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ABSTRACT

We apply a self-consistent and robust Bayesian statistical approach to determining the ages, dis-
tances, and ZAMS masses of 28 field DA white dwarfs with ages of approximately 4 to 8 Gyrs. Our
technique requires only quality optical and near-IR photometry to derive ages with < 15% uncertain-
ties, generally with little sensitivity to our choice of modern initial-final mass relation. We find that
age, distance, and ZAMS mass are correlated in a manner that is too complex to be captured by
traditional error propagation techniques. We further find that the posterior distributions of age are
often asymmetric, indicating that the standard approach to deriving WD ages can yield misleading
results.
Subject headings: Methods: statistical – white dwarfs

1. INTRODUCTION

Age is one of the most fundamental of all stellar prop-
erties, yet it is far more difficult to determine age pre-
cisely than the other fundamental properties such as
stellar mass, surface temperature, and luminosity. In
part, this is because we determine age via indirect means
that require us to first collect more directly observable
quantities. But there is another major impediment; we
can usually only measure age for an aggregate or sys-
tem of stars. For example, the most common method of
measuring stellar ages—fitting stellar isochrones to clus-
ter photometry—requires that we obtain photometry for
hundreds or thousands of stars in order to derive a sin-
gle age for the entire system. We generally cannot pre-
cisely fit isochrones to single stars unless these stars are
in rare stages of their evolution, such as just leaving the
main sequence. Even in this case, we require exquisite
distances and probably independently-determined stellar
masses (e.g., from double-lined eclipsing binaries, Grun-
dahl et al. 2008) to derive a precise age. The other major
technique for measuring stellar ages—fitting white dwarf
cooling models to the white dwarf luminosity function
(WDLF)—also requires groups of stars. This technique
has been used to derive an upper age limit to the Galac-
tic disk (Winget et al. 1987; Oswalt et al. 1996; Leggett,
Ruiz, & Bergeron 1998; Knox, Hawkins, & Hambly 1999)
and to derive the ages of open and globular clusters
(Claver 1995; von Hippel, Gilmore, & Jones 1995; Richer
et al. 1998; von Hippel & Gilmore 2000; Kalirai et al.
2001; Andreuzzi et al. 2002; Hansen et al. 2004; 2007;
Garcia-Berro et al. 2010). Yet, if we could reliably de-
termine ages for individual field stars, we could more
readily determine the onset of star formation in each of
the Galactic stellar populations.
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In this paper, we focus on determining ages for indi-
vidual WDs. The technique for deriving individual WD
ages was advanced by Bergeron, Leggett, & Ruiz (2001),
who plotted WD mass versus Teff for WDs and com-
pared them to WD cooling models to derive individual
stellar ages. Their version of this technique requires ac-
curate WD masses (σM ≤ 0.1 M�) and temperatures
(σT ≈ 150 K) from spectroscopy for the warm WDs with
Balmer lines or from precise parallaxes (σπ ≤ 10%) for
the cool WDs. Bergeron et al. were able to derive indi-
vidual stellar ages precise to ∼1 Gy for WDs with mass
> 0.6 M�. For WDs with mass < 0.6 M�, WD ages are
degenerate. This now-standard technique relies on mea-
suring Teff from photometry or spectroscopy and log(g)
from spectroscopy or WD surface area from trigonomet-
ric parallax. Because WDs have a mass-radius relation
(Hamada & Salpeter 1961), either log(g) or surface area
yield mass, and the mass and Teff , when compared to
a WD cooling model, yield the WD cooling age. The
WD mass is relied upon again to infer its precursor mass
through the imprecisely-known initial-final mass relation
(IFMR), which is the mapping from masses on the zero
age main sequence (ZAMS) to WD masses. The pre-
cursor mass is then converted to a pre-WD lifetime via
stellar evolution models (see Salaris et al. 2009, for a list
of models often used). Finally, the precursor lifetime is
added to the WD cooling age to determine the total age
of the WD.

