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 

Abstract-- A global multiscale method based on a dynamic 

mode decomposition (DMD) algorithm to characterize the global 

behavior of transient processes recorded using wide-area sensors 

is proposed. The method interprets global dynamic behavior in 

terms of both, spatial patterns or shapes and temporal patterns 

associated with dynamic modes containing essentially single-

frequency components, from which the mode shapes, frequencies 

and growth and decay rates of the modes can be extracted 

simultaneously. These modes are then used to detect the coherent 

and dominant structures within the data. 

The technique is well suited for fast wide-area monitoring and 

assessment of global instability in the context of modern data 

fusion-based estimation techniques. Results of the application of 

the proposed method to large, high-dimensional data sets are 

encouraging. 

 
Index Terms--Dynamic mode decomposition, mode-shape, 

inter-area oscillations. 

I.  INTRODUCTION 

OWER  system dynamic monitoring for a near real-time 

control has received increased importance in the past 5-10 

years because of two primary reasons. Firstly the analysis of 

the causes and mechanisms of several large blackouts 

identified the lack of fast and dynamic monitoring [1].  

Secondly the phasor measurement technology (PMUs) for 

deployment over wide area power system is now available 

commercially.  A successful wide-area monitoring of low-

frequency oscillation requires adaptive global identification 

methods, which can accurately identify and track the evolving 

dynamics of critical system modes [2], [3]. 

The dynamic monitoring of systems should be robust, and 

resilient against uncharacteristic variation of signal 

information. The tools must operate in real-time to quickly 

quantify the risks to system shut down such as blackouts. In 

the past few large power system collapse it has been observed 

that slowly growing power oscillations of low frequency have 

triggered the final events. These are known as inter-area 

modes as they are manifested across several large utilities.  

Naturally fasts monitoring of these oscillations is way to 

commit control to avert such situations.  

Identifying damping factors and the frequency of 

oscillations has been very popular to quantify the stability 
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margin in small signal sense [4]. Both, model and data driven 

tools, are reported. The recently concluded IEEE Task Force 

on modal identification [3] summarizes recent work on this 

topic. 

Inter area oscillations monitoring targeting temporal 

amplitudes and phases of inter-area mode and energy of 

oscillations are useful attributes to assess the proximity of the 

system to instability [5]–[13]. Because of their global nature, 

modal frequencies and modal speeds in particular, are directly 

associated with global system behaviour and may therefore be 

useful to detect and visualize the stressed part of the system. 

In addition, the level of energy associated with the oscillations 

as a measure of stability margin is a useful indicator as it is 

robust against noise in the measured signal.  

Recently, several multi-scale dynamic feature extraction 

methods have been used to objectively identify and extract 

dominant patterns exhibited by power system transient 

processes. Of these methods, Proper Orthogonal 

Decomposition (POD) and Principal Component Analysis 

(PCA) have been applied to identify dynamically coherent 

generators and mode shapes using ensembles of model 

simulations and measured data [5]–[7].The simplicity of the 

model structure allows for direct numerical analysis of large 

data sets collected using strategically located sensors. 

Over the last few years, data-driven methods for modal 

identification based on the use of the Koopman operator have 

been developed [8]–[10]. These methods use Arnoldi-like 

techniques and enable complex oscillatory processes to be 

represented by several single-frequency nonlinear modes from 

which oscillations and interacting generators could be 

identified. The application of this approach, however, is 

challenging due to both, the high dimensionality of the 

parameter space and the computational complexity. 

In this paper, a physically-motivated Dynamic Mode 

Decomposition (DMD) algorithm is introduced to monitor the 

spatial and temporal dynamics of nonlinear transient 

phenomena. Distinct from previous power system 

identification methods, the proposed framework allows the 

multi-scale spatial and temporal dynamics in observed data to 

be identified directly from observational data [14]-[18].  

Methods for interpreting the nonlinear mathematical 

structure of the spatio-temporal model in terms of temporal 

and structural components are discussed and a physical 

interpretation is provided. 

 Studies on both, transient stability and measured data 

suggest that the method can accurately identify the dominant 

spatial and temporal structures in a large data set. 
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II.  SPATIO TEMPORAL ANALYSIS METHODS 

In this section, an overview of two related spatio-temporal 

analysis methods, Koopman mode analysis, and the proper 

orthogonal decomposition (POD) method is provided within 

the context of modal estimations. 

A.  Proper Orthogonal Decomposition 

Assume that 𝑥(𝜈𝑗 , 𝑡𝑖), 𝑗 = 1, … ,𝑚, 𝑖 = 1,2… 𝑙,… ,𝑁 

denotes an element of observation, where  𝜈𝑗   is the jth grid or 

measurement point, and 𝑡𝑖 is the time at which the observations 

are made. To introduce the proposed method, define the data 

matrix, 𝑿1
𝑁 , as 

𝑿1
𝑁 = [

𝑥(𝜈1 , 𝑡1)⏞    
𝒙1

⋯𝑥(𝜈1, 𝑡𝑙)⏞    
𝒙𝑙

… 𝑥(𝜈1 , 𝑡𝑁)⏞    
𝒙𝑁

⋮ ⋮ ⋮
𝑥(𝜈𝑚 , 𝑡1) ⋯𝑥(𝜈𝑚 , 𝑡𝑙)… 𝑥(𝜈𝑚 , 𝑡𝑁)

] ∈ ℝ𝑚𝑥𝑁  (1) 

whose lth column is the observation sequence 𝒙𝑙. 

Let now, Ф̂=[𝝋̂1 𝝋̂2… 𝝋̂𝑁] be a set of functions 

obtained from the data itself. The POD method allows the data 

to be represented as a linear combination of functions 𝝋̂𝑘 from 

Ф̂ of the form (a spatio-temporal decomposition) [6]: 

𝒙𝑖 = 𝒙(𝜈𝑗 , 𝑡𝑖) = ∑ 𝑎𝑘(𝑡)𝝋̂𝑘
𝑁
𝑘=1   ,  𝑖 = 1,2,… , 𝑙, . . 𝑁       (2) 

where the index j represents the jth grid (measurement) point, 

the index i represents the ith snapshot, k represents the 

statistical or proper orthogonal modes (POD modes), and 

𝑎𝑘(𝑡) and 𝝋̂𝑘 represent the temporal amplitudes and spatial 

component maps or patterns (modes), respectively. 

