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ABSTRACT. We study a construction we call the twisted product; in this construction higher di-
mensional special Lagrangian (SL) and Hamiltonian stationary cones in CP™¢ (equivalently special
Legendrian or contact stationary submanifolds in Sz(p+q)_1) are constructed by combining such
objects in CP and CY using a suitable Legendrian curve in S°. We study the geometry of these
“twisting” curves and in particular the closing conditions for them. In combination with Carberry-
MclIntosh’s continuous families of special Legendrian 2-tori [3] and the authors’ higher genus special
Legendrians [13], this yields a constellation of new special Lagrangian and Hamiltonian stationary
cones in C™ that are topological products. In particular for all n sufficiently large we exhibit in-
finitely many topological types of SL and Hamiltonian stationary cone in C" which can occur in
continuous families of arbitrarily high dimension.

A special case of the twisted product construction yields all SO(p) x SO(g)-invariant SL cones in
CP*9, These SL cones are higher-dimensional analogues of the SO(2)-invariant SL cones constructed
previously by Haskins [8,10] and used in our gluing constructions of higher genus SL cones in C? [13].
SO(p) x SO(g)-invariant SL cones play a fundamental role as building blocks in gluing constructions
of SL cones in high dimensions [14]. We study some basic geometric features of these cones including
their closing and embeddedness properties.

1. INTRODUCTION

Background. Special Lagrangian (SL) n-folds in Calabi-Yau manifolds have been studied inten-
sively over the past fifteen years, thanks in part to their role in Mirror Symmetry [35]. Degenerations
of families of smooth special Lagrangians and more general singular special Lagrangians play a cru-
cial role, but in dimensions 3 and higher are still relatively poorly understood. Special Lagrangian
cones in C" with isolated singularities form the simplest class of singular special Lagrangians, and
significant progress on understanding SL cones has been made in the last ten years. In particular
the situation in dimension three has been clarified considerably [3,8,10,13,17,28]. By comparison
the situation in higher dimensions is more complicated and less systematically explored. The cur-
rent paper constructs a plethora of new higher dimensional SL cones, by combining an ODE-based
method which we call the twisted product construction with the gluing and integrable systems
methods developed to construct three-dimensional SL cones [3,13,28].

SL cones in dimension three. Special Lagrangian cones in C? or equivalently special Legendrians
in S® have been studied by a variety of techniques in the last ten years. The known examples can
be summarised and classified roughly as follows:

(1) Homogeneous special Legendrians

(2) Cohomogeneity one special Legendrians

(3) Special Legendrians governed by (integrable) nonlinear ODEs
(4) Special Legendrians obtained by integrable PDE methods

(5) Special Legendrians obtained by geometric PDE gluing methods.

Equatorial 2-spheres and Legendrian Clifford tori are the only homogeneous special Legendrian
surfaces. A special Legendrian submanifold ¥ C S?"~! is of cohomogeneity one if there is a compact
subgroup G C SU(n) so that ¥ is the union of a curve of G-orbits. In this case the special Legendrian
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PDEs reduce to a system of nonlinear ODEs which can be interpreted as a flow on the space of
(isotropic) G-orbits [17]. These nonlinear ODEs often turn out to be completely integrable.

Cohomogeneity one special Legendrian surfaces have been classified in [8,10]. Among all the
cohomogeneity one examples a distinguished role is played by the SO(2)-invariant SL surfaces
described in detail in [13]. They play a special role because they are the only cohomogeneity
one examples in which interesting geometric degeneration occurs. This also makes them suitable
building blocks for gluing constructions of SL surfaces [13]. More general ODE constructions of SL
surfaces also exist [18].

A special feature of special Legendrian surfaces is that all the SL 2-tori can be described by
methods from algebraically completely integrable systems [28]. This permits the construction of a
z0o of possible special Legendrian 2-tori by building appropriate “spectral data” satisfying certain
periodicity conditions. Using these spectral curve methods Carberry-Mclntosh construct SL 2-tori
that come in continuous families of arbitrarily large dimension [3]. However, it is difficult to control
the geometric features of the resulting SL 2-torus from its associated spectral data; see [9] for some
results in this direction.

While together classes (2)—(4) are geometrically very rich they permit only the construction of

SL 2-tori; to obtain other topological types of closed SL surface the only currently known technique
is the gluing method developed by the authors in [13]. By using SO(2)-invariant SL surfaces close
to a singular limit as building blocks we were able to construct infinitely many closed SL surfaces
of any odd genus (and also of genus 4). For the gluing methods a very precise understanding of the
geometry of SO(2)-invariant SL surfaces close to the singular spherical limit is a crucial ingredient
in the analysis of the linearisation of the SL equation.
Higher dimensional SL cones. SL cones in C" for n > 4 are far less comprehensively understood
than SL cones in C3 and there are new features which have no analogue in dimension 3, e.g.
there is a (homogeneous) non-equatorial special Legendrian 3-sphere in S7 [6]. Even class (1)—
the homogeneous examples—appears not to be completely classified; see [29] for a classification
under additional geometric assumptions. Moreover, in higher dimensions it is not clear what the
appropriate analogue of class (4) should be since a theory of completely integrable elliptic PDE in
higher dimensions is currently lacking. Nevertheless, in this and subsequent papers we will show
there is a rich variety of special Legendrians of classes (2), (3) and (5) (cohomogeneity one, general
ODE and gluing respectively).

Scope of the paper. In the current paper we study a class of higher dimensional special Leg-
endrians that we will call twisted products. Although any special Legendrian twisted product is
controlled by an ODE system the general twisted product is not of cohomogeneity one (and may
have no continuous symmetries). Special Legendrians of this type were first considered by Castro-
Li-Urbano [4].

The twisted product construction, despite its simplicity, turns out to be surprisingly powerful
when used in combination with the powerful integrable systems and gluing methods already devel-
oped in three dimensions. Unlike cohomogeneity one constructions which give only a finite number
of topological types in a given dimension the twisted product construction—together with the ex-
isting constructions of special Legendrian surfaces—already allows the construction of infinitely
many topological types of closed special Legendrians in each dimension; see Theorems A—C later in
the introduction for precise statements. Moreover, twisted product special Legendrians show that
families of high-dimensional special Legendrians can degenerate in many different ways.

One limitation is that all twisted product special Legendrians are topological products; to obtain
infinitely many topological types of special Legendrians which are not products we need to use
gluing methods and these gluing methods need appropriate special Legendrians as building blocks.
Suitable building blocks are also constructed in this paper as a special instance of the twisted
product construction.

An important subclass of special Legendrian twisted products is the class of SO(p) x SO(q)-
invariant special Legendrians of S2(Pt9~1: this subclass does consist of cohomogeneity one special
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Legendrians. SO(p) x SO(g)-invariant special Legendrians share features of the SO(2)-invariant
SL surfaces in S°. These shared features make SO(p) x SO(q)-invariant special Legendrians ap-
propriate building blocks for our higher dimensional gluing constructions [11,12]. In particular,
in any given dimension greater than 3 there are multiple possible cohomogeneity one candidates
for building blocks in gluing constructions of higher dimensional SL cones, unlike the situation in
dimension 3.

Main results. We now describe the main results of the paper.

Twisted products. At the heart of this paper is a construction of special Legendrian immersions
which we call the twisted product construction. The twisted product construction (see 2.1) gives
a way to combine a pair of lower-dimensional Legendrian immersions X; : ¥; — S?~! and X5 :
Yy — S?9~! with a Legendrian curve w : I — S? to produce a new Legendrian immersion X #w X5 :
I XY x ¥y — S?P+24=1_If the twisting curve w is appropriately chosen then the cone over X7 sy Xo
is just the product of the cones over X; and X5, explaining the origin of the term twisted product.

The Lagrangian phase of the twisted product X7 *yw Xo is determined by the Lagrangian phases
of X;, X5 and the twisting curve w (see 2.10). This formula implies that if the twisting curve w
satisfies a certain condition depending on p and ¢ (see 2.17) then the w-twisted product X7 *y Xo
is special Legendrian whenever both X; and Xy are also special Legendrian. This construction
generalises also to the case of Hamiltonian stationary cones (see 2.28, 2.31). Twisting curves w
satisfying the condition 2.17 we call (p, q)-twisted SL curves in S®. The bulk of the paper consists
of a detailed study of the geometry of all (p, ¢)-twisted SL curves; understanding all closed (p, q)-
twisted SL curves is a particular focus.

Since condition 2.17 depends on p and ¢ but not on the immersions X; and Xs we can use the

twisted product construction to produce special Legendrian immersions from lower-dimensional
special Legendrian immersions provided that we can find (p, ¢)-twisted SL curves. To produce
special Legendrian immersions of closed manifolds via (p, q)-twisted SL curves we need to find
closed (p, q)-twisted SL curves.
SO(p) x SO(q)-invariant special Legendrians. The case of SO(p) x SO(g)-invariant special Legen-
drians amounts to the special Legendrian twisted product construction when X; and X5 are chosen
to be the standard real equatorial embeddings of spheres of dimension p — 1 and g — 1 respectively.
Thus the study of SO(p) x SO(g)-invariant special Legendrians in S?*24~1 essentially reduces to
the study of (p, q)-twisted SL curves in S3. Moreover, finding SO(p) x SO(g)-invariant special Legen-
drian embeddings of closed manifolds is closely related to the problem of finding closed (p, ¢)-twisted
SL curves.

(p, q)-twisted SL curves and ODEs. Key to our study of (p, q)-twisted SL curves in S? is Lemma
2.19; this shows that there is a system of first order ODEs (see 2.20, 2.25) whose integral curves
are (p, q)-twisted SL curves in S® and conversely that (p, q)-twisted SL curves in S* always admit
parametrisations satisfying 2.20. When (p, ¢) = (1, 2) these ODEs reduce to the fundamental ODEs
used to study SO(2)-invariant special Legendrians in [13, eqn. 3.18]. For general (p, ¢) these ODEs
first appeared in the work of Castro-Li-Urbano [4]; see the beginning of Section 3 for a more detailed
discussion of previous related work by Anciaux, Castro-Li-Urbano and Joyce.

Section 4 studies these ODEs and establishes that up to the action of some obvious symmetries
there is a 1-parameter family w, of inequivalent solutions to 2.25. Via the correspondence between
SL twisted products and SO(p) x SO(g)-invariant special Legendrians the 1-parameter family w,
gives rise to a 1-parameter family of SO(p) x SO(g)-invariant special Legendrians X .

One of the main tasks of the current paper is to prove existence of closed (p,q)-twisted SL
curves and SO(p) x SO(g)-invariant special Legendrian embeddings of closed manifolds. The former
is important for the applications to construct new special Legendrian immersions of the closed
manifold S x X1 x 3y from a pair of lower-dimensional special Legendrian immersions of ¥; and
Y5. The latter is central to our use of the SO(p) x SO(g)-invariant special Legendrians as building
blocks in gluing constructions of higher dimensional SL cones.
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Section 6 studies the periodicity of w, and closely related questions. We prove that a single
angular period p, (defined precisely in 6.23) determines when w, forms a closed curve in S%; p;,
also controls when the associated SO(p) x SO(g)-invariant special Legendrian immersion X factors
through an embedding of a closed manifold. In Section 7, by studying the dependence of p,; on 7
(see 7.7) we prove that for a countably infinite (dense) set of 7, w, forms a closed curve in S* and
X, factors through a closed embedding as above (see 7.15 and 7.16).

A plethora of new special Lagrangian and Hamiltonian stationary cones. Our results about closed
(p, q)-twisted SL curves in S? together with our previous gluing constructions of higher genus SL
cones in C3 [13] allow us to construct a wealth of new topological types of higher-dimensional
special Lagrangian and Hamiltonian stationary cones.

Theorem A.

(i) For any n > 4 there are infinitely many topological types of special Lagrangian cone in C™,
each of which is diffeomorphic to the cone over a product S' x X' for some smooth closed
manifold X', and each of which admits infinitely many distinct geometric representatives.

(ii) For any m > 4 there are infinitely many topological types of Hamiltonian stationary cone
in C™ which are not minimal Lagrangian, each of which is diffeomorphic to the cone over
a product ST x ¥ for some smooth closed manifold X!, and each of which admits infinitely
many distinct geometric representatives.

Similarly combining our results about (p, ¢)-twisted SL curves with the work of Carberry-McIntosh
[3] on special Legendrian 2-tori via integrable systems methods we obtain the following

Theorem B.

(i) For n > 3 there exist special Legendrian immersions of T" ' in
continuous families of arbitrarily high dimension.

(ii) Forn > 4 there exist contact stationary (and not minimal Legendrian) immersions of T" "
in S~ which come in continuous families of arbitrarily high dimension.

S2=1 which come in

Finally, by combining the twisted product construction with both integrable systems methods and
our gluing methods for special Legendrian surfaces in S° we obtain the following striking results

Theorem C.

(i) For any n > 6 there are infinitely many topological types of special Lagrangian cone in C"
of product type which can occur in continuous families of arbitrarily high dimension.

(ii) For each m > 6 there are infinitely many topological types of Hamiltonian stationary cone
i C" of product type which are not minimal Lagrangian and which can occur in continuous
families of arbitrarily high dimension.

It is difficult to see how either integrable systems methods or gluing methods by themselves could
yield a result like Theorem C.

Forces and torques. Many geometric variational problems admit homological invariants associated
with symmetries of the problem. These invariants have played an fundamental role in global
structure results including uniqueness questions [25,30,31] and also in gluing results [19,21-24,32].
For minimal and CMC immersions in Euclidean space or round spheres the invariants associated
to translations and rotations are called the forces and torques respectively.

In this paper we calculate the torque of the SO(p) x SO(q)-invariant special Legendrians X in
5.14. An appropriate component of the torque (depending on p and ¢) is exactly proportional to
the parameter 7. This is similar to the case of Delaunay surfaces where (appropriately centred)
the torque is zero and the force is a vector along its axis whose magnitude is 7 the parameter
of the Delaunay. The torque of X enters into our argument to calculate refined asymptotics of
the angular period p, and its derivative as 7 — 0 and therefore is needed in our work on higher
dimensional SL gluing [11,12,14]. More generally we expect that the torque will play an important
role in controlling aspects of the global geometry of special Legendrians.
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The geometry of X, and their relatives. We can compare the geometry of X, with that of
other similar cohomogeneity one geometric objects like the Delaunay surfaces and the Delaunay-
Fowler metrics. In all three cases we can recognise strings of regions which we could call bulges
connected to their neighbours through necks. Important differences exist in the symmetry group
of these objects related to the structure of this bulge/neck decomposition. All three families are
parameterised by a real parameter that we call 7; the parameter 7 can be identified with the value
of some properly defined conserved quantity (a component of the force or torque in the Delaunay
and in our case respectively). The parameter 7 also controls the size of the smallest orbit.

As 7 — 0 in all three cases the bulges have a round spherical limit, while the necks degenerate ei-
ther to points or to lower-dimensional equators. Correspondingly for small 7 the bulges approximate
their spherical limit and the necks approximate standard objects scaled to small size. These stan-
dard objects are the catenoid in the Delaunay surface case, the (Riemannian) Schwarzschild metric
in the Delaunay-Fowler case, and the Lagrangian catenoid or its product with a unit round sphere
of the appropriate dimension in our cases. The fact that the bulges are approximately spherical
forms the basis for using these objects as building blocks for gluing constructions [13,14,19-21,32].
A more detailed discussion of these geometric features of X is given in our survey article [14]; full
details and proofs appear in [15].

The Lagrangian catenoid belongs to the larger family of Lawlor necks [7,16,27]; while the La-
grangian catenoid in C™ is foliated by round spheres and is SO(n)-invariant, a general Lawlor neck
is foliated by ellipsoids and has only discrete symmetries. In a similar way the SO(p) x SO(q)-
invariant special Legendrians X, also belong to a larger family of special Lagrangian cones con-
structed by evolving quadrics [16]. This construction gives a larger family of special Legendrians
still controlled by ODEs; the additional parameters of this family control the distortion of the
quadrics in a similar way that the parameters of the Lawlor necks control the maximal eccentricity
of its ellipsoidal sections. In this larger class of special Legendrians general Lawlor necks and not
just Lagrangian catenoids can appear as appropriate blow-up limits as 7 — 0. We study this and
more general degeneration behaviour of these families elsewhere.

