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Abstract

We introduce a new solution technique for closed productifgueueing networks that
generalizes the Method of Moments (MoM), a recently progaseact algorithm that is
several orders of magnitude faster and memory efficient tharestablished Mean Value
Analysis (MVA) algorithm. Compared to MVA, MoM recursivelyomputes higher-order
moments of queue lengths instead of mean values, an apgiaaemarkably reduces the
computational costs of exact solutions, especially on nsagith large number of jobs.

In this paper, we show that the MoM recursion can be genedlia include multiple re-
cursive branches that evaluate models with different nurobgueues, a solution approach
inspired by the Convolution algorithm. Combining the ammizes of MoM and Convo-
lution simplifies the evaluation of normalizing constantsl deads to large computational
savings with respect to the recursive structure originaibposed for MoM.

Key words: Queueing network models, computational algorithms, nmettifonoments

1 Introduction

Product-form queueing networks [1] are popular stochastdels used in capac-
ity planning of computer systems with the purpose of pradicthe effects of re-
source contention on system scalability under a varietyakigad conditions. In
many applications, notably in modern multi-tier applioas, workloads are best
described as multiclass, i.e., requests are assignedeoetif classes according to
the statistical characteristics of the service demand fhage on the servers. In
spite of their practical importance, multiclass workloads challenging to analyze
exactly in queueing networks even using state-of-theedution techniques such as
Mean Value Analysis (MVA) [27], Convolution [5,26], RECALB], LBANC [10],
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MVAC [14], or more recent methods based on the generatinctimmapproach and
Monte Carlo sampling [2, 11, 20, 28]. The main problem is thatticlass models
typically involve tens or hundreds of competing requesissibly belonging to sev-
eral classes, and the underlying network can be composedby servers [21]. For
models with these characteristics, available exact swiutiethods require compu-
tational costs that are often prohibitive, for example mgnmrequirements can be
of the order of terabytes. As a result, large multiclass odta/cannot be usually
solved with exact techniques and the focus is on approxanatiethods [9, 15, 29]
which yet do not return probabilistic measures becauseitimeye the normalizing
constant of the steady state probabilities. This is a Imgitiactor because prob-
abilistic measures of queueing networks are becoming asangly important for
detailed performance assessment of computer system behavi

A recent proposal to address the above issues is the MetiMdroents (MoM) [6,
7], a new exact technique for multiclass models that recelgicomputes higher-
order moments of queue lengths instead of mean queue-keeg#iuated in the
MVA algorithm. Higher-order moments have the key charastierthat they can
be computed recursively via a simple linear system of eqoatirom the solution
of a model having a job less of a single class. The structutbeoMoM recursion
is thus similar to the one used in the single class MVA, buicalty differs from
the one used in multiclass MVA algorithm which decreasesaaheecursive step
the population of multiple classes simultaneously. Hettee MoM recursion tree
grows linearly with the population size rather than comtonally as in the mul-
ticlass MVA. This significantly decreases computationglieements in both time
and space.

Although MoM is more efficient than MVA, it has been observhdttexact so-
lutions become inefficient if the number of queues and clagsew simultane-
ously because the computational costs of MoM are driven®yrtimimum between
these two parameters [6]. This feature of MoM is shared a&sitst¥dual” formu-
lation, the Class-oriented Method of Moments (CoMoM) [fijdanakes models
with many classes and many queues, at present, very harceorpeghibitive to
analyze with available techniques. In order to extend appllity of exact solu-
tion methods to such models, we propose a new recursivetsteuior the MoM
approach which yields lower computational requiremerds the formulation pro-
posed in [6], while style operating under the same highdelomoment principle.
We show both analytically and experimentally that signifidenprovements can be
achieved on models with several queues and classes whereidebs efficient.

Our main idea consists of integrating within MoM the recuesequations used
in the multiclass Convolution algorithm [5, 26]. MoM joigticonsiders in a lin-
ear system of equations the exact recursive formulas us&®E@AL [13] and

LBANC [10], but not those used in Convolution. This lineastm is the main
tool used to recursively compute normalizing constantscl@any improvement to
its structure can result in significant reductions of corafiahal costs for MoM.



By adding the formula used in Convolution to the MoM lineasteyn we obtain a
new computational algorithm which recursively considess anodels having less
gueues than in the original network. This is a marked diffeeecompared to the
structure of the original MoM in [6], which does not remove=ges from the net-
work. We find that this modification provides substantial pomational savings in
model solution, thus also showing that adding independgmatoons to the MoM

linear system provides a simple and effective way to redoocptitational costs of
gueueing network analysis.

The remainder of this paper is organized as follows. Aftemg background and
notation in Section 2, we review MoM in Section 3 using a sienpllticlass model
which also illustrates the principles of the generalizawoposed in this paper.
The effects of integrating in MoM a recursion on models wiifiedent number of
gueues are discussed in Section 4, where a generalized Myavithim is proposed.
Computational requirements of the new algorithm are dsedisn Section 5. Ex-
periments showing the performance of the generalized Mokl software imple-
mentation are provided in Section 6. Section 7 gives comatuemarks. A numer-
ical example that illustrates a recursive step of the gdéimechMoM algorithm is
given in the final appendix.

2 Background

We consider a closed product-form queueing network Witlgqueues and work-
load classes. Jobs are routed probabilistically througlytieues where they receive
service. After completing service, jobs re-enter the nétvadter a delay ofZ, units

of time which depends on the job workload class 1, . .., R. The service demand
Dy, equals the mean service time multiplied by the mean numbesité [16] of
classr jobs at queué. We assume that th&/ queues are all distinct, i.e., for each
pair of queues there exist at least a workload cla$s< r < R, which places dif-
ferent service demands at the two queues; we refer to a psiatdns that are not
distinct ageplicasof each other. Finally, the number of jobs of class the integer
N,, N = (Ny, N,, ..., Ng) is a population vector, andy = Ny + Ny + ... + Np

is the total number of jobs circulating in the network.

