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Abstract. We study a construction we call the twisted product; in this construction higher di-
mensional special Lagrangian (SL) and Hamiltonian stationary cones in Cp+q (equivalently special

Legendrian or contact stationary submanifolds in S2(p+q)−1) are constructed by combining such
objects in Cp and Cq using a suitable Legendrian curve in S3. We study the geometry of these
“twisting” curves and in particular the closing conditions for them. In combination with Carberry-
McIntosh’s continuous families of special Legendrian 2-tori [3] and the authors’ higher genus special
Legendrians [13], this yields a constellation of new special Lagrangian and Hamiltonian stationary
cones in Cn that are topological products. In particular for all n sufficiently large we exhibit in-
finitely many topological types of SL and Hamiltonian stationary cone in Cn which can occur in
continuous families of arbitrarily high dimension.

A special case of the twisted product construction yields all SO(p) × SO(q)-invariant SL cones in
Cp+q. These SL cones are higher-dimensional analogues of the SO(2)-invariant SL cones constructed
previously by Haskins [8,10] and used in our gluing constructions of higher genus SL cones in C3 [13].
SO(p)× SO(q)-invariant SL cones play a fundamental role as building blocks in gluing constructions
of SL cones in high dimensions [14]. We study some basic geometric features of these cones including
their closing and embeddedness properties.

1. Introduction

Background. Special Lagrangian (SL) n-folds in Calabi-Yau manifolds have been studied inten-
sively over the past fifteen years, thanks in part to their role in Mirror Symmetry [35]. Degenerations
of families of smooth special Lagrangians and more general singular special Lagrangians play a cru-
cial role, but in dimensions 3 and higher are still relatively poorly understood. Special Lagrangian
cones in Cn with isolated singularities form the simplest class of singular special Lagrangians, and
significant progress on understanding SL cones has been made in the last ten years. In particular
the situation in dimension three has been clarified considerably [3, 8, 10,13, 17,28]. By comparison
the situation in higher dimensions is more complicated and less systematically explored. The cur-
rent paper constructs a plethora of new higher dimensional SL cones, by combining an ODE-based
method which we call the twisted product construction with the gluing and integrable systems
methods developed to construct three-dimensional SL cones [3, 13,28].

SL cones in dimension three. Special Lagrangian cones in C3 or equivalently special Legendrians
in S5 have been studied by a variety of techniques in the last ten years. The known examples can
be summarised and classified roughly as follows:

(1) Homogeneous special Legendrians
(2) Cohomogeneity one special Legendrians
(3) Special Legendrians governed by (integrable) nonlinear ODEs
(4) Special Legendrians obtained by integrable PDE methods
(5) Special Legendrians obtained by geometric PDE gluing methods.

Equatorial 2-spheres and Legendrian Clifford tori are the only homogeneous special Legendrian
surfaces. A special Legendrian submanifold Σ ⊂ S2n−1 is of cohomogeneity one if there is a compact
subgroupG ⊂ SU(n) so that Σ is the union of a curve ofG-orbits. In this case the special Legendrian

Date: March 13, 2012.
Key words and phrases. Differential geometry, isolated singularities, calibrated geometry, minimal submanifolds.

1



2 M. HASKINS AND N. KAPOULEAS

PDEs reduce to a system of nonlinear ODEs which can be interpreted as a flow on the space of
(isotropic) G-orbits [17]. These nonlinear ODEs often turn out to be completely integrable.

Cohomogeneity one special Legendrian surfaces have been classified in [8, 10]. Among all the
cohomogeneity one examples a distinguished role is played by the SO(2)-invariant SL surfaces
described in detail in [13]. They play a special role because they are the only cohomogeneity
one examples in which interesting geometric degeneration occurs. This also makes them suitable
building blocks for gluing constructions of SL surfaces [13]. More general ODE constructions of SL
surfaces also exist [18].

A special feature of special Legendrian surfaces is that all the SL 2-tori can be described by
methods from algebraically completely integrable systems [28]. This permits the construction of a
zoo of possible special Legendrian 2-tori by building appropriate “spectral data” satisfying certain
periodicity conditions. Using these spectral curve methods Carberry-McIntosh construct SL 2-tori
that come in continuous families of arbitrarily large dimension [3]. However, it is difficult to control
the geometric features of the resulting SL 2-torus from its associated spectral data; see [9] for some
results in this direction.

While together classes (2)–(4) are geometrically very rich they permit only the construction of
SL 2-tori; to obtain other topological types of closed SL surface the only currently known technique
is the gluing method developed by the authors in [13]. By using SO(2)-invariant SL surfaces close
to a singular limit as building blocks we were able to construct infinitely many closed SL surfaces
of any odd genus (and also of genus 4). For the gluing methods a very precise understanding of the
geometry of SO(2)-invariant SL surfaces close to the singular spherical limit is a crucial ingredient
in the analysis of the linearisation of the SL equation.
Higher dimensional SL cones. SL cones in Cn for n ≥ 4 are far less comprehensively understood
than SL cones in C3 and there are new features which have no analogue in dimension 3, e.g.
there is a (homogeneous) non-equatorial special Legendrian 3-sphere in S7 [6]. Even class (1)—
the homogeneous examples—appears not to be completely classified; see [29] for a classification
under additional geometric assumptions. Moreover, in higher dimensions it is not clear what the
appropriate analogue of class (4) should be since a theory of completely integrable elliptic PDE in
higher dimensions is currently lacking. Nevertheless, in this and subsequent papers we will show
there is a rich variety of special Legendrians of classes (2), (3) and (5) (cohomogeneity one, general
ODE and gluing respectively).

Scope of the paper. In the current paper we study a class of higher dimensional special Leg-
endrians that we will call twisted products. Although any special Legendrian twisted product is
controlled by an ODE system the general twisted product is not of cohomogeneity one (and may
have no continuous symmetries). Special Legendrians of this type were first considered by Castro-
Li-Urbano [4].

The twisted product construction, despite its simplicity, turns out to be surprisingly powerful
when used in combination with the powerful integrable systems and gluing methods already devel-
oped in three dimensions. Unlike cohomogeneity one constructions which give only a finite number
of topological types in a given dimension the twisted product construction—together with the ex-
isting constructions of special Legendrian surfaces—already allows the construction of infinitely
many topological types of closed special Legendrians in each dimension; see Theorems A–C later in
the introduction for precise statements. Moreover, twisted product special Legendrians show that
families of high-dimensional special Legendrians can degenerate in many different ways.

One limitation is that all twisted product special Legendrians are topological products; to obtain
infinitely many topological types of special Legendrians which are not products we need to use
gluing methods and these gluing methods need appropriate special Legendrians as building blocks.
Suitable building blocks are also constructed in this paper as a special instance of the twisted
product construction.

An important subclass of special Legendrian twisted products is the class of SO(p)× SO(q)-
invariant special Legendrians of S2(p+q)−1; this subclass does consist of cohomogeneity one special



CLOSED TWISTED PRODUCT SPECIAL LAGRANGIANS 3

Legendrians. SO(p)× SO(q)-invariant special Legendrians share features of the SO(2)-invariant
SL surfaces in S5. These shared features make SO(p)× SO(q)-invariant special Legendrians ap-
propriate building blocks for our higher dimensional gluing constructions [11, 12]. In particular,
in any given dimension greater than 3 there are multiple possible cohomogeneity one candidates
for building blocks in gluing constructions of higher dimensional SL cones, unlike the situation in
dimension 3.

Main results. We now describe the main results of the paper.
Twisted products. At the heart of this paper is a construction of special Legendrian immersions
which we call the twisted product construction. The twisted product construction (see 2.1) gives
a way to combine a pair of lower-dimensional Legendrian immersions X1 : Σ1 → S2p−1 and X2 :
Σ2 → S2q−1 with a Legendrian curve w : I → S3 to produce a new Legendrian immersion X1∗wX2 :
I×Σ1×Σ2 → S2p+2q−1. If the twisting curve w is appropriately chosen then the cone over X1∗wX2

is just the product of the cones over X1 and X2, explaining the origin of the term twisted product.
The Lagrangian phase of the twisted product X1 ∗w X2 is determined by the Lagrangian phases

of X1, X2 and the twisting curve w (see 2.10). This formula implies that if the twisting curve w
satisfies a certain condition depending on p and q (see 2.17) then the w-twisted product X1 ∗w X2

is special Legendrian whenever both X1 and X2 are also special Legendrian. This construction
generalises also to the case of Hamiltonian stationary cones (see 2.28, 2.31). Twisting curves w
satisfying the condition 2.17 we call (p, q)-twisted SL curves in S3. The bulk of the paper consists
of a detailed study of the geometry of all (p, q)-twisted SL curves; understanding all closed (p, q)-
twisted SL curves is a particular focus.

Since condition 2.17 depends on p and q but not on the immersions X1 and X2 we can use the
twisted product construction to produce special Legendrian immersions from lower-dimensional
special Legendrian immersions provided that we can find (p, q)-twisted SL curves. To produce
special Legendrian immersions of closed manifolds via (p, q)-twisted SL curves we need to find
closed (p, q)-twisted SL curves.
SO(p)× SO(q)-invariant special Legendrians. The case of SO(p)× SO(q)-invariant special Legen-
drians amounts to the special Legendrian twisted product construction when X1 and X2 are chosen
to be the standard real equatorial embeddings of spheres of dimension p− 1 and q− 1 respectively.
Thus the study of SO(p)× SO(q)-invariant special Legendrians in S2p+2q−1 essentially reduces to
the study of (p, q)-twisted SL curves in S3. Moreover, finding SO(p)×SO(q)-invariant special Legen-
drian embeddings of closed manifolds is closely related to the problem of finding closed (p, q)-twisted
SL curves.

(p, q)-twisted SL curves and ODEs. Key to our study of (p, q)-twisted SL curves in S3 is Lemma
2.19; this shows that there is a system of first order ODEs (see 2.20, 2.25) whose integral curves
are (p, q)-twisted SL curves in S3 and conversely that (p, q)-twisted SL curves in S3 always admit
parametrisations satisfying 2.20. When (p, q) = (1, 2) these ODEs reduce to the fundamental ODEs
used to study SO(2)-invariant special Legendrians in [13, eqn. 3.18]. For general (p, q) these ODEs
first appeared in the work of Castro-Li-Urbano [4]; see the beginning of Section 3 for a more detailed
discussion of previous related work by Anciaux, Castro-Li-Urbano and Joyce.

Section 4 studies these ODEs and establishes that up to the action of some obvious symmetries
there is a 1-parameter family wτ of inequivalent solutions to 2.25. Via the correspondence between
SL twisted products and SO(p) × SO(q)-invariant special Legendrians the 1-parameter family wτ

gives rise to a 1-parameter family of SO(p)× SO(q)-invariant special Legendrians Xτ .
One of the main tasks of the current paper is to prove existence of closed (p, q)-twisted SL

curves and SO(p)× SO(q)-invariant special Legendrian embeddings of closed manifolds. The former
is important for the applications to construct new special Legendrian immersions of the closed
manifold S1 × Σ1 × Σ2 from a pair of lower-dimensional special Legendrian immersions of Σ1 and
Σ2. The latter is central to our use of the SO(p)× SO(q)-invariant special Legendrians as building
blocks in gluing constructions of higher dimensional SL cones.
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Section 6 studies the periodicity of wτ and closely related questions. We prove that a single
angular period p̂τ (defined precisely in 6.23) determines when wτ forms a closed curve in S3; p̂τ
also controls when the associated SO(p)× SO(q)-invariant special Legendrian immersion Xτ factors
through an embedding of a closed manifold. In Section 7, by studying the dependence of p̂τ on τ
(see 7.7) we prove that for a countably infinite (dense) set of τ , wτ forms a closed curve in S3 and
Xτ factors through a closed embedding as above (see 7.15 and 7.16).
A plethora of new special Lagrangian and Hamiltonian stationary cones. Our results about closed
(p, q)-twisted SL curves in S3 together with our previous gluing constructions of higher genus SL
cones in C3 [13] allow us to construct a wealth of new topological types of higher-dimensional
special Lagrangian and Hamiltonian stationary cones.

Theorem A.
(i) For any n ≥ 4 there are infinitely many topological types of special Lagrangian cone in Cn,

each of which is diffeomorphic to the cone over a product S1 × Σ′ for some smooth closed
manifold Σ′, and each of which admits infinitely many distinct geometric representatives.

(ii) For any n ≥ 4 there are infinitely many topological types of Hamiltonian stationary cone
in Cn which are not minimal Lagrangian, each of which is diffeomorphic to the cone over
a product S1 × Σ′ for some smooth closed manifold Σ′, and each of which admits infinitely
many distinct geometric representatives.

Similarly combining our results about (p, q)-twisted SL curves with the work of Carberry-McIntosh
[3] on special Legendrian 2-tori via integrable systems methods we obtain the following

Theorem B.
(i) For n ≥ 3 there exist special Legendrian immersions of Tn−1 in S2n−1 which come in

continuous families of arbitrarily high dimension.
(ii) For n ≥ 4 there exist contact stationary (and not minimal Legendrian) immersions of Tn−1

in S2n−1 which come in continuous families of arbitrarily high dimension.
Finally, by combining the twisted product construction with both integrable systems methods and
our gluing methods for special Legendrian surfaces in S5 we obtain the following striking results

Theorem C.
(i) For any n ≥ 6 there are infinitely many topological types of special Lagrangian cone in Cn

of product type which can occur in continuous families of arbitrarily high dimension.
(ii) For each n ≥ 6 there are infinitely many topological types of Hamiltonian stationary cone

in Cn of product type which are not minimal Lagrangian and which can occur in continuous
families of arbitrarily high dimension.

It is difficult to see how either integrable systems methods or gluing methods by themselves could
yield a result like Theorem C.

Forces and torques. Many geometric variational problems admit homological invariants associated
with symmetries of the problem. These invariants have played an fundamental role in global
structure results including uniqueness questions [25,30,31] and also in gluing results [19,21–24,32].
For minimal and CMC immersions in Euclidean space or round spheres the invariants associated
to translations and rotations are called the forces and torques respectively.

In this paper we calculate the torque of the SO(p)× SO(q)-invariant special Legendrians Xτ in
5.14. An appropriate component of the torque (depending on p and q) is exactly proportional to
the parameter τ . This is similar to the case of Delaunay surfaces where (appropriately centred)
the torque is zero and the force is a vector along its axis whose magnitude is τ the parameter
of the Delaunay. The torque of Xτ enters into our argument to calculate refined asymptotics of
the angular period p̂τ and its derivative as τ → 0 and therefore is needed in our work on higher
dimensional SL gluing [11,12,14]. More generally we expect that the torque will play an important
role in controlling aspects of the global geometry of special Legendrians.
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The geometry of Xτ and their relatives. We can compare the geometry of Xτ with that of
other similar cohomogeneity one geometric objects like the Delaunay surfaces and the Delaunay-
Fowler metrics. In all three cases we can recognise strings of regions which we could call bulges
connected to their neighbours through necks. Important differences exist in the symmetry group
of these objects related to the structure of this bulge/neck decomposition. All three families are
parameterised by a real parameter that we call τ ; the parameter τ can be identified with the value
of some properly defined conserved quantity (a component of the force or torque in the Delaunay
and in our case respectively). The parameter τ also controls the size of the smallest orbit.

As τ → 0 in all three cases the bulges have a round spherical limit, while the necks degenerate ei-
ther to points or to lower-dimensional equators. Correspondingly for small τ the bulges approximate
their spherical limit and the necks approximate standard objects scaled to small size. These stan-
dard objects are the catenoid in the Delaunay surface case, the (Riemannian) Schwarzschild metric
in the Delaunay-Fowler case, and the Lagrangian catenoid or its product with a unit round sphere
of the appropriate dimension in our cases. The fact that the bulges are approximately spherical
forms the basis for using these objects as building blocks for gluing constructions [13,14,19–21,32].
A more detailed discussion of these geometric features of Xτ is given in our survey article [14]; full
details and proofs appear in [15].

The Lagrangian catenoid belongs to the larger family of Lawlor necks [7, 16, 27]; while the La-
grangian catenoid in Cn is foliated by round spheres and is SO(n)-invariant, a general Lawlor neck
is foliated by ellipsoids and has only discrete symmetries. In a similar way the SO(p)× SO(q)-
invariant special Legendrians Xτ also belong to a larger family of special Lagrangian cones con-
structed by evolving quadrics [16]. This construction gives a larger family of special Legendrians
still controlled by ODEs; the additional parameters of this family control the distortion of the
quadrics in a similar way that the parameters of the Lawlor necks control the maximal eccentricity
of its ellipsoidal sections. In this larger class of special Legendrians general Lawlor necks and not
just Lagrangian catenoids can appear as appropriate blow-up limits as τ → 0. We study this and
more general degeneration behaviour of these families elsewhere.

Organisation of the Paper. The paper is organised in seven sections. Section 1 consists of
the introduction, this section and some remarks on notation.

In Section 2 we describe how to generate a new special Legendrian immersion from a pair of lower-
dimensional special Legendrian immersions and a curve in S3 satisfying some additional geometric
condition. This twisted product construction (see Definition 2.1 and Proposition 2.9) is at the heart
of the paper. Definition 2.16 introduces the notion of a (p, q)-twisted special Legendrian (SL) curve
in S3. Corollary 2.18 explains how to use (p, q)-twisted SL curves in S3 to construct new special
Legendrian immersions from a pair of lower-dimensional special Legendrian immersions via the
twisted product construction. Lemma 2.19 reduces the study of (p, q)-twisted SL curves in S3 to a
first order system of ODEs 2.20.

We also sketch briefly the extension of the twisted product construction to the contact stationary
realm. Definition 2.28 introduces (p, q)-twisted contact stationary (CS) curves in S3 and Lemma
2.31 gives the contact stationary analogue of Corollary 2.18. This enables us to construct many
new contact stationary (and non minimal Legendrian) immersions of closed manifolds from lower
dimensional special Legendrian immersions. In the rest of the section, assuming results on the
existence of countably infinitely many closed (p, q)-twisted SL curves proved later in Theorem 7.15,
we prove Theorems A–C quoted above by combining the SL and CS twisted product constructions
with our gluing constructions of special Legendrian surfaces of higher genus in S5 [13] and the
integrable systems constructions of special Legendrian tori in S5 of Carberry-McIntosh [3].

Section 3 establishes the relationship between (p, q)-twisted SL curves in S3 and SO(p)× SO(q)-
invariant special Legendrians in S2p+2q−1.

