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Abstract

The equations of motion are derived for the dynamical folding of charged molecular strands (such as
DNA) modeled as flexible continuous filamentary distributions of interacting rigid charge conforma-
tions. The new feature is that these equations are nonlocal when the screened Coulomb interactions,
or Lennard-Jones potentials between pairs of charges, are included. The nonlocal dynamics is de-
rived in the convective representation of continuum motion by using modified Euler-Poincaré and
Hamilton-Pontryagin variational formulations that illuminate the various approaches within the
framework of symmetry reduction of Hamilton’s principle for exact geometric rods. In the absence
of nonlocal interactions, the equations recover the classical Kirchhoff theory of elastic rods. The
motion equations in the convective representation are shown to arise by a classical Lagrangian re-
duction associated to the symmetry group of the system. This approach uses the process of affine
Euler-Poincaré reduction initially developed for complex fluids. On the Hamiltonian side, the Poisson
bracket of the molecular strand is obtained by reduction of the canonical symplectic structure on
the phase space. A change of variables allows a direct passage from this classical point of view to the
covariant formulation in terms of Lagrange-Poincaré equations of field theory. In another revealing
perspective, the convective representation of the nonlocal equations of molecular strand motion is
transformed into quaternionic form.
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1. Introduction

1.1. Physical setup

Long molecules are often modeled as strands of many individual charged units. Generally, the dy-
namics of such charged molecular strands depends on both its local elastic deformations and the
nonlocal (screened electrostatic) interactions of charged units across the loops in the strand. These
electrostatic interactions depend on the spatial distances and relative orientations between the in-
dividual charged units at different locations along the strand.
The direct computational approach to such a complex problem is a full molecular dynamics simu-
lation, using methods that take into account all (or most of) the forces between the atoms of the
biological molecule as well as surrounding water molecules; see, e.g., [33].
In contrast, many previous studies have addressed the elastic continuum dynamics of the charged
strands using Kirchhoff’s approach [25]. For historical reviews and citations of this approach see,
e.g., [8; 7]. A comprehensive survey of both the history and present state of the field can be found in
[1]. Recent advances using this approach, especially in the context of helical structures, appear in,
e.g., [16; 15; 3; 14; 17; 34]. Although many important results have been obtained by the traditional
continuum theory approach, it has a limitation. Namely, the generalization of the classical Kirchhoff
theory to account for the torque caused by the long-range electrostatic interaction of molecules in
different spatial locations along a flexible strand remains elusive, although the force due to electro-
static interaction has been captured by the traditional theory. See, for example, the article [7] which
reviews progress in dynamical investigations of charged units distributed along a strand. In general,
the lack of a consistent continuum model incorporating both torques and forces from electrostatic
interactions has hampered analytical considerations; see for example [3] for additional discussion.
This paper introduces a framework that allows treatment of both torques and forces arising from
electrostatic interactions. We should note that even in the absence of a continuum dynamical model
for such nonlocal interactions, it is still possible to obtain static solutions using energy minimization
techniques. For example, interesting helical static solutions of pressed elastic tubes using interactions
that prevent self-intersection of the tubes were obtained in [4]. The difficulty in computing the dy-
namical effects of torque due to long-range interactions among the molecular subunits arises because
the classical Kirchhoff theory is formulated in a frame moving with the strand, but it deals with a
mixture of variables, some measured in the fixed spatial frame and some in the body frame. The
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torque due to long-range interactions presents a particular difficulty for the mixed representations
in the Kirchhoff theory, because it is applied at base points of a curve that is moving in space. That
is, the spatial Euclidean distances and relative orientations of the molecules must be reconstructed
at each time step during the sinuous motion and twisting of the strand before any self-consistent
computation can be made of the forces and torques due to long-range electrostatic interactions.

In fact, even when electrostatic forces are not involved, the motion of realistic curves in space is
inherently nonlocal, because of the requirement that the curve not cross itself during the dynamics.
In the purely elastic Kirchhoff approach, such nonlocal considerations are neglected. Physically,
however, self-intersections are prevented by the existence of a short-range potential (e.g., Lennard-
Jones potential) that produces highly repulsive forces when two points along the curve approach
each other. Thus, forces between segments of the strand that could be quite distant along its arc
length are essential for the physical description of its dynamics.

This paper casts the problem of strand dynamics for an arbitrary intermolecular potential into
the convective representation of continuum dynamics introduced in [22] and applied in exact
geometric rod theory in [37]. The spatial and convective representations of continuum dynamics are
the analogs, respectively, of the spatial and body representations of rigid body dynamics on SO(3).
This analogy arises because the configuration spaces for continuum dynamics with microstructure
and for rigid bodies are both Lie groups. In both cases, the spatial velocities are right-invariant
vector fields, while the convective, or body, velocities are the corresponding left-invariant vector
fields.

If the curve were rigidly fixed in space, and the attached molecules on this fixed curve were simply
allowed to rotate freely at each position, the theory of motion based on nonlocal interaction between
different molecules would be more straightforward. Of particular interest here is the work [31] where
a single charge was attached at each point along a fixed filament by a rigid rod of constant length
that was allowed to rotate in a transverse plane. These charges were allowed to interact locally
with other nearby charges that were similarly attached to planar rotors of constant length mounted
transversely to the fixed filament.

The model in [31] comprised a fixed base strand and rigid charge configurations described by SO(2)
(i.e., one rotor in each normal plane). This model will be generalized here to allow flexible motion
of the base strand (time-dependent bend, twist, writhe, and extension) while also including all the
degrees of freedom of molecular orientation in SO(3) excited during the process of, say, folding.
According to this more general class of models, a long molecule is represented as a flexible filament
or strand, along which are attached various different types of rigid conformations of sub-molecules
that may swivel relative to each other in three dimensions under their mutual interactions. The
flexibility of the filament arises physically because the electrostatic interaction between any pair of
these rigid conformations, either along the filament or across from one loop to another of its folds,
is much weaker than the internal interactions that maintain the shape of an individual charged
conformation. The application of the present model to DNA is limited, however, because it fails to
model the primary feature of DNA – its unzipping [32]. The further challenge of modeling unzipping
of a double strand in the convective representation will be deferred to future work.

The primary aim of this paper is to formulate the dynamics of nonlocal interactions on a continuum
strand carrying charged microstructure by using Lie symmetry reduction in the convective represen-
tation. This new formulation of symmetry reduced nonlocal convective strand dynamics raises many
interesting and nontrivial issues for future research. Among these issues are the classification and
stability analysis of equilibrium solutions, dynamics of conformational changes (folding/unfolding)
and formulation of computational approaches in the convective representation, all of which provide
challenges for future research.

1.1.0.1. Scope of the paper This paper considers rigid charge conformations (RCCs) that are mounted
along a flexible moving filament. These RCCs are more complex than the planar pendula considered
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for a fixed base strand in [31]. They are mounted in orthonormal frames defined at each point along
the strand. They are allowed to interact with each other via a nonlocal (e.g., screened electrostatic, or
Lennard-Jones) potential. Our model for the motion of the filament derives from the geometrically
exact rod theory of Simó et al. [37], which is expressed in the convective representation of
continuum mechanics. The rotations of rigid charge conformations along the flexible filament are
illustrated in Figure 1.

k=1

k=2

k=3

m=2

m=3
m=1

r(s,t)

r(s',t)

Fig. 1. Rigid conformations of charges are distributed along a curve. Note that this is a spatial representation
of the orientations of these conformations of charges.

These rigid conformations of multiple charges interact via a nonlocal effective many-body potential
representing their screened electrostatic interactions. The nonlocal interactions among these RCCs
depend on their separations in the ambient space and relative orientations, which are both allowed
to evolve with the filament motion. Thus, the inertial motion of a pair of RCCs mounted at any two
spatial points r(s, t) and r(s′, t) along the filament is governed by an effective potential interaction
energy that depends on their spatial separation and relative orientation. The filament is taken to
be one-dimensional, although the orientations of the rigid charged conformations mounted along it
are three-dimensional. A practical example to which our filament approach would potentially apply
is the vinylidene fluoride (VDF) oligomer [36], which may be approximated by a strand carrying
a dipole moment whose orientation is perpendicular to the axis of the strand. The VDF oligomer
strand is approximately straight for small lengths, but it forms complex shapes due to electrostatic
interactions for longer lengths. In our framework, the undisturbed configuration of VDF polymer will
correspond to a straight elastic filament, along which a rigid conformation of two opposite charges
is positioned so that the dipole moment vector formed by those charges is perpendicular to the axis
of the filament. The present paper is limited to formulating the geometrically exact model of the
charged molecular strand and studying its mathematical structure. Many challenges remain to be
investigated in future research concerning the properties and solution behavior of this model.

The dynamical influence of non-local electrostatic forces on rod mechanics is studied here using
various approaches, including the Euler-Poincaré variational method [21]. This variational approach
leads, for example, to an equivalent Lie-Poisson Hamiltonian formulation of the new equations
appearing below in (3.23), (3.26). Applying the Ad∗(Λ,r)−1 transformation from convective to spatial
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variables in these equations streamlines their form and exposes the meaning of the interplay among
their various local and nonlocal terms, relative to the Kirchhoff theory.

The convective formulation presented here applies equally well when the underlying substrate man-
ifold (the filament here) becomes multidimensional; so this formulation would also be applicable to
such problems as the motion of charged sheets, or charged elastically deformable media. Although
we present part of the relevant geometry here, we leave its applications in higher dimensions for a
later publication.

1.1.0.2. Plan. The paper is written in two relatively independent, complementary parts that are
meant to act as a “Rosetta stone” for expressing applications of symmetry reduction for molecular
strand dynamics from the following two perspectives. The first part of the paper consists of Sections
2-3, in which the reduced dynamics of the charged strands are derived by means of “bare hands”
methods that use only variational principles and vector calculus. In contrast, the second part of the
paper consisting of Sections 4-7 contains a differential geometric perspective meant to elucidate the
mathematical structure of the equations of motion derived in the first part. Additional information
that enhances the formulation, but is not directly along the line of development of the rest of the
paper appears in the Appendices.

With this two-part organization of the paper, researchers in Molecular Dynamics, for example, who
may be looking for a continuum model for DNA dynamics can examine the equations of motion
in the first part of the paper without being concerned about the differential geometry. Likewise,
mathematicians can find the differential geometric structure in this model of strand dynamics without
concerning themselves about how the model would apply in DNA experiments.

The paper is organized as follows. Subsection 1.2 outlines the content of the paper in mathematical
terms by giving an overview of the various spatial representations of filament dynamics discussed here
from the canonical and covariant point of views. Subsection 1.3 connects our results to the earlier
literature. Paragraph 1.3.1 relates the theory presented here to the classical elastic rod approach
pioneered by Kirchhoff. The need to keep track of spatial separations in long-range electrostatic
interactions requires that we write the dynamics in either the spatial or convective representations,
as opposed to using the Kirchhoff mixed representation. Paragraph 1.3.2 considers the simplified
case when the orientations of the RCCs along the curve may depend on time, but the position of
any point s along the curve is fixed, thereby connecting to earlier work in [31].

Section 2 incorporates the flexible motion of the filament into the dynamics by using the geomet-
rically exact rod theory given in [37]. The equations of motion are derived in convective form in
Subsection 3.1 by using the Euler-Poincaré approach, modified to allow for nonlocal interactions.
A second derivation is given using the different, but equivalent, Hamilton-Pontryagin approach in
Appendix B. The strand equations in the convective representation are formulated as conservation
laws along the filament in Subsection 3.2 and their affine Lie-Poisson Hamiltonian structure is eluci-
dated in Subsection 3.3. Appendix C presents the convective frame dynamics of the flexible strand
in terms of quaternions, which we hope will be useful in numerical computations.

Section 4 introduces affine Lie group actions. Section 5 explains the background for the affine Euler-
Poincaré and affine Lie-Poisson approaches and applies this framework to the dynamics of charged
strands. Section 6 introduces a change of coordinates that decouples the equations into their hori-
zontal and vertical parts in a principal bundle framework. Section 7 explains the geometric structure
of this coordinate change and leads to the covariant Lagrange-Poincaré formulation. Subsection 7.4
and Appendix D discuss generalizations of the molecular strand to higher dimensions. Also in Ap-
pendix D, the equations of motion are obtained by an alternative covariant Lagrange-Poincaré ap-
proach. Section 8 summarizes our conclusions and sets out promising directions for further studies.

1.2. Mathematical setup



6 D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, V. Putkaradze and T.S. Ratiu

1.2.1. Description of the variables involved In the Lagrangian representation, the motion of
a strand is described by the variables Λ(s, t) ∈ SO(3) and r(s, t) ∈ R3. The vector r(s, t) is the
spatial position of the filament and the variable Λ(s, t) denotes the rotation of the RCC at the point
s along the filament at time t. Here s ∈ [0, L] is a parameter spanning a fixed interval. The time
and space derivatives yield, respectively, the material velocity (Λ̇(s, t), ṙ(s, t)) and the angular and
linear deformation gradients (Λ′(s, t), r′(s, t)). Given Λ and r, we define notation for the following
reduced variables

Ω = Λ−1Λ′ ∈ so(3),
ω = Λ−1Λ̇ ∈ so(3),
Γ = Λ−1r′ ∈ R3, (1.1)
γ = Λ−1ṙ ∈ R3,

ρ = Λ−1r ∈ R3.

Remark 1 (Notation). Quantities defined using derivatives in s are denoted using capital Greek
letters, whereas lower-case Greek letters (except for ρ) denote quantities whose definitions involve
derivatives with respect to time. Bold letters, for example Γ , denote vectors in R3 whereas Ω is a
3× 3 skew-symmetric matrix in the Lie algebra so(3).

Definition 1. The hat map ̂ : (R3,×) → (so(3), [· , ·]) is the Lie algebra isomorphism given by
ûv = u× v for all v ∈ R3.

Thus, in an orthonormal basis of R3 and u ∈ R3, the 3 × 3 antisymmetric matrix u := û ∈ so(3)
has entries

ujk = (û)jk = −εjklul. (1.2)

Here the symbol εjkl with j, k, l ∈ {1, 2, 3} denotes the totally antisymmetric tensor density with
ε123 = +1 that defines the cross product of vectors in R3. In what follows, we shall abbreviate this
notation by writing Ω := Ω̂ and ω := ω̂.

The physical interpretation of the variables (1.1) is as follows: The variable ρ(s, t) represents the
position of the filament in space as viewed by an observer who rotates with the RCC at (s, t). The
variables

(
Ω(s, t),Γ (s, t)

)
describe the deformation gradients as viewed by an observer who rotates

with the RCC. The variables
(
ω(s, t),γ(s, t)

)
describe the body angular velocity and the linear

velocity as viewed by an observer who rotates with the RCC.

1.2.2. The canonical point of view The canonical viewpoint of continuum dynamics derives
the equations of motion by applying a process of reduction by symmetry to a phase space which
is usually a cotangent bundle T ∗Q endowed with a canonical symplectic form. Thus, at unreduced
level, the motion is given by the canonical Hamilton equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

for a Hamiltonian function H : T ∗Q → R, invariant under the action of the symmetry group. On
the Lagrangian side, the motion is governed by the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0,

that produce the equations of motion by Lagrangian reduction. Here, L denotes the Lagrangian of
the system, defined on the tangent bundle TQ of the configuration manifold Q.
This approach has been extensively studied for fluids; see for example [29] for the Hamiltonian
description and [21] for the Lagrangian side. In hydrodynamics, Q is the product of a Lie group
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G and a representation space V on which the group acts linearly as G × V → V . The dual space,
V ∗, is the space of linearly advected quantities such as the mass density or the magnetic field. The
associated process of reduction by symmetry under the action of G is called Lie-Poisson reduction
for semidirect products [21]. For such systems (in the left version), we have the relations

ξ(t) = g(t)−1ġ(t),
a(t) = g(t)−1aref ,

(1.3)

where g(t) ∈ G is the Lagrangian motion, ξ(t) is the convective velocity, and a(t) ∈ V ∗ is the
evolution of the advected quantity for a given initial condition aref (reference configuration). Note
that a(t) is also a convective quantity.
For the molecular strand we have g = (Λ, r) and a = (Ω,Γ ,ρ). However, the relations (1.1) cannot be
recovered from (1.3) because the variables (Ω,Γ ,ρ) are not linearly advected. Thus, a generalization
of (1.3) is needed, in which g ∈ G acts on a ∈ V ∗ by an affine action. Such a generalization is
given by the process of affine Euler-Poincaré reduction developed in the context of complex
fluids in [12]. This theory, which we recall in Section 5, produces the relations

ξ(t) = g(t)−1ġ(t),
a(t) = g(t)−1aref + c(g(t)−1), (1.4)

where the additional term c is a group one-cocycle. 1

If we take aref = 0, then the advected quantity evolves in time as

a(t) = c(g(t)−1).

Remarkably, the evolution of (Ω,Γ ,ρ) in (1.1) is precisely of this form for a well chosen cocycle.
The variables (Λ(s, t), r(s, t)) are interpreted as time-dependent curves in the infinite dimensional
Lie group

G = F([0, L], SE(3))

of all smooth functions on [0, L] taking values in SE(3). Here, SE(3) ' SO(3) s R3 is the special
Euclidean group, comprising the semidirect product action of three-dimensional rotations SO(3) and
translations R3 as in equation (2.9).

Remark 2. The variables
(ω,γ) = (Λ, r)−1(Λ̇, ṙ),

their associated momenta

(π,µ) :=
(
δl

δω
,
δl

δγ

)
,

and the affine advected variables (Ω,Γ ,ρ) are all convective quantities; see [30]. In this context,
convective quantities may also be called body quantities, since they are defined in a frame following
the motion of the molecular strand.

In contrast, the variables (
π(S),p(S)

)
:= Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)
(1.5)

are spatial quantities, i.e., they are defined at fixed points in Euclidean space.

1 That is, c satisfies the property c(fg) = c(f) + fc(g), where f acts on c(g) by a left representation, as
discussed in Section 5.
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1.2.3. The covariant point of view The covariant point of view interprets the Lagrangian vari-
ables (Λ(s, t), r(s, t)) as a map

(s, t) 7→ (Λ(s, t), r(s, t)), (1.6)

in the group SE(3) rather than as a curve

t 7→ (Λ(·, t), r(·, t)),

in the infinite dimensional configuration space F([0, L], SE(3)). More precisely, the variables s and
t are now treated in the same way and belong to the spacetime manifold X := [0, L]×R. Note that
this is exactly the point of view taken in classical field theories. One should therefore see the map
(1.6) as a section of the trivial fiber bundle

πXP : P = X × SE(3)→ X, πXP (x,Λ, r) := (Λ, r),

over the spacetime X = [0, L]×R 3 (s, t) = x. Indeed, by definition, a section σ of a bundle πXP is
a smooth map σ : X → P verifying the property πXP ◦ σ = idX . Thus, since our bundle is trivial, a
section reads

σ(x) = (x,Λ(x), r(x)).

For the molecular strand, the Lagrangian depends on the map (1.6) as well as on its first partial
derivatives. From the abstract covariant point of view this means that the Lagrangian L depends
on the first jet extension j1σ(x) := Txσ of the section σ, where Tσ : TX → TP denotes the tangent
map of σ. More precisely, in our case we have

j1σ(x) ∼= (Λ(x), r(x), Λ′(x)ds+ Λ̇(x)dt, r′(x)ds+ ṙ(x)dt). (1.7)

The first jet extension j1σ is in a natural way a section of a bundle over X called the first jet bundle
J1P → X. Thus, the Lagrangian is abstractly a map

L : J1P → R,

and the dynamics is given by the covariant Euler-Lagrange equations.
For the molecular strand, L is SO(3)-invariant, thus the first jet extension (1.7) yields the section(

Λ−1r, Λ−1Λ′ds+ Λ−1Λ̇dt, Λ−1r′ds+ Λ−1ṙdt
)
,

by SO(3)-reduction and one recovers the convective variables

(ρ,Ωds+ ωdt,Γ ds+ γdt)

defined in (1.1). The precise geometric setting underlying this covariant reduction process will be
explained in detail in Sections 6 and 7.
Reduction by the group SO(3) yields a principal bundle structure on P given by

πΣP : P → Σ := P/SO(3) = X × R3, πΣP (x,Λ, r) = (x,Λ−1r).

This bundle over Σ should not be confused with the configuration bundle πXP : P → X that has
the same total space, but a different base. The following diagram illustrates the relationship among
the different bundles arising in the covariant point of view:

Λ(s, t) ∈ SO(3) SO(3)y y
(Λ, r) (s, t) ∈ SE(3) −−−−→ P

πXP−−−−→ X

πSE(3)

y πΣP

y yid

ρ(s, t) ∈ R3 −−−−→ Σ −−−−→
πXΣ

X.
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1.3. Connection to previous studies

1.3.1. Purely elastic motion and Kirchhoff equations for elastic rod The results of this
paper in the convective representation may be compared to the classical Kirchhoff theory of the
purely elastic rod, particularly in terms of the available conservation laws [1]. This comparison was
presented in [37] for the purely elastic case, i.e., the Lagrangian l is an explicit (local) function of the
variables l = l(ω,γ,Ω,Γ ,ρ) defined in equation (1.1). The work of Simó et al. in [37] is extended
here to the case of nonlocal interactions.

Of particular interest to us are the balance laws for angular and linear momenta. For this comparison,
we shall use the notation of [7]. For simplicity, we assume that the position r(s) along the filament
is given by the arc length s. This assumption conveniently avoids extra factors of

∣∣Γ (s)
∣∣ in the

expressions. We shall also mention here that in order to connect to the Kirchhoff theory, we need
to make an explicit choice of Λ(s) ∈ SO(3) as a transformation matrix from the fixed orthonormal
basis {E1,E2,E3} of R3 to the orthonormal basis of directors {d1(s),d2(s),d3(s)} describing the
orientation of the filament (see Figure 1). For this, we take

di(s) = Λki (s)Ek, i = 1, 2, 3. (1.8)

There is some ambiguity in the choice of the basis {d1(s),d2(s),d3(s)} at every given point. The
most popular selection of the basis is governed by the so-called natural frame. We shall not go into the
details of this basis right now and refer the reader to [7] for a more complete discussion. In principle,
we need not have taken this particular choice of Λ, since for rigid charge conformations (RCC), the
relative configuration of charges is not changed under the dynamics, and the configuration of an RCC
state at each point s is completely described by a pair (Λ, r) ∈ SE(3). Taking Λ to be a different
representation of an RCC would lead to a transformation Λ(s, t) 7→ AΛ(s, t) where A ∈ SO(3) is a
fixed matrix. While our description would be equivalent in this case, the explicit relation to Kirchhoff
formulas would become less obvious.

We shall note that if the charge conformations were allowed to deform, then Λ would no longer be
an element of SO(3). Instead, the charge conformation would be described by a general invertible
matrix Λ and a vector r ∈ R3. No explicit relation to Kirchhoff’s formulas would be possible in this
case.

As mentioned in Section 1.1, Kirchhoff’s approach precludes any simple computation of Euclidean
distances between the charges, unless the spatial length-scale of the rigid charge conformations
(RCCs) holding the charges at given point ηk(s) is negligible. It is interesting that in the more
complex case considered here, the equations become formally equivalent to Kirchhoff’s equations,
provided the effects of non-locality are computed appropriately. In particular, one requires an ap-
propriate mapping from the convective representation to the Kirchhoff representation, as well as
some identities connecting nonlocal contributions to the total derivatives of the Lagrangian. This
mapping is discussed in more detail in §3.2 below.

The linear momentum density p is defined as p(s) = ρd(s)ṙ(s), where ρd(s) is the local mass density
of the rod. In that case, the kinetic energy due to linear motion Klin is given by

Klin =
1
2

∫
ρd(s)‖ṙ(s)‖2ds =

1
2

∫
ρd(s)‖Λ−1ṙ(s)‖2ds =

1
2

∫
ρd(s)‖γ(s)‖2ds.

Consequently, the variable p and the linear momentum δKlin/δγ are related by

p = ρdṙ = Λρdγ = Λ
δKlin

δγ
. (1.9)

After these preliminaries, we are ready for a detailed comparison with Kirchhoff’s theory. A point on
a rod in Kirchhoff’s theory is parameterized by the distance r(s, t) measured from a fixed point in
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space. The ith component of the local angular momentum in the body frame {d1(s),d2(s),d3(s)} is
defined by πi(s) := Iij(s)ωj(s), where ωj(s) is the jth component of body angular velocity given by
ω̂(s) := ω(s) = Λ(s)−1Λ̇(s), and Iij(s) is the local value of the inertia tensor. Note that the inertia
tensor I(s) expressed in body coordinates is time-independent. Thus the local kinetic energy due to
rotation is given by

Krot =
1
2

∫
ω(s) · I(s)ω(s)ds.

Hence, the local body angular momentum density is given by

π = Iω =
δKrot

δω
.

To write the conservation laws, we need to express the angular momentum in the fixed spatial frame
{E1,E2,E3}. To distinguish it from π which was expressed in the body frame {d1(s),d2(s),d3(s)},
we shall denote the same vector in the fixed spatial frame {E1,E2,E3} by π(E). This convention
will be used for all other vectors. Thus, (1.8) yields

π(s) = πi(s)di(s) = Iij(s)ωj(s)di(s) = Iij(s)ωj(s)Λki (s)Ek = π(E),k(s)Ek,

so the kth component of the spatial angular momentum is expressed in terms of the local body
quantities Iij(s) and ωk(s) as

π(E),k = Λki Iijωj = [ΛIω]k =
[
Λ
δKrot

δω

]k
. (1.10)

Therefore, the vector π(E)(s) of body angular momentum expressed in the spatial frame is connected
to the local body quantities as

π(E) = ΛIω = Λ
δKrot

δω
. (1.11)

Remark 3. The vector π(E) and all other vectors with the superscript (E) do not have the physical
meaning of the angular momentum in the fixed frame. The true angular and linear momenta in
the spatial frame will be denoted (see immediately below) with the superscript (S). The quantities
with the superscript (E) are just the transformations of vectors with respect to rotation of the base
frame. No confusion should arise over this distinction.

In general, it may be assumed for physical reasons that the Lagrangian in Kirchhoff’s formulation
has the form

l(ω,γ,Ω,Γ ) = Klin(γ) +Krot(ω)− E(Ω,Γ ), (1.12)

where E(Ω,Γ ) is a certain explicit function of Ω and Γ (not necessarily quadratic). In this case,
the body forces n = δl/δΓ and torques m = δl/δΩ are connected to the transformed quantities
n(E),m(E) in Kirchhoff’s theory as

n(E) = Λ
δl

δΓ
, m(E) = Λ

δl

δΩ
. (1.13)

Next, we use formula (1.5) to transfer to spatial frame. Identifying elements of se(3)∗ with pairs of
vectors (µ,η) ∈ R3, produces a useful formula [30; 19] for the coadjoint action SE(3) × se(3)∗ →
se(3)∗, expressed in terms of vector cross products in R3,

Ad∗(Λ,r)−1 (µ,η) = (Λµ+ r × Λη, Λη) . (1.14)
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Thus, the spatial momenta – denoted by a superscript (S) – become(
π(S),p(S)

)
: = Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)
=
(
Λ
δl

δω
+ r × Λ δl

δγ
, Λ

δl

δγ

)
=
(
π(E) + r × p(E) , p(E)

)
, (1.15)

upon using (1.9) and (1.11). Analogously, using (1.13), the spatial torques m(S) and forces n(S) are
expressed as (

m(S),n(S)
)

: = Ad∗(Λ,r)−1

(
δl

δΩ
,
δl

δΓ

)
=
(
Λ
δl

δΩ
+ r × Λ δl

δΓ
, Λ

δl

δΓ

)
=
(
m(E) + r × n(E) , n(E)

)
. (1.16)

The conservation laws in the Kirchhoff theory may now be written as

∂

∂t
(π(S),p(S)) +

∂

∂s
(m(S),n(S)) = (T, f), (1.17)

where T and f are external torques and forces, respectively. Equations (1.17) give, componentwise,
the following linear and angular momentum conservation laws (cf. equations (2.5.5) and (2.5.7) of
[7])

∂

∂t
p(E) +

∂

∂s

(
n(E) − F

)
= 0, (1.18)

∂

∂t

(
π(E) + r× p(E)

)
+

∂

∂s

(
m(E) + r × n(E) − L

)
= 0, (1.19)

where F and L are defined as the indefinite integrals,

F =
∫ s

f(q)dq and L =
∫ s

[r(q)× f(q) + T(q)]dq.