The technique we have just outlined has its advantages
and disadvantages. The foremost advantage is that it
yields reasonably precise ages for individual WDs. Sec-
ondarily, for cool WDs with masses ≥ 0.7 M�, the pro-
genitor lifetime is short relative to the WD cooling age,
and therefore uncertainties in the IFMR are unimportant
(see, for instance, von Hippel et al. 2006, fig 16). On the
negative side, this age technique involves many steps,
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some of which are typically performed inconsistently.
For example, Salaris et al. (2009) detailed how current
IFMRs may be constructed from an inconsistent set of
isochrones or the subsequent analysis may not use the
same isochrones as those used in the IFMR. The IFMR
itself is determined via WDs in star clusters. Researchers
can reliably deduce the WD masses from spectroscopic
log(g) measurements (e.g., Salaris et al. 2009; Williams,
Bolte, & Koester 2009), but determining their precur-
sor masses is model-dependent. That model-dependent
path requires researchers to fit the main sequence turn-off
with model isochrones to derive the cluster age, subtract
the WD cooling ages from the total cluster age, derive
precursor lifetimes, and then infer the precursor masses
from the same stellar evolution models. Yet most IFMR
studies measure the WD masses and collect the cluster
ages from the literature, thereby using a heterogeneous
mix of stellar evolution models (see criticisms in Salaris
et al. 2009) to infer precursor masses. This heteroge-
neous mix of stellar evolution models may or may not
include the model set that any subsequent researchers
use to estimate a precursor lifetime for their analysis of
the age of an individual WD. An additional negative to
determining WD ages via this process is that one has to
correctly propagate errors through many steps. Some er-
rors may start out symmetrically distributed (e.g., Teff),
but we will show that the assumptions behind the stan-
dard propagation of errors are not met, casting doubt on
the estimates and errors that they produce.

Our goal in this paper is to improve upon the current
step-wise and often internally inconsistent approach to
obtaining individual WD ages. We accomplish this by
applying the first model-based statistical analysis that
simultaneously fits WD photometry to models that com-
bine stellar precursor evolution, the IFMR, WD cooling,
and WD atmospheres.

Our Bayesian statistical approach allows us to combine
external information, e.g., distances from trigonometric
parallaxes or spectroscopic metallicities, with stellar pho-
tometry in order to calculate not only reliable fitted val-
ues of stellar parameters, but also the entire posterior
distribution for each parameter, including error bars and
correlations among parameters.

2. OBSERVATIONS OF HYDROGEN ATMOSPHERE FIELD
WDS

Our technique can be applied to any WD for which we
know the atmosphere type and for which we have reli-
able models. As a first test of our technique, we sought
a homogeneous sample of old H-atmosphere (DA) WDs
with optical and near-IR photometry. DAs are the most
common (Kleinman et al. 2004) and well-studied WDs,
so they were a good starting point. The 28 DAs with
optical and near-IR photometry published by Kilic et al.
(2010) fit our needs. Kilic et al. selected 130 WDs from
the large sample of Harris et al. (2006) by targeting all
WDs with bolometric magnitudes greater than 14.6 and
tangential velocities greater than 20 km s−1, the goal
of which was to create a clean sample of intrinsically
faint and therefore old WDs. Kilic et al. (2010) mea-
sured JHK photometry for 126 stars in this SDSS sam-
ple using the Near Infra-Red Imager and Spectrometer
on Gemini-North, the 0.8-5.4 micron medium-resolution
spectrograph and imager on the Infrared Telescope Facil-

ity, and the Wide-Field Camera on the United Kingdom
Infra-Red Telescope. Their typical photometric error was
0.04 mag. Although SDSS u photometry is also available
for these stars, because the WD models we use (see be-
low) did not fully incorporate the red wing of the Lyman
α line (Kowalski & Saumon 2006; Rohrmann, Althaus, &
Kepler 2011), we chose not to incorporate these u-band
data in our analyses.

Some of the cooler WDs in the Kilic et al. (2010) sam-
ple are undoubtedly DAs, but they are too cool to excite
Balmer lines, so their spectral type is currently unknown.
Because our goal is to present our Bayesian technique and
outline its capabilities, we put off to a subsequent paper
the analysis of He-atmosphere (DB) WDs and WDs of
uncertain spectral type. The data we analyze therefore
consists of grizJHK photometry from Kilic et al. for 28
DA WDs.

