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Abstract—The push towards low-power and wearable sleep
systems requires using minimum number of recording
channels to enhance battery life, keep processing load small
and be more comfortable for the user. Since most sleep stages
can be identified using EEG traces, enormous power savings
could be achieved by using a single channel of EEG.
However, detection of REM sleep from one channel EEG
is challenging due to its electroencephalographic similarities
with N1 and Wake stages. In this paper we investigate a
novel feature in sleep EEG that demonstrates high discrim-
inatory ability for detecting REM phases. We then use this
feature, that is based on spectral edge frequency (SEF) in the
8–16 Hz frequency band, together with the absolute power
and the relative power of the signal, to develop a simple
REM detection algorithm. We evaluate the performance of
this proposed algorithm with overnight single channel EEG
recordings of 5 training and 15 independent test subjects. Our
algorithm achieved sensitivity of 83%, specificity of 89% and
selectivity of 61% on a test database consisting of 2221 REM
epochs. It also achieved sensitivity and selectivity of 81 and
75% on PhysioNet Sleep-EDF database consisting of 8
subjects. These results demonstrate that SEF can be a useful
feature for automatic detection of REM stages of sleep from
a single channel EEG.

Keywords—REM, Sleep staging, EEG, Electroencephalog-

raphy, Rapid eye movement, Spectral edge frequency (SEF).

INTRODUCTION

Human sleep is broadly classified in two groups:
rapid eye movement (REM) and non-rapid eye
movement (NREM). According to the American
Academy of Sleep Medicine (AASM) sleep scoring
manual, NREM stage is further divided in to N1, N2
and N3 stages with the progression of sleep.20 The

standard method of sleep analysis is known as poly-
somnography (PSG), where several physiological
signals are acquired, visually analyzed by sleep tech-
nicians and scored in to various stages. Manual ana-
lysis and scoring of sleep from PSG traces (acquired in
clinic or at home) is a tedious task that can take 2–4 h
for scoring an entire night sleep data.35 It is also prone
to subjectivity between scorers with an inter-rater
agreement of 82%.10 An automatic sleep staging
method would help alleviate both inter-rater and intra-
rater disagreements, reduce analysis time and cost of
PSG tests.

The costs associated with PSG coupled with the
necessity of clinical admission and long waiting lists15

limits its usage despite the high prevalence of sleep
disorders.38 Home polysomnography (HPSG), classi-
fied as a type 2 portable monitoring device by AASM,6

offers full unattended PSG at patient’s home. It has
recently been shown to be useful to rule in or out
obstructive sleep apnea (OSA), results in better sleep
quality of patients and reduced overall costs.4 HPSG
requires at least seven channels including multiple
EEG, EOG and EMG channels. The complexity
imposed by the requirement of the patient precisely
placing these multiple electrodes limits the adoption of
HPSG despite its benefits.

Thus, HPSG systems would greatly benefit from
reduction in the number of channels, simplification of
user experience and incorporation of automated sleep
scoring methods without affecting clinical outcomes.
Traditionally, three EEG channels are required in PSG
systems together with EOG and EMG channels.
Ruehland et al.36 reported no significant differences in
sleep scoring reliability when using a single EEG
channel, so this number can potentially be reduced to
one. However, the EOG and EMG channels are still
required since identifying REM stage epochs involves
observing the chin muscle and eye activity.20
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REM sleep accounts for about 5–20% of an adult’s
entire night’s sleep19 and its detection, both onset and
duration, are very important for the diagnosis of cer-
tain sleep disorders including narcolepsy and REM
behavior disorder (RBD). Observing the muscle
activity during REM stage is often used for the diag-
nosis of RBD, which is also an early marker for neu-
rological disorders including Parkinson’s disease.22

The duration of REM sleep in the first cycle has been
shown to correlate negatively with mood improvement
on wake-up in patients with major depression.21 It has
also been shown that the number of REM sleep peri-
ods is higher, with a shorter average duration, in
trauma-exposed people who go on to develop post-
traumatic stress disorder.29 The latency to the onset of
first REM cycle and the pattern of occurrence of
subsequent cycles throughout the night is commonly
used in the diagnosis of narcolepsy. Vogel et al.43

reported that REM sleep deprivation can be used
therapeutically for the improvement of depression
symptoms. Using a wearable REM sleep detection
system, this can be achieved by raising an alarm to
awaken the person whenever they enter the REM
phase. REM deprivation can also result in increased
alertness during daytime.30

Apart from REM, all the stages of sleep can be
identified from EEG channels only. This is because
REM sleep has many electroencephalographic simi-
larities with Wake and N1 stages.3,9,19 According to
both R&K34 and AASM20 sleep scoring manuals, the
presence of low amplitude, mixed frequency EEG is
characteristic of both N1 and REM stages making its
visual identification using EEG challenging. However,
with most of the sleep stages identifiable with EEG it
makes sense to attempt to score REM phases using the
same signal to obviate the need of using extra elec-
trodes.

A reduction in the number of channels also leads to
smaller processing overhead for portable and wearable
systems with weight, size and power consumption
limits, as there is less data to acquire and process. In
such systems, algorithms for scoring sleep are also
constrained by the processor since complex processing
methods directly result in higher power consumption
and a reduced battery life of the system. The two key
stages in all sleep staging methods are feature extrac-
tion and classification. The number and types of fea-
tures extracted and the choice of classifier used
depends on the target application of an algorithm. For
example, it may be acceptable to use 20 features with a
multistage neural network in an analysis software
running on a computer but the limitations of a wear-
able battery-powered system prohibits the usage of
complex features and classifiers consequently leading
to a reduction in performance. Therefore a trade-off

between acceptable levels of performance and algo-
rithm complexity must be made to meet system speci-
fications.