In a closed product-form network, the probability of obsegvqueuek in state
e = (Mg, Nko,-- ., k.r), DEINGNY, the number of class jobs in the waiting
buffer or in the server of queuge is

o Fu(i)G(m = T, N — i) R D”’”
Pr(ng) = - , () = ! | |
( k) (7”71 N) k v r=1 nkr

(1)

whereG(m, ]\7) denotes the normalizing constant of the equilibrium statda-
bilities of the Markov chain underlying the queueing netk§{t9], 1, indicates



a vector composed of all zeros except for a one initie position, andn =
(mq,ma, ..., my) is amultiplicity vectorsuch that the multiplicityn,. is the num-
ber of queues in the network with identical mean service ¢@®B), 1, Dy, o, . . ., Dy r.
For instance( (m — Tk, ﬁ—ﬁk) refers to a model with a replica of queli¢ess and
where the population is specified by the Veator iiy.. Similarly,G(erTk, N— TT)
represents the normalizing constant of a model includingdatitional queue with
demandsDy, 1, Dy o, . .., Dy g, i.€., a replica of queuk, and having a job of class
r removed from the network. Note that#f = (1,1,...,1) then each queue in
the network has a distinct set of service demands, i.e ¢ lw@r no queue replicas.
For ease of presentation, we assume in the rest of the pagen ti (1,1,...,1)
and Dy, > 0, which provide an upper bound on the costs of solving the gueu
ing network model. Our methodology extends also to moddlisdeoutside such
assumptions.

The goal of solution algorithms for queueing networks isuvaleate performance
indices such as the mean throughpiyt V) and the mean response tirfte( V) =
N, /X, (N) — Z, of classr jobs. Additionally, for each queueand class;, it is of-
ten useful to compute the utiIizatim,r(ﬁ) = Dk7TXT(]\7), the mean queue length
Qi.(N), and the mean residence timeg, (N) = Q..(N)/X,(N). These quan-
tities are uniquely determined if one knows how to compufieiehtly throughput
and mean queue lengths, which are given by the followingsdf4]

wherem is the multiplicity vector of the model for which performanmdexes are
computed. Instead, the marginal probabiliie$ri;. ) cannot be computed either by
MVA or by local iterative approximations [9, 15, 29] that igye the normalizing
constant. Thus, the normalization constant approachvieltbin this paper is more
applicable than MVA if one is interested in evaluating statebabilities.

Finally, we stress that increasing the number of queueaa&phwith the operator
m + 1, appearing in (2) and in several derivations throughout # Bections,
is fundamental for the MoM approach. A probabilistic interjation of the replica
addition operation follows by first observing that the nolimiag constant can be
written as

mi+ma+...4+mpyr

G(m,ﬁ) :Z Z Fk(ﬁk)a 3)
it k=1

where we have assumed for simplicity that the networkfas- 0 for all classes,
n o= (M1, M2, s My tmot . 4+my )y T = (M1, k2, - - ., Mg r), describes the state
of all the queues in the network and the tenm + mo + ... + m,, is the total
number of queues in the model, also accounting for queuécasplUsing basic



combinatorial analysis [12], (3) can then be rewritten as

M /
R m,+n, — 1 .
G(maN) :ZZ < /k )Fk(n;c)v (4)
il k=1 ny
wheren’ = (11}, 7, . . ., 7)) is the network state and, = (nj, ,, 7 o, ..., 7 g) IS

a vector describing the local populations within the sulmoek composed only by
my, queues with identical demandy, 1, Dy o, . . ., Dy r. From (4) itis easy to prove
that increasing the multiplicities im is equivalent to computing un-normalized
joint binomial moments of queue-lengths. The same conmiuisi obtained if one
considers the general case of a queueing network includitaysl [6, 8].

2.1 Computational Algorithms

The analysis of queueing networks can be performed effigieither by approaches
that directly evaluate mean queue lengths and throughpuwsécursive fashion,
such as the MVA [27], or by computational methods for the redimmg con-
stant [4]. Among the two solution paradigms, the normafizoimnstant approach
is slightly more efficient [3], but it often suffers numerigasues that do not ap-
ply to mean value formulas. In particular, the rapid growthhe state space size
can lead the summation in (3) to floating-point range oveslonunderflows [23].
However, issues of this kind can be easily addressed in maadtware at the cost
of overheads for representing normalizing constants witdg@mming libraries
that support exact multi-precision arithmetic or modulpresentations [17].

From a probabilistic perspective, the MVA algorithm and somethods for the
normalizing constant, such as the LBANC algorithm [10], baninterpreted as a
recursive evaluation of mean queue lengths, un-normaiiztdte case of LBANC,
over models with different population sizes. Recently,76have noted that re-
cursively evaluating a set of higher-order moments of guengths can be much
more efficient computationally than obtaining mean valudsle still returning at
the end of the execution the correct solution of the modéd; $blution includes
mean performance indexes, sucha$N) andQ,., (V). The Method of Moments
(MoM) [6] is an algorithm that implements this higher-ordaoment paradigm
and that we generalize for increased efficiency in the neties. Due to limited
space and thanks to wide availability of material on the etthjve point to the lit-
erature for an introduction to MVA [27], LBANC [10], RECAL R], MVAC [14],
and Convolution [5, 26], comparative analyses can be foni8l, 6]; the remainder
of this section focuses instead on MoM.



2.1.1 Method of Moments (MoM)

MoM computes the normalizing constant by simultaneoushsatering into a lin-
ear system of equations the following exact formulas fonmadizing constants: the
convolution expressiofCE) [10, 24]

R
G+ Ty, N) = G, N) + 3. Dy, G + Tj,, N — 1,) (5)
r=1

forall 1 < k < M, and thepopulation constrain{PC) [6, 13]

M
N,G(m, N) = Z,G(m,N - 1,) + 3 myDy,G(m + 1;, N = 1,)  (6)
k=1

forall 1 < r < R, which are also the fundamental recursive equations uségtin
LBANC and RECAL algorithms. These recursions are subjet¢héotermination
conditionsG (i, 0) = 1 andG(r, N) = 0 if any entry in N is negative. It is
important to note that, while (5) is similar to the recurseguation used in the
Convolution algorithm [5, 26], (5) fundamentally diffen®fn the latter because it
does not allow to remove queues. We illustrate the pradfiff@rence between the
CE and the formula used in Convolution in Section 3.2.