3. STATISTICAL METHOD

We have developed a Bayesian approach to fitting
isochrones to stellar photometry (von Hippel et al. 2006;
DeGennaro et al. 2009; van Dyk et al. 2009; Stein et
al. 2013). We term our software package BASE-9 for
Bayesian Analysis of Stellar Evolution with 9 Parame-
ters. BASE-9 compares stellar evolution models (listed
below) to photometry in any combination of photomet-
ric bands for which there are data and models. BASE-9
was designed to analyze star clusters and accounts for in-
dividual errors for every data point, ancillary data such
as cluster membership probabilities from proper motions
or radial velocities, cluster distance (e.g., from Hippar-
cos parallaxes or the moving cluster method), cluster
metallicity from spectroscopic studies, and it can incor-
porate information such as individual stellar mass esti-
mates from dynamical studies of binaries or spectroscopic
atmospheric analyses of WDs. BASE-9 uses a computa-
tional technique known as Markov chain Monte Carlo to
derive the Bayesian joint posterior probability distribu-
tion for six parameter categories (cluster age, metallic-
ity, helium content, distance, and reddening, and option-
ally a parametrized IFMR) and brute-force numerical in-
tegration for three parameter categories (stellar ZAMS
mass, binarity, and cluster membership). The last three
of these parameter categories include one parameter per
star whereas the first six parameter categories refer to
the entire cluster. As a result, for star clusters BASE-9
actually fits hundreds or thousands of parameters (= 3
Nstar + 6) simultaneously. While we cannot construc-
tively apply BASE-9 to individual main sequence stars,
we can profitably apply BASE-9 to individual WDs be-
cause WDs have a mass-radius relation that constrains
WD luminosity. In many cases, this constraint is suffi-
cient to yield useful WD ages. We provide further details
on our statistical method and computational techniques
in the appendix.

We used BASE-9 to fit model WD spectral energy dis-
tributions (SEDs) to the observed grizJHK photometry
for 28 DAs. BASE-9 generates model SEDs by combin-
ing the following ingredients: stellar evolution models for
the main sequence through the asymptotic giant branch
stage (Girardi et al. 2000; Yi et al. 2001; or Dotter et al.
2008), an IFMR (Weidemann 2000; Williams et al. 2009;
or one of two from Salaris et al. 2009), WD interior cool-
ing models (Montgomery et al. 1999; Renedo et al. 2010),
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and WD atmosphere models (Bergeron et al. 1995). The
precursor stellar evolution models affect our estimate of
the length of time that a star spends evolving prior to
becoming a WD through the well-known strong depen-
dence on mass and weak dependence on stellar abun-
dance. Each of these three stellar evolution models show
only minor differences in precursor ages over the param-
eter ranges we explore.

Because our statistical model is Bayesian, we can take
advantage of prior information, where available, to con-
strain parameters. For this problem, the results are in-
sensitive to the precise choice of reasonable priors; details
are given in the appendix. For stellar abundances, we as-
sume that all of these WDs are Galactic disk stars that
started out with solar-ratio abundances and a Gaussian
distribution for metallicity, [Fe/H] = 0.0 ± 0.3. This
is reasonable because these stars display disk proper
motions (Kilic et al. 2010). Additionally, stellar abun-
dances change the properties of WDs only through slight
changes to the precursor lifetimes (see discussion be-
low). Because of the high surface gravities of WDs, their
primordial abundances are not reflected in their atmo-
spheres (Dupuis et al. 1992; Koester & Wilken 2006)
and those WDs that are metal-polluted (spectral type
DZ, DAZ, or DBZ) are actively accreting from their cir-
cumstellar environment (e.g., Jura 2003; von Hippel et
al. 2007; Farihi et al. 2010). We do not include DZ-type
WDs in this analysis. We set a Gaussian prior on dis-
tance modulus, m−M = 4.0 ± 2.5, equivalent to 63±136

43
pc. Our distance prior is so loose that it does not con-
strain the results. It is included only because a prior on
every parameter is required by the Bayesian approach.
We impose a strict prior on absorption, AV = 0. This
absorption prior may be in error by a few thousandths
of a mag, but all of these stars are nearby, typically <
100 pc, and out of the Galactic plane, so the absorption
is essentially zero.

Besides our primary goal of developing a simultane-
ously consistent and statistically robust method to de-
rive ages for individual WDs, we set a secondary goal of
checking the sensitivity of WD ages to the IFMR. This
sensitivity has been largely unexplored, yet has remained
a caveat in many studies involving WD ages (see Salaris
et al. 2009). We have already studied the sensitivity
of WD ages to stellar evolution models (DeGennaro et
al. 2009). Therefore, in order to simplify things, rather
than analyzing each of the 28 DAs with each of three
stellar evolution models, each of four IFMRs, and both
WD cooling models, we chose a single stellar evolution
model. This allows us to work with eight results per WD,
rather than two dozen.

The stellar evolution models we chose were from the
Dartmouth Stellar Evolution Database (DSED; Dotter
et al. 2008). The DSED models span a wide range of
parameter space including a metallicity range of −2.5 <
[Fe/H] < +0.5 and ZAMS masses from 0.1 to 4.0 M�.
Because the upper mass limit for WD precursors using
the IFMRs we employ extend to 8.0 M� and some of our
WDs appear to have precursors more massive than 4 M�,
we extrapolate precursor lifetimes for higher mass stars.
This extrapolation introduces minimal error because the
progenitor lifetimes of these massive stars are so short.
A 5 and an 8 M� star, for example, evolve to the WD
stage in ∼120 and < 60 Myrs, respectively (Girardi et al.