Opening the brackets in (1.18) and (1.19) gives the balances of linear and angular momenta in
Kirchhoff’s approach (cf. eqs. (2.3.5) and (2.3.6) of [7])

∂p(E)

∂t
+
∂n(E)

∂s
= f , (1.20)

∂π(E)

∂t
+
∂m(E)

∂s
+
∂r

∂s
× n(E) = T. (1.21)

To see how these Kirchhoff balance laws look in our convective representation, one may substitute
relations (1.15) and (1.16) into (1.17) to obtain:

∂

∂t

[
Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)]
+

∂

∂s

[
Ad∗(Λ,r)−1

(
δl

δΩ
,
δl

δΓ

)]
= (T, f). (1.22)

Assume now that the Lagrangian l depends explicitly on the additional variable ρ = Λ−1r. This
dependence corresponds to potential forces exerting forces and torques. As shown in §3.2, in our
representation the external torques T and forces f are given by

(T, f) = Ad∗(Λ,r)−1

(
δl

δρ
× ρ, δl

δρ

)
. (1.23)
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By using formula (1.14), relationship (1.23) expands, then simplifies to

Ad∗(Λ,r)−1

(
δl

δρ
× ρ, δl

δρ

)
=
(
Λ

(
δl

δρ
× ρ

)
+ r × Λ δl

δρ
, Λ

δl

δρ

)
=
((

Λ
δl

δρ

)
× (Λρ) + r × Λ δl

δρ
, Λ

δl

δρ

)
=
(

0, Λ
δl

δρ

)
, (1.24)

upon recalling from (1.1) that Λρ = r.

Remark 4 (Potential external forces produce no net torque).
Equation (1.24) implies that potential external forces produce no net torque on the strand. Hence,
the nonzero torques T in (1.22) must arise from non-potential forces.

The conservation law (1.22) is formally equivalent to the classical expressions in (1.18) and (1.19),
even if nonlocal interaction is present. This equivalence shows how the classical results (1.18) and
(1.19) generalize for the case of nonlocal orientation-dependent interactions. Clearly, the conservation
laws are simpler in the Kirchhoff representation. However, if nonlocal interactions are present (called
self-interaction forces in [7]), the computation of the required time-dependent Euclidean distances
in the interaction energy becomes problematic in the classical Kirchhoff approach. As we shall see
below in §3.2, these conservation laws may be obtained, even when nonlocal interactions are present.
Also in §3.2, we show that the nonlocal forces are included in the conservation law (1.22) and are
expressed in the same form as a purely elastic conservation law.
The balance laws (1.18) and (1.19) are much simpler in appearance than the expressions in (1.22),
as they do not involve computing (Λ, r) at each instant in time and point in space. Thus for elastic
rods, in the absence of nonlocal interactions, the Kirchhoff mixed (convective-spatial) representation
appears simpler than in either the convective or spatial representations. However, the presence of
nonlocal terms summons the more general convective approach introduced for this problem in [23].

Remark 5 (Reduction of static equations of motion to the heavy top).
A famous analogy exists between the stationary shapes of an elastic filament and the equations of
motion of a heavy top [24; 35]. This shows that the geometric approach also applies to the problem
of determining the steady equilibrium solutions of filament dynamics. This paper focuses, however,
on the derivations and geometric structures underlying the dynamical equations, rather than on the
solutions of the equations.

1.3.2. Reductions for a fixed filament We begin by applying the ideas of the present paper to
the particular case of a fixed filament, in order to compare the motion equations with those arising
in [31]. This is achieved by a direct reduction of the more general case to the non-moving filament,
and the rotation of the RCC by a general SO(3) group element. Such a system is a generalization
of the system presented in [31] from SO(2) to SO(3) rotations.

The analysis of filament dynamics driven by nonlocal interactions simplifies in the case when the
position of the filament is fixed as r(s) and does not depend on time. For simplicity, we shall assume
that the filament is straight and s is the arc length, so that r(s) = (s, 0, 0)T . The following reduced
Lagrangian is invariant under the left action of the Lie group SO(3):

l =
1
2

∫
ω(s) · I(s)ω(s)ds︸ ︷︷ ︸

Kinetic energy

− 1
2

∫
f (Ω(s)) ds︸ ︷︷ ︸

Elastic energy

− 1
2

∫∫
U (ρ(s), ξ(s, s′)) dsds′︸ ︷︷ ︸

Potential energy

. (1.25)

A nonlocal interaction term appears in the potential energy of relative orientation in this Lagrangian.
This term involves a variable

ξ(s, s′) = Λ−1(s)Λ(s′) ∈ SO(3),
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which defines the relative orientation of rigid charge conformations at two different points in space.
The variable ξ(s, s′) ∈ SO(3) is invariant with respect to simultaneous rotations of the coordinate
frames for s and s′, but it is not an element of a Lie algebra. In particular, ξ(s, s′) is not a vector.
The presence of nonlocal interactions introduces dependence on relative orientation and thereby
produces new types of nonlocal terms in the corresponding Euler-Poincaré dynamics obtained in
applying reduction by SO(3) symmetry to Hamilton’s principle.

1.3.2.1. Euler-Poincaré dynamics. Euler-Poincaré dynamics for the angular dynamics on a fixed
filament follows from stationarity of the left invariant total action

S =
∫
l(ω,ρ, ξ,Ω)dt.

Note that this case does not require computation of the evolution equation for γ, since the filament is
assumed to be fixed in space, i.e., γ = Λ−1ṙ = 0. The variational derivative δS for such a Lagrangian
is computed as,

δS =
∫
δl(ω, Λ,Ω)dt =

∫ (〈
δl

δω
, δω

〉
+
〈
Λ−1 δl

δΛ
, Σ

〉
+
〈
δl

δΩ
, δΩ

〉)
dt, (1.26)

for the notation Σ = Λ−1δΛ. As we will see in §3.1.1, these variations are related by

δω = Σ̇ + [ω,Σ] = Σ̇ + adωΣ,
δΩ = Σ′ + [Ω,Σ] = Σ′ + adΩΣ,
δρ = −Σ× ρ.

Substituting these formulas into (1.26) then integrating by parts in the time t and one-dimensional
coordinate s along the fiber yields

δS =
∫
δl dt =

∫ 〈
− ∂

∂t

δl

δω
+ ad∗ω

δl

δω
− ∂

∂s

δl

δΩ
+ ad∗Ω

δl

δΩ

−
∫ (
− ∂U

∂ξ
(s, s′)ξT (s, s′) + ξ(s, s′)

(
∂U

∂ξ
(s, s′)

)T)
ds′

−
(
δl

δρ
× ρ

)b
, Σ

〉
dt, (1.27)

where
δl

δρ
= −1

2

∫
∂U

∂ρ
(ρ(s), ξ(s, s′)) ds′.

Thus, Hamilton’s principle δS = 0 implies the Euler-Poincaré equations,

− ∂

∂t

δl

δω
+ ad∗ω

δl

δω
=
∂

∂s

δl

δΩ
− ad∗Ω

δl

δΩ
+
(
δl

δρ
× ρ

)b

+
∫ (
−∂U
∂ξ

(s, s′)ξT (s, s′) + ξ(s, s′)
(
∂U

∂ξ
(s, s′)

)T)
ds′. (1.28)

Note that these Euler-Poincaré equations are nonlocal. That is, they are integral-partial differential
equations.
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Reformulating (1.28) in terms of vectors yields the following generalization of equations considered
by [31], written in a familiar vector form:

(
− d

dt

δl

δω
+

δl

δω
× ω − ∂

∂s

δl

δΩ
−Ω × δl

δΩ
+ ρ× δl

δρ

)b

=
∫ (
−∂U
∂ξ

(s, s′)ξT (s, s′) + ξ(s, s′)
(
∂U

∂ξ
(s, s′)

)T)
ds′. (1.29)

In order to close the system, one computes the time derivative of ξ(s, s′) = Λ−1(s′)Λ(s):

ξ̇(s, s′) = −Λ−1(s′)Λ̇(s′)Λ−1(s′)Λ(s) + Λ−1(s′)Λ̇(s)
= −ω(s′)ξ(s, s′) + ξ(s, s′)ω(s). (1.30)

This expression is not quite a commutator because different positions s and s′ appear in ω. However,
operating with ξ−1 from the left in equation (1.30) gives a proper Lie-algebraic expression for the
reconstruction of the relative orientation,

ξ−1ξ̇(s, s′) = ω(s)−Adξ−1(s,s′)ω(s′). (1.31)

Formulas (1.28)-(1.30) generalize the results in [31] for a fixed filament from SO(2) to SO(3) rota-
tions.

2. Motion of exact self-interacting geometric rods

2.1. Problem set-up

Suppose each rigid conformation of charges is identical and the kth electrical charge is positioned
near a given spatial point r through which the curve of base points of the RCCs passes. This curve
is parametrized by a variable s which need not be the arc length. Rather, we take s ∈ [0, L] to be a
parameter spanning a fixed interval. 2

The spatial reference (undisturbed) state for the kth charge in a given RCC is the sum r(s) +ηk(s).
That is, ηk(s) is a vector of constant length that determines the position of the k-th electrical
charge relative to the point r(s) along the curve in its reference configuration. The ηk(s) specify the
shape of the rigid conformation of charges. At time t the position ck of the kth charge in the rigid
conformation anchored at spatial position r(s, t) along the curve parametrized by s may rotate to a
new position corresponding to the orientation Λ(s, t) in the expression

ck(s, t) = r(s, t) + Λ(s, t)ηk(s), where Λ(s, 0) = Id. (2.1)

This rigid conformational rotation is illustrated in Figure 1. In Mezic’s case [31], the rotation is in
the plane, so that Λ ∈ SO(2), and there is only one charge, so k = 1. From now on we shall suppress
notation for time dependence without danger of confusion.

2 Note: limiting its parameterization to a fixed interval does not mean that the filament is inextensible.
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2.2. Convective representation of nonlocal potential energy

One part of the potential energy of interaction between rigid conformations of charges at spatial
coordinates r(s) and r(s′) along the filament depends only on the magnitude |cm(s′)− ck(s)| of the
vector from charge k at spatial position ck(s) to charge m at spatial position cm(s′). This is the
Euclidean spatial distance

dk,m(s, s′) =
∣∣cm(s′)− ck(s)

∣∣ (2.2)

between the kth and mth charges in the two conformations whose base points are at r(s) and r(s′),
respectively. In this notation, the potential energy is given by

E = Eloc(Ω,Γ )−
∑
k,m

1
2

∫∫
U (dk,m(s, s′))

∣∣∣dr
ds

(s)
∣∣∣ ∣∣∣dr
ds

(s′)
∣∣∣dsds′, (2.3)

for an appropriate physical choice of the interparticle interaction potential U(dk,m), and the quanti-
ties Ω, Γ (and ω, γ, ρ below) are defined in (1.1). The part Eloc(Ω,Γ ) represents the purely elastic
part of the potential and is usually taken to be a quadratic function of the deformations (Ω,Γ ),
but more complex expressions are possible as well; we shall not restrict the functional form of that
dependence. The total Lagrangian l is then written as the sum of a local lloc and a nonlocal lnp part:

lloc = K(ω,γ)− Eloc(Ω,Γ ,ρ) and lnp = −Enp, (2.4)

where K is the kinetic energy that depends only on the local velocities ω,γ. For the sake of generality,
here and everywhere else below, we shall simply consider the total Lagrangian to be a sum of the
local part lloc(ω,γ,Ω,Γ ,ρ), and the nonlocal part given by (2.3):

l = lloc(ω,γ,Ω,Γ ,ρ) + lnp. (2.5)

The scalar distance dk,m in (2.2) and (2.3) may also be expressed in terms of vectors seen from the
frame of orientation of the rigid body at a spatial point r(s) along the filament, as

dk,m(s, s′) = |cm(s′)− ck(s)|
=
∣∣Λ−1(s) (cm(s′)− ck(s))

∣∣
=
∣∣Λ−1(s)

(
r(s′)− r(s)) + Λ−1(s)Λ(s′)ηm(s′)− ηk(s)

)∣∣
=: |κ(s, s′) + ξ(s, s′)ηm(s′)− ηk(s)| , (2.6)

where we have defined the quantities

κ(s, s′) := Λ−1(s) (r(s′)− r(s)) ∈ R3 and ξ(s, s′) := Λ−1(s)Λ(s′) ∈ SO(3). (2.7)

The first of these quantities is the spatial vector from r(s) to r(s′), as seen from the orientation Λ(s)
of the rigid charge conformation located at coordinate label s along the filament. The second is the
relative orientation of the rigid charge conformations located at coordinate labels s and s′. For later
use, we record the transposition identities,

ξ(s, s′)T = ξ(s′, s) = ξ(s, s′)−1, (2.8)

which follow from the definition of ξ(s, s′) in (2.7).

Remark 6 (Left SO(3) invariance). Both the body separation vector κ(s, s′) and the relative
orientation ξ(s, s′) defined in (2.7) are invariant under rotations of the spatial coordinate system
obtained by the left action

(r(s′)− r(s)) 7→ O
(
r(s′)− r(s)

)
and Λ 7→ OΛ,

by any element O of the proper rotation group SO(3).
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Proposition 1 (Left SE(3) invariance). The quantities (ξ,κ) ∈ SO(3)×R3 defined in (2.7) are
invariant under all transformations of the special Euclidean group SE(3) acting on the left.

Proof. As a set, the special Euclidean group SE(3) is the Cartesian product SE(3) = SO(3)×R3

whose elements are denoted as (Λ, r). Its group multiplication is given, e.g., in [19] by the semidirect
product action,

(Λ1, r1)(Λ2, r2) = (Λ1Λ2, r1 + Λ1r2), (2.9)

where the action of Λ ∈ SO(3) on r ∈ R3 is denoted as the concatenation Λr and the other notation
is standard. For the choice

(Λ1, r1) = (Λ, r)−1(s) and (Λ2, r2) = (Λ, r)(s′),

the SE(3) multiplication rule (2.9) yields the quantities (ξ,κ) ∈ SO(3)× R3 as

(Λ, r)−1(s)(Λ, r)(s′) = (ξ(s, s′),κ(s, s′)). (2.10)

This expression is invariant under the left action (Λ, r) 7→ (O,v)(Λ, r) of any element (O,v) of the
special Euclidean group SE(3).

Remark 7. The SE(3) setting will be especially important to the development of the Lagrange-
Poincaré formulation of the dynamical filament equations in Section 7.

Next, let us define the following SE(3)-invariant quantities, where prime denotes the derivative with
respect to s and dot is the derivative with respect to t:

Ω = Λ−1Λ′ ∈ so(3),
ω = Λ−1Λ̇ ∈ so(3),
Γ = Λ−1r′ ∈ R3,
γ = Λ−1ṙ ∈ R3,
ρ = Λ−1(r − r0(s)) ∈ R3.

(2.11)

Hereafter, we shall choose r0(s) = 0 to recover the bundle coordinates (1.1).

Remark 8. Note that here Λ, r, Ω, ω,Γ ,γ,ρ are interpreted as functions of the two variables s and
t. It will be important to see these variables as time-dependent curves with values in function spaces.
For example, we can interpret Λ(s, t) as a function of space and time

(s, t) ∈ [0, L]× R 7→ Λ(s, t) ∈ SO(3),

or we can see Λ as a curve
t ∈ R 7→ Λ(·, t) ∈ F([0, L], SO(3)),

in the group F([0, L], SO(3)) of all smooth functions defined on [0, L] with values in SO(3).
This observation is fundamental and leads to two different geometric approaches to the same equa-
tions: the affine Euler-Poincaré and the covariant Lagrange-Poincaré approaches.
Note that the group operation F([0, L], SO(3)) is given by pointwise multiplication, and that the
space F([0, L], SO(3)) can be endowed with the structure of an infinite dimensional Fréchet Lie
group. We refer to [26] for an account of Fréchet Lie groups in the framework of manifolds of maps
from the point of view of the convenient calculus.

Remark 9. Since Λ ∈ SO(3), one finds that∣∣∣∣drds (s)
∣∣∣∣ =

∣∣∣∣Λ−1 dr

ds
(s)
∣∣∣∣ =

∣∣Γ (s)
∣∣, (2.12)

and the nonlocal part of the potential energy in (2.3) reduces to

Enp = −
∑
k,m

1
2

∫∫
U (dk,m(s, s′))

∣∣Γ (s)
∣∣∣∣Γ (s′)

∣∣dsds′. (2.13)
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Remark 10. Everywhere in this paper, we shall assume that the nonlocal part of the Lagrangian
lnp is a function or functional of Γ , ξ, and κ. It could, for example, be expressed in the integral form

lnp(ξ,κ,Γ ) =
∫∫

U
(
ξ(s, s′),κ(s, s′),Γ (s),Γ (s′)

)
dsds′ (2.14)

or be a more general functional. In this work, we shall consistently use formula (2.14) to make
our computations more explicit although, of course, the methods would apply to more general
functionals. Clearly, expression (2.3) is a reduction of (2.14) obtained when the energy of the system
of charges is a (half-)sum of interactions between all charges. This happens, for example, when
investigating electrostatic or screened electrostatic charges in a linear medium.
Even though the expression lnp = lnp(ξ,κ,Γ ) is rather general, it is interesting to note that physical
systems exist whose nonlocal interactions are more complex. For example, the electrostatic potential
around a DNA molecule immersed in a fluid satisfies the nonlinear Poisson-Boltzmann equation and
finding the potential in that case is a well-known problem for supercomputers [2]. Direct analytical
solution of this equation is usually impossible except for some idealized cases. However, even in
this case, one can consider the nonlocal Lagrangian as a functional of the variables (ξ,κ,Γ ), and
compute (at least in principle) the variational derivatives required by our theory. In that case, our
theory is applicable as well.

2.3. Kinematics

We first define auxiliary kinematic equations that hold without any reference to dynamics. We call
these advection relations, in order to distinguish them from the dynamical equations (derived
later) that balance the forces determined from the physics of the problem. In contrast, the advection
relations hold for all strands, irrespective of their dynamic properties.
In order to derive the first set of advection relations, we compute the time and space derivatives of
ρ(s, t) = Λ(s, t)−1r(s, t). First, the s-derivative along the filament is given by:

ρ′ = −Λ−1Λ′Λ−1r + Λ−1r′,

and hence equations (2.11) imply

ρ′ = −Ωρ+ Γ = −Ω × ρ+ Γ . (2.15)

Next, the time derivative is written as

ρ̇ = −Λ−1Λ̇Λ−1r + Λ−1ṙ (2.16)

and equations (2.11) yield the formula,

ρ̇ = −ωρ+ γ = −ω × ρ+ γ. (2.17)

The next set of advection relations is derived by the equality of cross-derivatives with respect to t
and s for any sufficiently smooth quantity. First, we use the fact that ∂s∂tr = ∂t∂sr. Equality of
these cross-derivatives implies the relations

γ′ = −Ω × γ + Λ−1ṙ′

and
Γ̇ = −ω × Γ + Λ−1ṙ′.

The difference of the last two equations yields the following relation

Γ̇ + ω × Γ = γ′ +Ω × γ. (2.18)
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As we shall see later, the latter is a type of zero-curvature relation. Similarly, equality of the
cross-derivatives ∂s∂tΛ = ∂t∂sΛ yields the other advection relation:

Ω̇ − ω′ = ω ×Ω. (2.19)

The differential geometric meaning of these zero-curvature relations will be discussed further in
Section 7.2.6.

2.4. Remark on n-dimensional generalization and use of other groups

The previous setting may be generalized to n dimensions and to arbitrary Lie groups. This is not only
useful for the generalization of charged strands to membranes and, more generally, to deformable
media; it also gives a more transparent vision of the underlying geometric structure underlying the
phenomena.

Consider the semidirect product OsE of a Lie group O with a left representation space E. The
variables r and Λ defined above are now functions defined on a spacetime D × R, where D is a
n-dimensional manifold:

Λ : (s, t) ∈ D × R 7→ Λ(s, t) ∈ O, and r : (s, t) ∈ D × R 7→ r(s, t) ∈ E.

We will avoid using boldface notation as the functions we consider may be more general geometric
quantities, not only vectors. As before, “dot” ( ˙ ) over a quantity denotes its time derivative. The
derivative with respect to a variable in D is denoted by d; for D = [0, L] this was previously denoted
by “prime” ( ′ ). The definitions (2.11) become

Ω = Λ−1dΛ : TD → o,

ω = Λ−1Λ̇ : D → o,

Γ = Λ−1dr : TD → E, (2.20)

γ = Λ−1ṙ : D → E,

ρ = Λ−1r : D → E.

Thus, if we interpret (Λ, r) as a curve in the group F(D,OsE), the previous definition can be
rewritten as

(ω, γ) = (Λ, r)−1(Λ̇, ṙ),

(Ω,Γ, ρ) = c((Λ, r)−1),

where c is defined by
c(Λ, r) =

(
(Λ, r)d(Λ, r)−1,−r

)
. (2.21)

Remarkably, c is a group one-cocycle. Thus, the previous definition simply says that (Ω,Γ, ρ) are
affine advected quantities with zero initial values. This observation strongly suggests a relation with
the affine Euler-Poincaré theory developed in the context of complex fluids in [12]. In this context,
the Lie group O encodes the order parameter.
On the other hand, if we interpret (Λ, r) as a section of the trivial principal bundle

(D × R)× (OsE)→ D × R

over spacetime D × R, definition (2.20) simply says that the variables (Ω,ω, ρ) are obtained by
reduction by the subgroup O of the first jet extension of (Λ, r). This, in turn, leads to a relation with
the covariant Lagrange-Poincaré reduction for field theories developed in [27]. Note that by choosing
the one-dimensional interval D = [0, L], the Lie group O = SO(3), and the left representation space
E = R3, one recovers the advection of charged strands discussed earlier.
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Remark 11. Generalizing to higher dimensions reveals certain distinct aspects of the underlying
geometry of the problem that are not distinguished in considering the particular case of the charged
strands. For example, in the case of charged sheets or charged elastic deformed media, D is a domain
in Rn, with n = 2 or 3, respectively, so the coordinate s has several dimensions. Then, Γ should be
considered as a set of vectors Γ 1, . . . ,Γ n. Likewise, for the problem of flexible strands of rigid charge
conformations the distinct objects E and o both coincide with R3. This coincidence is removed in
higher dimensions and thereby clarifies the underlying geometric structure of the theory.

3. Derivation of strand dynamics in the convective representation

In this section we derive the convective equations of motion for a charged strand using a method based
on the classical Euler-Poincaré (EP) approach. For expositions of the classical EP approach, see, e.g.,
[30; 19]. The EP approach is based on applying Hamilton’s variational principle to the symmetry-
reduced Lagrangian and constraining the variations properly. The EP approach yields equations of
motion for a nonlocally interacting strand (3.23) and (3.26) in the convective representation. Using
this approach, we are also able to derive corresponding conservation laws in §3.2. We then proceed
with the derivation of Lie-Poisson Hamiltonian formulation of strand dynamics in §3.3.

We explain the “bare hands” EP derivation here because we believe that doing so enhances under-
standing of the other sections of the paper, by providing a direct and explicit derivation of those
equations of motion that invokes the Lie group action on the configuration space and thereby pro-
vides additional information.

In particular, the EP approach reveals how the Lie group action on the configuration space induces
the affine structure of the EP equations (3.23) and (3.26) discussed further in Section 5. The EP
approach also yields information that explains precisely how the canonical phase space (the cotangent
bundle of the configuration manifold) maps to the Lie-Poisson space associated to the action, which
is the dual of the Lie algebra of symmetries via the momentum map induced by the infinitesimal
affine Lie algebra action. Thus, we explore the EP route in detail in this section, because it explicitly
reveals the role of the Lie group action in symmetry reduction. In Section 5 it will be shown that the
derivation of the EP equations and of the associated variational principle are corollaries of general
theorems for systems whose configuration space is a Lie group.

A second derivation of the key formulas for strand dynamics in the convective representation is given
in Appendix B. This second derivation is based on the different, but equivalent, Hamilton-Pontryagin
(HP) approach in control theory (see, for example, [5]), also modified to include additional terms
describing nonlocal contributions.

3.1. A modified Euler-Poincaré approach

3.1.1. Variations: Definitions Let us compute variations of ρ, ω, γ, Ω, and Γ . We proceed by
first computing

δρ = −Λ−1δΛΛ−1r + Λ−1δr = −Σρ+ Ψ = −Σ × ρ+ Ψ = ρ×Σ + Ψ , (3.1)

where we have defined the variational quantities

Σ := Λ−1δΛ and Ψ := Λ−1δr.