Organisation of the Paper. The paper is organised in seven sections. Section 1 consists of
the introduction, this section and some remarks on notation.

In Section 2 we describe how to generate a new special Legendrian immersion from a pair of lower-
dimensional special Legendrian immersions and a curve in S? satisfying some additional geometric
condition. This twisted product construction (see Definition 2.1 and Proposition 2.9) is at the heart
of the paper. Definition 2.16 introduces the notion of a (p, q)-twisted special Legendrian (SL) curve
in S?. Corollary 2.18 explains how to use (p, q)-twisted SL curves in S to construct new special
Legendrian immersions from a pair of lower-dimensional special Legendrian immersions via the
twisted product construction. Lemma 2.19 reduces the study of (p, q)-twisted SL curves in S? to a
first order system of ODEs 2.20.

We also sketch briefly the extension of the twisted product construction to the contact stationary
realm. Definition 2.28 introduces (p, q)-twisted contact stationary (CS) curves in S* and Lemma
2.31 gives the contact stationary analogue of Corollary 2.18. This enables us to construct many
new contact stationary (and non minimal Legendrian) immersions of closed manifolds from lower
dimensional special Legendrian immersions. In the rest of the section, assuming results on the
existence of countably infinitely many closed (p, ¢)-twisted SL curves proved later in Theorem 7.15,
we prove Theorems A—C quoted above by combining the SL and CS twisted product constructions
with our gluing constructions of special Legendrian surfaces of higher genus in S® [13] and the
integrable systems constructions of special Legendrian tori in S° of Carberry-McIntosh [3].

Section 3 establishes the relationship between (p, q)-twisted SL curves in §? and SO(p) x SO(q)-
invariant special Legendrians in S?+2¢-1,

Section 4 studies the ODEs 4.8 that control (p, ¢)-twisted SL curves in S3. Proposition 4.7 estab-
lishes the basic facts about solutions to the (p, ¢)-twisted SL ODEs 4.8: its conserved quantities, its
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symmetries, stationary points, local and global existence and dependence on initial data. Follow-
ing a number of auxiliary results we prove the main result of the section—Proposition 4.26—which
gives a normal form for any solution w to 4.8.

In Section 5 we use Propositions 4.7 and 4.26 to define a distinguished 1-parameter family w,
of solutions of the fundamental ODE for (p, ¢)-twisted SL curves by specifying appropriate initial
conditions (see 5.2, 5.4 and Proposition 5.1); up to the action of symmetries any solution of 4.8
is equivalent to w, for some 7. In Definition 5.8 we use the 1-parameter family of solutions w,
to define the 1-parameter family X, of SO(p) x SO(g)-invariant special Legendrian immersions in
S?P+24=1 " Proposition 5.9 establishes some basic properties of X,. Finally in Proposition 5.14 we
determine the restricted torque for the SO(p) x SO(g)-invariant SL immersions X ;. The torque is
a homological invariant of minimal submanifolds of S?*~! and the restricted torque is a variant of
the torque for special Legendrian submanifolds of S?*~1.

Section 6 studies the conditions under which w, forms a closed curve in S® or the associated
curve of isotropic SO(p) x SO(q)-orbits is closed. To this end we introduce the periods and half-
periods of w; the periods of w, control when w, forms a closed curve in S, while the half-periods
control when the curve of SO(p) x SO(gq) orbits associated with w, is closed. The half-periods
of w; also control the embedding properties of X, (see Proposition 6.32). Fundamental roles are
played by the angular period 2p, (defined in 6.23), the rotational period ngT (defined in 6.25)
and by ko the order of the rotational period (defined in 6.38). Lemma 6.39 determines the periods
and half-periods of w, in terms of the order of the rotational period ky and hence allows us to
characterise exactly when w, forms a closed curve either in S or in the space of isotropic orbits of
SO(p) x SO(g).

Section 7 uses the results of Section 6 together with results about the asymptotics of p, as 7 — 0
and as T — Tyax to prove for every admissible pair of integers (p, q) the existence of a countably
infinite (dense) set of 7 for which w, forms a closed (p, q)-twisted SL curve in S* (Theorem 7.15)
and a countably infinite (dense) set of 7 for which the SO(p) x SO(g)-invariant special Legendrian
immersion X, factors through an embedding of a closed manifold (Theorem 7.16).

Notation and conventions. Throughout the paper we use the following notation to express
elements of Isom(R), the isometries of the real line. We denote by T,, translation by z, t — ¢ + x.
We denote by T reflection in the origin ¢ — —t and reflection in z, t — 2x — ¢ by T ..

Acknowledgments. N.K. would like to thank the Leverhulme Trust for funding his visit to Impe-
rial College London in Spring 2009, the Department of Mathematics at Imperial for the supportive
research environment and the NSF for supporting his research under DMS-1105371. M.H. would
like to thank the EPSRC for their continuing support of his research under Leadership Fellowship
EP/G007241/1.

2. TWISTED PRODUCTS OF LEGENDRIAN IMMERSIONS: NEW IMMERSIONS FROM OLD

In this section we describe the twisted product construction; in this construction, given a Leg-
endrian immersion w : I — S? and a pair of Legendrian immersions X; : ¥; — S%—1 and
X5 : 3y — S?471 we obtain a new Legendrian immersion X #w X : I x 31 x X9 — S?PH24=1 that
we call the w-twisted product of X1 and Xo. If the curve w : I — S C C? is chosen appropriately
then the cone over the w-twisted product is precisely the product of the cone over X; with the cone
over Xo—hence the name twisted product for the general case. If w satisfies an appropriate ODE
and both X7 and X5 are special Legendrian then the w-twisted product X7 *w Xs is also special
Legendrian. We call solutions of these ODEs, (p, q)-twisted special Legendrian curves. To construct
new special Legendrian immersions of closed manifolds, the key point is to find closed (p, q)-twisted
special Legendrian (SL) curves. We achieve a complete understanding of closed (p, ¢)-twisted SL
curves in Sections 6 and 7.

Combining our results on closed (p, q)-twisted SL curves with our earlier work on gluing con-
structions of special Legendrian immersions in S® [13] and constructions of special Legendrian 2-tori
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via integrable systems methods [3,28] we are able to prove the existence of a plethora of new spe-
cial Legendrian immersions with interesting geometric properties in dimensions greater than three.
Very minor modifications also allow us to construct a similar variety of contact stationary Legen-
drian immersions and hence of new Hamiltonian stationary (and not special Lagrangian) cones.
However, all closed special Legendrians constructed via (p, ¢)-twisted SL curves are topologically
products of the form S x ¥. We construct infinitely many topological types of higher dimensional
special Legendrians which are not topologically products using gluing methods in [11,12,14].

When the immersions X; and X5 are chosen to be the simplest possible special Legendrian
immersions, namely the standard totally real equatorial embeddings of SP~! ¢ RP C CP and
S9! ¢ RY C CY, then w-twisted special Legendrian immersions X *yw Xo turn out to be suitable
building blocks for higher dimensional gluing constructions of special Legendrian immersions. When
p =1 and g = 2 these are precisely the building blocks used in our previous gluing construction of
special Legendrian surfaces in S° [8,10,13].

Throughout this section, given a Legendrian immersion Y into an odd-dimensional sphere we
shall denote its Lagrangian phase by €% .

Twisted products of spherical Legendrian immersions.

Definition 2.1. Let I C R be a connected interval, 31 and X5 be two smooth manifolds of
dimensions n; and ny respectively, and X; : ¥; — S?™~1 for i = 1,2 be smooth maps into odd-
dimensional spheres. Let w = (wy(t),wa(t)) : I — S® be a smooth immersed curve in S3. Then
the w-twisted product of X; and X, denoted X *y Xo, is the smooth map

X1 sk Xo 1 I X 51 X By — SZmt2me=l - gmitmz _ cmi o oMz,
defined by
(2.2) X1 *w X9 (t, 01,02) = (wl(t)Xl(al), ’wQ(t)XQ(Jg) )

Remark 2.3. In the definition of a twisted product above it is also convenient to allow the degenerate
case where Y1 is O-dimensional. We will need the case where ¥ is a single point p and the map
X1 maps p — (1,0) € St € S? € C?. In this case we will drop the reference to X; and ¥; and the
subscript for X5 and ¥y and write Xy : I x ¥ — S?”~! for the map defined by

(2.4) Xw(t,o) = (wi(t),w2(t) X(0)).
We will still refer to this degenerate case as a twisted product.

The following extended remark explains the origin of the term twisted product in Definition 2.1.

Remark 2.5. Let C; and Cy be cones in C™ and C™2 respectively. The product C; x Cy C
C™ x C™2 =~ C™1™M2 ig also a cone. Suppose now that C; and Cs are both regular cones,
ie. C; = C(%;) is the cone over a smooth closed submanifold ¥; C S*™~! and hence has an
isolated singularity at 0 € C™i. Let Y15 C S?™*2m2=1 denote the link of the product cone
Oy x Oy C C™*t™m2 Clearly

(2.6) Y12 = {(costoy,sintoy) |t € [0,17], o1 € E1, 09 € Ep} C ST
There is an obvious surjective map
IT:[0,7/2] x ¥1 X X9 — 19
from the manifold with boundary [0, 7/2] X ¥1 x 32 to the link of our product cone 315 defined by
(2.7) II(t,01,02) = (cost oy,sint 03).

Clearly, the map II can be written as a w-twisted product by taking X; and X5 to be the inclusion
maps i1 : X1 — S?171 and iy : ¥y — S22 respectively and w : I — S3 to be the equatorial
curve w : [0, /2] — S! C S? defined by

(2.8) w(t) = (cost,sint).
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We therefore view the w-twisted product defined in 2.1 as a “twisted” version of taking the
product of two regular cones. It “twists” the product construction by allowing a general curve
w € S? instead of the standard equatorial curve S' C S? defined in 2.8. It is natural therefore to
call the curve w : I — S? the twisting curve.

The degenerate case discussed in Remark 2.3 also specialises to a product of cones Cy x Cy when
the twisting curve is the equatorial curve 2.8 and C; = Rt C C and Cy = C(X). Thus we can still
view Xy, (defined in 2.4) as a twisted version of the product of two cones Rt x C' and hence the
name twisted product is appropriate even in this degenerate case.

The product cone C7 x (5 is not a regular cone even when both C; and Cy are regular cones.
Equivalently, the link Y15 C S?™1+2m2=1 j5 not a smooth submanifold. As a topological space we
can think of 312 as being obtained from the generalised cylinder [0, 7/2] x ¥; x 32 by a modified
“coning-off the boundary” construction. Namely, at the endpoint ¢ = 0 we cone-off Xy inside
{0} x 31 x X9 but leave ¥; untouched, whereas at the endpoint ¢t = 7/2 we instead cone-off ¥; but
leave Y5 alone. Thus Y12 has two different types of singularities: conical singularities modelled on
Y9 along a copy of Y1 and conical singularities modelled on X1 along a copy of Y.

IT is a smooth embedding away from the endpoints of the interval [0,7/2] and induces a Rie-
mannian metric g on (0,7/2) x X1 x X9 defined by

g = dt* + cos’t g1 + sin® t go,

where g1 and g9 are the Riemannian metrics induced on ¥; and Xy by the spherical inclusions i
and 9. In particular, we see that the metric g degenerates at t = 0 and ¢t = 7/2 in a manner
consistent with the description of the singularities of 15 we gave in the previous paragraph.

In the exceptional case where C'y = R™ C C™! and Co = R™2 C C™2 then obviously C x Cy =
R™+m2 and therefore Yo = S™tm2—1 ¢ §2mi+2m2—1 g not, singular. In this case the images of
the hypersurfaces with ¢ constant under the map

IT: [0, %77] x §mi—l  gma—l _, gmitme—l

give a (singular) codimension one foliation of S™17™2~1 by hypersurfaces isometric to the product
of spheres S™ ~!(cost) x S™2~1(sint). As t — 0 the second spherical factor shrinks to radius 0,
while the first spherical factor shrinks to radius 0 as t — 7/2. Restricting II to the open interval
(0,7/2) gives a foliation of S™1FTm2=1\ (§™~1 0) U (0,S™27!) that omits the two singular leaves
corresponding to the endpoints ¢t = 0 and t = 7/2. The leaves of this singular foliation of St +m2~1
are exactly the orbits of the group SO(m1) x SO(m2) C SO(my + ma). When m; = my = 2 the
singular foliation above yields the standard singular foliation of S? by an open interval of 2-tori
which degenerates at the ends of the interval to the linked Hopf circles (S',0) C S3 and (0,S') C S?.

Moving from the smooth to the Legendrian category we can refine the notion of twisted product
to generate new Legendrian immersions from a pair of lower-dimensional Legendrian immersions,
provided the twisting curve itself is Legendrian in S3.

Proposition 2.9 (Legendrian twisted products [4, Thm 3.1]). Suppose that the twisting curve

w is a Legendrian curve in S3, that (X1,g1) and (32, g2) are oriented Riemannian manifolds of

dimension p—1 > 0 and ¢ — 1 > 0 respectively, and that X1 : ¥1 — S~ and Xy : ¥ — S?071 are

Legendrian isometric immersions. Away from points where wy or wy vanish the w-twisted product
X1 s#w Xo 1 I x 81 x By — SPPH20-1 « cPHa = CP x Y,

defined in 2.1 is a Legendrian immersion whose Lagrangian phase e%X satisfies the following twisted

product relation

(2.10) ezﬂx _ (_1)p—1€i0X1 €i6X2 €i0w+i(p—1)argw1+i(q—1)argwg’
and the metric g induced by X1 *w Xo 18
(2.11) g = |w[?dt® + w1 g1 + |wa|*g2.
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The analogue of Proposition 2.9 in the degenerate case p = 1 considered in 2.4 is

Proposition 2.12. Suppose that the twisting curve w is a Legendrian curve in S3, that (,g) is
an oriented Riemannian manifold of dimension n — 2 and that X : ¥ — S?"73 is a Legendrian
isometric immersion. Away from points where wo vanishes the w-twisted product

Xp: IS lccr=CcxCrl,

defined in 2.4 is a Legendrian immersion whose Lagrangian phase €' satisfies the twisted product
relation

ei@ _ eiBX ei0w+i(n—2) arg wg’

and the metric induced by X is |w|?dt? + |wa|? g.

Remark 2.13. Xj *yw Xo fails to be an immersion at points where either w; or wo vanish. Away
from such points we have Vol, = |w/| w1 |P~! |wz|971dt Voly, Vol,,, and hence when both 31 and X
are closed the w-twisted product has volume

(2.14) Vol (X #w X3) = Vol(X;) Vol(X3) / |W| w1 [P~ we| 77t dt.
1

The obvious analogue of 2.14 holds for the degenerate case p = 1.

Remark 2.15. Let 7: S?**! — CP" denote the Riemannian submersion associated with the Hopf
fibration. For any Legendrian immersion X : ¥ — S?"*! the map mo X : ¥ — CP" is a Lagrangian
immersion and moreover, locally, any Lagrangian immersion to CP" lifts to a Legendrian immersion
covering it. Lagrangian immersions mo X to CP" for which the Legendrian immersion X is a twisted
product in the sense of 2.9 or 2.12 were termed warped-product Lagrangian immersions in [2, §1].
Conditions on the second fundamental form of a Lagrangian immersion to CP" that characterise
when it is of warped-product type are given in [2, Thm 4.4 & 5.1].

Twisted products of special Legendrians and (p, q)-twisted special Legendrian curves. From now on
we will always consider the case where the integers p and ¢ satisfy p < g, p > 1 and ¢ > 2. There
is no loss of generality in making this assumption. We call such a pair (p,q) of positive integers
admissible. For each admissible pair of integers (p, q) we define a distinguished class of Legendrian
curves in S°.