In classic algorithms(z (i, ]\7) is obtained by recursively evaluating either (5) or
(6) until termination conditions are met and possibly witlscaling of the nor-
malizing constants into mean values. Following this apghpéime and space re-
quirements grow with respect to the population siz&©é¥' %) if (5) is used (e.g.,
LBANC, MVA) and asO(N™) if (6) is used (e.g., RECAL, MVAC). In practice,
these costs are often prohibitive since in modeling modgstesns it is not rare to
haveN of the order of hundreds or even thousands, and several sjaedeclasses
(see [21] for a recent case study). This makes the storag@eetent of hundreds
of gigabytes or terabytes regardless of the recursion used.

MoM overcomes these computational problems by observiag thone tries to
compute a certain vector of normalizing constdritsi, NV), henceforth calleta-
sis!, then with a proper definition this vector can be evaluatednsively by using
jointly (5) and (6) in a matrix recurrence equation

—

A(m, NYV (i1, N) = B(i, N)V (i, N — 1). 7)

In the above equation] (1, 6) is known from the termination conditions of (5)-(6)
and the matriced (7, N) and B(s%, N) are square of identical size and defined

1 The name “basis” stresses thet(r, N) usually carries the minimum information
needed to perform a recursion that is linear in the total fagjmn of the network. Yet,

suboptimal implementations whevg i, ]\7) is not minimal are also useful to simplify im-
plementation efforts [8]. To avoid unnecessary complexity use the term basis also for

such implementations.



by the coefficients of the equations (5);(6) that reldteand onlythe normalizing
constants itV (ni, V) with those inV (m, N —1z). The fundamental conditions for
application of (7) are

e to define a basis that allows to formulate the linear systeswtexas in (7);
e to have a non-singular matrix (1, N).

In particular, if the choice of the normalizing constantsnade such that the co-
efficient matrix of the linear system (7) is square and nawpgiar, it is easy to
compute

Vi, N) = A~ (i, N)B(i, N)V (i, N — 15)
and solve recursively the model. Equivalently, for a regtdar over-determined
A (i, N) of maximum rank it is

Vi, N) = (AT (m, NYA(m, N)) AT (m, N)B(m, N)V (i, N — 15).  (8)

Indeed, matrix inversion can be replaced in implementatioyn much more effi-
cient linear system solution techniques, such as sparsss@@aelimination or the
Wiedemann algorithm [22, 31], which apply effectively tmplems where the nor-
malizing constants are formulated using modulo or exattirmetic representations
to address range overflows and underflows probfems

MoM leverages on the above linear system approach by definenasis as

{G(m+6,N),G(m+6,N—11),....,Gm+d6 N —Tp )
(517527"'761\4)7 R—-1 S Z;{;‘/jzlcsk S R,O S 5k S Raék S N}7 (9)

V(m, N) =
5=
which is the set of normalizing constants of models where aeeraddedr or
R — 1 queue replicas, for all possible choices of the multipfiaiicrease vectof,
and where the models are evaluated over populafians —1;, ..., N —Ix_;. Fol-
lowing the probabilistic interpretation of (4), we see thaiM definesV (173, N) as
the set of all (un-normalized) joint binomial moments ofer@& — 1 and R condi-
tioned on different populations. Recalling that conditmanon a population]\7 —1,
equals evaluating the network state at arrival times ofscigebs at any tagged
queue [30], we conclude that the recursive computatiolr ofi, ]\7) in MoM is
also a recursive evaluation of higher-order moments of guengths, including
both the values at equilibrium and the values embedded arolal times. It is
found that such values are sufficient to uniquely determerdopmance indexes
such as mean throughput and mean queue-lengths [6, 8].effiundne, we remark
that other definitions of the basis exist which enjoy simpleoperties, but different
computational trade-offs, such as the basis proposed indbbM]. The CoMoM
basis provides reduced complexity for models having a latgeber of classes by

2 Atpresent, the LinBox open source libratt(t p: / / www. | i nal g. or g) offers a free
implementation of the Wiedemann algorithm, exact Gaussianination, and other exact
methods that can be used to solve the MoM recursion.



applying thed vector in (9) to the population vectayY rather than to the multi-
plicity vectorni. However, due to the substantially different recursivedtire of
this algorithm compared to MoM we do not longer considerridbtighout the next
sections.

Finally, we remark that the MoM basis definition in (9) hastbebown to meet
the requirements for formulating (7), which is solved usanigecursion that grows
linearly with the total population of job4&/. Therefore, the normalizing constant
can be computed in just steps instead of the (N ) or O(NM) steps required by
(5) or (6) when evaluated in isolation. It can be shown thaetktra costs required to
adopt exact or modulo arithmetic in implementations leaml¢domplexity for MoM

of O(N?log N) time andO(NN log N) space with respect to the total populatiin

3 Motivating Example

In the remainder of this paper, we describe a new techniqueefining the basis
V(mi, N) that offers computational advantages with respect toiegistpproaches.
Our approach is first illustrated by the motivating exampléis section.

3.1 Structure and Improvement of the MoM Recursion

We begin by illustrating the principles of the MoM recurs{@) on a simple queue-
ing network withM = 2 distinct queues an®& = 2 classes. The job population
vector isN = (N7, N») and we assume that all queues are distinct. Following
definition (9), the basis of normalizing constants for thiedal has the struc-
ture depicted in Figure 1. Informally, the figure represamtsnormalized joint
binomial moments of ordeR — 1 and R: each circle stands for the normaliz-
ing constantsG (17 + 8, N) and G(ii + 6, N — 1) in V(i, N), we have ar-
gued previously that these constants are equivalent tovbailonoments. Labels
specify the multiplicity increase vectarin (9), e.g., the circle labeled I, repre-
sents the sefG(ii + 1o, N), G(iii 4+ 1o, N — 1;)}. Arrows indicate dependen-
cies between normalizing constants that arise due to CESP&wd In order to
express compactly such dependencies, we often denote neshef this section
dops = (2 +my) - Dy, and G 5" = GOt + I, + L, N — I, — 1,); similar

abbreviations, such & = G(m — 1,, N), are also used throughout.