Next, we compute the space and time derivatives of Σ and Ψ along the curve. We have the space
derivative,

∂Ψ

∂s
= −Λ−1Λ′Λ−1δr + Λ−1δr′ = −ΩΨ + Λ−1δr′ = −Ω × Ψ + Λ−1δr′, (3.2)
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and the time derivative,

∂Ψ

∂t
= −Λ−1Λ̇Λ−1δr + Λ−1δṙ = −ωΨ + Λ−1δṙ = −ω × Ψ + Λ−1δṙ. (3.3)

Analogously, for the space derivative of Σ,

∂Σ

∂s
= −Λ−1Λ′Λ−1δΛ+ Λ−1δΛ′ = −ΩΣ + Λ−1δΛ′, (3.4)

while the time derivative of Σ is computed as follows:

∂Σ

∂t
= −Λ−1Λ̇Λ−1δΛ+ Λ−1δΛ′ = −ωΣ + Λ−1δΛ̇. (3.5)

Now we are ready to compute the variations δγ, δΓ , δω, and δΩ. The first of these is

δγ = −Λ−1δΛΛ−1ρ̇+ Λ−1δρ̇︸ ︷︷ ︸
use (3.3)

= −Σγ + ωΨ +
∂Ψ

∂t
,

so in vector form,

δγ = γ ×Σ + ω × Ψ +
∂Ψ

∂t
. (3.6)

Likewise,

δΓ = −Λ−1δΛΛ−1ρ′ + Λ−1δρ′︸ ︷︷ ︸
use (3.2)

= −ΣΓ +ΩΨ +
∂Ψ

∂s
,

which has the vector form,

δΓ = Γ ×Σ +Ω × Ψ +
∂Ψ

∂s
. (3.7)

Next,

δω = −Λ−1δΛΛ−1Λ̇+ Λ−1δΛ̇︸ ︷︷ ︸
use (3.5)

= −Σω + ωΣ +
∂Σ

∂t
= [ω,Σ] +

∂Σ

∂t
,

so expressing these formulas in terms of vectors yields

δω = ω ×Σ +
∂Σ

∂t
. (3.8)

Next,

δΩ = −Λ−1δΛΛ−1Λ′ + Λ−1δΛ′︸ ︷︷ ︸
use (3.4)

= −ΣΩ +ΩΣ +
∂Σ

∂s
= [Ω,Σ] +

∂Σ

∂s
,

so, again, expressing in terms of vectors leads to

δΩ = Ω ×Σ +
∂Σ

∂s
. (3.9)

The variation of ξ(s, s′) is given by

ξ−1δξ(s, s′) = −Adξ−1(s,s′)Σ(s) +Σ(s′). (3.10)

Finally, since κ(s, s′) is defined by

κ(s, s′) = Λ−1(s) (r(s′)− r(s)) = ξ(s, s′)ρ(s′)− ρ(s). (3.11)

the variation of κ has the expression

δκ(s, s′) =Σ(s)κ(s, s′)− Ψ(s) + ξ(s, s′)Ψ(s′)
=Σ(s)× κ(s, s′)− Ψ(s) + ξ(s, s′)Ψ(s′). (3.12)
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3.1.2. Derivation of the equations of motion Suppose now we want to compute variations of
the reduced energy Lagrangian l which is a functional of (ρ,γ,Γ , ω,Ω). From (2.6) we see that

dk,m(s, s′) =
∣∣Λ−1(s)r(s, t)− Λ−1(s, t)r(s′, t) + ηk(s)− ξ(s, s′)ηm(s′)

∣∣
=
∣∣κ(s, s′) + ηk(s)− ξ(s, s′)ηm(s′)

∣∣. (3.13)

Let us first define the Lagrangian l as the sum of a local part lloc and a nonlocal part lnp, according
to

l(ω,γ,Ω,Γ ,ρ, ξ,κ) := lloc + lnp

= lloc(ω,γ,Ω,Γ ,ρ) +
∫∫

U (κ(s, s′), ξ(s, s′),Γ (s),Γ (s′)) dsds′. (3.14)

Note. From now on, we assume that the nonlocal part of the potential energy U is a function of
the two variables κ(s, s′) and ξ(s, s′), as well as Γ , since s is not necessarily the arc length. In
particular, for a potential energy depending on the distance dk,m, the variables κ and ξ enter in the
linear combination defined by (3.13). In principle, the potential energy could have been chosen to
be an arbitrary functional of Λ−1(s)r(s), Λ−1(s)r(s′), and ξ(s, s′). Euler-Poincaré methods would
be directly applicable to these functionals as well.
The equations of motion are computed from the stationary action principle δS = 0, with S =

∫
ldt

and l = lloc + lnp in equation (3.14). We have

δS =
∫ (〈

δlloc
δρ

, δρ

〉
+
〈
δlloc
δγ

, δγ

〉
+
〈
δ(lloc + lnp)

δΓ
, δΓ

〉
+
〈
δlloc
δω

, δω

〉
+
〈
δlloc
δΩ

, δΩ

〉
+
〈
δlnp
δκ

, δκ

〉
+
〈
ξ−1 δlnp

δξ
, ξ−1δξ

〉)
dt = 0, (3.15)

where 〈· , ·〉 =
∫

(· , ·)R3ds represents L2 pairing in the filament variable s. We may now substitute
δρ from (3.1), δγ from (3.6), and δΩ from (3.9). We have〈

δlloc
δρ

, δρ

〉
=
〈
δlloc
δρ

, ρ×Σ + Ψ
〉

=
〈
δlloc
δρ
× ρ , Σ

〉
+
〈
δlloc
δρ

, Ψ

〉
. (3.16)

For δκ we obtain〈
δlnp
δκ

, δκ

〉
=
∫ [〈∫ ∂U

∂κ
(s, s′)× κ(s, s′)ds′ , Σ(s)

〉
+
〈∫ (

ξ(s, s′)
∂U

∂κ
(s′, s)− ∂U

∂κ
(s, s′)

)
ds′ , Ψ(s)

〉]
dt. (3.17)

Next, 〈
δ
(
lloc + lnp

)
δΓ

, δΓ

〉
=

〈
δ
(
lloc + lnp

)
δΓ

, Γ ×Σ +Ω × Ψ +
∂Ψ

∂s

〉

=

〈
δ
(
lloc + lnp

)
δΓ

× Γ , Σ

〉
+

〈
δ
(
lloc + lnp

)
δΓ

×Ω − ∂

∂s

δ
(
lloc + lnp

)
δΓ

, Ψ

〉
, (3.18)

and 〈
δlloc
δγ

, δγ

〉
=
〈
δlloc
δγ

, γ ×Σ + ω × Ψ +
∂Ψ

∂t

〉
=
〈
δlloc
δγ
× γ , Σ

〉
+
〈
δlloc
δγ
× ω − ∂

∂t

δlloc
δγ

, Ψ

〉
. (3.19)
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Variations in ω and Ω give, respectively, after integrating by parts,∫ 〈
δlloc
δω

, δω

〉
dt =

∫ 〈
δlloc
δω

, ω ×Σ +
∂Σ

∂t

〉
dt

=
∫ 〈

δlloc
δω
× ω − ∂

∂t

δlloc
δω

, Σ

〉
dt, (3.20)

and 〈
δlloc
δΩ

, δΩ

〉
=
〈
δlloc
δΩ

, Ω ×Σ +
∂Σ

∂s

〉
=
〈
δlloc
δΩ
×Ω − ∂

∂s

δlloc
δΩ

, Σ

〉
. (3.21)

Finally, one computes the variations in ξ as follows:∫ 〈
ξ−1 δlnp

δξ
, ξ−1δξ

〉
ds′

=
∫ 〈

ξ−1(s, s′)
∂U

∂ξ
(s, s′),−Adξ−1(s,s′)Σ(s) +Σ(s′)

〉
so(3)

ds′, (3.22)

where 〈·, ·〉so(3) : so(3)∗ × so(3)→ R is the real-valued pairing between the Lie algebra so(3) and its
dual so(3)∗.

Substitution of (3.16)-(3.22) in (3.15) gives an expression for δS that is linear inΣ and Ψ . Collecting
those terms when imposing δS = 0 implies from the term proportional to Σ that:(

∂

∂t

δlloc
δω

+ ω × δlloc
δω

)
+
(
∂

∂s

δlloc
δΩ

+Ω × δlloc
δΩ

)
=
δlloc
δγ
× γ +

δ (lloc + lnp)
δΓ

× Γ

+
δlloc
δρ
× ρ+

∫ (
∂U

∂κ
(s, s′)× κ(s, s′) + Z(s, s′)

)
ds′, (3.23)

where the term Z(s, s′) is the vector given by

Ẑ(s, s′) = ξ(s, s′)
(
∂U

∂ξ
(s, s′)

)T
− ∂U

∂ξ
(s, s′)ξT (s, s′). (3.24)

Formula (3.24) is computed from the variation in (3.22) as follows

∫∫ 〈
ξ−1(s, s′)

∂U

∂ξ
(s, s′),−Adξ−1(s,s′)Σ(s) +Σ(s′)

〉
so(3)

dsds′

=
∫∫ 〈

−Ad∗ξ−1(s,s′)ξ
T (s, s′)

∂U

∂ξ
(s, s′) + ξT (s′, s)

∂U

∂ξ
(s′, s), Σ(s)

〉
so(3)

dsds′

=
∫∫ 〈

−ξ(s, s′)ξT (s, s′)
∂U

∂ξ
(s, s′)ξT (s, s′) + ξ(s, s′)

(
∂U

∂ξ
(s, s′)

)T
, Σ(s)

〉
so(3)

dsds′

=
∫∫ 〈

−∂U
∂ξ

(s, s′)ξT (s, s′) + ξ(s, s′)
(
∂U

∂ξ
(s, s′)

)T
, Σ(s)

〉
so(3)

dsds′. (3.25)

Here, we have used the fact that ξT (s, s′) = ξ−1(s, s′), and ξ(s′, s) = ξ−1(s′, s).
Next, we collect the terms proportional to Ψ in order to close the system. We find(

∂

∂t

δlloc
δγ

+ ω × δlloc
δγ

)
+
(
∂

∂s

δ (lloc + lnp)
δΓ

+Ω × δ (lloc + lnp)
δΓ

)
=
δlloc
δρ

+
∫ (

ξ(s, s′)
∂U

∂κ
(s′, s)− ∂U

∂κ
(s, s′)

)
ds′. (3.26)
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3.1.2.1. Summary. Equations (3.23), (3.26), (2.17), (2.18) and (2.19) represent the generalization of
the Kirchhoff model that we have sought. We shall see next that under a certain transformation of
variables this model reduces to a conservation law formulated in terms of the coadjoint action of
SE(3) on on the dual of its Lie algebra se(3). The same equations are derived in Appendix B using
the Hamilton-Pontryagin approach, also modified to account for nonlocal dependence. This modified
Hamilton-Pontryagin approach provides a direct and explicit derivation of those equations of motion
that further enhances understanding of the convective representation for nonlocal dependence.

3.2. Conservation laws

In order to elucidate the physical meaning of the somewhat complex looking equations (3.23) and
(3.26), we shall write them explicitly as conservation laws. For this purpose, we invoke the following
identities valid for any Lie group G. Given a smooth curve g(t) ∈ G, η ∈ g, and µ ∈ g∗, we have

Adg−1(t)
∂

∂t
Adg(t)η = adσ(t)η, (3.27)

Ad∗g(t)
∂

∂t
Ad∗g−1(t)µ = −ad∗σ(t)µ, (3.28)

where σ(t) = g−1ġ(t) ∈ g and Ad∗ denotes the coadjoint action of G on g∗ defined by 〈Ad∗gµ, η〉 :=
〈µ,Adgη〉. Formula (3.28) generalizes to a curve µ(t) as

Ad∗g(t)
∂

∂t
Ad∗g−1(t)µ(t) = µ̇(t)− ad∗σ(t)µ(t). (3.29)

To derive the conservation form of equations (3.23) and (3.26) we need to consider the group G =
SE(3) whose elements are denoted by g = (Λ, r). Consider the function (Λ(s, t), r(s, t)) defined on
spacetime. Then we have

σ = (Λ, r)−1(Λ̇, ṙ) = (Λ−1Λ̇, Λ−1ṙ) = (ω,γ). (3.30)

Recall (see, e.g., [30; 19]) that the coadjoint action on (µ,β) ∈ se(3)∗ is given by (1.14) and hence

ad∗(ω,γ)(µ,β) = −(ω × µ+ γ × β,ω × β). (3.31)

Then, using equations (3.29) and (3.31) for the temporal dual Lie algebra elements (µ,β) =
(δl/δω , δl/δγ) yields

Ad∗(Λ,r)
∂

∂t

[
Ad∗(Λ,r)−1

(
δlloc
δω

,
δlloc
δγ

)]
=

∂

∂t

(
δlloc
δω

,
δlloc
δγ

)
+
(
ω × δlloc

δω
+ γ × δlloc

δγ
, ω × δlloc

δγ

)
. (3.32)

For the derivative with respect to curve parametrization s, we need to remember that the nonlocal
part of the potential depends on Γ as well. Thus, we have

Ad∗(Λ,r)
∂

∂s

[
Ad∗(Λ,r)−1

(
δlloc
δΩ

,
δ(lloc + lnp)

δΓ

)]
=

∂

∂s

(
δlloc
δΩ

,
δlloc
δΓ

)
+
(
Ω × δlloc

δΩ
+ Γ × δ(lloc + lnp)

δΓ
, Ω × δlloc

δΓ

)
. (3.33)

Some additional identities derived below will be needed in treating the nonlocal part of the potential.

First we deal with the nonlocal term by referring to equation (3.24). This can be expressed as a
formal derivative of the nonlocal part of the potential with respect to Lie algebra elements Ω and Γ
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as follows. Note that there are only two free variations Σ̂ = Λ−1δΛ and Ψ = Λ−1δr. On the other
hand, the nonlocal part of the Lagrangian depends on three variables ρ, ξ, and Γ . Thus, there must
be a relation between the partial derivatives of the nonlocal part of the Lagrangian and the total
derivatives with respect to Γ and Ω. This relation is computed as follows.

Upon identifying coefficients of the free variations Σ× = Λ−1δΛ and Ψ = Λ−1δr, the following
identity relates different variational derivatives of the nonlocal potential lnp:

δlnp =
〈
ξ−1 δlnp

δξ
, ξ−1δξ

〉
+
〈
δlnp
δκ

, δκ

〉
+
〈
δlnp
δΓ

, δΓ

〉
=
〈
δlnp
δΓ

∣∣∣∣
Tot

, δΓ

〉
+
〈
δlnp
δΩ

, δΩ

〉
. (3.34)

We will discuss this point in detail in §5.3.2. Here, the subscript on ( · )|Tot denotes the total derivative
with respect to Γ . Using expressions (3.10) for ξ−1δξ, (3.12) for δκ, (3.9) for δΩ, and (3.6) for
δΓ , then collecting terms proportional to the free variation Σ, yields the following identity, which
implicitly defines δlnp/δΩ in terms of known quantities,

− ∂

∂s

δlnp
δΩ
−Ω × δlnp

δΩ
= (3.35)∫

∂U

∂κ
(s, s′)× κ(s, s′)ds′ +

∫
Z(s, s′)ds′,

where we have defined Z(s, s′) by (3.24). Likewise, identifying terms multiplying Ψ gives

− ∂

∂s

δlnp
δΓ

∣∣∣∣
Tot

−Ω × δlnp
δΓ

∣∣∣∣
Tot

= − ∂

∂s

δlnp
δΓ
−Ω × δlnp

δΓ
(3.36)

+
∫ (

∂U

∂κ
(s, s′)− ξ(s, s′)∂U

∂κ
(s′, s)

)
ds′.

Therefore, we conclude that equations (3.23) and (3.26) are equivalent to the following equations
expressed on se(3)∗ in conservative form using variations of the total Lagrangian, l := lloc + lnp:

∂

∂t

[
Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)]
+

∂

∂s

[
Ad∗(Λ,r)−1

(
δl

δΩ
,
δl

δΓ

∣∣∣∣
Tot

)]
= Ad∗(Λ,r)−1

(
δl

δρ
× ρ , δl

δρ

)
. (3.37)

Here, the components of

Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)
represent, respectively, the spatial angular momentum density and the spatial linear momentum
density of the strand, whose center of mass lies on its center line. The components of

Ad∗(Λ,r)−1

(
δl

δρ
× ρ , δl

δρ

)
=
(

0, Λ
δl

δρ

)
are the external torques and forces. (See (1.24) for the last simplification.) As mentioned above,
only external forces arising from potentials are considered in this paper. In principle, more general
non-conservative forces and torques can be considered as well, but we shall leave this question for
further studies.
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Remark 12. For future reference, it is advantageous to write out the conservation law (3.37) in
convective form as


(∂t + ω×)

δl

δω
+ (∂s +Ω×)

δl

δΩ
+ ρ× δl

δρ
+ Γ × δl

δΓ
+ γ × δl

δγ
= 0,

(∂t + ω×)
δl

δγ
+ (∂s +Ω×)

δl

δΓ
− δl

δρ
= 0.

(3.38)

Here we have defined the total Lagrangian l := lloc + lnp, and all the variational derivatives are
assumed to be the total derivatives. Note that these equations coincide precisely with the equations
for the purely elastic filaments derived in [37].

We note that the variations with respect to Ω and Γ are computed implicitly in (3.35, 3.36).
To actually use these equations to explicitly describe nonlocal interactions, we must expand the
derivatives with respect to ξ and κ in (3.38). However, we emphasize again, that it is interesting
that the expressions for the nonlocal interactions formally coincide with the equations for the purely
elastic motion. See §5.3.2 for a detailed discussion of this point.

3.3. Lie-Poisson Hamiltonian structure of strand equations

It is useful to transform the Lagrangian dynamical equations into the Hamiltonian description, both
to relate these equations to previous work on elastic rods and to elucidate further their mathematical
structure. We start by Legendre transforming the total Lagrangian l to the Hamiltonian,

h(π,µ,Ω,Γ ,ρ) =
∫

(π · ω + µ · γ)ds− l(ω,γ,Ω,Γ ,ρ), (3.39)

where ω,γ are determined from the relations π = δl/δω and µ = δl/δγ upon assuming that l is
hyperregular. Then, equations (2.17), (2.18), (2.19), and (3.38) may be expressed in Lie-Poisson
form with three cocycles as

∂

∂t


π
µ
Ω
Γ
ρ

=


π× µ× (∂s +Ω×) Γ× ρ×
µ× 0 0 (∂s +Ω×) −Id

(∂s +Ω×) 0 0 0 0
Γ× (∂s +Ω×) 0 0 0
ρ× Id 0 0 0



δh/δπ
δh/δµ
δh/δΩ
δh/δΓ
δh/δρ

 . (3.40)

Note that ω = δh/δπ and γ = δh/δµ. The affine terms ∂s and Id arise from the cocycle appearing
in the definition of the variables Ω,Γ ,ρ in (1.1); see also (2.20). These equations produce the affine
terms located in the matrix elements {π,Ω}, {µ,Γ }, and {µ,ρ}.
This Hamiltonian matrix defines an affine Lie-Poisson bracket on the dual of the semidirect product
Lie algebra

F(I, se(3)) sF(I, se(3)× R3),

where se(3) = so(3) s R3, I = [0, L], and

(π,µ) ∈ F(I, se(3))∗ and (Ω,Γ ,ρ) ∈ F(I, se(3)× R3)∗.
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The associated affine Lie-Poisson bracket reads

{f, g}(π,µ,Ω,Γ ,ρ) =−
∫
π ·
(
δf

δπ
× δg

δπ

)
−
∫
µ ·
(
δf

δµ
× δg

δπ
− δg

δµ
× δf

δπ

)
−
∫
Ω ·

(
δf

δΩ
× δg

δπ
− δg

δΩ
× δf

δπ

)
−
∫
Ω ·

(
δf

δΓ
× δg

δµ
− δg

δΓ
× δf

δµ

)
−
∫
Γ ·
(
δf

δΓ
× δg

δπ
− δg

δΓ
× δf

δπ

)
(3.41)

−
∫
ρ ·
(
δf

δρ
× δg

δπ
− δg

δρ
× δf

δπ

)
+
∫

δf

δΩ
· ∂s

δg

δπ
+
δf

δΓ
· ∂s

δg

δµ
+
δf

δρ
· δg
δµ

−
∫

δg

δΩ
· ∂s

δf

δπ
+
δg

δΓ
· ∂s

δf

δµ
+
δg

δρ
· δf
δµ

.

The first line represents the Lie-Poisson bracket on the dual of the Lie algebra F(I, se(3)). The first
five lines represent the Lie-Poisson bracket on the dual of the semidirect product Lie algebra

F(I, se(3)) sF(I, se(3)× R3).

The last two lines represent the affine terms due to the presence of a cocycle, as well as the canonical
Poisson bracket in (ρ,µ). The Poisson bracket (3.41) is an extension that includes ρ in the Poisson
bracket for the exact geometric rod theory of [37] in the convective representation. Remarkably, from
a geometric point of view, this Hamiltonian structure is identical to that of complex fluids [12; 18].
The reason for this will be explained in detail in Section 5.

4. Introduction to affine Lie group actions

4.0.0.2. Classical Lagrangian approach to the molecular strand. The Euler-Poincaré method used
in Section 3 and the equivalent alternative Hamilton-Pontryagin method used in Appendix B to
derive the strand equations of motion (3.23) and (3.26) strongly suggest that the dynamics of the
molecular strand with nonlocal interactions can be obtained by a classical Lagrangian reduction. In
other words, the evolution for the Lagrangian variables Λ and r should be given by the standard
Euler-Lagrange equations

d

dt

∂L

∂Λ̇
− ∂L

∂Λ
= 0,

d

dt

∂L

∂ṙ
− ∂L

∂r
= 0

associated with a Lagrangian L defined on the tangent bundle TQ of the configuration space Q
and invariant under the action of the symmetry group of the theory. The evolution of the reduced
quantities ω,γ,Ω,Γ ,ρ can then be obtained by applying the general tools of Lagrangian reduction.
Such an approach, together with its Hamiltonian counterpart, has been successfully applied to a
wide range of mechanical systems with symmetry, from fluid dynamics and imaging to rigid bodies
and particles with broken symmetries. It is therefore of great interest to obtain such a description
for the molecular strand. This is the main goal of Section 5 below.

Perhaps not surprisingly, the description of such a complex system as the molecular strand with
nonlocal interactions needs a somewhat sophisticated version of the classical Lagrangian reduction.
This is explained in the present section by building up to the geometric setting via simpler examples.
Besides the fact that the configuration space

(Λ, r) ∈ F([0, L], SE(3))
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is infinite dimensional, there are two major difficulties to overcome. The first is related to the obser-
vation that the advected variables (Ω,Γ ,ρ) are not acted on linearly by the Lagrangian variables
(Λ, r); see (1.1). In order to understand their evolution, an affine action (i.e. a cocycle) needs to be
introduced. The second difficulty is related to the nonlocal dependence of the reduced Lagrangian
on the unreduced variables Λ, r. Remarkably, the geometrization of this nonlocal dependence is also
solved by the presence of the affine term (the cocycle) in the action, which allows the choice of the
zero value for the reference condition (Ωref ,Γ ref ,ρref ) without leading to trivial dynamics.

4.0.0.3. Main goals of the Lagrangian approach. Besides these difficulties, such a classical geometric
description of the strand has many advantages. First, at a pure mathematical level, it justifies rigor-
ously the two “bare hand” derivations of the equations described in Section 3 and Appendix B from
the Euler-Poincaré and Hamilton-Pontryagin approaches, respectively. The geometric description
also explains the somewhat mysterious vanishing of the explicit dependence on the nonlocal terms
in the final equation of motion; see (3.38). On the Hamiltonian side, the framework justifies the pres-
ence of the cocycles in the Poisson bracket (3.41) (see also (3.40)) and produces the Hamiltonian
structure in the convective representation by reduction of the canonical Hamilton equations on the
phase space T ∗F([0, L], SE(3)) of the system.

At a more applied level, this symmetry reduced Lagrangian approach provides a guide towards a
generalization to higher dimensional versions or to other matrix Lie groups describing the charge
conformation. Moreover, this classical approach is also suitable if one wishes to couple the molecular
strand with fluid dynamics, since the two systems are now described by the same simple geometric
framework: canonical Lagrangian (resp. Hamiltonian) description on the tangent (resp. cotangent)
bundle of the configuration space.

4.0.0.4. Pedagogical examples. We begin with three preparatory examples that illustrate the main
idea behind the classical Lagrangian approach in a simpler setting than that required for the molec-
ular strand.

4.0.0.5. Example 1. The simplest setting of Lagrangian reduction is that of a G-invariant Lagrangian
L : TG → R, defined on the tangent bundle of its symmetry Lie group G. In this case, the Euler-
Lagrange equations TG can be reduced to provide equations for an unknown in the Lie algebra g,
known as the Euler-Poincaré equations,

d

dt

δl

δξ
= ad∗ξ

δl

δξ
, ξ = g−1ġ ∈ g, (4.1)

where l(g−1ġ) = L(g, ġ) is the reduced Lagrangian ; see, e.g., [30]. Even such a simple setting
has many applications. For example, Euler-Poincaré (EP) dynamics on the orthogonal group G =
SO(3) produces Euler’s rigid body equations, while EP dynamics on the group of volume preserving
diffeomorphisms yields the Euler equations for ideal fluid flows.

4.0.0.6. Example 2. When passing from the free rigid body to the heavy top, the direction of gravity
breaks the SO(3)-invariance of the Lagrangian. In the framework of Euler-Poincaré theory, this is
understood as follows. One starts with a G-invariant Lagrangian L = L(g, ġ, a) : TG × V ∗ → R,
where the (dual) vector space V ∗ contains the advected quantity a. By fixing a particular reference
value aref ∈ V ∗, one breaks the symmetry and produces a physical Lagrangian Laref : TG → R
that is only Garef -invariant. Here Garef denotes the isotropy group of the parameter aref .

For the heavy top, the parameter corresponds to the choice of a fixed direction for gravity, whereas
for compressible hydrodynamics, this choice corresponds to fixing the mass density ρref of the fluid
in the reference configuration for the Lagrangian representation. In the convective picture (for the
heavy top) and Eulerian picture (for fluids), the parameters are linearly advected by the flow of the
Euler-Lagrange equation. For example, in the case of compressible fluids, the advection relation is
the continuity equation

ρ̇+ div(ρu) = 0,
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for the mass density. As has been seen, such a linear evolution does not appear in the molecular
strand and affine advection needs to be considered.

Returning to the abstract formulation, the G-invariant function L = L(g, ġ, aref ) determines the
reduced Lagrangian l(ξ, a) = L(g−1ġ, g−1aref ) on the space g × V ∗, and the presence of the new
variable a acted on by G modifies the right hand side of the Euler-Poincaré equation (4.1). We refer
to [21] for the theory of Euler-Poincaré reduction with advected variables.
4.0.0.7. Example 3. In order to extend classical Lagrangian and Hamiltonian reductions to the case
of fluids with internal structure, such as superfluids or spin glasses, one needs to consider quantities
that are affinely advected by the Lagrangian flow, as opposed to the linearly advected quantities of
Example 2. Such an observation is made in [12] in order to explain, from a canonical point of view
(that is, by reduction of the canonical Hamilton equations on phase space), the presence of cocycles
in the Hamiltonian structure of these equations (see also [20]).

Roughly speaking, the main idea is to replace the linear action in Example 2 by an affine action.
Such an action is of the form a 7→ ga+ c(g), where c(g) is a group one-cocycle. As before, we start
with a G-invariant function L = L(g, ġ, aref ) : TG×V ∗ → R where V ∗ is the space of affine advected
quantities. Fixing aref produces a Lagrangian Laref that is only invariant under the isotropy group
Garef of the affine action at aref . As we shall see, in contrast with Example 2 above, it makes sense
(and is useful) to chose the trivial initial condition aref = 0.
4.0.0.8. The strand with nonlocal interactions. In the next section, it is shown that in order to
obtain the classical Lagrangian formulation for the molecular strand with nonlocal interactions, a
slight generalization of Example 3 is needed.

The main difference is that now the Garef -invariant Lagrangian Laref : TG → R of the system is
only given for the particular value aref = 0 of the parameter. Therefore, the reduced equations of
motion take place on the space g×O, where O ⊂ V ∗ is the orbit of aref = 0 under the affine action
of G. The somewhat mysterious link between the nonlocal character of the Lagrangian and the fact
that it is only expressible at the particular value aref = 0, is explained in Remark 19 with the help
of Remark 14.

The associated Lagrangian reduction is called below “affine reduction at a fixed parameter” and
is studied in detail in §5.3. For application to the strand equations, the configuration Lie group is
evidently given by

G = F([0, L], SE(3)) 3 g = (Λ, r),
whereas the affine advected quantities are represented by the variables (Ω,Γ ,ρ).

When the nonlocal interactions are neglected, then the dynamics of the Kirchhoff rod in the convec-
tive representation are recovered and the situation of Example 3 re-emerges. This simpler case and
its link to Lagrange-Poincaré reduction and Clebsch-constrained variational principles are explored
in [11].