Definition 2.16. We call a Legendrian curve w in S? a (p, q)-twisted special Legendrian (SL) curve
if the Lagrangian phase of w satisfies

(2_17) eiew _ (_1)p—1€—i(p—1)argwl—i(q—l)arng'

Proposition 2.9 (and 2.12 for the degenerate case p = 1) has the following easy corollary which
allows us to generate a new special Legendrian immersion in S2P+O-1 from a (p, q)-twisted SL
curve in S? and a pair of special Legendrian immersions into S??~1 and S?¢~! respectively.

Corollary 2.18 (Special Legendrian twisted products). Let X;, Xo and w be as in Proposition
2.9. If additionally, X1 and Xo are both special Legendrian then the w-twisted product X1 *w Xo
is special Legendrian if and only if w is a (p, q)-twisted SL curve in S®. Similarly, let X and w be
as in Proposition 2.12. If additionally, X is special Legendrian then the w-twisted product Xy is
special Legendrian if and only if w is a (1,n — 1)-twisted SL curve in S3.

The following characterisation of (p, ¢)-twisted SL curves in S? is central to the rest of this paper
Lemma 2.19 (4, Cor 1]). Any curve w : I — C? satisfying
(2.20) Wiw] = —Woly = (_1)p@}17@%’ ’W(O)’ =1,

is a (p,q)-twisted SL curve in S®. Conversely, any (p,q)-twisted SL curve in S* containing no
points with wi(t) = 0 or wa(t) = 0 admits a parametrisation satisfying 2.20.
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Proof. First notice that the Lagrangian phase e’ of any Legendrian curve w in S? can be expressed
as

(2.21) i — W1t — ity

w7
since w has norm 1 and is hermitian orthogonal to w.

Now suppose w is a curve in C? satisfying 2.20. The real part of the equality w1 + Waty = 0
implies that %\W\Q =0, and hence w lies in S®. The imaginary part of the same equality implies
that w is a Legendrian curve. Straightforward calculation using 2.20 shows that w satisfies

(2.22) Wl = |wy [P~ w17,
and
(2.23) wythy — tbywy = (1P~ wh g

Combining 2.21, 2.22 and 2.23 it follows that the Lagrangian phase of w satisfies 2.17 as required.
For the converse, notice that any Legendrian curve w in S? satisfies the first and third equalities

in 2.20, i.e. Wi = —waw2 and |w(0)| = 1. Also we can rewrite 2.17 as

fpflwqfl

. _ w
ezew _ (_1 p—1 1 2

w1 [P~ wg|71
and hence using 2.21 also as

w1wWy — Wiws — (—1p! whwl!

W] |we [P~ Huwa |71
Now if we reparametrise w so that it satisfies 2.22 then from the previous equality we see that
2.17 is equivalent to equation 2.23. Multiplying 2.23 by wiws and using the fact that w satisfies

lw|? = 1 and Wiy = —Wati, we get the second equality of 2.20 as required. O

Remark 2.24. By changing the parameter t of the curve w to —t if necessary one can always absorb
the dimension-dependent sign (—1)? from 2.20 and therefore it suffices to study curves w in S*
satisfying

WiwW] = —Wog = @szg,
with initial condition |w(0)| = 1. Moreover, away from points where wjws = 0 these ODEs are
equivalent to
(2.25) iy =W, by = —whwd

2.25 will be the most convenient form of the equations to use since it allows the cleanest treatment
of the degenerate solutions where wy or we can become zero.

Remark 2.26. If w is a (p, q)-twisted SL curve in S* with p > 1, parametrized as in 2.20, then by
combining 2.14 and 2.22 we see that when ¥; and X5 are both closed

(2.27) Vol (X1 #w X2) = Vol(X1) Vol(X3) / |W|? dt.
I
Again the obvious analogue of 2.27 holds in the degenerate case p = 1. Therefore there is a close

relation between volume of special Legendrian twisted products and the energy of (p, ¢)-twisted SL
curves in S® when using the parametrisation forced by 2.20.
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Twisted products of contact stationary immersions. With very little extra effort one can also con-
struct many Hamiltonian stationary cones in C™ or equivalently contact stationary submanifolds
in S?"~! via the twisted product construction.

To this end we define the following class of Legendrian curves in S? generalising 2.20

Definition 2.28. We call a curve w : I C R — S? a (p, q)-twisted contact stationary (CS) curve if
it satisfies the ODEs

(2.29) WiwW] = —Walg = ei(a+bt)W€wg, tel,

for some a, b € R.

Remark 2.30. Note in the degenerate case p = ¢ = 1 these ODEs occur as equation (7.1) in Schoen-
Wolfson’s work on the classification of 2-dimensional Hamiltonian stationary cones in C2? [33].
The system 2.29 is very simple to understand in this case because w satisfies a system of linear
equations. Moreover, by direct differentiation of the equations for w; and ws, wy; and we each
satisfy autonomous second order linear equations.

The reason for making this definition is the following

Lemma 2.31 (Contact stationary twisted products [4, Cor 3.2]). Let X1, X2 and w be as in
Proposition 2.9. If additionally X1 and Xy are both oriented contact stationary immersions and w
is a (p,q)-twisted contact stationary curve then the w-twisted product X1 #w Xo : I X X1 X 39 —
S2Pt9-1 i also a contact stationary immersion away from points where wy or wa vanish. Moreover,
if either X1 or Xy is contact stationary but not minimal Legendrian or if w is a (p, q)-twisted CS
curve with b # 0 then Xj *w Xo is contact stationary but not minimal Legendrian.

Similarly, let X and w be as in Proposition 2.12. If additionally, X is an oriented contact
stationary immersion then the w-twisted product Xy is an oriented contact stationary immersion
if wis a (1,n — 1)-twisted CS curve in S3.

Proof. The proof follows from Proposition 2.9 together with the characterisation of contact sta-
tionary and minimal Legendrian submanifolds of S?*~! in terms of harmonicity and constancy of
the Lagrangian phase e’ respectively. The proof in the case p = 1 follows in the same way using
Proposition 2.12 in place of 2.9. U

Remark 2.32. Clearly, 2.20 is a special case of 2.29 where a = pm and b = 0. If w is a solution
of 2.29 with parameters (a,b) then for any constant d € R, w’ = e'w is another solution of 2.29
with parameters (a’,b’) = (a + (p+ ¢)d, b). Hence if b = 0 then by choosing d appropriately we can
reduce 2.29 to 2.20. The analysis of 2.29 when b # 0 is more complicated than that of 2.20 because
the system 2.29 is no longer autonomous. In this paper we will analyse in great detail solutions of
2.20 and say almost nothing further about solutions of 2.29 with b # 0. However, following [4, eqn.
13] we note that for any ¢ € (0,7/2) the Legendrian curve w : R — S3

(2.33) w(t) = (cos cexp(itsin® ccos? 2 ¢),sin cexp(—itsin’ 2 ccos?c)), te€R

satisfies 2.29 with a = 7/2 and b = sin?~2 ¢ cos?~2 ¢ (psin® s — g cos? ¢). Clearly b = 0 if and only if
tan? c = ¢/p. (This special solution of 2.20 which has |wi|* = £ and |ws|? = £ corresponds to the
solution w, described in 5.1 with |7| = Tyax; for other values of ¢, b is nonzero and therefore 2.33
gives no further solutions of 2.20.)

The (p, q)-twisted CS curve 2.33 is closed if and only if tan? ¢ € Q. In particular given relatively
prime positive integers m and n choose the unique value of ¢, , € (0,7/2) so that tan? ¢, , = m/n,
and therefore cos ¢y, = \/n/(m +n), sincy, n = y/m/(m + n). Hence for each fixed (p, q) there is
a countably infinite family of closed (p, ¢)-twisted CS curves w,, ,, of the form 2.33 parametrised by
the pair of relatively prime positive integers m and n. In the degenerate case when p = ¢ = 1 these
closed curves wy, , are (up to a unitary transformation) nothing but the closed contact stationary

curves v, described in Schoen-Wolfson’s work on Hamiltonian stationary cones in C? [33].
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Remark 2.34. Combining Lemma 2.31 and Remark 2.32 gives us two ways to construct contact
stationary submanifolds that are not minimal Legendrian using the twisted product construction:
(i) we take at least one of our initial immersions X; to be contact stationary but not minimal
Legendrian and w to be a (p, ¢)-twisted SL curve or (ii) we take the twisting Legendrian curve
w to be a (p, q)-twisted CS curve of the form 2.33 with tan?c # ¢/p. In the latter case we can
allow both X; and X5 to be special Legendrian, yielding a very simple method to generate higher-
dimensional contact stationary immersions from a pair of lower-dimensional special Legendrians.

To construct special Legendrian or contact stationary immersions of the closed manifold S x
Y1 X X9 from a pair of immersions of closed manifolds ¥; and ¥y we need (p, g)-twisted SL or CS
curves that are closed. We call Legendrian immersions which arise this way, closed twisted products.
For each fixed p and ¢ Remark 2.32 exhibited a countably infinite family of closed (p, q)-twisted
CS curves w,, , parametrised by relatively prime positive integers m and n. Moreover, wy, ,, is
congruent to a (p, q)-twisted SL curve if and only if m/n = p/q.

We study closed (p, q)-twisted SL curves in Section 7 by analysing the periodicity conditions for
solutions w of 2.20. We will prove the following result (Theorem 7.15)

For each admissible pair (p,q) of positive integers there exists a countably infinite family of distinct
closed (p, q)-twisted SL curves in S3.

By the SL twisted product construction of Corollary 2.18, Theorem 7.15 implies that every pair
of closed special Legendrian submanifolds 3 and o in S??~! and S?¢~! respectively, gives rise
to a countably infinite family of closed SL twisted products, i.e. special Legendrian immersions
of ST x ¥ x ¥y in §?P*24-1 Similarly, by using closed (1,n — 1)-twisted SL curves every closed
special Legendrian submanifold ¥ in S?”~3 gives rise to a countably infinite family of closed special
Legendrian submanifolds in S?"~! with topology S! x X.

By combining the closed twisted product construction with existing constructions of closed spe-
cial Legendrian immersions we generate a plethora of new closed special Legendrian and contact
stationary immersions in essentially all dimensions. For example, we have the following result on
topological types of special Lagrangian and Hamiltonian stationary cones

Theorem A (Infinitely many topological types of SL and HS cones in C" for n > 4).

(i) For any n > 4 there are infinitely many topological types of special Lagrangian cone in C",
each of which is diffeomorphic to the cone over a product S* x ¥/ for some smooth manifold
Y/, and each of which admits infinitely many distinct geometric representatives.

(ii) For any n > 4 there are infinitely many topological types of Hamiltonian stationary cone
in C™ which are not minimal Lagrangian, each of which is diffeomorphic to the cone over
a product S* x X' for some smooth manifold X', and each of which admits infinitely many
distinct geometric representatives.

Proof. In [13] we proved the existence of infinitely many special Legendrian surfaces in S® of every
odd genus (and also of genus 4). By Theorem 7.15 there is a countably infinite family of closed (1, 3)-
twisted SL curves. Appealing to 2.18 using this infinite family of closed (1, 3)-twisted SL curves and
the infinite number of topological types of SL surfaces in S® described above we conclude that there
are infinitely many topological types of special Legendrian 3-folds in S” of the form S! x ¥, where ¥
is a oriented surface and that each topological type is realised by infinitely many distinct geometric
representatives. To prove part (i) for any n > 4 we can keep iterating the process using the fact
that by Theorem 7.15 for each n > 3 there is a countably infinite family of closed (1,n — 1)-twisted
SL curves. To prove (ii) we simply substitute Lemma 2.31 on CS twisted products for Corollary
2.18 and Remark 2.32 for Theorem 7.15 and argue as before using our gluing results for SL surfaces
in S® as the starting point once again. ([l

We can also combine the twisted product construction with the SL 2-tori produced by integrable
systems methods. McIntosh [28] proved that all SL 2-tori in S® can be constructed by integrable
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systems methods and more specifically by so-called spectral curve methods. Using these methods
Carberry-McIntosh [3] produced a very rich variety of special Legendrian 2-tori; in particular they
proved the existence of appropriate SL spectral data in which the genus of the spectral curve genus
can be any positive even integer. A simple consequence of their result is the remarkable fact that
SL 2-tori can come in continuous families of arbitrarily high dimension, by choosing SL spectral
data of higher and higher spectral curve genus. We can extend Carberry-McIntosh’s result to
every dimension and also to contact stationary tori of dimension at least 3 using the closed twisted
product construction.

Theorem B (SL/CS tori in S?”~! occur in families of arbitrarily high dimension).

S?=L which come in

(i) For n > 3 there ewist special Legendrian immersions of T ' in
continuous families of arbitrarily high dimension.
(ii) Forn > 4 there exist contact stationary (and not minimal Legendrian) immersions of T" "

in S?"~1 which come in continuous families of arbitrarily high dimension.

Proof. (i) For n = 3 we simply appeal to the results of Carberry-McIntosh [3]. For n = 4 we use the
(1,3)-twisted SL product of a 2-torus coming from the Carberry-McIntosh construction and any
closed (1,3)-twisted SL curve. Clearly, the resulting twisted product depends continuously on the
input 2-torus. Hence by Carberry-MclIntosh’s work for any d € N we can find a special Legendrian
immersion of S' x T2 which moves in a continuous family of dimension at least d. For n = 5 we
use the (2,3)-twisted product where X7 : S! — §* C C? is the standard totally real equatorial
circle, Xy : T? — S° € C? is a 2-torus coming from the Carberry-McIntosh construction and w
is any closed (2, 3)-twisted SL curve. For n > 6 we use the twisted (n — 3, 3)-twisted SL product
where X; : 773 — S§?"77 is the unique SL n — 3 torus invariant under the diagonal subgroup
T3 Cc SU(n—3), Xg : T? — S% is a 2-torus coming from the Carberry-McIntosh construction and
w is any closed (n — 3,3)-twisted SL curve. Part (ii) is proved in the same way using the twisted
CS product construction 2.31 and the closed (p, ¢)-twisted CS curves exhibited in Remark 2.32. O

Finally, by combining the twisted product construction with both integrable systems construc-
tions and our gluing methods we obtain the following striking result

Theorem C.

(i) For any n > 6 there are infinitely many topological types of special Lagrangian cone in C"
of product type which can come in continuous families of arbitrarily high dimension.

(ii) For each m > 6 there are infinitely many topological types of Hamiltonian stationary cone
in C" of product type which are not minimal Lagrangian and which can come in continuous
families of arbitrarily high dimension.

Proof. (i) Since n — 3 > 3 by the gluing results of [13] and Theorem A(i) there are infinitely many
topological types of SL n— 3 fold in S2("~3)~1_ The result follows by applying the (n—3,3)-twisted
SL product construction where X is any of these SL n — 3 folds, X5 is a SL 2-torus coming from
the Carberry-McIntosh construction and w is any closed (n — 3, 3)-twisted SL curve.

Part (ii) follows in the same way using the twisted CS product construction and the closed
(p, q)-twisted CS curves exhibited in Remark 2.32. d

It is difficult to see how integrable systems methods or gluing methods alone could yield a result
like Theorem C.

3. SO(p) x SO(q)-INVARIANT SPECIAL LEGENDRIANS AND (p,q)-TWISTED SL CURVES

In this section we prove that every SO(p) x SO(q)-invariant special Legendrian in S?P+9)~1 arises
from the special Legendrian twisted product construction (as described in 2.18); hence the study
of SO(p) x SO(g)-invariant special Legendrians can be reduced to the study of the ODEs 2.19. In
Section 4 we will begin an in-depth study of these ODEs.
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Relation with work of other authors. SO(p) x SO(g)-invariant SL submanifolds of C" are studied
in [5, §3] and SO(p) x SO(q)-invariant special Legendrian submanifolds of S?"~! are studied in [4, §3].
The ODEs for SO(p) x SO(g)-invariant special Legendrian submanifolds of S?P*9)~1 appear in [5,
Lemma 2| and [4, Cor 1]. However, Castro-Li-Urbano did not study closed SO(p) x SO(g)-invariant
special Legendrians in a systematic way.