This paper has two main objectives. The first is to
find features and trends in sleep EEG that can distin-
guish REM phase from all other stages of sleep, par-
ticularly N1 and Wake. The second objective is to use
these EEG features for developing a simple algorithm
capable of detecting REM stage epochs. Both these
objectives ultimately aid the development of an algo-
rithm that could be used as part of a truly wearable full
sleep staging system. The remainder of this section
presents a review of various automatic sleep staging
methods and their REM detection performance.
‘‘Material and Methods’’ section describes the sleep
data used for the development of algorithm in this
work, introduces the individual features and discusses
their discriminatory ability for REM detection. The
features are then combined to develop a complete
REM detection algorithm which is presented in the
same section. The performance results are presented in
‘‘Results’’ section. ‘‘Discussion’’ section discusses the
effectiveness of the features used, overall results and
the advantages of the proposed features and algorithm.

Several research groups have been working on
automatic sleep staging using signals from PSG and
EEG based systems. In this section a review of these
methods is presented to show the different features and
classifiers being used and their detection performance.
The performances reported below are limited to the
REM detection part of systems and their correspond-
ing accuracy.

Agarwal and Gotman1 used a computer-assisted
approach requiring an expert reviewer input to score
sleep stages. They used two EEG and EOG channels
with one channel of EMG signal to compute several
features including spectral power ratio in different
frequency bands, eye movements and dominant
rhythm with k-means clustering for classification.
Their method was tested with 12 subjects having 2519
REM epochs and showed sensitivity and specificity of
72.5 and 87.6% respectively in REM stage. Virkkala
et al.42 used facial electrodes for acquiring signals and
tested their sleep staging method on 131 subjects hav-
ing 24021 REM epochs. Their system used a decision
tree classifier and resulted in REM stage sensitivity and
selectivity of 61.6 and 79.4% respectively. Liang et al.26

used a decision tree with power and energy features
followed by contextual smoothing for sleep staging.
Their method used single channel EEG and EMG with
two channels of EOG signals and resulted in REM
stage sensitivity and specificity values of 90.5 and
95.5%. They also presented a single-channel EEG-
based method27 using multiscale entropy (MSE) and
autoregressive (AR) modeling. They used a total of 21
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MSE and AR features with LDA classifier and 11
contextual smoothing rules and reported REM sensi-
tivity and selectivity of 97.6 and 95.6% on 10 test
subjects. Held et al.18 presented a neuro-fuzzy classifier
based infant sleep staging method using four EEG, one
EMG and one EOG channels and reported REM stage
detection sensitivity of about 72% with 250 REM
epochs in their test set. A study evaluating the per-
formance of an automatic sleep staging software
(ASEEGA) using single channel EEG reported REM
sensitivity and selectivity values as 83 and 89.1%
respectively2 for five state sleep classification. The
algorithm worked by performing artefact rejection,
extracting multiple spectral and temporal features,
identifying sleep microstructure and performing rough
REM detection using theta, beta and delta rhythms.
This is followed by the use of a fuzzy classifier and
contextual rule smoothing with a fixed set of rules.
Although the software achieves a high detection per-
formance (on artefact-free signals), this comes at the
cost of computational complexity during the feature
extraction and fuzzy classification stages.

Hanaoka et al.17 proposed a sleep staging system
that used EEG, EOG and EMG signals for feature
extraction and decision tree learning for classification.
For REM detection, it checked for ocular movement
and low EMG activity. The algorithm was tested on
eight hours of PSG recording from only one subject
containing a total of 215 REM epochs and resulted in a
sensitivity of 75.5%. Kempfner et al.23 used eighteen
statistical features with subject-specific feature scaling
and k-Nearest Neighbor classifier to detect REM sleep
in subjects without atonia. They used inputs from two
EOG and three EEG channels and reported mean
sensitivity and specificity of 94 and 96% respectively
with 16 test subjects.

Artificial neural networks (ANN) are commonly
used for sleep stage classification. Methods using these
networks often require a large set of temporal, spectral
and statistical features to be extracted from the input
signal. hese features are then given as inputs to the
network which maps them to discrete sleep stages. Due
to this, ANNs are computationally expensive and
require powerful processors that may be detrimental
for battery-powered wearable devices with limited
power budget. Ronzhina et al.35 describe a method for
sleep staging using single channel EEG with an ANN
architecture comprising of 30 input units and 11 hid-
den layer units. The authors used relative power values
in 30 spectral bands of 1 Hz each and reported the best
REM stage accuracy of 82.3% on data from 8 subjects.
A hybrid neural network based method, proposed by
Park et al.,31 used 58 input features extracted from
EEG, EOG and EMG signals. It was tested with only

218 REM epochs and resulted in 212 correct detec-
tions. Another method using neural networks for sleep
staging using EEG and EMG signals is reported by
Tian et al.39 with 84.8% sensitivity when tested on 1278
REM epochs. Charbonnier et al.5 also used ANN with
33 spectral, entropy and statistical features. They
reported REM sensitivity to be 63% using EEG signals
only. They also showed that adding EMG signals
increased REM stage sensitivity up to 83%. Ebrahimi
et al.11 used wavelet packet coefficients extracted from a
single EEG channel as input features for a neural net-
work. For a combined detection performance of N1
and REM stages they reported sensitivity and speci-
ficity values of 85.7 and 93.8%. They did not state how
many REM or N1 were detected individually and tested
their method with data from 7 subjects having 1252
REM epochs in total. Gunes et al.,16 in their single
channel EEG based sleep staging method used k-means
clustering and k-Nearest Neighbor classifier. They
reported REM stage sensitivity of 81% when tested
with 600 epochs. A study validating the performance of
a commercial wireless sleep monitoring system37 used
26 subjects with 3036 REM epochs and reported sen-
sitivity and selectivity as 86 and 74% respectively. The
sleep system in this study used three electrodes in a
headband for acquiring signals. (This device, ZEO sleep
manager, is not available any more because the com-
pany went out of business in early 2013).