Physically, each of these maps represents a standing 

oscillation, and the temporal coefficients, and 𝑎𝑘(𝑡𝑖) =
(𝝋̂𝑘 , 𝒙𝑖), represent how the patterns oscillate through time, i.e. 

the temporal coefficients give the relative importance of each 

mode 𝝋̂𝑘 at different moments in time. 

Formally, the basis functions are obtained from the solution 

of the eigenvalue problem 

𝑪̂𝝋̂𝑘 = 𝜆̂𝑘𝝋̂𝑘  , 𝑘 = 1,… , 𝑁                     (3) 

where 𝑪̂ = (𝑿1
𝑁)𝑇(𝑿1

𝑁) is the spatial covariance matrix and T 

stands for transpose. The solution of (3) gives a complete set of 

orthonormal functions 𝝋̂𝑘 with corresponding eigenvalues 

𝜆̂1 ≥ 𝜆̂2 ≥ ⋯ ≥ 𝜆̂𝑁 > 0. For large-scale applications  𝑚 ≪ 𝑁, 

and the method of snapshots is used to reduce the dimension of 

the system  [6],[7].  

Using (2), the snapshot matrix, 𝑿1
𝑁 , can be represented in 

terms of the POD basis as: 

𝑿1
𝑁 = Ф̂𝜞̂                                     (4) 

where 

𝜞̂ = [
𝒂1(𝑡)
⋮

𝒂𝑁(𝑡)
] 

in which 𝒂𝑘(𝑡) = [𝑎𝑘(𝑡1) 𝑎𝑘(𝑡2) . . .    𝑎𝑘(𝑡𝑁)], 𝑘 =
1, … ,𝑁 are row vectors containing the temporal coefficients in 

(2) evaluated at each of the snapshots or observations. 

 Appendix A, discusses extensions to the above approach 

based on singular value decomposition (SVD) analysis.  

B.  Koopman Modes 

An alternative method to modal analysis of nonlinear 

complex systems is based on the notion of the Koopman 

operator [14], [15].  

Following Mezic et al. [15], consider a discrete-time 

system evolving on an N-dimensional manifold M, 

𝒙𝑘+1 = 𝒇(𝒙𝑘)  , 𝒙 ∈ ℝ
𝑀                         (5) 

k=0,1,2,…,N-1 where k is an integer index. 

Let 𝑔(𝒙):𝑀 ⟶ ℝ  be any scalar-valued function (a 

measurement of the state or observable). The Koopman 

operator, 𝑈, is a a linear operator that maps 𝑔 into a new 

function: 

𝑈𝑔(𝒙) = 𝑔(𝒇(𝒙))                              (6) 

 The key idea behind Koopman analysis is to study the 

system dynamics (5), from measured data using the 

eigenspectrum of 𝑈. Assume to this end, that 𝜑𝑗  and 𝜆𝑗, 

denote the eigenfunctions and eigenvalues (Koopman modes) 

of the Koopman operator, respectively, given by 

𝑈𝜑𝑗(𝒙) = 𝜆𝑗𝜑𝑗(𝒙),    𝑗 = 1,2,….               (7) 

where for N sufficiently long, the Koopman eigenfunctions 

form an orthonormal expansion basis [15].  

 In practice, one is interested in functions 𝒈(𝐱) =
[𝑔1(𝐱) 𝑔2(𝐱) …𝑔𝑝(𝐱)] = 𝑀 → 𝑝 with p<N. Assuming 

that each of the components of 𝑔 lie within the span of the 

eigenfunctions  the time evolution of the functions 𝜑𝑗  the time 

evolution of the functions 𝑔1(𝐱𝑘) can be expanded as: 

𝒈(𝒙) = ∑ 𝜑𝑗(𝒙)𝒗𝑗
∞
𝑗=1                             (8)  

and  

𝒙𝑘 = 𝒈(𝒙𝑘) = ∑ 𝑈𝑘𝜑𝑗(𝒙0)𝒗𝑗
∞
𝐽=1 = ∑ 𝜆𝑗

𝑘𝜑𝑗(𝒙0)𝒗𝑗
∞
𝐽=1      (9) 

where use has been made of (7). 

 Physically, (9) indicates that the observable 𝒈(𝒙𝑘) is 

decomposed into vector coefficients, 𝒗𝑗  , called Koopman 

modes whose temporal behavior is given by the associated 

eigenvalues 𝜆𝑗; the phase of the eigenvalues determines its 

frequency, whilst its modulus determines the growth rate. The 

magnitude 𝜑𝑗(𝒙0)𝒗𝑗   is used as a measure of the relative 

participation of a mode to the modal decomposition. 

 Analytical approaches to compute Koopman modes based 

on Arnoldi-like algorithms have been developed and tested on 

data of the form (1). Following the same notation as Susuki 

and Mezic [10], consider the finite-time data matrix.   

𝑷 = [𝑷0 𝑷1 …𝑷𝑁−1] ∈ ℝ
𝑚𝑥𝑁               (10) 

where 𝑔(𝒙0)=𝑷0 , and each data column,  𝑷𝑖, has a similar 

interpretation to that in (1).  

 The computation of the Koopman modes is straightforward 

[14]: 
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1. Find constants 𝑐𝑗  such that 

𝒓 = 𝑷𝑁−1 −∑ 𝑐𝑗𝑷𝑗
𝑁−2
𝑗=0  , 𝒓 ⊥ {𝑷0 𝑷1 …𝑷𝑁−2} (11) 

2. Determine the eigenvalues (Ritz values)  

𝜆1, 𝜆1, … , 𝜆𝑁−1  of the companion matrix 𝑪 

𝑪 =

[
 
 
 
 
0
1 0

⋱ ⋱

𝑐𝑜
𝑐1
⋮

1 0 𝑐𝑁−3
1 𝑐𝑁−2]

 
 
 
 

= 𝑻−𝟏Λ𝑻  ∈ ℝ𝑁−1𝑥𝑁−1 

3. Define the Vandermode matrix 

𝑻 =

[
 
 
 
 
1 𝜆1 𝜆1

2

1 𝜆2 𝜆2
2

1 𝜆3 𝜆3
2

⋯ 𝜆1
𝑁−2

⋯ 𝜆2
𝑁−2

… 𝜆3
𝑁−2

⋮ ⋮ ⋮
1 𝜆𝑁−1 𝜆𝑁−1

2
⋱ ⋮
… 𝜆𝑁−1

𝑁−2]
 
 
 
 

∈ ℝ𝑁−1𝑥𝑁−1 

4. Compute Ritz vectors 𝒗𝑗  in (9) as the columns of 

𝑽 = [𝑷0 𝑷1 …𝑷𝑁−2]𝑻
−1. The Ritz vectors 𝒗𝑗  

approximate the terms  𝜑𝑗(𝑥𝑜)𝒗𝑗  in (9). 