Section 4 studies the ODEs 4.8 that control (p, q)-twisted SL curves in S3. Proposition 4.7 estab-
lishes the basic facts about solutions to the (p, q)-twisted SL ODEs 4.8: its conserved quantities, its
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symmetries, stationary points, local and global existence and dependence on initial data. Follow-
ing a number of auxiliary results we prove the main result of the section—Proposition 4.26—which
gives a normal form for any solution w to 4.8.

In Section 5 we use Propositions 4.7 and 4.26 to define a distinguished 1-parameter family wτ

of solutions of the fundamental ODE for (p, q)-twisted SL curves by specifying appropriate initial
conditions (see 5.2, 5.4 and Proposition 5.1); up to the action of symmetries any solution of 4.8
is equivalent to wτ for some τ . In Definition 5.8 we use the 1-parameter family of solutions wτ

to define the 1-parameter family Xτ of SO(p)× SO(q)-invariant special Legendrian immersions in
S2p+2q−1. Proposition 5.9 establishes some basic properties of Xτ . Finally in Proposition 5.14 we
determine the restricted torque for the SO(p)× SO(q)-invariant SL immersions Xτ . The torque is
a homological invariant of minimal submanifolds of S2n−1 and the restricted torque is a variant of
the torque for special Legendrian submanifolds of S2n−1.

Section 6 studies the conditions under which wτ forms a closed curve in S3 or the associated
curve of isotropic SO(p)× SO(q)-orbits is closed. To this end we introduce the periods and half-
periods of wτ ; the periods of wτ control when wτ forms a closed curve in S3, while the half-periods
control when the curve of SO(p) × SO(q) orbits associated with wτ is closed. The half-periods
of wτ also control the embedding properties of Xτ (see Proposition 6.32). Fundamental roles are
played by the angular period 2p̂τ (defined in 6.23), the rotational period T̂2bpτ (defined in 6.25)
and by k0 the order of the rotational period (defined in 6.38). Lemma 6.39 determines the periods
and half-periods of wτ in terms of the order of the rotational period k0 and hence allows us to
characterise exactly when wτ forms a closed curve either in S3 or in the space of isotropic orbits of
SO(p)× SO(q).

Section 7 uses the results of Section 6 together with results about the asymptotics of p̂τ as τ → 0
and as τ → τmax to prove for every admissible pair of integers (p, q) the existence of a countably
infinite (dense) set of τ for which wτ forms a closed (p, q)-twisted SL curve in S3 (Theorem 7.15)
and a countably infinite (dense) set of τ for which the SO(p)× SO(q)-invariant special Legendrian
immersion Xτ factors through an embedding of a closed manifold (Theorem 7.16).

Notation and conventions. Throughout the paper we use the following notation to express
elements of Isom(R), the isometries of the real line. We denote by Tx, translation by x, t 7→ t+ x.
We denote by T reflection in the origin t 7→ −t and reflection in x, t 7→ 2x− t by Tx.

Acknowledgments. N.K. would like to thank the Leverhulme Trust for funding his visit to Impe-
rial College London in Spring 2009, the Department of Mathematics at Imperial for the supportive
research environment and the NSF for supporting his research under DMS-1105371. M.H. would
like to thank the EPSRC for their continuing support of his research under Leadership Fellowship
EP/G007241/1.

2. Twisted products of Legendrian immersions: new immersions from old

In this section we describe the twisted product construction; in this construction, given a Leg-
endrian immersion w : I → S3 and a pair of Legendrian immersions X1 : Σ1 → S2p−1 and
X2 : Σ2 → S2q−1 we obtain a new Legendrian immersion X1 ∗w X2 : I ×Σ1 ×Σ2 → S2p+2q−1, that
we call the w-twisted product of X1 and X2. If the curve w : I → S3 ⊂ C2 is chosen appropriately
then the cone over the w-twisted product is precisely the product of the cone over X1 with the cone
over X2—hence the name twisted product for the general case. If w satisfies an appropriate ODE
and both X1 and X2 are special Legendrian then the w-twisted product X1 ∗w X2 is also special
Legendrian. We call solutions of these ODEs, (p, q)-twisted special Legendrian curves. To construct
new special Legendrian immersions of closed manifolds, the key point is to find closed (p, q)-twisted
special Legendrian (SL) curves. We achieve a complete understanding of closed (p, q)-twisted SL
curves in Sections 6 and 7.

Combining our results on closed (p, q)-twisted SL curves with our earlier work on gluing con-
structions of special Legendrian immersions in S5 [13] and constructions of special Legendrian 2-tori
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via integrable systems methods [3, 28] we are able to prove the existence of a plethora of new spe-
cial Legendrian immersions with interesting geometric properties in dimensions greater than three.
Very minor modifications also allow us to construct a similar variety of contact stationary Legen-
drian immersions and hence of new Hamiltonian stationary (and not special Lagrangian) cones.
However, all closed special Legendrians constructed via (p, q)-twisted SL curves are topologically
products of the form S1×Σ. We construct infinitely many topological types of higher dimensional
special Legendrians which are not topologically products using gluing methods in [11,12,14].

When the immersions X1 and X2 are chosen to be the simplest possible special Legendrian
immersions, namely the standard totally real equatorial embeddings of Sp−1 ⊂ Rp ⊂ Cp and
Sq−1 ⊂ Rq ⊂ Cq, then w-twisted special Legendrian immersions X1 ∗w X2 turn out to be suitable
building blocks for higher dimensional gluing constructions of special Legendrian immersions. When
p = 1 and q = 2 these are precisely the building blocks used in our previous gluing construction of
special Legendrian surfaces in S5 [8, 10,13].

Throughout this section, given a Legendrian immersion Y into an odd-dimensional sphere we
shall denote its Lagrangian phase by eiθY .

Twisted products of spherical Legendrian immersions.

Definition 2.1. Let I ⊆ R be a connected interval, Σ1 and Σ2 be two smooth manifolds of
dimensions n1 and n2 respectively, and Xi : Σi → S2mi−1 for i = 1, 2 be smooth maps into odd-
dimensional spheres. Let w = (w1(t), w2(t) ) : I → S3 be a smooth immersed curve in S3. Then
the w-twisted product of X1 and X2, denoted X1 ∗w X2, is the smooth map

X1 ∗w X2 : I × Σ1 × Σ2 → S2m1+2m2−1 ⊂ Cm1+m2 = Cm1 × Cm2 ,

defined by

(2.2) X1 ∗w X2 (t, σ1, σ2) = (w1(t)X1(σ1), w2(t)X2(σ2) ).

Remark 2.3. In the definition of a twisted product above it is also convenient to allow the degenerate
case where Σ1 is 0-dimensional. We will need the case where Σ1 is a single point p and the map
X1 maps p 7→ (1, 0) ∈ S1 ⊂ S3 ⊂ C2. In this case we will drop the reference to X1 and Σ1 and the
subscript for X2 and Σ2 and write Xw : I × Σ→ S2m−1 for the map defined by

(2.4) Xw(t, σ) = (w1(t), w2(t)X(σ)).

We will still refer to this degenerate case as a twisted product.

The following extended remark explains the origin of the term twisted product in Definition 2.1.

Remark 2.5. Let C1 and C2 be cones in Cm1 and Cm2 respectively. The product C1 × C2 ⊂
Cm1 × Cm2 ∼= Cm1+m2 is also a cone. Suppose now that C1 and C2 are both regular cones,
i.e. Ci = C(Σi) is the cone over a smooth closed submanifold Σi ⊂ S2mi−1 and hence has an
isolated singularity at 0 ∈ Cmi . Let Σ12 ⊂ S2m1+2m2−1 denote the link of the product cone
C1 × C2 ⊂ Cm1+m2 . Clearly

(2.6) Σ12 = {(cos t σ1, sin t σ2) | t ∈ [0, 1
2π], σ1 ∈ Σ1, σ2 ∈ Σ2} ⊂ S2m1+2m2−1.

There is an obvious surjective map

Π : [0, π/2]× Σ1 × Σ2 → Σ12

from the manifold with boundary [0, π/2]×Σ1×Σ2 to the link of our product cone Σ12 defined by

(2.7) Π(t, σ1, σ2) = (cos t σ1, sin t σ2).

Clearly, the map Π can be written as a w-twisted product by taking X1 and X2 to be the inclusion
maps i1 : Σ1 → S2m1−1 and i2 : Σ2 → S2m2−1 respectively and w : I → S3 to be the equatorial
curve w : [0, π/2]→ S1 ⊂ S3 defined by

(2.8) w(t) = (cos t, sin t).
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We therefore view the w-twisted product defined in 2.1 as a “twisted” version of taking the
product of two regular cones. It “twists” the product construction by allowing a general curve
w ∈ S3 instead of the standard equatorial curve S1 ⊂ S3 defined in 2.8. It is natural therefore to
call the curve w : I → S3 the twisting curve.

The degenerate case discussed in Remark 2.3 also specialises to a product of cones C1×C2 when
the twisting curve is the equatorial curve 2.8 and C1 = R+ ⊂ C and C2 = C(Σ). Thus we can still
view Xw (defined in 2.4) as a twisted version of the product of two cones R+ × C and hence the
name twisted product is appropriate even in this degenerate case.

The product cone C1 × C2 is not a regular cone even when both C1 and C2 are regular cones.
Equivalently, the link Σ12 ⊂ S2m1+2m2−1 is not a smooth submanifold. As a topological space we
can think of Σ12 as being obtained from the generalised cylinder [0, π/2]× Σ1 × Σ2 by a modified
“coning-off the boundary” construction. Namely, at the endpoint t = 0 we cone-off Σ2 inside
{0}×Σ1×Σ2 but leave Σ1 untouched, whereas at the endpoint t = π/2 we instead cone-off Σ1 but
leave Σ2 alone. Thus Σ12 has two different types of singularities: conical singularities modelled on
Σ2 along a copy of Σ1 and conical singularities modelled on Σ1 along a copy of Σ2.

Π is a smooth embedding away from the endpoints of the interval [0, π/2] and induces a Rie-
mannian metric g on (0, π/2)× Σ1 × Σ2 defined by

g = dt2 + cos2 t g1 + sin2 t g2,

where g1 and g2 are the Riemannian metrics induced on Σ1 and Σ2 by the spherical inclusions i1
and i2. In particular, we see that the metric g degenerates at t = 0 and t = π/2 in a manner
consistent with the description of the singularities of Σ12 we gave in the previous paragraph.

In the exceptional case where C1 = Rm1 ⊂ Cm1 and C2 = Rm2 ⊂ Cm2 then obviously C1×C2
∼=

Rm1+m2 and therefore Σ12 = Sm1+m2−1 ⊂ S2m1+2m2−1 is not singular. In this case the images of
the hypersurfaces with t constant under the map

Π : [0, 1
2π]× Sm1−1 × Sm2−1 → Sm1+m2−1

give a (singular) codimension one foliation of Sm1+m2−1 by hypersurfaces isometric to the product
of spheres Sm1−1(cos t) × Sm2−1(sin t). As t → 0 the second spherical factor shrinks to radius 0,
while the first spherical factor shrinks to radius 0 as t → π/2. Restricting Π to the open interval
(0, π/2) gives a foliation of Sm1+m2−1 \ (Sm1−1, 0) ∪ (0, Sm2−1) that omits the two singular leaves
corresponding to the endpoints t = 0 and t = π/2. The leaves of this singular foliation of Sm1+m2−1

are exactly the orbits of the group SO(m1) × SO(m2) ⊂ SO(m1 + m2). When m1 = m2 = 2 the
singular foliation above yields the standard singular foliation of S3 by an open interval of 2-tori
which degenerates at the ends of the interval to the linked Hopf circles (S1, 0) ⊂ S3 and (0, S1) ⊂ S3.

Moving from the smooth to the Legendrian category we can refine the notion of twisted product
to generate new Legendrian immersions from a pair of lower-dimensional Legendrian immersions,
provided the twisting curve itself is Legendrian in S3.

Proposition 2.9 (Legendrian twisted products [4, Thm 3.1]). Suppose that the twisting curve
w is a Legendrian curve in S3, that (Σ1, g1) and (Σ2, g2) are oriented Riemannian manifolds of
dimension p− 1 > 0 and q − 1 > 0 respectively, and that X1 : Σ1 → S2p−1 and X2 : Σ→ S2q−1 are
Legendrian isometric immersions. Away from points where w1 or w2 vanish the w-twisted product

X1 ∗w X2 : I × Σ1 × Σ2 → S2p+2q−1 ⊂ Cp+q = Cp × Cq,

defined in 2.1 is a Legendrian immersion whose Lagrangian phase eiθX satisfies the following twisted
product relation

(2.10) eiθX = (−1)p−1eiθX1eiθX2eiθw+i(p−1) argw1+i(q−1) argw2 ,

and the metric g induced by X1 ∗w X2 is

(2.11) g = |ẇ|2dt2 + |w1|2g1 + |w2|2g2.
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The analogue of Proposition 2.9 in the degenerate case p = 1 considered in 2.4 is

Proposition 2.12. Suppose that the twisting curve w is a Legendrian curve in S3, that (Σ, g) is
an oriented Riemannian manifold of dimension n − 2 and that X : Σ → S2n−3 is a Legendrian
isometric immersion. Away from points where w2 vanishes the w-twisted product

Xw : I → Σ→ S2n−1 ⊂ Cn = C× Cn−1,

defined in 2.4 is a Legendrian immersion whose Lagrangian phase eiθ satisfies the twisted product
relation

eiθ = eiθXeiθw+i(n−2) argw2 ,

and the metric induced by Xw is |ẇ|2dt2 + |w2|2 g.

Remark 2.13. X1 ∗w X2 fails to be an immersion at points where either w1 or w2 vanish. Away
from such points we have Volg = |ẇ| |w1|p−1 |w2|q−1dtVolg1 Volg2 , and hence when both Σ1 and Σ2

are closed the w-twisted product has volume

(2.14) Vol (X1 ∗w X2) = Vol(X1) Vol(X2)
∫

I
|ẇ| |w1|p−1|w2|q−1 dt.

The obvious analogue of 2.14 holds for the degenerate case p = 1.

Remark 2.15. Let π : S2n+1 → CPn denote the Riemannian submersion associated with the Hopf
fibration. For any Legendrian immersion X : Σ→ S2n+1 the map π ◦X : Σ→ CPn is a Lagrangian
immersion and moreover, locally, any Lagrangian immersion to CPn lifts to a Legendrian immersion
covering it. Lagrangian immersions π◦X to CPn for which the Legendrian immersion X is a twisted
product in the sense of 2.9 or 2.12 were termed warped-product Lagrangian immersions in [2, §1].
Conditions on the second fundamental form of a Lagrangian immersion to CPn that characterise
when it is of warped-product type are given in [2, Thm 4.4 & 5.1].

Twisted products of special Legendrians and (p, q)-twisted special Legendrian curves. From now on
we will always consider the case where the integers p and q satisfy p ≤ q, p ≥ 1 and q ≥ 2. There
is no loss of generality in making this assumption. We call such a pair (p, q) of positive integers
admissible. For each admissible pair of integers (p, q) we define a distinguished class of Legendrian
curves in S3.

Definition 2.16. We call a Legendrian curve w in S3 a (p, q)-twisted special Legendrian (SL) curve
if the Lagrangian phase of w satisfies

(2.17) eiθw = (−1)p−1e−i(p−1) argw1−i(q−1) argw2 .

Proposition 2.9 (and 2.12 for the degenerate case p = 1) has the following easy corollary which
allows us to generate a new special Legendrian immersion in S2(p+q)−1 from a (p, q)-twisted SL
curve in S3 and a pair of special Legendrian immersions into S2p−1 and S2q−1 respectively.

Corollary 2.18 (Special Legendrian twisted products). Let X1, X2 and w be as in Proposition
2.9. If additionally, X1 and X2 are both special Legendrian then the w-twisted product X1 ∗w X2

is special Legendrian if and only if w is a (p, q)-twisted SL curve in S3. Similarly, let X and w be
as in Proposition 2.12. If additionally, X is special Legendrian then the w-twisted product Xw is
special Legendrian if and only if w is a (1, n− 1)-twisted SL curve in S3.

The following characterisation of (p, q)-twisted SL curves in S3 is central to the rest of this paper

Lemma 2.19 ([4, Cor 1]). Any curve w : I → C2 satisfying

(2.20) w1ẇ1 = −w2ẇ2 = (−1)pwp1 w
q
2, |w(0)| = 1,

is a (p, q)-twisted SL curve in S3. Conversely, any (p, q)-twisted SL curve in S3 containing no
points with w1(t) = 0 or w2(t) = 0 admits a parametrisation satisfying 2.20.
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Proof. First notice that the Lagrangian phase eiθw of any Legendrian curve w in S3 can be expressed
as

(2.21) eiθw =
w1ẇ2 − ẇ1w2

|ẇ| ,

since w has norm 1 and is hermitian orthogonal to ẇ.
Now suppose w is a curve in C2 satisfying 2.20. The real part of the equality w1ẇ1 +w2ẇ2 = 0

implies that d
dt |w|2 = 0, and hence w lies in S3. The imaginary part of the same equality implies

that w is a Legendrian curve. Straightforward calculation using 2.20 shows that w satisfies

(2.22) |ẇ| = |w1|p−1|w2|q−1,

and

(2.23) w1ẇ2 − ẇ1w2 = (−1)p−1wp−1
1 wq−1

2 .

Combining 2.21, 2.22 and 2.23 it follows that the Lagrangian phase of w satisfies 2.17 as required.
For the converse, notice that any Legendrian curve w in S3 satisfies the first and third equalities

in 2.20, i.e. w1ẇ1 = −w2ẇ2 and |w(0)| = 1. Also we can rewrite 2.17 as

eiθw = (−1)p−1 wp−1
1 wq−1

2

|w1|p−1|w2|q−1
,

and hence using 2.21 also as

w1ẇ2 − ẇ1w2

|ẇ| = (−1)p−1 wp−1
1 wq−1

2

|w1|p−1|w2|q−1
.

Now if we reparametrise w so that it satisfies 2.22 then from the previous equality we see that
2.17 is equivalent to equation 2.23. Multiplying 2.23 by w1w2 and using the fact that w satisfies
|w|2 = 1 and w1ẇ1 = −w2ẇ2, we get the second equality of 2.20 as required. �

Remark 2.24. By changing the parameter t of the curve w to −t if necessary one can always absorb
the dimension-dependent sign (−1)p from 2.20 and therefore it suffices to study curves w in S3

satisfying

w1ẇ1 = −w2ẇ2 = wp1w
q
2,

with initial condition |w(0)| = 1. Moreover, away from points where w1w2 = 0 these ODEs are
equivalent to

(2.25) ẇ1 = wp−1
1 wq2, ẇ2 = −wp1wq−1

2 .