Estrada et al.13 concluded that EMG and EOG are
both important in sleep staging, particularly in REM
stage. Similarly, Charbonnier et al.5 reported a jump in
REM detection accuracy from 63 to 83% when EMG
signal was added to their analysis. It is evident from
the sleep staging literature that algorithms using inputs
from EEG, EOG and EMG channels are able to
achieve a better REM detection performance while
using just one EEG channel makes the task more
challenging.

MATERIAL AND METHODS

Twenty whole night PSG recordings of healthy
subjects were available in the DREAMS Subjects
Database from University of MONS—TCTS Labo-
ratory and Université Libre de Bruxelles—CHU de
Charleroi Sleep Laboratory in EDF format.41 The
subjects included 16 women and 4 men, their age
ranging from 20 to 65 years (mean age 33.45 years).
Data was originally sampled at a frequency of 200 Hz
and included at least two EOG, three EEG (Fp1-A2,
Cz-A1 and O1-A2) and one submental EMG channels.
The epochs were scored using AASM20 criteria with
standard epoch size of 30 s.
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Before being used for any analysis data from each of
the EEG channel was first resampled to a sampling
frequency of 256 Hz using MATLAB resample function.
The signal was then filtered with a first order 0.16 Hz
high pass filter to remove dc offset and a second order
50 Hz Butterworth low pass filter to bandlimit it. From
the pool of twenty subjects, the first five (subjects 1–5)
were arbitrarily selected for data analysis, feature
selection and training of the proposed algorithm.
Subjects 6–20 were later used to test the performance of
the algorithm without any parameter adjustment. The
total number of epochs in Wake, REM and NREM
stages for the training and test set are shown in Table 1.

Corsi-Cabrera et al.9 reported similar N1 and REM
spectral powers between 13 and 17 Hz, higher N1
power in the 10–13 Hz band and lower N1 power
between 1 and 9 Hz. Uchida et al.40 also showed
spectral power in REM to be lowest in the 12–16 Hz
band when compared to NREM stages (except N1).
Since the 10–13 Hz band appears to be able to dis-
criminate REM and N1 while 12–16 Hz helps distin-
guishing REM from other stages, we performed our
analysis in these as well as other frequency bands. This
is done to determine the best frequency range where
the discriminatory ability of different features are most
prominent. To this end, we selected a frequency range
of 8–16 Hz for our analysis (based on results shown
later) and also compared the performance of same
features in this band against the traditional 0.5–50 Hz
range.

The EEG data was split into 2-s long non-overlap-
ping blocks (subepochs) and subsequently transformed
to the frequency domain with a 512-point fast Fourier
transform (FFT), hence obtaining a resolution of
0.5 Hz. The magnitude and frequency coefficients were
then used to compute the following features for REM
detection in both the 8–16 Hz and traditional fre-
quency bands. The frequency spectrum for REM and
non-REM epochs in the 8–16 Hz range is shown in
Fig. 1. The differences in power at different frequency
bands will be analyzed in the following sections.

Spectral Edge Frequency (SEF)

Spectral edge frequency (SEF) is the frequency be-
low which a certain fraction of the signal power is

contained. It is generally written as SEFxx where xx is
the fraction of signal power for which the edge fre-
quency is calculated. An illustration of spectral edge
frequency at 50 and 95% of the signal power is shown
in Fig. 2.

Three different quantifications of SEF are relevant
for this work:

SEF50

SEF at 50% (SEF50) is the lowest frequency below
which half of the signal power is present. This is
equivalent to the median frequency of a signal. It is
computed from the FFT coefficients using Eq. (1),
where n is the total number of FFT coefficients and x is
the index to solve the equation for. The required fre-
quency is then the xth frequency from the array of
FFT frequency components.

Xx

i¼1
jmagij2 ¼ 0:50�

Xn

i¼1
jmagij2 ; ð1aÞ

SEF50 ¼ freqðxÞ : ð1bÞ

Figure 3 shows the hypnogram together with SEF50
in the 0.5–50 and 8–16 Hz frequency bands. During
the REM stages, the SEF50 values are observed to be
amongst the lowest when calculated in the 8–16 Hz
range in Fig. 3b. However, this is not the case in Fig.
3a when the entire frequency range is used and the
SEF50 values during REM stages overlap with with
those during N2 stages.

SEF95

SEF at 95% (SEF95) is the lowest frequency below
which 95% of the signal power is present. It is com-
puted from the FFT coefficients using Eq. (2), similar
to the SEF50 calculation.

Xx

i¼1
jmagij2 ¼ 0:95�

Xn

i¼1
jmagij2 ; ð2aÞ

SEF95 ¼ freqðxÞ: ð2bÞ

Figure 4 shows how SEF95 varies in different sleep
stages for one subject in the two frequency ranges. The

TABLE 1. The number of Wake, REM and NREM epochs in training and test set.

No. of subjects

Number of epochs

Wake NREM REM

Training 5 679 3573 798

Test 15 2880 10091 2221
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SEF95 values in the 0.5–50 Hz analysis range during
REM stages are neither highest nor lowest and stay
close to the 12 Hz mark. In the 8–16 Hz range, how-
ever, SEF95 values are usually highest during the
REM stages.