5. The affine Euler-Poincaré and Lie-Poisson approaches

This section explains how the equations of the charged strand may be obtained by classical La-
grangian or Hamiltonian reduction by the symmetry group. In particular, in the material represen-
tation, the dynamics is governed by the standard Euler-Lagrange or canonical Hamilton equations
on the (co)tangent bundle of the configuration group F(I, SE(3)). To see this, we shall use the pro-
cess of affine Euler-Poincaré and affine Lie-Poisson reduction. This proves that the charged strand
admits the same geometrical description as for complex fluids and spin systems.
We begin by recalling from [12] the theory of affine Euler-Poincaré and Lie-Poisson reduction.
In contrast to [12], however, we consider here Lagrangians and Hamiltonians that are left-invariant,
rather than right-invariant.
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5.1. Notations for semidirect products

Let V be a vector space and assume that the Lie group G acts on the left by linear maps (and hence
G also acts linearly on the left on the dual space V ∗). As a set, the semidirect product S = GsV
is the Cartesian product S = G× V whose group multiplication is given by

(g1, v1)(g2, v2) := (g1g2, v1 + g1v2),

where the action of g ∈ G on v ∈ V is denoted simply as gv. The identity element of GsV is (e, 0),
where e is the identity element of G, and (g, v)−1 = (g−1,−g−1v) for all g ∈ G, v ∈ V . The Lie
algebra of S is the semidirect product Lie algebra, s = g sV , whose Lie bracket has the expression

ad(ξ1,v1)(ξ2, v2) := [(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1),

where ξv denotes the induced linear g-action on V , that is,

ξv :=
d

dt

∣∣∣∣
t=0

exp(tξ)v ∈ V.

From the expression for the Lie bracket, it follows that for (ξ, v) ∈ s and (µ, a) ∈ s∗, the dual of the
Lie algebra s, we have

ad∗(ξ,v)(µ, a) = (ad∗ξ µ− v � a,−ξa),

where ξa ∈ V ∗ and v � a ∈ g∗ are given by

ξa :=
d

dt

∣∣∣∣
t=0

exp(tξ)a and 〈v � a, ξ〉g := −〈ξa, v〉V ,

and where 〈·, ·〉g : g∗×g→ R and 〈·, ·〉V : V ∗×V → R are the duality pairings. The coadjoint action
of S on s∗ has the expression

Ad∗(g,v)−1(µ, a) =
(
Ad∗g−1 µ+ v � ga, ga

)
. (5.1)

Suppose we are given a left representation of G on the vector space V ∗. We can form an affine left
representation θg(a) := ga + c(g), where c ∈ F(G,V ∗) is a left group one-cocycle , that is, it
verifies the property

c(gh) = c(g) + gc(h), (5.2)

for all g, h ∈ G. Note that

d

dt

∣∣∣∣
t=0

θexp(tξ)(a) = ξa+ dc(ξ)

and

〈ξa+ dc(ξ), v〉V = 〈dcT (v)− v � a, ξ〉g,

where dc : g→ V ∗ is defined by dc(ξ) := Tec(ξ), and dcT : V → g∗ is defined by

〈dcT (v), ξ〉g := 〈dc(ξ), v〉V .
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5.2. Affine Lagrangian and Hamiltonian semidirect product theory

Concerning the Lagrangian side, the general setup is the following.

– Assume that we have a function L : TG × V ∗ → R which is left G-invariant under the affine
action (vh, a) 7→ (gvh, θg(a)) = (gvh, ga+ c(g)), where g, h ∈ G, vh ∈ TG, a ∈ V ∗.

– In particular, if aref ∈ V ∗, define the Lagrangian Laref : TG → R by Laref (vg) := L(vg, aref ).
Then Laref is left invariant under the lift to TG of the left action of Gcaref on G, where Gcaref :=
{g ∈ G | θg(aref ) = garef + c(g) = aref} is the isotropy group of aref with respect to the affine
action θ.

– Define l : g× V ∗ → R by l := L|g×V ∗ . Left G-invariance of L yields

l(g−1vg, θg−1(a)) = L(vg, a)

for all g ∈ G, vg ∈ TgG, a ∈ V ∗.
– For a curve g(t) ∈ G, let ξ(t) := g(t)−1ġ(t) ∈ g and define the curve a(t) ∈ V ∗ as the unique

solution of the following affine differential equation with time dependent coefficients

ȧ = −ξa− dc(ξ), (5.3)

with initial condition

a(0) = g(0)−1aref + c(g(0)−1) for g(0) ∈ G. (5.4)

The solution of (5.3) can then be written as

a(t) = θg(t)−1(aref ) = g(t)−1aref + c(g(t)−1). (5.5)

For example, the choice aref = 0 in one dimension means that the filament coordinates have
no singularities. In an application to a two-dimensional sheet in R3 the choice aref = 0 would
mean that no defects (disclinations) appear in the reference configuration. On such a sheet, the
curvature for a choice aref 6= 0 would represent the areal density of the defects in the order
parameter of the reference configuration. This matter has been discussed earlier for complex
fluids in [12]. The present paper does not delve into defects and other higher dimensional issues.

Theorem 5.1. In the preceding notation, the following are equivalent:

i With aref ∈ V ∗ held fixed, Hamilton’s variational principle

δ

∫ t1

t0

Laref (g, ġ)dt = 0, (5.6)

holds, for variations δg(t) of g(t) vanishing at the endpoints.
ii g(t) satisfies the Euler-Lagrange equations for Laref on G.
iii The constrained variational principle

δ

∫ t1

t0

l(ξ, a)dt = 0, (5.7)

holds on g× V ∗, upon using variations of the form

δξ =
∂η

∂t
+ [ξ, η], δa = −ηa− dc(η),

where η(t) ∈ g vanishes at the endpoints.
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iv The affine Euler-Poincaré equations hold on g× V ∗:
∂

∂t

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δa
� a− dcT

(
δl

δa

)
. (5.8)

See [12] for the proof and applications to spin systems and complex fluids. Concerning the Hamilto-
nian side, the setup is the following.

– Assume that we have a function H : T ∗G×V ∗ → R which is left invariant under the affine action
(αh, a) 7→ (gαh, θg(a)), for all g, h ∈ G, αh ∈ T ∗G, a ∈ V ∗.

– In particular, if aref ∈ V ∗, define the Hamiltonian Haref : T ∗G→ R by

Haref (αg) := H(αg, aref ).

Then Haref is left invariant under the lift to T ∗G of the left action of Gcaref on G.
– Define h : g∗ × V ∗ → R by h := H|g∗×V ∗ . Left G-invariance of H yields

h(g−1αg, θg−1(a)) = H(αg, a).

for all g ∈ G, αg ∈ T ∗gG, a ∈ V ∗.
Note that the G-action on T ∗G×V ∗ is induced by the S-action on T ∗S = T ∗G× (V ×V ∗) given by

Ψ(g,v)(αh, (u, a)) := (gαh, v + gu, ga+ c(g)) . (5.9)

The affine action Ψ appears as a modification of the cotangent lift of left translation on S by an
affine term. Thus, we can think of the Hamiltonian H : T ∗G × V ∗ → R as being the Poisson
reduction of a S-invariant Hamiltonian H : T ∗S → R by the normal subgroup {e} × V since
(T ∗S)/({e}×V ) ∼= T ∗G×V ∗. Note also that every Hamiltonian H = H(αh, (u, a)), defined on T ∗S
and left invariant under the affine action Ψ , does not depend on the variable u ∈ V .

Theorem 5.2. Let α(t) ∈ T ∗g(t)G be a solution of Hamilton’s equations associated to Haref with
initial condition µ0 ∈ T ∗eG. Then (µ(t), a(t)) := (g(t)−1α(t), θg(t)−1(aref )) ∈ g∗ × V ∗ is a solution
of the affine Lie-Poisson equations on s∗

∂

∂t
(µ, a) =

(
ad∗δh

δµ
µ− δh

δa
� a+ dcT

(
δh

δa

)
,−δh

δµ
a− dc

(
δh

δµ

))
with initial conditions (µ(0), a(0)) = (µ0, aref ). The associated Poisson bracket is the affine Lie-
Poisson bracket on the dual s∗

{f, g}(µ, a) = −
〈
µ,

[
δf

δµ
,
δg

δµ

]〉
−
〈
a,
δf

δµ

δg

δa
− δg

δµ

δf

δa

〉
+
〈

dc
(
δf

δµ

)
,
δg

δa

〉
−
〈

dc
(
δg

δµ

)
,
δf

δa

〉
. (5.10)

Conversely, given µ0 ∈ T ∗eG, the solution α(t) of the Hamiltonian system associated to Haref is
reconstructed from the solution (µ(t), a(t)) of the affine Lie-Poisson equations with initial conditions
(µ(0), a(0)) = (µ0, aref ) by setting α(t) = g(t)µ(t), where g(t) is the unique solution of the differential
equation ġ(t) = g(t) δh

δµ(t) with initial condition g(0) = e.

See [12] for the proof of this theorem and some applications.

Remark 13 (Momentum maps). We now comment on the momentum maps at each stage of the
reduction process. In [12] it is shown that the momentum map associated to the affine action (5.9)
is given by

J : T ∗S → s∗, J(αg, (u, b)) = (αgg−1 + u � b− dcT (u), b), (5.11)
where g ∈ G, αg ∈ T ∗G, u ∈ V , and b ∈ V ∗. The proof of this formula uses the general expression
for the momentum map on a magnetic cotangent bundle with respect to the cotangent-lifted action.
Conservation of J then implies that the motion takes place on affine coadjoint orbits.
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5.3. Affine reduction at fixed parameter

As we shall see, the affine reduction theorems recalled above do not apply directly to the molecular
strand. This is because the Lagrangian of the molecular strand is only given for the particular value
aref = 0 of the parameter and we do not have a concrete expression for Laref when aref 6= 0 is
an arbitrary element of V ∗. Extending L0 by G-invariance only yields a Lagrangian on TG × Oc0,
where Oc0 ⊂ V ∗ is the orbit of the affine G-action on V ∗. Fortunately, the Lagrangian L0 for the
molecular strand is invariant under the isotropy group Gc0 = {g ∈ G | c(g) = 0} and this turns out
to be enough for the extension of the affine semidirect product reduction theorem.

5.3.1. Lagrangian approach We consider here the case of a Gcaref -invariant Lagrangian Laref :
TG→ R for a fixed aref ∈ V ∗, but we do not suppose that this Lagrangian comes from a G-invariant
function L : TG× V ∗ → R. In particular, we do not know the expression of La when a 6= aref is an
arbitrary element of V ∗. To Laref we associate the reduced Lagrangian l defined on the submanifold

g×Ocaref ⊂ g× V ∗, Ocaref := {θg(aref ) | g ∈ G}

given by l(ξ, θg(aref )) = Laref (g−1ξ). The tangent space at a to Ocaref is given by

TaOcaref = {dc(η) + ηa | η ∈ g}. (5.12)

The analogue of Theorem 5.1 in this case is given below.

Theorem 5.3. Let aref be a fixed element in V ∗ and g(t) be a curve in G with g(0) = e. Define the
curves ξ(t) = g(t)−1ġ(t) ∈ g and a(t) := θg(t)−1aref ∈ V ∗. Then the following are equivalent.

i With aref held fixed, Hamilton’s variational principle

δ

∫ t1

t0

Laref (g, ġ)dt = 0 (5.13)

holds for variations δg(t) of g(t) vanishing at the endpoints.
ii g(t) satisfies the Euler-Lagrange equations for Laref on G.
iii The constrained variational principle

δ

∫ t1

t0

l(ξ, a)dt = 0 (5.14)

holds on g×Ocaref ⊂ g× V ∗, upon using variations of the form

δξ =
∂η

∂t
+ [ξ, η], δa = −ηa− dc(η),

where η(t) ∈ g vanishes at the endpoints.
iv Extending l arbitrarily to g × V ∗, the affine Euler-Poincaré equations hold on the submanifold

g×Ocaref ⊂ g× V ∗:
∂

∂t

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δa
� a− dcT

(
δl

δa

)
. (5.15)

Proof. The equivalence of i and ii is true in general. The equivalence of i and iii and the equivalence
of iii and iv can be shown exactly as in the standard case, that is, the case when l is defined on
the whole space g × V ∗. The only minor difference occurs when l is differentiated with respect to
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the second variable. In this case the functional derivative δl/δa ∈ V is replaced by the tangent map
d2l(ξ, a) ∈ T ∗aOcaref and one observes that

d2l(ξ, a)·δa =

〈
δl̃

δa
, δa

〉
, for all δa ∈ TaOcaref

for any extension l̃ of l to g × V ∗. Note that δa = −ηa − dc(η) ∈ TaOcaref for η ∈ η and that
any vector in TaOcaref is of this form. From now on we denote also by l, instead of l̃, an arbitrary
extension of l.

Remark 14 (The case aref = 0 and the charged strand). For the charged molecular strand
we shall need to choose aref = 0. In this case the isotropy group is Gc0 = {g ∈ G | c(g) = 0}. Given
a Gc0-invariant Lagrangian L0 : TG→ R, the reduced Lagrangian l is defined on g×Oc0 by

l(ξ, c(g−1)) = L0(gξ).

It will be sufficient to restrict to Lagrangians for simple mechanical systems with symmetry, that
is, of the form L0(vg) = K(vg) − P (g), where K is the kinetic energy associated to a Gc0-invariant
Riemannian metric on G and the potential P is Gc0-invariant. In this case, the reduced Lagrangian
is

l(ξ, c(g−1)) = K(gξ)− P (g).

Note that the right hand side of this expression is well defined on g × Oc0, that is, it depends on g
only through c(g−1). Indeed, c(g−1) = c(h−1) if and only if θg−1(0) = θh−1(0), which means that
hg−1 ∈ Gc0. Therefore, P (h) = P ((hg−1)g) = P (g) by left Gc0-invariance of P . For the kinetic energy
the same argument works since the metric is Gc0-invariant.
Thus we can write L0(vg) = K(vg) − E(c(g−1)) for the function E : V ∗ → R uniquely determined
by the relation P (g) = E(c(g−1)). In this case, we have

l(ξ, c(g−1)) = K(gξ)− E(c(g−1)).

For the Lagrangian of the charged molecular strand the potential energy is the sum of two terms,
one of which, denoted by Eloc, explicitly depends only on c(g−1) and the other, denoted by Enp, does
not have a concrete expression only in terms of c(g−1) but it is Gc0-invariant. In addition, for the
charged molecular strand the kinetic energy metric is not just Gc0-invariant but G-invariant which
then implies that it is only a function of ξ ∈ g. For the molecular strand the Lagrangian is of the
form

L0(vg) = K(vg)− Eloc(c(g−1))− Enp(ζ(g), c(g−1)),

where ζ is a Gc0-invariant function defined on G and the reduced Lagrangian is

l(ξ, c(g−1)) = K(ξ)− Eloc(c(g−1))︸ ︷︷ ︸
=lloc

−Enp(ζ(g), c(g−1))

= lloc(ξ, c(g−1)) + lnp(ζ(g), c(g−1)).

Note that l can be expressed in terms of (ξ, a) ∈ g×Oc0 as

l(ξ, a) = K(ξ)− Eloc(a)− Enp(ζ(ga), a) = lloc(ξ, a) + lnp(ζ(ga), a), (5.16)

where ga ∈ G is such that c(g−1
a ) = a. This ga is determined only up to left multiplication by Gc0.

Since Enp is Gc0-invariant, the function a 7→ Enp(ga) is well-defined. Because a 7→ lnp(ζ(ga), a) is a
well-defined function of a ∈ Oσ0 one can ask why we insist in denoting lnp = lnp(ζ(ga), a) instead of
simply lnp = lnp(a) which is mathematically correct. The reason is that for the molecular strand we
do not have an explicit expression for lnp : Oc0 → R; see (2.14).
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Let us identify all relevant objects that appear in the dynamics of the molecular strand as an example
of this abstract setup. The Lie group is G = F([0, L], SE(3)), its Lie algebra is g = F([0, L], se(3)),
the representation space is V = X([0, L],R3)⊕F([0, L],R3), and its dual is V ∗ = Ω1([0, L], se(3))⊕
F([0, L],R3).

The spaces Ω1([0, L], se(3)) and X([0, L],R3) are vector valued one-forms, respectively vector fields
(contravariant one-tensors). Of course, since [0, L] is one-dimensional, both of these spaces are nat-
urally identified with smooth functions with values in the respective vector spaces. But, in view of
the generalization presented later in §5.4, it is useful to think of these spaces already in this fashion.
Also, the various R3 appearing above play different roles: they can be the Lie algebra of so(3), its
dual, the natural representation space of SO(3), or its dual. When discussing the generalization in
§5.4, of course all these spaces are different.

The variables associated to these spaces are the following. Elements of G are denoted by (Λ, r),
where Λ ∈ F([0, L], SO(3)) and r ∈ F([0, L],R3). Elements of g are denoted by (ω,γ), with ω,γ ∈
F([0, L],R3). Finally, elements of V ∗ are denoted by (Ω,Γ ,ρ), where Ω ∈ Ω1([0, L],R3), Γ ∈
Ω1([0, L],R3), and ρ ∈ C∞([0, L],R3).
The V ∗-valued one-cocycle on G is given by

c((Λ, r)−1) =
(
(Λ, r)−1(Λ, r)′, Λ−1r

)
= (Λ−1Λ′, Λ−1r′, Λ−1r) = (Ω,Γ ,ρ). (5.17)

The function ζ appearing in lnp is given in this case by

ζ(s, s′) =
(
ξ(s, s′),κ(s, s′)

)
= (Λ, r)−1(s)(Λ, r)(s′) ∈ SE(3),

so ζ(s, ) ∈ G. Note that the Lagrangian of the strand (see (2.4), (2.13), and (2.14)) is exactly of the
form (5.16), with ζ(s, s′) =

(
ξ(s, s′),κ(s, s′)

)
∈ SE(3) given above. In fact, (2.14) has an expression

of the type lnp = lnp(ζ(ga), a). These comments will be greatly expanded and explained in detail in
§5.4.

5.3.2. Recovering the modified Euler-Poincaré approach By Theorem 5.3, we have seen
that the Euler-Lagrange equations of a Gc0-invariant Lagrangian L0 : TG→ R are equivalent to the
affine Euler-Poincaré equations for l : g×Oc0 → R, that is,

∂

∂t

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δa
� a− dcT

(
δl

δa

)
. (5.18)

Recall that to write these equations, we need to extend l to g×V ∗. Nevertheless, as we have shown,
this extension does not affect the solution of these equations. For the molecular strand, there is an
additional complication coming from the fact that the Lagrangian

l(ξ, a) = lloc(ξ, a) + lnp(ζ(ga), a) (5.19)

being a well defined function of (ξ, a) ∈ g × Oc0, is not explicitly written in terms of a. Therefore,
when computing the affine Euler-Poincaré equations in concrete examples, there is still a dependence
on ga in the final equation, although we know that this dependence can be replaced by a dependence
in a uniquely, by the results above.
Let us apply the variational principle (5.14) to the Lagrangian in (5.19). Let g(t) be a given curve
in G. Take a family of curves gε(t) satisfying g0(t) = g(t) and denote η(t) := g−1(t)δg(t) ∈ g. Then
δ
∫ t1
t0
l(ξ(t), c(g(t)−1))dt = 0 implies

∂

∂t

δlloc
δξ

= ad∗ξ
δlloc
δξ

+
δ(lloc + lnp)

δa
� a− dcT

(
δ(lloc + lnp)

δa

)
+ g−1 δlnp

δζ
Tgζ. (5.20)

Note that this equation is the abstract generalization of equations (3.23) and (3.26).
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Recall from the abstract theory that lnp depends only on a ∈ Oc0. However, lnp is given as a function
of (ζ(g), c(g−1)). Let

δlnp
δa

∣∣∣∣
Tot

denote the functional derivative of lnp viewed as a function of a ∈ Oc0 only. Since every curve in Oc0
through a = c(g−1) ∈ Oc0 is of the form c(g−1

ε ), where g0 = g, we have

d

dε

∣∣∣∣
ε=0

lnp(ζ(gε), c(g−1
ε )) =

〈
δlnp
δa

∣∣∣∣
Tot

,
d

dε

∣∣∣∣
ε=0

c(g−1
ε )
〉

= −
〈
δlnp
δa

∣∣∣∣
Tot

, ηa+ dc(η)
〉

=
〈
δlnp
δa

∣∣∣∣
Tot

� a− dcT
(
δlnp
δa

∣∣∣∣
Tot

)
, η

〉
, (5.21)

where η := g−1δg. On the other hand,

d

dε

∣∣∣∣
ε=0

lnp(ζ(gε), c(g−1
ε )) =

〈
δlnp
δζ

, Tgζ(gη)
〉
−
〈
δlnp
δa

, ηa+ dc(η)
〉

=
〈
g−1 δlnp

δζ
Tgζ +

δlnp
δa
� a− dcT

(
δlnp
δa

)
, η

〉
. (5.22)

Equations (5.21) and (5.21) prove the following identity

δlnp
δa

∣∣∣∣
Tot

� a− dcT
(
δlnp
δa

∣∣∣∣
Tot

)
=
δlnp
δa
� a− dcT

(
δlnp
δa

)
+ g−1 δlnp

δζ
Tgζ,

where a = c(g−1). Using this identity in (5.20) we obtain the affine Euler-Poincaré equations (5.18)
since

δl

δa
=
δlnp
δa

∣∣∣∣
Tot

+
δlloc
δa

.

Thus, the affine Euler-Poincaré process recovers the results of the modified Euler-Poincaré approach
described in §3.1.

5.3.3. Hamiltonian approach We now explore the Hamiltonian counterpart of the theory, that
is, the case of a Gcaref -invariant Hamiltonian Haref : T ∗G → R, defined only for a fixed value
aref ∈ V ∗. As before, we do not suppose that Haref is induced from a G-invariant Hamiltonian on
T ∗G× V ∗. In particular, we do not know the expression of Ha for other choices of a. Such an Haref

is usually induced by a hyperregular Gcaref -invariant Lagrangian Laref .

As on the Lagrangian side, the reduced Hamiltonian is only defined on the submanifold

g∗ ×Ocaref ⊂ s∗

and so Theorem 5.2 cannot be applied. However, as is shown in the next theorem, the fact that the
reduced motion is Hamiltonian on an affine coadjoint orbit remains true for this more general case.

We need to introduce the affine coadjoint orbit Oσ(µ,a). The left V ∗-valued group one-cocycle c : G→
V ∗ induces a left group one-cocycle σ : S → (g sV )∗ by

σ(g, u) = (u � c(g)− dcT (u), c(g)).

The affine coadjoint action of S on s∗ is hence given by

(g, u)(µ, a) := Ad∗(g,u)−1(µ, a) + σ((g, u)−1),

where g ∈ G, u ∈ V , µ ∈ g∗, and a ∈ V ∗. The connected components of the coadjoint orbits(
Oσ(µ,aref ), ω

−
)

are the symplectic leaves of s∗ endowed with the affine Lie-Poisson bracket (5.10).
Denote by Sσ(µ,a) the isotropy group of the affine coadjoint action.



36 D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, V. Putkaradze and T.S. Ratiu

Theorem 5.4. Let Haref : T ∗G→ R be a Gcaref -invariant Hamiltonian, where aref is a fixed element
in V ∗. By Gcaref -invariance, we obtain the reduced Hamiltonian h on g∗ × Ocaref ⊂ s∗ defined by
h(µ, θg(aref )) = Haref (g−1µ).

(i) Let α(t) ∈ T ∗g(t)G be a solution of Hamilton’s equations associated to Haref with initial condition
µ0 ∈ T ∗eG = g∗. Then (µ(t), a(t)) := (g(t)−1α(t), θg(t)−1(aref )) ∈ s∗ is the integral curve of the

Hamiltonian vector field Xh on the affine coadjoint orbit
(
Oσ(µ0,aref )

, ω−
)

with initial condition
(µ0, a0). Conversely, given µ0 ∈ g∗ = T ∗eG, the solution α(t) of the Hamiltonian system associ-
ated to Haref is reconstructed from the solution (µ(t), a(t)) of Xh ∈ X

(
Oσ(µ0,aref )

)
with initial

condition (µ0, a0) by setting α(t) = g(t)µ(t), where g(t) is the unique solution of the differential
equation ġ(t) = g(t) δh

δµ(t) with initial condition g(0) = e.

(ii) Extending h arbitrarily to s∗, Hamilton’s equations on
(
Oσ(µ0,aref )

, ω−
)

can be written as

∂

∂t
(µ, a) =

(
ad∗δh

δµ
µ− δh

δa
� a+ dcT

(
δh

δa

)
,−δh

δµ
a− dc

(
δh

δµ

))
where at the initial time t = 0, µ(0) = µ0 and a(0) = g(0)−1aref + c(g(0)−1).

Remark 15. It important to observe that the given Hamiltonian h is not defined on the whole dual
s∗ of the Lie algebra s. Part ii of the theorem states that the equations of motion can be nevertheless
computed from the usual formula of an affine Lie-Poisson vector field by arbitrarily extending h to
s∗. Note that δh/δµ ∈ g and δh/δa ∈ V make sense only if one thinks of h as being defined on s∗.
It will be shown in the proof of the theorem that the extension of h does not matter. This difficulty
will appear concretely when dealing with the molecular strand.

Proof.
(i) The action Ψ of S on T ∗S induces an action of V on T ∗S given by

(αh, (u, a)) 7→ (αh, v + u, a),

where h ∈ G, αh ∈ T ∗G, u ∈ V , and a ∈ V ∗. Since V is a closed subgroup of S, this action admits
a momentum map given by

JV (αg, (u, a)) = a.

Since V is an Abelian group, the coadjoint isotropy group of aref ∈ V ∗ is Varef = V and the first
reduced space (T ∗S)aref = J−1

V (aref )/V is symplectically diffeomorphic to the canonical symplec-
tic manifold (T ∗G,Ωcan). The action Ψ of S on T ∗S restricts to an action Ψaref of Gcaref sV on
J−1
V (aref ). Passing to quotient spaces, this action induces an action of Gcaref on (T ∗S)aref , which is

readily seen to be the cotangent lifted action of Gcaref on T ∗G. We denote by Jaref : (T ∗S)aref →
(gcaref )∗ the associated equivariant momentum map, where gcaref is the Lie algebra of Gcaref . Reduc-
ing (T ∗S)aref at the point µaref := µ|gcaref , we get the second reduced space

(
(T ∗S)aref

)
µaref

=

J−1
aref

(µaref )/(Gcaref )µaref , whose reduced symplectic form is denoted by (Ωaref )µaref .
By the Reduction by Stages Theorem for nonequivariant momentum maps [28], the second reduced
space is symplectically diffeomorphic to the reduced space(

J−1(µ, aref )/Sσ(µ,aref ), Ω(µ,aref )

)
obtained by reducing T ∗S by the whole group S at the point (µ, aref ) ∈ s∗. By affine Lie-Poisson
reduction, this space is symplectically diffeomorphic to the affine coadjoint orbit(

Oσ(µ,aref ), ω
−
)
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endowed with the affine orbit symplectic symplectic form.
Note, finally, that by the symplectic reduction theorem, any solution of Hamilton’s equations as-
sociated to Haref on T ∗G reduces to and is reconstructed from a solution of Hamilton’s equations
for the reduced Hamiltonian hµaref : J−1

aref
(µaref )/(Gcaref )µaref → R, for a given momentum value

µaref ∈ (gcaref )∗. As we have seen, this reduced space is symplectically diffeomorphic to the affine
coadjoint orbit Oσ(µ,aref ) ⊂ s∗, where µ ∈ g∗ is such that µ|gcaref = µaref . Thus, we can think of
hµaref as being defined on Oσ(µ,aref ). Viewed this way, hµaref is simply the restriction of the function
h constructed from Haref by

h(µ, θg(aref )) = H(g−1µ, aref ).