 In this procedure, the constants 𝑐𝑗  are determined solving 

the least-squares problem 

𝟎 = 𝒃 − 𝑨𝒄                                  (12) 

where 𝒄 = [𝑐𝑜 𝑐1 𝑐2⋯ 𝑐𝑁−2]𝑻, with 𝒃 ∈ ℝ𝑁−1, with 𝑏𝒊 =

𝑷𝑖
𝑇𝑷𝑁−1 and 𝑨 = {𝐴𝑖𝑗} ∈ ℝ

(𝑁−1)𝒙(𝑁−1), with 𝐴𝑖𝑗 = 𝑷𝑖
𝑇𝑷𝑁−1. 

The Koopman eigenfunctions are obtained from matrix 𝑻. 

Refer to [10] for specific details about this procedure. 

III.  DYNAMIC MODE DECOMPOSITION 

A.  Background 

Dynamic Mode Decomposition (DMD) is a global 

multiscale method that can approximate a few Koopman 

functions  𝜑𝑗, [16] using two sets of time ordered sequences of 

data snapshots. More precisely, the method assumes that the 

data sequences or snapshots , 𝒙𝑖 , in (1) are generated by a 

discrete-time linear dynamical system whose evolution is 

governed by the linear mapping [14]. 

𝒙𝑖+1 = 𝑨𝒙𝑖 + 𝜼𝑖   , 𝑖 = 1,… ,𝑁 − 1            (13) 

where 𝑨 is an unknown (time-independent) operator matrix 

of dimension mxm that captures the dynamics inherent in the 

data matrix, and 𝜼𝑖 is some noise process. This is a local 

approximation to system dynamics with a linear system; the 

eigenvalues and eigenvectors of 𝑨 determine the dynamic 

behavior of the mapping. 

Practical algorithms to estimate the linear operator 𝑨 and 

its associated relevant eigenvalues and eigenvectors that do 

not require explicit knowledge of the mapping matrix are 

discussed below. 

In the noise-free case, use of (13) in (1) yields the Krylov 

sequences: 

𝑿1
𝑁 = [𝒙1 𝑨𝒙1 𝑨2𝒙1⋯ 𝑨𝑁−1𝒙1] = [𝒙1 ⋯ 𝒙𝑁]  (14a) 

𝑿1
𝑁−1 = [𝒙1 𝑨𝒙1 ⋯ 𝑨𝑁−2𝒙1] = [𝒙1 ⋯ 𝒙𝑁−1] (14b) 

𝑿2
𝑁 = [𝑨𝒙1 𝑨2𝒙1 ⋯ 𝑨𝑁−1𝒙1] = [𝒙2 ⋯ 𝒙𝑁] (14c) 

It can be proved that as more vectors 𝒙𝑙+1 = 𝑨
𝑙𝒙1, 𝑙 = 0, … 

are appended, the rank of the Krylov sequences increases until 

it reaches a maximal value [14]. For a sufficiently large 

number of snapshots, it can be assumed that the Nth snapshot 

can be expressed as a linear combination of the previous 

measurements, i.e. 

𝒙𝑁 = 𝑐1𝒙1 + 𝑐2𝒙2 +⋯+ 𝑐𝑁−1𝒙𝑁−1 + 𝒓           (15) 

where the ci’s  are unknown expansion coefficients, 𝒓 ∈ ℝ𝑚𝑥1  

is a vector of residuals. 

 Equation (15) can be rewritten in a more useful form as 

𝒙𝑵 = 𝑐1𝒙1 + 𝑐2𝒙2 +⋯+ 𝑐𝑁−1𝒙𝑁−1 + 𝒓 = 𝑿1
𝑁−1𝒄 + 𝒓 

in which 𝒄 = [𝑐1 𝑐2 𝑐3⋯ 𝑐𝑁−1]𝑻 is a vector of unknown 

coefficients. 

  Multiplying (14b) 𝑨 yields 

𝑨𝑿1
𝑁−1 = 𝑿2

𝑁                                   (16) 

 It can be easy to shown that the data sequence 𝑿2
𝑁 can be 

expressed as 

𝑿2
𝑁 = [𝒙2 𝒙3 𝒙4⋯ 𝒙𝑁−1(𝑿1

𝑁−1𝒄)] + 𝒓𝒆𝑁−1    (17) 

where 𝒆𝑁−1 = [0 0 0⋯ 1] ∈ ℝ1𝑥𝑁−1 and use has been 

made of (15).  

 Further, in matrix form, (16)  in connection with (17) can be 

written as 

𝑿2
𝑁 = 𝑨𝑿1

𝑁−1 = 𝑿1
𝑁−1𝑺+ 𝒓𝒆𝑁−1  ∈ ℝ

𝑚𝑥𝑁−1    (18) 

where 

𝑺 =

[
 
 
 
 0
1 0

⋱ ⋱

𝑐1
𝑐2
⋮

1 0 𝑐𝑁−2
1 𝑐𝑁−1]

 
 
 
 

  ∈ ℝ𝑁−1𝑥𝑁−1     (19) 

is a companion (or Frobenius) matrix associated with the 

DMD method. 

 In light of this, the unknown matrix 𝑺  can be determined by 

minimizing the residual 𝒓, 

𝑺 = 𝒎𝒊𝒏⏟
𝑺

‖𝑿2
𝑁 −𝑿1

𝑁−1𝑺‖                       (20) 

 A solution to the optimization problem is given by 𝑺 =
(𝑿1

𝑁−1)†𝑿2
𝑁, where the notation (. )† denotes the Moore-

Penrose pseudo-inverse. Once matrix 𝑺 is determined, the 

DMD modes and eigenvalues are obtained by solving the 

eigenvalue problem  𝑺𝝋𝑖 = 𝜆𝑖𝝋𝑖 , 𝑖 = 1, … ,𝑁 − 1. The 

quality of the estimation can then be computed from (15) and 

(18) as 

‖𝒓‖ = ‖𝒙𝑁 −𝑿1
𝑁−1𝒄‖ 

 With m being the number of sensors, DMD can be used to 

obtain low-dimensional spatial decomposition of a high-

dimensional transient processes. Let m be the true rank of the 

data matrix 𝑿1
𝑁−1. In analogy with POD analysis in section II 

(refer to Appendix A), the singular value decomposition (SVD) 
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of matrix  𝑿1
𝑁−1 is given by 

𝑿1
𝑁−1 = 𝑼𝜮𝑾𝑇 = [𝑼][𝜮𝑚 𝟎] [

𝑾𝑚
𝑇

𝑾𝑠
𝑇 ]  ,   𝑚 ≪ 𝑁   (21) 

where 𝑼 and 𝑾 are as defined in the Appendix, and 

𝜮𝑚 = [
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑚

] , 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚 > 0 

 A truncated basis can be found by substituting (21) into (18). 

