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Asymptotics for a determinant with a confluent hypergeometric
kernel

P. Deift1, I. Krasovsky2, and J. Vasilevska2

Abstract. We obtain “large gap” asymptotics for a Fredholm determinant with a confluent hy-
pergeometric kernel. We also obtain asymptotics for determinants with two types of Bessel kernels
which appeared in random matrix theory.

1 Introduction

Let K(α,β) be the operator acting on L2(−s, s), s > 0, with kernel

K(α,β)(u, v) =
1

2πi

Γ(1 + α+ β)Γ(1 + α− β)

Γ(1 + 2α)2
A(u)B(v) −A(v)B(u)

u− v
, (1)

where

A(x) = g
1/2
β (x)|2x|αe−ixφ(1 + α+ β, 1 + 2α, 2ix),

B(x) = g
1/2
β (x)|2x|αeixφ(1 + α− β, 1 + 2α,−2ix),

gβ(x) =

{
e−πiβ, x ≥ 0,
eπiβ, x < 0.

, α, β ∈ C, ℜα > −1/2, α± β 6= −1,−2, . . .

Here Γ(x) is Euler’s Γ-function, and φ(a, c, z) is the confluent hypergeometric function (see, e.g.,
[1])

φ(a, c, z) = 1 +

∞∑

n=1

a(a+ 1) · · · (a+ n− 1)

c(c+ 1) · · · (c+ n− 1)

zn

n!
. (2)

Using the standard recurrence formulae for φ(a, c, z) (see (36) below), we can rewrite (1) in another
form:3

K(α,β)(u, v) =
1

π

Γ(1 + α+ β)Γ(1 + α− β)

(1 + 2α)Γ(1 + 2α)2
g
1/2
β (u)g

1/2
β (v)e−i(u+v) 4

α|uv|α
u− v

×[uφ(1 + α+ β, 2 + 2α, 2iu)φ(α + β, 2α, 2iv) − vφ(1 + α+ β, 2 + 2α, 2iv)φ(α + β, 2α, 2iu)].

(3)

The kernel (1) or (3) is called the confluent hypergeometric kernel. For α ∈ R, β ∈ iR (in this
case the kernel is real, which is easy to see from (1)), it was considered by Borodin and Olshanski
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in [5], and by Borodin and Deift [4] (Proposition 8.13). This kernel arises in several different, but
related, contexts:

First, following [5], consider the space H of infinite Hermitian matrices (Hjk)
∞
j,k=1. The U(∞),

the inductive limit of the unitary groups U(N), N → ∞, acts on H by conjugations. A probability
Borel measure on H which is invariant under the action of U(∞) is called ergodic, if any invariant
mod 0 set has measure 0 or 1. Consider the space Ω whose elements consist of 2 infinite sequences,

α+
1 ≥ α+

2 ≥ · · · ≥ 0, α−
1 ≥ α−

2 ≥ · · · ≥ 0, where

∞∑

j=1

(α+
j )

2 +

∞∑

j=1

(α−
j )

2 <∞,

together with 2 extra real parameters γ1, γ2, where γ2 ≥ 0. It turns out that the elements of Ω
parametrize the ergodic measures on H. Furthermore, it can be proved that any U(∞)-invariant
probability measure on H decomposes on ergodic components, i.e., it can be written as a continuous
convex combination of ergodic measures. This spectral decomposition is unique and is determined
by a probability measure on Ω which is called the spectral measure of the original invariant measure.

The space Ω maps to the space Conf(R∗) of point configurations on the punctured real line
R
∗ = R \ {0} in the following way:

({α+
j }j=1,2,..., {α−

j }j=1,2,..., γ1, γ2) → (−α−
1 ,−α−

2 , . . . , α
+
2 , α

+
1 ),

where possible zeros among α±
j are omitted. Under this map spectral measures corresponding to

invariant measures on H, push-forwards to measures on Conf(R∗), give rise in this way to random
particle systems on R

∗.

In [5], the authors considered a particular class of U(∞)-invariant measures on H, the Hua-
Pickrell measures, and showed that the push-forwards of these measures to Conf(R∗) give rise
to random particle systems on R

∗ which are determinantal with correlation kernels given by
K(α,β)(1/u, 1/v)/(uv) (see (1)) with parameters α, iβ ∈ R.

The kernel (1) is also (see [4]) a particular scaling limit of a kernel Kα,β,γ(u, v) which has a
similar structure but with the confluent hypergeometric functions replaced by the hypergeometric
functions 2F1(α, β, γ; z). The kernel K

α,β,γ(u, v) is the correlation kernel for a particle system that
arises in the theory of representations of U(∞): role of the ergodic measures is now played by the
indecomposable characters of U(∞) which are again parametrized by certain sequences together
with some extra parameters (see (1.4) in [4]).

The kernel (1) also arises as the correlation kernel for a particle system in a similar way to
Kα,β,γ(u, v) above, but in place of irreducible representations of U(∞), we now consider irreducible
(spherical) representations of U(∞) ⋉ H(∞) = lim→G(N), the inductive limit of the semidirect
product G(N) = U(N) ⋉H(N), where U(N) is the group of N ×N unitary matrices and H(N)
denotes N ×N Hermitian matrices: see [5] and references therein.

As we will see in Section 2, the kernel (1) can be obtained as a scaling limit in unitary random
matrix ensembles generated by the weight function f(z, 0) on the unit circle (given by (20) below)
at a point of so-called Fisher-Hartwig singularity. This singularity combines a root-type and a
jump-type singularity characterized by the parameters α and β, respectively.

In particular cases, the kernel (1) reduces to a Bessel- and the sine-kernel which attracted
much attention mostly because of their interest for random matrices. If β = 0 the confluent
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hypergeometric function reduces to Bessel functions (see, e.g., [1]):

φ(µ, 2µ, 2ix) = Γ

(
µ+

1

2

)
eix
(x
2

)−µ+ 1
2
Jµ− 1

2
(x). (4)

Therefore, we obtain from (3)

K(α,0)(u, v) ≡ K
(α)
Bessel1(u, v) =

|u|α|v|α
uαvα

√
uv

2

Jα+ 1
2
(u)Jα− 1

2
(v)− Jα+ 1

2
(v)Jα− 1

2
(u)

u− v
. (5)

This kernel appeared in [2],[22],[25],[29].

If α = 0, β = 0, then (5) reduces to the sine kernel

K(0,0)(x, y) ≡ Ksin(x, y) =
sin(x− y)

π(x− y)
, (6)

the most ubiquitous object of random matrix theory.

Note that the operator K(α,β) is trace class (see Appendix), and consider the Fredholm deter-
minant

det(I −K(α,β))L2(−s,s). (7)

Because of the mentioned interpretation of K(α,β) with α, iβ ∈ R as the correlation kernel for a
particle system produced by a Hua-Pickrell measure, it is easy to see that the Fredholm determinant
(7) is the probability that all the α±

j are less than 1/s.

By a random matrix interpretation of the kernel (1), the determinant (7) with α, iβ ∈ R gives
the probability, in the bulk scaling limit, that the interval (−s, s) with a Fisher-Hartwig singularity
at the center contains no eigenvalues of corresponding unitary random matrix ensembles.

As noticed in [29, 4], the determinant det(I − K(α,β))L2(0,s) is related to a solution to the
Painlevé V equation.4

In this paper, we obtain the asymptotics of the Fredholm determinant (7) for large s, i.e., the
large gap asymptotics. Our main result is the following.

Theorem 1 Let K(α,β) be the operator with kernel (1) acting on L2(−s, s), Then, as s→ +∞,

det(I −K(α,β))L2(−s,s) =

√
πG2(1/2)G(1 + 2α)

22α2G(1 + α+ β)G(1 + α− β)
s−

1
4
−α2+β2

e−
s2

2
+2αs

[
1 +O

(
1

s

)]
, (8)

where G(x) is Barnes’ G-function. This expansion is uniform in compact subsets of the α-half-plane
ℜα > −1/2 and of the β-plane outside neighborhoods of the points α± β = −1,−2, . . ..

Remark 2 Setting β = 0 in (8) and using a doubling formula for the G-function, we obtain the
large s-asymptotics for the determinant with kernel (5) where ℜα > −1/2:

det(I −K
(α)
Bessel1) =

1

(2π)α
G(α + 1/2)G(α + 3/2)s−

1
4
−α2

e−
s2

2
+2αs

[
1 +O

(
1

s

)]
. (9)

4More generally, an 2F1-kernel determinant is expressed [4] in terms of a solution to the Painlevé VI equation.
For some asymptotic results which use this connection and conjectures see [23].
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Setting α = β = 0 in (8) and using the property 2 lnG(1/2) = (1/12) ln 2 − ln
√
π + 3ζ ′(−1),

where ζ(x) is Riemann’s zeta-function, we reproduce the result for the sine-kernel determinant:

ln det(I −Ksin) = −s
2

2
− 1

4
ln s+

1

12
ln 2 + 3ζ ′(−1) +O

(
1

s

)
, s→ ∞. (10)

The first two terms in (10) were first found by des Cloizeaux and Mehta [6], and the full expansion by
Dyson [14]. The calculations in [6, 14] were not fully rigorous. A proof for the first leading term was
carried out by Widom [27]. The full asymptotics of the logarithmic derivative (d/ds) ln det(I−Ksin)
were proved by Deift, Its and Zhou in [9]. Finally, the constant term in (10) was proved in [15],
[20], [11].

Remark 3 In the present paper, we address only the symmetric case of L2(a, b) such that b =
−a = s > 0. However, one can apply our methods to consider non-symmetric cases as well.

In unitary random matrix ensembles at a hard edge of the spectrum (e.g., Jacobi at the edges
or Laguerre at zero) local correlations between eigenvalues are expressed in terms of the following
Bessel kernel first considered by Forrester [19] (in an equivalent form):

K
(a)
Bessel2(x, y) =

√
yJ ′

a(
√
y)Ja(

√
x)−√

xJ ′
a(
√
x)Ja(

√
y)

2(x− y)
. (11)

In particular, the distribution of the extreme eigenvalue is given in the scaling limit by the

Fredholm determinant det(I−K(a)
Bessel2), whereK

(a)
Bessel2 is the trace-class operator on L

2(0, s), s > 0,
with kernel (11). In Section 7, we prove the following asymptotic behavior of this determinant.

Theorem 4. As s→ +∞, we have uniformly in compact subsets of the half-plane ℜa > −1:

det(I −K
(a)
Bessel2)L2(0,s) = τas

−a2/4e−s/4+a
√
s
(
1 +O(s−1/2)

)
, ℜa > −1, (12)

where

τa =
G(1 + a)

(2π)a/2
. (13)

In [26], Tracy and Widom showed that the logarithmic derivative (d/ds) ln det(I − K
(a)
Bessel2)

is expressed in terms of a solution to Painlevé V equation and used this fact to give a heuristic
derivation of (12) with some constant τa. Tracy and Widom also conjectured the value of τa given
in (13) using numerical calculations and comparison with the Dyson asymptotics for the sine-kernel
determinants. (In fact, for a = ∓1/2, the Bessel kernel (11) reduces to sine-kernels appearing in
orthogonal and symplectic ensembles of random matrices. The sine-kernel (6) appears in unitary
ensembles.) Very recently, a proof of the asymptotics (12,13) for the range of the parameter |ℜa| < 1
was given by Ehrhardt [16] using operator theory methods.