2000). Assuming our extrapolation technique were off by
an overly-conservative 50% of the actual value as derived
by stellar models that went to higher masses, this would
represent an error of ≤ 60 Myrs for our stars. As we
will see below, the 28 DAs we analyze have ages of ∼4
to 8 Gyrs, so this extrapolation should introduce an age
error of typically ≤ 1%. At this point, that error is too
small to force our analysis to an isochrone set with such
young ages. Any of the three stellar evolution model sets
were suitable for our purposes and we arbitrarily chose
the Dotter et al. models for this analysis.

We explore results based on both the Montgomery
et al. (1999) and the Renedo et al. (2010) WD cool-
ing models. The Montgomery et al. models span the
mass range 0.4 to 1.2 M� and cooling age range from 0.3
Myr to 5.3-13.7 Gyr, depending on WD mass. For WD
masses greater than 1.2 M�, we extrapolate the Mont-
gomery et al. models and for masses greater than 1.1
M� we occasionally must extrapolate the WD cooling
ages. The Renedo et al. models span the mass range
0.524 to 0.934 M� and cooling age range from 0 Myr
to 9.4-18.3 Gyr, depending on WD mass. For WD
masses greater than 0.934 M� we extrapolate the Renedo
et al. models. Both model sets include realistic initial
carbon/oxygen distributions, the release of latent heat
from crystallization, and the gravitational energy liber-
ated during carbon-oxygen phase separation upon crys-
tallization. The Renedo et al. models were calculated for
slightly sub-solar metallicity (Z=0.01) and include non-
grey atmospheres as boundary conditions. The Mont-
gomery et al. models employ grey atmospheres for their
boundary conditions, which may be a limiting factor for
those WDs with Teff < 6000 K. The slightly subsolar
metallicity for the Renedo et al. models should have lit-
tle effect on the implied WD ages for the reasons we out-
lined about regarding the insensitivity of WDs to their
precursor metallicities and because we calculate the pre-
cursor lifetimes independently using the DSED models
for metallicities essentially from within the prior on this
parameter.

BASE-9 currently includes the four IFMRs cited
above, each of which we use in our study. Salaris et al.
(2009) derive two different IFMRs based on observations
of WDs in open clusters. Salaris et al. paid particular
attention to consistency issues and accounted for uncer-
tainties in WD masses, WD cooling times, and progeni-
tor masses. The analysis behind the Weidemann (2000)
IFMR is not as sophisticated as that used by Salaris et
al., but because this IFMR is widely used, we have incor-
porated it as well. The IFMR of Williams et al. (2009)
adds significantly to the high-mass end of the empiri-
cal IFMR by incorporating WDs from the young open
cluster M35. It is likely that none of these IFMRs are
definitive, and in fact we (Stein et al. 2013) are working
on our own Bayesian approach to this problem. Never-
theless, because the above-mentioned IFMRs are widely
used and because they are likely to approximately span
the space occupied by the actual IFMR, we have chosen
to study these four relations.

4. RESULTS

Of the nine possible parameters that we could fit with
BASE-9, two are meaningless (ZAMS mass of secondary
companion and whether or not the star is a cluster mem-
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ber) and three are set (AV = 0; Y = 0.245 + 1.6 Z,
which is a standard helium-to-heavy-element relationship
built into the DSED models; and the IFMR is set to one
of the four above-mentioned IFMRs, rather than fitting
our own). Thus, for all stars in our sample, BASE-9
fits four parameters: the total stellar age, the precursor
mass as it was on the ZAMS, the initial metallicity, and
the distance. Figure 1 displays contours of the posterior
distributions for three WDs (J0003−0111, J2045+0037,
J2147+1127) projected onto four of the six possible two-
dimensional parameter planes based on the Montgomery
et al. WD models. Figure 2 is identical to Figure 1 ex-
cept that the calculations employ the Renedo et al. WD
models. We selected these three WDs because they are
representative of the range of posterior distributions. Be-
cause the data are uninformative for metallicity, the pos-
terior and prior distributions are indistinguishable, and
we present only one of these three planes to demonstrate
that the posterior metallicity distribution essentially fol-
lows the prior we set (see also further discussion below).

