are defined in terms of their fixed relationship
with the vertices of the triangle in the CG representation. In
the case of rigid planar groups, the transformation between
AA and CG representations is a simple linear mapping
(more complex mappings are possible [1,14] but are not
required for our CG approach). Given the vertices of a
triangle at r1, r2, and r3, the position of an arbitrary point
(Q) in the plane defined by the triangle is given by

Q = (1 − a − b)r1 + ar2 + br3, (17)

for some values of a and b that can be calculated for each
virtual site once and for all using simple vector geometry.
Performing this mapping on a set of (a, b) pairs derived from
the equilibrium atomic coordinates, the positions of the
atoms in the AA representation may be calculated quickly
and easily from the positions of the CG masses at each time
step.

Given an AA force field, the forces (f1, f2, f3) on the
triangle vertices due to a force (G) acting on an atomic site
are found by taking the derivative of Equation (17):

f1 = (1 − a − b)G, (18)

f2 = aG, (19)

f3 = bG. (20)

Thus, the task of generating a separate force field for the CG
representation of the molecule is avoided, and standard AA
force fields which have been developed and tested for the
same macromolecule can be used without alteration. In the
event that a complete force field for the desired molecule
is unavailable the reduction in the number of degrees of

freedom enabled by our method correspondingly reduces
the number of terms that need to be parametrised. Further-
more, the automatically generated atomic coordinates can
be used in conjunction with a variety of existing tools for
analysing MD trajectories.

3. Results

The CG representation of PEEK was compared with AA
and AA-RB simulations for four different lengths of poly-
mer comprising 4, 8, 12, and 16 monomers (the monomer
unit is shown in Figure 2). The molecules were terminated
with a hydrogen atom on the left and a phenyl ring group af-
ter the ketone on the right. The chains, therefore, consisted
of 13, 25, 37, and 49 aromatic groups, respectively.

All simulations were conducted using the GROMACS
[6,7,15–17] MD suite (v4.5.5 with double precision). The
polymers were modelled using the OPLS-AA force field
[13], with 1.1 nm cut-off radius, smoothly tapered in the
final 0.05 nm. The leapfrog integration algorithm and, for
simulations carried out in a canonical ensemble, a stochas-
tic velocity rescaling thermostat [18] were used. For the
CG and AA-RB simulations, constraints were enforced to
a fractional tolerance of 1 × 10−10 with the SHAKE [3,4]
algorithm. To ensure adequate statistical sampling, for each
system, 16 evenly spaced, uncorrelated configurations were
taken from a 2-ns simulation in a canonical ensemble at
1400 K and used as the initial starting points for further
simulations. These initial configurations were then simu-
lated at 300, 500, 700, 1000, and 1400 K. First, the poly-
mers were equilibrated in a canonical ensemble for 1 ns,
followed by a further 1 ns in a micro-canonical ensemble.
Production runs were then carried out in a micro-canonical
ensemble with samples taken every 16.8 ps over a total
duration of 5 ns for the 4- and 8-monomer conformations,
and over a duration of 10 ns for the 12- and 16-monomer
conformations. The sampling interval was chosen because
it was the smallest interval for which the derived properties
for each polymer were unaffected by doubling the interval.
All properties presented below were averaged over the 16
independent simulations of each polymer molecule and the
resulting trajectories were analysed using the MDAnalysis
tool kit [19].

We first consider the 8-monomer polymer. In Figure 3,
we compare the energy drift at 300 K for AA, AA-RB,
and CG simulations as a function of MD integration time
step. For the CG simulations, the SHAKE algorithm was
unable to converge for time steps larger than 7 fs (data not
shown), while for the AA simulations, time steps larger than
1.25 fs resulted in unstable dynamics (the vibration period
of carbon–hydrogen bonds in the system is approximately
11 fs).

The fractional tolerance of 10−10 used with the SHAKE
algorithm for all constraints renders the integration algo-
rithm almost perfectly reversible. With the small time steps
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2676 R.J. Broadbent et al.