To prove Theorem 1, we use the approach of [20], [11], [12], where the asymptotics were
computed, including the constant terms, of the sine-kernel and the Airy-kernel determinants.

First, in Section 2, using results from [10] we express (see Lemma 6) the Fredholm determinant
(7) as a scaling limit of Toeplitz determinants Dn(ϕ) with certain symbols f(eiθ) supported on an
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arc of the unit circle ϕ ≤ θ < 2π − ϕ with ϕ = 2s/n, n > s. The continuation of these symbols
into the complex plane has a Fisher-Hartwig singularity at z = 1. Theorem 1 then reduces to an
asymptotic evaluation of such Toeplitz determinants for large s.

In Section 3 we derive a differential identity (49) for the logarithmic derivative (d2/dϕ2) lnDn(ϕ)
at 0 ≤ ϕ < π in terms of the solution to an associated Riemann-Hilbert problem (in fact, in terms
of the associated orthogonal polynomials which are given by this solution). In section 4, we obtain
the series expansion of Dn(ϕ) for ϕ close to π. In Section 5, we solve the Riemann-Hilbert problem
asymptotically and thus obtain the asymptotic expression for the r.h.s. of the differential identity
(49), namely, we obtain the identity (139) uniformly for 2s/n < ϕ < π, n > s, s > s0, with some
(large) s0 > 0. Integration of the latter identity w.r.t. ϕ, using the boundary condition of Section
4, gives the asymptotics of the determinants Dn(ϕ) for any arc with 2s/n < ϕ < π, n > s, s > s0,
with some s0 > 0, which is sufficient to prove Theorem 1.

In Section 7, we represent the Fredholm determinant with the Bessel kernel (11) as a scaling
limit of Hankel determinants related, via a general connection formula of Theorem 2.6. of [10], to
the particular case of Dn(ϕ) with β = 0. The connection formula also involves the polynomials
orthogonal w.r.t. f(z) on the circular arc which are represented by matrix elements of the solution
to the Riemann-Hilbert problem mentioned above. We prove Theorem 4 by using asymptotic results
on these polynomials and on Dn(ϕ) from the previous section as well as an expansion for singular
Hankel determinants from [10].

2 Connection with Toeplitz determinants

The aim of this section is to derive an expression for (7) in terms of Toeplitz determinants (Lemma
6 below) and to fix notation for the rest of the paper.

Let Eϕ be an arc of the unit circle C oriented counterclockwise:

Eϕ = {eiθ, ϕ ≤ θ ≤ 2π − ϕ}, 0 ≤ ϕ < π. (14)

Consider the following function f(z, ϕ) on Eϕ:

f(z, ϕ) = |z − 1|2αzβe−iπβ , z = eiθ ∈ Eϕ α, β ∈ C, ℜα > −1

2
. (15)

Note that for z ∈ C

|z − 1|2α =
(z − 1)2α

zαeiπα
, (16)

where the cut of (z − 1)2α is along [1,∞), and 0 < arg(z − 1) < 2π. The branches of zα, zβ are
chosen so that 0 < arg z < 2π. Therefore, we can extend the function f(z) to the complex plane
with the cut [0,∞) by the expression:

f(z) = z−α+β(z − 1)2αe−iπ(α+β) z ∈ C \ [0,∞). (17)

Related to the function (15) is a system of orthogonal polynomials pk(z;ϕ) = χk(ϕ)z
k + . . .,

p̂k(z;ϕ) = χk(ϕ)z
k + . . . of degree k = 0, 1, . . ., satisfying

1

2π

2π−ϕ∫

ϕ

pk(z)z
−mf(z)dθ = χ−1

m δkm,
1

2π

2π−ϕ∫

ϕ

p̂k(z
−1)zmf(z)dθ = χ−1

m δkm, (18)
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z = eiθ, m = 0, 1, . . . , k.

Note that if the weight function f(z) is not positive on Eϕ, the existence of such a system of
polynomials is not a priori clear and will be addressed in the situations needed below.

In order to obtain the kernel (1) in a scaling limit, we will need to know the asymptotics of
the polynomials

qn(z) ≡ pn(z; 0), q̂n(z) ≡ p̂n(z; 0), (19)

corresponding to the weight

f(z, 0) = |z − 1|2αzβe−iπβ , z = eiθ, 0 ≤ θ < 2π. (20)

In this case the function f(z) possesses a Fisher-Hartwig singularity at the point z = 1. The
asymptotics of these and more general polynomials were recently analyzed in [10] (in particular,
the polynomials exist for sufficiently large degrees) and from those results we obtain the behavior
of the polynomials in a neighborhood of the singular point.

Lemma 5 Let 0 < ε < 1, U0 = {z, |z − 1| < ε}. Fix the branch of ln z = ln |z| + i arg z by the
condition −π < arg z < π, and the branches of the power functions wa = |w|a exp{ia argw} by the
condition 0 < argw < 2π. Then, as n→ ∞, z ∈ U0,

qn(z) =

{
1, z ∈ C+ ∩ U0

e−2πi(α−β), z ∈ C− ∩ U0

}
(n ln z)α−β(z − 1)−α+βzα−β

×Γ(1 + α+ β)

Γ(1 + 2α)
φ(1 + α+ β, 1 + 2α, n ln z)

[
1 +O

(
1

n

)]
,

(21)

q̂n(z
−1) = (n ln z)α+β(z − 1)−(α+β)Γ(1 + α− β)

Γ(1 + 2α)
φ(1 + α− β, 1 + 2α,−n ln z)

[
1 +O

(
1

n

)]
. (22)

These asymptotics are uniform and differentiable for z ∈ U0. They are also uniform in compact
subsets of the α-half-plane ℜα > −1/2 and of the β-plane outside neighborhoods of the points
α± β = −1,−2, . . ..

Remark It is easy to check that the singularities in (21), (22) cancel.

Proof. Our polynomials correspond to the special case of [10] with only one singularity located at
z = 1. Let U0 be the neighborhood of 1 where the parametrix was constructed in [10] in terms of
the confluent hypergeometric function. Let

ζ = n ln z.

Take ζ ∈ I, where I is the first sector of the image of the neighborhood under the conformal
transformation ζ = n ln z (see Figure 2 of [10]). Tracing back the Riemann-Hilbert transformations
of [10], it is straightforward to obtain

(
χ−1
n qn(z)

−χn−1z
n−1q̂n−1(z

−1)

)
=

(
I + n−ℜβσ3O

(
1

n

)
nℜβσ3

)(
Q1

Q2

)
, n→ ∞ (23)

where
Q1(z) = ζ−α−β(z − 1)−α+βzα−βeiπ(α+β)Ψ1,

Ψ1 = −ψ(1 − α+ β, 1− 2α, ζ)
Γ(1 + α+ β)

Γ(α− β)
+ ψ(−α− β, 1− 2α, e−iπζ)zn,

(24)
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Q2 = −ζα+β(z − 1)−α−βeiπ(α+β)Ψ2,

Ψ2 = ψ(α+ β, 1 + 2α, ζ) − ψ(1 + α− β, 1 + 2α, e−iπζ)
Γ(1 + α− β)

Γ(α+ β)
e−2iπαzn.

(25)

Here ψ(a, c, z) is the confluent hypergeometric function of the second kind (see, e.g., [1]), and
O(1/n) stands for a 2× 2 matrix with the matrix elements of that order.

Applying the following property of the confluent hypergeometric functions:

ψ(a, c, z) =
Γ(1− c)

Γ(a− c+ 1)
φ(a, c, z) +

Γ(c− 1)

Γ(a)
z1−cφ(a− c+ 1, 2 − c, z). (26)

and Kummer’s transformation
φ(a, c, z) = ezφ(c− a, c,−z) (27)

to Ψ2 in (25) gives

Ψ2 =
Γ(1 + α− β)

Γ(1 + 2α)
e−iπ(α+β)znφ(1 + α− β, 1 + 2α,−ζ), (28)

which simplifies the expression for Q2. To simplify the formula for Q1, we use (26) and (27) again.
We obtain for the combination Ψ1 in Q1:

Ψ1 = ζ2α
Γ(1 + α+ β)

Γ(1 + 2α)
e−iπ(α+β)φ(1 + α+ β, 1 + 2α, ζ).

Now the expressions (21), (22) of the lemma for ζ ∈ I follow easily (noting also that χ2
n = 1+O(1/n)

by Theorem 1.8 in [10]). As qn(z), q̂n(z) are polynomials and the asymptotics of [10] hold uniformly
for z ∈ U0, the expressions for qn(z), q̂n(z) extend by continuity to the whole neighborhood U0

and hold there uniformly. The uniformity properties in α and β follow from the uniformity of the
asymptotics in [10]. The multiplier e−2πi(α−β) for qn(z) in C− ∩ U0 appears because of the cut of
za going through the neighborhood. �

Let Dn(ϕ) denote the Toeplitz determinant with symbol f(z, ϕ):

Dn(ϕ) = det(fj−k)
n−1
j,k=0 =

1

(2π)nn!

∫

Eϕ

. . .

∫

Eϕ

∏

1≤j<k≤n

|zj − zk|2
n∏

j=1

f(zj, ϕ)
dzj
izj

, (29)

where fk are the Fourier coefficients of f(z, ϕ):

fk =
1

2π

∫ 2π−ϕ

ϕ
f(eiθ, ϕ)e−ikθdθ, k = 0,±1,±2, . . .

Then the following lemma holds. (For α = β = 0 it reduces to the scaling limit used by Dyson
in his analysis of the sine-kernel determinant [14].)

Lemma 6. Let s > 0. Then

det(I −K(α,β)) = lim
n→∞

Dn

(
2s
n

)

Dn(0)
, (30)

7



where K(α,β) is the operator on L2(−s, s) with kernel (1).

Proof. Assume first that α, iβ ∈ R. Then, as follows, e.g., from (29), Dn(ϕ) > 0 for all n,
and therefore the polynomials qk(z), q̂k(z) exist for all k (as follows from their determinantal
representation: see, e.g., [7]). By a standard argument [24, 7], we first write the term

∏
j<k

|zj − zk|2

in (29) as a product of two Vandermonde determinants whose elements, by a suitable combination
of the rows, become the polynomials (19) qk−1(zj)/χk−1(0) and q̂k−1(z

−1
j )/χk−1(0), j, k = 1, . . . , n,

respectively. We obtain

∏

j<k

|zj − zk|2 =
n−1∏

j=0

χj(0)
−2 × det

(
n−1∑

ℓ=0

q̂ℓ(z
−1
j )qℓ(zk)

)

1≤j,k≤n

.