SO(n — 1)-invariant special Legendrians (for n > 3) were studied recently by Anciaux [1] from
a slightly different point-of-view. Anciaux [1, Thm 2] gives the following nice geometric char-
acterisation of SO(n — 1)-invariant special Legendrians: any minimal Legendrian submanifold of
S?~1 which is foliated by round n — 2 spheres is either a totally geodesic S”~! or congruent to
an SO(n — 1)-invariant special Legendrian. He goes on to study SO(n — 1)-invariant special Leg-
endrians in S?"~! noting that they arise from a Legendrian curve w in S? satisfying 2.17 with
(p,q) = (1,n — 1). Rather than working directly with this first order condition and deriving an
equation like 2.25 from it, Anciaux differentiates 2.17 and interprets the resulting second order
equation (see [1, eqn. 3]) as an equation on the projected curve 7(w) C CP! where 7 : S* — CP!
denotes the Hopf projection. Using this approach he proves the existence of a countable family of
closed integral curves in CP! and this suffices to prove the existence of closed minimal Lagrangian
submanifolds of CP"~! (see [1, Thm 3]). However, the horizontal lift to S? of a closed integral
curve in CP! is not necessarily closed. In Anciaux’s approach an additional period condition must
be satisfied for the spherical lift to be closed and because of this his method does not prove the
existence of suitable closed curves in S? (see his discussion following Theorem 3).

The key to overcoming this period problem is to work directly with the first order system 2.25
rather than the second order system that Anciaux exploits. This approach allows us to prove
the existence of countably infinitely many closed (p,q)-twisted special Legendrian curves in S3
for general p and ¢q. For our gluing constructions [11, 12, 14] it is crucial that we have closed
SO(p) x SO(g)-invariant special Legendrians at our disposal.

SO(2) x SO(2)-invariant SL cones in C* can be constructed in a different manner, namely as a
special case of Joyce’s work on 7™ 2-invariant SL cones in C". To obtain this SO(2) x SO(2) action
we should set n = 4 and take a; = as = —1, a3 = a4 = 1 in [17, Prop. 7.6]. Among all T?-actions
allowed in Joyce’s constructions, the SO(2) x SO(2) action is distinguished by having the largest
fixed point set.

Isotropic orbits of the SO(p) x SO(q) action on CP™4. As previously we assume that (p, q) is
an admissible pair of positive integers, i.e. p <gq, ¢ > 2 and p > 1, and we set n =p+q.

SO(p) x SO(q) acts via isometries on CPT? = CP x C? via the product of the standard complex
linear actions of SO(p) and SO(g) on the CP and C? factors respectively. Since SO(p) x SO(q) C
SO(p + q) C SU(n) it is natural to look for SO(p) x SO(q)-invariant special Lagrangians in CP™¢
and in particular for special Lagrangian cones or equivalently special Legendrian submanifolds of
S?=1 invariant under SO(p) x SO(q). If a Legendrian submanifold of S?"~! is a union of orbits
then each orbit O must be 7-isotropic, i.e. vy|p = 0, where v = txw|g2n—1 is the standard contact
form on S?"~! (here w and X denote the standard symplectic form and radial vector field on C"

respectively). The following simple lemma describes the «y-isotropic orbits O of SO(p) x SO(q) in
SQn—l.

Lemma 3.1 (Isotropic orbits of SO(p) x SO(q)).
(i) If p > 2, ¢ > 2 then any y-isotropic SO(p) x SO(q) orbit © C S2P+D=1 has the form
(3.2) Ow = (w1 -SP4, wy - ST71)

for some w = (wy,ws) € S3. Moreover, if w and w' € S? then Oy = Oy if and only if
w' = pjpw for some (j, k) € ZyxZo where p : Ly X Ly — O(2) C U(2) is the homomorphism

defined by '
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In particular, spherical isotropic SO(p) x SO(q) orbits are in one-to-one correspondence
with points in S /7y X Zs.
(ii) Similarly, for n >3 any v-isotropic SO(n — 1) orbit O C S**~! has the form
(3.3) Oy = (w1, wy - §"72)
for some w = (wy,ws) € S3. Moreover, if w and w' € S? then Oy = Oy if and only if
w' = pjpw for (j, k) € (+—)) = Za < Zo X Zy. In particular, isotropic SO(n — 1) orbits in
S?=1 are in one-to-one correspondence with points in S /7y, where Zo = (py_).

Proof. We begin with a more general result that applies to isotropic orbits of any connected Lie
subgroup of SU(n). Let G be any connected Lie subgroup of SU(n), g denote the Lie algebra of G
and x be any point in S?”~!. Then the orbit O, := G - z is contained in S**~! and is y-isotropic
if and only if y(v) = 0 for all v € T, O, and y € O,. By homogeneity it suffices to check this at x.
But since O, is a G-orbit we have T,0, = g-x. Therefore O, is isotropic if and only if v,(g-z) = 0.
Hence using the definition of the standard contact form v on S?"~! we see that O, is isotropic if
and only if

(3.4) Im (x,Az) =0, forany Acg

where (-, -) denotes the standard Hermitian inner product on C". In the language of moment maps
3.4 is equivalent to the condition z € p~1(0) where p : C* — g* is the moment map associated to
the action of G C SU(n). (For the definition and basic properties of the moment map we refer the
reader to Section 4 of [17].)

Specialising to G = SO(p) x SO(q) and g = so(p) x so(q) (with p > 2 and ¢ > 2) we have O, is
isotropic if and only if

(3.5) Im (z, Ax) =0, for any A € so(p) x so(q).

To analyse 3.5, decompose = = (2/,2”) € CP x C? and A = (A’, A”) € s0(p) X s0(q). By considering
x = (2/,0) and A = (A’,0) or x = (0,2”) and A = (0, A”) we find it is equivalent to

(3.6) Im {2/, A'z’) = Tm (2", A"2") =0, for all A’ € so(p), A” € s0(q).

One can check that Im (z, Az) = 0 for all A € so(m) if and only if 2 € C™ has the form z € w-S™!
for some w € C. Applying this to 3.6 twice (for different values of m) we obtain 2’ € wy - SP~! and
2" € wy - ST for some w = (wy,ws) € C2. But since O, C S2(r+9)~1 we have w € S? and hence
3.2 follows. It is straightforward to verify the conditions on w and w’ under which the orbits Ox,
and Oy coincide are as stated.

The proof of Lemma 3.1 for O(n — 1) is a minor modification of the proof above and therefore
we omit it; the main difference is the condition under which two orbits Oy and Oy coincide. [

By Lemma 3.1 the generic vy-isotropic orbit of SO(p) x SO(q) has dimension n — 2 and therefore
we can look for SO(p) x SO(g)-invariant special Legendrians that are curves of SO(p) x SO(q)
orbits, and these curves will satisfy some first order system of ODEs.

SO(p) x SO(g)-invariant special Legendrians and (p, ¢)-twisted SL curves. An immediate
consequence of Lemma 3.1 is that all SO(p) x SO(g)-invariant Legendrian submanifolds of S2(P+9)~1
arise from the twisted product construction of 2.1.

Corollary 3.7 (SO(p) x SO(g)-invariant Legendrians are twisted products).

(i) Forp>2, ¢ > 2 a Legendrian immersion Y : ¥ — S2PT0=1 45 SO(p) x SO(q)-invariant if
and only if Y is locally congruent to a twisted product X1 *w Xo where X1 : SP~1 — §2P~1
and Xo : STV — S2971 gre the standard totally geodesic special Legendrian embeddings.

(i) If p = 1 a Legendrian immersion Y : ¥ — S~ is SO(n — 1)-invariant if and only if
Y s locally congruent to a (degenerate) twisted product Xy, (as defined in 2.4) where the
immersion X : S"2 — §2"73 s the standard totally geodesic special Legendrian embedding.
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In particular, by combining Corollary 3.7 with Corollary 2.18 we obtain

Corollary 3.8 (SO(p) x SO(g)-invariant special Legendrians and (p, ¢)-twisted SL curves).
(i) Forp, ¢ > 2 any SO(p) x SO(q)-invariant special Legendrian immersion is locally congruent
to a twisted product with X1 and Xo as in 3.7, where the twisting curve w is a (p, q)-twisted
SL curve in S3.
(ii) For p=1 any SO(n — 1)-invariant special Legendrian immersion is locally congruent to a
(degenerate) twisted product with X : S*~2 — S?"=3 the standard totally geodesic Legendrian
embedding and w a (1,n — 1)-twisted SL curve in S3.

Corollary 3.7 appears in Castro-Li-Urbano in the statement of Thm 3.1 [4]. Note, however, the
assumption p,q > 3 made in their statement can be relaxed as in our statement. We could also
derive these results about SO(p) x SO(g)-invariant special Legendrians using the methods Joyce
developed to study cohomogeneity one special Lagrangians and special Legendrians [17].

4. THE FUNDAMENTAL ODE SYSTEM FOR (p, q)-TWISTED SL CURVES

Given an admissible pair of integers p and ¢ (i.e. satisfying 1 < p < ¢ and ¢ > 2) we set
n = p+q. This section studies the first order system of complex ODEs 2.25 governing (appropriately
parametrised) (p, ¢)-twisted SL curves. The central result in this section is Proposition 4.26 which
establishes a normal form for any solution w of 2.25 up to the action of certain obvious symmetries.
We use 4.26 in Section 5 to define a particular 1-parameter family w, of (p, q)-twisted SL curves
and the associated 1-parameter family of SO(p) x SO(g)-invariant special Legendrian immersions
X;. Up to symmetry, every (p,q)-twisted SL curve is equivalent to w, for some 7.
We begin by discussing the symmetries of 2.25. For any p and ¢ the (p, ¢)-twisted SL ODEs 2.25
have six obvious types of symmetry:
(1) Time translation invariance w — w o Ty, for any tg € R.
(2) Multiplication by an nth root of unity w +— zw, where 2" = 1.
(3) w— T, ow where T, € U(1) x U(1) € U(2) is the 1-parameter subgroup (depending on p
and q)

. iz/p 0
(&
(a.) o= (70 o)

omplex conjugation w — W.
4) C 1 jugati w
(5) The simultaneous time reflection and spatial rotation given by

t— —1, Wi—2zw,

where z is any nth root of —1.
(6) The simultaneous time and spatial rescaling given by

ts A2 W A, for any A > 0.
More precisely, w is a solution of 2.25 if and only if wy(t) :== \/"w(A=2/"t) is.
Before establishing the basic facts about solutions to the (p, g)-twisted SL ODES we discuss the
geometry of the 1-parameter group of symmetries {T,},er (which depends on p and ¢) appearing in

symmetry (3) above. As in 3.1, for any w € S? let Oy, C S?PT9~1 denote the associated isotropic
SO(p) x SO(q) orbit.

Definition 4.2. For fixed integers p and ¢ define a period of the 1-parameter group {'T'x} by
Per({T,}) := {z e R| T, = Id}.

Clearly, if z € Per({T,}) then O; o = Ow for any w € S?. In other words, for any z € Per({T,}),

T, leaves invariant all isotropic SO(p) x SO(g) orbits in S2(P+a)-1,
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More generally, we call x € R a half-period of {'i'x} if T, leaves invariant all isotropic SO(p) x
SO(q) orbits in S?P+9)~1, In other words,
Per%({'i'm}) ={reR|0; , = Oy VweS}.
A half-period of {T,} which is not a period of {T,} we call a strict half-period of {T,}.
Define the finite subgroup Stab,, , C U(2) by

+1 0
>~ 7. 7 if 1;

0 41 ) 2 X Lo up>1
(4.3) Staby, 4 =

10 ~7 ifp=1

0 +1 ) 2 p==
It follows from 3.1 that
(4.4) x € Per%({'i'x}) > T, € Stab,,.

An immediate consequence of 4.4 is that 2 Per 1 ({T.}) C Per({T,}); this explains the choice of the

terminology half-period. If T, = pjr for some (j, k) € Zy x Zy with pj;, € Stab,, as defined in
3.1 we call = a half-period of type (jk). If x is a half-period of type (jk) then ¢ = (—1)/P and
e”® = (=1)*® and hence jp + kg =0 mod 2.

The following lemma describes the periods and half-periods of the 1-parameter group {T;}.
Lemma 4.5. Fiz a pair of admissible integers p and q and let {'i'x} denote the 1-parameter subgroup
defined in 4.1.

(i) The periods of {'i'x} are given by
Per({T,}) = 2r lem(p, ¢)Z.
(ii) If p > 1 then the half-periods of {'i'x} are given by

Per%({'i'm}) = L Per({T,}) = nlem(p, q)Z.

Moreover, any strict half-period of {T,} is of type (jk) where j = q/hcf(p,q) mod 2 and
k = p/hcf(p,q) mod 2. In particular, for any fized p and q exactly one type of strict
half-period occurs.

(iii) If p =1 then the half-periods of {T,} are given by

)3 Per({T,}) = wlem(p, ¢)Z if n is odd;
Per%({chc}) = {l%’er({fx}) =27 lem(p, q)Z if nis even.

Proof. The proof is a straightforward use of the various definitions, the case p = 1 being different
because Stab,, , (defined in 4.3) is defined differently in this case. O

Remark 4.6. Notice that for j and k defined in 4.5 jp+ kq = 2pq/ hef(p, q) =0 mod 2 as required.
We have the following basic facts about solutions to the (p, ¢)-twisted SL ODEs.

Proposition 4.7. (cf. equation 2.25 and Remark 2.24)
(i) Solutions to the (p, q)-twisted SL ODEs

—p—1-—q

w; = W Wy,
(4.8)
. —p—q—1

admit two conserved quantities

Ti(w) = [w* and Tr(w) := Im(wiwd).
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The symmetries (1), (2) and (3) preserve both conserved quantities T; and Iy. Symmetries
(4) and (5) preserve T, but send Ty — —Ty. Symmetry (6) sends (I1,Ts) — (AN/"T1, \T,).
Hence if w is a solution of 4.8 with I;(w) # 0 then we may rescale using symmetry (6)
to obtain another solution of 4.8 with Z,(w) = 1. For any solution with I(w) = 1, the
possible range of values of To = Im(wiwl) is [—2Tmaz , 2Tmas), where

pPqi
nn

(49) 2Tmaez =

(ii) The stationary points of 4.8 are
Cx{0ju{0}xC ifp>1 or Cx{0} ifp=1.

(iii) The initial value problem for 4.8 with any initial data w(0) € C? has a unique real analytic
solution w : R — C? defined for all t € R, which depends real analytically on the initial
data.

(iv) For any solution of 4.8 with I;(w) = 1 and Zo(w) = Im(wiwd) = =27 (and hence by part
(i) T € [~Tmaz Tmaz)) the function y := |ws|? : R — [0, 1] satisfies the equation

(4.10) %y + 2it = —wiwi.
Therefore y satisfies the energy conservation equation
(4.11) §° = 4(f(y) —47%) = 471 — y)P — 1677,
and hence also the second-order ODE
(4.12) j=2f(y) =2y"" (1 - y)""'(qg — ny),
where we define the function f : R — R (depending on p and q) by
(4.13) fly) =y (1 —y)".

Remark 4.14. The difference between the stationary points of 4.8 in the case p > 1 and the case
p = 1 reflects the difference in the geometry of the nongeneric isotropic orbits of SO(p) x SO(q)
and SO(n — 1) respectively. For p > 1 the nongeneric isotropic orbits of SO(p) x SO(q) have the
form (wy - SP~1,0) and (0, ws -S?1). For p = 1 the only nongeneric isotropic orbits are of the form
(w1, 0). In particular, the orbits of the form (0,ws - S*2) are generic provided wg # 0.