This yields a reduced model that approximates the original 

model (19) constructed by projecting onto 𝑺̃ the vector field: 

𝑿̃2
𝑁 ≈ 𝑨𝑼𝜮𝑚𝑾𝑚

𝑻                               (22) 

 Multiplying (22) by  𝑼𝑇 from the left and by  𝑾𝑚𝜮𝑚
−1 (from 

the right), a representation of  𝑨 in the basis spanned by POD 

modes of 𝑿̃2
𝑁 is obtained as [17], [18]: 

𝑺̃ ≜ 𝑼𝑇𝑨𝑼 = 𝑼𝑇𝑿̃2
𝑁𝑾𝑚𝜮𝑚

−1 ∈ ℝ𝑚𝑥 𝑚          (23) 

 Equation (23) constitutes the reduced companion matrix. 

Compared to (19), matrix 𝑺̃ is of dimension 𝑚𝑥𝑚 , (𝑚 ≪ 𝑁 −
1) and holds information of the modal spatial (U) and temporal 

structures (𝑾𝑚𝜮𝑚
−1 ) as discussed below. 

B.  Modal Decomposition 

An interesting interpretation of system dynamic behavior 

can be obtained from the eigen-decomposition of the low-

dimensional system matrix, 𝑺̃. 

Suppose that matrix 𝑺̃ is diagonalizable with eigenvalue 

decomposition 

𝑺̃ = 𝒀𝜦𝒀−𝟏                                     (24) 

where, 𝜦 = 𝑑𝑖𝑎𝑔[𝜆1 𝜆2… 𝜆𝑚] ∈ ℂ
𝑚𝑥𝑚  is a diagonal 

matrix consisting of empirical Ritz eigenvalues 𝜆𝑗 , and 

𝒀 = [𝒚1 𝒚2… 𝒚𝑚] ∈ ℂ𝑚𝑥𝑚 is the matrix of right 

eigenvectors, respectively. 

 As discussed above, (24) determines a low-dimensional 

representation of the mapping 𝑨 on the subspace spanned by 

the POD modes of  𝑿2
𝑁. Substituting (24) into (23) yields 

𝑼𝑇𝑿̃2
𝑁𝑾𝑚𝜮𝑚

−1 = 𝒀𝜦𝒀−𝟏                        (25) 

 From (25), it is straightforward to show that 𝑿̃2
𝑁 can be 

approximated using a linear combination of the DMD modes. 

Multiplying (25) from the left by 𝑼 and from the right by 

 𝜮𝑚𝑾𝑚
𝑇 , yields 

𝑿̃2
𝑁 ≈ 𝑼𝒀𝜦𝒀−𝟏𝜮𝑚𝑾𝑚

𝑇                           (26) 

 Equation (26) constitutes a reduced-order modal 

approximation of dimension mxN. Based on this idea, two 

distinct notions of this decomposition are established. 

 A first useful interpretation is obtained by inserting (24) in 

(26): 

𝑿̃2
𝑁 ≈ 𝑼𝑺̃𝜮𝑚𝑾𝑚

𝑇 ≈ 𝑼𝑺̃𝚪𝑚(𝑡)                      (27) 

or 

 
where matrix 𝑺 ̃ is asymmetric with rank  min(m,N), of upper 

triangular structure  and contains a subset of the eigenvalues 

of 𝑨. 

 The following properties can easily be verified: 

1. The vectors 𝒖𝑖 in matrix 𝑼 are mutually orthogonal. 

2. The m row vector of 𝚪𝑚(𝑡) are orthogonal i.e 

 𝒂𝑖(𝑡)𝒂𝑖
𝑇(𝑡) = 𝛾, 𝒂𝑖(𝑡)𝒂𝑗

𝑇(𝑡) = 0. 

3. In analogy with (2), the temporal vectors 𝒂𝑖(𝑡) are 

ranked in descending order of energy, i.e. 𝐸1 > 𝐸2 >

⋯ > 𝐸𝑚 where 𝐸𝑗 = ‖𝒂𝑗(𝑡)‖ = ∑ σ𝑗
2𝑚

𝑗=1 . 

4. When matrix 𝑺̃ is an mth-order identity matrix, the 

DMD method reduces to the conventional POD-SVD 

method in Appendix A. 

5. The coefficients of matrix 𝑺̃ can be interpreted as 

weights that calibrate the importance of the temporal 

structures in determining the system response. 

 This information is used in this research to determine 

various measures mode-state participations. 

 A second interpretation is now obtained in terms of the 

SVD of the data matrix. Define  

𝜱 ∈ ℂ𝑚𝑥𝑚 = 𝑼𝒀 = [𝝓1𝝓2    …       𝝓𝑚] 

𝜦 ∈ ℂ𝑚𝑥𝑚 = [
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑚

] 

and 

𝚪̃𝑚(𝑡) ∈ ℂ
𝑚𝑥𝑁−1 = 𝒀−𝟏𝜮𝑚𝑾𝑚

𝑇 =

[
 
 
 
 
 
 ∑𝒀̂1𝑘

𝒎

𝒌=𝟏

𝒂𝑘(𝑡)

⋮

∑𝒀̂𝑚𝑘

𝒎

𝒌=𝟏

𝒂𝑘(𝑡)
]
 
 
 
 
 
 

= [
𝒂̃1(𝑡)
⋮

𝒂̃𝑚(𝑡)
] 

 From the previous discussion, it follows that the estimated 

data sequence, 𝑿̃2
𝑁, can be expressed as  

𝑿̃2
𝑁 ≈ 𝑼𝒀⏟

𝑺𝒑𝒂𝒕𝒊𝒂𝒍
𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆

𝜦𝒀−𝟏𝜮𝑚𝑾𝑚
𝑇⏟      

𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍
𝒔𝒕𝒓𝒖𝒄𝒕𝒖𝒓𝒆

= 𝚽𝚲𝚪̃𝑚(𝑡)        (28) 

 The data matrix 𝑿̃2
𝑁 can be now expanded in a linear 

combination of modal components as  

𝑿̃2
𝑁 ≈ ∑ 𝝓𝑗𝜆𝑗𝒂̃𝑗(𝑡)