Using the well-known expression

Dn(0) =
n−1∏

j=0

χj(0)
−2,

we obtain
Dn(ϕ)

Dn(0)
=

1

(2π)nn!

∫

Eϕ

. . .

∫

Eϕ

det (Kn(zi, zj))1≤i,j≤n

dz1
iz1

. . .
dzn
izn

, (31)

where the kernel Kn is given by the expression:

Kn(z1, z2) =
√
f(z1, 0)f(z2, 0)

n−1∑

k=0

q̂k(z
−1
1 )qk(z2)

=
√
f(z1, 0)f(z2, 0)

(z2/z1)
nqn(z1)q̂n(z

−1
2 )− q̂n(z

−1
1 )qn(z2)

1− z2/z1
.

(32)

To obtain the second equality here, we used the Christoffel-Darboux formula: see, e.g., Lemma 2.3.
in [10]. Since for sufficiently large n, both the polynomials qn(z), q̂n(z) exist (see Lemma 5) and
Dn(0) 6= 0 (see (38) below) for complex α and β, equation (31) is extended to the general case of
α, β from α, iβ ∈ R by continuity and holds for all sufficiently large n for α and β in a compact
set.

As, e.g., in [7] Section 5.4., one shows that the r.h.s. of (31) can be written as the Fredholm
determinant det(I − Kn), where Kn is the operator with kernel (32) acting on L2(C \ Eϕ,

dz
2πiz );

that is
Dn(ϕ) = Dn(0) det(I −Kn)L2(C\Eϕ), (33)

where the arc C \ Eϕ is oriented counterclockwise.

We now show that the kernel (1) can be obtained as a scaling limit of (32). Setting z = e
2iu
n ,

u > 0, in (21), (22), we obtain

qn(e
2iu
n ) = nα−β Γ(1 + α+ β)

Γ(1 + 2α)
φ(1 + α+ β, 1 + 2α, 2iu)

[
1 +O

(
1

n

)]
, (34)

q̂n(e
− 2iu

n ) = nα+β Γ(1 + α− β)

Γ(1 + 2α)
φ(1 + α− β, 1 + 2α,−2iu)

[
1 +O

(
1

n

)]
. (35)

8



Setting now z = e2πi+
2iu
n , u < 0, in (21), (22), we obtain the same expressions as the r.h.s. of (34),

(35) for the values of the polynomials qn, q̂n at these points.

Let z(w) = e
2iw
n if w > 0, and z(w) = e2πi+

2iw
n if w < 0. Substituting the just found values of

the polynomials into (32), we obtain

lim
n→∞

Kn(z(u), z(v))
dz(v)

2πiz(v)
= ei(v−u)K(α,β)(u, v)dv, u, v ∈ R,

dz(v)

2πiz(v)
=
dv

πn
,

where K(α,β)(u, v) is given by (1).

Using the following standard recurrence relations for the confluent hypergeometric function

aφ(a+ 1, c, x) − (a− c+ 1)φ(a, c, x) − (c− 1)φ(a, c − 1, x) = 0,

cφ(a+ 1, c, x) − cφ(a, c, x) − xφ(a+ 1, c + 1, x) = 0,
(36)

we can rewrite (1) in the form (3).

Now using the estimates (34)–(35) for the polynomials qn(z), we see that for any s > 0 there
exists c(s) > 0 such that

∣∣∣∣∂
j
u∂

k
v

(
1

πn
Kn (z1, z2)− ei(v−u)K(α,β)(u, v)

)∣∣∣∣ ≤
c

n
, (37)

where u, v ∈ (−s, s), j, k = 0, 1. By similar arguments to those of the proof of Corollary 1.3 in [8],
the estimate (37) leads to (30). �

A well-known result on asymptotics of Toeplitz determinants with a single Fisher-Hartwig
singularity such that α± β 6= −1,−2, . . . (see, e.g., [17, 10]) reads in our case:

Dn(0) = nα
2−β2G(1 + α+ β)G(1 + α− β)

G(1 + 2α)
(1 + o(1)). (38)

This expansion is uniform [10] in compact subsets of the α-half-plane ℜα > −1/2 and of the β-plane
outside neighborhoods of the points α ± β = −1,−2, . . .. In the next sections we will obtain an
expression for Dn(2s/n) for large s, n, s < n.

3 Riemann-Hilbert problem and a differential identity

Suppose that the system of orthonormal polynomials satisfying (18) exists and consider the following
matrix-valued function:

Y (n)(z) =

(
χ−1
n pn(z) χ−1

n

∫
Cϕ

pn(ξ)
ξ−z

f(ξ)dξ
2πiξn

χn−1z
n−1p̂n−1(z

−1) χn−1

∫
Cϕ

p̂n−1(ξ−1)
ξ−z

f(ξ)dξ
2πiξ

)
, z /∈ Cϕ, (39)

where Cϕ is the arc Eϕ (14) but oriented clockwise. Denote z+ = eiϕ, z− = ei(2π−ϕ), the endpoints
of the arc.

It is easy to verify directly that Y (z) = Y (n)(z) solves the following Riemann-Hilbert problem:

9



(a) Y (z) is analytic for z ∈ C \ Cϕ.

(b) Y (z) has continuous boundary values Y+(z) as z approaches the inner points of the arc Cϕ

from the outside of the unit circle, and Y−(z), from the inside. They are related by the jump
condition

Y+(z) = Y−(z)

(
1 z−nf(z)
0 1

)
, z ∈ Cϕ \ {z+, z−}. (40)

(c) Y (z) has the following asymptotic behavior as z → ∞:

Y (z) =

(
I +O

(
1

z

))
znσ3 , where σ3 =

(
1 0
0 −1

)
. (41)

(d) Near the endpoints of the arc,

Y (z) = O

(
1 ln |z − z±|
1 ln |z − z±|

)
, (42)

as z → z±, z ∈ C \ Cϕ.

The solution (39) to the RHP (a)–(d) is unique. Note first that detY (z) = 1. Indeed, from
the conditions on Y (z), detY (z) is analytic across Cϕ, has all singularities removable, and tends to

1 as z → ∞. It is then identically 1 by Liouville’s theorem. Now if there is another solution Ỹ (z),
we easily obtain by Liouville’s theorem that Y (z)Ỹ (z)−1 ≡ 1.

A general fact that orthogonal polynomials can be so represented as a solution of a Riemann-
Hilbert problem was noticed for polynomials on the real line by Fokas, Its, Kitaev in [18], and
extended to polynomials on the circle in [3]. The point of this representation is that the Riemann-
Hilbert problem can be efficiently analyzed for large n by a steepest-descent method discovered
by Deift and Zhou [13] (and developed further in many subsequent works). This gives the large-n
asymptotics of Y (z), and therefore, by (39), the asymptotics of the orthogonal polynomials. We
defer the asymptotic analysis in the present case to Section 5. The rest of this section will be
devoted to a derivation of a differential identity for Dn(ϕ) in terms of the matrix elements of Y (z).

We start with the following auxiliary lemma (which, in fact, is true for any weight f(z) and a
jump contour Cϕ).

Lemma 7. Let the system of polynomials pk(z), p̂k(z), k = 0, . . . satisfying (18) exist. Fix n ≥ 1.
Then we have the following Christoffel-Darboux identity in terms of the function (39):

n−1∑

k=0

p̂k(z
−1)pk(z) = −z−n+1 lim

ζ→z
tr

(
dY (ζ)

dζ

(
0 1
0 0

)
Y (ζ)−1

)
, ζ /∈ Cϕ. (43)

Remark. The right hand side of (43) contains only the elements of the first column of Y which
are analytic.

Proof. Multiplying the recurrence relation (2.4) of Lemma 2.1. in [10] by z, and replacing n with
n− 1 gives (in the present notation)

zp̂n(z
−1) =

χn−1

χn
p̂n−1(z

−1) +
p̂n(0)

χn
z−n+1pn(z).

10



Substituting this expression into the r.h.s. of the Christoffel-Darboux identity (2.8) of [10]:

n−1∑

k=0

p̂k(z
−1)pk(z) = −npn(z)p̂n(z−1) + z

(
p̂n(z

−1)
d

dz
pn(z)− pn(z)

d

dz
p̂n(z

−1)

)
,

we obtain
n−1∑

k=0

p̂k(z
−1)pk(z) = −(n− 1)

χn−1

χn
z−1pn(z)p̂n−1(z

−1)

−χn−1

χn

[
pn(z)

d

dz
p̂n−1(z

−1)− p̂n−1(z
−1)

d

dz
pn(z)

]
.

(44)

Using the expressions Y11(z) = χ−1
n pn(z), Y21 = χn−1z

n−1p̂n−1(z
−1), and χn−1

d
dz p̂n−1(z

−1) =

−(n− 1)z−nY21(z) + z−n+1 d
dzY21(z), we obtain from (44)

n−1∑

k=0

p̂k(z
−1)pk(z) = z−n+1(Y21

d

dz
Y11 − Y11

d

dz
Y21), (45)

which proves the Lemma. �.

We are now ready to formulate the main result of this section.

Lemma 8. Let the polynomials pk(z), p̂k(z), k = N0, N0 + 1, . . ., satisfying (18) exist for some
N0 ≥ 0. Fix n > N0. Let z+, z− be the endpoints of the arc Cϕ: z+ = eiϕ, z− = ei(2π−ϕ). Then

1

i

d

dϕ
lnDn(ϕ) = trC0(C+ −C−) +

z+
z+ − 1

trC1C+ − z−
z− − 1

trC1C− +
z+ + z−
z+ − z−

trC+C−, (46)

where, in terms of the matrix (39),

C0 = −n+ α− β

2
Y (0)σ3Y

−1(0), C1 = αY (1)σ3Y
−1(1), (47)

and the following limits taken for z /∈ Cϕ exist and define C±:

C+ = lim
z→z+

z−nf(z)

2πi
Y (z)

(
0 1
0 0

)
Y −1(z), C− = − lim

z→z−

z−nf(z)

2πi
Y (z)

(
0 1
0 0

)
Y −1(z), (48)

with the extension of f given by (17). Moreover, the second derivative

d2

dϕ2
lnDn(ϕ) =

z+
(z+ − 1)2

trC1(C+ + C−) +
4

(z+ − z−)2
trC+C−. (49)

Proof. Assume first that α, iβ ∈ R. Then we can set N0 = 0 (cf. proof of Lemma 6). Starting with
the representation of a Toeplitz determinant in terms of the leading coefficients of the polynomials
pk:

Dn(ϕ) =

n−1∏

k=0

χ−2
k (ϕ), (50)
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we obtain, using first (18) and then integration by parts, that

d

dϕ
lnDn(ϕ) = −2

n−1∑

k=0

χ′
k(ϕ)

χk(ϕ)
= − 1

2π

∫ 2π−ϕ

ϕ

n−1∑

k=0

∂

∂ϕ

(
pk(z)p̂k(z

−1)
)
f(z, ϕ)dθ =

− 1

2π

n−1∑

k=0

[
pk(z−)p̂k(z

−1
− )f(z−, ϕ) + pk(z+)p̂k(z

−1
+ )f(z+, ϕ)

]
.