Using the new notation, we have that the MoM basis in Figurethe vector

> A7 1,1 1,2 2,2
V(m7 N) = [CTYJF1717CTYIr 7 7C7Y+1727C7qr 7 7C7Y+2727C7qr 7 7G+17Gf17G+27Gf2]T



R added queues

R-1 added queues @ E:’\)/

Fig. 1. Basis of normalizing constarign, ]\7) for M = 2 queues and = 2 classes
and similarly, forR = 2, itis
V(m,N—1g) = [G3", GI5Y G5 Gy 632 G5 G G, G2, G
Dependencies arising between these two bases due to CEs=farare

Gt =G 4+ DGV 4 DG (10)
G2 2 + Dy, G+ + D, 2G+12 (11)

and similarly due to CEs faot = 2 are

G2 =G 4 Dy  GTY? + Dy oG (12)
G+22 _G+2 4 D21G+ ,2 + D2 2G+2 2. (13)

The PCs for clas$ are instead

MG = Z,Gi 4 di 1 G+ doo G (14)
NGt? = Z1Gf2 + do,1,1GIr1’2 + d1,2,1Gf2’27 (15)

while the PCs for clasg are

NoGT = Z,G5 + dyq QGQ + do 2 2GJrl 2 (16)
NoGTt = ZQGILQ +di12GY Y 2 tdog 2G+1 ? (17)
NoG*2 = 7, G’Jr + dpa 2G2 +dio 2G+2 2 (18)
NQGT—Q ZQGTQ +do 2G1 2 tdip QG+2 2, (19)

Note that all normalizing constants used to formulate thevalequations are in-
cluded in one betweel (17, N) and V (i, N — 15). Other equations exist that
involve some of the constants Iri(i7, N) or V (i, N — 1), however these also
involve normalizing constants not included in these twoelsaand for this reason
are not considered in MoM. For example, observe that the BGddssl are less
than those for clas3 because removing a job of classrom G would require
the constan€/{ ] that is not included iV (173, N)orinV(m, N —Tz).

Following the above discussion, the MoM solution approamtscsts in rearranging



the above equations into the linear system

1 -Dy1 -

1 -Dy1 -

-1

1 —-D21 -

1 —D21

-1
-1

- —di1,1,1

- —do2,1 -

- —do,1,1 -

—di,21 -

N1 -7y -
N1 -7y

_G+171_

+1,1
Gl
G+1,2

+1,2
Gl
G+2,2

+2,2
G

D2

Gt1

+1
Gl

Na

A(m,N)

where- indicates a zero element and the four blocks of the coefticieatrices
represent from top: the CEs (10)-(11) formulated foe= 1, the CEs (12)-(13)
for £ = 2, the PCs (14)-(15) for = 1, and the PCs (16)-(19) far = 2. The
above structure is exactly the one expressed by (7) anddeew way to compute
recursively the normalizing constants that compose the Mualgis. This can be
achieved provided that the coefficient matrix is non-siagwhich may depend on
the specific values of the service demands. Note in partitiigd the CEs involve
only constants withh; + §, = 2, and not those with; + 6, = 1, because in the
latter case one would need also the value of the coné&tanthe left hand side of
(6), which is not included in the basis.

The guestions addressed in the rest of the paper is whethéntdgration in the
linear system of the recursive equations used in the Conealalgorithm, which

require some constants not included in the MoM basis, coalgdrformed in a
computationally efficient manner. In particular, we studyether it is possible to
obtain linear systems throughout the recursion that hawalenorder than those
used in MoM. We found this to be possible in practice and wenslater that the

same model considered in the previous example can be sojadifear system
having only 6 equations and 6 unknowns instead of the 10 msaand 10 un-
knowns used in MoM. The main observations leading to thisawgment are the
following:

(1) we first note that it is possible to add independent equoatio the linear sys-
tem shown in this subsection by taking in consideration segization of
the convolution expression (5) which corresponds to thegopu used in the
Convolution algorithm. This generalization provides ipdedent information
and makes the linear system over-determined.

Given that the linear system is over-determined, we shaithe basi¥’ (17, N)
can be defined in a different way that makes the basis sizdesmahile still
allowing to solve recursively the model. This basis sizeuotidn leads to
remarkable computational savings in the linear systentisolu

(2)

10




(3) However, as we explain in Section 4, for models of arbjtisize the addi-
tional independent information comes at the price of addél recursions
over models with different number of queues. We investigattne rest of
the paper if accepting these additional recursions is déstteve in light of
the computational savings implied by the basis size redncti

The previous observations are further illustrated in the sebsection.
3.2 Improved Computation of the Basis of Normalizing Camista

We begin by observing that (5) can be seen as a specializatitme recursive
equation used by the Convolution Algorithm [5, 26], which @&l throughout this
paper thegeneral convolution expressi¢GCE)

—

R
G, N) = G(mi — 1, N) + 3. Dy, G(m, N — 1,), (20)
r=1

forall1 < k < M. In the GCE, queues are removed through the parametet
instead of being added as in the CE, up to reaching the tetimmaondition
G(0,N) = [1%, Z,/N,!. This implies that a recursion involving (20) evaluates
models which contain less queues than in the original qngugtwork, while us-
ing only CEs implies the opposite. However, by formulati@@)(for a model with
multiplicity /1 + I, instead ofri, it is found that the GCE expression becomes
identical to the CE expression, thus CEs can be seen as a sdli3€Es formu-
lated for normalizing constants with increased multipiés® . However, if a GCE

is formulated on models with fewer queues than in the origieéwork, then the in-
formation provided by (20) is linearly independent withpest to the one provided
by (5) because the two equations are defined over models vffignesht network
structure. Since we are only interested in adding indepgndérmation to the
MoM linear systemye henceforth refer to GCEs meaning the subset of equations
(20) that are not CEs

As an example of application of GCEs, it is useful to add (8Qhe linear system
of Section 3.1, formulated as

because the normalizing constait’>—2 = G(m + 2 - I, — I, N) lies outside
the basis/ (i, ]\7), thus (21) does not reduce to a CE and brings independent in-
formation into the linear system. Note that !>~ is not included inV (171, N)

3 This property also clarifies the term “general” that we hasediin the GCE acronym.
Note that GCEs are slightly more general than CEs, for exaihd impossible to consider
with CEs a recursion that involves only normalizing conttdar models withM < 1.