For all 28 WDs, the observed SEDs tightly constrain
Teff , yet weakly constrain WD mass. As we can see in
Figures 1 and 2, this is often sufficient to yield reasonably
tight age distributions. The posterior distributions in the
distance-ZAMS mass plane are essentially the WD mass-
radius relation folded through the Stefan-Boltzmann lu-
minosity dependence on radius around a constrained Teff .
The age-ZAMS mass and age-distance posterior distribu-
tions are substantially more complicated and typically
show three distinct regions. The region of lowest ZAMS
mass stretching to greatest age is the region of parameter
space where small changes in WD mass change the total
WD age primarily through the precursor lifetime. The
region at intermediate masses typically displays the op-
posite age-mass slope and is where small changes in WD
mass affect WD age primarily through changing the heat
capacity of the cooling WD. The highest mass portion
of the posterior distribution is where small changes in
WD mass change the WD age primarily through chang-
ing the contribution of carbon or oxygen crystallization.
The high mass WD J2147+1127 is the most constrained
in these posterior distributions. This is consistent with
the analysis of Bergeron et al. (2001), though BASE-9
required neither independent distances from trig paral-
laxes nor a WD mass determination from spectroscopic
fits to log(g). The Montgomery et al. and Renedo et al.
fits are broadly similar, though with differences in the
detailed shapes of the distributions, particularly for the
two lower mass stars near ZAMS masses of 4 M�. The
mean ages also shift between the Montgomery et al. and
Renedo et al. fits. We return to a comparison between
these two model sets later. Taken together, these dia-
grams show strong asymmetric posterior distributions,
which is both a testament to the non-linearities of stel-
lar evolution and a warning of the potential pitfalls of
standard error propagation strategies.

Figure 3 displays the posterior distributions for a sin-
gle representative star (J0003−0111), fit with the Mont-
gomery et al. WD models and each of the four IFMRs we
have studied. There are detailed similarities in all four
cases, and in fact the contours for all IFMRs peak near 6
Gyrs and 65 pc, yet the distributions are subtly different
from one IFMR to another. For instance, the upper dis-
tance limits extend ∼10 pc further for the Weidemann

Figure 1. Projections of the joint posterior distributions into
(from top to bottom) the age-metallicity, age-distance, age-ZAMS
mass, and distance-ZAMS mass planes for three representative
WDs in our sample, all analyzed with the Montgomery et al.
WD cooling models and Williams et al. IFMR. The stars demon-
strate posterior distributions for a WD with a typical age and
mass (J0003−0111, left-most column), a somewhat younger age
and greater distance (J2045+0037, middle column), and greater
age and mass (J2147+1127, right-most column).

Figure 2. Similar to Figure 1, except analyzed with the Renedo
et al. WD cooling models. The gap in mass near 4 M� is a common
feature of the Renedo et al. fits and is due to a steeper color vs.
mass relationship in these models compared to the Montgomery
et al. models and a sudden change in this slope at a WD mass of
0.877 M�, corresponding to a ZAMS mass of ∼4 M�, depending
somewhat on the IFMR.

IFMR and the Salaris et al. Piecewise IFMR than for the
other IFMRs and the lower distance extrema move even
more substantially. Such comparisons for other stars also
show broadly similar results from one IFMR to another
and in subsequent analyses we will compare summary
statistics for the different IFMRs, rather than the entire
posterior distributions.

Figure 4 displays the marginal (i.e., collapsed, one di-
mensional) posterior distributions for the four fitted pa-
rameters for the three WDs presented in Figures 1 & 2
for all four IFMRs. The different IFMRs are color coded
and the solid and dashed histograms indicate fits based
on Montgomery et al. and Renedo et al. WD models.
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Figure 3. Posterior probability projections in the age, distance,
ZAMS mass planes for J0003−0111 for each of four IFMRs and the
Montgomery et al. WD cooling models. These IFMRs, from left
to right, are the Williams et al., Weidemann, Salaris et al. Linear,
and Salaris et al. Piecewise relations.

As expected, all of the metallicity distributions for all
stars using all IFMRs are the same and in fact are very
close to the priors on [Fe/H] (we find posterior values
0.27 < σ([Fe/H]) < 0.29). The metallicity distributions
are truncated at [Fe/H] = +0.5 because that is the upper
metallicity limit of the Dotter et al. isochrones. The age
distributions are more complicated than the [Fe/H] dis-
tributions, yet are broadly consistent among the IFMRs
but not always between the two WD models. The dis-
tance and ZAMS mass distributions can be different from
one IFMR to another. Because distance is a directly
measurable quantity, in principle coupling this type of
analysis with precision trig parallaxes for the right stars
could rule for or against particular IFMRs within some
mass ranges. For instance, for both J0003−0111 and
J2045+0037, greater distances are possible with some
IFMRs than with others.