(51)

The previous lemma immediately gives

2π
d

dϕ
lnDn(ϕ) = z−n+1

+ f(z+, ϕ) lim
z→z+

tr

(
dY

dz
(z)

(
0 1
0 0

)
Y (z)−1

)

+z−n+1
− f(z−, ϕ) lim

z→z−
tr

(
dY

dz
(z)

(
0 1
0 0

)
Y (z)−1

)
.

(52)

In the next section we will show that the solution Y of the Riemann-Hilbert problem exists for all
n > N0 with N0 sufficiently large uniformly for α and β in a compact set. Therefore, the identity
(52) extends to the general complex α and β from α, iβ ∈ R by continuity.

One could already use the identity (52) for the purposes of the present paper. However,
following the philosophy of the Riemann-Hilbert-problem approach [9], we can simplify it further
to the form (46) which does not contain derivatives of Y . In order to do this, consider the function

Ỹ (z) = Y (z)ω(z)σ3/2, ω(z) = z−nf(z), (53)

where f outside the arc is given by (17). The function Ỹ (z) is easily seen to be the solution of the
problem:

(a) Ỹ (z) is analytic for z ∈ C \ (Cϕ ∪R+);

(b) On the contours Cϕ and R+:

Ỹ+(z) = Ỹ−(z)

(
1 1
0 1

)
, z ∈ Cϕ \ {z+, z−}; (54)

Ỹ+(z) = Ỹ−(z)

(
ω+

ω−

)σ3/2

, z ∈ (0,+∞); (55)

(c) Ỹ (z) =
(
I +O(1z )

)
z

nσ3
2 f(z)

σ3
2 , z → ∞.

Since ω+

ω−

is constant on (0,+∞), we see that

F̃ (z) ≡ dỸ

dz
Ỹ −1

has no jumps. Since

dω

dz
(z) =

(
−n
z
− α− β

z
+

2α

z − 1

)
ω(z),

d

dz
(ω(z)σ3) = σ3

ω′(z)
ω(z)

ω(z)σ3 , (56)
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we obtain from the condition (c) for Ỹ that F̃ (z) = O(1/z) as z → ∞. The Riemann-Hilbert
problem shows that this function can have isolated singularities at z+, z−, 0, and 1. First, we
obtain using (56):

F̃ (z) =
C0

z
+ T0(z), z → 0; F̃ (z) =

C1

z − 1
+ T1(z), z → 1, (57)

where C0, C1 are given by (47), and Tj(z) are Taylor series.

Now let U be a disk of a sufficiently small radius centered at z+. If Ŷ is defined by the
expression

Ỹ (z) = Ŷ (z)

(
1 1

2πi ln(z − z+)
0 1

)
, z ∈ U, (58)

then it follows from (54) that Ŷ (z) in U has no jump, and from (42), that its singularity at z+ is
removable. Thus Ŷ (z) is analytic in U . Using (58) we then obtain

F̃ (z) =
C+

z − z+
+ T3(z), z → z+; (59)

where T3(z) is a Taylor series and

C+ =
1

2πi
Ŷ (z+)

(
0 1
0 0

)
Ŷ −1(z+). (60)

Using the definitions (58) and (53), we obtain the expression (48) for C+. Note that the limit in
(48) exists as the logarithmic singularity of Y (z) at z+ cancels from that expression.

A similar analysis at z− gives that

F̃ (z) =
C−

z − z−
+ T4(z), z → z−; (61)

where T4(z) is again a Taylor series and C− is defined in (48).

Thus we conclude that F̃ (z) is a meromorphic function with first-order poles at 0, 1, z+, z−,
and since F̃ (z) = o(1) at infinity, we have identically in the complex plane

F̃ (z) =
C0

z
+

C1

z − 1
+

C+

z − z+
+

C−
z − z−

,

or recalling the definitions of F̃ (z) and Ỹ (z),

dỸ

dz
(z, ϕ) =

(
C0

z
+

C1

z − 1
+

C+

z − z+
+

C−
z − z−

)
Ỹ (z, ϕ), (62)

dY

dz
(z, ϕ) =

(
C0

z
+

C1

z − 1
+

C+

z − z+
+

C−
z − z−

)
Y (z, ϕ) − ω′(z)

2ω(z)
Y (z, ϕ)σ3. (63)

Substituting (63) into (52) and noticing that C2
± = 0 gives the identity (46).
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To obtain the identity for the second derivative, note first that as follows from the general
theory the function Ỹ (z) is differentiable w.r.t. ϕ. Similarly to our derivation of (62), we obtain

dỸ

dϕ
(z, ϕ) =

(−iz+C+

z − z+
+
iz−C−
z − z−

)
Ỹ (z, ϕ). (64)

Equating the derivatives d
dz

d
dϕ Ỹ (z, ϕ) = d

dϕ
d
dz Ỹ (z, ϕ), gives by (62) and (64) a compatibility con-

dition on C0, C1, C+, C−, and their derivatives w.r.t. ϕ. Equating the coefficients at 1/z in this
condition gives

d

dϕ
C0 + i[C0, C+ − C−] = 0, (65)

where [A,B] = AB −BA. Similarly the coefficients at 1/(z − 1), 1/(z − z+), 1/(z − z−) yield the
identities:

d

dϕ
C1 + i

[
C1,

z+
z+ − 1

C+ − z−
z− − 1

C−

]
= 0, (66)

d

dϕ
C+ − i[C0, C+]−

iz+
z+ − 1

[C1, C+] + i
z+ + z−
z+ − z−

[C+, C−] = 0, (67)

d

dϕ
C− + i[C0, C−] +

iz−
z− − 1

[C1, C−]− i
z+ + z−
z+ − z−

[C+, C−] = 0. (68)

Differentiating (46) w.r.t. ϕ and substituting the above identities for the derivatives of C0, C1,
C+, C− in the resulting expression gives the formula (49). In this calculation, it is convenient to
use the elementary algebraic identity:

tr [A,B]C = trA[B,C], (69)

which equals 0 if any two of A, B, C coincide. �

4 Expansion of Dn(ϕ) as ϕ → π.

For a fixed n ≥ 1 we will now obtain the expansion of Dn(ϕ) as ϕ→ π. We use the representation
(29) of Dn(ϕ) as a multiple integral:

Dn(ϕ) =
1

(2π)nn!

∫ 2π−ϕ

ϕ
· · ·
∫ 2π−ϕ

ϕ

∏

1≤j<k≤n

|eiθj − eiθk |2
n∏

j=1

|eiθj − 1|2αeiθjβe−iπβdθj.

For the analysis of Dn(ϕ) as ϕ → π, set ϕ = π − ε, ε > 0. Substituting θj = π + εxj in the
integrals, we obtain:

Dn(ϕ) =
εn

(2π)nn!

∫ 1

−1
· · ·
∫ 1

−1

∏

1≤j<k≤n

|eiεxj − eiεxk |2
n∏

j=1

|eiεxj + 1|2αeiεxjβdxj

=
εn

2
22αn

(2π)n
(
An +O(ε2)

)
, as ε→ 0, n fixed,

(70)
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where

An =
1

n!

∫ 1

−1
· · ·
∫ 1

−1

∏

1≤j<k≤n

(xj − xk)
2

n∏

j=1

dxj = 2n
2
n−1∏

k=0

k!3

(n + k)!
(71)

is a Selberg integral (or a product
∏n−1

k=0 κ
−2
k , where κk are the leading coefficients of the orthonor-

mal Legendre polynomials). The error term in (70) is of order ε2. Indeed, it is easy to see that the
expansion of the factors with the absolute value in the integrand in (70) gives an error of order ε2.
The factors eiεxjβ produce the following term of order ε:

iεβ

n!

∫ 1

−1
· · ·
∫ 1

−1

n∑

j=1

xj
∏

1≤j<k≤n

(xj − xk)
2

n∏

j=1

dxj ,

which is equal to 0, as the change of variables xj → −xj shows. Therefore, the error term in (70)
is indeed O(ε2).

The asymptotics of An as n→ ∞ are [28]:

lnAn = −n2 ln 2 + n ln(2π)− 1

4
lnn+

1

12
ln 2 + 3ζ ′(−1) + o(1), n→ ∞,

where ζ ′(z) is the derivative of Riemann’s zeta-function. Therefore,

lnDn(ϕ) = n2 ln(π−ϕ)+(2αn−n2) ln 2− 1

4
lnn+

1

12
ln 2+3ζ ′(−1)+δn+On(ε

2), ε = π−ϕ. (72)

Here δn depends only on n and δn → 0 as n→ ∞. The term On(ε
2) → 0, as ε→ 0, n fixed.

5 Asymptotic analysis of Y (z)

We now analyze the Riemann-Hilbert (RH) problem of Section 3 for Y (z) in the limit of large n.
The analysis is similar to that of [20] and [11]. Consider the function

Ψ(z) =
1

2γ

(
z + 1 +

√
(z − z+)(z − z−)

)
, γ = cos(ϕ/2), (73)

which conformally maps the outside of the arc Cϕ onto the outside of the unit circle. Note that
Ψ+Ψ− = z for z ∈ Cϕ \ {z+, z−}. Furthermore, we see as in [20] that

∣∣∣∣
z

Ψ(z)2

∣∣∣∣ < 1, for |z| 6= 1. (74)

We apply several transformations to the Riemann-Hilbert problem. First, set

T (z) = γ−nσ3Y (z)Ψ(z)−nσ3 . (75)

Then we obtain a RH problem which is normalized to I at infinity:

(a) T (z) is analytic for z ∈ C \ Cϕ.
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Figure 1: Conformal mapping.

(b) T (z) has L2 boundary values on Cϕ related by the condition

T+(z) = T−(z)

(
znΨ+(z)

−2n f(z)
0 znΨ−(z)−2n

)
, for z ∈ Cϕ \ {z+, z−}. (76)

(c)

T (z) = I +O

(
1

z

)
, as z → ∞. (77)

As in [11], we now go over to the variable λ given by the following linear-fractional transforma-
tion that maps the arc Cϕ onto the interval [−1, 1] with the point z = z− corresponding to λ = −1,
and z = z+, to λ = 1:

λ =
z + 1

z − 1
i tan

ϕ

2
, z =

λ+ i tan ϕ
2

λ− i tan ϕ
2

. (78)

The complementary to Cϕ arc of the unit circle is mapped to R \ [−1, 1]. The points z = 0, 1, ∞
are mapped to λ = −i tan ϕ

2 , ∞, i tan ϕ
2 , respectively. The cut of the function f(z), (0, 1)∪ (1,+∞)

becomes (−i tan ϕ
2 ,−i∞) ∪ (i∞, i tan ϕ

2 ) in the λ-plane (see Figure 1).