11



or V(im, N — 1), yet this term is easily obtained being the normalizing tamis
of a model where queuzhas been completely removed, i.ei; = 0. Thus, the
normalizing constant can be computed immediately by theecldorm formulas
for the normalizing constant of a network composed onlymfidentical queues
with demandsD; 1, D1 o, ..., Dy g. ForZ; = Z, = 0, such normalizing constant
may be obtained by the closed-form formula [25]

Thanks to the last observations, we conclude that the addai (21) to the lin-
ear system of the example model provides additional inftionaand does not
increase the number of unknowns in the linear system. Thiggsty has been il-
lustrated for the case of a model without delays, but we smo@eiction 4.2 that
extends to general models. The main question investigatdgtiremainder of this
paper is whether this independent information can be useztiiace the size of the
basisV (171, N).

To illustrate the applicability of this concept, considareav basis

V'(m, N) =[G, GH, G, G2, GG

that is composed by less normalizing constants tHém, ]\7), and consider also
the same basis formulated for a model without qu&lie- 2, i.e.

V(7= Ty, N) = [GH72, 6172 62, G

Then, by (5), (6), and (21) we can formulate a linear system

— —

A, N)V/ (i, N) = B (i, NV (13, N T )+ C' (1, N)V' (11— Tas, N) (23)

12



where in the specific example we are considering it is

M —Di1 - A a+1] Dia - ) S —G;I_
1 -Do1 -1 - Gfl . - Dao - - Gfé
1 —-D21 - . . . G2 | D22 - . . - G;&
- —doj1,1 - —do2,1 N1 —Z1 Girz . . . . - Gﬁ
Ny - G do,1,2 - doo22 - Z2 - G2
L No | | G| L - doi2 - doz22 - Z2] |G1,2 |
—— ——
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In the above expression the new vectd(n — TM, ]\7) includes the known nor-
malizing constanG ™2 = G(mi + 1; — 1», N) and the blocks of the coefficient
matrix are from the top: the CE fdr= 1, the CE fork = 2, the GCE (20), the PC
for - =1, and the PC for = 2. Note that this linear system has square coefficient
matrix, thus if the inverse oA’ (m, ) exists the solution of the linear system (23)
provides a new way to recurswely compute normalizing camistthat is cheaper
than in the MoM linear system (7). Specifically, (23) almaosiies the order of the
coefficient matrix with respect to (7), which is significamce the computational
costs of linear system solution are quadratic or cubic, deipg on the algorithm
used, with respect to the coefficient matrix order. We stteaswithout (21) the
new system (23) would be under-determined, thus GCEs arkethéool behind
this new approach.

The fundamental issue connected with the approach outim#ds subsection is
that, for queueing networks larger than the one considertitei previous example,
the normalizing constants i’ (m — Tas, ]\7) may not be available from closed-
form expressions. In this case, the computatiolt§f7; — 1,,, N) requires a new
recursive branch that is orthogonal to the usual recursien the population vec-
torsN, N — 1y, ..., 0; this additional recursion is over models having less gseue
than in the queueing network under study. The proposedseewstructure is thus
more complex than in MoM and requires detailed investigatpresented in the
next sections, to clarify its computational properties.
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Fig. 2. Recursion after adding a single or multiple GCEs koM linear system for a
model withAM/ = 3 queues

4 The Generalized Method of Moments

We generalize the observations in Section 3.2 and prové2@atan help in reduc-
ing the computational costs of the MoM recursion in modeksarbitrary number
of queues, classes, and jobs. For ease of exposition, wallingssume that the
model has no delays such thét = 0 for all workload classes. The generaliza-
tion to the case with arbitrary delay values is simple andwdised in Section 4.2.

We begin with observing that, in a model withh distinct queues, (20) can be for-
mulated and added to the MoM linear system either for a siggée with given
indexk or jointly for several queues having different indexesip to a maximum
of M queues. Let us cabiranching factorB, 1 < B < M, the number of equa-
tions (20) that are added simultaneously to the MoM lineatesy for a given
model with M queues. A comparison of two possible recursion trees grisam
the two limiting casesB = 1 and B = M is given in Figure 2. In Figure 2(a), a
single queue is removed at a time from the model under studlgigg a recur-
sion that evaluates a total af models, each differing from the previous one only
for having a queue less. Each model is studied using a diffdrasis of binomial
moments/ (71, N'), wherer describes the number of queues considered at the cur-
rent stage of the recursion. The recursion terminates ugaching models with a
single queue for which the normalizing constant is compbte?2). Conversely,
Figure 2(b) shows the recursive branch that derives fronovemg simultaneously
multiple queues at each step of the recursion. Note thaeanitial step the model
includesM = 3 queues and therefore up to three GCEs can be formulatedathst
at the level immediately below there are onlly — 1 = 2 queues which reduces
the number of GCEs to two; finally the recursion terminatethatbottom level
by evaluating trivial models with a single distinct queusdéed, the recursive ap-
plication of this approach leads to a quick growth in the namif models to be
considered. However, we find in Section 5 the counter-ineiitesult that the case
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B = M is the most efficient in practice, and the combinatorial ghoef recursions
with multiple branches such as in Figure 2(b) is widely congaged by the con-
current decrease in the computational costs of the linestesys solved throughout
the recursion. The general structure of the recursionrayifar arbitraryB values
is investigated below.