Figure 3. The absolute drift in total energy averaged over 16
independent 5-ns micro-canonical simulations of an 8-monomer
polymer at 300 K for AA, AA-RB, and CG representations. As
can be seen, with the exception of the 3-fs time-step AA-RB sim-
ulations (circled), all simulations showed excellent energy conser-
vation.

where the AA and AA-RB simulations remain stable, the
energy drift of the CG simulations is significantly smaller.
At larger time steps, where the AA and AA-RB simulations
become unstable, the energy drift of the CG simulations
becomes comparable to that of the stable AA simulations.
The energy drift of the CG simulations increases as the
constraint tolerance is increased, as expected. Nevertheless,
even when the fractional constraint tolerance was increased
by three orders of magnitude to 10−7, the CG simulations
(not shown) remained in excellent agreement with the re-
sults shown in this section. For example, the energy drift
with a 5-fs time step and a constraint tolerance of 10−7 was
−31 ± 1 meV ns−1. To compare this with other simula-
tions using constraints, this energy drift is less than 25% of
the drift per degree of freedom obtained for a box of 820
simple point charge (SPC) water molecules using analytic
constraints, with a 4-fs time step and increased hydrogen
masses to reduce the energy drift [1]. Therefore, we sug-
gest that a SHAKE tolerance in the range [10−10, 10−7] is
suitable for most users.

To test the stability of the CG procedure over a long
run we ran a simulation of a single 16-monomer polymer
in the micro-canonical ensemble for 200 ns at 499.2 ±
0.3 K, with a time step of 5 fs. Throughout the 40 mil-
lion MD time steps of the run, the fractional tolerance of
10−10 used with the SHAKE algorithm to enforce the con-
straints was maintained. This confirms the stability of the
CG procedure throughout long simulations.

The LINCS algorithm was tested for a wide range of
parameters (expansion order {4, 6, 8, 10, 12, 14, 16, 18,
20}, iterations {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) with time steps
of {1, 2, 3, 4, 5} fs. For each combination of parameters, 16
starting configurations were taken from CG simulations,
successfully completed using SHAKE with the same time
step. However, none of the 7200 simulations attempted

Figure 4. The performance averaged over 16 independent 5-ns
micro-canonical simulations of an 8-monomer molecule at 300
K for AA, AA-RB, and CG representations. The AA simulation
becomes unstable with a time step of 1.5 fs, and the energy drift
of the AA-RB simulation with a 3-fs time step is too large. The
arrows indicate the time steps used in the rest of the paper. The
simulations were performed on one core of an Intel Xeon E5-2650.

remained stable for more than four MD steps. This was
caused by the highly coupled nature of the constraints
which produce eigenvalues too large for the expansion
used in LINCS. Therefore, the SHAKE algorithm was used
for all constraints throughout this research and no further
simulations using the LINCS algorithm were conducted.

The AA-RB simulations using a 3-fs time step (circled
in Figure 3) result in an energy drift of 140 ± 20 meV ns−1.
This is 10 times the equipartition thermal energy of the sys-
tem (kBT/2 ≈ 13 meV). It is caused by the rapid movement
of the hydrogen atoms which cannot be accurately repro-
duced with this time step. At 300 K, a time step of 2 fs
provides good energy conservation and stable dynamics.
However, at 1000 K and above, the rapid movement of the
hydrogen atoms led to failures by SHAKE to converge, or
it produced erroneous constraint forces and concomitant
spurious large changes in the total energy of the system.
Both the SHAKE convergence failures and spurious en-
ergy changes are absent with a 1-fs time step in the AA-RB
simulations.

Figure 4 shows the computational performance of sim-
ulations of the 8-monomer polymer at 300 K, as a function
of the integration time step. It can be seen that for the same
time step, CG simulations have performance comparable
to AA simulations, and greater than AA-RB simulations.
But the real advantage of the CG representation is that a
larger time step can be used than with both the AA and AA-
RB representations without sacrificing stability or energy
drift. This performance enhancement is limited only by the
maximum time step that can be used before the SHAKE
algorithm fails to converge in a reasonable number (250)
of iterations. At higher temperatures, the largest time step
that can be used is reduced. For example, at 1400 K, a time
step of less than 6 fs must be used (data not shown). For
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Molecular Physics 2677

all the simulations that follow, we used a 5-fs time step for
CG, and a 1-fs time step for AA and AA-RB. With these
parameters it can be seen in Figure 4 that the performance
increase of our CG approach over the AA approach is a
factor of five.