𝑚
𝑗=1                             (29) 

where the 𝒂̃𝑗 ′𝑠  are the temporal amplitudes,  the   𝝓𝑗 ′𝑠  are the 

dynamic or spatial modes (DMD modes), and the 𝜆𝑗 ′𝑠  are the 

associated frequencies, with 

{
𝜌
𝑗
= 𝕽𝒆{𝑙𝑜𝑔(𝜆𝑗)} ∆𝑡⁄

𝑓𝑗 = 𝓘𝒎{𝑙𝑜𝑔(𝜆𝑗)} ∆𝑡⁄ 2π⁄
𝑗 = 1,2, … ,𝑚         (30) 

 It then follows that the importance of mode j at time 𝑡0 is 

00
0

Upper triangular matrix

Lower triangular matrix

𝑿̃2
𝑁 ≈ [

⋮ ⋮ ⋮
𝒖1 𝒖2 ⋯
⋮ ⋮ ⋮

     
⋮
𝒖𝑚
⋮

 ] [

𝑠 11 𝑠 12 ⋯
𝑠 21 𝑠 22 ⋯
⋮ ⋮ ⋱

𝑠 𝑚1 𝑠 𝑚2 ⋯

   

𝑠 1𝑚
𝑠 2𝑚
⋮

𝑠 𝑚𝑚

] [

𝒂1(𝑡)

𝒂2(𝑡)
⋮

𝒂𝑚(𝑡)

] 
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given by ‖𝝓𝑗‖, while the phase (mode shape) is given by its 

phase, ∠𝝓𝑗. 

 Several remarks are in order: 

Remark  1: Compared to POD, the modal expansion in (29) 

decomposes the measured data into a combination of spatio-

temporal functions weighted by the corresponding Ritz 

eigenvalues. Further, the dynamic modes contain additional 

information concerning the dynamic behavior of the process 

which is not available from the stationary patterns of the 

covariance matrix [6], [7]. 

 Compared to the Koopman modal expansions, the DMD 

modal expansions are of dimension m<<N. 

Remark 2: As seen above, the dynamical modes,  𝝓𝑗 = 𝑼𝒚𝑗 , 

corresponding to 𝜆𝑗, provide the spatial coherent structure 

(spatial mode shape) of the corresponding oscillatory mode. 

IV.  STUDIES ON A SMALL SYSTEM 

A.  Test Case and Transient Analysis 

 As a first illustrative example, the proposed algorithm is 

applied to the NETS-NYPS test system given in [5]. Datasets 

of speed deviations and voltage measurements from step-by-

step simulations (SBSS) of the nonlinear system model were 

used to assess the ability of DMD to characterize system 

behavior. 

 To allow comparisons with previous studies [12], a ten 

percent increment of mechanical input torque for 80 ms to 

each generator was applied. Measurements were recorded over 

19 seconds at a rate of 100 samples per second for a total 

number of 1900 observations. 

For the present example, generator speed and bus voltage 

measurements are used to construct the snapshot matrix (1): 

𝑿1
𝑁 ∈ ℝ32𝑥1900 = [𝝎1…𝝎16 𝑽̅1…𝑽̅16]

𝑻            (31) 

Figure 1 shows the speed deviations of the system 

generators along with the FFT of the signals. Generators # 1-9, 

#15 and #16 are seen to have the largest contribution to a 

dominant mode around 0.39 Hz involving primarily the 

interaction between machines in areas  𝑨1, and areas 

 𝑨2, 𝑨3, 𝑨4 and   𝑨5  [12]. 

B.  Modal Characterization 

The NETS-NYPS test system exhibits two 

electromechanical modes around 0.34 Hz and 0.54 Hz [12] 

associated with dominant low frequency inter-area modes of 

oscillation. Studies were conducted to characterize the modal 

properties of these modes using the DMD method. 

Application of the proposed algorithm in Section II.B 

results in 32 dynamic modes. Figure 2 shows the normalized 

or relative energy of each DMD mode, 

𝝈̂𝑘 = (𝜎𝑘
2 ∑ 𝜎𝑗

2𝑚
𝑗=1 ) ∗ 100⁄ , for the above contingency 

scenario. 

As shown, 6 singular values are seen to capture over 76 % 

of the energy contained in the ensemble of snapshots. In what 

follows, the relative contribution of these modes to system 

oscillatory behavior is discussed. 

 
Fig. 1.  Relative contribution sum of singular values.  

 

To evaluate the participation of each dynamic mode on the 

time evolution of measured data, we observe from (28) that  

𝑿̃2
𝑁 ≈ [

𝜙11
𝜙21
⋮

𝜙𝑚1

] 𝜆1𝒂̃1(𝑡) + ⋯+ [

𝜙1𝑚
𝜙2𝑚
⋮

𝜙𝑚𝑚

] 𝜆𝑚𝒂̃𝑚(𝑡)      (32) 

As shown, each dynamic mode 𝝓𝑗 is weighted by the 

product of each Ritz mode value and its corresponding energy 

extracted from each time-varying mode  𝐸̃𝑘 = ‖𝒂̃𝑘(𝑡)‖. 

Using this, we define the state-mode relationship. 

𝑿̃2
𝑁 →

[
 
 
 𝛼11 𝛼1𝑗⏞

𝜆𝑗

𝛼1𝑚
⋮ ⋱ ⋮
𝛼𝑚1 𝛼𝑚𝑗 𝛼𝑚𝑚]

 
 
 
                        (33) 

where the term   𝛼𝑖𝑗 = |𝜙𝑖𝑗𝜆𝑗𝐸̃𝑗|  provide a measure of the 

participation of the jth  mode on the system states. Conversely, 

the columns of (33) provide information about the spatial 

distribution of modal behavior. 

From (33), a spatial (temporal) contribution factor 

measuring the contribution of each sensor to each state can be 

defined. The strength of spatial contributions from each sensor 

to the observed data can be characterized and visualized. 

Figure 3 depicts a 2-D representation of the participation 

measures in (33) as a function of the sensors' locations. 

 

 
Fig. 3.  Participation factor. 

 

Examination of Fig. 3 shows that modes # 21 and # 23 are 

strongly observables at sensors # 18-29, whiles mode # 31 is 

observable at most sensors in the system. 

Insight into the nature of system behavior can be found by 

examining the empirical Ritz values, λ and their associated 

magnitudes [8]. Figure 4a) shows a plot of the empirical Ritz 
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Fig. 1. Machine speed deviations and their associated spectra.(a) Speed, (b) FFT of the signals. 