SEFd

The difference between SEF95 and SEF50 is used as
a novel feature for REM stage detection in this work.
This difference is hereon referred to as SEFd. For an
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FIGURE 1. Frequency spectrum of REM and non-REM epochs in 8–16 Hz range for different training subjects 1–5 on plots (a–e).
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epoch e, it is determined by first calculating the SEFd
values of fifteen 2 s subepochs in the 30 s EEG epoch
(i.e., the difference between SEF95 and SEF50 of the

subepochs). The mean of these differences is taken to
be the SEFd of the epoch being processed as shown in
(3) where se is the subepoch and n is its index. A
9-point moving average filter is then applied to the
final SEFd value.

SEFdðeÞ ¼ 1

15
�
X15

n¼1
ðSEF95½sen� � SEF50½sen�Þ: ð3Þ

In Fig. 5 the SEFd values during different sleep stages
are shown in both traditional and bandlimited fre-
quency ranges. The figure shows clear peaks during
REM stages when the analysis is restricted to the
8–16 Hz range. However no such characteristic pattern
is observed when the entire frequency band is analyzed.

Figure 6 shows the SEFd overlaid on the hypno-
gram of each training subject in the 8–16 Hz range and
illustrates that the values of SEFd are consistently high
during all REM phases for the entire sleep duration of
all subjects. In general, all N2 and N3 phases appear to
have lower SEFd values. N1 stages have a slightly
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FIGURE 2. An illustration of spectral edge frequency (SEF) at
50 and 95% of the signal power in the 0–20 Hz frequency range.
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FIGURE 3. Hypnogram and SEF50 in the (a) 0.5–50 Hz and (b) 8–16 Hz band of the EEG signal for one training subject.
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FIGURE 4. Hypnogram and SEF95 in the (a) 0.5–50 Hz and (b) 8–16 Hz band of the EEG signal for one training subject.
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higher value but still lower than REM stages in most
cases. This pattern of high SEFd values during REM
phase in the 8–16 Hz frequency band could be a useful
feature to discriminate it from other sleep stages.

The reason for high SEFd values is a result of lower
SEF50 and higher SEF95 values during REM stages.
The two trends in SEF can be explained by the
observations in Fig. 1 which shows how the power
within the 8–16 Hz band changes during both REM
and non-REM stages (including Wake). The power is
similar in both REM and non-REM around 8 Hz.
Following this, the power in REM is lower than non-
REM from 9–15 Hz with the difference being highest
around the 12 Hz mark. Uchida et al.40 reported the
absence of 12–16 Hz activity during REM stages
which is causing the power to be lower than non-REM.
Therefore the median frequency (SEF50) in 8–16 Hz
range is expected to be lower during REM stages. The
trend of higher SEF95 values during REM suggests an
increase in the higher frequency components of the
8–16 Hz band. In Fig. 1, apart from 1e, all cases
demonstrate an increase in the power spectrum of
REM around the 15 Hz mark. Further, the activity in
the neighbouring beta frequency band is also highest
during REM sleep.40 This causes the SEF95 values to
be higher during REM within the 8–16 Hz range.
SEFd essentially represents both these changes in
SEF50 and SEF95, which is observed to be greatest
when the frequency band is limited between 8 Hz and
16 Hz.

To quantify the discriminatory ability of SEFd as
compared to both SEF50 and SEF95 features indi-
vidually in the 8–16 Hz frequency range, all the three
different features were used to classify REM epochs in
both frequency ranges. A simple thresholding classifier
was used and the receiver operating characteristic
(ROC) curves was plotted in each case by sweeping the

detection threshold. The area under the curve (AUC)
for the three features in both frequency ranges, shown
in Table 2, confirms that all features perform better
when limited to the 8–16 Hz frequency range. Further,
it also shows that SEFd, as a feature, is far superior to
both SEF50 and SEF95 with a much higher AUC
value. Therefore, SEFd in the 8–16 Hz band is used as
the main feature for REM detection in this work.

The SEFd shows peaks during REM phases for all
the subjects but occasional peaks are also observed
during other phases of sleep in some cases. For
example, subject 1, in Fig. 6a, shows high values of
SEFd during Wake stage (similar to those during
REM) while this is not the case for subject 3, in Fig. 6c.
The frequency distribution plot for the training data in
Fig. 7 also shows that while most of the REM epochs
have SEFd values of more than 4.5 Hz, there are still
some epochs from other stages overlapping in this
frequency range. Due to this, two other features are
also investigated to reduce potential false detections
occurring in other sleep stages.

Absolute Power (AP)

The absolute power (AP) of a signal in a fixed fre-
quency range, f1 � f2 Hz, using its Fourier coefficients
is calculated using Eq. (4), where f1 and f2 are 8 and
16 Hz respectively and nðf1Þ and nðf2Þ are the indices at
these frequencies.

AP ¼ 20� log
Xnðf2Þ

i¼nðf1Þ
jmagij

0
@

1
A: ð4Þ

AP was calculated using Eq. (4) for each 2 s subepochs
and averaged over the standard 30 s epoch. Figure 8
shows the absolute power with hypnogram for subject
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FIGURE 5. Hypnogram and SEFd in the (a) 0.5–50 Hz and (b) 8–16 Hz band of the EEG signal for one training subject.
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1. REM stage was observed to have the lowest AP in
8–16 Hz range. Further, AP values during Wake and
N1 stages were higher than REM. These results are in
line with the observations in Refs. 9 and 40. AP hence,
could be used as an extra differentiating feature for
REM, Wake and N1 stages. Similar trends were also
observed for the other training subjects.
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FIGURE 6. Hypnogram and SEFd in the 8–16 Hz band of the EEG signal for training subjects 1–5 on plots (a–e) respectively. The
plots show clear peaks during all the REM phases for every case.

TABLE 2. AUC values for the three features in different fre-
quency ranges.