For the case of a varying arc when ϕ → 0 and ϕ → π, in the RH analysis, one would need to
consider contracting neighborhoods of the end points z± in the z-plane (cf. [20]). This could be
carried out. However, in the λ-plane, we can keep neighborhoods of the points λ = ±1 fixed, which
considerably simplifies the calculations below. Thus, going over to λ is not essential, but useful.

The problem for T corresponds to the following one in the λ-plane:

(a) T̃ (λ) is analytic for λ ∈ C \ [−1, 1].

(b) The boundary values of T̃ (λ) on (−1, 1) are related by the condition

T̃+(λ) = T̃−(λ)

(
Φ+(λ)

−2n f(z(λ))
0 Φ−(λ)−2n

)
, for λ ∈ (−1, 1), Φ(λ) =

Ψ(z(λ))

z(λ)1/2
. (79)
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Figure 2: Contour for Riemann-Hilbert problems.

(c)

T̃ (λ) = I +O

(
1

λ

)
, as λ→ ∞. (80)

The solution T̃ (λ) is related to T (z) by the expression:

T (z) = T0T̃ (λ(z)), T0 = T̃−1
(
i tan

ϕ

2

)
. (81)

For the function (17) we have in the λ-variable (we denote it f(λ) for simplicity):

f(λ) ≡ f(z(λ)) = e−iπβ
(
2 tan

ϕ

2

)2α (
λ− i tan

ϕ

2

)−α−β (
λ+ i tan

ϕ

2

)−α+β
. (82)

The function Φ(λ):

Φ(λ) =
λ+ i sin ϕ

2

√
1− λ2

cos ϕ
2 (λ

2 + tan2 ϕ
2 )

1/2
. (83)

Note that, because of the properties of Ψ(z) discussed above, we have

|Φ(λ)| > 1, λ /∈ R; |Φ±(λ)| = 1, λ ∈ [−1, 1]. (84)

Following the steepest-descent method of Deift and Zhou [13] we now change the RH problem
so that the oscillating behavior of the matrix elements in (79) is converted into the exponential
decay as n→ ∞.

Namely, consider the system of contours shown in Figure 2. Let I be the region bounded by
the curves Σ1 and Σ2 ≡ (−1, 1); region II is the one bounded by the curves Σ2 and Σ3; region III
is the rest of the complex plane. Define the function S(λ) as follows:
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in region I,

S(λ) = T̃ (λ)

(
1 0

−f(λ)−1Φ(λ)−2n 1

)
, (85)

in region II,

S(λ) = T̃ (λ)

(
1 0

f(λ)−1Φ(λ)−2n 1

)
, (86)

in region III,
S(λ) = T̃ (λ). (87)

The Riemann-Hilbert problem for S is then the following:

(a,b) S(λ) is analytic in C \ (Σ1 ∪ Σ2 ∪ Σ3) with the following jump conditions on the contours:

S+(λ) = S−(λ)

(
1 0

f(λ)−1Φ(λ)−2n 1

)
, λ ∈ Σ1 ∪ Σ3, (88)

S+(λ) = S−(λ)

(
0 f(λ)

−f(λ)−1 0

)
, λ ∈ Σ2 ≡ (−1, 1). (89)

(c) As λ→ ∞,

S(λ) = I +O

(
1

λ

)
. (90)

For S to have these properties, the contours Σ1,3 should not intersect the real axis and the
cuts (−i∞,−i tanϕ/2), (i tanϕ/2, i∞) of f(λ).

Below we will investigate the inequality in (84) in more detail and will show that Σ1,3 can
be chosen so that for ϕ satisfying 2s/n < ϕ < π, n > s, s > s0, the jump matrix on Σ1 ∪ Σ3 is
uniformly close to the identity up to an error of order e−εs0 , ε > 0, outside neighborhoods of the
endpoints of the arc. The error is small for s0 sufficiently large. This suggests that outside some
δ-neighborhoods Uδ, Ũδ of the endpoints, the function S can be approximated by a parametrix
which has a jump only on Σ2. The problem for this parametrix in the outside-the-neighborhoods
region is standard [7] and will be presented below. It is solved explicitly. Then we will consider the
neighborhoods Uδ, Ũδ, and construct (following [21]) local parametrices there in terms of Bessel
functions. We then match the outside and the local parametrices on the boundaries ∂Uδ, ∂Ũδ for
large n, which produces the asymptotic expansion of S in the inverse powers of n sin ϕ

2 . The latter
expression is large provided again that 2s/n < ϕ < π, n > s, s > s0, and s0 is sufficiently large.

5.1 Outside parametrix

The parametrix outside neighborhoods of λ = ±1 is the solution to the following RH problem:

(a) N(λ) is analytic for λ ∈ C \ [−1, 1],

(b) N(λ) has L2 boundary values N+, N− on (−1, 1) related as follows:

N+(λ) = N−(λ)

(
0 f(λ)

−f(λ)−1 0

)
, λ ∈ (−1, 1), (91)
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(c)

N(λ) = I +O

(
1

λ

)
, as λ→ ∞. (92)

As is easy to verify, this problem has the following solution:

N(λ) =
1

2
(D∞)σ3

(
a+ a−1 −i(a− a−1)
i(a− a−1) a+ a−1

)
D(λ)−σ3 , a(λ) =

(
λ− 1

λ+ 1

)1/4

, (93)

where the branch of the root is chosen so that a(λ) → 1 as λ→ ∞. The Szegő function D(λ) is the
solution to the following RH conditions: a) D(λ) is analytic in C \ [−1, 1]; b) D+(λ)D−(λ) = f(λ)
for λ ∈ (−1, 1); c) D(λ) → const as λ→ ∞. We have

D(λ) = exp

(√
1− λ2

2πi

∫ 1

−1

ln f(η)√
1− η2

dη

η − λ

)
, (94)

with the integration over the upper (“+”) side of the interval (−1, 1): we choose
√
x > 0 for x > 0

and 0 < arg(λ± 1) < 2π. Finally,

D∞ = lim
λ→∞

D(λ) = exp

(
1

2π

∫ 1

−1

ln f(η)dη√
1− η2

)
. (95)

In what follows, we will need an expansion of D(λ) at the endpoints ±1. The integral in (94)
can be written as half the integral around a loop encircling [−1, 1]. Deforming the loop, we obtain

∫ 1

−1

ln f(η)√
1− η2

dη

η − λ
=

πi

(λ2 − 1)1/2
i ln f(λ)+

πi lim
R→∞

[
(α+ β)

∫ i tan ϕ

2

iR

idη

(η2 − 1)1/2
1

η − λ
+ (α− β)

∫ −i tan ϕ

2

−iR

idη

(η2 − 1)1/2
1

η − λ

]
, (96)

where −i(x2 − 1)1/2 =
√
1− x2 > 0 on the upper side of (−1, 1). Expanding 1

η−λ near λ = ±1, we
obtain:

∫ i tan ϕ

2

iR

idη

(η2 − 1)1/2
1

η − λ
= ±i− e±iϕ/2 +O(λ∓ 1), λ→ ±1; (97)

∫ −i tan ϕ

2

−iR

idη

(η2 − 1)1/2
1

η − λ
= ±i+ e∓iϕ/2 +O(λ∓ 1), λ→ ±1. (98)

Substituting (97), (98) into (96), we obtain for (94)

D(λ) = f(1)1/2 exp

(
D1(1)

(
λ− 1

2

)1/2

+D2(1)

(
λ− 1

2

)3/2

+O (λ− 1)5/2
)
, λ→ 1,

D(λ) = f(−1)1/2 exp

(
D1(−1)

(
λ+ 1

2eiπ

)1/2

+D2(−1)

(
λ+ 1

2eiπ

)3/2

+O (λ+ 1)5/2
)
,

λ→ −1,

(99)
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where
D1(±1) = 2

(
α
(
1− sin

ϕ

2

)
± iβ cos

ϕ

2

)
, (100)

and the exact value of D2(±1) will not be used as it cancels from the final expressions below. It is
clear from the construction that this expansion is uniform in ϕ as well as in α, β in a compact set.

5.2 Local parametrices

Let Uδ and Ũδ denote the (nonintersecting) δ-neighborhoods of the points 1 and −1, respectively:
see Figure 2. We choose δ to be sufficiently small, see below.

We will now write down essentially known (see [9, 21, 20]) parametrices P , and P̃ in Uδ and Ũδ,
respectively. The parametrices have the same jumps as S inside these neighborhoods and match
N on the boundaries ∂Uδ and ∂Ũδ to the leading order.

Consider the function
ω(λ) = ln2Φ(λ),

which, for a sufficiently small δ, is analytic inside Uδ and maps it conformally onto a neighborhood
of zero. It has the following expansion at 1:

ω(λ) = 2u sin2
ϕ

2

{
1− 2

3

[
cosϕ+

5

4

]
u+O(u2)

}
, u = λ− 1, λ ∈ Uδ, (101)

and √
ω =

√
2u1/2 sin

ϕ

2
(1 +O(u)), u = λ− 1.

This expansion is uniform in ϕ.

Consider the following mapping of Uδ:

ζ = n2ω(λ), λ ∈ Uδ. (102)

For our analysis below, we need |ζ| to be uniformly large in ϕ and λ on the boundary ∂Uδ.
We see from (101) that this is indeed so if ϕ satisfies the condition: 2s

n < ϕ < π, n > s, s > s0,
with s0 sufficiently large.

The local parametrix in Uδ is given by the following expression (cf. [9, 21, 20]):

P (λ) = E(λ)Q(n2ω(λ))e−n
√

ω(λ)σ3f(λ)−σ3/2, λ ∈ Uδ, (103)

where

E(λ) =
1√
2
N(λ)f(λ)σ3/2

(
1 −i
−i 1

)
(πn

√
ω(λ))σ3/2, (104)

and the function Q(ζ) is expressed in terms of modified Bessel and Hankel functions:

1) in the intersection of region I in the λ plane and Uδ

Q(ζ) =
1

2

(
H

(1)
0 (e−iπ/2ζ1/2) H

(2)
0 (e−iπ/2ζ1/2)

πζ1/2
(
H

(1)
0

)′
(e−iπ/2ζ1/2) πζ1/2

(
H

(2)
0

)′
(e−iπ/2ζ1/2)

)
, (105)
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2) region II and Uδ

Q(ζ) =
1

2

(
H

(2)
0 (eiπ/2ζ1/2) −H(1)

0 (eiπ/2ζ1/2)

−πζ1/2
(
H

(2)
0

)′
(eiπ/2ζ1/2) πζ1/2

(
H

(1)
0

)′
(eiπ/2ζ1/2)

)
, (106)

3) region III and Uδ

Q(ζ) =

(
I0(ζ

1/2) i
πK0(ζ

1/2)

πiζ1/2I ′0(ζ
1/2) −ζ1/2K ′

0(ζ
1/2)

)
, (107)

where −π < arg(ζ) < π.