2.25 will be the most convenient form of the equations to use since it allows the cleanest treatment
of the degenerate solutions where w1 or w2 can become zero.

Remark 2.26. If w is a (p, q)-twisted SL curve in S3 with p > 1, parametrized as in 2.20, then by
combining 2.14 and 2.22 we see that when Σ1 and Σ2 are both closed

(2.27) Vol (X1 ∗w X2) = Vol(X1) Vol(X2)
∫

I
|ẇ|2 dt.

Again the obvious analogue of 2.27 holds in the degenerate case p = 1. Therefore there is a close
relation between volume of special Legendrian twisted products and the energy of (p, q)-twisted SL
curves in S3 when using the parametrisation forced by 2.20.
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Twisted products of contact stationary immersions. With very little extra effort one can also con-
struct many Hamiltonian stationary cones in Cn or equivalently contact stationary submanifolds
in S2n−1 via the twisted product construction.

To this end we define the following class of Legendrian curves in S3 generalising 2.20

Definition 2.28. We call a curve w : I ⊂ R→ S3 a (p, q)-twisted contact stationary (CS) curve if
it satisfies the ODEs

(2.29) w1ẇ1 = −w2ẇ2 = ei(a+bt)wp1w
q
2, t ∈ I,

for some a, b ∈ R.

Remark 2.30. Note in the degenerate case p = q = 1 these ODEs occur as equation (7.1) in Schoen-
Wolfson’s work on the classification of 2-dimensional Hamiltonian stationary cones in C2 [33].
The system 2.29 is very simple to understand in this case because w satisfies a system of linear
equations. Moreover, by direct differentiation of the equations for ẇ1 and ẇ2, w1 and w2 each
satisfy autonomous second order linear equations.

The reason for making this definition is the following

Lemma 2.31 (Contact stationary twisted products [4, Cor 3.2]). Let X1, X2 and w be as in
Proposition 2.9. If additionally X1 and X2 are both oriented contact stationary immersions and w
is a (p, q)-twisted contact stationary curve then the w-twisted product X1 ∗w X2 : I × Σ1 × Σ2 →
S2(p+q)−1 is also a contact stationary immersion away from points where w1 or w2 vanish. Moreover,
if either X1 or X2 is contact stationary but not minimal Legendrian or if w is a (p, q)-twisted CS
curve with b 6= 0 then X1 ∗w X2 is contact stationary but not minimal Legendrian.

Similarly, let X and w be as in Proposition 2.12. If additionally, X is an oriented contact
stationary immersion then the w-twisted product Xw is an oriented contact stationary immersion
if w is a (1, n− 1)-twisted CS curve in S3.

Proof. The proof follows from Proposition 2.9 together with the characterisation of contact sta-
tionary and minimal Legendrian submanifolds of S2n−1 in terms of harmonicity and constancy of
the Lagrangian phase eiθ respectively. The proof in the case p = 1 follows in the same way using
Proposition 2.12 in place of 2.9. �
Remark 2.32. Clearly, 2.20 is a special case of 2.29 where a = pπ and b = 0. If w is a solution
of 2.29 with parameters (a, b) then for any constant d ∈ R, w′ = eidw is another solution of 2.29
with parameters (a′, b′) = (a+ (p+ q)d, b). Hence if b = 0 then by choosing d appropriately we can
reduce 2.29 to 2.20. The analysis of 2.29 when b 6= 0 is more complicated than that of 2.20 because
the system 2.29 is no longer autonomous. In this paper we will analyse in great detail solutions of
2.20 and say almost nothing further about solutions of 2.29 with b 6= 0. However, following [4, eqn.
13] we note that for any c ∈ (0, π/2) the Legendrian curve w : R→ S3

(2.33) w(t) = (cos c exp(it sinp c cosq−2 c), sin c exp(−it sinp−2 c cosq c)), t ∈ R

satisfies 2.29 with a = π/2 and b = sinp−2 c cosq−2 c (p sin2 s− q cos2 c). Clearly b = 0 if and only if
tan2 c = q/p. (This special solution of 2.20 which has |w1|2 ≡ p

n and |w2|2 ≡ q
n corresponds to the

solution wτ described in 5.1 with |τ | = τmax; for other values of c, b is nonzero and therefore 2.33
gives no further solutions of 2.20.)

The (p, q)-twisted CS curve 2.33 is closed if and only if tan2 c ∈ Q. In particular given relatively
prime positive integers m and n choose the unique value of cm,n ∈ (0, π/2) so that tan2 cm,n = m/n,
and therefore cos cm,n =

√
n/(m+ n), sin cm,n =

√
m/(m+ n). Hence for each fixed (p, q) there is

a countably infinite family of closed (p, q)-twisted CS curves wm,n of the form 2.33 parametrised by
the pair of relatively prime positive integers m and n. In the degenerate case when p = q = 1 these
closed curves wm,n are (up to a unitary transformation) nothing but the closed contact stationary
curves γm,n described in Schoen-Wolfson’s work on Hamiltonian stationary cones in C2 [33].
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Remark 2.34. Combining Lemma 2.31 and Remark 2.32 gives us two ways to construct contact
stationary submanifolds that are not minimal Legendrian using the twisted product construction:
(i) we take at least one of our initial immersions Xi to be contact stationary but not minimal
Legendrian and w to be a (p, q)-twisted SL curve or (ii) we take the twisting Legendrian curve
w to be a (p, q)-twisted CS curve of the form 2.33 with tan2 c 6= q/p. In the latter case we can
allow both X1 and X2 to be special Legendrian, yielding a very simple method to generate higher-
dimensional contact stationary immersions from a pair of lower-dimensional special Legendrians.

To construct special Legendrian or contact stationary immersions of the closed manifold S1 ×
Σ1 × Σ2 from a pair of immersions of closed manifolds Σ1 and Σ2 we need (p, q)-twisted SL or CS
curves that are closed. We call Legendrian immersions which arise this way, closed twisted products.
For each fixed p and q Remark 2.32 exhibited a countably infinite family of closed (p, q)-twisted
CS curves wm,n parametrised by relatively prime positive integers m and n. Moreover, wm,n is
congruent to a (p, q)-twisted SL curve if and only if m/n = p/q.

We study closed (p, q)-twisted SL curves in Section 7 by analysing the periodicity conditions for
solutions w of 2.20. We will prove the following result (Theorem 7.15)

For each admissible pair (p, q) of positive integers there exists a countably infinite family of distinct
closed (p, q)-twisted SL curves in S3.

By the SL twisted product construction of Corollary 2.18, Theorem 7.15 implies that every pair
of closed special Legendrian submanifolds Σ1 and Σ2 in S2p−1 and S2q−1 respectively, gives rise
to a countably infinite family of closed SL twisted products, i.e. special Legendrian immersions
of S1 × Σ1 × Σ2 in S2p+2q−1. Similarly, by using closed (1, n − 1)-twisted SL curves every closed
special Legendrian submanifold Σ in S2n−3 gives rise to a countably infinite family of closed special
Legendrian submanifolds in S2n−1 with topology S1 × Σ.

By combining the closed twisted product construction with existing constructions of closed spe-
cial Legendrian immersions we generate a plethora of new closed special Legendrian and contact
stationary immersions in essentially all dimensions. For example, we have the following result on
topological types of special Lagrangian and Hamiltonian stationary cones

Theorem A (Infinitely many topological types of SL and HS cones in Cn for n ≥ 4).
(i) For any n ≥ 4 there are infinitely many topological types of special Lagrangian cone in Cn,

each of which is diffeomorphic to the cone over a product S1×Σ′ for some smooth manifold
Σ′, and each of which admits infinitely many distinct geometric representatives.

(ii) For any n ≥ 4 there are infinitely many topological types of Hamiltonian stationary cone
in Cn which are not minimal Lagrangian, each of which is diffeomorphic to the cone over
a product S1 × Σ′ for some smooth manifold Σ′, and each of which admits infinitely many
distinct geometric representatives.

Proof. In [13] we proved the existence of infinitely many special Legendrian surfaces in S5 of every
odd genus (and also of genus 4). By Theorem 7.15 there is a countably infinite family of closed (1, 3)-
twisted SL curves. Appealing to 2.18 using this infinite family of closed (1, 3)-twisted SL curves and
the infinite number of topological types of SL surfaces in S5 described above we conclude that there
are infinitely many topological types of special Legendrian 3-folds in S7 of the form S1×Σ, where Σ
is a oriented surface and that each topological type is realised by infinitely many distinct geometric
representatives. To prove part (i) for any n > 4 we can keep iterating the process using the fact
that by Theorem 7.15 for each n ≥ 3 there is a countably infinite family of closed (1, n− 1)-twisted
SL curves. To prove (ii) we simply substitute Lemma 2.31 on CS twisted products for Corollary
2.18 and Remark 2.32 for Theorem 7.15 and argue as before using our gluing results for SL surfaces
in S5 as the starting point once again. �

We can also combine the twisted product construction with the SL 2-tori produced by integrable
systems methods. McIntosh [28] proved that all SL 2-tori in S5 can be constructed by integrable
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systems methods and more specifically by so-called spectral curve methods. Using these methods
Carberry-McIntosh [3] produced a very rich variety of special Legendrian 2-tori; in particular they
proved the existence of appropriate SL spectral data in which the genus of the spectral curve genus
can be any positive even integer. A simple consequence of their result is the remarkable fact that
SL 2-tori can come in continuous families of arbitrarily high dimension, by choosing SL spectral
data of higher and higher spectral curve genus. We can extend Carberry-McIntosh’s result to
every dimension and also to contact stationary tori of dimension at least 3 using the closed twisted
product construction.

Theorem B (SL/CS tori in S2n−1 occur in families of arbitrarily high dimension).
(i) For n ≥ 3 there exist special Legendrian immersions of Tn−1 in S2n−1 which come in

continuous families of arbitrarily high dimension.
(ii) For n ≥ 4 there exist contact stationary (and not minimal Legendrian) immersions of Tn−1

in S2n−1 which come in continuous families of arbitrarily high dimension.

Proof. (i) For n = 3 we simply appeal to the results of Carberry-McIntosh [3]. For n = 4 we use the
(1, 3)-twisted SL product of a 2-torus coming from the Carberry-McIntosh construction and any
closed (1, 3)-twisted SL curve. Clearly, the resulting twisted product depends continuously on the
input 2-torus. Hence by Carberry-McIntosh’s work for any d ∈ N we can find a special Legendrian
immersion of S1 × T 2 which moves in a continuous family of dimension at least d. For n = 5 we
use the (2, 3)-twisted product where X1 : S1 → S3 ⊂ C2 is the standard totally real equatorial
circle, X2 : T 2 → S5 ⊂ C3 is a 2-torus coming from the Carberry-McIntosh construction and w
is any closed (2, 3)-twisted SL curve. For n ≥ 6 we use the twisted (n − 3, 3)-twisted SL product
where X1 : Tn−3 → S2n−7 is the unique SL n − 3 torus invariant under the diagonal subgroup
Tn−3 ⊂ SU(n−3), X2 : T 2 → S5 is a 2-torus coming from the Carberry-McIntosh construction and
w is any closed (n− 3, 3)-twisted SL curve. Part (ii) is proved in the same way using the twisted
CS product construction 2.31 and the closed (p, q)-twisted CS curves exhibited in Remark 2.32. �

Finally, by combining the twisted product construction with both integrable systems construc-
tions and our gluing methods we obtain the following striking result

Theorem C.
(i) For any n ≥ 6 there are infinitely many topological types of special Lagrangian cone in Cn

of product type which can come in continuous families of arbitrarily high dimension.
(ii) For each n ≥ 6 there are infinitely many topological types of Hamiltonian stationary cone

in Cn of product type which are not minimal Lagrangian and which can come in continuous
families of arbitrarily high dimension.

Proof. (i) Since n− 3 ≥ 3 by the gluing results of [13] and Theorem A(i) there are infinitely many
topological types of SL n−3 fold in S2(n−3)−1. The result follows by applying the (n−3, 3)-twisted
SL product construction where X1 is any of these SL n− 3 folds, X2 is a SL 2-torus coming from
the Carberry-McIntosh construction and w is any closed (n− 3, 3)-twisted SL curve.

Part (ii) follows in the same way using the twisted CS product construction and the closed
(p, q)-twisted CS curves exhibited in Remark 2.32. �

It is difficult to see how integrable systems methods or gluing methods alone could yield a result
like Theorem C.

3. SO(p)× SO(q)-invariant special Legendrians and (p, q)-twisted SL curves

In this section we prove that every SO(p)× SO(q)-invariant special Legendrian in S2(p+q)−1 arises
from the special Legendrian twisted product construction (as described in 2.18); hence the study
of SO(p)× SO(q)-invariant special Legendrians can be reduced to the study of the ODEs 2.19. In
Section 4 we will begin an in-depth study of these ODEs.
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Relation with work of other authors. SO(p) × SO(q)-invariant SL submanifolds of Cn are studied
in [5, §3] and SO(p)×SO(q)-invariant special Legendrian submanifolds of S2n−1 are studied in [4, §3].
The ODEs for SO(p)× SO(q)-invariant special Legendrian submanifolds of S2(p+q)−1 appear in [5,
Lemma 2] and [4, Cor 1]. However, Castro-Li-Urbano did not study closed SO(p)×SO(q)-invariant
special Legendrians in a systematic way.

SO(n − 1)-invariant special Legendrians (for n > 3) were studied recently by Anciaux [1] from
a slightly different point-of-view. Anciaux [1, Thm 2] gives the following nice geometric char-
acterisation of SO(n − 1)-invariant special Legendrians: any minimal Legendrian submanifold of
S2n−1 which is foliated by round n − 2 spheres is either a totally geodesic Sn−1 or congruent to
an SO(n − 1)-invariant special Legendrian. He goes on to study SO(n − 1)-invariant special Leg-
endrians in S2n−1 noting that they arise from a Legendrian curve w in S3 satisfying 2.17 with
(p, q) = (1, n − 1). Rather than working directly with this first order condition and deriving an
equation like 2.25 from it, Anciaux differentiates 2.17 and interprets the resulting second order
equation (see [1, eqn. 3]) as an equation on the projected curve π(w) ⊂ CP1 where π : S3 → CP1

denotes the Hopf projection. Using this approach he proves the existence of a countable family of
closed integral curves in CP1 and this suffices to prove the existence of closed minimal Lagrangian
submanifolds of CPn−1 (see [1, Thm 3]). However, the horizontal lift to S3 of a closed integral
curve in CP1 is not necessarily closed. In Anciaux’s approach an additional period condition must
be satisfied for the spherical lift to be closed and because of this his method does not prove the
existence of suitable closed curves in S3 (see his discussion following Theorem 3).

The key to overcoming this period problem is to work directly with the first order system 2.25
rather than the second order system that Anciaux exploits. This approach allows us to prove
the existence of countably infinitely many closed (p, q)-twisted special Legendrian curves in S3

for general p and q. For our gluing constructions [11, 12, 14] it is crucial that we have closed
SO(p)× SO(q)-invariant special Legendrians at our disposal.

SO(2) × SO(2)-invariant SL cones in C4 can be constructed in a different manner, namely as a
special case of Joyce’s work on Tn−2-invariant SL cones in Cn. To obtain this SO(2)×SO(2) action
we should set n = 4 and take a1 = a2 = −1, a3 = a4 = 1 in [17, Prop. 7.6]. Among all T 2-actions
allowed in Joyce’s constructions, the SO(2) × SO(2) action is distinguished by having the largest
fixed point set.

Isotropic orbits of the SO(p)× SO(q) action on Cp+q. As previously we assume that (p, q) is
an admissible pair of positive integers, i.e. p ≤ q, q ≥ 2 and p ≥ 1, and we set n = p+ q.

SO(p)× SO(q) acts via isometries on Cp+q ∼= Cp × Cq via the product of the standard complex
linear actions of SO(p) and SO(q) on the Cp and Cq factors respectively. Since SO(p)× SO(q) ⊂
SO(p + q) ⊂ SU(n) it is natural to look for SO(p)× SO(q)-invariant special Lagrangians in Cp+q

and in particular for special Lagrangian cones or equivalently special Legendrian submanifolds of
S2n−1 invariant under SO(p)× SO(q). If a Legendrian submanifold of S2n−1 is a union of orbits
then each orbit O must be γ-isotropic, i.e. γ|O = 0, where γ = ιXω|S2n−1 is the standard contact
form on S2n−1 (here ω and X denote the standard symplectic form and radial vector field on Cn

respectively). The following simple lemma describes the γ-isotropic orbits O of SO(p)× SO(q) in
S2n−1.

Lemma 3.1 (Isotropic orbits of SO(p)× SO(q)).
(i) If p ≥ 2, q ≥ 2 then any γ-isotropic SO(p)× SO(q) orbit O ⊂ S2(p+q)−1 has the form

(3.2) Ow = (w1 · Sp−1, w2 · Sq−1)

for some w = (w1, w2) ∈ S3. Moreover, if w and w′ ∈ S3 then Ow = Ow′ if and only if
w′ = ρjkw for some (j, k) ∈ Z2×Z2 where ρ : Z2 × Z2 → O(2) ⊂ U(2) is the homomorphism
defined by

(j, k) 7→ ρjk :=
(

(−1)j 0
0 (−1)k

)
.
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In particular, spherical isotropic SO(p)× SO(q) orbits are in one-to-one correspondence
with points in S3/Z2 × Z2.

(ii) Similarly, for n ≥ 3 any γ-isotropic SO(n− 1) orbit O ⊂ S2n−1 has the form

(3.3) Ow = (w1, w2 · Sn−2)

for some w = (w1, w2) ∈ S3. Moreover, if w and w′ ∈ S3 then Ow = Ow′ if and only if
w′ = ρjkw for (j, k) ∈ 〈(+−)〉 ∼= Z2 6 Z2 ×Z2. In particular, isotropic SO(n− 1) orbits in
S2n−1 are in one-to-one correspondence with points in S3/Z2, where Z2 = 〈ρ+−〉.