Figure 5 summarizes the age information for all 28
DAs that we have analyzed using all four IFMRs and
the Montgomery et al. WD models. The horizontal axes
in all panels display age assuming the Williams et al.
IFMR and the vertical axes display the age difference
under Williams et al. and under the other IFMRs. The
points and error bars indicate both the average and me-
dian ages along with the 68% confidence intervals. We
note that these confidence intervals are not derived to
be symmetric about the median or average, but rather
mark the values beyond which the last 16% of distribu-
tion at each end resides. Despite differences in the shapes
of the age distributions, for most of these old DA WDs,
both the median and average ages are essentially iden-
tical from one IFMR to another. The exception are 3
or 5 of the 8 youngest WDs, and to a lesser extent, 2
WDs near 6.2 Gyr, all of which systematically differ in
age between the Williams et al. IFMR on the one hand
and the other three IFMRs on the other hand. Overall
this is good news given the current state of uncertainty in
the IFMR. The average age uncertainty for these 28 DAs
analyzed under the Montgomery WD models is ±10.5%

13.5%.
Figure 6 presents the differences in median distances

for each of the 28 DAs as analyzed with each of the four

IFMRs. As with Figure 5, the error bars represent the
68% confidence interval of the distance posterior distri-
bution for the wider of the two distributions being com-
pared. Most stars have statistically similar median and
average distances no matter which IFMR is used, but
there are differences among some of the same stars that
were inconsistent in Figure 5. This figure reiterates a
point from Figure 4, which is that for some stars, follow-
up precision distances could rule for or against any par-
ticular IFMR within a particular mass range.

In Figure 7 we present the cumulative distributions
of the fitted median WD masses for our 28 DAs under
each of the four IFMRs and both WD models. These
cumulative distributions are often different from each
other, particularly the Williams et al. IFMR versus the
other IFMRs, and there is an offset from one WD model
to another.1 In all cases, our sample of 28 DAs likely
contains a few high mass WDs. The Williams et al.
IFMR fits imply that ten WDs may have masses greater
than 0.9 M� (J074721+24, J0821+3727, J0947+4459,
J1102+4030, J1130+1002, J1317+0621, J1534+0711,
J1722+2848, J2147+1127, and J2342−1001). We remind
the reader that these masses are not directly fit and that
a constraining prior on distance could decrease any of
these implied masses. Yet, because of the relative rarity
of high mass WDs and the likely onset of crystallization
for stars of this age and implied mass (Metcalfe, Mont-
gomery, & Kanaan 2004), these objects merit additional
scrutiny.

We can make an initial quantitative comparison be-
tween the traditional approach to deriving individual
WD ages by comparing the ages derived by Kilic et al.
(2010) with our Bayesian results for these 28 WDs. Kilic
et al. did not have access to spectroscopic log(g) infor-
mation, and thus did not have masses for these stars.
Instead, they assumed log(g) = 8.0, which is a common
approach in this situation and equivalent to assuming all
WDs have masses of ∼0.58 M� for this Teff range (Berg-
eron et al. 1995). Because WDs have a narrow mass
peak near 0.6 M� (e.g., Liebert, Bergeron, & Holberg
2005 who find a standard deviation around this peak
of < 0.2M�), this approach should yield only a slight
age bias with some scatter introduced by the actual WD
masses. Additionally, Kilic et al. report the WD cooling
ages, whereas BASE-9 yields total WD ages. We thus
calculated the posterior distribution of cooling ages for
each of these 28 WDs in order to compare our results and
those of Kilic et al. (2010). Figure 8 displays that com-
parison with both the Montgomery et al. (top panel) and
Renedo et al. (bottom panel) WDs. There is a system-
atic offset of ∼ 1-2 Gyr for most stars broadly distributed
across age.

If the entire systematic between our ages and the Kilic
et al. ages were due to the Kilic et al. assumption that
log(g) = 8, we should see a strong correlation between
the difference of our WD mass estimate and the Kilic et
al. mass assumption versus the difference in WD cool-
ing ages (BASE-9 cooling age minus Kilic et al. cooling
age). We plot that comparison in Figure 9. There is no

1 The standard difference statistic used in astronomy, the
Kolmogorov-Smirnov test, is inappropriate to check these differ-
ences, as this statistic is meant to check on independent data pre-
sumably drawn from the same sample, rather than the same data
analyzed under different assumptions.
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Figure 4. Marginal posterior distributions for the four fitted parameters for each of the three stars presented in Figure 1. All four IFMRs
are presented as color-coded histograms with green for Weidemann, blue for Williams et al., cyan for Salaris et al. Linear, and red for
Salaris et al. Peicewise Linear. The Montgomery et al. models are indicated with solid lines and the Renedo et al. results are indicated
with dashed lines.