The instantaneous radius of gyration, Rg, is a key prop-
erty of the molecular structure and is defined by

R2
g =

N∑

i=1

(
µi

µT
(ρi − ρc)

)2

, (21)

where N is the number of sites, µi and ρi are the mass
and position, respectively, of site i, µT =

∑
iµi is the total

mass of the molecule, and ρc is its centre of mass. The term
‘site’ is used generically to refer to either an AA or a CG
representation.

In Figure 5, we report the time- and ensemble-averaged
radius of gyration ⟨Rg⟩ as a function of temperature for
polymers ranging in length from 4 to 16 monomers. The
time average is performed over the entire production run
for each simulation, and the ensemble average is over 16
independent simulations for each polymer length. As can
be seen from the figure, the CG simulations are in very
good agreement with both the AA and AA-RB results.

In order to assess the similarity in the dynamics of the
molecules in the three types of simulation, we considered

the time autocorrelation function for the radius of gyration,
defined by

C(t) =
〈
Rg(τ )Rg(τ + t)

〉
τ
−

〈
Rg(τ )

〉2
τ〈

R2
g(τ )

〉
τ
−

〈
Rg(τ )

〉2
τ

, (22)

where Rg(τ ) is the value of the radius of gyration at time τ ,
and the data are averaged over τ . Taking the AA simulation
as the target, we use the reduced chi-squared statistic as
a measure of the goodness of fit of the AA-RB and CG
simulations,

χ2
Rg

= 1
NT NLNt − 1

NT∑

i

NL∑

j

Nt∑

k

[Ci,j (tk) − CAA
i,j (tk)]2

[σi,j (tk)]2 + [σ AA
i,j (tk)]2

,

(23)

where NT, NL, and Nt are the number of temperatures,
polymer lengths, and time steps, respectively, CAA

i,j (tk) and
σ AA

i,j (tk) are the autocorrelation functions for the radius of
gyration, as defined in Equation (22), and its standard devi-
ation at time tk, respectively, and Ci, j(tk) and σ i, j(tk) are the
same quantities but for either the CG or AA-RB simulation.
tk runs in steps of 16.8 ps from 0 to 4.2 ns, and i and j index
the temperatures and polymer lengths simulated. The re-
sultant χ2

Rg
between CG and AA is 0.97, demonstrating

Figure 5. The radius of gyration for PEEK molecules, comprising 4, 8, 12, and 16 monomers, as a function of temperature. The CG
simulations were performed with a time step of 5 fs, the AA and AA-RB simulations with a time step of 1 fs. Each data point is the average
over 16 independent simulations. Straight lines have been drawn through the data to guide the eye, the AA-RB and CG data are shown as
discrete symbols. Some data points lie on top of each other. Error bars are comparable to the size of the symbols.
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2678 R.J. Broadbent et al.

Figure 6. Normalised distributions of the hinge angles labelled
C (a), O1 (b), and O2 (c) in Figure 2, for the 16-monomer system
at 500 K, simulated in the AA (hollow squares), AA-RB (solid
triangles), and CG (solid circles) representations. Some data points
lie on top of each other. Lines have been added to the data as a
guide to the eye. The error bars are comparable to the line width.
This set of simulations has the largest discrepancy, determined by
χ 2 analysis, between AA and CG representations. For many of
the other systems and temperatures (not shown), the AA, AA-RB,
and CG representations are indistinguishable on the scale of the
plots.

excellent consistency between the dynamics of the
molecules computed by the two methods. By comparison,
χ2

Rg
between AA-RB and AA is 1.23.
In Figure 6, we show the excellent agreement between

AA, AA-RB, and CG representations for the ‘hinge’ angles,
labelled O1, O2, and C in Figure 2. In the ground state,

Figure 7. The dihedral angles monitored during the MD sim-
ulations of PEEK. The dihedral angles are identified by a line
connecting each of the four atoms involved and are identified by a
number 1–8. In (a), we see the dihedral angles which are contained
within the monomer; these are 1–5 and 7. Whilst (b) shows the
dihedral angles 6 and 8, which involve the first aromatic group of
the next monomer (coloured grey) as it connects to the ketone. The
inherent choice of atom when two atoms from the same aromatic
group are used is made by mapping both possible angles into the
interval [0, 90), then taking the average.