4.1 Solution of Generalized Linear System

Studying the structure of the MoM linear system when (20haduded requires to
distinguish between:

e cases where fixednumber of queues is removed in all models considered
throughout the recursion and until termination conditiane reached. For
instance, in the case shown in Figure 2(a), it is always ptessd formulate
the requested3 = 1 GCEs at all steps of the recursion, provided that the
specific queué chosen in (20) is selected among the queues left in the durren
model. Note that cases wheke> 1 can be implemented with this paradigm
only if terminations conditions have been previously cotedufor models

having B — 1 queues or more, otherwise one would not be able to formulate

B distinct GCEs for such models since there are dily 1 queues left.

e Cases where the number of queues to be removeariableand thusB can
depend on the number of queues left in the model. For instaheechoice
B = M leads to first removing/ queues from the initial queueing network,
then for the resulting models with/ — 1 queues one could set at mdst=
M — 1, and so forth up to the termination conditions (22) whBre- 1.

Indeed, there is a difference in the recursive structureeatgorithm depending on
B being fixed or variable. Hence, we characterize the MoM lisgatem solution
in the two cases separately.

4.1.1 Recursion by Fixed Branching Factor

Understanding the properties of the generalized MoM lirsygtem requires first
looking into the block matrix reformulation of (7). Let usfaee abasis of level,
[>1,as

Vi(m, N) = {G(m+6,N),Gi+06,N —11),...,G(i + 6, N — Tp_1)
0= (01, 0n), Salidn =10, € {0,1}},

which is the set of normalizing constants withdditional queue replicas or, equiv-
alently, a set of un-normalized joint binomial moments afexi. According to this
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definition, the MoM basis is simply the union
V(m, N) = Vg(ii, N) U Vg_1 (1, N)

as we have illustrated in Figure 1. Note that a basis of Iekeak cardinality

L (M4il-1
card(%(rﬁ,]\f))z( M+_1 )R.

Using the new notation, it is easy to see that the MoM recar§iyp may be rewrit-
ten in upper block triangular form as

Ay Ay | Vi(m, ﬁ) | Bu 0 Vi(m, N - TR) (24)
0 NgI| |Vii(m, N) By Biyya| |Via(m, N —1g)
A(m,N) vV (m,N) B(m,N) V(m,N—1g)

wherel = R, the notatior0 indicates a matrix of all zeros of proper size;; and
B, ; indicate matrices havingurd(V;(iii, N)) rows andcard(V; (i, N)) columns,
and NI is diagonal of orderard(V,_,(m, ]\7)). In (24) the matrices\;;, A;;_1,
andB,; are defined by the coefficients of the PCs for classes 1,.... R —
1 and by the coefficients of all the CEs (5). Convers#ly,,, andB,_;,_; are
coefficients of the PCs for clags. SpecificallyB,_, ;_; includes all and only the
Zp terms, thus it reduces tB,_,;_; = 0 in the caseZy = 0 studied in this

subsection. Note that a solution of (24) can be easily decsegbinto two steps

(1) computeV; (17, N) = (Bi-1,Vi(1it, N = 1) +Bi-1,-1Vi1 (7, N=1r))/Ng
(2) solveA,;;Vi(ni, N) = —A;;_1Vi_1(m, N) + By, Vi(m, N — 1g)

thus MoM complexity is dominated by the cost of solving a insystem of order

card(Vi(im, N)) = card(Va(ii, N)) = (M TR 1) R.

R

In the proposed generalization, for a model withqueues an® = 1 we consider
GCEs involving models obtained by removing only quéude This creates a new
recursive branch such that



which has the following block structure

Ay O R Dy, O Lo -
W(mu ) W(m7N_ R)
Ay Ay - | =1 Bu O oo o
%—1(ma N) Vl—l(m,N— R)
0 NRI —_—— Bl—llo
SN——— V(Wl,]\?) SN—— V(m N*IR)
A(m,N) B(7,N)
Cir Gy . o
V’(m_ M, )
+10 o L L] @9
‘/l’—l(m_ MaN)
0 0
_— V(i—Tar,N)
C(m,N)

wherel’ is the maximum basis level set for models havivig— 1 queues, and the
matricesA,;, C;r, Ci 1, andD;; include all and only coefficients of the GCEs
that relateV,(m, N) with V(m, N — 15) and V(1 — 15, N). The problem we
consider in this section is the determination of the smallesd!’ such that the
above linear system can be solved 67, N) for arbitrary number of classes,
gueues, and jobs. Note that having the smallest possibie leagl provides the
largest computational savings in linear system solutismge/ and!’ determine
the cardinality of the bases being evaluated.

Theorem 1 The basis level such that (25) can be solved recursively using a fixed
branching factorB = 1,..., M, provided that all coefficient matrices are non-
singular*, is given by

[ =1 =max{1, R — B},

which is strictly lower than in the MoM basis where= R. Thus,C,;;_; = 0 and
the termination conditions for the recursion on the numblequeues are known
bases of models having — 1 queues or more.

Proof 1 The proof is by induction on the number of queudsn the model.
CaseM = B — 1. Straightforward, the bases are known.
CaseM > B. We show the following properties that prove the theorem:

P1) V(m — I, N) includes all constants of models witti — 1 queues that are
needed to formulate the GCEs; B
P2) V,_1(m, N) can be obtained recursively from(m, N — 1g);

4 For a model where\ (172, N) is rectangular, the coefficient matrix is defined to be the
matrix AT (m, N)A(m, N) accordingly with (8).
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P3) if | = max{1, R — B}, then the linear system

Cro Vi (i — Ty, N)
—Ay 1 Vim(m, N)

Ay
Ay

D, Vi(m, N — 15)
+

%(m7 ]\7) = — —
B, Vi(m, N — 1)

] (26)

used to comput®; (i, ]\7) in (25) has square or over-determined coefficient
matrix.