Proof. (i) Conserved quantities. We verify Z; and Zy are conserved by direct calculation. Firstly,
.'le t’W|2 jt(wlwl) =+ %('LUQ@Q) = 2Re (Uh@l =+ 11)2@2) = 0,

where we have used 4.8 in the final equality. Secondly, since

d ( p q)

— P10 P q—1 .
F\WiWs) = pwy  wowy + quiw, W2,

using 4.8 we obtain

d _ _
Zr(@iwd) = [wi P72 |ws 17 (plwal” — glun ) € R
Hence %Ig d - Im (wiw]) = 0. Tt is straightforward to check the action of the symmetries on Z;
and 7 is as cla1med Define y = |ws|?. When Z;(w) = 1

[ Zo(w)| = [Imwiws| < |wiPlwa|” = /y2(1 = y)P = V/£(y)
for the function f defined in 4.13. A short calculation shows that

(4.16) Fy) =y 1 —y)P g —ny),

(4.15)
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p=1, q=2 p=1,9=3 p=1, q=4
0.2 0.2 0.1
0.15 0.15 0.08
0.06
0.1 0.1
0.04
0.05 0.05 0.02 .
Ymin Ymax Umin Ymax Ymin Ymax
0 0 0
0.5 0.5 1 0 0.5 1
p=2, q=2 p=2, q=3 p=2, g=4
0.1 0.04 0.03
0.025
0.08 0.03
0.02
0.06
0.02 0.015
0.04
0.01
0.02 0.01 : 0.005
Ymin Ymax Ymin Ymax Ymin Ymax
0 0 0
0 0.5 0 0.5 1 0 0.5 1
p=3, q=3 p=3, q=4 X 10_3 p=3, q=5
0.02 0.01 6
5
0.015 0.008
4
0.006
0.01 3
0.004
2
0.005 0.002 1
Ymin Ymax Ymin ¥Ymax Ymin Ymax
0 0 0
0 0.5 0 0.5 1 0 0.5 1

FIGURE 1. The graph of f(y) = y?(1 — y)P on the interval [0, 1] for various choices
of (p,q). Ymin and Ymax — the two solutions of f(y) = 472 in the interval [0,1] —
are shown for 7 = %Tmax. The maximum value fia.x = 47}%1 which occurs at y = %
is marked by o.

ax

and therefore the critical points of f are

Crit(f) = {}8, é,} 1}

if p>1;

4.17
( ) if p=1.
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Since f is non-negative on [0, 1] and vanishes only at the two endpoints, the maximum value of f
for y € [0, 1] occurs when y = 1 and hence

et _

nn

472

max?

Jmax = f(%) =

where Ty is defined in 4.9. Hence |Zo(W)| < v/fmax < 27max as claimed. See Figure 1 for the
graph of the function f on the interval [0, 1] for various choices of (p, q).
(ii) Stationary points. Stationary points of 4.8 are given by common zeros of the two polynomials

(4.18) W wl =0 = whwi™
(iii) Global existence, uniqueness and analyticity. The vector field

V(w) = (@ \wd, whwg )
on C? defining 4.8 is clearly real algebraic. It follows then from the standard local existence
and uniqueness results for the initial value problem that locally 4.8 admits a unique real analytic
solution for any initial data and this solution depends real analytically on the initial condition.
Since Z;(w) = |w|? is constant, this local solution remains in a compact subset of C? and hence
global existence follows immediately.
(iv) ODEs for y := |wa|?. Using 4.8, we have

y = 2Re (wow2) = —2Re (W]w3) = —2Re (wfwi),
27 = Im (wqtn) = Im (@W{wl) = — Im (w)wi).

Hence we obtain 4.10. Taking the modulus squared of both sides of 4.10 proves that y satisfies
4.11. Differentiating 4.10 with respect to ¢ and using 4.15 we see that y satisfies the second-order
equation 4.12. Note that the stationary points of 4.12 are exactly the critical points of f and hence
by 4.17 are 0 and £ when p =1 and 0, Z and 1 when p > 1. O

To understand the space of solutions to 4.8 modulo the action of the symmetries (1)—(6) we need
the following auxiliary result about solutions of 4.11:

Lemma 4.19. Let w be any solution of 4.8 with Iy (w) = 1 and Zo(w) = Im(wiwl) = —27 and let
y := |wa|? : R — [0,1] be the associated solution of 4.11.

(1) If 0 < |7| < Tmag, the following holds:
a. y s periodic of period 2p, > 0 and hence any two solutions of 4.11 with the same value
of T differ only by a time translation. Moreover, the period pr satisfies

. ™ pq
4.20 lim 2p, = — /.
( ) T I’TWLaz' p Tmazx 2”3

b. The range of y iS [Ymin , Ymaz), where 0 < Ymin < % < Ymaz < 1 are the only two
solutions of the degree n polynomial equation

(4.21) fly) =yi(1 —y)’ = 472,
that lie in the interval [0, 1].
c. As T — 0 we have
(4.22) Ymin = 20791 + O(1¥9),  Ymae = 1 — (27)%P(1 4+ O(72/P)).

(ii) If |7| = Tmag, then y = L.

(iii) If 7 =0 and p > 1 then one of the following holds:
a. y=0
b.y=1



CLOSED TWISTED PRODUCT SPECIAL LAGRANGIANS 21

c. y s strictly monotone and satisfies

~ Jyoo Ty, some tyg € R; if y is decreasing
oo TyoT some tg € R; ify is increasing

where yo : R — (0,1) denotes the unique (decreasing) solution to the initial value

problem
y=-2vfy), y0)= %-

Alternatively, yo can be characterised as the unique solution to 4.12 with initial condi-
tions

’ y<0) = —4Tnag-

y(0) = %

Moreover, yo satisfies

. lim yo(t) =1 and tlim yo(t) = 0.
(iv) If =0 and p =1 then one of the following holds:
a. y=0,
b. y =y o Ty, for some ty € R, where yo : R — (0, 1] is the unique solution to 4.12 with
initial conditions
y(0)=1, y(0)=0.

Moreover, yo is even, increasing on (—o0,0) and satisfies limy_, 100 yo(t) = 0.

Remark 4.23.

(i) Detailed asymptotics for the 7 — 0 limit of the period 2p, are established in Section 7.

(ii) Since y satisfies an equation of the form > = P(y) where P is a polynomial of degree n,
any solution of 4.11 can be expressed in terms of hyperelliptic functions. When n = 3 or 4
y can be expressed in terms of Jacobi elliptic functions—see [10,13] for such expressions in
the (p,q) = (1,2) case. Moreover, in the 7 — 0 limit the modulus k2 of the elliptic functions
tends to 1. In this limit these elliptic functions become hyperbolic trigonometric functions.
e.g. yo =sech®’t when p=1, ¢ =2 and yy = %(1 — tanht) when p = ¢ = 2.

(iii) Figure 1 shows ymin and ymax on the graph of f(y) for various (p, q) for 7 = %Tmax.

Proof. Motivated by 4.11 we define the 2-variable polynomial P, : R? — R
Pr(y,2) = 22 — 4f(y) 4+ 1672 = 2% — 4y7(1 — y)P + 1672

Let C, denote the real affine curve in R? defined by Pr = 0. We can also view P, as a 2-variable
complex polynomial and consider the complex affine curve CF in C? defined by P, = 0. We find

(y,2) € Sing(CT) <= f(y) =47°, f'(y) =0, z=0.

Hence from 4.16 we have

®’ for 0 < |7_| < Tmax;
Z.0) for |7| = Tmax;
4.24 Si C(C = Si CT — (n’ ’ max
- e(Cr) = Sing(C) (0,0), for 7=0and p = 1;

(0,0)U(1,0) forT=0andp>1.

Since P, = 2, all singular points of C® are double point singularities. Further calculation yields:
(1, 0) is always an ordinary double point,
(0,0) is an ordinary double point if ¢ = 2 but a node if g > 3,
(1,0) is an ordinary double point if p = 2 but a node if p > 3.
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p=1, q=2 p=1, q=3 p=1, g=4

p=3, 4=3
0.2 0.1
0.05
0(
-0.05
-0.2 -0.1
0 0.5 1

FIGURE 2. The curves CY for 7 € [0, Tiax] and various choices of (p, q).
Singular points are marked: ordinary double points as x and nodes as o.

See also Figure 2.

(i) : 0 < |7] < Tmaz- I 0 < |7| < Tmax, 4.24 implies that the real affine curve C; is non-
singular. C, is not necessarily connected, so let C2 denote the component containing the point
(£,4y/720 — 72). (y,2) € C; implies f(y) > 47%. The set f~!([47%,00)) C R is not necessar-
ily connected but the component containing % is the closed interval [Ymin,Ymax] C (0,1). Since
fly) < 472, for y € (0,1) any point (y,z) € CV satisfies (y,2) € [0,1] X [~4Tmax, 4Tmax). In
particular, the component C? is a compact nonsingular curve and hence is diffeomorphic to S*.
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Hence all solutions of 4.11 with 0 < || < Tmax are non-constant and periodic with period 2p, > 0
depending only on 7. In particular two solutions of 4.11 with the same values of 7 differ only by
time translation.
The geometry of the curves CV is illustrated for various choices of (p, q) in Figure 2. The different
types of singular points which can occur in the 7 = 0 energy level are clearly visible in this figure.
a. Asymptotics of p; as T — Tmax: We consider the first order corrections to the stationary point
y = q/n when 7 = Tyax. If we write § = y — ¢/n, then 4.12 becomes

gj = _wzg =+ O(g2)7

where

-1 -1 83
oG (O

n n pq max-*

Hence lim,_,._, 2p; = 27/w, as claimed.

b. Since |[w| = 1 and y = |wz|?, we have 0 <y < 1 for all t € R. At any critical point of y, 4.11
implies that y satisfies equation 4.21. It follows from the definitions of ymax and ymin in terms of
roots of the polynomial 4.21 that the maximum and minimum values of y are therefore ym,a.x and
Ymin respectively.

c¢. The stated asymptotics of ymin and ymax as 7 — 0 follow immediately from the characterisation
of Ymin and Ymax as the only solutions of 4.21 in the range [0, 1].

(ii): |7| = Tmaz- When 72 = 72, from 4.11 we have §? = 4(f(y) —472.) < 4(fumax —472.,) <
0, with equality if and only if f(y) = fmax, i-e. if and only if y = g/n. Hence we have § = 0 for all
teRand y =q/n.

(iii): 7 =0andp > 1. Recall from 4.17 that for p > 1 both y = 0 and y = 1 are critical
points of f and hence give rise to constant solutions y = 0 and y = 1 of 4.12.

4.11 implies y = 0 if and only if y = 0 or y = 1. Since y € [0,1] and {0,1} C Crit(f) a non-
constant solution y contains no points with ¢ = 0 and is therefore monotone with 0 < y < 1 for all
t. If y is increasing then y o T is decreasing and hence by composing with T if necessary we can
assume y satisfies the 1st order ODE

(4.25) i = —2/T().

Since y is monotone and bounded it must approach constant values c_ and ¢y as t — f+o00. Recall
the elementary fact that if  is an integral curve of a vector field V' and lim; o ¥(t) = Y00, then voo
must be a zero (or stationary point) of the vector field V. Hence we see that ¢y must be stationary
points of 4.12 which also belong to the zero energy level. Therefore c4. € Crit(f) N f~1(0) = {0,1}.
Since y is strictly decreasing we must have lim;_,_ y(t) = 1 and lim;_,~ y(t) = 0. In particular,
for any such solution of 4.25 there exists ¢y € R so that y(t9) = ¢/n. Hence § := yo Ty, is a solution
of 4.25 with ¢(0) = ¢/n, and so by uniqueness of the initial value problem 3 = yp.

(iv): =0 andp=1. Recall from 4.17 that for p =1, y = 0 (but not y = 1) is a critical point
of f and so gives rise to the stationary point y = 0 of 4.12.

Again from 4.11, y = 0 if and only if y =0 or y = 1. For p = 1, y = 0 is a stationary point of
4.12 but y = 1 is not. If y is non-constant, then y cannot attain an interior minimum since g(t) = 0
implies y(t) = 1. Therefore, as Crit(f) N f~1(0) = {0} for p = 1, y must approach 0 as t — Foo.
Since y € [0, 1] is non-constant and tends to 0 as ¢ — 00, y attains an interior maximum at some
point ty € R. Hence y(ty) = 0 and therefore y(tp) = 1. Then by uniqueness of the initial value
problem y o T;; = yo. Evenness of yg follows from the invariance of 4.12 and the initial conditions
y(0) =1, y(0) = 0 under t — —t. O

We use Lemma 4.19 to establish normal forms for solutions of 4.8.

Proposition 4.26. Fiz a pair of admissible integers p and q and let w be any solution of 4.8 with
Zi(w) =1 and Za(w) = —27 with 0 < |7| < Tpas-



24 M. HASKINS AND N. KAPOULEAS

(i) If p>1 and 0 < |7| < Tnas then w is equivalent under symmetries (1)-(3) to w, : R — S§3
defined as the unique solution to 4.8 with initial value

0) = (\/gemfﬂp, \/%emfﬂq) ;

where a; € [—7, 5] is defined by

. T
Q. = arcsin | — .
Tmaz

(ii) Ifp > 1 and 7 = 0 then w is equivalent under symmetries (1)-(3) to the unique solution of
4.7 with one of the following four initial conditions
a. w(0) = (1,0),
b. w( ) (0,1),

= (JEy),
d. w(0) = ( m/2p\/; ZTF/Qq\/%).

(iii) Ifp=1 and 0 < |7| < Tinas then W is equivalent under symmetries (1)—(3) to w, : R — S3
defined as the unique solution to 4.8 with initial value

WT(O) = (_i SgN T v/ 1- Ymazs V/ yma:c)-
(iv) If p=1 and 7 = 0 then w is equivalent under symmetries (1)—(3) to the unique solution of
4.7 with one of the following two initial conditions
a. w(0) = (1,0),
b. w(0) = (0,1).

Proof. Let w be any solution of 4.8 with Z1(w) = |[w|? =1, Zo(w) = —27 and 0 < |7| < Tipax. Set
y = |wa|? and write w(0) = (/1 — y(0) €1, \/y(0) ?2).

(i) Case p > 1 and 7 # 0. If 7 = £7yax then by 4.19.i y = ¢/n and hence y(0) = ¢/n and
y(0) = 0. If 0 < || < Tmax then by 4.19.i.a and using the time translation invariance of 4.8
(symmetry 1) we can arrange that y(0) = |ws|?(0) = £ and that 3(0) < 0. In both cases we have

n

y(©) =2 and §(0) <0.

The former together with 4.10 implies that
sin(pth + qf2) = — ",

Tmax

while the latter together with 4.10 implies

cos(pb1 + qb2) > 0.

Acting with the nth root of unity z, = e*™*/™ (symmetry 2) leaves y(0) invariant and sends

pb1+ qbs — pb1 + qbs + 2kmw. Hence by using symmetry (2) we can arrange that pfy +¢fs € [—7, 7).
Finally by using symmetry (3) we can arrange that pfy = ¢fly. Therefore we have

sin2pfy =sin2¢fy = —— =sina;, cos2pfy >0 and 2pf; € [—m, 7).

Hence 2pf; = 2¢qfs = «; as claimed. Notice that in this case

wiwy(0) = (\/%)p (\/%)q €T = 2Taxe’ T

(ii) Case p > 1 and 7 = 0. By 4.19.iii y = |w2|? must be one of the following: (a)y =0, (b) y =1,
(¢c)y=yooTy, (d) y =yoo Ty, oT for some ¢y € R, where yp : R — (0, 1) is the function defined in
4.19.ii.c. Tt is easily seen that (a) implies w is a stationary point of the form w = (e¥1,0), while
(b) implies w is a stationary point of the form w = (0, ¢%?). Hence w is equivalent using symmetry
(3) to the stationary points (1,0) or (0,1) in cases (a) and (b) respectively. Suppose we are now
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in case (c) or (d) and hence y = yo o Ty, o T? for some o € R and j € {0,1}. By time translation
invariance of 4.8 we can arrange that y(0) = I (i.e. that to = 0.) Thus we have
y(0) =2, and $(0) = (—1)7 M drpax.
Substituting these initial conditions into 4.10 and simplifying yields
ei(p91+q92) — (_1)j_

As in case (i) by using symmetry (2) we may arrange that pfy + qf2 € [—m, ) and then use sym-
metry (3) to arrange that also pf; = . Hence the previous equality reduces to e*P% = (—1)J
with 2pf; € [—m, 7). In case (c) j = 0 and so 2pf; = 2¢f = 0 is the unique solution in the required
range, whereas in case (d) 7 = 1 and so 2pf; = 2¢f; = 7 as claimed.