Proof. We begin with a more general result that applies to isotropic orbits of any connected Lie
subgroup of SU(n). Let G be any connected Lie subgroup of SU(n), g denote the Lie algebra of G
and x be any point in S2n−1. Then the orbit Ox := G · x is contained in S2n−1 and is γ-isotropic
if and only if γ(v) = 0 for all v ∈ TyOx and y ∈ Ox. By homogeneity it suffices to check this at x.
But since Ox is a G-orbit we have TxOx = g ·x. Therefore Ox is isotropic if and only if γx(g ·x) = 0.
Hence using the definition of the standard contact form γ on S2n−1 we see that Ox is isotropic if
and only if

(3.4) Im 〈x,Ax〉 = 0, for any A ∈ g

where 〈·, ·〉 denotes the standard Hermitian inner product on Cn. In the language of moment maps
3.4 is equivalent to the condition x ∈ µ−1(0) where µ : Cn → g∗ is the moment map associated to
the action of G ⊂ SU(n). (For the definition and basic properties of the moment map we refer the
reader to Section 4 of [17].)

Specialising to G = SO(p)× SO(q) and g = so(p)× so(q) (with p ≥ 2 and q ≥ 2) we have Ox is
isotropic if and only if

(3.5) Im 〈x,Ax〉 = 0, for any A ∈ so(p)× so(q).

To analyse 3.5, decompose x = (x′, x′′) ∈ Cp×Cq and A = (A′, A′′) ∈ so(p)× so(q). By considering
x = (x′, 0) and A = (A′, 0) or x = (0, x′′) and A = (0, A′′) we find it is equivalent to

(3.6) Im 〈x′, A′x′〉 = Im 〈x′′, A′′x′′〉 = 0, for all A′ ∈ so(p), A′′ ∈ so(q).

One can check that Im 〈z,Az〉 = 0 for all A ∈ so(m) if and only if z ∈ Cm has the form z ∈ w ·Sm−1

for some w ∈ C. Applying this to 3.6 twice (for different values of m) we obtain x′ ∈ w1 · Sp−1 and
x′′ ∈ w2 · Sq−1 for some w = (w1, w2) ∈ C2. But since Ox ⊂ S2(p+q)−1 we have w ∈ S3 and hence
3.2 follows. It is straightforward to verify the conditions on w and w′ under which the orbits Ow

and Ow′ coincide are as stated.
The proof of Lemma 3.1 for O(n − 1) is a minor modification of the proof above and therefore

we omit it; the main difference is the condition under which two orbits Ow and Ow′ coincide. �
By Lemma 3.1 the generic γ-isotropic orbit of SO(p)× SO(q) has dimension n− 2 and therefore

we can look for SO(p)× SO(q)-invariant special Legendrians that are curves of SO(p)× SO(q)
orbits, and these curves will satisfy some first order system of ODEs.

SO(p)× SO(q)-invariant special Legendrians and (p, q)-twisted SL curves. An immediate
consequence of Lemma 3.1 is that all SO(p)× SO(q)-invariant Legendrian submanifolds of S2(p+q)−1

arise from the twisted product construction of 2.1.

Corollary 3.7 (SO(p)× SO(q)-invariant Legendrians are twisted products).
(i) For p ≥ 2, q ≥ 2 a Legendrian immersion Y : Σ→ S2(p+q)−1 is SO(p)× SO(q)-invariant if

and only if Y is locally congruent to a twisted product X1 ∗w X2 where X1 : Sp−1 → S2p−1

and X2 : Sq−1 → S2q−1 are the standard totally geodesic special Legendrian embeddings.
(ii) If p = 1 a Legendrian immersion Y : Σ → S2n−1 is SO(n − 1)-invariant if and only if

Y is locally congruent to a (degenerate) twisted product Xw (as defined in 2.4) where the
immersion X : Sn−2 → S2n−3 is the standard totally geodesic special Legendrian embedding.
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In particular, by combining Corollary 3.7 with Corollary 2.18 we obtain

Corollary 3.8 (SO(p)× SO(q)-invariant special Legendrians and (p, q)-twisted SL curves).
(i) For p, q ≥ 2 any SO(p)× SO(q)-invariant special Legendrian immersion is locally congruent

to a twisted product with X1 and X2 as in 3.7, where the twisting curve w is a (p, q)-twisted
SL curve in S3.

(ii) For p = 1 any SO(n− 1)-invariant special Legendrian immersion is locally congruent to a
(degenerate) twisted product with X : Sn−2 → S2n−3 the standard totally geodesic Legendrian
embedding and w a (1, n− 1)-twisted SL curve in S3.

Corollary 3.7 appears in Castro-Li-Urbano in the statement of Thm 3.1 [4]. Note, however, the
assumption p, q ≥ 3 made in their statement can be relaxed as in our statement. We could also
derive these results about SO(p)× SO(q)-invariant special Legendrians using the methods Joyce
developed to study cohomogeneity one special Lagrangians and special Legendrians [17].

4. The fundamental ODE system for (p, q)-twisted SL curves

Given an admissible pair of integers p and q (i.e. satisfying 1 ≤ p ≤ q and q ≥ 2) we set
n = p+q. This section studies the first order system of complex ODEs 2.25 governing (appropriately
parametrised) (p, q)-twisted SL curves. The central result in this section is Proposition 4.26 which
establishes a normal form for any solution w of 2.25 up to the action of certain obvious symmetries.
We use 4.26 in Section 5 to define a particular 1-parameter family wτ of (p, q)-twisted SL curves
and the associated 1-parameter family of SO(p) × SO(q)-invariant special Legendrian immersions
Xτ . Up to symmetry, every (p, q)-twisted SL curve is equivalent to wτ for some τ .

We begin by discussing the symmetries of 2.25. For any p and q the (p, q)-twisted SL ODEs 2.25
have six obvious types of symmetry:

(1) Time translation invariance w 7→ w ◦ Tt0 for any t0 ∈ R.
(2) Multiplication by an nth root of unity w 7→ zw, where zn = 1.
(3) w 7→ T̂x ◦w where T̂x ∈ U(1)×U(1) ⊂ U(2) is the 1-parameter subgroup (depending on p

and q)

(4.1) T̂x =
(
eix/p 0

0 e−ix/q

)
.

(4) Complex conjugation w 7→ w.
(5) The simultaneous time reflection and spatial rotation given by

t 7→ −t, w 7→ zw,

where z is any nth root of −1.
(6) The simultaneous time and spatial rescaling given by

t 7→ λ1−2/nt, w 7→ λ1/nw, for any λ > 0.

More precisely, w is a solution of 2.25 if and only if wλ(t) := λ1/nw(λ1−2/nt) is.
Before establishing the basic facts about solutions to the (p, q)-twisted SL ODES we discuss the

geometry of the 1-parameter group of symmetries {T̂x}x∈R (which depends on p and q) appearing in
symmetry (3) above. As in 3.1, for any w ∈ S3 let Ow ⊂ S2(p+q)−1 denote the associated isotropic
SO(p)× SO(q) orbit.

Definition 4.2. For fixed integers p and q define a period of the 1-parameter group {T̂x} by

Per({T̂x}) := {x ∈ R | T̂x = Id}.
Clearly, if x ∈ Per({T̂x}) then OT̂xw

= Ow for any w ∈ S3. In other words, for any x ∈ Per({T̂x}),
T̂x leaves invariant all isotropic SO(p)× SO(q) orbits in S2(p+q)−1.
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More generally, we call x ∈ R a half-period of {T̂x} if T̂x leaves invariant all isotropic SO(p) ×
SO(q) orbits in S2(p+q)−1. In other words,

Per 1
2
({T̂x}) := {x ∈ R | OT̂xw

= Ow ∀ w ∈ S3}.

A half-period of {T̂x} which is not a period of {T̂x} we call a strict half-period of {T̂x}.
Define the finite subgroup Stabp,q ⊂ U(2) by

(4.3) Stabp,q =





(
±1 0
0 ±1

)
∼= Z2 × Z2 if p > 1;

(
1 0
0 ±1

)
∼= Z2 if p = 1.

It follows from 3.1 that

(4.4) x ∈ Per 1
2
({T̂x}) ⇐⇒ T̂x ∈ Stabp,q.

An immediate consequence of 4.4 is that 2 Per 1
2
({T̂x}) ⊂ Per({T̂x}); this explains the choice of the

terminology half-period. If T̂x = ρjk for some (j, k) ∈ Z2 × Z2 with ρjk ∈ Stabp,q as defined in
3.1 we call x a half-period of type (jk). If x is a half-period of type (jk) then eix = (−1)jp and
e−ix = (−1)kq and hence jp+ kq ≡ 0 mod 2.

The following lemma describes the periods and half-periods of the 1-parameter group {T̂x}.
Lemma 4.5. Fix a pair of admissible integers p and q and let {T̂x} denote the 1-parameter subgroup
defined in 4.1.

(i) The periods of {T̂x} are given by

Per({T̂x}) = 2π lcm(p, q)Z.

(ii) If p > 1 then the half-periods of {T̂x} are given by

Per 1
2
({T̂x}) = 1

2 Per({T̂x}) = π lcm(p, q)Z.

Moreover, any strict half-period of {T̂x} is of type (jk) where j = q/hcf(p, q) mod 2 and
k = p/hcf(p, q) mod 2. In particular, for any fixed p and q exactly one type of strict
half-period occurs.

(iii) If p = 1 then the half-periods of {T̂x} are given by

Per 1
2
({T̂x}) =

{
1
2 Per({T̂x}) = π lcm(p, q)Z if n is odd;
Per({T̂x}) = 2π lcm(p, q)Z if n is even.

Proof. The proof is a straightforward use of the various definitions, the case p = 1 being different
because Stabp,q (defined in 4.3) is defined differently in this case. �
Remark 4.6. Notice that for j and k defined in 4.5 jp+kq = 2pq/hcf(p, q) ≡ 0 mod 2 as required.

We have the following basic facts about solutions to the (p, q)-twisted SL ODEs.

Proposition 4.7. (cf. equation 2.25 and Remark 2.24)
(i) Solutions to the (p, q)-twisted SL ODEs

(4.8)
ẇ1 = wp−1

1 wq2,

ẇ2 = −wp1wq−1
2 ,

admit two conserved quantities

I1(w) := |w|2 and I2(w) := Im(wp1w
q
2).
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The symmetries (1), (2) and (3) preserve both conserved quantities I1 and I2. Symmetries
(4) and (5) preserve I1 but send I2 7→ −I2. Symmetry (6) sends (I1, I2) 7→ (λ2/nI1, λI2).
Hence if w is a solution of 4.8 with I1(w) 6= 0 then we may rescale using symmetry (6)
to obtain another solution of 4.8 with I1(w) = 1. For any solution with I1(w) = 1, the
possible range of values of I2 = Im(wp1w

q
2) is [−2τmax , 2τmax], where

(4.9) 2τmax =

√
ppqq

nn
.

(ii) The stationary points of 4.8 are

C× {0} ∪ {0} × C if p > 1 or C× {0} if p = 1.

(iii) The initial value problem for 4.8 with any initial data w(0) ∈ C2 has a unique real analytic
solution w : R → C2 defined for all t ∈ R, which depends real analytically on the initial
data.

(iv) For any solution of 4.8 with I1(w) = 1 and I2(w) = Im(wp1w
q
2) = −2τ (and hence by part

(i) τ ∈ [−τmax, τmax]) the function y := |w2|2 : R→ [0, 1] satisfies the equation

(4.10)
1
2
ẏ + 2iτ = −wp1wq2.

Therefore y satisfies the energy conservation equation

(4.11) ẏ2 = 4(f(y)− 4τ2) = 4yq(1− y)p − 16τ2,

and hence also the second-order ODE

(4.12) ÿ = 2f ′(y) = 2yq−1(1− y)p−1(q − ny),

where we define the function f : R→ R (depending on p and q) by

(4.13) f(y) = yq(1− y)p.

Remark 4.14. The difference between the stationary points of 4.8 in the case p > 1 and the case
p = 1 reflects the difference in the geometry of the nongeneric isotropic orbits of SO(p)× SO(q)
and SO(n − 1) respectively. For p > 1 the nongeneric isotropic orbits of SO(p)× SO(q) have the
form (w1 · Sp−1, 0) and (0, w2 · Sq−1). For p = 1 the only nongeneric isotropic orbits are of the form
(w1, 0). In particular, the orbits of the form (0, w2 · Sn−2) are generic provided w2 6= 0.

Proof. (i) Conserved quantities. We verify I1 and I2 are conserved by direct calculation. Firstly,

İ1 = d
dt |w|2 = d

dt(w1w1) + d
dt(w2w2) = 2 Re (ẇ1w1 + ẇ2w2) = 0,

where we have used 4.8 in the final equality. Secondly, since
d
dt(w

p
1w

q
2) = pwp−1

1 wq2ẇ1 + qwp1w
q−1
2 ẇ2,

using 4.8 we obtain

(4.15)
d

dt
(wp1w

q
2) = |w1|2p−2|w2|2q−2(p|w2|2 − q|w1|2) ∈ R.

Hence d
dtI2 = d

dt Im (wp1w
q
2) = 0. It is straightforward to check the action of the symmetries on I1

and I2 is as claimed. Define y = |w2|2. When I1(w) = 1

|I2(w)| = |Imwp1w
q
2| ≤ |w1|p|w2|q =

√
yq(1− y)p =

√
f(y),

for the function f defined in 4.13. A short calculation shows that

(4.16) f ′(y) = yq−1(1− y)p−1(q − ny),



CLOSED TWISTED PRODUCT SPECIAL LAGRANGIANS 19

0 0.5 1
0

0.05

0.1

0.15

0.2
        p=1, q=2

ymin ymax

0 0.5 1
0

0.05

0.1

0.15

0.2
        p=1, q=3

ymin ymax

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1
        p=1, q=4

ymin ymax

0 0.5 1
0

0.02

0.04

0.06

0.08

0.1
        p=2, q=2

ymin ymax

0 0.5 1
0

0.01

0.02

0.03

0.04
        p=2, q=3

ymin ymax

0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

0.03
        p=2, q=4

ymin ymax

0 0.5 1
0

0.005

0.01

0.015

0.02
        p=3, q=3

ymin ymax

0 0.5 1
0

0.002

0.004

0.006

0.008

0.01
        p=3, q=4

ymin ymax

0 0.5 1
0

1

2

3

4

5

6
x 10 3        p=3, q=5

ymin ymax

Figure 1. The graph of f(y) = yq(1− y)p on the interval [0, 1] for various choices
of (p, q). ymin and ymax — the two solutions of f(y) = 4τ2 in the interval [0, 1] —
are shown for τ = 1

2τmax. The maximum value fmax = 4τ2
max which occurs at y = q

n
is marked by ◦.

and therefore the critical points of f are

(4.17) Crit(f) =

{
{0, qn , 1} if p > 1;
{0, qn} if p = 1.
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Since f is non-negative on [0, 1] and vanishes only at the two endpoints, the maximum value of f
for y ∈ [0, 1] occurs when y = q

n and hence

fmax = f( qn) =
ppqq

nn
= 4τ2

max,

where τmax is defined in 4.9. Hence |I2(w)| ≤ √fmax ≤ 2τmax as claimed. See Figure 1 for the
graph of the function f on the interval [0, 1] for various choices of (p, q).
(ii) Stationary points. Stationary points of 4.8 are given by common zeros of the two polynomials

(4.18) wp−1
1 wq2 = 0 = wp1w

q−1
2 .

(iii) Global existence, uniqueness and analyticity. The vector field

V (w) = (wp−1
1 wq2 , w

p
1w

q−1
2 )

on C2 defining 4.8 is clearly real algebraic. It follows then from the standard local existence
and uniqueness results for the initial value problem that locally 4.8 admits a unique real analytic
solution for any initial data and this solution depends real analytically on the initial condition.
Since I1(w) = |w|2 is constant, this local solution remains in a compact subset of C2 and hence
global existence follows immediately.
(iv) ODEs for y := |w2|2. Using 4.8, we have

ẏ = 2 Re (ẇ2w2) = −2 Re (wp1w
q
2) = −2 Re (wp1w

q
2),

2τ = Im (w1ẇ1) = Im (wp1w
q
2) = − Im (wp1w

q
2).

Hence we obtain 4.10. Taking the modulus squared of both sides of 4.10 proves that ẏ satisfies
4.11. Differentiating 4.10 with respect to t and using 4.15 we see that y satisfies the second-order
equation 4.12. Note that the stationary points of 4.12 are exactly the critical points of f and hence
by 4.17 are 0 and q

n when p = 1 and 0, q
n and 1 when p > 1. �

To understand the space of solutions to 4.8 modulo the action of the symmetries (1)–(6) we need
the following auxiliary result about solutions of 4.11:

Lemma 4.19. Let w be any solution of 4.8 with I1(w) = 1 and I2(w) = Im(wp1w
q
2) = −2τ and let

y := |w2|2 : R→ [0, 1] be the associated solution of 4.11.
(i) If 0 < |τ | < τmax, the following holds:

a. y is periodic of period 2pτ > 0 and hence any two solutions of 4.11 with the same value
of τ differ only by a time translation. Moreover, the period pτ satisfies

(4.20) lim
τ→τmax

2pτ =
π

τmax

√
pq

2n3
.

b. The range of y is [ymin , ymax], where 0 < ymin < q
n < ymax < 1 are the only two

solutions of the degree n polynomial equation

(4.21) f(y) = yq(1− y)p = 4τ2,

that lie in the interval [0, 1].
c. As τ → 0 we have

(4.22) ymin = (2τ)2/q(1 +O(τ2/q)), ymax = 1− (2τ)2/p(1 +O(τ2/p)).

(ii) If |τ | = τmax, then y ≡ q
n .

(iii) If τ = 0 and p > 1 then one of the following holds:
a. y ≡ 0
b. y ≡ 1
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c. y is strictly monotone and satisfies

y =

{
y0 ◦ Tt0 some t0 ∈ R; if y is decreasing
y0 ◦ Tt0 ◦ T some t0 ∈ R; if y is increasing

where y0 : R → (0, 1) denotes the unique (decreasing) solution to the initial value
problem

ẏ = −2
√
f(y), y(0) =

q

n
.

Alternatively, y0 can be characterised as the unique solution to 4.12 with initial condi-
tions

y(0) =
q

n
, ẏ(0) = −4τmax.

Moreover, y0 satisfies

lim
t→−∞

y0(t) = 1 and lim
t→∞

y0(t) = 0.

(iv) If τ = 0 and p = 1 then one of the following holds:
a. y ≡ 0,
b. y = y0 ◦ Tt0 for some t0 ∈ R, where y0 : R→ (0, 1] is the unique solution to 4.12 with

initial conditions
y(0) = 1, ẏ(0) = 0.

Moreover, y0 is even, increasing on (−∞, 0) and satisfies limt→±∞ y0(t) = 0.