Using the asymptotic expansions of Bessel and Hankel functions for a large argument, one
obtains uniformly on ∂Uδ :

P (λ)N(λ)−1 = I +N(λ)f(λ)σ3/2

{
1

8n
√
ω(λ)

(
−1 −2i
−2i 1

)
− 3

27n2ω(λ)

(
1 −4i
4i 1

)

+O

([
n sin

ϕ

2

]−3
)}

f(λ)−σ3/2N−1(λ) = I +∆1 +∆2 +O

([
n sin

ϕ

2

]−3
)
, λ ∈ ∂Uδ,

(108)

where ∆1 and ∆2 denote the terms with n
√
ω(z) and n2ω(z), respectively. (Note that ∆1(λ) and

∆2(λ) are analytic functions in Uδ \ {1} with poles of order 1 at λ = 1.) This is an expansion in
the inverse powers of n sin ϕ

2 , and it holds uniformly for 2s
n < ϕ < π, n > s, s > s0, and for λ on

the boundary ∂Uδ.

Similarly, we define a conformal mapping for the neighborhood Ũδ:

ω(λ) = ln2(−Φ(λ)),

so that we have

ω(λ) = −2u sin2
ϕ

2

{
1 +

2

3

[
cosϕ+

5

4

]
u+O(u2)

}
, u = λ+ 1, λ ∈ Ũδ, (109)

and √
ω = −i

√
2u1/2 sin

ϕ

2
(1 +O(u)), u = λ+ 1.

We have for the parametrix in Ũδ:

P̃ (λ) = Ẽ(λ)σ3Q(n2ω(λ))σ3e
−n

√
ω(λ)σ3f(λ)−σ3/2, λ ∈ Ũδ,

with

Ẽ(λ) =
1√
2
N(λ)f(λ)σ3/2

(
1 i
i 1

)
(πn

√
ω(λ))σ3/2.

Therefore,

P̃ (λ)N(λ)−1 = I +N(λ)f(λ)σ3/2

{
1

8n
√
ω(λ)

(
−1 2i
2i 1

)
− 3

27n2ω(λ)

(
1 4i

−4i 1

)

+O

([
n sin

ϕ

2

]−3
)}

f(λ)−σ3/2N−1(λ) = I +∆1 +∆2 +O

([
n sin

ϕ

2

]−3
)
, λ ∈ ∂Ũδ,

(110)

uniformly in λ and in ϕ for 2s
n < ϕ < π, n > s, s > s0. Similarly to the situation for Uδ, ∆1(λ),

∆2(λ) in Ũδ \ {−1} are analytic functions with poles of order 1 at λ = −1.
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5.3 Final transformation

Let

R(λ) = S(λ)N−1(λ), λ ∈ C \ (Uδ ∪ Ũδ ∪ Σ1,2,3),

R(λ) = S(λ)P−1(λ), λ ∈ Uδ \ Σ1,2,3,

R(λ) = S(λ)P̃−1(λ), λ ∈ Ũδ \ Σ1,2,3.

(111)

Furthermore, set
R̃ ≡ D−σ3

∞ RDσ3
∞ . (112)

It is easy to see that this function has jumps only on ∂Uδ, ∂Ũδ, and parts of Σ1, and Σ3 lying
outside of the neighborhoods Uδ, Ũδ (we denote these parts Σout

1,3 ). Namely,

R̃+(λ) = R̃−(λ)D−σ3
∞ N(λ)

(
1 0

f(λ)−1Φ(λ)−2n 1

)
N(λ)−1Dσ3

∞ , λ ∈ Σout
1,3 ,

R̃+(λ) = R̃−(λ)D−σ3
∞ P (λ)N(λ)−1Dσ3

∞ , λ ∈ ∂Uδ,

R̃+(λ) = R̃−(λ)D−σ3
∞ P̃ (λ)N(λ)−1Dσ3

∞ , λ ∈ ∂Ũδ.

(113)

The jump matrices for R̃ on ∂Uδ and ∂Ũδ have the form

I +O(ρ−1), ρ = n sin
ϕ

2
,

uniformly in λ (as well as in α, β in compact sets) and in ϕ provided

2s

n
< ϕ < π, n > s, s > s0. (114)

(A more detailed expansion is given by (108) and (110).)

Let us now estimate the jump matrix on Σout
1,3 for ϕ in the range (114) with s0 sufficiently large.

Below ε′ will stand for various positive constants independent of ϕ, n, and λ. Denote x = ℜλ,
y = ℑλ, i.e., λ = x + iy. Choose Σout

1 so that y is small, however, y > δ′ sin ϕ
2 with some fixed

δ′ > 0. Multiplying (83) with its complex conjugate and expanding in y gives:

|Φ(λ)|2 = 1 +
2y sin ϕ

2 +O(y2)√
1− x2(sin2 ϕ

2 + x2 cos2 ϕ
2 )

λ ∈ Σout
1 . (115)

Let |x| > ε for some ε > 0. Then we immediately obtain from (115):

|Φ(λ)|2 > 1 + ε′ sin
ϕ

2
,

for λ ∈ Σout
1 , and ϕ in the range (114). Now let |x| ≤ ε. We parametrise x as follows x = r sin ϕ

2 .
Therefore 0 < r ≤ ε/ sin ϕ

2 . If r > 1, we have

|Φ(λ)|2 > 1 +
rε′

1 + r2
> 1 +

ε′

r
> 1 + ε′ sin

ϕ

2
.
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On the other hand, if r ≤ 1, we have, recalling our condition y > δ′ sin ϕ
2 ,

|Φ(λ)|2 > 1 +
δ′ε′

1 + r2
.

Thus we conclude that the estimate |Φ(λ)|2 > 1 + ε′ sin ϕ
2 holds uniformly for λ ∈ Σout

1 , and ϕ in
the range (114). A similar estimate holds on Σout

3 . As N and f are bounded on λ ∈ Σout
1,3 and,

in particular, at λ = 0, these estimates immediately imply that the jump matrix on Σout
1,3 can be

written as
I +O(e−ε′ρ), ρ = n sin

ϕ

2
, (116)

uniformly for λ ∈ Σout
1,3 , and ϕ in the range (114).

The above estimates for the jump matrices and the standard analysis of the R-RH problem
(see [12]) imply that the R-RH problem is solvable for large s0 and the solution has the form of the
series:

R̃(λ) = I +

k−1∑

j=1

R̃j(λ) +O(ρ−k), R̃j(λ) = O(ρ−j), (117)

uniformly for ϕ in the range (114), for α in a compact subset of the α-half-plane ℜα > −1/2, for
β in a compact subset of the β-plane, and for all λ.

Explicit expressions for R̃k are obtained by collecting terms of the same order in the jump
relations. Thus by (108) we have, in particular, that R̃1, R̃2 satisfy the following RH problems.
The functions R̃1, R̃2 are analytic in C \ (∂Uδ ∪ ∂Ũδ);

R̃1,+(λ)− R̃1,−(λ) = D−σ3
∞ ∆1(λ)Dσ3

∞ ,

R̃2,+(λ)− R̃2,−(λ) = R̃1,−(λ)D−σ3
∞ ∆1(λ)Dσ3

∞ +D−σ3
∞ ∆2(λ)Dσ3

∞ , λ ∈ ∂Uδ ∪ ∂Ũδ;
(118)

and R̃1 → 0, R̃2 → 0 as λ→ ∞.

As ∆1(λ) is analytic in neighborhoods of the endpoints except for the simple poles at ±1, we
have an expansion

D−σ3
∞ ∆1(λ)Dσ3

∞ =
A(1)

λ− 1
+A(2) +A(3)(λ− 1) +O((λ− 1)2), as λ→ 1;

D−σ3
∞ ∆1(λ)Dσ3

∞ =
B(1)

λ+ 1
+B(2) +B(3)(λ+ 1) +O((λ+ 1)2), as λ→ −1,

(119)

where A and B are constant matrices. It is now easy to verify that the RH problem for R̃1 has the
following solution:

R̃1(λ) =

{
A(1)

λ−1 + B(1)

λ+1 , for λ ∈ C \ Uδ ∪ Ũδ ,
A(1)

λ−1 + B(1)

λ+1 −D−σ3∞ ∆1(λ)Dσ3∞ , for λ ∈ Uδ ∪ Ũδ .
(120)

For the function ∆2 we can write similarly:

D−σ3
∞ ∆2(λ)Dσ3

∞ =
C(1)

λ− 1
+ C(2) +O(λ− 1), as λ→ 1;

D−σ3
∞ ∆2(λ)Dσ3

∞ =
D(1)

λ+ 1
+D(2) +O(λ+ 1), as λ→ −1,

(121)
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where C and D are constant matrices. A similar expression to (120) can now be written for R2.
However, we will need it only in the limit λ→ ±1. We then obtain:

R̃2(1) = −1

4
[A(1), B(1)]− 1

2
(B(2)B(1) +B(1)A(2) −D(1)) +A(2)2 +A(3)A(1) − C(2)

R̃2(−1) =
1

4
[A(1), B(1)] +

1

2
(A(2)A(1) +A(1)B(2) − C(1)) +B(2)2 +B(3)B(1) −D(2),

(122)

where [A,B] = AB −BA. We also obtain from (120),

R̃1(1) =
1

2
B(1) −A(2), R̃1(−1) = −1

2
A(1) −B(2). (123)

5.4 Asymptotic form of the differential identity (49)

We will now compute asymptotics of the r.h.s. of (49). First, we determine the components of the
matrices A(j), . . . ,D(j) we need for the calculation below. First, the expansions for ω(λ) in Section
5.2 can be written as

1√
ω(λ)

=
1

(2u)1/2 sin ϕ
2

(1 + ω1+u+ ω2+u
2 +O(u3)), u = λ− 1,

1√
ω(λ)

=
1

−i(2u)1/2 sin ϕ
2

(1 + ω1−u+ ω2−u
2 +O(u3)), u = λ+ 1,

with

ω1± = ±1

3

(
cosϕ+

5

4

)
.

(The explicit expression for ω2± will not be needed below.) Therefore, expanding N(λ) we obtain
from (108)

A(1) =
1

16ρ

(
1 −i
−i −1

)
, A(2) =

1

16ρ

[
ω1+

(
1 −i
−i −1

)
+ Γ0

]
,

Γ0 =
1

2

(
γ0 −i(6 + γ0 − 8D1+)

−i(6 + γ0 + 8D1+) −γ0

) (124)

with

ρ = n sin
ϕ

2
, γ0 = −5

2
+ 4D2

1+.

Here D1+ is given by (100). Furthermore,

A(3) =
1

16ρ

[
ω2+

(
1 −i
−i −1

)
+ ω1+Γ0 + Γ1

]
,

Γ1 =
1

4

(
γ1 −i(γ2 − 8D2+ − 16

3 D3
1+)

−i(γ2 + 8D2+ + 16
3 D3

1+) −γ1

)
,

(125)

with

γ1 =
11

8
− 2D2

1+ + 8D1+D2+ +
4

3
D4

1+, γ2 = γ1 + 8D2
1+ − 3.