(iii) Case p =1 and 7 # 0. If 0 < |7| < Tmax by using time translation invariance of 4.8
(symmetry 1) we may assume that y(0) = ymax and therefore also y(0) = 0. If 7 = £7pax then by
4.19.ii y = ¢/n = Ymax and y(0) = 0. Hence in either case from 4.10 we have

2T = —wlwg_l(O) = —i\/ f(Ymax) sin(01 + (n — 1)02) = —2i|7|sin(61 + (n — 1)62),

and therefore

sin(f; + (n — 1)) = L= —sgnT.

7]
As in the previous cases by acting with an nth root of unity we can arrange that 6, + (n — 1)63 €
[, m) and by acting with symmetry (3) that #3 = 0. Therefore we have sinf; = —sgn 7 with
0, € [—m,m). Hence ) = —sgnr - %7‘( as claimed.

(iv) Case p=1 and 7 = 0. By 4.19.iv y = |wz|? must be one of the following: (a) y = 0 or (b)
y =yoo T¢, where top € R and yo : R — (0, 1] is the function defined in 4.19.iv.b As in (ii), case (a)
implies that w is a stationary point of the form (€1, 0) and hence is equivalent using symmetry (3)
to (1,0) as claimed. Suppose now that we are in case (b). By time translation invariance we can
arrange that ty = 0 and hence y(0) = 1. This implies w1 (0) = 0 and w2 (0) = €2 for some , € R.
Using symmetry (3) we can arrange that 6 = 0 and hence that w(0) = (0, 1) as claimed. O

Remark 4.27. Note that in cases ii.a and ii.b of Proposition 4.26 the initial conditions are stationary
points of 4.8 and hence the corresponding solutions with this initial data are w = (1,0) and
w = (0,1) respectively. Let wy denote the unique solution to 4.8 with initial condition wo(0) =

( \/g , \/%> as in ii.c. Then by uniqueness of the initial value problem for 4.8 we see that

(4.28) wo(t) = (v/1 = wo(t), Vyo(t) ),
where yo(t) : R — (0, 1) is the decreasing function defined in 4.19.iii.c.

Note that (0,1) is not a stationary point of 4.8 for p = 1. Let wq denote the unique solution
of 4.8 with initial condition wo(0) = (0,1) as in iv.b. Then by the uniqueness of the initial value
problem for 4.8 we see that

(4.29) wo(t) = (sgnty/T—yo(t), Voo(1)),

where yo : R — (0, 1] is the even function defined in 4.19.iv.b. (Since wa(t) = \/yo(t) is real and

positive for all ¢, the equation for w; in 4.7 implies that w; > 0 for all ¢. By 4.19.iv /1 — yo(¢) is
decreasing for t < 0 and increasing t > 0, so sgnty/1 — yo(t) is increasing for all ¢ as required.)

Remark 4.30. The argument from 4.26.iii applied in the case p > 1 implies that any solution of 4.8
with Z;(w) = 1 and Za(w) = —27 and 0 < |7| < Tax is equivalent under symmetries (1) to (3) to

Wr = (=¢2 sn(r) /T~ Y v/ )

Similarly, the argument from 4.26.i works for p = 1 as well as p > 1. However, we will only make
use of the normal forms stated in 4.26. The difference in our choice of normal form for p = 1 and
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p > 1 reflects differences in the geometry of the resulting special Legendrian immersions in these
cases as we will explain later.

5. wr AND THE SO(p) x SO(q)-INVARIANT SPECIAL LEGENDRIAN IMMERSIONS X .

We now define the particular 1-parameter family w; of (p,q)-twisted SL curves we will use
throughout the rest of the paper by specifying initial data w.(0) as in the normal form Proposition
4.26. Associated to the 1-parameter family w, is the l-parameter family X, of SO(p) x SO(q)-
invariant special Legendrians. Proposition 4.26 implies that any SO(p) x SO(g)-invariant special
Legendrian in S?Pt2¢~1 is congruent to X, for some 7.

Proposition 5.1. Fiz a pair of admissible integers p and q and choose any T € [—Tmazs Tmaz|-
Define w, : R — S3 as the unique solution of 4.8 with initial data

(5.2) w,(0) = <\/%ei°”/2p, %ei%/?q) if p>1;

where a; € [—7, 5] is defined by

(5.3) Q1= arcsin <— T ),

Tmax

or

(5.4) WT(O) = (_i sgn 7/ 1 — Ymaz, v/ ymax) ifp=1.
Then w, depends real analytically on T € (—Tmazs Tmaz) ond satisfies W_, = W,. In particular,
wo : R — S3 € C? is contained in R? C C?.

Proof. To prove that w; depends analytically on 7 it suffices by 4.8.iii to prove that the initial
condition w.(0) given by 5.2 or 5.4 depends analytically on 7 for 7 € (—Tmax, Tmax)- For p > 1 it is
clear from 5.3 that «, depends real analytically on 7 for |7| < Tmax. Hence by 5.2 w.(0) depends
analytically on 7 for |7| < Tiax. For p =1 we have f'(ymax) = Y2z (q — NYmax) 7 0 for |7| < Tmax.
Hence by the real analytic Implicit Function Theorem (see e.g. [26, Thm 2.3.5]) Ymax iS an analytic
function of 7 € (—Tmax, Tmax). Therefore |/ymax is also an analytic function of 7 € (—Tmax, Tmax)

(recall Ymax > (n—1)/n). Write w,(0) = (irr, \/Umax). Because Zo(w,(0)) = Imwywy 1 (0) = —27
_r
V ymax n-l

and hence is an analytic function of 7 € (—Tmax, Tmax). From 5.2 or 5.4 we have w_,(0) = w.(0)
and hence w_, = W, by uniqueness of the initial value problem for 4.8. ([l

re=—

The associated function y, = |u12|2 and its initial value characterisation. For the solution w.
defined in 5.1, define y, := |wsz|?. By 4.7 y, satisfies equations 4.11 and 4.12. Analytic dependence
of yr on 7 € (—Tmax, Tmax) follows immediately from analytic dependence of w.

For p =1, y, is the unique solution of 4.12 satisfying the initial conditions

(5'5) y(O) = Ymax, y(O) = 0.

In particular, yg is the unique solution of 4.12 satisfying y(0) = 1, ¢(0) = 0 introduced in 4.19.iv.b.
Similarly, for p > 1, y, is the unique solution of 4.12 satisfying the initial conditions

(5.6) y(0) =L, §(0) = —4mmax cosar = —4\/72_— 72,
n
yo coincides with the solution of 4.12 satisfying y(0) = ¢/n, y(0) = —47max introduced in 4.19.iii.c.
For both p =1 and p > 1 it follows from these initial value characterisations of y, that y_, =y,

which is consistent with the fact that w_, = w,.
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Define round cylinders of type (p, q), Cyl??, by
I x SP~1 x S9! if p>1;
9.7 CylP? .= ’ ’
(57) Y {IXS”2, ifp=1,

where I C R is an interval which we omit in the notation when I = R. In Section 3 we thought
about SO(p) x SO(q)-invariant special Legendrians by treating our special Legendrians as (un-
parametrised) subsets of S2(P+9)=1 " From now on it will be more convenient to deal with special
Legendrian immersions X, : Cyl”4 — S2(+0)—1 and to talk about special Legendrian immersions
equivariant with respect to the obvious actions of SO(p) x SO(q) on both domain and target.

We now define the 1-parameter family of special Legendrian immersions X, : Cyl?? — S2(r+a)—1
using the 1-parameter family of (p, ¢)-twisted SL curves w, defined in Proposition 5.1.

Definition 5.8. For 7 € [—Tiax, Tmax] define an immersion X, : CylP4 — S2(p+9)-1 by

XT(t,Ul,UQ) = (wl(t)-al, ’U)Q(t)'ag), for p > 1;
XT(t7U) = (wl(t)an(t) ’ J)? for p=1,

where t € R, 01 € SP71, 09 € S9! 0 € S 2 and w, = (wy,ws) is the unique solution to 4.8
specified in Proposition 5.1.

We now establish some basic properties of X.

Proposition 5.9. For T € [—Tmaz, Tmas] the immersion X, : CylP? — S2Pt9-1 defined in 5.8 has
the following properties:

(i) X; is a smooth special Legendrian immersion depending analytically on T for T € (—Tmaz, Tmaz)
and satisfies X_; = X,. In particular, Xq is contained in SPT4—1 Cc RPT2 C CP+9.
(ii) For p > 1, the metric g, on Cyl”? induced by X, is

W [2dt* + [wi[gsp1 + |walgga—r =y (1 = y)P1dt* + (1 = y)ggr—1 + y gsa1.
For p =1, the induced metric g, on Cyl""~ ! is
|w?dt® + [wal*ggn—2 = y"2dt* + y ggn-2.
(iii) X, is SO(p) x SO(q)-equivariant, i.e. for any M = (M1, M) € SO(p) x SO(q) we have
MoX,=X,0M,
where M = (My, Ma) acts on Cyl?? by M - (t,01,02) = (t,M101, Ma02), and

M — ( '\gl ,\2 ) € SO(p) x S0(¢q) € SO(p+ q).
2
(iv) When 7 =0 we have

SPHhA (SPL0)U (0,877, forp > 1;

Xo(CylP) =
o(Cy1™) {S"‘l\(il,o)eR@R”—l, forp=1.

(v) When T = Tyaq, we have

(5.10a) Xr(tyo) = <_iﬁ62in7t, @6—2in7t/(n—1) J) : forp=1:

(5.10]3) XTmam(t,Ul,UQ) = (\/ge—iﬂ/(4p)e2m'7t/p o1, \/%e—iw/(4q)e—2ni7t/q U2> : forp > 1.
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(vi) If X : CylP4 — S2P+0=1 s any non totally geodesic SO(p) x SO(q)-invariant special Leg-
endrian immersion then X = e¢“ T, 0 X, o Ty for some z, y € R, 0 < |T| < Tyaz and nth
root of unity w € St where T, € SU(n) is defined by

~ w/P1d 0
_ (€ P
(5.11) T, = < 0 v/ qu) :

Proof. (i) For 7 # 0 we have |w1|?> > ymin > 0 and |w2|?> > 1 — ymax > 0. Because there are no
points where wy or wy vanish, 2.9 implies that X is a Legendrian immersion. Since w; is a solution
of 4.8, 2.18 and 2.19 imply that X, is special Legendrian. We deal with the exceptional case 7 = 0
separately in part (iv). Analytic dependence of X, on 7 follows from the analytic dependence of
w, on 7 proved in Proposition 5.1. The final part follows from the fact that w_, = w, (see 5.1).
(ii) follows immediately from equations 2.11 and 2.22.
(iii) The SO(p) x SO(g)-equivariance of X, is clear from the definition of X in 5.8.
(iv) 7 = 0 limit. From part (i), Xo(Cyl”9) C SPTa~1,

Consider first the case where p > 1. From 4.28

Xo(t,o1,02) = (V1 =yo(t) o1, Vyo(t) o2)

where yp : R — (0, 1) is the decreasing function defined in 4.19.iii.c. Recall from Remark 2.5 that
the map IT : [0, 7/2] x SP~1 x §71 — SP+a=1 given by

I1(t,01,09) = (costoy,sint oy),

is surjective and on restriction to the interval (0,7/2) gives a diffeomorphism between (0,7/2) x
SP=Lx S9! and SPT4~1\ (SP~1,0)U(0,S971). Since by 4.19.iii.c o is decreasing with lim; ., y(t) =
1 and limy_,o y(t) = 0 we see that Xy is a reparametrisation of this diffeormorphism.

Similarly, from 4.29 for p = 1 we have

Xo(t,0) = (—sgnt\/1 —yo(t), Vyo(t) o
where yo : R —» (0, 1] is the even function defined in 4.19.iv.b. The map II : [0, 7] x S*~2 — S*~1
defined by II (¢,0) = (cost, sint o) on restriction to the open interval (0, 7) gives a diffeomorphism
between (0, 7) x S"~2 and "1 \ (£1,0). Since by 4.19.iv.b g is even, increasing on (—o0c, 0), satis-
fies y0(0) = 1 and lim;— 400 yo(t) = 0 we see that X is a reparametrisation of this diffeomorphism.
(V) T = Tmax limit. We leave this as an elementary exercise for the reader.
(vi) follows from 3.8 and the normal form for solutions of 4.8 established in 4.26. O

Torques of X,. Many geometric variational problems admit homological invariants associated
with symmetries of the problem. These invariants have played a fundamental role in global struc-
ture results including uniqueness questions [25, 30, 31] and also in gluing results [19, 21-24, 32].
For minimal and CMC immersions in Euclidean space or round spheres the invariants associ-
ated to translations and rotations are called the forces and torques respectively. We calculate the
(restricted) torque of the SO(p) x SO(q)-invariant special Legendrians X, below in 5.14. An appro-
priate component of the torque (depending on p and q) is exactly proportional to the parameter 7.
This is similar to the case of Delaunay surfaces where (appropriately centred) the torque is zero and
the force is a vector along its axis whose magnitude is 7, the parameter of the Delaunay. The torque
of X, enters into our argument to calculate refined asymptotics of the angular period p, and its
derivative as 7 — 0 and therefore is needed in our work on higher dimensional SL gluing [11,12,14].
More generally we expect that the torque will play an important role in controlling aspects of the
global geometry of special Legendrians.

Suppose M is an oriented m-dimensional submanifold of the ambient manifold (M,g) and k €
iso(M,q) is a Killing field on (M,g). Given any oriented hypersurface ¥ C M we define the k-flux
through ¥ by

(5.12) Fi(S) = /E g(k,7) dve.,
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where 7 is the unit conormal to 3, chosen so that the orientation defined by ¥ and 7 agrees with
that of M. An immediate consequence of the First Variation of Volume formula [34, 7.6] is

Lemma 5.13. If M is an oriented m-dimensional minimal submanifold of (M,g), ¥ is an ori-
ented hypersurface of M and k € iso(M,q) then the k-flux through ¥, F(X), depends only on the
homology class [¥] € Hy,—1(M,R).

In other words, when M is a minimal submanifold of (M,g) the k-flux map defined in 5.12
induces a linear map F : H,,_1(M,R) — iso(M,g)*. In particular, if (M,g) = (S**~!, gsq) then
iso(M,g) = o(2n) and we call the map F : Hy—1(M,R) — 0(2n)* the torque of M. For special
Legendrian submanifolds of S?*~! it is also convenient to define the restricted torque of M, which
is the restriction of the torque to the subalgebra su(n) C o(2n).

Proposition 5.14. For p > 1 the su(n) restricted torque of the SO(p) x SO(q)-invariant special
Legendrian immersion X, : CylP4 — S2P+t0=1 s given by
(5.15)

15w . 1N57g . -1 g—1 — i di .
fk(XT):{zf(p DA = LY ) VoIS ) VoI(ST) k= idiag(As - A it 1)

0 if k € su(n) is off-diagonal,

where we implicitly use the homology class of any meridian in Cyl”9,
For p =1 the su(n) restricted torque of the SO(n — 1)-invariant special Legendrian immersion
X, : Cylbn =t — §22=1 s given by

(5.16) Fu(X;) = {QT <A — i “J’) Vol(S"™%)  k=idiag(A, pa, .. pn1);

0 k € su(n) is off-diagonall.

In particular, if we take k =t to be the generator of the 1-parameter subgroup {Zlv'x}xeR (defined
in 5.11) associated to the rotational period Tos_of X then we obtain

272 Vol(SP~1) Vol (871 if p > 1;

27 Vol (S"2), if p=1.

Proof. We give the proof in the case p > 1. The result in the case p = 1 follows by making the
obvious adjustments to the argument below.

Case p > 1: By the homological invariance of Fy(X) we may evaluate the k-flux on any meridian
{to} x MerP? of Cyl”4. From 5.9.iii the vector field 0; is orthogonal to any meridian {to} x MerP.
Hence the unit conormal is given by n = 0, X, /|0;X;|. By the definition of X, in terms of w, we
have |0;X;| = |w|. Using 2.22 and 5.9.ii the volume form induced on the meridian {to} x Mer?? is

[wi [P w77 dvegp-1 Advge-1 = [0: X | dvep—1 Advge-1 .