 

values, λ and their associated magnitudes [8]. Figure 4a) 

shows a plot of the empirical Ritz values and their associated 

energy obtained from the norm of the time-dependent 

coefficients, ||𝒂̃𝑗(𝑡)||, in (29). 

For comparison, the Ritz values obtained from Koopman 

analysis are also included. Figures 4b) and 4c) shows the 

energy associated with each time-dependent amplitude 

coefficient. 

As shown, DMD extracts the most energetic modes (modes 

associated with intersystem oscillations) whereas Koopman 

analysis identifies a more general system behavior . 

 

 
Fig. 4.  Empirical Ritz values and their associated norms. a) Empirical Ritz 

values estimated by Koopman and DMD,  b) and c)  Norm of  dynamic modes 

and  energy amplitudes associated with Koopman and DMD modes. 

 

As seen in Fig. 4a) all the empirical Ritz values are on the 

unit circle 𝜆𝑗||≈ 1.0, indicating that the states of the dynamic 

system evolve on an attractor. Analysis of the relative energies 

in Fig. 4b) and 4c), on the other hand, shows that the modes 

with the largest contributions to the total energy are the 

0.35Hz and 0.54 Hz modes which are associated with the 

slowest inter-area modes. The third mode at about 0.04 Hz 

represents the stationary mode of the system. 

C.  Time-dependent Amplitude Coefficients 

To gain insight into the oscillatory phenomenon, the 

trajectories associated to the dominant time-varying 

coefficients identified in Fig. 4c) were selected for analysis. 

Figure 5 depicts a 2D visualization of the temporal 

evolution of the dynamic modes (DMD modes). Examination 

of these results shows that all selected dynamic modes are 

evolving in time around an equilibrium condition converging 

to a stable attractor as expected from the analysis of Ritz 

values. 

 The DMD modes associated with the 0.35 Hz  and 0.54 Hz  

modes exhibit the largest amplitudes in agreement with FFT  

analyses in Fig. 1. In the next section only these dominant 

modes are analyzed. 

 

 
Fig. 5.  Phase plane trajectories for the three dominant dynamic modes. 

 

D.  Identification of Coherent Generator Groups 

In order to assess the potential of DMD method, results 

were compared with the POD method, Koopman analysis and 

small-signal stability analysis (SSSA) results. Two specific 

aspects are of interest to this research: coherency identification 

and spatial mode shape estimation. 

1)  Coherency identification: Clusters of coherent 

generators can be identified from the spatial signatures of 

PODs, Koopman and DMs, contained in the modal vectors, 

𝝋̂𝑗, 𝒗𝑗  and  𝝓𝑗, respectively. Figure 6 shows scores plots for 

the two dominant modes obtained using DMD and the POD 

and Koopman technique described in [7] and [10] 

respectively. Both techniques identify five groups of coherent 
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generators which correspond to well-defined geographical 

regions. POD analysis results in less defined groups because 

of the inability of the method to separate modal components as 

discussed later in the paper. Further, because phase 

information is added, the DMD and Koopman analysis 

naturally allows the analysis of intercluster groupings 

involving local dynamics. 

 The coherent groups identified by DMD and Koopman 

method are in good agreement with results obtained in [12]. 

 

 
Fig. 6.  Comparison of coherency identification method: a) POD, b) 

Koopman, c) DMD. The areas are defined as 𝑮1 − 𝑮9 and areas  𝑨2(𝑮10 −
𝑮13),  𝑨3(𝑮14), 𝑨4 (𝑮15) and   𝑨5 (𝑮16).  

 

2)  Mode-shape Characterization: A key feature of DMD 

is its ability to incorporate magnitude and phase information. 

In this section, studies are conducted to evaluate the ability of 

DMD to extract spatial patterns. Discussion is limited to the 

two slowest electromechanical modes at about 0.35 Hz and 

0.54 Hz. 

Based on the complex dynamical modes  in  𝝓𝑗 (29) 

associated with each dominant mode, the ability of the 

dynamic decomposition to estimate the mode shapes was 

computed as in the reference [8]. 

 

 
Fig. 7.  Mode shape of modes 1 and 2 in Table I showing major coherent 

groups: a) SSSA, b) DMD, c) Koopman analysis. 

The speed spatial mode shape estimates for the 0.35 Hz and 

0.54 Hz modes obtained using DMD and SSSA are presented 

in Fig. 7. At a glance, DMD and Koopman results in Fig. 7 are 

in qualitative good agreement with SSSA results for the 0.35 

Hz mode, although some discrepancies are noted with the 

results for the 0.54 Hz mode. 

Table I compares the modal estimates from DMD with 

conventional eigenvalue results. Modal damping and 

frequencies from DMD analysis are found to be in good 

agreement with SSSA estimates [4]. 

 
TABLE I 

COMPARISON OF MODAL ESTIMATES 

 

Mode 

j 

SSSA 

Frequency 

(Hz) 

SSSA 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 2𝜋⁄ (pu) 

DMD 

Frequency 

(Hz) 

DMD 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 2𝜋⁄ (pu) 

1 0.321 0.027 0.352 0.024 

2 0.487 0.049 0.547 0.032 

V.  APPLICATION TO A LARGE INTERCONNECTED SYSTEM 

A7-area, 377-generator transient stability model of the 

Mexican Interconnected System (MIS) is used to further 

illustrate the ability of the method to characterize modal 

behavior. The system model embodies primarily 377 machines 

represented  by detailed two-axis models, 3759 buses, 10 large 

SVCs, and 2936 branches [7]. 

 

 
Fig. 8.  Schematic of the MIS showing main regional systems and 

transmission facilities selected for study. 

 

Figure 8 shows a simplified geographical representation of 

this system illustrating the major transmission and generation 

facilities and the contingencies selected for study. 

A.  System Disturbance Scenarios 

The dynamic performance of the 7-area MIS model is 

governed by four inter-area modes around 0.32 Hz, 0.52 Hz, 

0.62 Hz and 0.78 Hz. Time-domain simulations of selected 

critical disturbances were conducted to test the ability of DMD 

to characterize the time evolution of these modes. 

Following previous studies, two major disturbance events 

were selected for analysis[7]: 
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DS01: Double line-outage case. This operating event 

assumes the simultaneous outage of the 400 kV line 

from MMT to JUI and the 400 kV line from TMD to 

PBD on the 400 kV Southeastern-Central interface. 

DS02: Generator outage. This scenario assumes the 

outage, without fault, of  Laguna Verde (LGV) power 

station unit # 1 (650 MW) in the Southeastern 

system. 