Note that h is defined on any affine coadjoint orbit Oσ(µ,aref ) with fixed a0 ∈ V ∗ since

g∗ ×Ocaref =
⋃
µ∈g∗

Oσ(µ,aref ) ⊂ s∗.

(ii) We begin by recalling a general fact from the theory of Poisson manifolds. Let ϕ ∈ C∞(P ),
where P is a Poisson manifold and Xϕ its Hamiltonian vector field.
If L is a symplectic leaf of P , then Xϕ|L = X(ϕ|L), where left hand side is the Hamiltonian vector
field of ϕ on the manifold P , restricted to L, whereas the right hand side denotes the Hamiltonian
vector field on the symplectic manifold L relative to the Hamiltonian ϕ|L on L. In our case P = s∗

and L = Oσ(µ,aref ).

Remark 16 (The case aref = 0 and the molecular strand). The Lagrangian

L0(vg) = K(vg)− Eloc(c(g−1))− Enp(ζ(g), c(g−1))

discussed in Remark 14 is hyperregular, thus it induces the Gc0-invariant Hamiltonian

H0(αg) = K(αg) + Eloc(c(g−1)) + Enp(ζ(g), c(g−1))

whose reduced expression on g∗ ×Oc0 reads

h(µ, c(g−1)) =
1
2
‖µ‖2 + Eloc(c(g−1)) + Enp(ζ(g), c(g−1)).

As on the Lagrangian side, for (µ, a) ∈ g∗ ×Oc0 (or (µ, a) ∈ Oσ(µ0,0)
), we can write

h(µ, a) =
1
2
‖µ‖2 + Eloc(a) + Enp(ζ(ga), a),

where ga ∈ G is any group element satisfying c(g−1
a ) = a.

Remark 17 (Affine coadjoint orbits and Noether’s theorem). As we have already seen, the
solution (µ, a) evolves on an affine coadjoint orbit, for any Gcaref -invariant Hamiltonian Haref . If
Laref is the Lagrangian of a simple mechanical system with symmetry then, by Noether’s theorem,
the solution (ξ, a) is constrained to evolve on the submanifolds(

Oσ(µ0,aref )

)]
=
{

(ξ, a) ∈ g× V ∗ | (ξ[, µ) ∈ Oσ(µ0,aref )

}
,

where [ : g→ g∗ is defined by the kinetic energy metric and ] : g∗ → g is its inverse.
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5.4. Application to the charged strand

In this subsection we apply the affine Euler-Poincaré and Lie-Poisson reduction theorems to the
charged strand.
Recall that the variables needed for this problem consist of the Lagrangian quantities (Λ, r) : [0, L]→
SE(3), together with the convective variables defined by

Ω := Λ−1Λ′, ω := Λ−1Λ̇ : [0, L]→ so(3)

and
Γ := Λ−1r′, γ := Λ−1ṙ, ρ := Λ−1r : [0, L]→ R3.

In order to give a more transparent vision of the underlying geometric structures, we consider the
n-dimensional generalization described in Subsection 2.4, that is, we replace the interval [0, L] by
an arbitrary manifold D and we replace SE(3) by the semidirect product S = OsE of a Lie group
O with a left representation space E. Given a manifold D, we define the group G := F(D, S) of
smooth S-valued functions on D and the dual vector space V ∗ := Ω1(D, s) ⊕ F(D, E) consisting
of pairs formed by smooth s-valued one-forms and E-valued functions on D. The elements of the
group G are denoted by (Λ, r), where Λ : D → O and r : D → E. The elements of V ∗ are denoted
by (Ω,Γ, ρ), where Ω ∈ Ω1(D, o), Γ ∈ Ω1(D, E), and ρ : D → E. The space V ∗ can be seen as the
dual of V = X(D, s∗)⊕F(D, E∗), where X(D, s) is the space of s-valued vector fields on D.
Consider the representation of G on V ∗ defined by

(Λ, r)(Ω,Γ, ρ) = (Ad(Λ,r)(Ω,Γ ), Λρ) (5.23)

where the adjoint action is that of S, acting here on functions defined on D, and Λρ denotes the
left representation of O on E, acting on functions. The main object for this approach is the group
one-cocycle c appearing already implicitly in the definition of the variablesΩ,Γ ,ρ in (2.11), (2.20),
and explicitly in (2.21). Recall that it is given by (5.17), now rewritten as

c(Λ, r) :=
(
(Λ, r)d(Λ, r)−1,−r

)
.

Let’s verify the cocycle identity for the first component (Λ, r)d(Λ, r)−1. To simplify notation, denote
χi := (Λi, ri) ∈ F(D, S), i = 1, 2. We have

χ1χ2d(χ1χ2)−1 = χ1χ2d(χ−1
2 χ−1

1 ) = χ1χ2d(χ−1
2 )χ−1

1 + χ1χ2χ
−1
2 d(χ−1

1 )

= Adχ1

(
χ2dχ−1

2

)
+ χ1d(χ−1

1 ).

Since the second coordinate of ((Λ1, r1)(Λ2, r2)) is equal to r = r1 + Λ1r2, we find

c ((Λ1, r1)(Λ2, r2)) =

=
(
Ad(Λ1,r1)

(
(Λ2, r2)d(Λ2, r2)−1

)
+ (Λ1, r1)d((Λ1, r1)−1),−r1 − Λ1r2

)
=
(
Ad(Λ1,r1)

(
(Λ2, r2)d(Λ2, r2)−1

)
,−Λ1r2

)
+
(
(Λ1, r1)d((Λ1, r1)−1),−r1

)
= (Λ1, r1)c(Λ2, r2) + c(Λ1, r1).

This shows that c verifies the cocycle property (5.2) relative to the representation (5.23).

Note that the first component of c is the left version of the cocycle appearing in the theory of complex
fluids; see [12]. Using the expressions

(u,w, f) � (Ω,Γ, ρ) = (ad∗Ωi u
i + wi � Γi + f � ρ,−Ωiwi),

dc(ω, γ) = (−dω,−dγ,−γ), and dcT (u,w, f) = (div(u),div(w)− f),
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the affine Euler-Poincaré equations (5.8) become
(∂t − ad∗ω)

δl

δω
+ (div−ad∗Ω)

δl

δΩ
=

δl

δγ
� γ +

δl

δΓ
� Γ +

δl

δρ
� ρ

(∂t + ω)
δl

δγ
+ (div +Ω)

δl

δΓ
=
δl

δρ

(5.24)

and the advection equations are 
∂tΩ + adω Ω = dω

(∂t + ω)Γ = (d +Ω) γ

∂tρ+ ωρ = γ.

(5.25)

Remark 18. To write these equations, we have supposed that the dynamics is described by a
Lagrangian l given explicitly in terms of the variables (ω, γ,Ω, Γ, ρ). Equivalently, we have assumed
that l is induced by an affine left-invariant Lagrangian L defined on TG × V ∗. As we have seen in
§2.2, such a hypothesis is not verified when nonlocal terms are taken into account. In this case, the
affine Euler-Poincaré and affine Lie-Poisson reductions are not applicable and one needs to restrict
to a particular value of the parameter aref , by using Theorems 5.3 and 5.4. For convenience, we
first present the simpler case where the nonlocal terms are ignored. We shall call this case elastic
filament dynamics, for simplicity.

5.4.1. Elastic filament dynamics and Kirchhoff’s theory Suppose that the dynamics of the
strand is described by a Lagrangian l = l(ω, γ,Ω, Γ, ρ) defined on g × V ∗, where g = F(D, s) and
V ∗ = Ω1(D, s)⊕F(D, E). The Lagrangian l is induced by a left invariant Lagrangian L defined on
TG× V ∗, where G = F(D, S).
Note that there is no restriction in the way l depends on the variables. In particular the dependence
can be nonlocal. However, it is supposed here that l depends explicitly on the variables (ω, γ,Ω, Γ, ρ).
Recall that such a hypothesis is verified for the Lagrangian of Kirchhoff’s theory (1.12) but is not
verified for the Lagrangian of the charged strand (2.4).
The affine Euler-Poincaré reduction applies as follows. Fix the reference values (Ωref , Γref , ρref ) and
define the Lagrangian

L(Ωref ,Γref ,ρref )(Λ, r) := L(Λ, r,Ωref , Γref , ρref ).

Consider a curve (Λ, r) ∈ G and define the quantities

(Ω,Γ, ρ) = (Λ, r)−1(Ωref , γref , ρref ) + c((Λ, r)−1)

= (AdΛ−1 Ωref , Λ
−1(Γref +Ωrefr), Λ−1ρref ) + (Λ−1dΛ,Λ−1dr, Λ−1r).

and
ω = Λ−1Λ̇, γ = Λ−1ṙ.

Note that when the initial values Ωref , Γref , ρref are zero, the definitions of the variables ω, γ,Ω, Γ, ρ
coincide with those given in (2.11) and (2.20).
Then the curve (Λ, r) is a solution of the Euler-Lagrange equations associated to L(Ωref ,Γref ,r0) on
TG if and only if (ω, γ,Ω, Γ, ρ) is a solution of the Euler-Poincaré equations (5.24).
Of course, when D is the interval [0, L] and S is the semidirect product of O = SO(3) with E = R3,
then we recover from (5.24) the dynamical equation of the charged strand (3.38), since

ad∗ 7→ − × and � 7→ ×.

These equations are the convective representation of Kirchhoff’s equations. From (5.25) we recover
the advection relations derived in Subsection 2.3.
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5.4.2. The charged strand: general case Recall from §2.2 that the Lagrangian of the charged
strand has the expression

l = lloc(ω,γ,Ω,Γ ,ρ) + lnp(ξ,κ,Γ ),

where lloc is a local function of the form

lloc(ω,γ,Ω,Γ ,ρ) = K(ω,γ)− Eloc(Ω,Γ ,ρ) (5.26)

and lnp is of the form

lnp(ξ,κ,Γ ) =
∫∫

U (ξ(s, s′),κ(s, s′),Γ (s),Γ (s′)) dsds′,

where
U : SE(3)× R3 × R3 → R and (ξ(s, s′),κ(s, s′)) := (Λ, r)−1(s)(Λ, r)(s′).

Remark 19 (Two crucial observations).

1. The nonlocal Lagrangian lnp is induced by a SO(3)-invariant potential Enp = Enp(Λ, r). Thus
the total Lagrangian l can be seen as being induced by the SO(3)-invariant Lagrangian L0 =
L0(Λ, Λ̇, r, ṙ) given by

L0(Λ, Λ̇, r, ṙ) = K(Λ, Λ̇, r, ṙ)− Eloc
(
c
(
(Λ, r)−1

))
− Enp(Λ, r),

where K is the F(D, SE(3))-left invariant extension of the kinetic energy K in (5.26). Note that
we have replaced the dependence of Eloc on (Ω,Γ ,ρ) by a dependence on (Λ, r) through the
cocycle c. The affine Euler-Poincaré dynamics yields the relation (Ω,Γ ,ρ) = c

(
(Λ, r)−1

)
which

allows us to recover the dependence of the potential on (Ω,Γ ,ρ).
2. The group SO(3) is precisely the isotropy group

Gc0 = F(D, SE(3))c0 = {(Λ, r) ∈ G | c(Λ, r) = 0}

of the affine action at zero.

These two remarks allow us to obtain the dynamics of the molecular strand by the affine reduction
processes described in Theorems 5.3 and 5.4. As before, we choose to work with the general framework
involving D and OsE. The present approach is applicable to any O-invariant Lagrangian

L0 = L0(Λ, Λ̇, r, ṙ) : T [F(D,OsE)]→ R.

Note there are no conditions on the dependence of L0 on the variables (Λ, r). In particular, L0 can
be nonlocal and may depend on the derivatives of Λ and r. An important class of such Lagrangians
is given by

L0(Λ, Λ̇, r, ṙ) = K(Λ, Λ̇, r, ṙ)− P (Λ, r),

where K is the kinetic energy associated to an O-invariant metric on F(D,OsE) and the potential
P is an O-invariant function on F(D,OsE). In particular, P can be nonlocal, or depend on
derivatives of Λ and r; see (1.12) for an example. In the case of the molecular strand, K is assumed
to be left-invariant and P is given by

P (Λ, r) = Eloc
(
c
(
(Λ, r)−1

))
+ Enp(Λ, r),

where

Enp(Λ, r) :=
∫∫
D
U
(
ξ(s, s′), κ(s, s′), Λ−1dr(s), Λ−1dr(s′)

)
dsds′

(ξ(s, s′), κ(s, s′)) := (Λ, r)−1(s)(Λ, r)(s′) ∈ OsE
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and one readily sees that Enp is O-invariant. Recall that the cocycle is

c
(
(Λ, r)−1

)
=
(
Λ−1dΛ,Λ−1dr, Λ−1r

)
.

Thus, a straightforward and maybe useful generalization of Enp is

Enp(Λ, r) :=
∫∫
D
U
(
ξ(s, s′), κ(s, s′), c

(
(Λ, r)−1

)
(s), c

(
(Λ, r)−1

)
(s′)
)

dsds′.

Using Theorem 5.3 with L0 we obtain the same affine Euler-Poincaré equations (5.24), where all
derivatives are total derivatives. One can equivalently use the modified Euler-Poincaré approach and
obtain the equations

(∂t − ad∗ω)
δl

δω
+ (div−ad∗Ω)

δl

δΩ
=

δl

δγ
� γ +

δl

δΓ
� Γ +

δl

δρ
� ρ,

+
∫ [

ξ(s, s′)
∂U

∂ξ
(s′, s)− ∂U

∂ξ
(s, s′)ξ(s′, s)− κ(s, s′) � ∂U

∂κ
(s, s′)

]
ds′

(∂t + ω)
δl

δγ
+ (div +Ω)

δl

δΓ
=
δl

δρ
+
∫ [

ξ(s, s′)
∂U

∂κ
(s′, s)− ∂U

∂κ
(s, s′)

]
ds′.

(5.27)

Note that here the derivatives are not total derivatives; see the discussion in §5.3.2. One can treat
the Hamiltonian side in a similar way. As we have seen, the motion is Hamiltonian on affine coadjoint
orbits.

5.4.3. Conservation laws and spatial formulation In this paragraph, we generalize the ap-
proach of Section 3.2 and reformulate the equations (5.24) for the generalized charged strand as a
conservation law. We first need a n-dimensional generalization of formula (3.29).
Given a Lie group G, a map g : D → G defined on a n-dimensional manifold D, s ∈ D, and a
g∗-valued vector field w on D, we have

Ad∗g
[
div
(
Ad∗g−1 w

)]
= divw − ad∗σi w

i =: divσ w, σ := g−1dg ∈ Ω1(D, g). (5.28)

Using this formula, (3.29), the expression of ad∗ associated to the semidirect product OsE, and
the equalities

(ω, γ) = (Λ, r)−1(Λ̇, ṙ), (Ω,Γ ) = (Λ, r)−1d(Λ, r),

we find

Ad∗(Λ,r)
∂

∂t

[
Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)]
=

∂

∂t

(
δl

δω
,
δl

δγ

)
+
(
− ad∗ω

δl

δω
+ γ � δl

δγ
, ω

δl

δγ

)
,

and

Ad∗(Λ,r) div
[
Ad∗(Λ,r)−1

(
δl

δΩ
,
δl

δΓ

)]
= div

(
δl

δΩ
,
δl

δΓ

)
+
(
− ad∗Ω

δl

δΩ
+ Γ � δl

δΓ
,Ω

δl

δΓ

)
.

Thus, equations (5.27) can be rewritten in the form of a conservation law, namely

∂

∂t

[
Ad∗(Λ,r)−1

(
δl

δω
,
δl

δγ

)]
+ div

[
Ad∗(Λ,r)−1

(
δl

δΩ
,
δl

δΓ

)]
= Ad∗(Λ,r)−1

(
δl

δρ
� ρ , δl

δρ

)
. (5.29)
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Using (5.1), the right hand side simplifies to

Ad∗(Λ,r)−1

(
δl

δρ
� ρ , δl

δρ

)
=
(

Ad∗Λ−1

(
δl

δρ
� ρ
)

+ r �
(
Λ
δl

δρ

)
, Λ

δl

δρ

)
=
((

Λ
δl

δρ
� Λρ

)
+ r �

(
Λ
δl

δρ

)
, Λ

δl

δρ

)
=
(

0, Λ
δl

δρ

)
,

since ρ = Λ−1r. Note that this is the exact equivalent of the simplification (1.24) derived at the
beginning of the paper.
Such a conservation law is valid for each solution of the affine Euler-Poincaré equation (5.1) associated
to a Gc0-invariant Lagrangian L0 : TG→ R. In particular, it is valid for the Kirchhoff theory, as we
saw at end of §1.3.1.
A short computation shows that, in general, the previous conservation law reads

∂

∂t

[
Ad∗g−1

δl

δξ

]
+ dcT

(
g
δl

δa

)
= 0. (5.30)

When aref is not necessarily zero, the previous formula becomes

∂

∂t

[
Ad∗g−1

δl

δξ

]
+ dcT

(
g
δl

δa

)
= Ad∗g−1

(
δl

δa
� g−1aref

)
. (5.31)

5.4.4. The fixed filament and its conservation law The equations (1.29) for a fixed filament
can also be obtained by affine Euler-Poincaré reduction. It suffices to apply Theorem 5.3 with the
group G = F(D,O) 3 Λ, acting on the vector space Ω1(D, o)×F(D, E) 3 (Ω, ρ) by the affine action

(Ω, ρ) 7→ θΛ(Ω, ρ) := (AdΛΩ + ΛdΛ−1, Λρ).

Note that the cocycle is c(Λ) =
(
ΛdΛ−1, 0

)
. Using the expressions

(u, f) � (Ω, ρ) = ad∗Ωi u
i + f � ρ,

dc(ω) = (−dω, 0), and dcT (u, f) = div(u),

the affine Euler-Poincaré equations (5.8) become

(∂t − ad∗ω)
δl

δω
+ (div− ad∗Ω)

δl

δΩ
=
δl

δρ
� ρ (5.32)

and the advection equations are {
∂tΩ + adω Ω = dω,

∂tρ+ ωρ = 0.
(5.33)

Recall from §1.3.2 that the Lagrangian for a fixed filament is of the form

l = lloc(ω,Ω) + lnp(ξ,ρ),

lloc(ω,Ω) = K(ω)− 1
2

∫
f(Ω(s))ds, lnp(ξ,ρ) = −

∫∫
U(ρ(s), ξ(s, s′))dsds′

where
f : R3 → R, U : R3 × SO(3)→ R, ξ(s, s′) := Λ−1(s)Λ(s′).

Using the relations ω = Λ−1Λ̇, Ω = Λ−1Λ′, and ρ = Λ−1ρref , where ρref (s) := r(s) = (s, 0, 0)T , we
conclude that l is induced by a SO(2)-invariant Lagrangian L(0,r) = L(0,r)(Λ, Λ̇). Note that SO(2)
is precisely the isotropy group of (0, r) relative to the affine action.
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These observations allow us to obtain the equations for the fixed filament by the affine reduction
processes described in Theorems 5.3 and 5.4. Using the general framework involving D and OsE,
we obtain the equations

(∂t − ad∗ω)
δl

δω
+ (div− ad∗Ω)

δl

δΩ
=
δl

δρ
� ρ+

∫ [
ξ(s, s′)

∂U

∂ξ
(s′, s)− ∂U

∂ξ
(s, s′)ξ(s′, s)

]
ds′

which coincides with (1.28) in the case of the fixed filament. Using total derivatives, these equations
can be rewritten as (5.32).

The general formula (5.31) yields the conservation law

∂

∂t

[
Ad∗Λ−1

δl

δω

]
+ div

[
Ad∗Λ−1

δl

δΩ

]
= Ad∗Λ−1

(
δl

δρ
� ρ
)
.

From the general theory it follows that the solution of the advection equations (5.33) in terms of Λ
are given by Ω = Λ−1dΛ and ρ = Λ−1ρref .

For the fixed filament, we choose D = [0, L], E = R3, O = SO(3), ρref (s) = r(s) = (s, 0, 0)T and
we get

∂

∂t

[
Ad∗Λ−1

δl

δω

]
+

∂

∂s

[
Ad∗Λ−1

δl

δΩ

]
= Ad∗Λ−1

(
δl

δρ
× ρ

)
. (5.34)

Note that in this case, the torque does not vanish. The explanation is that the reference value ρref
of ρ is not zero, so we need to use (5.31) instead of (5.30).
Observe that we can write

Ad∗Λ−1

(
δl

δρ
× ρ

)
= Λ

δl

δρ
× Λρ = Λ

δl

δρ
×

 s
0
0

 .

More generally, the right hand side is (
Λ
δl

δρ

)
× r,

where r describes the fixed filament.
Note that the conservation law (5.34) does not appear in §1.3.2. It is a particular case of the general
formula (5.31). We believe that the derivation of this law through the affine Euler-Poincaré theory
is interesting and shows the breadth of application of our theories.

6. New variables: Coordinate change and horizontal-vertical split

In this section, we show that a drastic simplification of the equations arises under a particular change
of variables. We first consider the case of strands. This change of variables will then be extended to
the general setting of the previous section where [0, L] is replaced by a manifold D and SE(3) by
an arbitrary semidirect product associated to a representation.
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6.1. Motivation in terms of covariant derivatives

We can see from (1.1) that ρ, Γ , and γ satisfy the following relations

(∂s +Ω×)ρ = Γ , (∂t + ω×)ρ = γ. (6.1)

Thus the reduced variables (1.1) lead naturally to two differential operators

D

Ds
= (∂s +Ω×) ,

D

Dt
= (∂t + ω×) , (6.2)

which will be interpreted later as covariant derivatives, one with respect to space and the other with
respect to time.
With this interpretation we regard Γ and γ as covariant tangent vectors above ρ,

Dρ

Ds
= Γ ,

Dρ

Dt
= γ. (6.3)

The operators from (6.2) also appear in the equations of motion (3.38) since we can write the second
Euler-Poincaré equation in the form

D

Dt

δl

δγ
+

D

Ds

δl

δΓ
− δl

δρ
= 0. (6.4)

Taking (6.3) and (6.4) together, we see that (6.4) is in the form of the Euler-Lagrange equations
where the partial derivatives have been replaced by covariant derivatives. With this interpretation
in mind we can ask whether, by a change of variables, we can transform (6.4) to the canonical
Euler-Lagrange form. In this section we find that such a change of variables does exist and we give
it explicitly. This line of enquiry leads us to consider in the subsequent sections how the two sets of
coordinates are related from a geometric point of view.

6.2. The case of charged strands

Rearranging equations (6.1), we find that the time and space derivatives of ρ are given by

∂sρ = Γ −Ω × ρ, ∂tρ = γ − ω × ρ.

Therefore we introduce the coordinate change

F(I, so(3))×F(I,R3)×Ω1(I, so(3))×Ω1(I,R3)×F(I,R3)
3 (ω,γ,Ω,Γ ,ρ) 7→ (ρ,ρs,ρt,ω,Ω) ∈ (6.5)

F(I,R3)×Ω1(I,R3)×F(I,R3)×F(I, so(3))×Ω1(I, so(3)),

where we have defined two new variables

ρs := Γ −Ω × ρ, ρt := γ − ω × ρ. (6.6)

This candidate coordinate change allows us to transform the differential operators D/Ds and D/Dt
into partial derivatives. We shall show that the equations of motion (3.23) and (3.26) have simple
expressions if one uses this change of variables. As far as we know, this transformation has not been
noticed before, in either nonlocal or local setting.

Notation 6.1 We shall denote by l̄ the Lagrangian l in terms of the new variables given by (6.5),
that is, we have

lloc(ω,γ,Ω,Γ ,ρ) + lnp(ξ,κ,Γ ) = l̄loc(ρ,ρs,ρt,ω,Ω) + l̄np (ξ,κ,ρs,ρ,Ω) .
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6.3. Change of coordinates

The action principle for the local part of the Lagrangian l̄loc yields

0 = δ

∫
l(ω,γ,Ω,Γ ,ρ)dt

=
∫ [〈

δl

δρ
, δρ

〉
+
〈
δl

δγ
, δγ

〉
+
〈
δl

δΓ
, δΓ

〉
+
〈
δl

δω
, δω

〉
+
〈
δl

δΩ
, δΩ

〉]
dt

= δ

∫
l̄(ρ,ρs,ρt,ω,Ω)dt (6.7)

=
∫ [〈

δl̄

δρ
, δρ

〉
+
〈
δl̄

δρs
, δρs

〉
+
〈
δl̄

δρt
, δρt

〉
+
〈
δl̄

δω
, δω

〉
+
〈
δl̄

δΩ
, δΩ

〉]
dt.

Define free variations Ψ(s) = Λ(s)−1δr(s) and Σ(s) = Λ(s)−1δΛ(s). As usual, Ψ denotes the anti-
symmetric matrix that is obtained from Ψ by the hat map. Then, the following theorem holds.
Theorem 61 The variations in δρs and δρt yield dynamical equations for the local lagrangian l̄loc
in the following form

(∂s +Ω×)
δl̄loc
δΩ

+ (∂t + ω×)
δl̄loc
δω

= 0, (6.8)

δl̄loc
δρ
− ∂t

δl̄loc
δρt
− ∂s

δl̄loc
δρs

= 0. (6.9)

Remark 20. The derivatives in the equations (6.8) and (6.9) have now formally decoupled, although
the equations themselves must be solved simultaneously because the Lagrangian l depends on all
the variables. Also note that equation (6.9) is equivalent, for local Lagrangians, to (3.26) with the
covariant derivatives replaced by partial derivatives (but relative to the new variables). This gives
a new interpretation to the right-hand side of (3.23) as being terms that arise from the induced
covariant derivative.

Proof. First, variations δρt and δρs are computed from (6.6) as follows:

δρt = δγ − δω × ρ− ω × δρ, (6.10)
δρs = δΓ − δΩ × ρ−Ω × δρ. (6.11)

Then, using the identities

δω = Σ̇ + ω ×Σ,
δΩ = Σ′ +Ω ×Σ,
δρ = −Σ × ρ+ Ψ ,

δγ = Ψ̇ + ω × Ψ −Σ × γ,
δΓ = Ψ ′ +Ω × Ψ −Σ × Γ ,

we find, for example, from the term involving the derivatives with respect to ρt,〈
δl̄

δρt
, δρt

〉
=

〈
δl̄

δρt
, Ψ̇ + ω × Ψ −Σ × γ

−
(
Σ̇ + ω ×Σ

)
× ρ− ω ×

(
−Σ × ρ+ Ψ

)〉

=
〈
− ∂

∂t

δl̄

δρt
, Ψ

〉
+

〈
∂

∂t

(
ρ× δl̄

δρt

)
− γ × δl̄

δρt
−
(
ρ× ω

)
× δl

δρt
,Σ

〉
, (6.12)
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where we have used the Jacobi identity simplifying two triple cross products. We now employ the
kinematic condition for the derivative of ρ,

∂tρ = γ − ω × ρ,

to simplify the Σ term in (6.12) and obtain the following simple condition〈
δl̄

δρt
, δρt

〉
=
〈
− ∂

∂t

δl̄

δρt
, Ψ

〉
+
〈
−ρ× ∂

∂t

δl̄

δρt
, Σ

〉
. (6.13)

Analogously, 〈
δl̄

δρs
, δρs

〉
=
〈
− ∂

∂s

δl̄

δρs
, Ψ

〉
+
〈
−ρ× ∂

∂s

δl̄

δρs
, Σ

〉
. (6.14)

On completing the variational principle (6.7) for all variables, one sees that the only terms containing
Ψ are the derivatives with respect to ρ, ρs, and ρt. Due to (6.13) and (6.14), these remaining terms
yield (6.9).
On collecting the terms proportional to Σ, we notice another cancellation. As is evident already
from (6.13) and (6.14), all the terms involving cross products with respect to ρ will cancel, as they
will each be multiplied by the left hand side of (6.9) which vanishes. Thus, derivatives with respect
to ρ, ρs, and ρt will not contribute to the terms proportional to Σ, so that collecting those terms
will yield exactly equation (6.8).