Remark 4.23.
(i) Detailed asymptotics for the τ → 0 limit of the period 2pτ are established in Section 7.
(ii) Since y satisfies an equation of the form ẏ2 = P (y) where P is a polynomial of degree n,

any solution of 4.11 can be expressed in terms of hyperelliptic functions. When n = 3 or 4
y can be expressed in terms of Jacobi elliptic functions—see [10,13] for such expressions in
the (p, q) = (1, 2) case. Moreover, in the τ → 0 limit the modulus k2 of the elliptic functions
tends to 1. In this limit these elliptic functions become hyperbolic trigonometric functions.
e.g. y0 = sech2 t when p = 1, q = 2 and y0 = 1

2(1− tanh t) when p = q = 2.
(iii) Figure 1 shows ymin and ymax on the graph of f(y) for various (p, q) for τ = 1

2τmax.

Proof. Motivated by 4.11 we define the 2-variable polynomial Pτ : R2 → R

Pτ (y, z) = z2 − 4f(y) + 16τ2 = z2 − 4yq(1− y)p + 16τ2.

Let Cτ denote the real affine curve in R2 defined by Pτ = 0. We can also view Pτ as a 2-variable
complex polynomial and consider the complex affine curve CC

τ in C2 defined by Pτ = 0. We find

(y, z) ∈ Sing(CC
τ )⇐⇒ f(y) = 4τ2, f ′(y) = 0, z = 0.

Hence from 4.16 we have

(4.24) Sing(CC
τ ) = Sing(Cτ ) =





∅, for 0 < |τ | < τmax;
( qn , 0), for |τ | = τmax;
(0 , 0), for τ = 0 and p = 1;
(0 , 0) ∪ (1 , 0) for τ = 0 and p > 1.

Since Pzz = 2, all singular points of CC
τ are double point singularities. Further calculation yields:

( qn , 0) is always an ordinary double point,
(0 , 0) is an ordinary double point if q = 2 but a node if q ≥ 3,
(1 , 0) is an ordinary double point if p = 2 but a node if p ≥ 3.
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Figure 2. The curves C0
τ for τ ∈ [0, τmax] and various choices of (p, q).

Singular points are marked: ordinary double points as × and nodes as ◦.

See also Figure 2.
(i) : 0 < |τ | < τmax. If 0 < |τ | < τmax, 4.24 implies that the real affine curve Cτ is non-

singular. Cτ is not necessarily connected, so let C0
τ denote the component containing the point

( qn , 4
√
τ2

max − τ2). (y, z) ∈ Cτ implies f(y) ≥ 4τ2. The set f−1([4τ2,∞) ) ⊂ R is not necessar-
ily connected but the component containing q

n is the closed interval [ymin, ymax] ⊂ (0, 1). Since
f(y) ≤ 4τ2

max for y ∈ (0, 1) any point (y, z) ∈ C0
τ satisfies (y, z) ∈ [0, 1] × [−4τmax, 4τmax]. In

particular, the component C0
τ is a compact nonsingular curve and hence is diffeomorphic to S1.
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Hence all solutions of 4.11 with 0 < |τ | < τmax are non-constant and periodic with period 2pτ > 0
depending only on τ . In particular two solutions of 4.11 with the same values of τ differ only by
time translation.

The geometry of the curves C0
τ is illustrated for various choices of (p, q) in Figure 2. The different

types of singular points which can occur in the τ = 0 energy level are clearly visible in this figure.
a. Asymptotics of pτ as τ → τmax: we consider the first order corrections to the stationary point

y ≡ q/n when τ = τmax. If we write ỹ = y − q/n, then 4.12 becomes

¨̃y = −ω2ỹ +O(ỹ2),

where

ω2 = 2n
( q
n

)q−1 ( p
n

)p−1
=

8n3

pq
τ2

max.

Hence limτ→τmax 2pτ = 2π/ω, as claimed.
b. Since |w| = 1 and y = |w2|2, we have 0 ≤ y ≤ 1 for all t ∈ R. At any critical point of y, 4.11

implies that y satisfies equation 4.21. It follows from the definitions of ymax and ymin in terms of
roots of the polynomial 4.21 that the maximum and minimum values of y are therefore ymax and
ymin respectively.

c. The stated asymptotics of ymin and ymax as τ → 0 follow immediately from the characterisation
of ymin and ymax as the only solutions of 4.21 in the range [0, 1].

(ii): |τ | = τmax. When τ2 = τ2
max, from 4.11 we have ẏ2 = 4(f(y)−4τ2

max) ≤ 4(fmax−4τ2
max) ≤

0, with equality if and only if f(y) = fmax, i.e. if and only if y = q/n. Hence we have ẏ = 0 for all
t ∈ R and y ≡ q/n.

(iii): τ = 0 and p > 1. Recall from 4.17 that for p > 1 both y = 0 and y = 1 are critical
points of f and hence give rise to constant solutions y ≡ 0 and y ≡ 1 of 4.12.

4.11 implies ẏ = 0 if and only if y = 0 or y = 1. Since y ∈ [0, 1] and {0, 1} ⊂ Crit(f) a non-
constant solution y contains no points with ẏ = 0 and is therefore monotone with 0 < y < 1 for all
t. If y is increasing then y ◦ T is decreasing and hence by composing with T if necessary we can
assume y satisfies the 1st order ODE

(4.25) ẏ = −2
√
f(y).

Since y is monotone and bounded it must approach constant values c− and c+ as t→ ±∞. Recall
the elementary fact that if γ is an integral curve of a vector field V and limt→∞ γ(t) = γ∞, then γ∞
must be a zero (or stationary point) of the vector field V . Hence we see that c± must be stationary
points of 4.12 which also belong to the zero energy level. Therefore c± ∈ Crit(f) ∩ f−1(0) = {0, 1}.
Since y is strictly decreasing we must have limt→−∞ y(t) = 1 and limt→∞ y(t) = 0. In particular,
for any such solution of 4.25 there exists t0 ∈ R so that y(t0) = q/n. Hence ŷ := y ◦Tt0 is a solution
of 4.25 with ŷ(0) = q/n, and so by uniqueness of the initial value problem ŷ ≡ y0.

(iv): τ = 0 and p = 1. Recall from 4.17 that for p = 1, y = 0 (but not y = 1) is a critical point
of f and so gives rise to the stationary point y ≡ 0 of 4.12.

Again from 4.11, ẏ = 0 if and only if y = 0 or y = 1. For p = 1, y = 0 is a stationary point of
4.12 but y = 1 is not. If y is non-constant, then y cannot attain an interior minimum since ẏ(t) = 0
implies y(t) = 1. Therefore, as Crit(f) ∩ f−1(0) = {0} for p = 1, y must approach 0 as t → ±∞.
Since y ∈ [0, 1] is non-constant and tends to 0 as t→ ±∞, y attains an interior maximum at some
point t0 ∈ R. Hence ẏ(t0) = 0 and therefore y(t0) = 1. Then by uniqueness of the initial value
problem y ◦ Tt0 = y0. Evenness of y0 follows from the invariance of 4.12 and the initial conditions
y(0) = 1, ẏ(0) = 0 under t 7→ −t. �

We use Lemma 4.19 to establish normal forms for solutions of 4.8.

Proposition 4.26. Fix a pair of admissible integers p and q and let w be any solution of 4.8 with
I1(w) = 1 and I2(w) = −2τ with 0 ≤ |τ | ≤ τmax.
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(i) If p > 1 and 0 < |τ | ≤ τmax then w is equivalent under symmetries (1)–(3) to wτ : R→ S3

defined as the unique solution to 4.8 with initial value

wτ (0) =
(√

p
ne

iατ/2p,
√

q
ne

iατ/2q
)
,

where ατ ∈ [−π
2 ,

π
2 ] is defined by

ατ := arcsin
(
− τ

τmax

)
.

(ii) If p > 1 and τ = 0 then w is equivalent under symmetries (1)–(3) to the unique solution of
4.7 with one of the following four initial conditions

a. w(0) = (1, 0),
b. w(0) = (0, 1),

c. w(0) =
(√

p
n ,
√

q
n

)
,

d. w(0) =
(
eiπ/2p

√
p
n , e

iπ/2q
√

q
n

)
.

(iii) If p = 1 and 0 < |τ | ≤ τmax then w is equivalent under symmetries (1)–(3) to wτ : R→ S3

defined as the unique solution to 4.8 with initial value

wτ (0) = (−i sgn τ
√

1− ymax,
√
ymax).

(iv) If p = 1 and τ = 0 then w is equivalent under symmetries (1)–(3) to the unique solution of
4.7 with one of the following two initial conditions

a. w(0) = (1, 0),
b. w(0) = (0, 1).

Proof. Let w be any solution of 4.8 with I1(w) = |w|2 = 1 , I2(w) = −2τ and 0 < |τ | ≤ τmax. Set
y = |w2|2 and write w(0) = (

√
1− y(0) eiθ1 ,

√
y(0) eiθ2).

(i) Case p > 1 and τ 6= 0. If τ = ±τmax then by 4.19.ii y ≡ q/n and hence y(0) = q/n and
ẏ(0) = 0. If 0 < |τ | < τmax then by 4.19.i.a and using the time translation invariance of 4.8
(symmetry 1) we can arrange that y(0) = |w2|2(0) = q

n and that ẏ(0) < 0. In both cases we have

y(0) = q
n and ẏ(0) ≤ 0.

The former together with 4.10 implies that

sin(pθ1 + qθ2) = − τ
τmax

,

while the latter together with 4.10 implies

cos(pθ1 + qθ2) ≥ 0.

Acting with the nth root of unity zk = e2πki/n (symmetry 2) leaves y(0) invariant and sends
pθ1 +qθ2 7→ pθ1 +qθ2 +2kπ. Hence by using symmetry (2) we can arrange that pθ1 +qθ2 ∈ [−π, π).
Finally by using symmetry (3) we can arrange that pθ1 = qθ2. Therefore we have

sin 2pθ1 = sin 2qθ2 = − τ
τmax

= sinατ , cos 2pθ1 ≥ 0 and 2pθ1 ∈ [−π, π).

Hence 2pθ1 = 2qθ2 = ατ as claimed. Notice that in this case

wp1w
q
2(0) =

(√
p
n

)p (√
q
n

)q
eiατ = 2τmaxe

iατ .

(ii) Case p > 1 and τ = 0. By 4.19.iii y = |w2|2 must be one of the following: (a) y ≡ 0, (b) y ≡ 1,
(c) y = y0 ◦Tt0 , (d) y = y0 ◦Tt0 ◦T for some t0 ∈ R, where y0 : R→ (0, 1) is the function defined in
4.19.iii.c. It is easily seen that (a) implies w is a stationary point of the form w = (eiθ1 , 0), while
(b) implies w is a stationary point of the form w = (0, eiθ2). Hence w is equivalent using symmetry
(3) to the stationary points (1, 0) or (0, 1) in cases (a) and (b) respectively. Suppose we are now
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in case (c) or (d) and hence y = y0 ◦ Tt0 ◦ Tj for some t0 ∈ R and j ∈ {0, 1}. By time translation
invariance of 4.8 we can arrange that y(0) = q

n (i.e. that t0 = 0.) Thus we have

y(0) = q
n , and ẏ(0) = (−1)j+14τmax.

Substituting these initial conditions into 4.10 and simplifying yields

ei(pθ1+qθ2) = (−1)j .

As in case (i) by using symmetry (2) we may arrange that pθ1 + qθ2 ∈ [−π, π) and then use sym-
metry (3) to arrange that also pθ1 = qθ2. Hence the previous equality reduces to e2ipθ1 = (−1)j

with 2pθ1 ∈ [−π, π). In case (c) j = 0 and so 2pθ1 = 2qθ2 = 0 is the unique solution in the required
range, whereas in case (d) j = 1 and so 2pθ1 = 2qθ2 = π as claimed.

(iii) Case p = 1 and τ 6= 0. If 0 < |τ | < τmax by using time translation invariance of 4.8
(symmetry 1) we may assume that y(0) = ymax and therefore also ẏ(0) = 0. If τ = ±τmax then by
4.19.ii y ≡ q/n = ymax and ẏ(0) = 0. Hence in either case from 4.10 we have

2iτ = −w1w
n−1
2 (0) = −i

√
f(ymax) sin(θ1 + (n− 1)θ2) = −2i|τ | sin(θ1 + (n− 1)θ2),

and therefore
sin(θ1 + (n− 1)θ2) = − τ

|τ | = − sgn τ.

As in the previous cases by acting with an nth root of unity we can arrange that θ1 + (n− 1)θ2 ∈
[−π, π) and by acting with symmetry (3) that θ2 = 0. Therefore we have sin θ1 = − sgn τ with
θ1 ∈ [−π, π). Hence θ1 = − sgn τ · 1

2π as claimed.
(iv) Case p = 1 and τ = 0. By 4.19.iv y = |w2|2 must be one of the following: (a) y ≡ 0 or (b)

y = y0 ◦Tt0 where t0 ∈ R and y0 : R→ (0, 1] is the function defined in 4.19.iv.b As in (ii), case (a)
implies that w is a stationary point of the form (eiθ1 , 0) and hence is equivalent using symmetry (3)
to (1, 0) as claimed. Suppose now that we are in case (b). By time translation invariance we can
arrange that t0 = 0 and hence y(0) = 1. This implies w1(0) = 0 and w2(0) = eiθ2 for some θ2 ∈ R.
Using symmetry (3) we can arrange that θ2 = 0 and hence that w(0) = (0, 1) as claimed. �
Remark 4.27. Note that in cases ii.a and ii.b of Proposition 4.26 the initial conditions are stationary
points of 4.8 and hence the corresponding solutions with this initial data are w ≡ (1, 0) and
w ≡ (0, 1) respectively. Let w0 denote the unique solution to 4.8 with initial condition w0(0) =(√

p
n ,
√

q
n

)
as in ii.c. Then by uniqueness of the initial value problem for 4.8 we see that

(4.28) w0(t) = (
√

1− y0(t),
√
y0(t) ),

where y0(t) : R→ (0, 1) is the decreasing function defined in 4.19.iii.c.
Note that (0, 1) is not a stationary point of 4.8 for p = 1. Let w0 denote the unique solution

of 4.8 with initial condition w0(0) = (0, 1) as in iv.b. Then by the uniqueness of the initial value
problem for 4.8 we see that

(4.29) w0(t) = (sgn t
√

1− y0(t),
√
y0(t) ),

where y0 : R → (0, 1] is the even function defined in 4.19.iv.b. (Since w2(t) =
√
y0(t) is real and

positive for all t, the equation for ẇ1 in 4.7 implies that ẇ1 > 0 for all t. By 4.19.iv
√

1− y0(t) is
decreasing for t < 0 and increasing t > 0, so sgn t

√
1− y0(t) is increasing for all t as required.)

Remark 4.30. The argument from 4.26.iii applied in the case p > 1 implies that any solution of 4.8
with I1(w) = 1 and I2(w) = −2τ and 0 < |τ | ≤ τmax is equivalent under symmetries (1) to (3) to

ŵτ =
(
−eiπ/2p sgn(τ)

√
1− ymax,

√
ymax

)
.

Similarly, the argument from 4.26.i works for p = 1 as well as p > 1. However, we will only make
use of the normal forms stated in 4.26. The difference in our choice of normal form for p = 1 and
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p > 1 reflects differences in the geometry of the resulting special Legendrian immersions in these
cases as we will explain later.

5. wτ and the SO(p)× SO(q)-invariant special Legendrian immersions Xτ .

We now define the particular 1-parameter family wτ of (p, q)-twisted SL curves we will use
throughout the rest of the paper by specifying initial data wτ (0) as in the normal form Proposition
4.26. Associated to the 1-parameter family wτ is the 1-parameter family Xτ of SO(p)× SO(q)-
invariant special Legendrians. Proposition 4.26 implies that any SO(p)× SO(q)-invariant special
Legendrian in S2p+2q−1 is congruent to Xτ for some τ .

Proposition 5.1. Fix a pair of admissible integers p and q and choose any τ ∈ [−τmax, τmax].
Define wτ : R→ S3 as the unique solution of 4.8 with initial data

(5.2) wτ (0) =
(√

p
ne

iατ/2p,
√

q
ne

iατ/2q
)

if p > 1;

where ατ ∈ [−π
2 ,

π
2 ] is defined by

(5.3) ατ := arcsin
(
− τ

τmax

)
,

or

(5.4) wτ (0) = (−i sgn τ
√

1− ymax,
√
ymax) if p = 1.

Then wτ depends real analytically on τ ∈ (−τmax, τmax) and satisfies w−τ = wτ . In particular,
w0 : R→ S3 ⊂ C2 is contained in R2 ⊂ C2.

Proof. To prove that wτ depends analytically on τ it suffices by 4.8.iii to prove that the initial
condition wτ (0) given by 5.2 or 5.4 depends analytically on τ for τ ∈ (−τmax, τmax). For p > 1 it is
clear from 5.3 that ατ depends real analytically on τ for |τ | < τmax. Hence by 5.2 wτ (0) depends
analytically on τ for |τ | < τmax. For p = 1 we have f ′(ymax) = yn−2

max(q − nymax) 6= 0 for |τ | < τmax.
Hence by the real analytic Implicit Function Theorem (see e.g. [26, Thm 2.3.5]) ymax is an analytic
function of τ ∈ (−τmax, τmax). Therefore

√
ymax is also an analytic function of τ ∈ (−τmax, τmax)

(recall ymax ≥ (n− 1)/n). Write wτ (0) = (irτ ,
√
ymax). Because I2(wτ (0)) = Imw1w

n−1
2 (0) = −2τ

rτ = − 2τ
√
ymax

n−1

and hence is an analytic function of τ ∈ (−τmax, τmax). From 5.2 or 5.4 we have w−τ (0) = wτ (0)
and hence w−τ = wτ by uniqueness of the initial value problem for 4.8. �

The associated function yτ := |w2|2 and its initial value characterisation. For the solution wτ

defined in 5.1, define yτ := |w2|2. By 4.7 yτ satisfies equations 4.11 and 4.12. Analytic dependence
of yτ on τ ∈ (−τmax, τmax) follows immediately from analytic dependence of wτ .

For p = 1, yτ is the unique solution of 4.12 satisfying the initial conditions

(5.5) y(0) = ymax, ẏ(0) = 0.