these angles are 120◦. The data shown in Figure 6 are for
the 16-monomer system at 500 K, which has been chosen
because it displays the worst agreement between the AA
and CG simulations of all the molecules and temperatures
simulated; in the case of the best agreement (not shown),
all data points are indistinguishable. The agreement was
characterised by the reduced χ2 value,

χ2
θ = 1

Na − 1

Na∑

i=1

(
θCG
i − θAA

i

)2

(
σ CG

i

)2 +
(
σ AA

i

)2 , (24)

where θCG
i and σ CG

i are the mean value and standard devia-
tion, respectively, of the ith angle, and Na = 3 is the number
of angles. Smaller values of χ2

θ indicate better agreement
between data sets.

The relative orientation of the aromatic groups in PEEK
is largely defined by the eight dihedral angles identified in
Figure 7. There is a choice between two symmetrically
equivalent atoms on each aromatic group for each dihedral
angle. According to the definition of a dihedral angle, angles
are measured in each of the four quadrants of a circle. The
symmetry of the aromatic group results in the distribution in
each quadrant being related by symmetry to the distribution
in all the other quadrants. Therefore, to aid comparison
between the simulations we map the measured dihedral
angle θ ∈ (−180, 180], into the first quadrant, using the
following relation:

& =
{

|θ | |θ | < 90◦

180◦ − |θ | |θ | ≥ 90◦ , (25)
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Molecular Physics 2679

Figure 8. The mean values of the dihedral angles &i labelled in
Figure 7, in AA (hollow squares), AA-RB (solid triangles), and
CG (solid circles) representations. The 16-monomer 500-K and
4-monomer 1000-K simulations have, respectively, the largest and
the smallest reduced chi-squared values of all the configurations
simulated.

where & ∈ [0, 90] is the resulting dihedral angle defining
and characterising the orientation. In the case of the AA
and AA-RB simulations, the aromatic group can buckle
resulting in a discrepancy between the two possible dihe-
dral angles. This discrepancy is resolved by recording the
average of the two possible dihedral angles after they have
been transformed by Equation (25). This reduces the effect
of the buckling inherent to AA and AA-RB simulations of
aromatic groups.

In Figure 8, we present the observed values for these
eight dihedral angles for the 16-monomer system at 500 K
and the 4-monomer system at 1000 K. These two systems
were chosen because they represent, respectively, the high-
est and the lowest reduced chi-squared values for the dihe-
dral angles. All angles are averaged over all dihedral angles
of that type in the simulation, and over 16 independent
simulations at that temperature. It can be seen that the CG
dihedral angles are in excellent agreement with the AA and
AA-RB simulations, and that the maximum deviation is less
than 6◦, demonstrating that the orientation of the aromatic
groups is preserved in the CG representation.

4. Conclusions

We have formulated and tested a coarse-graining approach
to constrain planar groups of atoms along polymer back-
bones to move as rigid objects during MD simulations. A
key feature of our method is that it preserves essential dy-
namical properties of each group that is CG, namely the
centre of mass, the total mass, and the moment of inertia.
Furthermore, the concept of ‘virtual sites’ is used to map
forces from an AA force field on to the CG representation.

We have tested the approach by coarse-graining the
aromatic groups along the backbone of the industrially im-
portant polymer PEEK over a wide range of temperatures,
system sizes, and run times. The agreement with AA and
AA rigid bond simulations is excellent for a number of im-
portant parameters that characterise the polymer structure.
The principal limitations of our technique are those of the
SHAKE algorithm: stability at large time steps and poor
parallelisation.

The systematic removal of fast degrees of freedom that
are irrelevant to molecular conformational changes enables
the simulation to focus on the most interesting and pertinent
degrees of freedom. By removing the fast out of plane
vibrations associated with aromatic groups, it is possible to
use an integration time step of 5 fs in the CG simulations,
as compared to 1 fs in the AA simulations, for the same
computational cost.
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Note
1. In principle these ‘atoms’ could be any point masses, but to

avoid confusion they will be referred to as atoms henceforth.
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