Proof of property P1We have the inductive hypothesis tliat max{1, R — B},
thusV (17 — 1), N) is available from the previous recursive steps on models wit
M — 1 queues. For example, suppose that quélien a model ofVj(m, ]\7) is
removed by a GCE, then the corresponding normalizing cahéain V;(m —
Tu, ]\7), using the fixed branching approach it is always I’ thus

Vi(m — Ta, N) = V(i — Ty, N),
which proves the property.
Proof of property P2Let us observe that, similarly to MoM, we can compute
Viei(m, ]\7) = (B)_1,; Vi(m, N — 1g) + Bi_11Vi_i(m, N — 1r))/Nr

provided thatNp > 0. If Nr = 0, the model has? — 1 non-empty classes and
the condition/ = max{1, R — B} implies thatV,_, (7, N) is simply the union of
the basis/; (i, N) for a model withR — 1 classes, which is available from previ-
ous recursive computations, with a vector of zeros thatessprt the normalizing
constants(m + 5 N — 1r_1) not included in the basis for models wifh — 1

classes.

Proof of property P3Using the expression of the cardinality of a basis of oider
the linear system coefficient matrix is square or over-aeiteed if and only if

M+1-1
ngce + nce + nNpc > ( +l >R7 (27)

—

where the right hand side is the number of unknowmsi(V;(m, N)), while the
left hand side terms describe, respectively, the numberGE$; CEs, and class
PCsr =1,..., R—1. Note that the integer parameteequires > 1, otherwise it

would not be possible to formulate the bakis; (77, V). In what follows, we show
that (27) is equivalent tb> max{1, R — B}.

From [6], it is known that

M+1-2 M+1-2 M+1-2
nCE+nPc=< 11 >M+< 11 )(R—l)z( 1 )(M+R—1).
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Instead, the number of GCEs is derived as follows. Withoss laf generality, sup-
pose that only the queues labeled- M — B+ 1,..., M can be removed, thus up
to a maximum ofB GCEs can be formulated simultaneously for a given model. We
first observe that we can formulate a GCE relafingn, N) andV (m — 1), N)

only if the queue removed among tlietagged queues has still unit multiplicity
after addition of thé replicas. Consider a normalizing constantjtvi, N), where
thus we have addddjueue replicas. Define as the number of distinct queues in-
terested by the replica addition and dak h the number of queues that belong to
the tagged set of cardinalit. The number of normalizing constantslif{r, ]\7)

for a given pair(h, b) is thus
[-1\(M—-B\ (B
l—h)\ h—0> b

whereM — B is the number of stations that cannot be removed by a GCE &nd th
first binomial coefficient is the number of ways of distrilmgithel — A residual
replicas among thé queues selected. Hence, one concludes that the number of

GCEsis
min(M,l) I—1 min(B,h) M — B B
nGeE = ) <l—h> > (h—b><b>(B_b)

h=1 b=0

being(B — b) the number of queues among tBeagged queues that are left with
unit multiplicity and thus where GCEs can be formulated. Byzdflermonde’s con-
volution formula [12], the above expression remarkablyifies to

M4+1-2
nG’CE:< ; )B,

thus condition (27) becomes

M9 M9 Mal-1
< ;_1 )(M+R—1)+< +z )Bz< + )R,

that readily simplifies to
IM+R-1)+(M—-1)B>(M+1-1)R.
However, the last expression holds true exactlyl formax{1, R — B}. O

The theorem states that, given termination conditions fodets havingB — 1
gueues, it is possible to solve the model by a recursion widdfbranching factor.
However, it should be noted that such technique appearsacfipal interest only
in the casesB < 2, where one can compute the basis for a model ha¥ng 1
qgueues from the closed-form expression (22). Unfortugagsd we show in the
experimental validation section, small valuegobften make the generalized MoM
algorithm scale quite similarly to the original MoM a¢ and R grow. Hence, we
focus below on the analysis of the more flexible variable binarg factor approach.
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4.1.2 Recursion by Variable Branching Factor

In variable branching, the factaB changes while recurring on the number of
gueues of the model. Assume that the recursion proceedsott@bup fashion,
evaluating first all models with queue, then all models with queues, up to the
original model withA/ queues. Denote by =1, ..., M the number of queues for
the currently evaluated model. A variable branching faetyws to express the
number of GCEs being as a functiégh= B(d) ranging inB(d) = 1,...,d. Us-
ing a branching factoB(d) means that all models haviafgueues are recursively
computed from models witd — 1 queues througtB(d) GCEs. Without loss of
generality, we assume that for a model with queues we remove by GCEs the
set of queues indexed by — B(M) + 1,..., M — 1, M. This brings a recursive
structure of the type

— —

which generalizes straightforwardly to models witk: M queues. The properties
of the recursive structure described above are given byolfeing theorem.

Theorem 2 Consider a model that is solved recursively using a varisogching
factor B(d), whered is the number of queues for the models evaluated in the durren
step of the recursion. If all coefficient matrices are namgsilar, then the model can
be solved recursively provided that the basis for models svueues has levels

I =max{l, R — B(d)} (28)
I' =max{1,R — B(d—1)} (29)

and B(d) is defined such that for all valueséftis [ = I'—1 or [ = I'. Termination
conditions are given by (22) for models with a single quele (1).

Proof 2 We have to evaluate for each set of models witueues the same three
properties verified in the proof of Theorem 1. It is easy tothe¢ P2 and P3 still
hold after/ is replaced by(d). PropertyP1 is instead affected by the changes of
the branching factor.

Proof of property P1Consider a step of the recursion whémgueues are evaluated,
then the GCEs involve models havirdg- [ andd + | — 1 queues. This means that
the normalizing constants (i — 1, N), for some values of, should include
the ones of models havingi+ [ — 1 queues. However, it is sufficient that= [ or

I' = 1 — 1 to achieve this result sindé(m — 1;, N) includes bottV, (17, N) and
Vi (m, N). O

According to the above theorem, if the basis level for modatls a queue less is
orl — 1, then it is possible to recursively formulate the lineartegsof equations.
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Note in particular that if’ = [ the linear system ha(@l,l/,l(ﬁ) = 0, otherwise it
is Cl,l’(N) =0.

Finally, we remark that variable branching includes fixednahing as a special
case,i.e.B(d) = 1ford > 1.

4.2 Generalized MoM Algorithm

We begin by observing this general property of variable binarg.