In particular, y0 is the unique solution of 4.12 satisfying y(0) = 1, ẏ(0) = 0 introduced in 4.19.iv.b.
Similarly, for p > 1, yτ is the unique solution of 4.12 satisfying the initial conditions

(5.6) y(0) =
q

n
, ẏ(0) = −4τmax cosατ = −4

√
τ2

max − τ2.

y0 coincides with the solution of 4.12 satisfying y(0) = q/n, ẏ(0) = −4τmax introduced in 4.19.iii.c.
For both p = 1 and p > 1 it follows from these initial value characterisations of yτ that y−τ = yτ

which is consistent with the fact that w−τ = wτ .
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Define round cylinders of type (p, q), Cylp,qI , by

(5.7) Cylp,qI :=

{
I × Sp−1 × Sq−1, if p > 1;
I × Sn−2, if p = 1,

where I ⊂ R is an interval which we omit in the notation when I = R. In Section 3 we thought
about SO(p) × SO(q)-invariant special Legendrians by treating our special Legendrians as (un-
parametrised) subsets of S2(p+q)−1. From now on it will be more convenient to deal with special
Legendrian immersions Xτ : Cylp,q → S2(p+q)−1 and to talk about special Legendrian immersions
equivariant with respect to the obvious actions of SO(p)× SO(q) on both domain and target.

We now define the 1-parameter family of special Legendrian immersions Xτ : Cylp,q → S2(p+q)−1

using the 1-parameter family of (p, q)-twisted SL curves wτ defined in Proposition 5.1.

Definition 5.8. For τ ∈ [−τmax, τmax] define an immersion Xτ : Cylp,q → S2(p+q)−1 by

Xτ (t, σ1, σ2) = (w1(t) · σ1, w2(t) · σ2), for p > 1;
Xτ (t, σ) = (w1(t), w2(t) · σ), for p = 1,

where t ∈ R, σ1 ∈ Sp−1, σ2 ∈ Sq−1, σ ∈ Sn−2 and wτ = (w1, w2) is the unique solution to 4.8
specified in Proposition 5.1.

We now establish some basic properties of Xτ .

Proposition 5.9. For τ ∈ [−τmax, τmax] the immersion Xτ : Cylp,q → S2(p+q)−1 defined in 5.8 has
the following properties:

(i) Xτ is a smooth special Legendrian immersion depending analytically on τ for τ ∈ (−τmax, τmax),
and satisfies X−τ = Xτ . In particular, X0 is contained in Sp+q−1 ⊂ Rp+q ⊂ Cp+q.

(ii) For p > 1, the metric gτ on Cylp,q induced by Xτ is

|ẇ|2dt2 + |w1|2gSp−1 + |w2|2gSq−1 = yq−1(1− y)p−1dt2 + (1− y)gSp−1 + y gSq−1 .

For p = 1, the induced metric gτ on Cyl1,n−1 is

|ẇ|2dt2 + |w2|2gSn−2 = yn−2dt2 + y gSn−2 .

(iii) Xτ is SO(p)× SO(q)-equivariant, i.e. for any M = (M1,M2) ∈ SO(p)× SO(q) we have

M̃ ◦Xτ = Xτ ◦M,

where M = (M1,M2) acts on Cylp,q by M · (t, σ1, σ2) = (t,M1σ1,M2σ2), and

M̃ =
(

M1 0
0 M2

)
∈ SO(p)× SO(q) ⊂ SO(p+ q).

(iv) When τ = 0 we have

X0(Cylp,q) =

{
Sp+q−1 \ (Sp−1, 0) ∪ (0,Sq−1), for p > 1;
Sn−1 \ (±1, 0) ∈ R⊕ Rn−1, for p = 1.

(v) When τ = τmax, we have

Xτmax(t, σ) =
(
−i
√

1
ne

2inτt,
√

n−1
n e−2inτt/(n−1) σ

)
, for p = 1;(5.10a)

Xτmax(t, σ1, σ2) =
(√

p
ne
−iπ/(4p)e2niτt/p σ1,

√
q
ne
−iπ/(4q)e−2niτt/q σ2

)
, for p > 1.(5.10b)
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(vi) If X : Cylp,q → S2(p+q)−1 is any non totally geodesic SO(p)× SO(q)-invariant special Leg-
endrian immersion then X = eiω T̃x ◦Xτ ◦ Ty for some x, y ∈ R, 0 < |τ | < τmax and nth
root of unity ω ∈ S1 where T̃x ∈ SU(n) is defined by

(5.11) T̃x =
(
eix/p Idp 0

0 e−ix/q Idq

)
.

Proof. (i) For τ 6= 0 we have |w1|2 ≥ ymin > 0 and |w2|2 ≥ 1 − ymax > 0. Because there are no
points where w1 or w2 vanish, 2.9 implies that Xτ is a Legendrian immersion. Since wτ is a solution
of 4.8, 2.18 and 2.19 imply that Xτ is special Legendrian. We deal with the exceptional case τ = 0
separately in part (iv). Analytic dependence of Xτ on τ follows from the analytic dependence of
wτ on τ proved in Proposition 5.1. The final part follows from the fact that w−τ = wτ (see 5.1).
(ii) follows immediately from equations 2.11 and 2.22.
(iii) The SO(p)× SO(q)-equivariance of Xτ is clear from the definition of Xτ in 5.8.
(iv) τ = 0 limit. From part (i), X0(Cylp,q) ⊂ Sp+q−1.

Consider first the case where p > 1. From 4.28

X0(t, σ1, σ2) = (
√

1− y0(t)σ1,
√
y0(t)σ2)

where y0 : R � (0, 1) is the decreasing function defined in 4.19.iii.c. Recall from Remark 2.5 that
the map Π : [0, π/2]× Sp−1 × Sq−1 → Sp+q−1 given by

Π (t, σ1, σ2) = (cos t σ1, sin t σ2),

is surjective and on restriction to the interval (0, π/2) gives a diffeomorphism between (0, π/2) ×
Sp−1×Sq−1 and Sp+q−1\(Sp−1, 0)∪(0,Sq−1). Since by 4.19.iii.c y0 is decreasing with limt→−∞ y(t) =
1 and limt→∞ y(t) = 0 we see that X0 is a reparametrisation of this diffeormorphism.

Similarly, from 4.29 for p = 1 we have

X0(t, σ) = (− sgn t
√

1− y0(t),
√
y0(t)σ),

where y0 : R � (0, 1] is the even function defined in 4.19.iv.b. The map Π : [0, π]× Sn−2 � Sn−1

defined by Π (t, σ) = (cos t, sin t σ) on restriction to the open interval (0, π) gives a diffeomorphism
between (0, π)×Sn−2 and Sn−1 \ (±1, 0). Since by 4.19.iv.b y0 is even, increasing on (−∞, 0), satis-
fies y0(0) = 1 and limt→±∞ y0(t) = 0 we see that X0 is a reparametrisation of this diffeomorphism.
(v) τ = τmax limit. We leave this as an elementary exercise for the reader.
(vi) follows from 3.8 and the normal form for solutions of 4.8 established in 4.26. �
Torques of Xτ . Many geometric variational problems admit homological invariants associated
with symmetries of the problem. These invariants have played a fundamental role in global struc-
ture results including uniqueness questions [25, 30, 31] and also in gluing results [19, 21–24, 32].
For minimal and CMC immersions in Euclidean space or round spheres the invariants associ-
ated to translations and rotations are called the forces and torques respectively. We calculate the
(restricted) torque of the SO(p)×SO(q)-invariant special Legendrians Xτ below in 5.14. An appro-
priate component of the torque (depending on p and q) is exactly proportional to the parameter τ .
This is similar to the case of Delaunay surfaces where (appropriately centred) the torque is zero and
the force is a vector along its axis whose magnitude is τ , the parameter of the Delaunay. The torque
of Xτ enters into our argument to calculate refined asymptotics of the angular period p̂τ and its
derivative as τ → 0 and therefore is needed in our work on higher dimensional SL gluing [11,12,14].
More generally we expect that the torque will play an important role in controlling aspects of the
global geometry of special Legendrians.

Suppose M is an oriented m-dimensional submanifold of the ambient manifold (M, g) and k ∈
iso(M, g) is a Killing field on (M, g). Given any oriented hypersurface Σ ⊂M we define the k-flux
through Σ by

(5.12) Fk(Σ) :=
∫

Σ
g(k, η) dvΣ ,
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where η is the unit conormal to Σ, chosen so that the orientation defined by Σ and η agrees with
that of M . An immediate consequence of the First Variation of Volume formula [34, 7.6] is

Lemma 5.13. If M is an oriented m-dimensional minimal submanifold of (M, g), Σ is an ori-
ented hypersurface of M and k ∈ iso(M, g) then the k-flux through Σ, Fk(Σ), depends only on the
homology class [Σ] ∈ Hm−1(M,R).

In other words, when M is a minimal submanifold of (M, g) the k-flux map defined in 5.12
induces a linear map F : Hm−1(M,R) → iso(M, g)∗. In particular, if (M, g) = (S2n−1, gstd) then
iso(M, g) = o(2n) and we call the map F : Hm−1(M,R) → o(2n)∗ the torque of M . For special
Legendrian submanifolds of S2n−1 it is also convenient to define the restricted torque of M , which
is the restriction of the torque to the subalgebra su(n) ⊂ o(2n).

Proposition 5.14. For p > 1 the su(n) restricted torque of the SO(p)× SO(q)-invariant special
Legendrian immersion Xτ : Cylp,q → S2(p+q)−1 is given by
(5.15)

Fk(Xτ ) =

{
2τ
(

1
p

∑p
i=1 λi − 1

q

∑q
j=1 µj

)
Vol(Sp−1) Vol(Sq−1) k = i diag(λ1, . . . , λp, µ1, . . . , µq);

0 if k ∈ su(n) is off-diagonal,

where we implicitly use the homology class of any meridian in Cylp,q.
For p = 1 the su(n) restricted torque of the SO(n − 1)-invariant special Legendrian immersion

Xτ : Cyl1,n−1 → S2n−1 is given by

(5.16) Fk(Xτ ) =

{
2τ
(
λ− 1

n−1

∑n−1
j=1 µj

)
Vol(Sn−2) k = idiag(λ, µ1, . . . , µn−1);

0 k ∈ su(n) is off-diagonal.

In particular, if we take k = t to be the generator of the 1-parameter subgroup {T̃x}x∈R (defined
in 5.11) associated to the rotational period T̃2bpτ of Xτ then we obtain

Ft(Xτ ) =

{
2τ n

pq Vol(Sp−1) Vol(Sq−1), if p > 1;
2τ n

n−1 Vol(Sn−2), if p = 1.

Proof. We give the proof in the case p > 1. The result in the case p = 1 follows by making the
obvious adjustments to the argument below.

Case p > 1: By the homological invariance of Fk(Σ) we may evaluate the k-flux on any meridian
{t0}×Merp,q of Cylp,q. From 5.9.iii the vector field ∂t is orthogonal to any meridian {t0}×Merp,q.
Hence the unit conormal is given by η = ∂tXτ/|∂tXτ |. By the definition of Xτ in terms of wτ we
have |∂tXτ | = |ẇ|. Using 2.22 and 5.9.ii the volume form induced on the meridian {t0} ×Merp,q is

|w1|p−1|w2|q−1 dvSp−1 ∧dvSq−1 = |∂tXτ |dvSp−1 ∧dvSq−1 .

Therefore

(5.17) Fk =
∫

t=t0

k · ∂tXτ

|∂tXτ |
|∂tXτ | dvSp−1 ∧dvSq−1 =

∫

t=t0

k · ∂tXτ dvSp−1 ∧dvSq−1 ,

where t = t0 is a shorthand for the meridian {t0} ×Merp,q on which the R coordinate t equals t0.
k ∈ su(n) is diagonal: If k = idiag(λ1, . . . , λp, µ1, . . . , µq) ∈ su(n) a short computation shows

that

k · ∂tXτ = Im(w1ẇ1)
p∑

i=1

λi(σi1)2 + Im(w2ẇ2)
q∑

i=1

µj(σ
j
2)2,
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where σ1 = (σ1
1, . . . , σ

p
1) ∈ Sp−1 ⊂ Rp and σ2 = (σ1

2, . . . , σ
q
2) ∈ Sq−1 ⊂ Rq. Hence using 4.8 and the

definition of τ we have

(5.18) k · ∂tXτ = 2τ




p∑

i=1

λi(σi1)2 −
q∑

j=1

µj(σ
j
2)2


 .

By symmetry we have

(5.19)
∫

Sp−1

(σi1)2 dvSp−1 =
1
p

Vol Sp−1 and
∫

Sq−1

(σj2)2 dvSq−1 =
1
q

Vol Sq−1,

for 1 ≤ i ≤ p and 1 ≤ j ≤ q. Combining 5.17, 5.18 and 5.19 we obtain

Fk = 2τ


1
p

p∑

i=1

λi −
1
q

q∑

j=1

µj


Vol(Sp−1) Vol(Sq−1).

k ∈ su(n) is off-diagonal: Off-diagonal elements k ∈ su(n) can be decomposed as so(n)⊕ i Symoff(n,R)
where Symoff(n,R) denotes the off-diagonal real symmetric n× n matrices. By linearity it suffices
to prove Fk = 0 for any k ∈ so(n) and k ∈ i Symoff(n,R).

First we show that Fk vanishes for any k ∈ so(n) ⊂ su(n). Let e1, . . . , en denote the standard
unitary basis of Cn. For i 6= j ∈ {1, . . . , n} define Rij ∈ so(n) by

Rij(v) = (ei · v) ej − (ej · v) ei, for any v ∈ Rn.

{Rij} for i < j ∈ {1, . . . , n} forms a basis for so(n) ⊂ su(n). Using the definition of Xτ and Rij we
find

RijXτ =





w1(σi1ej − σj1ei) for i, j ∈ {1, . . . , p};
w2(σi

′
2 ej − σj

′
2 ei) for i′, j′ ∈ {1, . . . , q};

w1σ
i
1ej − w2σ

j′
2 ei for i ∈ {1, . . . , p}, j′ ∈ {1, . . . , q},

where i′ = i− p and j′ = j − p. Taking the inner product with ∂tXτ we obtain

(5.20) RijXτ · ∂tXτ =





0 for i, j ∈ {1, . . . , p};
0 for i′, j′ ∈ {1, . . . , q};
Re(w1ẇ2 − w2ẇ1)σi1σ

j′
2 for i ∈ {1, . . . , p}, j′ ∈ {1, . . . , q}.

Clearly we have

(5.21)
∫

Sp−1×Sq−1

σi1 σ
j′
2 dvSp−1 ∧dvSq−1 =

∫

Sp−1

σi1 dvSp−1

∫

Sq−1

σj
′

2 dvSq−1 = 0.

Combining 5.17, 5.20 and 5.21 we conclude Fk = 0 for k = Rij and hence by linearity Fk = 0 for
all k ∈ so(n) ⊂ su(n).

Now we show that Fk = 0 for any k ∈ iSymoff(n,R). For i < j ∈ {1, . . . , n} define Sij ∈
Symoff(n,R) by

Sij(v) = (ei · v) ej + (ej · v) ei, for any v ∈ Rn.

{
√
−1 Sij} for i < j ∈ {1, . . . , n} forms a basis for iSymoff(n,R) ⊂ su(n). Using the definition of

Xτ and Sij we find

√
−1 SijXτ =

√
−1





w1(σi1ej + σj1ei) for i, j ∈ {1, . . . , p};
w2(σi

′
2 ej + σj

′
2 ei) for i′, j′ ∈ {1, . . . , q};

w1σ
i
1ej + w2σ

j′
2 ei for i ∈ {1, . . . , p}, j′ ∈ {1, . . . , q},
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where as above i′ = i− p and j′ = j − p. Taking the inner product with ∂tXτ we obtain

(5.22) SijXτ · ∂tXτ =





2 Im(w1ẇ1)σi1σ
j
1 for i, j ∈ {1, . . . , p};

2 Im(w2ẇ2)σi
′

2 σ
j′
2 for i′, j′ ∈ {1, . . . , q};

Im(w1ẇ2 + w2ẇ1)σi1σ
j′
2 for i ∈ {1, . . . , p}, j′ ∈ {1, . . . , q}.

For any i 6= j we have

(5.23)
∫

Sp−1×Sq−1

σi1σ
j
1 dvSp−1 ∧dvSq−1 = Vol(Sq−1)

∫

Sp−1

σi1σ
j
1 dvSp−1 = 0,

since for any i 6= j, σi1σ
j
1 is an eigenvalue of the Laplacian on Sp−1 with eigenvalue λ = 2p, and

hence is L2-orthogonal to the constant functions. (Alternatively, one can consider the involution
mapping σi1 7→ −σi1 and σk1 7→ −σk1 for any k /∈ {i, j} and fixing all other components of σ1. Clearly
this symmetry preserves dvSp−1 but sends σi1σ

j
1 7→ −σi1σj1. Hence the integral in 5.23 is odd under

this symmetry and therefore vanishes.) Similarly, we have

(5.24)
∫

Sp−1×Sq−1

σi
′

2 σ
j′
2 dvSp−1 ∧dvSq−1 = Vol(Sp−1)

∫

Sq−1

σi
′

2 σ
j′
2 dvSq−1 = 0,

for any i 6= j. For any i 6= j, combining 5.17, 5.21–5.24 implies that Fk = 0 for k =
√
−1 Sij and

hence by linearity Fk = 0 for all k ∈ i Symoff(n,R) ⊂ su(n). �

6. Period conditions for wτ

In this section we study the conditions under which wτ forms a closed curve in S3 and also when
the curve of isotropic SO(p)× SO(q) orbits determined by wτ is closed; the latter is directly related
to understanding when the SO(p)× SO(q)-invariant SL immersions Xτ factor through closed SL
embeddings.

Symmetries of yτ . We begin by establishing the symmetries of yτ := |w2|2 in the three cases (i)
p = 1, (ii) p > 1 and p 6= q and (iii) p > 1 and p = q.

To state these results we need to introduce some notation to describe the basic properties of yτ .
For p > 1, recall from 5.6 that yτ satisfies the initial conditions

y(0) =
q

n
, ẏ(0) = −4τmax cosατ = −4

√
τ2

max − τ2,

whereas for p = 1 from 5.5 it satisfies

y(0) = ymax, ẏ(0) = 0.

The different initial conditions for yτ affect where the 2pτ -periodic function yτ attains its maxima
and minima in the cases p = 1 and p > 1. In the case p > 1 the choice of initial data for yτ implies
that there exist unique real numbers p+

τ , p
−
τ ∈ (0, pτ ) satisfying

(6.1) yτ (−p−τ ) = ymax, yτ (p+
τ ) = ymin,

and so that yτ is strictly decreasing on (−p−τ , p
+
τ ). We call these two numbers the partial-periods

of yτ , since

(6.2) 2pτ = 2p+
τ + 2p−τ .