Therefore

0y X+
(5.17) fk = / k . 4 |6tXT| dVSpfl /\dngfl = / k . 815X7— dVSpfl A dVSqfl,
t=to latXT‘ t=to

where t = tg is a shorthand for the meridian {to} x Mer?? on which the R coordinate ¢ equals tg.
k € su(n) is diagonal: If k = idiag(A1,..., Ap, 11, ..., lg) € su(n) a short computation shows
that
p ' q .
k-0: X, = Im(@lwl) Z )\Z‘(Ui)Q + Im(@ﬂbg) Z /Lj(O’%)2,
i=1 i=1
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where 01 = (0},...,07) € SP"L CRP and 03 = (03, ...,049) € ST~1 C R% Hence using 4.8 and the
definition of 7 we have

p q
(5.18) k-9, X, =21 Ai(0)? = uied)? |
i=1 j=1
By symmetry we have
4 1 : 1
(5.19) / (09)? dvgp-1 = — VoI SP™!  and / (63)? dvgs1 = = VolSI71,
Sp—1 b Sa-1 q

for 1 <i<pand1<j<q. Combining 5.17, 5.18 and 5.19 we obtain

1< 1<
Fie=2r | =) A== py | Vol(sP~) Vol(s™).

pi3 j=1

k € su(n) is off-diagonal: Off-diagonal elements k € su(n) can be decomposed as so(n)@® i Symg(n, R)
where Sym g(n, R) denotes the off-diagonal real symmetric n x n matrices. By linearity it suffices
to prove Fy = 0 for any k € so(n) and k € i Sym_g(n,R).

First we show that Fy vanishes for any k € so(n) C su(n). Let ey,...,e, denote the standard
unitary basis of C". For i # j € {1,...,n} define R;; € so(n) by

Rij(v) = (e;-v)ej — (e -v) e;, for any v € R™.

{Ri;} fori < j € {1,...,n} forms a basis for so(n) C su(n). Using the definition of X, and R;; we
find
wi (ole; — a{ei) for 7,5 €{1,...,p}
RijXr = { wa(ohe; — aglei) for 7,7 €{1,...,q};
wiole; — wgaglei for ie{1,...,p}, 7 e{1,...,q},
where i =i — p and j' = j — p. Taking the inner product with 9, X, we obtain

0 for 7,5 €{1,...,p}
(520) RinT - X, =<0 ' for i/,j, S {1, e q};
Re(wyg — watin)oioy, for i€ {l,...,p}, 5 €{l,...,q}.

Clearly we have

. -7 . -7
(5.21) o a% dvgp-1 Advge—1 = o] dvgp—1 O'% dvge-1 = 0.
Sp—IxS§e-1 Sp—1 sa-1

Combining 5.17, 5.20 and 5.21 we conclude Fi = 0 for k = R;; and hence by linearity F = 0 for
all k € so(n) C su(n).
Now we show that Fi = 0 for any k € iSym.g(n,R). For i < j € {1,...,n} define S;; €
Sym,g(n, R) by
Sij(v) = (ej-v)ej + (ej-v)e;, forany v e R".
{V/=1S;;} for i < j € {1,...,n} forms a basis for i Sym,g(n,R) C su(n). Using the definition of
X, and S;; we find

wl(aiej+a{ei) for 7,5 €{1,...,p};
V=15;X; = V-1 wy(obe; + o el) for 7,5 €{1,...,q};
wiole; +weode; for i€ {l,...,p}, i €{1,...,q},
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where as above i’ =i — p and j' = j — p. Taking the inner product with 9; X, we obtain

2 Im (w11 )obo] for 7,7 €{1,...,p}h
(5.22) Sij Xy 0, X, = { 2Tm(Watirn) o o for i, € {1,...,q};
Im (w1 1o +w2w1)a§ag' for ie{1,....p}, 7/ €{1,...,q}.

For any 7 # j we have

(5.23) / oto] dvgp-1 Advgg—1 = Vol(ST71) / olol dvgp1 =0,

Sp—1xse—1 Sp—1
since for any i # j, aia{ is an eigenvalue of the Laplacian on SP~! with eigenvalue A = 2p, and
hence is L?-orthogonal to the constant functions. (Alternatively, one can consider the involution
mapping o} +— —ot and of — —o¥ for any k ¢ {i, j} and fixing all other components of ;. Clearly
this symmetry preserves dvgp—1 but sends oio] — —ctol. Hence the integral in 5.23 is odd under

this symmetry and therefore vanishes.) Similarly, we have

(5.24) / Jgagl dvgr—1 A dvge—1 = Vol(SP~1) / Jgagl dvge-1 =0,

Sp—1xse—1 Sa—1
for any ¢ # j. For any i # j, combining 5.17, 5.21-5.24 implies that 7, = 0 for k = /—1S;; and
hence by linearity Fy = 0 for all k € i Sym g(n,R) C su(n). O

6. PERIOD CONDITIONS FOR W,

In this section we study the conditions under which w, forms a closed curve in S* and also when
the curve of isotropic SO(p) x SO(q) orbits determined by w is closed; the latter is directly related
to understanding when the SO(p) x SO(g)-invariant SL immersions X, factor through closed SL
embeddings.

Symmetries of y,. We begin by establishing the symmetries of 3, := |ws|? in the three cases (i)
p=1,(ii)) p>1and p# ¢ and (iii) p > 1 and p = q.

To state these results we need to introduce some notation to describe the basic properties of ..
For p > 1, recall from 5.6 that y, satisfies the initial conditions

y(0) = %, 9(0) = —4Tmax cos ar = —4\/T2 0 — T2,

whereas for p = 1 from 5.5 it satisfies

y(O) = Ymax, y(O) =0.
The different initial conditions for y, affect where the 2p,-periodic function g, attains its maxima

and minima in the cases p = 1 and p > 1. In the case p > 1 the choice of initial data for y, implies
that there exist unique real numbers p;, p> € (0, p;) satisfying

(6-1) y7—<—P;) = Ymax, yT(p:—r) = Ymin,

and so that y, is strictly decreasing on (—p;,p; ). We call these two numbers the partial-periods
of y,, since

(6.2) 2p; = 2p; + 2p;.

In general, p/ and p; are not related except when p = ¢ in which case we will prove shortly
that pI = p-. Illustrative plots of y, are shown in Figures 3 and 4 for p =1 and p > 1, p # ¢
respectively.

Throughout the following lemma we assume 0 < |7| < Tmax and discuss the exceptional cases
7 = 0 and |T| = Tmax in Remark 6.11 below. Recall, also the notation for elements in Isom(R)
introduced in Section 1 in Notation and Conventions.

Lemma 6.3 (Symmetries of y,).
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FIGURE 3. Profile of y, := |wsq|? for p =1
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FIGURE 4. Profile of y, = |ws|? for p > 1

(i) Forp=1, ¢ =n — 1 the symmetries of y, = |ws|? are generated by

(6.4) yroTop. =yr and yroT =y;.
That is, y, s an even 2p,-periodic function. Moreover, we have
(6.5) Y7(0) = Ymaz  and  yr(Pr) = Yumin-
(ii) For p > 1 and p # q the symmetries of y; are generated by
(6.6) YyroTop, =y, yroT =y, and yroT - =y,
(iii) For p > 1 and p = q the symmetries of y, are generated by
(6.7) yroTop, =Yy YroT, p=ur, yroT o=y and yroT=1-y,,
and the partial-periods defined in 6.2 satisfy
(6.8) pr =p; =5pr and yYr(5Pr) = Ymin,  Yr(—3Pr) = Ymas-
Remark 6.9. It follows from the partial-period relation 6.2 that the reflections Ipi and pr; satisfy
(6.10) T ol =T, Tirol - =Toyp.

Hence the first symmetry of ¢, in 6.6 is a consequence of the second and third symmetries.
Similarly, it is straightforward to check that T o IpT /2© T = I_pT /2- It follows that the two
symmetries T and T, /, are sufficient to generate all four symmetries in 6.7.

Remark 6.11. For 7 = 0, y, is no longer periodic (the period 2p, — 0o as 7 — 0; see 7.3 for a more
precise statement). For p = 1 we have already seen in 4.19.iv.b that yg is still even. For p = ¢,
yo(0) is invariant under y — 1 — y, and hence yy retains the reflectional symmetry

Yoo I =1—yo.

When || = Tiax, Y- is the constant function g/n, as noted in Proposition 4.19.
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Proof of Lemma 6.5. Since the ODE 4.11 is autonomous we have time translation symmetry, i.e.
for any solution y of 4.11 and any ¢y € R, y o Ty, is also a solution of 4.11. Moreover, if y is a
solution of 4.11 then so is y o T. Hence 4.11 is invariant under the whole of Isom(R). 4.11 is also
invariant under y — 1 — y when p = q.

(i) Proof of 6.4: The first equality is immediate since y, has period 2p, by Proposition 4.19.i and
5.5. The second symmetry follows from the fact that y(0) = ymax as in 5.5.

(ii) Proof of 6.6: y, is periodic of period 2p; by 4.19.i. Since y, has a maximum and a minimum
at —p; and p; respectively it has the two additional reflection symmetries listed in 6.6.

(iii) We need to prove that y, admits the new symmetry y,oT = 1—y,. The rest of the claims made
will then follow by combining this symmetry with the ones already established in part (ii). Define
g:= (1 —y;)oT. g is also a solution of 4.11 and we see from 5.6 that § satisfies the same initial
conditions as y,. Hence by the uniqueness of solutions of the initial value problem y, = (1 —y,)oT
as required. It follows that

(612) Ymax T Ymin = 1,

and that y-(p7) = 1=y (=p; ) = 1 —Ymax = Ymin = y-(p;). Hence p; = p} = 4p,. Since p; = $p-,
the existing reflectional symmetries y, o Ipi =y, and y, o I_p: = yr become yr o T, /5 =y, and
yr o T, jo = yr respectively. 0

The rotational period of w, . In this section we study the behaviour of w, under translation
by a period 2p. of y,; we call this the rotational period of w.. It is fundamental to understanding
when w, forms a closed curve in S? or in the space of isotopic SO(p) x SO(q) orbits.

If w, = (w1, ws), yr = |w2|?> and 91 and 92 denote the arguments of w; and ws respectively
then the equations

Im(@lwl) = — Im(wng) = 27,
are equivalent to
(6.13) (1—y ) =27, yriho = —27.

It is convenient to write w, in the form

618) (= BV w0, forr =0 Vi), forr =0
' e —imei%’ for 7 > 0; 2= \/gTOf)eiW, for 7 > 0

if p=1and

(6.15) wi(t) = {m, for 7 = 0; wa(t) = {\/m, for 7 = 0;

1 —y-(t)elr/2Pei  for T > 0; yr(t)eior/2ae2 - for T > 0;

if p > 1, where a, € [—7/2,7/2] was defined in 5.3 and where in both cases for 0 < 7 < Tax,
Y1, P9 : R — R are the unique solutions of 6.13 with initial conditions

(6.16) ¥1(0) = t2(0) = 0.

The slightly different forms the above w; take in the cases p =1 and p > 1 stem from the fact that
we have chosen the initial data w(0) for w, differently in these two cases (recall 5.2 and 5.4).
Define the function ¥ by

(6.17) U= ph1 + qiho.

Written in terms of y and W the real and imaginary parts of equation 4.10 are equivalent to

(6.18) gr = —2¢/f(y)sin¥,
(6.19) 2r = f(y)cos ¥,
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for p=1 and to

(6.20) gr = =2/ f(y) cos(¥ +ax),
(6.21) —27 = V f(y)sin(¥ + a;)

for p > 1 with o, as defined in 5.3.

Definition 6.22. For any 7 with 0 < |7| < Tynax we define the angular period p; in terms of ¢; by
(6.23) 2pr = p1(2pr)-

Lemma 6.24 (Rotational period of w;). For 0 < 7 < Ty the angular period p; defined in 6.23
satisfies

(6.25) Wy 0 Tap = Top 0 ws,
where T, € U(2) denotes the 1-parameter group defined in 4.1.

We call TQ’,ST the rotational period of w; since by 6.25 it controls how w, gets rotated as we move
from one domain of periodicity of y, to the next.

Proof. The 2p,-periodicity of y, (recall 6.3) and the definition of v; in terms of y, given in 6.13
imply (i =1,2)

Yio Tap, =i +vi(2pr),
and hence w, 0 To,_ = (e¥1(2Pr)qyy M2(2Pr)qyg) = (€12P7/Ppy €12(2Pr)qpy). Tt remains to prove that

\IJ(QPT) = p¢1(2p7') + qy)2(2p7’) =0.
This follows from 6.19 (if p = 1) or 6.21 (if p > 1), the 2p,-periodicity of y, and the initial condition
U(0) =0. O

In Section 7 we prove that the angular period 2p, is a nonconstant analytic function of 7 for
0 < |7| < Tmax that satisfies

lim B ™
imp, = —
T—0 P 2

Periods and half-periods of w,. We want to understand when the (p,q)-twisted SL curves
w, form closed curves in S®. Moreover, to understand when the SO(p) x SO(g)-invariant special
Legendrian immersions X, close up we need to understand when w, gives rise to a closed curve
in the space of isotropic SO(p) x SO(q) orbits. As described in Lemma 3.1 this orbit space is
S3/Stab,, , where Stab,,, C U(2) is the finite subgroup defined in 4.3.

To this end we define the periods and half-periods of w,. The periods and half-periods of w
control when the curve of isotropic orbits Oy, determined by w; is a closed curve in the space
of SO(p) x SO(q) orbits. Recall from 4.2 the definitions of the periods and half-periods of the
1-parameter group {'T'x} defined in 4.1. The periods and half-periods of w, and the periods and
half-periods of {T,} are intimately connected because of 6.25.

Definition 6.26. Fix a pair of admissible integers p and ¢ and let w, be any of the (p, ¢)-twisted
SL curves defined in 5.1. We define the period lattice of w, by

(6.27) Per(w;) :=={z e R|w, 0T, =w,},
and the half-period lattice of w. by
(6.28) Per%(wT) ={z e R| OwToTz(t) = wa(t) vVt e R},

where as previously Oy, C S?P+0~1 denotes the isotropic SO(p) x SO(q) orbit associated with any

point w € S3. In other words, z is a half-period of w, if w; o T, and w, give rise to the same

parametrised curve of isotropic SO(p) x SO(g)-orbits in S*P+9)~1 We call elements of Per: (w)
2
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the half-periods of w,, and elements of Per(w;) the periods of w,. A strict half-period is any
half-period which is not a period of w,.

Using 3.1 we see that x is a half-period of w, if and only if
(6.29) wro T, = pjpow, forsome pj; € Staby g,
where as above Stab,, , is the finite subgroup of U(2) defined in 4.3. More explicitly, we have
(6.30) Per%(WT) ={x e R|3(j,k) € ((+,+£)) < ZyxZysuch that pjrow, = w,oT, }, ifp=1;
or
(6.31) Per%(wf) ={x €R| 3 (j,k) € Zy x Zy such that pjpow, =wro0T,}, ifp>1

If x satisfies 6.29 for (j,k) € Zao x Zg then we call x a half-period of w, of type (jk). We see
immediately from 6.29 that 2 Peri(w;) C Per(w;); this explains the terminology half-period.
2

The importance of the half-periods of w, for understanding the geometry of X is explained by
the following:

Proposition 6.32. Suppose 0 < |7| < Tpaz and let X be one of the SO(p) x SO(q)-invariant
special Legendrian cylinders defined in 5.8. Suppose there exist triples (t1,01,02), (t2,0],0%) €
Cyl?? such that

(633) XT(thUhUQ) = XT(t27O'£7U/2)'

Then ty —t1 € Peri(w,). Moreover, if to —t; € Per(w,) then o1 = o} and oy = o).
2

Proof. From the definition of X, in terms of w, and the isotropic SO(p) x SO(q) orbits Oy, we see
that 6.33 implies that Oy_(¢,) N Ow, (t,) 7 @ and therefore Oy () = Oy, (1,)- Hence by 3.1 we have

(6.34) wr(t1) = pjpwr(t2) for some pji € Staby, 4,
and
(6.35) o1 = (=10}, 9= (-1)ka).