Feature/ frequency range 0.5–50 (Hz) 8–16 (Hz)

SEF50 0.7023 0.7530

SEF95 0.7082 0.7390

SEFd 0.6930 0.9247
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Relative Power (RP)

The relative power (RP) of a signal in a fixed fre-
quency range, f1 � f2 Hz (8–16 Hz) is calculated, as in
Eq. (5), by taking the ratio of the absolute powers of
the signal in the range of interest and the entire signal
bandwidth.

RP ¼ 20� log

Pnðf2Þ

i¼nðf1Þ
jmagij

Pn

i¼1
jmagij

0

BBBB@

1

CCCCA
: ð5Þ

RP was also calculated first for 2 s subepochs and then
averaged over 30 s epochs. Figure 9 shows the relative
power in 8–16 Hz for subject 1 together with its
hypnogram. During REM stage, RP does not exhibit
any characteristic peak or trough unlike SEFd or AP

plots. However, the values stay close to 28 dB range
approximately for all subjects and are also different
from those during N3 and Wake stages. This makes
the feature useful for reducing potential false detec-
tions.

REM Detection Algorithm

Figure 10 shows a complete flow chart of the pro-
posed REM detection algorithm. A single channel
EEG input is first transformed into the frequency do-
main using the FFT. In the first stage FFT coefficients
are used to compute SEF95 and SEF50 within the 8–
16 Hz band. The difference between these two spectral
edge frequency measures, SEFd, is then taken for every
epoch. If SEFd is found to be greater than a certain
maximum threshold SEFdth, the epoch under analysis
is marked as a candidate REM epoch (cREM), and
further checks are applied at the next stage. Otherwise,
the epoch is rejected as non-REM and not analyzed
any further.

EðnÞ ¼
cREM; if SEFdðnÞ � SEFdth

0; otherwise

�
: ð6Þ

The second stage of the algorithm is used to reject false
positives amongst the candidate REM epochs. If an
epoch satisfies the condition in Eq. (6), its AP and RP
values are evaluated in the 8–16 Hz range for further
analysis.

AP � APmax ; ð7Þ

RPmin � RP � RPmax : ð8Þ

Only when both AP and RP values satisfy the condi-
tions in Eqs. (7) and (8), a candidate REM epoch is
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FIGURE 7. Frequency distribution of SEFd values at different
sleep stages across all training subjects.
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FIGURE 8. Hypnogram and AP in the 8–16 Hz band of the
EEG signal for training subject 1. AP values can be seen to be
lowest during each REM phase.
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FIGURE 9. Hypnogram and RP in the 8–16 Hz band of the
EEG signal for training subject 1. RP values can be seen to be
stable around 220 dB mark.
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considered a true detection. Otherwise it is rejected as
non-REM.

The algorithm works in two stages where the first
stage is highly sensitive and detects candidate REM
epochs. The second stage is specific and helps in
reducing the number of false detections. The choice of
features used at each of the two stages was determined
by their discriminatory ability in detecting REM
epochs. SEFd was found to be the most sensitive fea-
ture and was therefore used at the first stage of the
algorithm (to shortlist as many REM epochs as pos-
sible) followed by AP and RP. This two-stage process
also helps in keeping the computational load low since
AP and RP features are calculated only when there is a
candidate REM epoch identified in the first stage.

RESULTS

Metrics

The performance of the algorithm is evaluated by
quantifying the following metrics.

(1) Sensitivity, which represents the fraction of
REM epochs that are correctly identified by
the algorithm.

Sensitivity ¼ TP

TPþ FN
ð9Þ

(2) Specificity, which represents the fraction of
non-REM epochs being correctly rejected.

Specificity ¼ TN

TNþ FP
ð10Þ

(3) Selectivity, which is the fraction of correct
detections of REM with respect to the total
number of automatic REM detections (also
known as positive predictive value or PPV).

Selectivity ¼ TP

TPþ FP
ð11Þ

(4) Accuracy, which is the fraction of the total
number of correct detections and rejections of
REM epochs in the sleep recording.

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
ð12Þ

In the equations above, true positives (TP) is the
number of epochs correctly scored as REM, false
positives (FP) is the number of epochs incorrectly
scored as REM, true negatives (TN) is the number of
epochs correctly rejected as non-REM, and false neg-
atives (FN) is the number of epochs incorrectly rejected
as non-REM.

Training Results

Data from five subjects was used during the training
stage of the algorithm. The detection thresholds
(SEFth, APmax, RPmax and RPmin) were tuned to
achieve the best average performance. For this, a ROC
curve was plotted of sensitivity against (1-specificity)
with varying thresholds for the first stage initially. The
ROC curves for three different EEG channels and the
AUC for each are shown in Fig. 11.

Since the largest AUC is for channel Fp1-A2, it is
selected as the one to use for further analysis. On the
ROC curve, the optimal operating point for the first
stage of the algorithm (SEFth) was established by
giving equal weight to both sensitivity and specificity
and determining the minimum distance of the curve
from the (0,1) coordinate.7,32 This is the point on the
curve closest to the (0,1) coordinate. Using this optimal
threshold, the candidate REM epochs (with SEFd
greater than this threshold) were analysed. For
these epochs, a second ROC curve was plotted by
sweeping the RP and AP thresholds. The optimal
operating point for these features was also establishedFIGURE 10. Block diagram of the REM detection algorithm.
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by determining the shortest distance of the second
curve from the (0,1) coordinate. The thresholds cor-
responding to the optimal points for both stages of the
algorithm are shown in Table 3. It should be noted
that a different operating point could be selected
depending on whether higher sensitivity at the cost of
more false positives is tolerable or if a lower false po-
sitive rate is desired at the cost of sensitivity.