We obtain the matrices B(j), j = 1, 2, 3, by taking the matrices A(j), j = 1, 2, 3, and replacing ρ
with −ρ; i with −i; ω1,2+ with ω1,2−; D1,2+ with D1,2−; and the prefactor 1

2 of Γ0 with −1
2 .
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The components of C are also obtained from (108). For C (and similarly for D) we will only
need the following combination of matrix elements:

C
(1)
21 − C

(1)
12 =

−3i

25ρ2
, C

(2)
21 − C

(2)
12 =

−3i

25ρ2
(2ω1+ +D2

1+). (126)

Similarly,

D
(1)
21 −D

(1)
12 =

−3i

25ρ2
, D

(2)
21 −D

(2)
12 =

3i

25ρ2
(−2ω1− +D2

1−). (127)

We now need to evaluate the asymptotics of trC+C− and trC1(C+ +C−) from (49). Tracing
back the transformations of the RH problem, we see that Y (z) for z close to z+, so that λ is close
to 1 in the region III, is given by

Y (z) = γnσ3T0RPΨ
nσ3 , P (λ) = E(λ)Q(n2ω(λ))e−n

√
ω(λ)σ3f(λ)−σ3/2,

where E is given by (104), and Q by (107). Substituting this into (48) and expanding Bessel
functions at ζ = 0, we obtain:

C+ =
ρ

2i
γnσ3T0Dσ3

∞ R̃(1)

(
i 1
1 −i

)
R̃(1)−1D−σ3

∞ T−1
0 γ−nσ3 . (128)

Here we can write

R̃(1) = I + R̃1(1) + R̃2(1) +O(ρ−3), R̃(1)−1 = I − R̃1(1) − R̃2(1) + R̃2
1(1) +O(ρ−3).

For definitiveness, we assume that the roots in (93) are chosen with the arguments from 0 to 2π,
and that the point λ corresponding to the limit in (48) approaches λ = 1 from above.

For C− we similarly have

C− =
ρ

−2i
γnσ3T0Dσ3

∞ R̃(−1)

(
−i 1
1 i

)
R̃(−1)−1D−σ3

∞ T−1
0 γ−nσ3 . (129)

Therefore, we now easily obtain

trC+C− = ρ2
[
1 + t1 + t2 +O

(
1

ρ3

)]
, (130)

where (recall first (69), and then (123) and the above expressions for A, B)

t1 = i(R̃1, 21(1)− R̃1, 12(1) − [R̃1, 21(−1)− R̃1, 12(−1)]) = −2α

ρ

(
1− sin

ϕ

2

)
. (131)

The expression for t2 needs more work. First, we obtain it in the form

t2 = i(R̃2, 21(1)− R̃2, 12(1)− [R̃2, 21(−1)− R̃2, 12(−1)]) + Ω, (132)

where

4Ω = tr

{
R̃1(1)

[
R̃1(1),

(
−i 1
1 i

)](
i 1
1 −i

)}

+tr

{
R̃1(−1)

[
R̃1(−1),

(
i 1
1 −i

)](
−i 1
1 i

)}
+ tr

{[
R̃1(1),

(
i 1
1 −i

)][
R̃1(−1),

(
−i 1
1 i

)]}
.
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Denoting the matrix elements

R̃1(1) =

(
a ib
ic −a

)
, R̃1(−1) =

(
â −ib̂

−iĉ −â

)

we obtain after a simple algebraic computation that

Ω =
1

4
(b− c+ b̂− ĉ)2 + (a− â)2 − (c+ ĉ)(b+ b̂)− a(b̂+ ĉ)− â(b+ c).

Using again (123) and the above expressions for A, B, we deduce from this formula that

Ω =
−1

27ρ2
(4(D2

1+ +D2
1−) + 2(ω1+ − ω1−) + 5− 16(D1+ +D1−)

2). (133)

On the other hand, we obtain from (122) and the above expressions for A, B, C, D:

i(R̃2, 21(1)−R̃2, 12(1)−[R̃2, 21(−1)−R̃2, 12(−1)]) =
1

27ρ2
(9−22(ω1+−ω1−)−12(D2

1++D2
1−)). (134)

Thus, substituting (133), (134) into (132) and then using the expressions for ω1±, D2
1+, we obtain

t2 =
1

25ρ2
(1− 6(ω1+ − ω1−) + 8D1+D1−) =

1

ρ2

(
α2
(
1− sin

ϕ

2

)2
+ β2 cos2

ϕ

2
− 1

4
cos2

ϕ

2

)
. (135)

Collecting together (131), (135), we finally have

trC+C− = n2 sin2
ϕ

2
− 2αn sin

ϕ

2

(
1− sin

ϕ

2

)
− 1

4
cos2

ϕ

2
+ α2

(
1− sin

ϕ

2

)2
+ β2 cos2

ϕ

2
+O(ρ−1).

(136)

We now turn our attention to the quantity trC1(C+ + C−). Recall that z = 1 corresponds to
λ = ∞. We, therefore, immediately obtain

C1 = αY (1)σ3Y (1)−1 = αγnσ3T0σ3T
−1
0 γ−nσ3 . (137)

In C++C− we now need to take into account only the terms of order no less than R̃1. Using (128),
(129), and at the last step (131), we obtain

trC1(C+ + C−) = αn sin
ϕ

2
(2 + t1) +O(ρ−1) = 2αn sin

ϕ

2
− 2α2

(
1− sin

ϕ

2

)
+O(ρ−1). (138)

Substituting this expression and (136) into (49), we finally have

Proposition 9 As n→ ∞,

d2

dϕ2
lnDn(ϕ) = − n2

4 cos2 ϕ
2

− (αn + α2)
1− sin ϕ

2

2 cos2 ϕ
2

+
1 + 4(α2 − β2)

16 sin2 ϕ
2

+O

(
1

n sin ϕ
2

)
, (139)

uniformly for 2s
n < ϕ < π, n > s, s > s0, for some s0 > 0, and uniformly in compact subsets of the

half-plane ℜα > −1/2 and of the plane β ∈ C.
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6 Proof of Theorem 1

The asymptotic evaluation of the Toeplitz determinant Dn(ϕ) is based on the integration of the
differential identity (139) from ϕ to π − ε with a small positive ε. We have:

(π − ε− ϕ)(lnDn)
′|π−ε − lnDn(π − ε) + lnDn(ϕ) =

∫ π−ε

ϕ
dθ

∫ π−ε

θ
I(φ)dφ, (140)

where I(ϕ) is the r.h.s. of (139). Fix n. Calculating the integral on the r.h.s. of (140), substituting
for lnDn(π−ε) the expansion (72) (and for (lnDn)

′|π−ε its derivative), and taking the limit ε→ 0,
we obtain

lnDn(ϕ) = n2 ln cos
ϕ

2
+ 2(αn + α2) ln

(
1 + sin

ϕ

2

)
− 1

4
lnn+

1

12
ln 2 + 3ζ ′(−1)

−2α2 ln 2−
(
1

4
− β2 + α2

)
ln sin

ϕ

2
+O

(
1

n sin ϕ
2

)
+ δn.

(141)

uniformly for 2s
n < ϕ < π, n > s, s > s0, and where δn → 0 as n → ∞. This expansion is uniform

in compact subsets of the α-half-plane ℜα > −1/2 and of the β-plane. Now substituting (38) and
(141) into (30) and taking the limit n→ ∞, we obtain (8). �

7 Bessel kernel. Proof of Theorem 4.

In this section we set β = 0. The weight (15) is then

f(z, ϕ) = |z − 1|2α, z = eiθ, ϕ ≤ θ ≤ 2π − ϕ, (142)

and f(z, ϕ) = 0 on the rest of the unit circle. Note that f is an even function of the angle θ. Let

ω(x, ϕ) =
f(eiθ, ϕ)

| sin θ| = 2α
(1− x)α√
1− x2

, x = cos θ. (143)

This function is supported on [−1, cosϕ]. Consider the Hankel determinant with symbol ω(x, ϕ):

DH
n (ϕ) = det




cosϕ∫

−1

xj+kω(x, ϕ)dx




n−1

j,k=0

=
1

n!

∫ cosϕ

−1
· · ·
∫ cosϕ

−1

∏

1≤j<k≤n

(xj − xk)
2

n∏

j=1

ω(xj , ϕ)dxj .

(144)

There holds the following

Lemma 10 Let K
(a)
Bessel2 be the operator acting on L2(0, (2s)2), with kernel (11). Then

det(I −K
(α−1/2)
Bessel2 )L2(0,(2s)2) = lim

n→∞
DH

n (2sn )

DH
n (0)

. (145)
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Proof. First, as in the proof of the formula (33) of Lemma 6, one obtains that

DH
n (ϕ) = DH

n (0) det(I − K̃n)L2(cosϕ,1) (146)

where K̃n is the operator acting on L2((cosϕ, 1), dx) with kernel

K̃n(x, y) =
√
ω(x)ω(y)

κn−1

κn

Pn(x)Pn−1(y)− Pn−1(x)Pn(y)

x− y
, (147)

where Pk(x) = κkx
k + · · ·, k = N0, N0+1, . . ., with some N0 ≥ 0, are the polynomials orthonormal

on [−1, 1] w.r.t. w(x, 0):

∫ 1

−1
Pk(x)x

mω(x, 0)dx = κ
−1
k δkm, m = 0, 1, . . . , k.

The choice of the function (143) implies the following Szegő relations between Pk(x) and the
polynomials qk(z) = χkz

k + · · ·, given by (19) (see Lemma 2.5. of [10]):

Pk(x) =
1√

2π(1 + q2k(0)/χ2k)
(z−kq2k(z) + zkq2k(z

−1)), (148)

and for the leading coefficients,

κk = 2kχ2k

√
1 + q2k(0)/χ2k

2π
.

Note that q̂n(z) = qn(z) as in our case f(eiθ) = f(e−iθ).

Similarly to the proof of Lemma 6, we now set x = cos(2u/n), y = cos(2v/n), fix 0 < u < s and
0 < v < s and consider the limit of K̃n(x, y) as n→ ∞. We will now show that this double-scaling

limit gives the kernel of K
(α−1/2)
Bessel2 .

First, it follows from Theorem 1.8. of [10] that

q2n(0)

χ2n
= O

(
1

n

)
,

κn−1

κn
=

1

2
+O

(
1

n

)
.

Moreover, we have,

x = cos

(
2u

n

)
= 1− 2u2

n2
+ o(n−2), z(x) = e2iu/n,

and similarly for y = cos(2v/n). Therefore, by (143),

√
ω(x, 0)ω(y, 0) =

(
2

n

)2α−1

(uv)α−1/2(1 +O(n−1)). (149)
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Moreover, taking z1 = e2iu/n ∈ C+ and using the expression (21) of Lemma 5, we have

q2(n+k)(z1) = (2n)α
Γ(1 + α)

Γ(1 + 2α)
φ(1 + α, 1 + 2α, 4iu(1 + k/n))(1 +O(1/n))

= (2n)α
Γ(1 + α)

Γ(1 + 2α)

[
φ(1 + α, 1 + 2α, 4iu) +

4iuk

n
φ′(1 + α, 1 + 2α, 4iu)

]
(1 +O(1/n)),

k = 0,−1.