Using conservation of Zo = Im(w{wi) and 6.34 we have
Imwhwi(ty) = Imwlwi(ty) = (—=1)7PT* Tm whwi(ts).
Hence we have
(6.36) jp+kqg=0 mod 2.
Now define w by
W= pjr OWr0 Ty, 4.
Using the definition of w and 6.34 we have

V~V(t1) = pjk © WT(tg) = W7—<t1).
Because j and k satisfy 6.36 w is another solution of 4.8 and therefore by uniqueness of the initial
value problem w = w,. It follows that to — ¢; € Peri(w;). The final statement in 6.32 follows
2
from 6.35. O
As a simple corollary of 6.32 we have

Corollary 6.37. Suppose there exist tg € R and zo € RT such that w,(tg + x9) = w.(to), i-e. the
curve w, has a point of self-intersection, then xg € Per(w;). Hence either

(i) Per(w,) = (0) in which case w, : R — S3 is an injective immersion, or

(i) there exists T > 0, such that T € Per(w,) is the smallest nontrivial period of w, and the

restriction w, : [0,T] — S? is a closed embedded curve.

In particular, w, forms a closed curve in S® if and only if Per(w,) # 0.
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For the rest of this section we always assume 0 < |T| < Tpax unless stated otherwise. We now

completely determine the periods and half-periods of w;, in terms of the rotational period 'i'QﬁT
(recall 6.24).

Definition 6.38. Define ky € NU {400} to be the order of the rotational period 'T'QBT € U(2). We
set kg = 400 if the rotational period has infinite order.

We can completely describe the period lattice Per(w,) and the half-period lattice Per:i(w;) in
2
terms of kq:

Lemma 6.39. Fix a pair of admissible integers p and q and let n = p + q. ko the order of the
rotational period Tog  defined in 6.38 can also be characterised as

(6.40) ko = min{k € Z+| kpr € wlem(p, q)Z},
and the following are equivalent
pr ¢ Q — ko = o0 <= Per%(wT) = Per(w,) = (0).

If pr € mQ, then in all cases we have

(6.41) Per(w,) = 2kop-Z,
and
(i) if ko is odd then Per%(wT) = Per(w,) = 2kop;Z, i.e. W, has no strict half-periods.
(ii) if ko is even and p > 1 then Per%(WT) = 3 Per(w;) = kop;Z. Moreover, for fized p

and q every strict half-period of w; is of type (jk) where j = q/hcf(p,q) mod 2 and
k = p/hcf(p,q) mod 2.

(iii) a. if ko is even, p =1 and n is even then Per%(wT) = Per(w;) = 2kop:Z, i.e. W, has no
strict half-periods.
b. if ko is even, p = 1 and n is odd then Per%(wT) = % Per(w;) = kop-Z (and every

strict-half period is necessarily of type (+—).)
Proof. First we show that
(6.42) x € Per%(wT) <= 1z = 2kp, for some k € Z and 2kp, € Per%({'i'm}),
and that
(6.43) x € Per(w,) <= z = 2kp, for some k € Z and 2kp, € Per({T,}) = 2x lem(p, q).
Proof of 6.42: Suppose z € Per%(wT). From the definition of Per%(wT)7 wy o T, = *wsy. Since
yr = |wo|? this implies y, o T, = y, and hence x € Per(y,) = 2p,Z. Then from 6.25 we have

Wy 0 Top, = T2kﬁ_’_ o Wr.

Hence 2kp, is a half-period of w;, of type (jk) if and only if 'i'gkﬁT = pjk. This is equivalent to

2kp, being a half-period of {'i'm} of type (jk) and 6.42 now follows using 4.5. 6.43 follows from
6.42 by looking only at half-periods of type (++) and using 4.5. The characterisation of k¢ given
in 6.40 follows immediately from 6.43. The equivalences in the line following 6.40 follow from the
characterisation of kg given in 6.40 together with 6.27.

Now suppose = € Per 1 (w;) and pr € mQ, so that the rotational period k¢ is finite. Then from

6.42 and 6.41 we have

QkopTZ k:g Odd;

(6.44) x € 2p,Z N 5 Per(w.) = 2p;Z N kop,Z = lem(2, ko)p,Z =
kop+Z ko even.

(i) If ko is odd then from 6.44 = € 2kop,Z = Per(w;) and hence Per%(wT) = Per(w,) as required.
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If kg is even, then from 6.44 x € kgp,Z. Furthermore, if z is a strict half-period of w, then
T € kopT(QZ + 1).

(ii) Suppose now that p > 1 and hence by 6.31 we should consider all types of half-period. Given
any « € kopr(2Z + 1) notice that w, o T, = w, o Ty, since 2kop,Z = Per(w,). Since kg is
assumed even, kop; € Per(y,) and hence wr o Ty, = -i-koBT ow,. By 6.39 and the definition of kg,
-i-koﬁf # 1d but 'T'QkoﬁT = Id. Hence from the diagonal form of T, we must have -i—kOBT = pjr # 1d
for some (jk) # (4++). Hence z is a strict half-period as claimed. Moreover, since kop; is a strict
half-period of {Tx} then by 4.5 it must be a half-period of type (jk) with j and £k as in 6.39.ii.
(iii) If p = 1 the result follows using the structure of Per 1 ({T.}) established in 4.5.iii. O

We define the subgroup Per(X,) C Diff(Cyl”?) by
(6.45) Per(X,) := {M € Diff(Cy*?) | X, o M = X, }.

Per(X,) is important because the immersion X, : Cyl?? — S?"~! factors through an embedding of
the quotient manifold Cyl”?/ Per(X ;). Combining 6.32 and 6.39 we obtain the following structure
result for Per(X;):

Corollary 6.46. If kq the order of the rotational period 1'237 is infinite then Per(X;) = (0) and
otherwise

((Tkop, » — Idgn-1)) if p=1 and kg is even and n is odd;
Per(X:) = < ((Tkop,, (—1)7 Idgp-1, (—1)¥ Idge-1)) if p>1 and ko is even;
(Takop, ) otherwise;

where j = q/ hef(p,q) and k = p/ hef(p, q).

In particular the SO(p) x SO(g)-invariant SL immersion X, factors through an embedding of a closed
manifold if and only if k¢ is finite. In the third case above this closed manifold is diffeomorphic to
St x §P=1 % 891 if p > 1 and to S x S~ 2 if p = 1. In the first case the manifold is diffeomorphic
to a Zy quotient of ST x S”~! and in the second case to a Zs quotient of S x SP~1 x §9-1.

7. CLOSED TWISTED SL CURVES AND CLOSED EMBEDDED SPECIAL LEGENDRIANS.

In this section we prove the existence of infinitely many closed (p,q)-twisted SL curves and
infinitely many closed embedded SO(p) x SO(g)-invariant special Legendrian submanifolds.

By 6.37 closure of the curve w; is determined by the period lattice Per(w;) and hence by 6.39
the rationality of the angular period p, /7. Therefore it will suffice to prove that the angular period
Pr is a nonconstant real analytic function of 7 € (0, Tiax). The main point is to study the 7 — 0
asymptotics of the angular period p,.

To obtain the 7 — 0 asymptotics of p, we will need an auxiliary result describing the 7 — 0
asymptotics of the period 2p,. In order to describe these asymptotics it helps to introduce the
following notation: We define functions of 7 by
{T_l"'Q/k, for k > 2;

7.1 T =
(7.1) k() log 1 for k = 2,

and introduce the notation f; ~ fo for functions f; and fo of 7 to mean that
fa(7)
fi(7)

Using this notation we have the following :

(7.2) — 1 as 7—0.

Proposition 7.3 (Small 7 asymptotics of the period p, and partial-periods p} and p; ).

(i) For p > 1, pf and p; are analytic functions of T for 0 < || < Tmaz. For p =1, p; is an
analytic function of T for 0 < |7| < Tmaz-
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(ii) In the case p > 1 we have

(7.4) pi_ ~ bg Ty(T), pr ~ by Tp(7),
where
g1 > dz 1l ﬁr(l - l)
7.5 by =1, by =4 1+k/ =42 K for > 2,
(79 VA I'(—1)
where I is the gamma function. We also have
(7.6) pr~ by Ty(T) when 1<p<ygq, pr ~ 2b,T,(t) when 2<p=gq.

Proof. For p = 1, y,(p;) = 0 and for p > 1, -(p}) = ¢-(—p;) = 0 and locally the vanishing
of § determines p, and pS and p;. Moreover, §j = 2f'(y(t)) is nonzero at t = p, if p = 1 or at
either p} and —p; if p > 1 for all 7 € (0, Timax). Analyticity of p), p; in the case p > 1 (and
hence p; = p} + p;) and p; in the case p = 1 now follows from the real analytic Implicit Function
Theorem.

Assume now that p > 1. By using 4.11, 5.6, and 6.1, we have that

o[ .
T Sy 2011 —y)p — 472 T Jym 2y/yi(1—y)p — 472

Clearly if we substitute the limits ymin and ymax in the above integrals by ymin + 0 and ymax — 6
where 0 is a small positive number, the integrals we get converge as 7 — 0 to constants which
depend only on 0. Moreover since for ¥ € [Ymin, Ymin + 0] We have

(1= youin — 8)/y/max(0, y7 — 4(7')2) < \/yi(L = g)p — 472 < \/yt — 477,

where 7/ := 7(1 — Ymin — 5)—;;/2, and for ¥ € [Ymax — 9, Ymax] We have

(Ymax — 0)¥3y/max(0, (1 — y)P — 4(7")2) < /yi(1 —y)P — 472 < /(1 —y)p — 472,

where 7/ = 7 (ymax — 0) /2, it is enough to prove

ymin+6 d Ymax d
z ~ 2bq Ty(7), / 5 4 ~ 20, Ty (7).

Ymin V yq - 47—2 Ymax— (1 - y)p - 47—2

This follows easily by using 4.22 and integration by substitution (substituting z = y(472)~ %/ or

z = (1 — y)(472)~ /P respectively), and concludes the proof when p > 1 (recall also 6.2).
When p =1 by using 4.11, 5.5, and 6.5, we have

B /ymax dy
i 21/y" (1 —y) — 472

Ymin
and as before the proof reduces to

ymin+5 dy

Ymin V ynil - 47—2

~ an,1 Tnfl(T).

0

Proposition 7.7. For 0 < 7 < Tpay the angular period p, (defined in 6.23) is a nonconstant
analytic function which satisfies

N 2
(7.8) lim P, =/ o2,
T—Tmaz n

(7.9) lim B, = g

T—0
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Proof. Real analyticity of p, for 7 € (0, Timax) follows from real analyticity of w., p-, p- and p, and
the definition of p; (6.23). To show that p, is nonconstant it suffices to calculate the asymptotics
of pr as 7 — 0 and 7 — Tmax. _

When 7 = Tyax, we have y = ¢/n and p1); = 2n7yax. Hence we have

lim 2p, = lim pv1(2p;) = 4nTmax lim  p;.
The asymptotics for p, now follow from the asymptotics for p, established in 4.20.

Now we prove 7.9, dealing first with the case p = 1. We define p% to be the unique t € (0, p,)
such that y(pz) = 1. Also (p}) = —4\/T2ax — 72 # 0 for T € (—Tiax, Tmax). Hence by the real
analytic Implicit Function Theorem pZ is an analytic function of 7 in (—Tmax, Tmax). In particular
p: approaches a finite limit as 7 — 0. Recall the function ¥ defined in 6.17. The initial condition
for y together with 6.18 and 6.19 implies that ¥ € (0, %) for t € (0,p;). From 6.19 we have

cos U(py) = -~ and therefore

(7.10) U(pr) = 5 —arcsin(—) = 7 + ar,
with a, = — arcsin(7/Tmax) as in 5.3. 7.10 implies that
. T
lim W(py) := ¢1(py) + (n — tha(p7) = 5.

For t € [0, p%] we have y € [(n— 1) /1, Ymax] C [(n —1)/n, 1] and therefore from 6.13 we have (recall
from 6.16 that 12(0) = 0)
2nt

n—1
Hence v2(pk) converges to zero as 7 — 0 (since pt is bounded as 7 — 0). Similarly, for ¢ € [pZ, p,]
we have 1 —y € [1/n,1 — ymin] C [1/n, 1] and therefore from 6.13 we have

27(pr — ;) < ¥1(pr) — Y1(py) < 27n(pr — pr)-

Hence by the asymptotics for p, established in 7.3 we see 11(p;) — ¥1(p%) — 0. Therefore p, =
$11(2p-) = ¥1(p-) converges to m/2 as desired.

*

pr-

2rpt <~y (pl) <

The argument in the case p > 1 is very similar. At ¢ = pJ or t = —p; we have y = 0 and
Y = Ymin OT ¥ = Ymax respectively. Hence 6.20 and 6.21 imply that el¥t+ar) — ¢=in/2 an( therefore
we have
(7.11) U(t)=-%—a, at t=p ort=—p;.
Using 6.13 and the symmetries of y, from 6.6 one finds (for i = 1,2)
(7.12) hi(2pF) = 2¢5(pF) and  hi(—2p;) = 2¢5(—p;).
Using 6.25 (applied with ¢ = —2p7) yields (for i = 1,2)
(7.13) Vi(2pr) = ¥i(2p7) — i(—2p7).
Combining 7.11, 7.12 and 7.13 yields
(7.14) Pr = 5v1(2pr) = p(v1(pf) — i(—py)) = § + ar + phi(pf) + qeba(—p;).

By analysing the functions ¢ on (0, p}) and 12 on (—p;,0) as above we find
2prpf < pyu(py) < 2n7pf, and 2¢Tp; < qia(—p;) < 2n7p;.

Hence by 7.3 and the definition of « all three nonconstant terms on the RHS of 7.14 converge to
zero as 7 — 0. U

Theorem 7.15. Fiz admissible integers p and q. There exists a countably infinite subset N C
(0, Timaz) such that T € N if and only if the (p, q)-twisted SL curve w; is closed.
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Proof. Define
N :={7 € (0, Tmax) | Pr € 7Q}.
By Proposition 7.7 p, is a nonconstant analytic function of 7 on the interval (0, Tiyax) and hence N

is a countably infinite set. By Corollary 6.37 w is a closed curve if and only if Per(w;) # (0) and
by Lemma 6.39 Per(w;) # 0 if and only if p, € 7Q. Hence w is closed if and only if r € N. O

In fact, with further work can one show that the set N is also dense in (0, Tynax). To prove this

requires more precise asymptotics for p, and % as 7 — 0. Refined asymptotics for p, as 7 — 0 are
a key ingredient in our use of X, for sufficiently small 7 as building blocks in gluing constructions
of higher dimensional SL cones and are established in [11,12].

From 6.39 the condition 7 € N is equivalent to the condition that the rotational period 'i'%T
(recall 6.25) of w is of finite order kg (recall Definition 6.38) and hence to the condition that X
factors through a SL embedding of a closed manifold. Combining 7.15 and 6.46 we obtain the
existence of countably infinite families of SO(p) x SO(g)-invariant embeddings of closed manifolds:

Theorem 7.16. Choose any T in the countably infinite (dense) set N C (0, Tpaz) and let kg € N be
the order of the rotational period Tos_. The SO(p) x SO(q)-invariant special Legendrian immersion

X, : CylP? — S2eta)=1 factors through a special Legendrian embedding of the closed manifold
CylP?/ Per(X,) where Per(X,) = Z C Diff(Cyl??) is the following infinite cyclic subgroup

<(Tkop7) —Idgn-1)) if p=1 and kg is even and n is odd;
Per(X;) = ((Tkopss (—1)7 Idgp—1, (—1)* Idge-1)) if p>1 and ko is even;
(Tak, pr ) otherwise;

where j = q/ hef(p,q) and k = p/ hef(p, q).
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