Figure 5. Average (black star symbols) and median (red circle
symbols) differences in calculated ages for 28 DAs for each of four
IFMRs for the Montgomery et al. models. The error bars repre-
sent the 68% confidence intervals in the marginalized posterior age
distribution for the wider of the two age fits.

meaningful correlation in this diagram, so the systematic
age difference cannot be primarily due to the log(g) = 8
assumption. This bolsters the case that the traditional
age determination technique can give substantially differ-
ent answers than our Bayesian approach and thus that
the standard, step-wise process for determining ages of
individual WDs may yield misleading results.

Up until this point, we have noted a few differences
among the results based on whether we used Mont-
gomery et al. or Renedo et al. WD models, but we have
not directly compared our results based on these two
models. In Figure 10 we provide this comparison em-
ploying the Williams et al. IFMR. It is comforting to see

Figure 6. Similar to Figure 5, but now the y-axis displays the
difference in distance fits for each of the four IFMRs.

that these two modern WD cooling models yield con-
sistent results for 25 of these 28 WDs. For the three
WDs that are inconsistent, they differ in the sense that
the Renedo et al. models imply ages ∼2 Gyr older than
the Montgomery et al. models. Interestingly, these stars
are all cooler than Teff = 5500 based on the Bergeron et
al. model atmosphere colors, and it is precisely in this
region where theorists expect non-grey atmospheres, as
incorporated in the Renedo et al. models, to be impor-
tant in modelling cool WDs. Unfortunately, we cannot
ascribe this difference to grey vs. non-grey atmospheres
because 50+% of the posterior mass distributions for all
three of these WDs lies beyond the Renedo et al. upper
mass limit (0.934 M�), and therefore these fits with the
Renedo et al. models required extensive extrapolation in
mass.
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Figure 7. Cumulative distribution of median WD masses for 28
DAs analyzed under four IFMRs. Line styles are the same as in
Figure 4.

Figure 8. Average (black star symbols) and median (red circle
symbols) differences between the BASE-9 cooling ages and the Kilic
et al. cooling ages. The error bars represent the 68% confidence
intervals of the BASE-9 cooling age posterior distribution. Kilic et
al. did not provide age uncertainties.

Figure 9. The difference between the median BASE-9 WD mass
estimates and the log(g)=8 masses versus the difference in WD
cooling ages between BASE-9 and those derived by Kilic et al.
The symbols and error bars have the same meaning as in Figure 8.

Figure 10. Montgomery et al. ages versus Renedo et al. ages.
The vertical axis gives the difference in the sense Renedo − Mont-
gomery, with the symbols and errors bars as in Figure 5. These
fits were made with the Williams et al. IFMR.

5. CONCLUSIONS

We have applied a self-consistent and robust Bayesian
statistical approach to determining the ages, distances,
and ZAMS masses of individual WDs. We find that age,
distance, and ZAMS mass are correlated in complicated
posterior distributions. While these correlations make
sense in terms of the non-linearities of stellar evolution,
they are too complex to be quantified by traditional er-
ror propagation methods. Additionally, because the age
posterior distributions are often asymmetric, traditional
techniques can yield misleading ages.

We find that for our DA sample in the age range of ∼4
to 8 Gyrs, that SDSS griz photometry supplemented by
quality JHK photometry is sufficient to derive ages with
errors < 15%. Furthermore, these ages are often (but
not always) insensitive to which of the current modern
IFMRs one uses. We expect that these age uncertainties
could be substantially reduced with additional informa-
tion from spectroscopy or parallax measurements that
would constrain WD masses.