These contingencies excite the three slowest swing modes 

in the system. The transient stability solutions for these cases 

shown in Fig. 9 were obtained using a time step of 0.0128 s: A 

30 second simulation is considered. 

In each case, 42 major machines (m=42) were selected for 

display and analysis, but the technique can be applied to grids 

of sensors involving hundreds of simultaneous measurements. 

 
TABLE II 

THE SLOWEST ELECTROMECHANICAL MODES IN THE SYSTEM 

 

Mode 

j 
Eigenvalue 

Frequency 

(Hz) 

𝐷𝑎𝑚𝑝𝑖𝑛𝑔 2𝜋⁄  

(pu) 

Oscillation 

Pattern 

1 -0.022±j2.01 0.32 0.0109 I,II, IIIvs.IV,V,VI,VII 

2 -0.028±j3.28 0.52 0.0085 VII vs.IV, VI 

3 -0.047±3.91 0.62 0.0109 IIvs.III 

4 -0.151±j4.92 0.78 0.0307 IV vs. VI 
     

 

Figure 10 provides the corresponding spectra while Table II 

provides a summary description of the four slowest modes in 

the system identified in the oscillations. 

 

 
Fig. 9.  System dynamic response for scenarios DS01 and DS02. 
 

 

 
Fig. 10.  FFT of the speed deviation of selected generators in Fig. 9a). 

Scenario DS01, and b) Scenario DS02. 

 

Contingency operating condition DS01 results in unstable 

oscillations involving the 0.32 Hz mode (interarea mode 1) in 

which machines in the southeastern (CRL, PEO) and 

Peninsular systems (NCM,MDA) lose stability as shown in 

Fig. 9a). Operating condition DS02, Fig. 9b), on the other 

hand, 3 stimulates inter-area modes 1,2 and 4 in Table II and 

results in poorly damped oscillations involving most machines 

in the system. 

B.  Dynamic Mode Decomposition Analysis 

Dynamic mode decomposition was performed on transient 

stability data in Fig. 9 giving a set of modes which fully 

characterize system behavior. As discussed above, data was 

taken at 42 locations; at each location the data was sampled at 

a rate of 78 samples per second giving a total of 2573 samples. 

For this analysis, the data matrix is derived from the machine 

speed deviations arranged as column vectors. 

𝑿1
𝑁 ∈ ℝ42𝑥2573 = [∆𝝎1 … ∆𝝎42]

𝑻              (34) 

The subsequent analysis examines the ability of DMD to 

assess modal behavior. Comparisons of the performance of the 

method with Prony analysis, Koopman analysis and POD 

analysis. 

1) Scenario DS01 

 Figure 11 shows the speed estimation of the mode shapes 

associated with the 0.32 Hz mode in Table II extracted using 

POD, DMD and Koopman analysis. For completeness the 

time evolution of the time-varying coefficient and its 

associated spectra are also shown. 

Mode shape estimates are in qualitative agreement although 

some differences are noted. Compared to POD analysis, DMD 

and Koopman characterization in these plots provides a 

smoother, more symmetric representation of the 0.32 Hz 

mode. This, in turn, results in a better characterization and 

assessment of modal damping and frequency characteristics. 

To further verify the suitability of mode decomposition to 

characterize global behavior, the single-machine (SIME) 

transient stability method [19] was used to identify the system 

critical machines relative to the unstable scenario. The method 

replaces a multimachine system by a one-machine infinite bus 

(OMIB) system. Figure 12 displays the OMIB swing curves. 

To facilitate the analysis, five regional OMIBs are defined 

corresponding to regional systems II-VII in Fig. 8. Visual 

inspection of Fig. 12 shows a good agreement with the mode 

shape results in Fig. 11. 

 

 
Fig. 12.  Time trajectories of the OMIB of the relevant disturbed machine 

groupings. 
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(a) POD analysis 

 
(b) DMD analysis 

 
(c) Koopman analysis 

Fig. 11.  Mode shapes for the 0.32 Hz mode and its associated temporal 

coefficient and spectral decomposition computed using (a) POD, (b), DMD, 

(c) Koopman analysis. Scenario DS01. 

 

2) Scenario DS02 

Scenario DS02 is used to further investigate the 

applicability of dynamic mode decomposition to characterize 

multimodal behavior. Based on the preceding results, the 

analysis focuses on the interarea modes 1, 2 and 4 at 0.32 Hz, 

0.52 Hz and 0.78 Hz, respectively. The time-dependent 

amplitudes for these modes are shown in Figs. 13 along with 

their associated spectra. Similar results are obtained using 

Koopman analysis and are not included here. 

These results illustrate several additional advantages (and 

limitations) of DMD. First, as shown in these plots, DMD 

effectively decouples transient behavior into essentially 

single-frequency oscillations, from which modal 

characteristics can be accurately estimated. In addition, trends 

and other artifacts are eliminated which has the potential to 

substantially increase the accuracy and precision of modal 

estimates. In contrast with this, POD modes are seen to exhibit 

mode mixing and less regular behavior which makes physical 

interpretation difficult. The ability of DMD to identify the 

coherent generators is further illustrated in Fig. 14 which 

shows the group of coherent generators. 

Tables III and IV compare DMD estimates with Prony and 

Koopman mode analyses for scenarios DS01 and DS02 above. 

Koopman and DMD results are found to be in good agreement 

while some discrepancies with Prony analysis are noted. 

 
(a) POD modes. 

 
(b) DMD modes. 

Fig. 13.  Time evolution of temporal coefficient and spectral decomposition 

computed using POD and DMD. Scenario DS02. 

 

 
Fig. 14.  Comparison of coherency identification methods. a) POD,  b) DMD. 

Scenario DS02. 

 
TABLE III 

COMPARISON OF MODAL ESTIMATES FOR SCENARIO DS01. 

TIME WINDOW 0-30 S 

 

Mode 
FFT 

Frequency 

Prony 

f         𝜉 

Koopman 

f        𝜉 

DMD*** 

f         𝜌 2𝜋⁄  

1 0.251 
0.264 + 0.017* 

(0.231  -.025)** 
   0.261 -0.011 0.262    -0.013 

     

* Prony analysis of speed deviations in Fig. 9a 

** Prony result for dominant mode on OMIB equivalent in Fig. 12 

*** Residue estimate, r=5.3220e-04. 

 

 
TABLE IV 

COMPARISON OF MODAL ESTIMATES FOR SCENARIO DS02. 