There is another approach to performing the change of variables that highlights the decoupling. The
key point is that we recognize two pieces of information we know about the variations δρ, δρs, and
δρt. First we consider the expression for δρ in terms of the free variations Ψ and Σ. The relation is
given by

δρ = Ψ −Σ × ρ.

This relation can be interpreted as saying that we can select any two of the variations Σ, Ψ , and
δρ as a free variation and the third variation is then determined. We find in practice that there
are quantities such as δΩ that only depend on Σ. Therefore any selection of free variations must
include Σ. This leaves us with a choice of Ψ or δρ as the choice for the second free variation. It is
interesting to consider the choice of δρ. Indeed, since we have the relations

ρs = ∂sρ, ρt = ∂tρ,

we can express the variations δρs and ρt in terms of our free variation δρ:

δρs = δ∂sρ = ∂sδρ,

similarly, δρt = ∂tδρ. Since δΩ and δω only depend on Σ we have a complete description of the
variations in terms of Σ and δρ which are given by

δω = Σ̇ + ω ×Σ, δω = Σ′ +Ω ×Σ, (6.15)
δρs = ∂sδρ, δρt = ∂tδρ, (6.16)

which is obviously augmented by the trivial relation δρ = δρ. An alternative proof of Theorem 61
can now be given.
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Proof. Using the variations (6.15), (6.16) we obtain, for example, the following calculation in the
variational principle, 〈

δl̄

δρs
, δρs

〉
=
〈
δl̄

δρs
, ∂sδρ

〉
= −

〈
∂s

δl̄

δρs
, δρ

〉
.

The terms arising from δΩ and δω are identical to those before and only depend on Σ. Therefore,
we obtain the following equation from stationarity under the Σ variation,

(∂t + ω×)
δl̄

δω
+ (∂s +Ω×)

δl̄

δΩ
= 0.

The second equation comes from terms proportional to δρ which is

∂t
δl̄

δρt
+ ∂s

δl̄

δρs
− δl̄

δρ
= 0.

These are the required equations in Theorem 61.

Remark 62 Notice that this alternative proof does not require any cancellation of terms after the
equations are derived. Thus, the variations do all the work for us. This opens up an interesting
question. In some sense, the choice of δρ as a free variation is optimal since no extra terms appear
in the resulting equations of motion. We might also refer to the heavy top at this point and ask
whether a similar change of variables might simplify the heavy top equations. The answer, alas, is
negative but is nevertheless instructive. The crucial property that we used was to regard δρ as a
free variation. Now, suppose we have an advected quantity a = Λ−1a0. This case appears in the
heavy top as well as often occurring in fluid dynamics. Could we consider δa as a free variation?
Unfortunately the variation δa is given by

δa = −Σ × a.

Therefore δa is determined by Σ and we cannot interpret δa as a free variation. We shall investigate
the geometric structure required for this approach in Section 7.

Theorem 6.2. The variations in δρs and δρt yield dynamical equations for the nonlocal lagrangian
l̄np in the following form

(∂s +Ω×)
δl̄np
δΩ

=
∫ (

Z (s, s′) +
δU

δκ
(s, s′)× κ(s, s′)

)
ds′

δl̄np
δρ
− ∂s

δl̄np
δρs

=
∫ (

ξ (s, s′)
δU

δκ
(s′, s)− δU

δκ
(s, s′)

)
ds′,

where, as in equation (3.24), we have

Z (s, s′) = ξ−1(s, s′)
(
δŪ

δξ

)T
(s, s′)− δŪ

δξ
(s, s′)ξ (s, s′) .

Proof. The free variations are Σ̂(s) = Λ−1(s)δΛ(s) and δρ(s) = δ
(
Λ−1(s)r(s)

)
= Ψ(s) −Σ(s) ×

ρ(s). Since Ψ(s) = Λ−1(s)δr(s) is a free variation, so is δρ(s). Now we directly apply the variational
principle to the nonlocal Lagrangian

l̄np (ρ,ρs,ρt,Ω,ω) =
∫∫

U (ρ,ρs,ρt,Ω,ω) dsds′.

Recall from §3.1 that we have the following definitions

ξ(s, s′) = Λ−1(s)Λ(s′), κ(s, s′) = Λ−1(s) (r(s′)− r(s)) .
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These definitions yield the following variations

ξ−1(s, s′)δξ(s, s′) = Σ̂(s′)−Adξ−1(s,s′)Σ̂(s)

δκ(s, s′) =
(
Σ(s′)− ξ−1(s, s′)Σ(s)

)
× ρ(s′)

+ξ(s, s′)δρ(s′)− δρ(s).

 (6.17)

The terms in the variational principle proportional to Σ(s) yield

(∂s +Ω×)
δl̄np
δΩ

=
∫ (

ξ(s, s′)
δU

δξ
(s′, s)− δU

δξ
(s, s′)ξ−1(s, s′)

+
δU

δκ
(s, s′)× κ(s, s′)

)
ds′,

=
∫ (

Z(s, s′) +
δU

δκ
(s, s′)× κ(s, s′)

)
ds′.

The terms in the variational principle proportional to δρ(s) yield

∂s
δl̄np
δρs
− δl̄np

δρ
=
∫ (

ξ(s, s′)
δU

δκ
(s′, s)− δU

δκ
(s, s′)

)
ds′

which proves the theorem.

Thus the combined local and nonlocal equations of motion in ρs and ρt variables are

(∂t + ω×)
δl̄loc
δω

+ (∂s +Ω×)
δ
(
l̄loc + l̄np

)
δΩ

= (6.18)∫ (
Z(s, s′) +

δU

δκ
(s, s′)× κ(s, s′)

)
ds′,

∂t
δl̄loc
δρt

+ ∂s
δ
(
l̄loc + l̄np

)
δρs

−
δ
(
l̄loc + l̄np

)
δρ

= (6.19)∫ (
ξ(s, s′)

δU

δκ
(s′, s)− δU

δκ
(s, s′)

)
ds′.

Here we see that the equations (6.18) are a form of the Euler-Poincaré equations and equations
(6.19) are a form of the Euler-Lagrange equations, both modified with nonlocal terms.

Remark 21. This change of variables is not available in the classical Kirchhoff approach because
the variable ρ is absent in this classical formulation.

6.4. The general case

We now generalize the previous results to the general situation described in §2.4. Recall that in
this case we have (Λ, r) ∈ F(D, S), (Ω,Γ ) ∈ Ω1(D, s), and ρ ∈ F(D, E), where S = OsE is the
semidirect product of a Lie group O with a vector space E.
Consider the variable ρ. Recall from (5.25) that we have the kinematic equation

ρ̇ = γ − ωρ.

Assuming that the initial value of ρ is zero, we have

dρ = d(Λ−1r) = −Λ−1dΛΛ−1r + Λ−1dr = Γ −Ωρ.
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This motivates us to define the new variables ρs ∈ Ω1(D, E) and ρt ∈ F(D, E) which will play the
role of space and time derivatives of ρ. They are naturally defined by

ρs = Γ −Ωρ, and ρt = γ − ωρ. (6.20)

This change of variables defines a diffeomorphism from the variables (ω, γ,Ω, Γ, ρ) to the variables
(ω,Ω, ρs, ρt, ρ), and generalizes (6.6). In terms of the new variables, the local Lagrangian is denoted
by l̄ and we have ∫

D
l̄(ρ, ρs, ρt, ω,Ω)ds = l(ω, γ,Ω, Γ, ρ).

For simplicity, we only treat the case of a local Lagrangian. There are two equivalent points of view
to obtain the equations of motion in terms of l̄.
The first one is to use a variational principle, as done before in the particular case of the charged
strand. Using the constrained variations of ω, γ,Ω, Γ, ρ given by the affine Euler-Poincaré principle,
we obtain the constrained variations

δω = Σ̇ + [ω,Σ], δΩ = dΣ + [Ω,Σ],

δρt = Φ̇− Σ̇ρ−Σρt, δρs = dΦ− dΣρ−Σρs,
and

δρ = Φ−Σρ.
The second point of view is to compute the functional derivatives of l in terms of those of l̄. We find

δl

δω
=

δl̄

δω
− ρ � δl̄

δρt
,

δl

δΩ
=

δl̄

δΩ
− ρ � δl̄

δρs
,

δl

δγ
=

δl̄

δρt
,

δl

δΓ
=

δl̄

δρs
,

and
δl

δρ
=
δl̄

δρ
+Ωi

δl̄

δρs i
+ ω

δl̄

δρt
.

These two ways lead to the same equations

(
d

dt
− ad∗ω

)
δl̄

δω
+ divΩ

δl̄

δΩ
= 0,

d

dt

δl̄

δρt
+ div

δl̄

δρs
− δl̄

δρ
= 0,

(6.21)

where divΩ : X(D, o∗)→ F(D, o∗) is defined by

divΩ w := divw − ad∗Ωi w
i ∈ F(D, o∗).

These equations coincide with (6.8) and (6.9) in the particular case D = [0, L] and S = SE(3). The
other equations for the advected variables are computed to be

ρ̇s + ωρs = dρt + ωdρ,

Ω̇ + adω Ω = dω,

ρ̇ = ρt.

We also know that dρ = ρs. Therefore, using the third equation, we obtain that the first equation
is verified. Thus the last system can be replaced by

dρ = ρs,

Ω̇ + adω Ω = dω,

ρ̇ = ρt.
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7. The bundle covariant Lagrange-Poincaré approach

In this Section we explain how the decoupled equations discussed above are covariant Lagrange-
Poincaré field equations. The coordinate change is interpreted as a transformation from the affine
and modified Euler-Poincaré perspectives to the covariant Lagrange-Poincaré perspective.
The field theoretical considerations in this Section work only for local Lagrangians. Since the classical
infinite dimensional approach of Sections 3 and 5 applies also to Lagrangians having a nonlocal part,
it is clear that an extension of the theory presented in this section to Lagrangians with nonlocal
parts exists in the field theoretic framework. Although we derived these nonlocal field equations in
Section 6 by a direct coordinate transformation, at present the geometric formulation of a general
theory of reduction by symmetry for nonlocal Lagrangians remains unclear. Therefore, we defer to
future work a development of the Lagrange-Poincaré theory of Lagrangians depending on non-local
variables.
The classical Lagrange-Poincaré equations are derived on a principal fiber bundle by using a principal
connection to split the configuration space into horizontal and vertical parts. Two equations result
from this splitting, one horizontal and one vertical. In the case of strands we also have to take the
continuous dependence of the variables on s into account. This leads us to consider a covariant
version of the equations.
In Subsection 7.1, we give various geometric structures that are required to describe the covari-
ant Lagrange-Poincaré equations. These geometric structures are introduced very effectively in the
literature and the reviews of the various geometric objects are particularly based on [27; 6; 9].
Subsection 7.2 uses these geometric structures to describe the reduction of the variational principle.
The reduction is geometric in nature insofar as it arises from a precise geometric description of the
reduced covariant state space. This second part closes by describing an extra integrability condition
that is required to reconstruct solutions to the unreduced equations from solutions to the reduced
equations. This integrability condition has a geometric interpretation in terms of the principal
curvature of the connection used to effect the reduction.
Finally, parts 7.3 and 7.4 respectively describe the Kelvin-Noether Theorem, which gives qualitative
understanding of the motion of the strand, and generalizations of the strand that are supported by
the theory.

7.1. Covariant state space

This Subsection describes the geometric tools used to derive the Lagrange-Poincaré field equations.
Jet bundles and holonomic jets, which encapsulate all physical quantities needed for a description of
the strand in a single geometric object, are summarized first. A principal bundle structure describes
the way the symmetry group interacts with the covariant state space. Finally, a principal connection
is introduced, which allows one to split the covariant state space into two complementary parts.
These tools are then brought together in §7.2 in order to implement the reduction.

7.1.1. Jet bundles and holonomic jets We begin by introducing jet bundles. Essentially, a jet
bundle is a generalization of a tangent bundle to the field theoretic setting. While equations on
tangent bundles geometrize the analytic notion of an ODE, equations on a jet bundle provide an
analogous geometrization of a PDE.
Just as a tangent bundle plays the role of the state space in classical Lagrangian mechanics, a jet
bundle plays the role of the covariant state space in covariant Lagrangian mechanics. This for-
mulation arises from the observation that it is possible to incorporate all the dynamical information
of the molecular strand into a single geometric object, namely a holonomic jet.
The covariant perspective is reached by noting that equations (3.38) have an exchange symmetry
in their s and t dependences. Therefore, guided by the equations derived so far, we may treat s
and t on an equal basis by introducing a spacetime, X := [0, L] × R. The dynamical quantities are
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then regarded as special vector bundle maps λ : TX → TSE(3). Such objects may be studied by
considering the trivial fiber bundle

πXP : P := X × SE(3)→ X, πXP (x,Λ, r) := x.

The analogue of the state space TQ in field theory is the first jet bundle, J1P , of P .

Definition 71 Given a locally trivial fiber bundle πXP : P → X, the first jet bundle π : J1P → P
of P is the affine bundle over P whose fiber at p ∈ P is

(J1P )p = {λ ∈ L (TxX,TpP ) | TπXP ◦ λ = idTxX} ,

where L (TxX,TpP ) denotes linear maps TxX → TpP and x = πXP (p).

The space J1P is called the covariant state space.

Remark 22. The first jet bundle, J1P , is a natural state space since it is the analogue of the tangent
bundle in the case where sections, instead of curves, are considered. In classical Lagrangian dynamics
we consider tangent vectors, (q, q̇) in the state space TQ. However, we could also consider maps of
the form Tq : TR→ TQ where R is time. Since Tq is a linear map on each fiber of TR we consider
a basis of the image of each fiber given by Ttq(1) =: (q, q̇). Note that Ttq(a) = (q, aq̇) for all a ∈ R,
which is just rescaling of time viewed in a geometric way. When one considers sections defined on
spacetime instead of time dependent curves, the notion of a linear map is the idea that gives the
most elegant generalization, since it captures the entire dynamics, independently of which direction
is chosen in spacetime.

In field theory, a natural class of sections to consider consists of first jet extensions of sections of P ,
also called holonomic sections of the first jet bundle.

Definition 72 Let σ : X → P be a section of P , that is, πXP ◦ σ = idX . The first jet extension
of σ is the map j1σ : X → J1P defined by j1σ(x) = Txσ for all x ∈ X.

In order to see that j1σ(x) ∈ (J1P )σ(x), we differentiate the relation πXP ◦ σ = idX to find TπXP ◦
Tσ = idTX . This verifies that Tσ ∈ J1P .
Given X = [0, L]× R and P = X × SE(3), any section σ reads

σ(x) = (x,Λ(x), r(x)) ∈ {x} × (SO(3) s R3),

where x := (s, t). Thus σ(x) may be identified with (Λ (x) , r(x)) ∈ SE(3). In this case we also have
(J1P )σ(x)

∼= L(TxX,T(Λ(x),r(x))SE(3)). Using this identification, we can write

j1σ(x) = Txσ ∼=
(
Λ(x), r(x), Λ′(x)ds+ Λ̇(x)dt, r′(x)ds+ ṙ(x)dt

)
.

Note that here we have dropped the terms x and idTxX to ease notation.
From (2.11) we conclude that the dependent variables that occur in the unreduced Euler-Lagrange
dynamics are simply components of a first jet extension of a section of πXP . Therefore, holonomic
jets arise as the natural geometric objects to use in order to study the molecular strand.
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7.1.2. Principal bundle structures A principal bundle is a particularly useful type of fiber
bundle that is convenient for describing the way a Lie group acts on a manifold. More technically,
a principal bundle is a fiber bundle together with a fiber preserving action of a Lie group that is
free and transitive on each fiber. These conditions mean that each fiber is diffeomorphic to the
structure group and can be described by ‘translation’ using the group action. The principal bundle
is completely described by specification of the fiber bundle projection and the group action, provided
the required assumptions are satisfied.
Consider, as an example, the natural principal SO(3)-bundle structure on SE(3) given by the pro-
jection

πSE(3) : SE(3)→ R3, πSE(3) (Λ, r) = Λ−1r = ρ,

and the SO(3)-action
g(Λ, r) = (gΛ, gr). (7.1)

The projection πSE(3) is invariant under the group action. Also, each fiber of πSE(3) is SO(3) itself,
which is acted upon by group multiplication. Therefore, the action is fiber preserving and is free and
transitive on each fiber. Thus, πSE(3) with this SO(3)-action is sa principal bundle.
Given the example above one may construct a new principal bundle on P := X × SE(3). Observe
that SO(3) acts on P by left translation on the second factor,

g (x,Λ, r) = (x, gΛ, gr) .

Therefore, one may identify a principal SO(3)-bundle structure on P over Σ := P/SO(3) = X ×R3

using this action with a projection πΣ,P induced by πSE(3),

πΣP : P → Σ, πΣP (x,Λ, r) =
(
x, πSE(3) (Λ, r)

)
= (x,ρ) .

In addition to P being a principal bundle over Σ, we also have the trivial fiber bundle πXΣ : Σ → X
given by

πXΣ (x,ρ) = x.

To summarize, we are given a principal SO(3)-bundle structure πSE(3) on SE(3) and a fiber bundle
structure πXP on P . From these we construct a new principal SO(3)-bundle structure, πΣP , on P
and a new fiber bundle structure, πXΣ , on Σ = P/SO(3). Note that these projections satisfy

πXΣ ◦ πΣP = πXP . (7.2)

The considerations above may be summarized in the following diagram:

SO(3) SO(3)y y
SE(3) −−−−→ P

πXP−−−−→ X

πSE(3)

y πΣP

y yid

R3 −−−−→ Σ −−−−→
πXΣ

X.

The section σ(x) = (x,Λ(x), r(x)) of πXP : P → X induces the section x 7→ (x,ρ(x)) of πXΣ : Σ →
X.
The tangent lift of the SO(3) action yields a free action on the jet bundle, J1P :

g
(
Λ, r, Λ′ds+ Λ̇dt, r′ds+ ṙdt

)
=
(
gΛ, gr, gΛ′ds+ gΛ̇dt, gr′ds+ gṙdt

)
.
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This action is free because the action on SO(3) is free. The assumption that the action is proper
is not required since SO(3) is a compact Lie group; consequently every action of SO(3) is a proper
action. Therefore, we find that J1P is also a principal SO(3)-bundle. In particular, J1P/SO(3) is a
manifold. To conclude, recall from §7.1.1 that we identified J1P as the covariant state space. Thus,
the discussion so far, reveals that the covariant state space is a principal SO(3)-bundle, which gives
a convenient geometric formulation of the way the symmetry group acts.

Remark 23. Note that at this point we could reduce by the SO(3)-action on SE(3) to derive
Euler-Poincaré equations. The reduced variables are given as

Λ−1T (Λ, r) = (e, Λ−1r, Λ−1Λ′ds+ Λ−1Λ̇dt, Λ−1r′ds+ Λ−1ṙdt)
= (ρ,Ωds+ ωdt,Γ ds+ γdt).

Variations of the reduced jet Λ−1T (Λ, r) read

δΛ−1T (Λ, r) = (δρ, δΩds+ δωdt, δΓ ds+ δγdt).

Therefore we may form the variational principle

δS = δ

∫∫
l
([
j1σ
])

dsdt,

=
∫∫ 〈

δl

δΛ−1T (Λ, r)
, δΛ−1T (Λ, r)

〉
dsdt,

=
∫∫ (〈

δl

δρ
, δρ

〉
+
〈
δl

δΩ
, δΩ

〉
+
〈
δl

δω
, δω

〉
+
〈
δl

δΓ
, δΓ

〉
+
〈
δl

δγ
, δγ

〉)
dsdt = 0.

This variational principle corresponds precisely to the Euler-Poincaré variational principle from §3.1
with nonlocal terms removed from the Lagrangian. The derivation of the equations of motion then
proceeds exactly as in §3.1 and results in equations (3.23) and (3.26) but with the nonlocal terms
removed.

7.1.3. Principal Connection A principal connection is a geometric tool that is required to split
the tangent space to a principal bundle into horizontal and vertical parts. We introduce here the
notion of a principal connection and discuss the geometric structure that it induces on P . Recall
that a principal connection on a principal G-bundle P is a g-valued one form on P that satisfies

A(ξP (p)) = ξ, A(gvp) = Adg A(p),

where gvp denotes the tangent lifted action of G on TP and ξP is the infinitesimal generator

ξP (p) =
d

dt

∣∣∣∣
t=0

exp(tξ)p.

For our particular SO(3)-bundle πΣP : P → Σ, we make the choice

A (x,Λ, r, vx, vΛ,u) = vΛΛ
−1 ∈ so(3), (7.3)

for all vΛ ∈ TΛSO(3), u ∈ R3, vx ∈ TxX. This connection is called the Maurer-Cartan con-
nection. In general, one may choose the connection arbitrarily, but the particular choice above is



54 D.C.P. Ellis, F. Gay-Balmaz, D.D. Holm, V. Putkaradze and T.S. Ratiu

well suited to the problem since it is natural. Recall that any vector vΛ ∈ TΛSO(3) may be writ-
ten vΛ = Λη where η ∈ so(3). The connection decomposes TP into the horizontal and vertical
subbundles as follows:

VerP = ker (TπΣP ) = {(x,Λ, r; 0, Λη, (AdΛη) r) | η ∈ so(3)} , (7.4)

HorAP = kerA =
{

(x,Λ, r; vx, 0,u) | u ∈ TrR3, vx ∈ TxX
}
. (7.5)

These two subbundles are complementary in the sense that

TP = VerP ⊕HorAP,

where ⊕ denotes the Whitney sum of vector bundles. This geometric decomposition of TP into
complementary subbundles induces a similar decomposition of the covariant state space J1P and
ultimately results in two Lagrange-Poincaré equations, one for each factor of the decomposition.

7.2. The variational principle

Having introduced the geometric setting for the Lagrange-Poincaré field approach, we formulate the
reduced variational principle and derive the associated field equations of motion.

The formulation of the reduced variational principle results from geometric properties of the reduced
state space J1P/SO(3). To understand it, we begin with the study of the simpler reduced bundle
TP/SO(3) in §7.2.1.

The investigations in §7.2.1 lead to the introduction of an associated bundle, namely the adjoint
bundle, which describes the vertical part of the reduced bundle TP/SO(3). The properties of the
adjoint bundle are reviewed in §7.2.2.

In §7.2.3 we generalize these considerations to the covariant setting and provide a discussion on the
geometric structure of J1P/G.

Having gained a sufficient understanding of the geometry behind the reduced state space J1P/G,
we turn to deriving the reduced variations in §7.2.4 and then use these variations in the formulation
of the reduced variational principle in §7.2.5.

In §7.2.6 we discuss and present the reconstruction of solutions to the unreduced equations from
those of the reduced equations.

7.2.1. Splitting TP/SO(3) The principal bundle structure πΣ,P : P → Σ introduces the ge-
ometric tools to formally decompose the variational principle on TP/SO(3) into two parts that
correspond to two free variations. While in the present situation it is possible to write down such
variations globally on TP/SO(3), in general, it is not possible to do this. Such a formulation only
makes sense locally in a trivialization of πΣ,P . In addition, a particular choice of gauge must be
chosen on P . For a general formulation of the variations one requires a global geometric splitting
of TP/SO(3) in terms of a connection form. This splitting takes the form of a bundle isomorphism
αA : TP/SO(3) → TΣ ⊕ AdP where ⊕ denotes the Whitney sum of vector bundles over Σ and
AdP is a vector bundle over Σ introduced below. The components of the Whitney sum correspond
to the two free variations. The bundle isomorphism is given by

αA

(
[vp]SO(3)

)
:= TπΣP (vp)⊕ [p,A(vp)]SO(3) , vp ∈ TpP,

where AdP = (P × so(3)) /SO(3) is the adjoint bundle to P . The quotient is taken relative to the
left diagonal action

(p, η) 7→ (hp,Adh η),
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and the elements in the adjoint bundle are written as [p, η]SO(3). To check that αA is well defined
one easily verifies that

TπΣP (hvp) = TπΣP (vp),

and
[hp,A(hvp)]SO(3) = [hp,AdhA(vp)]SO(3) = [p,A(vp)]SO(3) .

To show that αA is an isomorphism, we give its inverse

α−1
A

(
v(x,ρ) ⊕ [p, η]SO(3)

)
=
[
HorAp (v(x,ρ)) + ηP (p)

]
SO(3)

,

where p = (x,Λ, r) ∈ P is such that πΣP (p) = (x,ρ) and HorAp denotes the horizontal lift of
v(x,ρ) = (x,ρ, vx,u) ∈ T(x,ρ)Σ to TpP with respect to A. That is, HorAp : TρΣ → HpP is the unique
map such that

TpπΣ,P ◦HorAp = idTρΣ .

The horizontal lift is given explicitly by

HorA(x,Λ,r)(x,ρ, vx,u) = (x,Λ, r, vx, 0, Λu) .

Remark 24 (The choice of connection). As we have seen in (7.3), a natural choice of connection
is the Maurer-Cartan form vΛ 7→ vΛΛ

−1.

7.2.2. Properties of AdP Various properties of the adjoint bundle are required to derive the
Lagrange-Poincaré equations; we now review these properties.

We can give AdP a Lie algebra structure on each fiber. The vector space structure is given by

[p, η]SO(3) + a [p, ν]SO(3) = [p, η + aν]SO(3)

and the Lie bracket is given by[
[p, η]SO(3) , [p, ν]SO(3)

]
=
[
p, [η, ν]

]
SO(3)

.

The principal connection A induces an affine connection on the adjoint bundle AdP . It is known
that the covariant derivative of this affine connection is given by

DA

Dτ
[p(τ), η(τ)]SO(3) = [p(τ), η̇(τ)− [A (ṗ(τ)) , η(τ)]]SO(3) (7.6)

(see, for example, [6], Lemma 2.3.4).
This formula allows us to define a covariant derivative of any smooth map ζ : X → AdP by using
the formula for the covariant derivative of the vector bundle AdP → Σ induced by the principal
connection A on πΣP : P → Σ. We define

∇AUζ(x) :=
DA

Dτ

∣∣∣∣
τ=0

(ζ ◦ c)(τ), (7.7)

where c(τ) is a smooth curve in X such that c(0) = x and ċ(0) = U ∈ TxX. Concretely, denoting
ζ(x) = [p(x), η(x)]SO(3), formula (7.6) gives

∇AUζ(x) = [p(x),dη(x)(U)− [A(Txp(U)), η(x)]]SO(3) . (7.8)

See [10] for further details on the construction of these differential operators. Note that the map ζ is
not a section of the adjoint bundle since ζ is defined on X, whereas the adjoint bundle has base Σ.
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Note that the vector bundle AdP → Σ is trivial in the present case. Indeed, the map

[(x,Λ, r), η]SO(3) 7→
(
(x,Λ−1r),AdΛ−1 η

)
(7.9)

is a vector bundle isomorphism from AdP to Σ × so(3). In this trivialization, using the connection
(7.3), the formula for the covariant derivative (7.6) becomes

DA

Dτ
(x(τ),ρ(τ), ξ(τ)) = (x(τ),ρ(τ), ξ̇(τ)).