In general, p+
τ and p−τ are not related except when p = q in which case we will prove shortly

that p+
τ = p−τ . Illustrative plots of yτ are shown in Figures 3 and 4 for p = 1 and p > 1, p 6= q

respectively.
Throughout the following lemma we assume 0 < |τ | < τmax and discuss the exceptional cases

τ = 0 and |τ | = τmax in Remark 6.11 below. Recall, also the notation for elements in Isom(R)
introduced in Section 1 in Notation and Conventions.

Lemma 6.3 (Symmetries of yτ ).
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0 pτ−2pτ −pτ 2pτ

S[0] S[1]S[−1]

Figure 3. Profile of yτ := |w2|2 for p = 1

is surjective and on restriction to the interval (0,π/2) gives a diffeomorphism between (0,π/2) ×
Sp−1×Sq−1 and Sp+q−1\(Sp−1, 0)∪(0, Sq−1). Since by 4.29.iii.c y0 is decreasing with limt→−∞ y(t) =
1 and limt→∞ y(t) = 0 we see that X0 is a reparametrisation of this diffeormorphism.

Similarly, from 4.38 for p = 1 we have

X0(t,σ) = (− sgn t
√

1− y0(t),
√

y0(t) σ),

where y0 : R ! (0, 1] is the even function defined in 4.29.iv.b. The map Π : [0,π] × Sn−2 ! Sn−1

defined by Π (t,σ) = (cos t, sin t σ) on restriction to the open interval (0,π) gives a diffeomorphism
between (0,π)×Sn−2 and Sn−1\(±1, 0). Since by 4.29.iv.b y0 is even, increasing on (−∞, 0), satisfies
y0(0) = 1 and limt→±∞ y0(t) = 0 we see that X0 is a reparametrisation of this diffeomorphism.
(v) τ = τmax limit. We leave this as an elementary exercise for the reader.
(vi) follows from 4.9 and the normal form for solutions of 4.18 established in 4.36. "

5. Discrete symmetries of wτ

In this section we study the discrete symmetries of wτ and the conditions under which wτ

corresponds to a closed curve of SO(p) × SO(q) orbits. We will use these results in the following
section to study the full group of symmetries of Xτ .

Symmetries of yτ . We begin by establishing the symmetries of yτ := |w2|2 in the three cases (i)
p = 1, (ii) p > 1 and p %= q and (iii) p > 1 and p = q.

To state these results we need to introduce some notation to describe the basic properties of yτ .
For p > 1, recall from 4.45 that yτ satisfies the initial conditions

y(0) =
q

n
, ẏ(0) = −4τmax cos ατ = −4

√
τ2
max − τ2,

whereas for p = 1 from 4.44 it satisfies

y(0) = ymax, ẏ(0) = 0.

The different initial conditions for yτ affect where the 2pτ -periodic function yτ attains its maxima
and minima in the cases p = 1 and p > 1. In the case p > 1 the choice of initial data for yτ implies
that there exist unique real numbers p+

τ , p−τ ∈ (0, pτ ) satisfying

(5.1) yτ (−p−τ ) = ymax, yτ (p+
τ ) = ymin,

and so that yτ is strictly decreasing on (−p−τ , p+
τ ). We call these two numbers the partial-periods

of yτ , since

(5.2) 2pτ = 2p+
τ + 2p−τ .

In general, p+
τ and p−τ are not related except when p = q when we will prove shortly that they are

equal. Illustrative plots of yτ are shown in Figures 3 and 4 for p = 1 and p > 1, p %= q respectively.
Throughout the following lemma we assume 0 < |τ | < τmax and discuss the exceptional cases

τ = 0 and |τ | = τmax in Remark 5.11 below. Recall, also the notation for elements in Isom(R)
introduced in Section 1 in Notation and Conventions.

Lemma 5.3 (Symmetries of yτ ).
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0 p+
τ 2p+

τ−2p−τ −p−τ

S[−1] S[0] S[1]

Figure 4. Profile of yτ = |w2|2 for p > 1

(i) For p = 1, q = n− 1 the symmetries of yτ = |w2|2 are generated by

(5.4) yτ ◦ T2pτ = yτ and yτ ◦ T = yτ .

That is, yτ is an even 2pτ -periodic function. Moreover, we have

(5.5) yτ (0) = ymax and yτ (pτ ) = ymin.

(ii) For p > 1 and p #= q the symmetries of yτ are generated by

(5.6) yτ ◦ T2pτ = yτ , yτ ◦ Tp+
τ

= yτ and yτ ◦ T−p−τ
= yτ .

(iii) For p > 1 and p = q the symmetries of yτ are generated by

(5.7) yτ ◦ T2pτ = yτ , yτ ◦ Tpτ /2 = yτ , yτ ◦ T−pτ /2 = yτ and yτ ◦ T = 1− yτ ,

and the partial-periods defined in 5.2 satisfy

(5.8) p+
τ = p−τ = 1

2pτ and yτ (1
2pτ ) = ymin, yτ (−1

2pτ ) = ymax.

Remark 5.9. It follows from the partial-period relation 5.2 that the reflections Tp+
τ

and T−p−τ
satisfy

(5.10) T−p−τ
◦ Tp+

τ
= T−2pτ , Tp+

τ
◦ T−p−τ

= T2pτ .

Hence the first symmetry of yτ in 5.6 is a consequence of the second and third symmetries.
Similarly, it is straightforward to check that T ◦ Tpτ /2 ◦ T = T−pτ /2. It follows that the two

symmetries T and Tpτ /2 are sufficient to generate all four symmetries in 5.7.

Remark 5.11. For τ = 0, yτ is no longer periodic (the period 2pτ → ∞ as τ → 0). For p = 1 we
have already seen in 4.29.iv.b that y0 is still even. For p = q, y0(0) is invariant under y &→ 1 − y,
and hence y0 retains the reflectional symmetry

y0 ◦ T = 1− y0.

When |τ | = τmax, yτ is the constant function q/n, as noted in Proposition 4.29.

Proof of Lemma 5.3. Since the ODE 4.21 is autonomous we have time translation symmetry, i.e.
for any solution y of 4.21 and any t0 ∈ R, y ◦ Tt0 is also a solution of 4.21. Moreover, if y is a
solution of 4.21 then so is y ◦ T. Hence 4.21 is invariant under the whole of Isom(R). 4.21 is also
invariant under y &→ 1− y when p = q.
(i) Proof of 5.4: The first equality is immediate since yτ has period 2pτ by Proposition 4.29(i) and
4.44. The second symmetry follows from the fact that yτ (0) = ymax as in 4.44.
(ii) Proof of 5.6: yτ is periodic of period 2pτ by Proposition 4.29(i). Since yτ has a maximum and a
minimum at −p−τ and p+

τ respectively it has the two additional reflection symmetries listed in 5.6.
(iii) We need to prove that yτ admits the new symmetry yτ ◦ T = 1 − yτ . The rest of the claims
made will then follow by combining this symmetry with the ones already established in part (ii).
Define ỹ := (1−yτ )◦T. ỹ is also a solution of 4.21 and see from 4.45 that ỹ satisfies the same initial

Figure 4. Profile of yτ = |w2|2 for p > 1

(i) For p = 1, q = n− 1 the symmetries of yτ = |w2|2 are generated by

(6.4) yτ ◦ T2pτ = yτ and yτ ◦ T = yτ .

That is, yτ is an even 2pτ -periodic function. Moreover, we have

(6.5) yτ (0) = ymax and yτ (pτ ) = ymin.

(ii) For p > 1 and p 6= q the symmetries of yτ are generated by

(6.6) yτ ◦ T2pτ = yτ , yτ ◦ Tp+
τ

= yτ and yτ ◦ T−p−τ
= yτ .

(iii) For p > 1 and p = q the symmetries of yτ are generated by

(6.7) yτ ◦ T2pτ = yτ , yτ ◦ Tpτ/2 = yτ , yτ ◦ T−pτ/2 = yτ and yτ ◦ T = 1− yτ ,
and the partial-periods defined in 6.2 satisfy

(6.8) p+
τ = p−τ = 1

2pτ and yτ (1
2pτ ) = ymin, yτ (−1

2pτ ) = ymax.

Remark 6.9. It follows from the partial-period relation 6.2 that the reflections Tp+
τ

and T−p−τ
satisfy

(6.10) T−p−τ
◦ Tp+

τ
= T−2pτ , Tp+

τ
◦ T−p−τ

= T2pτ .

Hence the first symmetry of yτ in 6.6 is a consequence of the second and third symmetries.
Similarly, it is straightforward to check that T ◦ Tpτ/2 ◦ T = T−pτ/2. It follows that the two

symmetries T and Tpτ/2 are sufficient to generate all four symmetries in 6.7.

Remark 6.11. For τ = 0, yτ is no longer periodic (the period 2pτ →∞ as τ → 0; see 7.3 for a more
precise statement). For p = 1 we have already seen in 4.19.iv.b that y0 is still even. For p = q,
y0(0) is invariant under y 7→ 1− y, and hence y0 retains the reflectional symmetry

y0 ◦ T = 1− y0.

When |τ | = τmax, yτ is the constant function q/n, as noted in Proposition 4.19.
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Proof of Lemma 6.3. Since the ODE 4.11 is autonomous we have time translation symmetry, i.e.
for any solution y of 4.11 and any t0 ∈ R, y ◦ Tt0 is also a solution of 4.11. Moreover, if y is a
solution of 4.11 then so is y ◦ T. Hence 4.11 is invariant under the whole of Isom(R). 4.11 is also
invariant under y 7→ 1− y when p = q.
(i) Proof of 6.4: The first equality is immediate since yτ has period 2pτ by Proposition 4.19.i and
5.5. The second symmetry follows from the fact that yτ (0) = ymax as in 5.5.
(ii) Proof of 6.6: yτ is periodic of period 2pτ by 4.19.i. Since yτ has a maximum and a minimum
at −p−τ and p+

τ respectively it has the two additional reflection symmetries listed in 6.6.
(iii) We need to prove that yτ admits the new symmetry yτ ◦T = 1−yτ . The rest of the claims made
will then follow by combining this symmetry with the ones already established in part (ii). Define
ỹ := (1 − yτ ) ◦ T. ỹ is also a solution of 4.11 and we see from 5.6 that ỹ satisfies the same initial
conditions as yτ . Hence by the uniqueness of solutions of the initial value problem yτ ≡ (1−yτ )◦T
as required. It follows that

(6.12) ymax + ymin = 1,

and that yτ (p−τ ) = 1−yτ (−p−τ ) = 1−ymax = ymin = yτ (p+
τ ). Hence p−τ = p+

τ = 1
2pτ . Since p+

τ = 1
2pτ ,

the existing reflectional symmetries yτ ◦ Tp+
τ

= yτ and yτ ◦ T−p−τ
= yτ become yτ ◦ Tpτ/2 = yτ and

yτ ◦ T−pτ/2 = yτ respectively. �

The rotational period of wτ . In this section we study the behaviour of wτ under translation
by a period 2pτ of yτ ; we call this the rotational period of wτ . It is fundamental to understanding
when wτ forms a closed curve in S3 or in the space of isotopic SO(p)× SO(q) orbits.

If wτ = (w1, w2), yτ = |w2|2 and ψ1 and ψ2 denote the arguments of w1 and w2 respectively
then the equations

Im(w1ẇ1) = − Im(w2ẇ2) = 2τ,

are equivalent to

(6.13) (1− yτ )ψ̇1 = 2τ, yτ ψ̇2 = −2τ.

It is convenient to write wτ in the form

(6.14) w1(t) =

{
sgn t

√
1− y0(t), for τ = 0;

−i
√

1− yτ (t)eiψ1 , for τ > 0;
w2(t) =

{√
y0(t), for τ = 0;√
yτ (t)eiψ2 , for τ > 0;

if p = 1 and

(6.15) w1(t) =

{√
1− y0(t), for τ = 0;√
1− yτ (t)eiατ/2peiψ1 , for τ > 0;

w2(t) =

{√
y0(t), for τ = 0;√
yτ (t)eiατ/2qeiψ2 , for τ > 0;

if p > 1, where ατ ∈ [−π/2, π/2] was defined in 5.3 and where in both cases for 0 < τ ≤ τmax,
ψ1, ψ2 : R→ R are the unique solutions of 6.13 with initial conditions

(6.16) ψ1(0) = ψ2(0) = 0.

The slightly different forms the above wi take in the cases p = 1 and p > 1 stem from the fact that
we have chosen the initial data w(0) for wτ differently in these two cases (recall 5.2 and 5.4).

Define the function Ψ by

(6.17) Ψ := pψ1 + qψ2.

Written in terms of y and Ψ the real and imaginary parts of equation 4.10 are equivalent to

ẏτ = −2
√
f(y) sin Ψ,(6.18)

2τ =
√
f(y) cos Ψ,(6.19)
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for p = 1 and to

ẏτ = −2
√
f(y) cos(Ψ + ατ ),(6.20)

−2τ =
√
f(y) sin(Ψ + ατ )(6.21)

for p > 1 with ατ as defined in 5.3.

Definition 6.22. For any τ with 0 < |τ | < τmax we define the angular period p̂τ in terms of ψ1 by

(6.23) 2p̂τ := pψ1(2pτ ).

Lemma 6.24 (Rotational period of wτ ). For 0 < τ < τmax the angular period p̂τ defined in 6.23
satisfies

(6.25) wτ ◦ T2pτ = T̂2bpτ ◦wτ ,

where T̂x ∈ U(2) denotes the 1-parameter group defined in 4.1.

We call T̂2bpτ the rotational period of wτ since by 6.25 it controls how wτ gets rotated as we move
from one domain of periodicity of yτ to the next.

Proof. The 2pτ -periodicity of yτ (recall 6.3) and the definition of ψi in terms of yτ given in 6.13
imply (i = 1, 2)

ψi ◦ T2pτ = ψi + ψi(2pτ ),
and hence wτ ◦T2pτ = (eiψ1(2pτ )w1, e

iψ2(2pτ )w2) = (ei2bpτ/pw1, e
iψ2(2pτ )w2). It remains to prove that

Ψ(2pτ ) = pψ1(2pτ ) + qψ2(2pτ ) = 0.

This follows from 6.19 (if p = 1) or 6.21 (if p > 1), the 2pτ -periodicity of yτ and the initial condition
Ψ(0) = 0. �

In Section 7 we prove that the angular period 2p̂τ is a nonconstant analytic function of τ for
0 < |τ | < τmax that satisfies

lim
τ→0

p̂τ =
π

2
.

Periods and half-periods of wτ . We want to understand when the (p, q)-twisted SL curves
wτ form closed curves in S3. Moreover, to understand when the SO(p)× SO(q)-invariant special
Legendrian immersions Xτ close up we need to understand when wτ gives rise to a closed curve
in the space of isotropic SO(p)× SO(q) orbits. As described in Lemma 3.1 this orbit space is
S3/Stabp,q where Stabp,q ⊂ U(2) is the finite subgroup defined in 4.3.

To this end we define the periods and half-periods of wτ . The periods and half-periods of wτ

control when the curve of isotropic orbits Owτ determined by wτ is a closed curve in the space
of SO(p) × SO(q) orbits. Recall from 4.2 the definitions of the periods and half-periods of the
1-parameter group {T̂x} defined in 4.1. The periods and half-periods of wτ and the periods and
half-periods of {T̂x} are intimately connected because of 6.25.

Definition 6.26. Fix a pair of admissible integers p and q and let wτ be any of the (p, q)-twisted
SL curves defined in 5.1. We define the period lattice of wτ by

(6.27) Per(wτ ) := {x ∈ R |wτ ◦ Tx = wτ},
and the half-period lattice of wτ by

(6.28) Per 1
2
(wτ ) := {x ∈ R | Owτ◦Tx(t) = Owτ (t) ∀ t ∈ R},

where as previously Ow ⊂ S2(p+q)−1 denotes the isotropic SO(p)× SO(q) orbit associated with any
point w ∈ S3. In other words, x is a half-period of wτ if wτ ◦ Tx and wτ give rise to the same
parametrised curve of isotropic SO(p)× SO(q)-orbits in S2(p+q)−1. We call elements of Per 1

2
(wτ )
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the half-periods of wτ , and elements of Per(wτ ) the periods of wτ . A strict half-period is any
half-period which is not a period of wτ .

Using 3.1 we see that x is a half-period of wτ if and only if

(6.29) wτ ◦ Tx = ρjk ◦wτ for some ρjk ∈ Stabp,q,

where as above Stabp,q is the finite subgroup of U(2) defined in 4.3. More explicitly, we have

(6.30) Per 1
2
(wτ ) := {x ∈ R | ∃ (j, k) ∈ 〈(+,±)〉 ≤ Z2×Z2 such that ρjk◦wτ = wτ ◦Tx }, if p = 1;

or

(6.31) Per 1
2
(wτ ) := {x ∈ R | ∃ (j, k) ∈ Z2 × Z2 such that ρjk ◦wτ = wτ ◦ Tx }, if p > 1.

If x satisfies 6.29 for (j, k) ∈ Z2 × Z2 then we call x a half-period of wτ of type (jk). We see
immediately from 6.29 that 2 Per 1

2
(wτ ) ⊂ Per(wτ ); this explains the terminology half-period.

The importance of the half-periods of wτ for understanding the geometry of Xτ is explained by
the following:

Proposition 6.32. Suppose 0 < |τ | < τmax and let Xτ be one of the SO(p)× SO(q)-invariant
special Legendrian cylinders defined in 5.8. Suppose there exist triples (t1, σ1, σ2), (t2, σ′1, σ

′
2) ∈

Cylp,q such that

(6.33) Xτ (t1, σ1, σ2) = Xτ (t2, σ′1, σ
′
2).

Then t2 − t1 ∈ Per 1
2
(wτ ). Moreover, if t2 − t1 ∈ Per(wτ ) then σ1 = σ′1 and σ2 = σ′2.

Proof. From the definition of Xτ in terms of wτ and the isotropic SO(p)× SO(q) orbits Ow we see
that 6.33 implies that Owτ (t1)∩Owτ (t2) 6= ∅ and therefore Owτ (t1) = Owτ (t2). Hence by 3.1 we have

(6.34) wτ (t1) = ρjkwτ (t2) for some ρjk ∈ Stabp,q,

and

(6.35) σ1 = (−1)jσ′1, σ2 = (−1)kσ′2.

Using conservation of I2 = Im(wp1w
q
2) and 6.34 we have

Imwp1w
q
2(t2) = Imwp1w

q
2(t1) = (−1)jp+kq Imwp1w

q
2(t2).