The algorithm individual as well as average subject
performance using the fixed optimum thresholds is
shown in Table 4. All the subjects showed sensitivity
greater than 89% individually and around 94% on
average. Only 46 out of the total 798 REM epochs
were not detected by the algorithm while the number
of false positives was recorded as 475 epochs from a
total of 5050 epochs across all five subjects. Most of
the Wake and NREM epochs were correctly rejected
giving an average specificity of 89%. The overall
accuracy of the system was found to be close to 90%.

Test Results

The algorithm was tested using the detection
thresholds in Table 3 on complete night EEG record-
ings of 15 subjects. Results of the individual and
average performance are shown in Table 5. The aver-
age sensitivity for these test subjects is reduced to 83%.

Apart from subjects 12 and 14, all have a sensitivity of
more than 70% and even in these cases where sensi-
tivity is on the lower side, the accuracy is still greater
than 92%. Subject 12, with the lowest sensitivity, has
got a large Wake period in the middle of sleep and
sporadic Wake epochs throughout the night. The exact
cause of this Wake period is not known but it leads to
the presence of movement artefacts, making the
detection of REM difficult. The average specificity,
selectivity and accuracy values of the test set are,
however, similar to the training results.

The first stage of the algorithm uses SEFd to detect
most of the REM epochs while the second stage uses
AP and RP to eliminate false detections in the first
stage. In order to illustrate this, the performance of the
algorithm was quantified in both stages: it was run first
using the SEFd feature only and then the AP and RP
features were added to it. Results in Table 6 shows an
increase in specificity, selectivity and accuracy when
the AP and RP are used together with the SEFd.
Furthermore, it can be seen that the number of false
positives is reduced from 2534 to 1395 with the addi-
tion of these features. However this performance boost
comes at the cost of a slight reduction in average
sensitivity from 88.7 to 83% when the AP and RP
features are added. Depending on the application, a
suitable trade-off must be achieved to reduce the
number of false positives up to a point where reduction
in the number of true positives is acceptable. Con-
versely, both specificity and selectivity can be traded
off to achieve higher sensitivity if higher number of
false positives can be tolerated.

A breakdown of the false detections in Table 7
shows in which sleep stages these false positives occur,
as well as the fraction of each stage falsely scored as
REM. Across the 15 test subjects, only 18.5% of the
total Wake epochs are misclassified as REM. Amongst
these, almost a quarter of false positives in Wake stage
come from subject 8 alone. Similarly, about a third of
total N1 epochs are misclassified as REM (424 out of a
total of 1157 N1 epochs). Since N1 and REM have
similarities in EEG, this is to be expected. It is however
still a positive result since it does show a discriminatory
ability that can be used to distinguish between REM
and N1 stages using EEG. Only 431 out of the total
5936 N2 epochs are misclassified as REM (about 7%)
where subject 7 contributes almost a fifth to the false
positives in N2. Finally, only 7 N3 epochs across all 15
test subjects are misclassified by the algorithm as REM
and 5 of those come from subject 7.

The agreement rate between the algorithm and the
visual scorer was also evaluated using Cohen’s kappa
(j) values. For the test data including all sleep stages j
was found to be 0.61, representing substantial agree-
ment according to Landis and Koch’s classification.24
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FIGURE 11. ROC Curves with AUC at first stage of algorithm
for three EEG channels.

TABLE 3. Best performing thresholds for SEFd, AP and RP.

Parameter Value

SEFth 4.54 Hz

APmax 15.5 dB

RPmax 26.08 dB

RPmin 213.03 dB
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Fivefold Cross-Validation

The performance of the algorithm was also vali-
dated using fivefold cross-validation. The entire data-
base was divided into five groups, each consisting of
four subjects. On each iteration, the algorithm was
trained using four groups (16 subjects) and tested using
the remaining group (4 subjects). This results in an
average sensitivity of 85.8% while specificity, selectiv-
ity and accuracy values are 89.3, 61.9 and 88.8%
respectively. In comparison to the results obtained in

‘‘Test Results’’ section, the sensitivity value achieved is
slightly higher while all other performance metrics are
very similar. The detection results for individual sub-
jects can be seen in Supplementary Material Table S1.

Performance Comparison

There are very few single-channel EEG-based sleep
scoring methods in literature. Our search revealed only
three such methods2,27,35 detailing REM detection
performance. It is difficult to compare the results of

TABLE 4. Performance of algorithm on training database.

Subject REMtot REMdet TP Sen (%) Spe (%) Se l(%) Acc (%)

1 113 158 103 91.15 93.51 65.19 93.24

2 122 242 119 97.54 85.75 49.17 87.21

3 212 224 189 89.15 95.60 84.38 94.25

4 155 324 146 94.19 80.18 45.06 82.24

5 196 279 195 99.49 90.08 69.89 91.85

Total 798 1227 752

Average 94.31 89.03 62.74 89.76

REMtot number of REM epochs in the test, REMdet number of REM epochs detected by the algorithm. TP true positives, Sen sensitivity, Spe

specificity, Sel selectivity, Acc accuracy.

TABLE 5. Performance of algorithm on test database.