Similarly, if U ∈ TxX, formula (7.8) becomes

∇AUζ(x) = (x,ρ(x),dξ(x)(U)), where ζ(x) = (x,ρ(x), ξ(x)). (7.10)

Had the bundles been nontrivial, the formulas for the covariant derivatives would be more involved.

7.2.3. Splitting J1P/SO(3) Having introduced the connection that splits TP/SO(3) we now wish
to use it to split the reduced covariant state space J1P/SO(3). This is easily achieved by regarding
the jets as linear maps and composing with αA. Therefore, we split J1P/SO(3) by splitting the
image of the jets in TP/SO(3).
Consider a section σ of the fiber bundle πXP : P → X and its first jet extension j1σ(x) = Txσ ∈
(J1P )σ(x). Composing [Tσ]SO(3) : TX → TP/SO(3) with the vector bundle isomorphism αA :
TP/SO(3)→ TΣ ⊕Σ AdP over Σ yields the following equality in the fiber over πΣP (σ(x)):

αA ◦ [Txσ]SO(3) =
(
Tσ(x)πΣP ◦ Txσ

)
⊕ [σ(x), A ◦ Txσ]SO(3)

= Tx (πΣP ◦ σ)⊕ [σ(x), A ◦ Txσ]SO(3) .

Using πXΣ ◦ πΣP = πXP , we have

πXΣ ◦ (πΣP ◦ σ) = πXP ◦ σ = idX .

This shows that πΣP ◦ σ is a section of the fiber bundle πXΣ : Σ → X. If we denote

σ1 = πΣP ◦ σ, A (vp) := [p,A (vp)]SO(3) , and σ2(x) := A ◦ Txσ,

for all vp ∈ TpP , then the reduced jet [j1σ(x)]SO(3) ∈ (J1P )/SO(3) may be expressed as

αA ◦ [j1σ(x)]SO(3) = αA ◦ [Txσ]SO(3) = Txσ1 ⊕A ◦ Txσ = Txρ⊕ σ2(x),

since σ1 = ρ. Note that this element lies in the fiber

(J1Σ)σ1(x) × L
(
TxX, (AdP )σ1(x)

)
over σ1(x) = πXΣ(σ(x)) ∈ Σ. In particular, there is a fiber bundle isomorphism

J1P/SO(3) ∼= J1Σ ×Σ L(TX,AdP )

over Σ. Using the equality σ(x) = (x,Λ(x), r(x)), the explicit description of the quantities appearing
in the reduced jet are:

Tρ =
(
Λ−1r, d(Λ−1r)

)
= (ρ,ρsds+ ρtdt) ∈ ρ∗(J1Σ)

σ2 =
[
(Λ, r), dΛΛ−1

]
SO(3)

∼=
(
(Λ−1r), Λ−1dΛ

)
= (ρ,Ωds+ ωdt) ,
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by the relations (2.11), where ∼= denotes here the vector bundle isomorphism (7.9). Thus, the reduced
jet [j1σ(x)]SO(3) associated to σ(x) = (x,Λ(x), r(x)) is represented in the trivialization (7.9) by

Tρ⊕ σ2 =
(
Λ−1r, d(Λ−1r), Λ−1dΛ

)
= (ρ,ρsds+ ρtdt,Ωds+ ωdt) . (7.11)

Therefore we have recovered the new coordinates given in (6.5) and the reduced Lagrangian reads

l̄(Tρ, σ2) = l̄(ρ,ρs,ρt,ω,Ω).

The spaces involved in the previous discussion are summarized in the following diagram:

AdSE(3) AdPy y
TSE(3)/SO(3) −−−−→ TP/SO(3)

TπXP /SO(3)−−−−−−−−−→ TX

TπSE(3)/SO(3)

y TπΣP /SO(3)

y yid

TR3 −−−−→ TΣ −−−−→
TπXΣ

TX.

Recall that the projections πXP and πΣP are SO(3)-invariant, therefore they naturally induce projec-
tions πΣP /SO(3) : P/SO(3) → Σ and πXP /SO(3) : P/SO(3) → X, respectively. The relationship
between the variables in the affine Euler-Poincaré and covariant Lagrange-Poincaré equations can
be illustrated in the following diagram:

(ρ,Ωds+ ωdt)SO(3) ∈ L(TX,AdSE(3)) L(TX,AdP )??y ??y
(ρ,Γ ds+ γdt,Ωds+ ωdt) ∈ L(TX, TSE(3)/SO(3)) −−−−−→ J1P/SO(3)

TπXP /SO(3)−−−−−−−−−→ L(TX, TX)

TπSE(3)/SO(3)

??y TπΣP /SO(3)

??y ??yid

(ρ,ρsds+ ρtdt) ∈ L(TX, TR3) −−−−−→ J1Σ −−−−−→
TπXΣ

L(TX, TX).

The affine Euler-Poincaré variables [j1σ]SO(3)
∼= (ρ,Ωds + ωdt,Γ ds + γdt) appear in the middle

horizontal sequence whereas the covariant Lagrange-Poincaré variables (ρ,ρsds+ ρtdt,Ωds+ ωdt)
appear in the top and bottom rows.

7.2.4. Reduced Variations Having split the reduced state space J1P/SO(3) into horizontal and
vertical parts, we now proceed to calculate the reduced variations in each of these factors.
Let σ : X → P be a section of the fiber bundle πXP : P → X. If σε : X → P is a curve of sections
with σ0 = σ, that is, σε(x) = (x,Λε(x), rε(x)), Λ0 = Λ, and r0 = r, define the variation

δσ(x) =
d

dε

∣∣∣∣
ε=0

(x,Λε(x), rε(x)) ∈ Tσ(x)P.

Splitting δσ(x) into its vertical and horizontal parts relative to the connection A in the principal
SO(3)-bundle πΣP : P → Σ (see (7.4), (7.5)) gives

δσ(x) = (x,Λ, r, 0, δΛ, δr)

=
(
x,Λ, r, 0, δΛ, δΛΛ−1r

)
+
(
x,Λ, r, 0, 0, δr − δΛΛ−1r

)
∈ Tσ(x)P.
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To compute the vertical variation of [j1σ]SO(3), we consider curves σε that perturb σ0 = σ : X → P
along the group orbits, that is,

σε(x) := exp(εξ(x)) · σ(x) = (x, exp(εξ(x))Λ(x), exp(εξ(x))r(x)) ,

where ξ : X → so(3). By (7.11), in the trivialization (7.9),[
j1σε

]
SO(3)

∼=
(
Λ−1r; d(Λ−1r), (exp(εξ)Λ)−1

d (exp(εξ)Λ)
)
.

Taking the ε-derivative of the right hand side we get the vertical variation

δv
[
j1σ
]
SO(3)

: =
d

dε

∣∣∣∣
ε=0

[
j1σε

]
SO(3)

∼=
(
Λ−1r; 0,

(
Σ′ +Ω ×Σ

)
ds+

(
Σ̇ + ω ×Σ

)
dt
)
, (7.12)

where Σ̂(x) := AdΛ(x)−1 ξ(x).
To compute the horizontal variation of [j1σ]SO(3), we consider curves σε that perturb σ0 = σ :
X → P such that δσ is horizontal. In view of (7.5), a curve giving a horizontal δσ is σε(x) :=
(x,Λ(x), rε(x)). Therefore, for such a curve σε we get[

j1σε
]
SO(3)

∼=
(
Λ−1rε; d(Λ−1rε), Λ−1dΛ

)
and hence the horizontal variation is

δh
[
j1σ
]
SO(3)

: =
d

dε

∣∣∣∣
ε=0

[
j1σε

]
SO(3)

∼=
(
Λ−1r; d(Λ−1δr), 0

)
(7.13)

= (ρ; d(δρ), 0) = (ρ; ∂t (δρ) dt+ ∂s (δρ) ds, 0) . (7.14)

Remark 73 The free variations δρ and Σ are now recognized as being horizontal and vertical
variations. This is the reason for the decoupled form of the resulting equations. If we had defects
in the strand and therefore our connection had non-zero curvature, then the equations would not
decouple completely. See §7.2.6 for more details on curvature.

7.2.5. The variational principle Having derived the reduced horizontal and vertical variations,
we may now derive the horizontal and vertical Lagrange-Poincaré equations. For the vertical varia-
tions, using (7.12) and

δl̄

δσ2
=
[
ρ,

δl̄

δω
∂t +

δl̄

δΩ
∂s

]
SO(3)

,

we obtain

δvS =
d

dε

∣∣∣∣
ε=0

∫
X

l̄
([
j1σε

]
SO(3)

)
dx

=
∫
X

〈[
ρ,

δl̄

δω
∂t +

δl̄

δΩ
∂s

]
SO(3)

,
[
ρ,
(
Σ̇ + ω ×Σ

)
dt+

(
Σ′ +Ω ×Σ

)
ds
]
SO(3)

〉
dx

= −
∫
X

〈[
ρ, (∂t + ω×)

δl̄

δω
+ (∂s +Ω×)

δl̄

δΩ

]
SO(3)

, [ρ,Σ]SO(3)

〉
dx = 0.

Therefore, the vertical covariant Lagrange-Poincaré equation is

(∂t + ω×)
δl̄

δω
+ (∂s +Ω×)

δl̄

δΩ
= 0.
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Similarly, we derive the variational principle for horizontal variations and obtain, using (7.13),

δhS =
d

dε

∣∣∣∣
ε=0

∫
X

l̄
([
j1σε

]
SO(3)

)
dx =

∫
X

〈
δl̄

δTρ
, δTρ

〉
dx

=
∫
X

〈
δl̄

δρ
, δρ

〉
+
〈
δl̄

δρt
∂t +

δl̄

δρs
∂s , δρtdt+ δρsds

〉
dx

=
∫
X

〈
δl̄

δρ
− ∂t

δl̄

δρt
− ∂s

δl̄

δρs
, δρ

〉
dx = 0.

Therefore, the horizontal covariant Lagrange-Poincaré equation is

δl̄

δρ
− ∂t

δl̄

δρt
− ∂s

δl̄

δρs
= 0.

Upon putting these together, we find that the covariant Lagrange-Poincaré equations are

(∂t + ω×)
δl̄

δω
+ (∂s +Ω×)

δl̄

δΩ
= 0, (7.15)

δl̄

δρ
− ∂t

δl̄

δρt
− ∂s

δl̄

δρs
= 0. (7.16)

Now we see that equations (7.15) and (7.16) are, respectively, identical to equations (6.8) and (6.9)
which arise as the local part of equations (3.23) and (3.26), respectively, in terms of the change of
variables described in equation (6.6). Thus, the natural interpretation of the change of variables in
Section 6 is that they transform from the affine Euler-Poincaré formulation described in Section 5
into a form of Lagrange-Poincaré field theory that has been modified by nonlocal terms. At present,
there is no general theory for nonlocal Lagrange-Poincaré field reduction. The development of such
a theory would be very interesting. However, it is beyond the scope of the present paper. For a full
discussion and development of the general theory of local Lagrange-Poincaré field reduction with
applications, see [10].

7.2.6. Reconstruction and curvature relations In [10] and [27] it is noted that for Lagrange-
Poincaré field reduction an extra integrability condition is required to reconstruct the solution to the
original Euler-Lagrange equations from the Lagrange-Poincaré field equations. This extra condition
involves the curvature form of the principal connection A used for Lagrange-Poincaré field reduction.

Physically, the reconstruction condition may be interpreted as containing information about topo-
logical defects in the orientation field (the SO(3) field). This interpretation arises in nematic liquid
crystals (see, for example, [18]), where integrals of curvature forms provide information on defects
in the liquid crystal. Remarkably, these integrals are related to characteristic classes of the princi-
pal bundles involved and, consequently, contain topological information about the principal bundle
expressed in terms of the curvature of the connection.

Geometrically, the vanishing of the curvature of the connection one-form A is equivalent to inte-
grability of the horizontal subbundle HorAP by the Frobenius Theorem (see, e.g., [6]). Therefore,
when the curvature vanishes, i.e., one has a zero-curvature relation, one may conclude that there
are horizontal submanifolds whose tangent space at a point p ∈ P is the horizontal space (HorAP )p.
This property of the curvature of a principal connection describes in a geometrical way the necessary
integrability condition for reconstruction; see [10] and [27].

In the current setting, our principal connection A (the Maurer-Cartan connection) has zero-curvature
since the following equation is satisfied,

B (up, vp) = dA (up, vp)− [A (up)A (vp)] = 0, (7.17)
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where B denotes the curvature 2-form of A and [·, ·] denotes the bracket on the Lie algebra. That is,
the orientations mounted on the filament do not possess any topological defects and the horizontal
bundle is integrable. Since A

(
Λ, r, vΛΛ

−1, vr
)

= vΛΛ
−1 one sees that equation (7.17) reads

B
((
Λ, r, Λ̇, ṙ

)
, (Λ, r, Λ′, r′)

)
= AdΛ (∂tΩ − ∂sω − ω ×Ω)b = 0.

Thus the zero-curvature integrability condition required for reconstruction is

∂tΩ − ∂sω − ω ×Ω = 0. (7.18)

This equation was previously derived directly from equality of cross-derivatives and stated in (2.19),
where it was used to close the dynamics that arose from the variational principle. Now we recognize
that these equations assert an integrability condition that allows reconstruction of the full dynamics
from the reduced system.

7.3. The Kelvin-Noether Theorem

The Kelvin-Noether Theorem gives qualitative information about the behavior of solutions to the
Euler-Poincaré equations in continuum mechanics. There is an analogue of the Kelvin-Noether The-
orem in the covariant picture, which we describe below.
Denoting by divx the divergence relative to the variable x = (s, t) ∈ [0, L]× R, we have

divx

(
Ad∗Λ−1

δl̄

δΩ
∂s + Ad∗Λ−1

δl̄

δω
∂t

)
= ∂s

(
Ad∗Λ−1

δl̄

δΩ

)
+ ∂t

(
Ad∗Λ−1

δl̄

δω

)
= Ad∗Λ−1

(
∂s

δl̄

δΩ
+Ω × δl̄

δΩ
+ ∂t

δl̄

δω
+ ω × δl̄

δω

)
= 0

by (7.15). Therefore, we gain the following qualitative information: when the strand is a closed loop,
the change of variables (1.15) implies that the circulation of its spatial angular momentum integrated
around the moving loop in the convective frame is conserved. That is,

d

dt

∮ (
Ad∗Λ−1

δl̄

δω

)
ds = −

∮
∂s

(
Ad∗Λ−1

δl̄

δΩ

)
ds = 0. (7.19)

By using the divergence theorem, this circulation theorem may be re-expressed covariantly as

0 =
∫
S

divx

(
Ad∗Λ−1

δl̄

δΩ
∂s + Ad∗Λ−1

δl̄

δω
∂t

)
dsdt

=
∫
∂S

(
Ad∗Λ−1

δl̄

δΩ
∂s + Ad∗Λ−1

δl̄

δω
∂t

)
·n d`

=
∫
∂S

Ad∗Λ−1

(
δl̄

δΩ
dt− δl̄

δω
ds
)
,

where n is the outward pointing unit normal to the boundary ∂S and we have used the identity(
δl̄

δΩ
∂s +

δl̄

δω
∂t

)
·n d` =

δl̄

δΩ
dt− δl̄

δω
ds. (7.20)

Thus, the covariant expression of the circulation theorem (7.19) becomes∫
∂S

Ad∗Λ−1

(
δl̄

δΩ
dt− δl̄

δω
ds
)

= 0, (7.21)

which may be interpreted as a zero-flux theorem in ‘spacetime’ X.



Symmetry reduced dynamics of charged molecular strands 61

7.4. Generalizations of the molecular strand

The covariant Lagrange-Poincaré approach generalizes to the case of an n-dimensional strand with
an arbitrary Lie group structure O, in the setting of Subsection 2.4, as follows. Consider the (n+1)-
dimensional spacetime X := D × R and the trivial fiber bundle

πXP : P := X × S → X,

where S = OsE and E is a representation space of O. A section σ of P reads

σ(x) = (x,Λ(x), r(x)), x = (s, t) ∈ X,

and its first jet extension is

j1σ(x) = (TxΛ, Txr) = (dΛ(x) + Λ̇(x)dt,dr(x) + ṙ(x)dt),

where d is the partial derivative with respect to space (that is, the derivative on D), and the dot is
the partial derivative with respect to time.
There is a natural O-principal bundle structure on S given by

πES : S → E, πES(Λ, r) = Λ−1r = ρ.

This principal bundle structure on the fiber S induces a principal O-bundle structure on P given by

πΣP : P → X × E, πΣP (x,Λ, r) = (x,Λ−1r).

There is a natural connection A on πΣP : P → Σ := X × E given by

A(vx, vΛ, (r, u)) = vΛΛ
−1,

which allows us to identify the reduced jet bundle J1P/O with the fiber bundle J1Σ×ΣL(TX,AdP ).
Using the same notations as before, we have

αA ◦ [j1σ(x)]O = Txρ⊕A ◦ Txσ ∼= (x, ρ(x),dρ(x) + ρ̇(x), Ω(x) + ω(x)dt),

by (2.20). The vertical and horizontal variations being given by

δv
[
j1σ(x)

]
O = (x,Λ−1r(x); 0,dΣ + [Ω,Σ] + (Σ̇ + [ω,Σ])dt),

δh
[
j1σ(x)

]
O = (x, ρ(x); d(δρ) + (δρ)tdt, 0),

we find that the vertical and horizontal Lagrange-Poincaré equations are

(∂t − ad∗ω)
δl̄

δω
+ (div− ad∗Ω)

δl̄

δΩ
= 0,

δl̄

δρ
− ∂t

δl̄

δρt
− div

δl̄

δρs
= 0.

Of course, as expected, these equations coincide with equations (6.21) obtained from the affine
Euler-Poincaré equations (5.24) by the change of variables (6.20). In Appendix D we derive the same
equations by applying the covariant Lagrange-Poincaré approach in [27], using the group structure
of S. Note that the approach we have used here does not use the group structure of S and so one
may expect it to apply to more general situations such as the molecular strand on the sphere. We
have

divx

(
Ad∗Λ−1

δl̄

δΩ
+ Ad∗Λ−1

δl̄

δω
∂t

)
= div

(
Ad∗Λ−1

δl̄

δΩ

)
+ ∂t

(
Ad∗Λ−1

δl̄

δω

)
= Ad∗Λ−1

(
div

δl̄

δΩ
− ad∗Ω

δl̄

δΩ
+ ∂t

δl̄

δω
− ad∗ω

δl̄

δω

)
= 0.
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Using the divergence theorem, we find the generalization of the zero flux theorem (7.21), now applied
to an n-dimensional strand (or surface),∫

∂V

(
Ad∗Λ−1

δl̄

δΩ
+ Ad∗Λ−1

δl̄

δω
∂t

)
·n dσ = 0,

where n is the outward pointing unit normal to the boundary ∂V of a given domain V ⊂ D×R and
dσ is the induced boundary volume element of ∂V .

Remark 25. The method used here for the particular case of P = X×SE(3) and Σ = P/SO(3) =
X × R3 can be adapted to apply more generally to a fiber bundle πXP : P → X and a free and
proper action Φ of a Lie group G on the total space P such that

πXP ◦ Φg = πXP , for all g ∈ G. (7.22)

This is the subject of the paper [10].

8. Outlook for further studies

This paper formulated the problem of strand dynamics for an arbitrary long-range intermolecular
potential in the convective representation [22] of exact geometric rod theory [37]. Its methods would
also apply in the consideration of Lennard-Jones potentials and the constrained motion of non-self-
interacting curves.
The paper demonstrated and compared three different approaches to deriving the same contin-
uum equations of motion for an elastic strand experiencing nonlocal (for example, electrostatic or
Lennard-Jones) interactions. These were: (1) the Euler-Poincaré approach, (2) the affine transforma-
tion approach, and (3) the covariant Lagrange-Poincaré formulation. In Appendix B, the Hamilton-
Pontryagin approach for deriving these equations is also discussed.
It would be important to understand, from a geometric point of view, why the classical Lagrangian
reduction (2) and the covariant Lagrangian reduction (3) yield the same equations of motion, modulo
a change of variables. Such a question is raised and answered in [13] for the simpler case when, on
the covariant side, the symmetry group coincides with the structure group of the principal bundle.
We defer to future work the extension of this theory for the strand.
The present paper concentrated primarily on the case in which the strand is one-dimensional, which
is a major object of interest for biological applications. However, these approaches for deriving
continuum motion equations possess more significance and applicability than might be suggested by
the one-dimensional developments illustrated here. For example, the geometrical considerations and
nonlinear context of the present investigation would also apply in formulating the dynamics of the
higher dimensional case. That is, when s has more than one component, the approaches discussed
here still apply.
A change in dimensionality of s in equations (3.23) and (3.26) requires summing over all compo-
nents of s-derivatives (instead of only the single s-derivative for the strand). Additional integrability
conditions arise from the equality of cross-derivatives with respect to space and time that generalize
equations (2.18) and (2.19). (In geometric terms, these are zero curvature conditions.) The exten-
sion to higher dimensions was discussed in the general setting treated in Section 2.4. The higher
dimensional options also figured in the covariant Lagrange-Poincaré formulas (D.1), where divx de-
notes derivative with respect to time and all dimensions of the space (taken to be one-dimensional
in the paper). The extension to higher dimensions illuminates the geometry underlying the present
one-dimensional case and may be expected to produce interesting applications in the dynamical de-
scription of biological membranes and other extended physical objects. While the equations take the
same geometrical form in higher dimensions, their solutions will possess their own unique features.
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Besides passing to higher dimensions, future studies will consider both linear and nonlinear wave
propagation on electrostatically charged strands, as well as the description of nontrivial station-
ary states that arise from nonlocal interactions, such as for the VDF oligomers mentioned in the
Introduction.

Yet another interesting question for future studies concerns the possibility of enhancing the internal
structure of the rigid charge conformations. This will allow even richer dynamics than we considered
here. While the resulting equations may be different (and more complex), the methods developed
in this paper will still be applicable when the dynamics takes place in spaces that possess richer
conformational structure than rigid rotations.

Many interesting and nontrivial issues for future research are raised by the symmetry reduced for-
mulation of convective dynamics introduced here for nonlocal interactions of charged strands. As
mentioned earlier, these issues include classification and stability analysis of equilibrium solutions,
dynamics of conformational changes (folding/unfolding) and adaptation of these methods to com-
putational approaches, all of which we must place beyond the scope of the present work.
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Appendix A. Appendix: List of notations

This Appendix contains a list of the key notations used in the paper. Many of the relationships
among the variables and the spaces in which they live are also diagrammed in Section 7.2.3.
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t time
s coordinate along a strand

r(s, t) ∈ R3 spatial position of a strand
SO(3) special orthogonal group of R3

OsE semidirect product of a Lie group O with a vector space E
SE(3) ' SO(3) s R3 special Euclidean group

RCC rigid charge conformation
Λ(s, t) ∈ SO(3) rotation of the RCC

ξ(s, s′) = Λ−1(s)Λ(s′) relative rotation of RCCs at s and s′

κ(s, s′) = Λ−1(s) (r(s′)− r(s)) chord connecting s and s′ as seen in RCC frame at s
F(I, SE(3)) SE(3)-valued smooth functions on interval I

(Λ, r) a curve in the group F(I, SE(3))
G Lie group

TG tangent bundle of a Lie group G
T ∗G cotangent bundle of a Lie group G

g Lie algebra of G
g∗ dual of the Lie algebra of G

Ad and Ad∗ adjoint and coadjoint representations of a Lie group
ad and ad∗ adjoint and coadjoint representations of a Lie algebra

(ω,γ) convective angular and linear velocity distributions
(Ω,Γ ) deformation gradients in convective representation

ρ position of the filament as viewed from the RCC
(µ,π) =

(
δl
δω ,

δl
δγ

)
convective angular and linear momentum densities

{f, g}(µ,π,Ω,Γ ,ρ) affine Poisson bracket on (F(I, se(3)) sF(I, se(3)× R3))∗

Ad∗(Λ,r)−1

(
δl
δω ,

δl
δγ

)
spatial angular and linear momentum density

Appendix B. Appendix: A modified Hamilton-Pontryagin approach

A second derivation of the key formulas (3.23) and (3.26) for strand dynamics in the convective
representation is given in this Appendix. This derivation is based on the Hamilton-Pontryagin (HP)
approach in control theory (see, for example, [5]), which will be modified to include additional
terms describing the nonlocal contributions. The elegance and directness of the HP approach in
this Appendix relative to the Euler-Poincaré approach in Section 3 is accomplished by simplifying
the interplay between the group action and the variational principle at the expense of introducing
extra variables. The equivalent Euler-Poincaré derivation is more elaborate than the HP derivation,
because the Euler-Poincaré approach invokes the Lie group action on the configuration space and
thereby provides additional information. Section 5 has shown that the derivation of the Euler-
Poincaré equations and of the associated variational principle are corollaries of general theorems
for systems whose configuration space is a Lie group. The complementary, but less transparent, HP
route in that case reveals other perspectives and results whose abstract general formulation will
be explored in future work. Some calculations in this Appendix overlap with those in Section 3.
Nonetheless, we have chosen to present them here for completeness and ease of exposition.

Appendix B.1. Filament dynamics

We first apply the Hamilton-Pontryagin approach to the case when the Lagrangian includes only the
local part, so that l = lloc(ω,γ,Ω,Γ ,ρ). Inspired by the classical Hamilton-Pontryagin approach,
we introduce Lagrange multipliers for the holonomic constraints that impose the defining relations
(2.11) for the five reduced variables (ω,γ,Ω,Γ ,ρ) in equations (1.1).
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Theorem B1 (Hamilton-Pontryagin theorem for filament dynamics)
The equations for filament dynamics arise from the variational principle δS = 0 with action S given
by

S =
∫
l(ω,γ,Ω,Γ ,ρ)dt+

∫∫ (
π ·
(
Λ−1Λ̇− ω

)
+Π ·

(
Λ−1Λ′ −Ω

)
+ R ·

(
Λ−1r − ρ

)
+ µ ·

(
Λ−1ṙ − γ

)
+ M ·

(
Λ−1r′ − Γ

))
dsdt.

These equations are

δl

δρ
−R = 0,

δl

δω
− π = 0,

δl

δΩ
−Π = 0,

δl

δγ
− µ = 0,

δl

δΓ
−M = 0,

π̇ + ω × π +Π ′ +Ω ×Π + γ × µ+ Γ ×M + ρ×R = 0,

and
µ̇+ ω × µ+ M′ +Ω ×M−R = 0.

together with the constraints,

Λ−1Λ̇ = ω, Λ−1Λ′ = Ω, Λ−1r = ρ, Λ−1ṙ = γ, Λ−1r′ = Γ .