Hence we have

(6.36) jp+ kq ≡ 0 mod 2.

Now define w̃ by
w̃ := ρjk ◦wτ ◦ Tt2−t1 .

Using the definition of w̃ and 6.34 we have

w̃(t1) = ρjk ◦wτ (t2) = wτ (t1).

Because j and k satisfy 6.36 w̃ is another solution of 4.8 and therefore by uniqueness of the initial
value problem w̃ ≡ wτ . It follows that t2 − t1 ∈ Per 1

2
(wτ ). The final statement in 6.32 follows

from 6.35. �
As a simple corollary of 6.32 we have

Corollary 6.37. Suppose there exist t0 ∈ R and x0 ∈ R+ such that wτ (t0 + x0) = wτ (t0), i.e. the
curve wτ has a point of self-intersection, then x0 ∈ Per(wτ ). Hence either

(i) Per(wτ ) = (0) in which case wτ : R→ S3 is an injective immersion, or
(ii) there exists T > 0, such that T ∈ Per(wτ ) is the smallest nontrivial period of wτ and the

restriction wτ : [0, T ]→ S3 is a closed embedded curve.
In particular, wτ forms a closed curve in S3 if and only if Per(wτ ) 6= 0.
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For the rest of this section we always assume 0 < |τ | < τmax unless stated otherwise. We now
completely determine the periods and half-periods of wτ in terms of the rotational period T̂2bpτ
(recall 6.24).

Definition 6.38. Define k0 ∈ N∪ {+∞} to be the order of the rotational period T̂2bpτ ∈ U(2). We
set k0 = +∞ if the rotational period has infinite order.

We can completely describe the period lattice Per(wτ ) and the half-period lattice Per 1
2
(wτ ) in

terms of k0:

Lemma 6.39. Fix a pair of admissible integers p and q and let n = p + q. k0 the order of the
rotational period T̂2bpτ defined in 6.38 can also be characterised as

(6.40) k0 = min{k ∈ Z+| kp̂τ ∈ π lcm(p, q)Z},
and the following are equivalent

p̂τ /∈ πQ ⇐⇒ k0 =∞ ⇐⇒ Per 1
2
(wτ ) = Per(wτ ) = (0).

If p̂τ ∈ πQ, then in all cases we have

(6.41) Per(wτ ) = 2k0pτZ,
and

(i) if k0 is odd then Per 1
2
(wτ ) = Per(wτ ) = 2k0pτZ, i.e. wτ has no strict half-periods.

(ii) if k0 is even and p > 1 then Per 1
2
(wτ ) = 1

2 Per(wτ ) = k0pτZ. Moreover, for fixed p

and q every strict half-period of wτ is of type (jk) where j = q/hcf(p, q) mod 2 and
k = p/hcf(p, q) mod 2.

(iii) a. if k0 is even, p = 1 and n is even then Per 1
2
(wτ ) = Per(wτ ) = 2k0pτZ, i.e. wτ has no

strict half-periods.
b. if k0 is even, p = 1 and n is odd then Per 1

2
(wτ ) = 1

2 Per(wτ ) = k0pτZ (and every
strict-half period is necessarily of type (+−).)

Proof. First we show that

(6.42) x ∈ Per 1
2
(wτ ) ⇐⇒ x = 2kpτ for some k ∈ Z and 2kp̂τ ∈ Per 1

2
({T̂x}),

and that

(6.43) x ∈ Per(wτ ) ⇐⇒ x = 2kpτ for some k ∈ Z and 2kp̂τ ∈ Per({T̂x}) = 2π lcm(p, q).

Proof of 6.42: Suppose x ∈ Per 1
2
(wτ ). From the definition of Per 1

2
(wτ ), w2 ◦ Tx = ±w2. Since

yτ = |w2|2 this implies yτ ◦ Tx = yτ and hence x ∈ Per(yτ ) = 2pτZ. Then from 6.25 we have

wτ ◦ T2kpτ = T̂2kbpτ ◦wτ .

Hence 2kpτ is a half-period of wτ of type (jk) if and only if T̂2kbpτ = ρjk. This is equivalent to
2kp̂τ being a half-period of {T̂x} of type (jk) and 6.42 now follows using 4.5. 6.43 follows from
6.42 by looking only at half-periods of type (++) and using 4.5. The characterisation of k0 given
in 6.40 follows immediately from 6.43. The equivalences in the line following 6.40 follow from the
characterisation of k0 given in 6.40 together with 6.27.

Now suppose x ∈ Per 1
2
(wτ ) and p̂τ ∈ πQ, so that the rotational period k0 is finite. Then from

6.42 and 6.41 we have

(6.44) x ∈ 2pτZ ∩ 1
2 Per(wτ ) = 2pτZ ∩ k0pτZ = lcm(2, k0)pτZ =

{
2k0pτZ k0 odd;
k0pτZ k0 even.

(i) If k0 is odd then from 6.44 x ∈ 2k0pτZ = Per(wτ ) and hence Per 1
2
(wτ ) = Per(wτ ) as required.
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If k0 is even, then from 6.44 x ∈ k0pτZ. Furthermore, if x is a strict half-period of wτ then
x ∈ k0pτ (2Z + 1).
(ii) Suppose now that p > 1 and hence by 6.31 we should consider all types of half-period. Given
any x ∈ k0pτ (2Z + 1) notice that wτ ◦ Tx = wτ ◦ Tk0pτ since 2k0pτZ = Per(wτ ). Since k0 is
assumed even, k0pτ ∈ Per(yτ ) and hence wτ ◦Tk0pτ = T̂k0bpτ ◦wτ . By 6.39 and the definition of k0,
T̂k0bpτ 6= Id but T̂2k0bpτ = Id. Hence from the diagonal form of T̂x we must have T̂k0bpτ = ρjk 6= Id
for some (jk) 6= (++). Hence x is a strict half-period as claimed. Moreover, since k0p̂τ is a strict
half-period of {T̂x} then by 4.5 it must be a half-period of type (jk) with j and k as in 6.39.ii.
(iii) If p = 1 the result follows using the structure of Per 1

2
({T̂x}) established in 4.5.iii. �

We define the subgroup Per(Xτ ) ⊂ Diff(Cylp,q) by

(6.45) Per(Xτ ) := {M ∈ Diff(Cylp,q) | Xτ ◦M = Xτ}.
Per(Xτ ) is important because the immersion Xτ : Cylp,q → S2n−1 factors through an embedding of
the quotient manifold Cylp,q/Per(Xτ ). Combining 6.32 and 6.39 we obtain the following structure
result for Per(Xτ ):

Corollary 6.46. If k0 the order of the rotational period T̂2bpτ is infinite then Per(Xτ ) = (0) and
otherwise

Per(Xτ ) =





〈(Tk0pτ ,− IdSn−1)〉 if p = 1 and k0 is even and n is odd;
〈(Tk0pτ , (−1)j IdSp−1 , (−1)k IdSq−1)〉 if p > 1 and k0 is even;
〈T2k0pτ 〉 otherwise;

where j = q/hcf(p, q) and k = p/hcf(p, q).

In particular the SO(p)×SO(q)-invariant SL immersionXτ factors through an embedding of a closed
manifold if and only if k0 is finite. In the third case above this closed manifold is diffeomorphic to
S1×Sp−1×Sq−1 if p > 1 and to S1×Sn−2 if p = 1. In the first case the manifold is diffeomorphic
to a Z2 quotient of S1 × Sn−1 and in the second case to a Z2 quotient of S1 × Sp−1 × Sq−1.

7. Closed twisted SL curves and closed embedded special Legendrians.

In this section we prove the existence of infinitely many closed (p, q)-twisted SL curves and
infinitely many closed embedded SO(p)× SO(q)-invariant special Legendrian submanifolds.

By 6.37 closure of the curve wτ is determined by the period lattice Per(wτ ) and hence by 6.39
the rationality of the angular period p̂τ/π. Therefore it will suffice to prove that the angular period
p̂τ is a nonconstant real analytic function of τ ∈ (0, τmax). The main point is to study the τ → 0
asymptotics of the angular period p̂τ .

To obtain the τ → 0 asymptotics of p̂τ we will need an auxiliary result describing the τ → 0
asymptotics of the period 2pτ . In order to describe these asymptotics it helps to introduce the
following notation: We define functions of τ by

(7.1) Tk(τ) :=

{
τ−1+2/k, for k > 2;
log τ−1, for k = 2,

and introduce the notation f1 ∼ f2 for functions f1 and f2 of τ to mean that

(7.2)
f2(τ)
f1(τ)

→ 1 as τ → 0.

Using this notation we have the following :

Proposition 7.3 (Small τ asymptotics of the period pτ and partial-periods p+
τ and p−τ ).

(i) For p > 1, p+
τ and p−τ are analytic functions of τ for 0 < |τ | < τmax. For p = 1, pτ is an

analytic function of τ for 0 < |τ | < τmax.
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(ii) In the case p > 1 we have

(7.4) p+
τ ∼ bq Tq(τ), p−τ ∼ bp Tp(τ),

where

(7.5) b2 := 1, bk := 4−1+ 1
k

∫ ∞

1

dz√
zk − 1

= 4−1+ 1
k

√
π Γ(1

2 − 1
k )

Γ(− 1
k )

for k ≥ 2,

where Γ is the gamma function. We also have

(7.6) pτ ∼ bq Tq(τ) when 1 ≤ p < q, pτ ∼ 2bq Tq(τ) when 2 ≤ p = q.

Proof. For p = 1, ẏτ (pτ ) = 0 and for p > 1, ẏτ (p+
τ ) = ẏτ (−p−τ ) = 0 and locally the vanishing

of ẏ determines pτ and p+
τ and p−τ . Moreover, ÿ = 2f ′(y(t)) is nonzero at t = pτ if p = 1 or at

either p+
τ and −p−τ if p > 1 for all τ ∈ (0, τmax). Analyticity of p+

τ , p−τ in the case p > 1 (and
hence pτ = p+

τ + p−τ ) and pτ in the case p = 1 now follows from the real analytic Implicit Function
Theorem.

Assume now that p > 1. By using 4.11, 5.6, and 6.1, we have that

p+
τ =

∫ q/n

ymin

dy

2
√
yq(1− y)p − 4τ2

, p−τ =
∫ ymax

q/n

dy

2
√
yq(1− y)p − 4τ2

.

Clearly if we substitute the limits ymin and ymax in the above integrals by ymin + δ and ymax − δ
where δ is a small positive number, the integrals we get converge as τ → 0 to constants which
depend only on δ. Moreover since for y ∈ [ymin, ymin + δ] we have

(1− ymin − δ)p/2
√

max(0, yq − 4(τ ′)2) ≤
√
yq(1− y)p − 4τ2 ≤

√
yq − 4τ2 ,

where τ ′ := τ(1− ymin − δ)−p/2, and for y ∈ [ymax − δ, ymax] we have

(ymax − δ)q/2
√

max(0, (1− y)p − 4(τ ′′)2) ≤
√
yq(1− y)p − 4τ2 ≤

√
(1− y)p − 4τ2 ,

where τ ′′ = τ(ymax − δ)−q/2, it is enough to prove
∫ ymin+δ

ymin

dy√
yq − 4τ2

∼ 2bq Tq(τ),
∫ ymax

ymax−δ

dy√
(1− y)p − 4τ2

∼ 2bp Tp(τ).

This follows easily by using 4.22 and integration by substitution (substituting z = y(4τ2)−1/q or
z = (1− y)(4τ2)−1/p respectively), and concludes the proof when p > 1 (recall also 6.2).

When p = 1 by using 4.11, 5.5, and 6.5, we have

pτ =
∫ ymax

ymin

dy

2
√
yn−1(1− y)− 4τ2

and as before the proof reduces to
∫ ymin+δ

ymin

dy√
yn−1 − 4τ2

∼ 2bn−1 Tn−1(τ).

�
Proposition 7.7. For 0 < τ < τmax the angular period p̂τ (defined in 6.23) is a nonconstant
analytic function which satisfies

(7.8) lim
τ→τmax

p̂τ = π

√
2pq
n
,

and

(7.9) lim
τ→0

p̂τ =
π

2
.
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Proof. Real analyticity of p̂τ for τ ∈ (0, τmax) follows from real analyticity of wτ , p+
τ , p−τ and pτ and

the definition of p̂τ (6.23). To show that p̂τ is nonconstant it suffices to calculate the asymptotics
of p̂τ as τ → 0 and τ → τmax.

When τ = τmax, we have y ≡ q/n and p ψ̇1 ≡ 2nτmax. Hence we have

lim
τ→τmax

2p̂τ = lim
τ→τmax

pψ1(2pτ ) = 4nτmax lim
τ→τmax

pτ .

The asymptotics for p̂τ now follow from the asymptotics for pτ established in 4.20.
Now we prove 7.9, dealing first with the case p = 1. We define p∗τ to be the unique t ∈ (0, pτ )

such that y(p∗τ ) = n−1
n . Also ẏ(p∗τ ) = −4

√
τ2

max − τ2 6= 0 for τ ∈ (−τmax, τmax). Hence by the real
analytic Implicit Function Theorem p∗τ is an analytic function of τ in (−τmax, τmax). In particular
p∗τ approaches a finite limit as τ → 0. Recall the function Ψ defined in 6.17. The initial condition
for y together with 6.18 and 6.19 implies that Ψ ∈ (0, π2 ) for t ∈ (0, pτ ). From 6.19 we have
cos Ψ(p∗τ ) = τ

τmax
and therefore

(7.10) Ψ(p∗τ ) = π
2 − arcsin( τ

τmax
) = π

2 + ατ ,

with ατ = − arcsin(τ/τmax) as in 5.3. 7.10 implies that

lim
τ→0

Ψ(p∗τ ) := ψ1(p∗τ ) + (n− 1)ψ2(p∗τ ) =
π

2
.

For t ∈ [0, p∗τ ] we have y ∈ [(n− 1)/n, ymax] ⊂ [(n− 1)/n, 1] and therefore from 6.13 we have (recall
from 6.16 that ψ2(0) = 0)

2τp∗τ < −ψ2(p∗τ ) <
2nτ
n− 1

p∗τ .

Hence ψ2(p∗τ ) converges to zero as τ → 0 (since p∗τ is bounded as τ → 0). Similarly, for t ∈ [p∗τ , pτ ]
we have 1− y ∈ [1/n, 1− ymin] ⊂ [1/n, 1] and therefore from 6.13 we have

2τ(pτ − p∗τ ) < ψ1(pτ )− ψ1(p∗τ ) < 2τn(pτ − p∗τ ).

Hence by the asymptotics for pτ established in 7.3 we see ψ1(pτ )− ψ1(p∗τ )→ 0. Therefore p̂τ =
1
2ψ1(2pτ ) = ψ1(pτ ) converges to π/2 as desired.

The argument in the case p > 1 is very similar. At t = p+
τ or t = −p−τ we have ẏ = 0 and

y = ymin or y = ymax respectively. Hence 6.20 and 6.21 imply that ei(Ψ+ατ ) = e−iπ/2 and therefore
we have

(7.11) Ψ(t) = −π
2 − ατ at t = p+

τ or t = −p−τ .

Using 6.13 and the symmetries of yτ from 6.6 one finds (for i = 1, 2)

(7.12) ψi(2p+
τ ) = 2ψi(p+

τ ) and ψi(−2p−τ ) = 2ψi(−p−τ ).

Using 6.25 (applied with t = −2p−τ ) yields (for i = 1, 2)

(7.13) ψi(2pτ ) = ψi(2p+
τ )− ψi(−2p−τ ).

Combining 7.11, 7.12 and 7.13 yields

(7.14) p̂τ = p
2 ψ1(2pτ ) = p(ψ1(p+

τ )− ψ1(−p−τ )) = π
2 + ατ + pψ1(p+

τ ) + q ψ2(−p−τ ).

By analysing the functions ψ1 on (0, p+
τ ) and ψ2 on (−p−τ , 0) as above we find

2pτp+
τ < pψ1(p+

τ ) < 2nτp+
τ , and 2qτp−τ < qψ2(−p−τ ) < 2nτp−τ .

Hence by 7.3 and the definition of ατ all three nonconstant terms on the RHS of 7.14 converge to
zero as τ → 0. �

Theorem 7.15. Fix admissible integers p and q. There exists a countably infinite subset N ⊂
(0, τmax) such that τ ∈ N if and only if the (p, q)-twisted SL curve wτ is closed.
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Proof. Define
N := {τ ∈ (0, τmax) | p̂τ ∈ πQ}.

By Proposition 7.7 p̂τ is a nonconstant analytic function of τ on the interval (0, τmax) and hence N
is a countably infinite set. By Corollary 6.37 wτ is a closed curve if and only if Per(wτ ) 6= (0) and
by Lemma 6.39 Per(wτ ) 6= 0 if and only if p̂τ ∈ πQ. Hence wτ is closed if and only if τ ∈ N . �

In fact, with further work can one show that the set N is also dense in (0, τmax). To prove this
requires more precise asymptotics for p̂τ and dbpτ

dτ as τ → 0. Refined asymptotics for p̂τ as τ → 0 are
a key ingredient in our use of Xτ for sufficiently small τ as building blocks in gluing constructions
of higher dimensional SL cones and are established in [11,12].

From 6.39 the condition τ ∈ N is equivalent to the condition that the rotational period T̂2bpτ
(recall 6.25) of wτ is of finite order k0 (recall Definition 6.38) and hence to the condition that Xτ

factors through a SL embedding of a closed manifold. Combining 7.15 and 6.46 we obtain the
existence of countably infinite families of SO(p)× SO(q)-invariant embeddings of closed manifolds:

Theorem 7.16. Choose any τ in the countably infinite (dense) set N ⊂ (0, τmax) and let k0 ∈ N be
the order of the rotational period T̂2bpτ . The SO(p)×SO(q)-invariant special Legendrian immersion
Xτ : Cylp,q → S2(p+q)−1 factors through a special Legendrian embedding of the closed manifold
Cylp,q/Per(Xτ ) where Per(Xτ ) ∼= Z ⊂ Diff(Cylp,q) is the following infinite cyclic subgroup

Per(Xτ ) =





〈(Tk0pτ ,− IdSn−1)〉 if p = 1 and k0 is even and n is odd;
〈(Tk0pτ , (−1)j IdSp−1 , (−1)k IdSq−1)〉 if p > 1 and k0 is even;
〈T2k0pτ 〉 otherwise;

where j = q/hcf(p, q) and k = p/ hcf(p, q).
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