We also find that distances to some of the WDs in our
sample could rule for or against one or more of the IFMRs
within particular mass ranges. These distances could
be incorporated into a new BASE-9 analysis to derive
a new principled estimate of the IFMR. Trigonometric
parallaxes for some of these objects would be particularly
valuable.
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quences for use with BASE-9. We thank Arthur Byrnes
and the Embry-Riddle Aeronautical University High Per-
formance Computing Cluster for supporting our calcu-
lations and Elliot Robinson for helping develop BASE-
9. We thank an anonymous referee and our editor, Eric
Feigelson, for feedback that substantially improved this
paper. This material is based upon work supported by
the National Aeronautics and Space Administration un-
der Grant NNX11AF34G issued through the Office of
Space Science. In addition, David van Dyk was sup-
ported in part by a British Royal Society Wolfson Re-
search Merit Award, by a European Commission Marie-
Curie Career Integration Grant, and by the STFC (UK).
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APPENDIX

Statistical Method
The statistical methods we use are a special case of those described in Stein et al. (2013), see also DeGennaro et al.

(2009) and van Dyk et al. (2009). Because our WDs are nearby and at high Galactic latitude, we fix AV = 0. The
helium abundance, important in the evolution of the WD precursor, is set in the DSED models at Y = 0.245+1.6Z. We
specify the likelihood function for fitting the remaining stellar parameters, Θ = (m−M , [Fe/H], log(IMF), log(age)).
Specifically, for a single white dwarf, this likelihood can be written,

L(Θ|X,Σ) =
1√

(2π)n|Σ|
exp

(
−1

2

(
X −GWD(Θ)

)>
Σ−1

(
X −GWD(Θ)

))
where X is the vector of observed photometric magnitudes, Σ is the variance-covariance matrix of the observation
errors, and GWD(Θ) is the vector of predicted photometric magnitudes as a function of the stellar parameters. GWD
takes as input the mass of the WD precursor and the total age of the star, passes that through the DSED stellar
evolution models, one of four IFMRs, one of two WD interior models, and a WD atmosphere model to predict the
photometric magnitudes.

Our Bayesian analysis is based on the posterior distribution of Θ, namely

p(Θ|X,Σ) ∝ L(Θ|X,Σ)p(Θ),

where p(Θ) is the prior distribution for the stellar parameters. The prior distribution quantifies knowledge about the
likely values of the stellar parameters that we have before considering the current data set. The posterior distribution
combines this information with that in the data and summarizes all of the available information including the current
data. We specify p(Θ) independently for each of the stellar parameters; details appear in Table 1.

Statistical inference for the stellar parameters is based on a Monte Carlo simulation from their posterior distribution.
These simulations are plotted to represent the posterior distribution, e.g., in Figures 1-3 or summarized by their mean or
median to estimate the parameters. Although the likelihood is based on a simple Gaussian distribution, the dependence
of its mean on the stellar parameters can be highly non-linear, potentially leading to an irregular posterior distribution
for Θ, see, e.g., Figures 1-3. We use a Markov chain Monte Carlo (MCMC) sampler on the joint posterior distribution
of m−M , [Fe/H], and log(age), which is obtained by numerically integrating p(Θ|X,Σ) over the log(IMF). We use a
set of initial MCMC iterations to approximate the posterior variance-covariance matrix of m−M , [Fe/H], and log(age)
and then run a Metropolis sampler that uses this matrix in its jumping rule. We typically thin the sample by a factor
of 100-500 to obtain a subsample with lower correlation. We only present results of WDs where the resulting MCMC
sampler, after appropriate burn in, appears to deliver a reliable representation of the posterior distribution. We recover
the posterior ZAMS mass distribution by sampling it from its conditional posterior distribution after the MCMC run
is complete.

We performed a sensitivity analysis on our priors by relaxing the two (m −M and [Fe/H], see Table 1) for which
we have no independent data. Our nominal priors were relaxed to m −M = 4 ± 5 (63±568

57 pc) and [Fe/H] = 0 ±
1.0. We then reran 7 WDs with the Renedo et al. interior models and the Williams et al. IFMR. For these 7 WDs,
although the average metallicities decreased by ∼0.4 dex, because our models bound the upper limit of [Fe/H] at +0.5,
the other parameters differed very little. The average ages differed by 0.040 to 0.167 Gyr, or 0.77% to 3.17%. The
average distances differed by only 0.4 to 2.8 pc, and always ≤ 3.6%. The average ZAMS masses for these stars differed
by 0.07 to 0.18 M�, always ≤ 5%.

Table 1
Prior Distributions

Quantity Prior

m−M Gaussian(µ = 4.0, σ = 2.5), equivalent to dist = 63±136
43 pc

Fe/H Gaussian(µ = 0.0, σ = 0.3)
IMF log(IMF) ∼ Gaussian(µ = −1.02, σ = 0.67729) from Miller & Scalo (1979)

subject to MWD,up, upper ZAMS mass limit to produce a WD = 8 M�
log(age) Uniform above 250 Myrs, 0 below
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