TIME WINDOW 0-30 S 

 

Mode 
FFT 

Frequency 

Prony 

f        𝜉 

Koopman 

f        𝜉 

DMD 

f         𝜌 2𝜋⁄  

1 0.310 0.316   0.090
 

0.324    0.097 0.317    0.102 

3 0.716 0.722   0.040 0.723    0.041 0.726    0.051 
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C.  Computational Effort 

Detailed simulations were conducted to assess the 

computational needs of DMD analysis for the study of realistic 

data sets. Table V shows the CPU time needed to characterize 

system behavior for scenarios DS01 and DS02 above. 

Results are compared with the Koopman algorithm 

reported in [10] and a multisignal Prony method [20], based 

on the Kumaresan-Tuft approach [21] and the OMIB model in 

Fig. 12. 

As shown in Table V, DMD produces accurate enough 

results with shorter CPU times for both contingency scenarios. 

The same trend is observed for other operating scenarios. 

 
TABLE V 

CPU TIME SIMULATED DATA 

 

Case 
Prony 

 

Koopman 

 

DMD 

 

POD 

DS01 31.54 s 27.49 s 0.491 s 0.050 s 

DS02 31.22 s 28.51 s 0.503 s 0.218 s 
     

* CPU time for computation of modal basis 

 

VI.  APPLICATION ON WAMS DATA 

Phasor measurement data collected from a real event in the 

Mexican power system [22] were used to further test the 

performance of DMD under noisy and nonstationary 

conditions. Measurements were obtained over a period of 250 

seconds period at a rate of 20 samples per second. Data were 

obtained at 18 system locations encompassing 3 major 

geographical regions [22]. 

Figure 15a) shows selected bus frequency measurements 

recorded using the CFE wide-area monitoring system 

(WAMS).Analysis of system behavior in Fig. 16b) indicates a 

mode near 0.98 Hz that is strongly observable at PMUs 

3,4,6,12,13 and 18. A second mode near 0.47 Hz is also 

observable associated with measurements at PMUs 11 and 15. 

Application of dynamic mode decomposition analysis 

results in 18 modes. In the numerical analysis below, the data 

used is raw data; no preprocessing (detrending, denoising) was 

applied.  Figure 16 shows the two dominant DMD modes 

extracted using the procedure in section II along with the Ritz 

values. Insight into the nature of these modes can be gleaned 

in Figs. 16a) and 16b) that show the time evolution of the 

temporal coefficients 𝒂̃𝑗(𝑡). 

DMD modes 1 and 2 are seen to capture the dominant 

oscillation at about 0.98 Hz, whilst mode 3 is a mode 

associated with the collective motion of all measurements and 

is equivalent to time-average. 

Mode shape analysis results for mode 1 in Fig. 16c) are 

found to be in good agreement with the FFT results in Fig. 

15b) and the results in [22] obtained using various techniques. 

Table VI compares the modes extracted using DMD with 

those obtained using Prony analysis and Koopman for two 

time intervals: 0-160 s (combined ambient and ringdown data) 

and 120-160 s (ringdown response). 

No physically-meaningful results are obtained for the 0-160 

s interval using Prony analysis. Table VII shows the CPU 

times. The accuracy of the compact DMD is demonstrated by 

its ability produce approximations with residuals smaller than 

9.9932e-03. 

 

 
Fig. 15.  Time traces of recorded frequency measurements and their associated 

spectra. 

 

 
Fig. 16.  Spatio-temporal behavior of dominant modes: a) 0.98 Hz DMD 

mode 1, (b) DMD mode 3 (collective system behavior),and c) Mode shape for 

DMD mode 1. 

  
TABLE VI 

MODAL ESTIMATES FOR VARIOS TECHNIQUES 

 

Time 

Interval 

FFT 

 

Prony 

f         𝜉 

Koopman 

f        𝜉 

DMD 

f         𝜌 2𝜋⁄  

0-160 s 

120-160 s 

1.000 

1.003 

*     * 

1.084  -0.034 

0.994      -0.015 

0.989     -0.021 

0.971    -0.029 

0.984    -0.018 
     

* No physically-meaningful solution was obtained 

 

 
TABLE VII 

CPU TIME MEASURED DATA 

 

Time 

Interval 

Prony 

 

Koopman 

 

DMD 

 

POD 

0-160 s 

120-160 s 

* 

3.73 s 

65.35 s 

1.395  s 

0.457 s 

0.430 s 

0.104 s  

0.099 s 

     

* No physically-meaningful solution was obtained 

 

VII.  DISCUSSION AND CONCLUSIONS 

This paper has introduced an efficient dynamic mode 

decomposition technique for modal analysis of large data sets. 

The method combines the abilities of modal identification 

techniques such as Prony to extract modal parameters with 

those of multivariate statistical techniques to isolate and 

quantify the dominant physical mechanisms. 

Experience with simulated data shows that DMD analysis 

can be efficiently used to analyze large datasets from multiple 



 11 

sources. Several aspects of the theory deserve further 

investigation including the physical interpretation of dynamic 

structures, mode-state relationships and the analysis of 

structural properties of the model. The effect of noise 

contamination, trends and other artifacts of the dataset and the 

application to measured data is to be investigated in future 

research. 

APPENDIX A  

SVD- BASED PROPER ORTHOGONAL DECOMPOSITION 

Alternative approaches to POD analysis based on singular 

value decomposition of the response matrix (1) have been 

developed [23]. Singular value decomposition of the data 

matrix  𝑿1
𝑁  in (1) yields. 

𝑿1
𝑁 = 𝑼𝜮𝑾𝑇 = [𝑼][𝜮𝑚 𝟎] [

𝑾𝑚
𝑇

𝑾𝑠
𝑇 ]                (35) 

where 𝑼 is an mxm orthonormal matrix containing the left 

singular vectors, 𝜮 is an mxN matrix containing the singular 

values,  𝜎𝑖 ,and 𝑾  is an NxN matrix containing the right 

singular vectors.  

It can be readily shown, that the proper orthogonal vectors 

(POMs) defined as the eigenvectors of the covariance matrix 

𝑪̂ in (3) are equal to the left singular values of 𝑿1
𝑁;  the proper 

orthogonal vectors (POVs), defined as the eigenvalues 𝜆𝑖 of 

the covariance matrix, are the squares of the singular values 

divided by N. The columns of 𝑼 are the eigenmodes (pseudo 

mode shapes). Further, the columns 𝒘𝑖 of matrix 𝑾 are the 

time modulation, 𝒂(𝑡) of the modes [23]. 
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