Subject REMtot REMdet TP Sen (%) Spe (%) Sel (%) Acc (%)

6 187 297 186 99.47 86.28 62.63 88.76

7 131 285 107 81.68 79.8 37.54 80.04

8 162 284 120 74.07 79.68 42.25 78.74

9 131 184 124 94.66 93.91 67.39 94

10 146 153 113 77.4 95.48 73.86 92.92

11 212 268 203 95.75 91.83 75.75 92.66

12 87 64 52 59.77 98.63 81.25 95.11

13 89 267 88 98.88 82.42 32.96 83.74

14 163 118 105 64.42 98.45 88.98 92.93

15 123 113 92 74.8 97.06 81.42 93.79

16 147 164 105 71.43 92.8 64.02 89.56

17 162 259 137 84.57 85.16 52.9 85.06

18 166 274 166 100 87.37 60.58 89.42

19 162 303 150 92.59 82.43 49.51 84.03

20 153 225 115 75.16 88.91 51.11 87.07

Total 2221 3258 1863

Average 82.98 89.35 61.48 88.52

REMtot number of REM epochs in the test, REMdet number of REM epochs detected by the algorithm. TP true positives, Sen sensitivity, Spe

specificity, Sel selectivity, Acc accuracy.

TABLE 6. Algorithm performance analysis at output of first and second stages.

Features TP FP TN FN Sen (%) Spe (%) Sel (%) Acc (%)

SEFd only 1996 2534 10,437 225 88.67 80.52 48.40 81.91

SEFd, AP and RP 1863 1395 11,576 358 82.98 89.35 61.48 88.52

TP true positives, FN false negatives, TN true negatives, FP false positives, (numbers are total for 15 test subjects). Sen sensitivity, Spe

specificity, Sel selectivity, Acc accuracy, (numbers are average for 15 test subjects).
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different algorithms due to the varying databases used
to test each of them. However, since these methods
also report their performance on the publicly available
PhysioNet Sleep-EDF database,33 we evaluated our
algorithm using the same database for a fair compar-
ison.

This database consists of PSG recordings from 8
healthy subjects with two channels of EEG recorded
for each. We used the Fpz-Cz channel only and eval-
uated the algorithm using leave-one-out cross valida-
tion (LOOCV) on over 8800 scored epochs across all 8
subjects (about 9 hours recording for each subject)
with the exception of movement (MT) and unscored
epochs.

The performance of our algorithm and those of
other one-channel EEG-based methods on the same
database for REM detection is shown in Table 8. The
algorithm achieved similar sensitivity and selectivity,
compared to others, while using only three features. If
there are processing and power constraints attached
with the system then the algorithm presented in this
paper could be used to achieve REM detection per-
formance that is similar to other methods using a much
smaller number of features and a simple classifier.
However, if there are no such limitations either of the
methods listed in Table 8 would achieve similar results.
Further, we used the Fpz-Cz channel to evaluate the
algorithm’s performance since the main feature used in
this work (SEFd) exhibits strongest discriminatory
ability in the frontal channels. The other algorithms
listed in Table 8 used the channel Pz-Oz because the
this was closest to their algorithm requirements and
gave the best results.

DISCUSSION

Automatic detection of REM stages in sleep is
desirable to aid in the development of a fully auto-
mated sleep staging system. The bulk of sleep staging is
performed using EEG signals while EOG and EMG
signals are generally required to mark REM stages.
During the REM phases there are characteristic bursts
of eye movements observed on EOG traces that are
used to score them. However these eye movements are
present for only up to 27% of the total REM sleep
time.25 This suggests that EOG signals, albeit helpful,
may not be able to detect all REM stage epochs. For a
wearable sleep staging system, size and power are the
main constraints. A reduction in the number of chan-
nels directly helps in power saving by reducing the
amount of signals to process thereby minimising pro-
cessor load and size and consequently improving bat-
tery life. It also leads to a physical system that is lighter
in weight and easy to use. Identification of REM stage
from one channel of EEG with reliable performance,
therefore, could go a long way in system processing,
power and size reduction.

In this paper, the difference between spectral edge
frequencies (SEF95 and SEF50) in the 8–16 Hz fre-
quency band is introduced as a novel feature that
exhibits clear discriminatory abilities for scoring REM
epochs. On a test database of 15 subjects, this feature
alone was able to detect 88.7% of the total REM
epochs. The database was used as is, without removing
any movement artefacts or stages, to reflect real world
recording conditions. Absolute and relative powers in
the same spectral band were used as added features to

TABLE 7. Breakdown of all false detections in test database.

Subject TP FN TN FP FPW (W) FPN1 (N1) FPN2 (N2) FPN3 (N3)

6 186 1 698 111 48 (179) 25 (51) 38 (355) 0 (224)

7 107 24 703 178 50 (394) 31 (49) 92 (283) 5 (155)

8 120 42 643 164 119 (181) 41 (95) 4 (324) 0 (207)

9 124 7 926 60 5 (216) 33 (71) 22 (515) 0 (184)

10 113 33 845 40 23 (71) 8 (66) 8 (411) 1 (337)

11 203 9 731 65 1 (122) 6 (67) 57 (401) 1 (206)

12 52 35 862 12 6 (393) 3 (90) 3 (234) 0 (157)

13 88 1 839 179 69 (181) 73 (112) 37 (432) 0 (293)

14 105 58 828 13 0 (208) 5 (46) 8 (417) 0 (170)

15 92 31 693 21 1 (114) 20 (98) 0 (294) 0 (208)

16 105 42 761 59 4 (258) 23 (88) 32 (370) 0 (104)

17 137 25 700 122 60 (67) 20 (45) 42 (564) 0 (146)

18 166 0 747 108 54 (169) 40 (87) 14 (420) 0 (179)

19 150 12 718 153 17 (129) 70 (131) 66 (460) 0 (151)

20 115 38 882 110 76 (198) 26 (61) 8 (456) 0 (277)

Total 1863 358 11576 1395 533 (2880) 424 (1157) 431 (5936) 7 (2998)

FPX (X) shows false positives in stage X and the total number of epochs from stage X in parentheses.

TP true positives, FN false negatives, TN true negatives, FP false positives.