To facilitate the proof of the theorem, we first prove a lemma that will be helpful in computing the
variations of the quantities appearing in the action S.

Lemma B2 The variations of the quantities in Λ and r of the formulas in (2.11) are

δ
(
Λ−1Λ̇

)
=
∂Σ̂

∂t
+
[
Λ−1Λ̇, Σ̂

]
,

δ
(
Λ−1Λ′

)
= Σ̂

′
+
[
Λ−1Λ′, Σ̂

]
,

δ
(
Λ−1r

)
= Ψ − Σ̂

(
Λ−1r

)
, (B.1)

δ
(
Λ−1ṙ

)
= Ψ̇ − Σ̂

(
Λ−1ṙ

)
+
(
Λ−1Λ̇

)
Ψ ,

δ
(
Λ−1r′

)
= Ψ ′ − Σ̂

(
Λ−1r′

)
+
(
Λ−1Λ′

)
Ψ .

Proof. We calculate the variations directly, one by one. First we have,

δ
(
Λ−1Λ̇

)
= −Λ−1δΛ

(
Λ−1Λ̇

)
+ Λ−1δΛ̇

= −Λ−1δΛ
(
Λ−1Λ̇

)
+
(
Λ−1δΛ

).
+
(
Λ−1Λ̇

) (
Λ−1δΛ

)
=
∂Σ̂

∂t
+
[
Λ−1Λ̇, Σ̂

]
.

Similarly, for the variation of Λ−1Λ′ we have,

δ
(
Λ−1Λ′

)
= Σ̂

′
+
[
Λ−1Λ′, Σ̂

]
.

Now we consider the variation of Λ−1ṙ, which is given by

δ
(
Λ−1ṙ

)
= −Λ−1δΛΛ−1r + Λ−1δṙ

= −
(
Λ−1δΛ

) (
Λ−1r

)
+
(
Λ−1δr

).
+
(
Λ−1Λ̇

) (
Λ−1r

)
= Ψ̇ − Σ̂

(
Λ−1ṙ

)
+
(
Λ−1Λ̇

)
Ψ .
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A similar argument yields the variation of Λ−1r′,

δ
(
Λ−1r′

)
= Ψ ′ − Σ̂

(
Λ−1r′

)
+
(
Λ−1Λ′

)
Ψ .

Finally, the variation of Λ−1r is given by,

δ
(
Λ−1r

)
= −Λ−1δΛΛ−1r + Λ−1δr = Ψ − Σ̂

(
Λ−1r

)
and all the formulas in the statement are proved.

We may now use these variational formulas in (B.1) to prove the Hamilton-Pontryagin Theorem B1
for the equations of filament dynamics.

Proof. Variations with respect to the Lagrange multipliers impose the defining relations for the five
quantities {ρ,ω,Ω,γ,Γ }. The conjugate variations give

δl

δρ
−R = 0,

δl

δω
− π = 0,

δl

δΩ
−Π = 0,

δl

δγ
− µ = 0,

δl

δΓ
−M = 0.

Collecting the variations proportional to Σ and Ψ yields the filament equations

π̇ + ω × π +Π ′ +Ω ×Π + γ × µ+ Γ ×M + ρ×R = 0,

and
µ̇+ ω × µ+ M′ +Ω ×M−R = 0,

respectively.

Remark 26. The Hamilton-Pontryagin approach used here also allows nonholonomic constraints to
be imposed on the motion of the strand, although we shall refrain from pursuing that direction here.
See [19] for a discussion of nonholonomic constraints using the Hamilton-Pontryagin approach.

Appendix B.2. Nonlocal potential

For the nonlocal potential (2.13) we may form a Hamilton-Pontryagin variational principle in a
similar fashion. In this case, the action Snp is given by

Snp =
∫
lnp(ξ,κ,Γ )dt+

∫∫
m ·

(
Λ−1(s)r′(s)− Γ

)
dsdt

+
∫∫∫ (

X ·
(
Λ−1(s)Λ(s′)− ξ

)
+K ·

(
Λ−1(s) (r(s′)− r(s))− κ

) )
dsds′ dt.

Since the strand is not assumed to be locally inextensible, the stretch of the strand’s base requires
extra factors of |Γ | multiplying the differential of the parameter |Γ (s)| along the strand ds in the
expression for potential energy. However, in this section, in order to simplify the formulas and avoid
extra factors in the integrals, we shall incorporate that factor of |Γ (s)| into the nonlocal potential.
No confusion with the previous sections should arise here.

Lemma B3 The additional variational formulas needed for calculating the equations of motion are
given by

Λ−1(s′)Λ(s)
(
δ
(
Λ−1(s)Λ(s′)

))
= −AdΛ−1(s′)Λ(s)Σ̂(s) + Σ̂(s′),

δ
(
Λ−1(s) (r(s′)− r(s))

)
= −Σ̂(s)Λ−1(s) (r(s′)− r(s))

+ Λ−1(s)Λ(s′)Ψ(s′) + Ψ(s).

where the independent variations are defined by

Ψ(s) = Λ−1(s)δr(s) and Σ̂(s) = Λ−1(s)δΛ(s). (B.2)
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Proof. The first variational formula is calculated directly, as

Λ−1(s′)Λ(s)
(
δ
(
Λ−1(s)Λ(s′)

))
= Λ−1(s′)Λ(s)

(
Λ−1(s)δΛ(s′)

)
−Λ−1(s′)Λ(s)

(
Λ−1(s)δΛ(s)Λ−1(s)Λ(s′)

)
= −AdΛ−1(s′)Λ(s)Σ̂(s) + Σ̂(s′).

The second variational formula follows similarly from a direct calculation, namely,

δ
(
Λ−1(s) (r(s′)− r(s))

)
= −Λ−1(s)δΛ(s)Λ−1(s) (r(s′)− r(s))

+Λ−1(s) (δr(s′)− δr(s))

= −Σ̂(s)Λ−1(s) (r(s′)− r(s)) + Λ−1(s)Λ(s′)Ψ(s′) + Ψ(s)

which proves the lemma.

Theorem B4 The equations that arise from the variational principle with the nonlocal action

Snp =
∫∫∫

U(ξ,κ,Γ )dsds′ dt+
∫∫

m ·
(
Λ−1(s)r′(s)− Γ

)
dsdt

+
∫∫∫ (

X ·
(
Λ−1(s)Λ(s′)− ξ

)
+K ·

(
Λ−1(s) (r(s′)− r(s))− κ

) )
dsds′ dt

are given by:

X =
∂U

∂ξ
K =

∂U

∂κ
, m =

∂U

∂Γ
,

and
Γ ×m =

∫ (
ξ(s, s′)X(s′, s)−X(s, s′)ξ−1(s, s′) +K(s, s′)× κ(s, s′)

)
ds′,

m′ +Ω ×m =
∫

(ξ(s, s′)K(s′, s)−K(s, s′)) ds′,

together with the constraints,

ξ = Λ−1(s)Λ(s′), κ = Λ−1(s) (r(s′)− r(s)) , Γ = Λ−1(s)r′(s).

Proof. The proof is obtained by substituting the variations given in Lemma B3 into Hamilton’s
principle for the action in the statement of the theorem. Variations in X, K, and m yield the
constraints

ξ = Λ−1(s)Λ(s′), κ = Λ−1(s) (r(s′)− r(s)) , Γ = Λ−1(s)r′(s).

Variations in ξ, κ, and Γ yield the relationships

X =
∂U

∂ξ
, K =

∂U

∂κ
, m =

∂U

∂Γ
.

Finally, the variations proportional to Σ̂(s) and Ψ(s) yield

Γ ×m =
∫ (

ξ(s, s′)X(s′, s)−X(s, s′)ξ−1(s, s′) +K(s, s′)× κ(s, s′)
)

ds′

and
m′ +Ω ×m =

∫
(ξ(s, s′)K(s′, s)−K(s, s′)) ds′,

respectively.
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We may combine these nonlocal terms and the local part of the equations to produce the full set of
equations. These are given by

π̇ + ω × π +Π ′ +Ω ×Π + γ × µ+Γ × (M +m) + ρ×R

=
∫

(K(s, s′)× κ(s, s′) +Z(s, s′)) ds′

and

µ̇+ ω × µ+ (M +m)′ +Ω × (M +m)−R =
∫

(ξ(s, s′)K(s′, s)−K(s, s′)) ds′,

where one defines, as in formula (3.24),

Ẑ(s, s′) := ξ(s, s′)X(s′, s)−X(s, s′)ξ−1(s, s′), (B.3)

denoted as Ẑ since the right hand side of this equation is in so(3).
We may now use these functional derivative relations to express the equations of motion in terms of
the reduced Lagrangian, l = lloc + lnp. The functional derivative relations obtained in the Hamilton-
Pontryagin approach are

R =
δlloc
δρ

, π =
δlloc
δω

,

Π =
δlloc
δΩ

, µ =
δlloc
δγ

,

M =
δlloc
δΓ

, X =
δlnp
δξ

,

K =
δlnp
δκ

, M +m =
δ
(
lloc + lnp

)
δΓ

.

Substituting these relations into the equations of motion above gives the following equations of
motion for the charged strand.

(∂t + ω×)
δlloc
δω

+ (∂s +Ω×)
δlloc
δΩ

=
δlloc
δγ
× γ +

δ (lloc + lnp)
δΓ

× Γ +
δlloc
δρ
× ρ

+
∫ (

∂U

∂κ
(s, s′)× κ(s, s′) +Z(s, s′)

)
ds′, (B.4)

(∂t + ω×)
δlloc
δγ

+ (∂s +Ω×)
δ (lloc + lnp)

δΓ

=
δlloc
δρ

+
∫ (

ξ(s, s′)
∂U

∂κ
(s′, s)− ∂U

∂κ
(s, s′)

)
ds′. (B.5)

The term Ẑ(s, s′) is the contribution from the nonlocal part of the Lagrangian that we have sought.

The dynamical equations (B.4) and (B.5) obtained by the Hamilton-Pontryagin approach recover
equations (3.23) and (3.26), respectively, from the Euler-Poincaré approach. These equations must
be augmented by the advection conditions (2.17), (2.18), and (2.19) in order to close the system.
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Appendix C. Appendix: Formulation of nonlocal exact geometric rods in terms of
quaternions

Quaternions allow for a simple, elegant, and useful method of describing the local orientation of
a curve. It is thus natural to seek a representation of our derivation in previous sections that ex-
presses the strand equations in terms of quaternions. The quaternion representation is natural, for
example, in formulating the equations of motion for elastic rods in terms of the corresponding Euler
parameters. As far as we are aware, a treatment of continuum rod theory in terms of quaternions in
the nonlocal sense presented here does not appear in the literature. We shall see how the nonlocal
contribution (3.24) appears as an imaginary part of a certain quaternion, thereby making the connec-
tion to other work. This is accomplished by mapping quaternions (elements of SU(2)) that describe
rotations into purely imaginary quaternions, or vectors, that are elements of su(2) ' so(3) ' R3.

Remark 27. This section simplifies the formulas and avoids extra factors in the integrals by assum-
ing the strand to be inextensible; thus |Γ (s)| is identically equal to one and the parameter s is the
arc length. See (3.23) and (3.26) for the case |Γ (s)| 6= 1.

Let us associate a quaternion q = (q0, q) with every point on the curve s. That quaternion describes
the local rotation of an orthogonal frame if the condition ‖q‖ = q20 + |q|2 = 1 is satisfied. Then,
q0 = cos(α/2), with rotation angle α and q = sin(α/2)n̂, where n̂ is a unit vector which is the axis
of rotation. These are the Cayley-Klein parameters of the rotation.

Remark 28. To simplify the notation, we use bold symbols for purely imaginary quaternions, con-
sidering them as vectors. For example, if q is a unit quaternion, then

b = qaq∗

means
(0, b) = q (0,a) q∗,

where (0,a) and (0, b) are two unit imaginary quaternions.

As before, we assume that the interaction potential depends on the distances between point charges
that are attached to each point r(s, t) by rigid rods of the length ηi(s). The new position of
the charges will be qηiq

∗, where concatenation denotes quaternion multiplication and q∗ is the
quaternionic conjugate of q. The point charges are then positioned at the coordinates in real space
r(s, t) + qηiq

∗ and the distance between point charges is then 3

dk,m(s, s′) = |r(s)− r(s′) + q(s)ηk(s)q∗(s)− q(s′)ηm(s′)q∗(s′)| . (C.1)

This is simply (2.3) written now in its quaternionic form. Following (2.6), we perform Lie-Poisson
reduction as follows (remember that ‖q‖ = 1 and qq∗ = e, where e = (1, 0) is the unit quaternion):

dk,m(s, s′) = |r(s′)− r(s) + q(s′)ηk(s′)q∗(s′)− q(s)ηm(s)q∗(s)|
= |q∗(s) (0, r(s′)− r(s) + q(s′)ηk(s′)q∗(s′)− q(s)ηm(s)q∗(s)) q(s)|
= |z(s, s′)ρ(s′)z∗(s, s′)− ρ(s) + z(s, s′)ηk(s′)z∗(s, s′)− ηm(s)|
= |κ(s, s′) + ηk(s)− z(s, s′)ηm(s′)z∗(s, s′)| , (C.2)

where z(s, s′) = q∗(s)q(s′) is the coupling between the frames and the quantity

ρ(s) = q∗(s)r(s)q(s),

3 All these variables depend on time t as well as s, but the time variable t is suppressed.
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is the distance vector connecting the points r(s) and r(s′) transformed according to the inverse
rotation of the frame at the point s. We have also defined

κ(s, s′) = z(s, s′)ρ(s′)z∗(s, s′)− ρ(s). (C.3)

The nonlocal part of the reduced Lagrangian depends on the variables ρ and z. The local part which
describes elastic deformation and inertia, can be reduced to functions of m := q∗q′ and v := q∗q̇,
where the prime denotes the derivative with respect to s and the dot is the derivative with respect to
t. The quaternions m and v belong to the Lie algebra of the Lie group of all unit quaternions which is
isomorphic to the space of purely imaginary quaternions, or vectors, as can be seen by differentiating
q∗q = e. The commutator is then mapped into twice the vector product of the imaginary parts of
the quaternions.
We can again split the reduced Lagrangian l in the local and nonlocal parts

l =
∫
lloc (v(s),m(s),γ,Γ ,ρ) ds+

∫∫
U (κ(s, s′), z(s, s′)) dsds′ := lloc + lnp. (C.4)

Here, γ, Γ , ρ are defined as in (2.11). The equations of motions then follow from the minimization
of the reduced action

δS = δ

∫
l (v(s),m(s),ρ(s),κ(s, s′), z(s, s′)) dsds′ dt = 0. (C.5)

Here v and s are elements of Lie algebra of purely imaginary quaternions with absolute value equal
to one. They are purely imaginary quaternions, v = (0,ω/2) and m = (0,Ω/2); the real Lie algebra
of imaginary quaternions is Lie algebra isomorphic as to (R3,×). The factor 1/2 is necessary for ω
and Ω to be exactly the vector angular velocity and strain rate, respectively, in agreement with our
notation. Thus, we can write (C.5) using vector quantities instead of quaternions whenever possible:

δS = δ

∫∫
lnp (ω,γ,Ω,Γ ,ρ) dsdt+ δ

∫∫∫
U (κ(s, s′), z(s, s′)) dsds′ dt = 0. (C.6)

We obtain

δS =
∫∫ 〈

δlloc
δΩ

, δΩ

〉
+
〈
δlloc
δω

, δω

〉
+
〈
δlloc
δρ

, δρ

〉
+
〈
δlloc
δγ

, δγ

〉
+
〈
δlloc
δΓ

, δΓ

〉
dsdt+

∫∫∫ 〈
δlnp
δz

, δz

〉
+
〈
δlnp
δκ

, δκ

〉
dsds′ dt = 0. (C.7)

If we now define s := q∗δq = q−1δq as the free variation in q (a unit quaternion), we obtain, similarly
to §3.1.1:

δv = vs− sv + ṡ = [v, s] + ṡ, (C.8)

for the time derivative and
δm = ms− sm + s′ = [m, s] + s′, (C.9)

for the space derivative. Note that since q∗q = 1,

q∗q̇ + q̇∗q = q∗q̇ +
(
q∗q̇
)∗ = 2Re v = 0

and, analogously, Re m = 0, which means that v and m are purely imaginary quaternions, or vectors.
This allows to compute the first two terms in (C.7). We now remember that Re v = 0 and Re s = 0
since they are elements of the corresponding Lie algebra, so v = (0,ω/2), m = (0,Ω/2), and
s = (0,Σ/2). Then, (C.8) and (C.9) can be expressed as vector equations:

δv = (0, δω) =
(

0,ω ×Σ + Σ̇
)
, (C.10)
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and
δm = (0, δΩ) = (0,Ω ×Σ +Σ ′) . (C.11)

Now, computations of the first three variations in (C.7) can be done analogously to those in §3.1.1,
as they involve vector quantities. The only exception is the computation of δρ in the nonlocal term
as it must be computed in terms of quaternions. We have

δρ = δ (q∗(s)r(s)q)
= −q∗δqρ(s) + ρ(s)q∗δq + q∗(s)δr(s)q(s) = 2ρ×Σ + Ψ , (C.12)

where we have defined the free variation

Ψ(s) := q∗(s)δr(s)q(s). (C.13)

We have also used the relation sρ − ρs = ρ ×Σ that is satisfied for purely imaginary s = (0,Σ).
Next, we need to compute the variation of the nonlocal part of κ(s, s′) as follows. It is easier to use
the alternative expression for κ as

κ(s, s′) = ρ(s, s′)− q∗(s)r(s′)q(s).

Then,

δκ =δρ− δ (q∗(s)r(s′)q(s))
= ρ(s)×Σ(s) + Ψ(s)− δ (q∗(s, s′)ρ(s′)z(s, s′))
= ρ(s)×Σ(s) + Ψ(s)− δq∗(s)r(s′)q(s)− q∗(s)δr(s′)q(s)− q∗(s)r(s′)δq(s)
= ρ(s)×Σ(s) + Ψ(s)

− s∗(s)
(
ρ(s)− κ(s, s′)

)
−
(
ρ(s)− κ(s, s′)

)
s(s)− z(s, s′)Ψ(s′)z∗(s, s′)

= Ψ(s)− z∗(s, s′)Ψ(s′)z(s, s′)− κ(s, s′)×Σ, (C.14)

which is a direct analogue of (3.12). We have used the fact that for purely imaginary quaternions s,
we have

s∗ρ+ ρs = −sρ+ ρs = ρ×Σ

and
s∗(s)κ(s, s′) + κ(s, s′)s = −sκ(s, s′) + κ(s, s′)s = κ(s, s′)×Σ.

Next, let us define the purely imaginary quaternion

z∗(s, s′)δz(s, s′) := 2T (s, s′).

The real part of z∗(s, s′)δz(s, s′) vanishes since z(s, s′) is a unit quaternion. The last step is the
computation of T in terms of free variations Σ, which proceeds as follows:

z∗(s, s′)δz(s, s′) = z∗(s, s′)δ [q∗(s)q(s′)]
= z∗(s, s′) [−q∗(s)δq(s)z(s, s′) + q∗(s)q(s′)q∗(s′)δq(s′)]

= −1
2
z∗(s, s′)Σ(s)z(s, s′) +

1
2
Σ(s′). (C.15)

Thus, we find

2T (s, s′) := Im (z∗(s, s′)δz(s, s′))
= −z∗(s, s′)Σ(s)z(s, s′) +Σ(s′)
=: −Adz∗Σ(s) +Σ(s′).
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Note the exact correspondence between this formula and (3.10) defining the variation ξ−1δξ. There-
fore, the variation with respect to δκ gives〈

δlnp
δκ

, δκ

〉
=
∫ 〈∫ ∂U

∂κ
(s, s′)× κ(s, s′)ds′, Σ(s)

〉
ds

+
∫ 〈∫ ∂U

∂κ
(s, s′)− z(s, s′)

∂U

∂κ
(s′, s)z∗(s, s′)ds′, Ψ(s)

〉
ds. (C.16)

Analogously,∫∫ 〈
z∗
∂U

∂z
, z∗δz

〉
dsds′ =

∫∫ 〈
z∗
∂U

∂z
, 2T (s, s′)

〉
dsds′

=
∫∫ 〈

z∗
∂U

∂z
, −z∗(s, s′)Σ(s)z(s, s′) +Σ(s′)

〉
dsds′

=
∫∫ 〈

z∗(s′, s)
∂U

∂z
(s′, s)− ∂U

∂z
(s, s′)z∗(s, s′), Σ(s)

〉
dsds′

= −
∫ 〈∫ ∂U

∂z
(s, s′)z∗(s, s′)ds′, Σ(s)

〉
ds

= −
∫ 〈∫

Im
[
∂U

∂z
(s, s′)z∗(s, s′)

]
ds′, Σ(s)

〉
ds. (C.17)

Collecting together the terms proportional to Σ(s) and Ψ(s) in the minimal action principle (C.7)
gives the system (B.4), (B.5). The role of antisymmetric matrix Z(s, s′) describing the nonlocal
interactions in (B.5) is now played by the purely imaginary quaternion

Z(s, s′) = Im
[
∂U

∂z
(s, s′)z∗(s, s′)

]
.

A Hamiltonian description closely following that of Section 3.3 can be developed in quaternionic
form, as well. The cross products are then substituted by a corresponding product of the quaternions,
with explicit formulas for the Lie-Poisson bracket closely resembling (3.41). Since the derivation is
analogous to Section 3.3, it will be omitted from the exposition.

Appendix D. Appendix: The subgroup covariant Lagrange-Poincaré approach

In Section 7, we performed Lagrange-Poincaré reduction by considering SE(3) as a manifold with a
SO(3) action. In this Appendix, we take into account the full group structure of SE(3) and perform
covariant group reduction as in [27] on the charged strand. More precisely, we see the principal
bundle

πSE(3) : SE(3)→ R3, πSE(3)(Λ, r) = Λ−1r = ρ,

as being associated to the left subgroup action of SO(3) ∼= SO(3) × {0} on SE(3). Using the
composition law in SE(3)

(Λ1, r1)(Λ2, r2) = (Λ1Λ2, r1 + Λ1r2),

we obtain that the subgroup action is given by

SO(3)× SE(3)→ SE(3), Λ1(Λ2, r2) = (Λ1Λ2, Λ1r2).

We thus have recovered the action (7.1). The projection πSE(3) identifies an equivalence class [Λ, r] ∈
SE(3)/SO(3) with the vector Λ−1r ∈ R3.

Therefore, we can obtain the equation of the molecular strand by reducing the principal SE(3)-
bundle P by the subgroup SO(3). Such a theory, developed in [27], is applied below directly to the
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n-dimensional generalization of the molecular strand. The difference with the approach described in
Section 7 is that here we make concrete use of the group structure of SE(3) and the fact that the
principal bundle πSE(3) : SE(3)→ R3 is associated to a subgroup action.
Recall from §2.4 that, for the n-dimensional generalization of the molecular strand, the Euclidean
group SE(3) ' SO(3) s R3 is replaced by an arbitrary semidirect product OsE and the spacetime
X = I × R is replaced by X = D × R, where D is a smooth manifold of dimension n.

Consider the trivial principal S-bundle, P = X × S → X, where S is the semidirect product group
OsE. Since P is trivial, the first jet bundle is given by J1P(x,g) = L(TxX,TgS). A section σ of P
reads

σ(x) = (x,Λ(x), r(x)), x = (s, t),

and its first jet extension is

j1σ(x) = (x, idTxX , Λ(x), r(x), TxΛ, Txr)

=
(
x, idTxX , Λ(x), r(x),dΛ+ Λ̇dt,dr + ṙdt

)
,

where d denotes the derivative with respect to space and the dot denotes the time derivative.
We can see P as an O-principal bundle over Σ := P/O = X × E, relative to the projection
ι : (x,Λ, r) 7→ (x,Λ−1r). Suppose that we have an O-invariant Lagrangian density L defined on
J1P . This Lagrangian induces a reduced Lagrangian density l̄ : J1P/O → R. On the principal
bundle P → P/O we consider the flat principal connection

A(vx, vΛ, vr) = vΛΛ
−1.

where vx ∈ TxX, vΛ ∈ TΛO, and vr ∈ TrE. Using this connection, we have the fiber bundle
isomorphism J1P/O ∼= J1(P/O) ×Σ L(TX, adP ) over Σ. Note that in our particular case, the
vector bundle adP → Σ is trivial (see (7.9)) and can be identified with Σ × o, where o is the Lie
algebra of O. Moreover, the connection A is identified with the trivial connection; see (7.10).
We recall now from [27] the covariant Lagrange-Poincaré reduction, adapted here to the case of a
semidirect product S = OsE, and to the fact that P , as a S-principal bundle, is trivial.
Given a section σ = (Λ, r) of P → X, we introduce the section σ1 of P/O → X defined by
σ1(x) := (ι ◦ σ)(x) = Λ(x)−1r(x) = ρ(x), and the section σ2 of L(TX, o) → X defined by σ2(x) =
Λ−1TxΛ = Ω + ωdt. The following are equivalent:

– σ is a critical point for the variational principle

δ

∫
X

L(j1σ) = 0;

– σ satisfies the Euler-Lagrange equations for L;
– the variational principle

δ

∫
X

l̄(j1σ1, σ2) = 0

holds for arbitrary variations δσ1 and variations of the form

δσ2 = dAη + [σ2, η],

where η is an arbitrary section of L(TX, o)→ X;
– the sections σ1, σ2 satisfy the covariant Lagrange-Poincaré equations

δl̄

δσ1
− divx

(
δl̄

δ(Tσ1)

)
= 0,

divAx
δl̄

δσ2
= ad∗σ2

δl̄

δσ2
,

(D.1)
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where divAx denotes the covariant divergence associated to A and acting on X(X, o∗). Note that
here divAx = divx.

Using the decomposition X = D × R, we can write

L(j1σ) = L(Λ̇,dΛ, ṙ,dr)

and
l̄(j1σ1, σ2) = l̄(ρ,Ω, ω).

Hence, we obtain the equality
δl̄

δσ2
=

δl̄

δΩ
+
δl̄

δω
∂t.

Since divAx π
∗
1 = d

dt and divAx π
∗
2 = div, the second equation of (D.1) reads

d

dt

δl̄

δω
+ div

δl̄

δΩ
= ad∗ω

δl̄

δω
+ ad∗Ωi

δl̄

δΩi
.

The first equation reads
δl̄

δρ
− d

dt

δl̄

δρt
− div

δl̄

δρs
= 0.

We have thus obtained equations (6.21) by covariant Lagrange-Poincaré reduction. Of course, when
OsE = SO(3) s R3 = SE(3) and D = [0, L] we recover equations (7.15) and (7.16) for the
molecular strand in the new variables.
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with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

22. Holm, D.D., Marsden, J.E., Ratiu, T.S.: Hamiltonian Structure and Lyapunov Stability for Ideal
Continuum Dynamics. University of Montreal Press, Montreal (1986)

23. Holm, D.D., Putkaradze, V.: Nonlocal orientation-dependent dynamics of molecular strands. C.
R. Acad. Sci. Paris 347, 1093–1098 (2009)

24. Kehrbaum, S., Maddocks, J.H.: Elastic rods, rigid bodies, quaternions, and the last quadrature.
Phil. Trans 355, 2117–2136 (1997)
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