Substituting this into (148), we then obtain an expression for Pn(x)Pn−1(y) − Pn−1(x)Pn(y) in
terms of the confluent hypergeometric functions and their derivatives at ±4iu, ±4iv. Removing
the derivatives with the help of the standard relation

φ′(a, c, x) =
a

x
(φ(a+ 1, c, x) − φ(a, c, x))

reducing then, by Kummer’s transformation (27), the terms with the arguments −4iu, −4iv to
functions of the arguments 4iu, 4iv, and making use of the following standard recurrence relation

(c− a)φ(a− 1, c, x) + (2a− c+ x)φ(a, c, x) − aφ(a+ 1, c, x) = 0,

we obtain

Pn(x1)Pn−1(x2)− Pn−1(x1)Pn(x2) =
i

π

Γ2(1 + α)

Γ2(1 + 2α)
(2n)2αe−2i(u+v) 1

n

(
1 +O

(
1

n

))

×{(u+ v)[φ(1 + α, 1 + 2α, 4iu)φ(α, 1 + 2α, 4iv) − φ(1 + α, 1 + 2α, 4iv)φ(α, 1 + 2α, 4iu)]

+(u− v) [φ(1 + α, 1 + 2α, 4iu)φ(1 + α, 1 + 2α, 4iv) − φ(α, 1 + 2α, 4iu)φ(α, 1 + 2α, 4iv)]} .

(150)

Thus, in the difference Pn(x)Pn−1(y)−Pn−1(x)Pn(y) the main terms in n dropped out leaving the
ones of order 1/n. Moreover, we did not need to know expressions for the terms O(1/n) in Lemma
5, as their contribution to the terms of order 1/n dropped out as well.

We now employ the recurrence relations (36) to express φ(α, 1 + 2α, x) and φ(1+α, 1 + 2α, x)
in terms of φ(α, 2α, x) and φ(1 + α, 2 + 2α, x) and then use the connection with Bessel functions
(4). We obtain recalling (149):

K̃n(x, y) =
n2

2

[uJα+1/2(2u)Jα−1/2(2v) − vJα+1/2(2v)Jα−1/2(2u)]

u2 − v2

(
1 +O

(
1

n

))
,

which leads to

lim
n→∞

(
− 1

2n2

)
K̃n(x, y) = −K(α−1/2)

Bessel2 ((2u)
2, (2v)2), (151)

where −K(α−1/2)
Besssel2 acts on ((2s)2, 0) (note the reversed direction) and

K
(a)
Bessel2(x, y) =

√
xJa+1(

√
x)Ja(

√
y)−√

yJa+1(
√
y)Ja(

√
x)

2(x− y)
, a = α− 1/2, (152)

which, by the relation zJa+1(z) = aJa(z)− zJ ′
a(z), is equivalent to (11).

The convergence of the determinants follows from the convergence of the kernels as in Lemma
6, and we obtain the statement (145) from (146). �
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We now evaluate the r.h.s. of (145). First, note that DH
n (0) is a Hankel determinant whose

symbol ω(x, 0) (143) is supported on [−1, 1] and has two Fisher Hartwig singularities at x = −1
and x = 1. Therefore, the asymptotics of DH

n (0) are given by a particular case of Theorem 1.20
from [10]. Namely,

DH
n (0) =

πn+α/2G(1/2)

G(1/2 + α)
2−(n−1)2−α2

2
+ 3α

2 n
α2

−α
2 (1 + o(1)) , n→ ∞, (153)

uniformly in compact subsets of the half-plane ℜα > −1/2.

In order to evaluate DH
n (2s/n), we use a connection formula between Hankel and Toeplitz

determinants given by Theorem 2.6 in [10]. The formula is written in terms of the matrix elements
of Y (2n)(z) (39) and for ϕ = 2s/n as follows:

(
DH

n

(
2s

n

))2

=
π2n

22(n−1)2
(1 + Y

(2n)
11 (0))2

Y
(2n)
11 (1)Y

(2n)
11 (−1)

D2n

(
2s

n

)
. (154)

The asymptotic expression for the Toeplitz determinant D2n

(
2s
n

)
is given (uniformly in com-

pact subsets of the half-plane ℜα > −1/2) by (141) with n replaced by 2n and with ϕ set to be
2s/n:

lnD2n

(
2s

n

)
= −2s2 + 4αs −

(
α2 +

1

4

)
ln s+ α2 lnn−

(
2α2 +

1

4

)
ln 2

+
1

2
lnπ + 2 lnG(1/2) +O

(
1

s

)
+ δ̂n(s), n→ ∞,

(155)

where δ̂n(s) → 0 as n→ ∞.

It now remains to estimate Y
(2n)
11 (z) at z = −1, 0, 1. The λ-images of these points are λ =

0,−i tan ϕ
2 ,∞, respectively. All of them lie in the regions where Y (2n)(z) is approximated by the

outside parametrix N(λ). From the expressions (75,81,85–87,111,112,117), we obtain:

Y (z)(2n) = γ2nσ3N(i tan
ϕ

2
)−1

(
I +Dσ3

∞O(ρ−1)D−σ3
∞
)
N(λ(z))

(
1 0
b(z) 1

)
Ψ(z)2nσ3 , (156)

which is valid for z in neighborhoods of z = −1, 0, 1. In a neighborhood of −1 we assume that
|z| > 1 and then b(z) = f(z)−1Ψ(z)−4nz2n. In neighborhoods of 0 and 1, b(z) = 0.

We will need the values of D(λ) at λ = 0,−i tan ϕ
2 ,∞. Analyzing the integral in (94) with

β = 0, we obtain

D
(
i tan

ϕ

2

)
= D

(
−i tan ϕ

2

)
=
(
1 + sin

ϕ

2

)α
, D(0) = 2α. (157)

From (95) we have

D∞ =

(
4 sin ϕ

2

1 + sin ϕ
2

)α

. (158)

Noting that in the definition of N(i tan ϕ
2 ), a(i tan

ϕ
2 ) = ei(π−ϕ)/4, we can write the following

expression for the 11 element of (156):

Y
(2n)
11 (z) =

1

2
γ2nΨ(z)2n

(
1 + sin

ϕ

2

)α [
D(λ(z))−1

(
ei(ϕ−π)/4a(λ) + e−i(ϕ−π)/4a−1(λ)

)

+b(z)D(λ(z))i−1
(
ei(ϕ−π)/4a(λ)− e−i(ϕ−π)/4a−1(λ)

)]
(1 +O(ρ−1)).

(159)
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Since by (73),

Ψ(−1) = −1, Ψ(0) = γ−1, Ψ(1) = γ−1
(
1 + sin

ϕ

2

)
,

we obtain from (159)

Y
(2n)
11 (−1) = γ2n2−α

(
1 + sin

ϕ

2

)α [
cos

ϕ

4
+ sin

ϕ

4

]
(1+O(ρ−1)) = 2−α[1+O(s−1)], n > s2, (160)

where the second equation is obtained by substituting ϕ = 2s/n, and considering n > s2 and s
large. Similarly,

Y
(2n)
11 (0) = sin

ϕ

2
(1 +O(ρ−1)) =

s

n
[1 +O(s−1)], n > s, (161)

and

Y
(2n)
11 (1) =

(
1 + sin ϕ

2

)2(n+α)

22α sinα ϕ
2

cos
ϕ− π

4
(1 +O(ρ−1)) =

e2snα

22α+1/2sα
[1 +O(s−1)], n > s2. (162)

Note that (160–162) are uniform in compact subsets of the half-plane ℜα > −1/2.

Substituting (160–162) and (155) into (154) and taking the square root, we obtain

DH
n

(
2s

n

)
= πn+

1
4n

α2
−α
2 2−(n−1)2+ 3

2
α−α2+ 1

8G(1/2)s−
1
2(α−

1
2)

2

e−s2+(2α−1)s[1 +O(s−1)], n > s2.

(163)
The branch of the square root is fixed by the fact that DH

2n > 0 for α ∈ R, and by the uniformity
of the asymptotic expansion in α. Finally, substituting (163) and (153) into (145), we finish the
proof of Theorem 4. �

8 Appendix

Here we show that the operator K(α,β) with kernel (1) on L2(−s, s), where ℜα > −1/2 and

α± β 6= −1, 2, . . ., is trace class. Note first that since g
1/2
β (x) is bounded on (−s, s), it is sufficient

to show that the operator K̂ with the following kernel

K̂(x, y) =
|x|α|y|α
x− y

[ei(y−x)φ(1 + α+ β, 1 + 2α, 2ix)φ(1 + α− β, 1 + 2α,−2iy)

−ei(x−y)φ(1 + α+ β, 1 + 2α, 2iy)φ(1 + α− β, 1 + 2α,−2ix)]

(164)

is trace class. Expanding the confluent hypergeometric functions in series,

e−ixφ(1 + α+ β, 1 + 2α, 2ix) =

∞∑

n=0

µnx
n, eixφ(1 + α− β, 1 + 2α,−2ix) =

∞∑

m=0

λmx
m,

where µn, λn are determined using (2), we can write the kernel (164) in the form:

K̂(x, y) = |x|α|y|α
∞∑

n=0

∞∑

m=0

µnλm
xnym − ynxm

x− y
. (165)
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We will now show that the trace norm in L2(−s, s)

‖|x|αx
nym − ynxm

x− y
|y|α‖1 ≤ Cn(m+ 1)s2ℜα+m+n, m ≥ 0, n ≥ 1 (166)

for some C > 0. Together with the straightforward estimates

|µn|, |λn| ≤
nb

n!
, n ≥ 1,

for some b ∈ R, the inequality (166) implies that K̂, and hence K(α,β), is trace class.

To prove (166), set first m = 0, n ≥ 1. Then we have for some C > 0

‖|x|αx
n − yn

x− y
|y|α‖1 ≤

n−1∑

k=0

‖|y|k+ℜα‖L2(−s,s)‖|x|n−k−1+ℜα‖L2(−s,s) =

n−1∑

k=0

(
2s2(k+ℜα)+1

2(k + ℜα) + 1

)1/2(
2s2(n−k+ℜα)−1

2(n − k + ℜα)− 1

)1/2

≤

C
n−1∑

k=0

s
1
2
(2(k+ℜα)+1)+ 1

2
(2(n−k+ℜα)−1) = Cnsn+2ℜα,

(167)

which gives (166) for m = 0, n ≥ 1. If m ≥ 1, n ≥ 1, we can assume that n > m and write

|x|αx
nym − ynxm

x− y
|y|α = |x|α+mx

n−m − yn−m

x− y
|y|α+m,

which is of the same form as (167) with α replaced by α+m, and n, by n−m. Hence, we complete
the proof of (166).
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