S. A. IMTIAZ AND E. RODRIGUEZ-VILLEGAS2356



further analyze the candidate REM epochs at the first
stage. This helped in reducing the number of false
detections by more than 40%. The final two-stage
algorithm resulted in sensitivity of 83% within a 95%
confidence interval range of 81.4 to 84.5% for a total
of 2221 test REM epochs while the Cohen’s kappa
value showed substantial agreement between visual
and automatic detection of REM. The algorithm also
resulted in similar performance compared to other
single-channel EEG-based methods when evaluated on
the same database.

The algorithm achieved its highest detection per-
formance using data from the frontal (Fp1-A2) chan-
nel. The performance degraded when the C3-A1
channel was used while it was worse using the O1-A2
channel. This suggests the the performance steadily
reduces when moving away from the frontal region of
the brain. This can be explained by the conclusions of
Corsi-Cabrera et al.8 on the fact that REM sleep
exhibits uncoupled EEG activity between frontal and
posterior regions of brain. Thus, features present in the
frontal region during REM sleep may be completely
absent in the posterior region. The close proximity of
Fp1-A2 channel to the EOG could also result in some
eye movement activity being picked up in the frontal
EEG thus resulting in better performance.

The REM detection algorithm uses fixed thresholds
to classify REM epochs for all test subjects. This
simplifies the classification stage thus reducing the
algorithm’s complexity. The use of patient-specific
thresholds was also investigated. This resulted in the
average sensitivity increasing to 90%, specificity 94%,
selectivity 73% and accuracy of about 94%. The in-
crease in sensitivity is a consequence of using patient-
specific SEFd threshold that resulted in 132 more REM
epochs being correctly identified. Adjusting the AP
threshold reduced the number of false detections by
almost 50% (down from 1395 to 752 epochs) thereby
improving the overall selectivity. The most notable
reduction is in the number of misclassified epochs in
Wake stage followed by N1 and N2 stages. The mean
and median averages and the standard deviation of all
patient-specific thresholds are shown in Table 9. The
mean and median values of the SEFd threshold are
4.54 and 4.5 Hz respectively which is close to the fixed
threshold being used. For APmax and RPmax, both

mean and median values are close to each other, but
slightly less than the fixed threshold value used. For
RPmin the difference between mean and median aver-
ages is the largest and both these values are lower than
their fixed-threshold counterpart. The relative stan-
dard deviation is lowest for SEFth at 4% while for the
other three thresholds it is between 12–17%. This
suggests that the use of adaptive thresholds that can
adjust to individual subjects can further improve the
results and will be explored in future work. However,
this improvement in performance will come at the cost
of additional algorithm complexity. Nevertheless, the
use of fixed thresholds still achieves a performance
comparable to other algorithms thus highlighting the
strength of the approach.

The REM detection algorithm presented here has
several advantages. First, its performance is compa-
rable to most of the methods in literature including
those that use multiple EEG, EOG and EMG chan-
nels. Second, it uses a simple thresholding method with
fixed thresholds to mark REM epochs in contrast to
some other systems that use complex neural networks
with a large input feature set. This low-complexity
classifier is advantageous for portable and wearable
systems with limited processing cycles and power
budget. Third, results from automatic sleep staging
systems of other research groups12,14,28 suggest overlap
of REM stage with N1 in various feature spaces. These
two stages have similar EEG and are difficult to dif-
ferentiate as discussed in ‘‘Introduction’’ section. The
feature used here also successfully distinguishes
between the majority of N1 and REM epochs. About
63% of the total N1 epochs were correctly distin-
guished from REM despite their strong EEG similar-
ities. The misclassification proportion in Wake stage
was much smaller, at 18.5%. This is, even with the
inclusion of the movement epochs (which are marked
as Wake according to AASM rules). This number
could go down further with the use of an artefact
rejection method at the front end of the algorithm as
well as using adaptive thresholding at the classification
stage. About 7% of N2 epochs were wrongly detected
as REM while only 7 out of 2998 N3 epochs were
misclassified. The total number of false positive epochs
was 1395 which may seem like a large number. How-
ever, the total epochs under test were 15192 from all

TABLE 8. Performance comparison with other single-channel EEG methods on PhysioNet Sleep-EDF database.

Method No. of features Classifier Sen (%) Sel (%)

This work Spectral power 3 Thresholding 80.6 74.8

Ref. 27 MSE, AR model 21 LDA and contextual smoothing 85.4 78.8

Ref. 35 Spectral power 30 Neural network 82.3 –

Ref. 2 Spectral and temporal features Multiple Fuzzy classifier and contextual smoothing 63.0 91.7
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stages of sleep. Considering this, the fraction of false
positives is actually less than 10%. Ideally, the number
of false positives should be even smaller. The use of
patient-specific thresholds reduces it to 752 epochs (less
than 5% false positives). Finally, the REM detection
algorithm in this paper uses data from only one EEG
channel and therefore keeps the data rate and pro-
cessing load small.

Overall our investigations in this study illustrate
that spectral edge frequency in the 8–16 Hz band of
EEG can be a useful feature for the detection REM
sleep phase. We have demonstrated this with a simple
algorithm and achieved high accuracy from just one
EEG channel. Although this algorithm showed a good
performance, the main objective of this paper was not
to present the best performing REM detection algo-
rithm but to introduce and evaluate a novel feature
that could be used with a simple algorithm or as an
added feature in a different algorithm. The heuristic
classifier used in this work is very simple and may not
represent the most optimal approach. Other classifiers
such as decision trees, support vector machines, etc.
may result in an improved detection performance.
Nevertheless, we believe that the results presented in
this paper will be highly useful for EEG system
designers by helping to reduce the number of channels,
computational cost, device size and power consump-
tion for future truly wearable and automated sleep
staging systems.
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