Corollary 1 The variable branching factaB(d) = d that adds to the linear system
the maximum possible number of GCEs satisfies the assumpfidimneorem 2.

Proof 3 We havel = max{1, R — d} and!’ = max{1, R — d + 1}, thus we have
that/ and/’ are either equal td or they differ by a unit wherh = R — d + 1 and
I = R — d, which proves the corollary. O

Based on the last result, we define the generalized MoM dhgoniising a variable
branching with levels

B(d) = min{dv Bmaa:}a
whereB,,.. is a user specified maximum branching factor. This strucliogvs to
use in the recursion all available GCEs up to a maximum®,gf, for each model.
Intuitively, this choice ofB(d) corresponds to the case where we use all available
information of the GCEs within the constraints provided bg tiser on the growth
of the recursion tree. In practice, the choiégs,, = 1 andB,,., = M are the most
relevant, since the former corresponds to minimum overkle&do the growth of
the recursion tree, while the latter yields the largest ¢édu of the linear system
size. Note also thaB,,,, = 0 corresponds to the original MoM recursion, since in
this case there are no GCEs and the basis levelR is sufficient to perform the
recursion without branching into models with less queues.

Compared to other definitions &f(d), the definition used in the generalized MoM
allows to terminate always by the closed-form formulas (2R structure of the
generalized MoM algorithm is summarized by the followingpdo-code; further-
more, an illustration of a recursive step of the MoM algaritis provided in the
final appendix.

ALGORITHM MOM(B,,.qz)
m(M) = {1t}
FORd=M—-1,M—-2,...,1
m(d) = { set of models obtained by removing the lagh{d, B,,...} queues
from each model im(d + 1)}
END FOR
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FORr=2,...,R
INITIALIZE new class
FORn,. =1,..., N,
n= (Nl,Ng,...,Nr_l,nr,O,...,O)
FOREACHM € m(1)
COMPUTEV (11, N) by the closed-form formulas (22)
END FOREACH
FORd=2,...,.M
FOREACH M € m(d)
SOLVE A (¥, @)V (!, ) = B(n, @)V (i, @ — 1g) + C(i/, @)V (1 — 1y, )
END FOREACH
END FOR
END FOR
END FOR
RETURN normalizing constants if¥ (17, N)
END ALGORITHM

The generalized MoM algorithm computes the joint binomiahents inl’ (172, V)
from which performance indexes can be easily derived [6, &8¢ The execution

of the algorithm is organized as a double recursion on thebeuraf queues and
jobs. It should be noted that the lowest computational castsusually obtained

if the iteration on the number of queues is executed as thex loop, since in the
opposite case one should keep in memory a set of normaliningtants for allV
populations evaluated in the recursion. Therefore quetesidded in a bottom-
up fashion through the innermost loop on the variahlap to reaching the target
model with M queues. For each value df we consider all modelsi’ that are
analyzed due to the recursive branching specified byBttg function. In the out-
ermost loops on" andn,., jobs are added progressively one class at a time. An
initialization phase is required before processing a gbagsilation in order to in-
crease the basis level if the leveincreases when moving from a model with
classes to a model with+ 1 classes. Let be the basis level for clagsand letl, be

the basis level for class+ 1. Then, ifl, = [, the basig/;(N) is immediately con-
verted into the basisf*(ﬁ) by adding zero entries for the normalizing constants
G(i + 6,7 — 1,41). Conversely, ifi, = [ + 1 we fall in the case discussed in the
proof of propertyP2in Theorem 1, wheréﬁ(ﬁ) providesV*_l(N) and the basis

—

V.. (N) is obtained from the reduced linear system

A, . Cpp Vy (M — 1, N
L, ‘/l(m’ N) _ | *( M _))
Ay, —Ay, 1,1 Vi,—1(m, N)

wherel’, is the basis level used for models with- 1 classes and a queue less, and
which uses the conditiovj (i, N — TTH) — 0 since there are no jobs of class 1.
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Finally, we observe that the application of the generalidei! approach to models
with arbitrary delaysZ, requires the following simple modification. Upon consid-
ering a model with a single queue, the corresponding nomnagliconstant cannot
be evaluated directly by (22), since this does not inclueediflays”,.. In practice,
such delays cannot be incorporated in the termination farduwectly and an al-
gorithmic evaluation of the normalizing constant becomesessary. However, it
is immediately found that the recursive computation of tbenmalizing constants
with a single queue follows efficiently from (24). In partiay the order of the
linear system coefficient matrix for a model with a single wgiés given by

1+R—1
R=R
(e

which is inexpensive for all models of practical interest.
4.3 Handling Singular Models

In the previous sections, we have assumed that the models &ealuated lead to a
non-singular coefficient matrix in all recursive steps & generalized MoM algo-
rithm. Indeed, such condition is a basic requirement foraghygication of systems
of linear equations to the solution of closed queueing neksidndeed, as observed
also in our earlier works [6—8], there exist a number of sitwes where it is known
in advanced that the linear system will be singular. Thesaaifollows:

e Sparsity of service demandBhis case arises when one or more service de-
mands are equal to zero. This leads the coefficient matedesiude column
of all zeros. This situation can be corrected by removinghstatumns from
the evaluation, an approach that leads to considering ard@termined (and
thus still solvable) system of linear equations.

¢ Identical queuedftwo queues are replicas of each others, itis mandataty th
this is accounted for in the multiplicity vector. In facttvo identical queues
are considered explicitely assuming that for each of theamthltiplicity is
unitary, then the system of linear equations would incluthatical rows.

¢ Identical demands for some workload class&sproblem that is harder to
address arises when there exist a subset of classeesh thatD,, = Dy,
for two distinct queues andk’. This situation leads again to a singular coeffi-
cient matrix, but unfortunately does not appear possibtetcect this problem
within the MoM framework. A solution proposed in our earleork, that ap-
plies immediately also to the generalized MoM is to perfohe ¢computation
of the normalizing constants for a subset of classes undeyland algorithm
that jointly uses the MoM linear system and the LBANC or MVAatithm,
see the appendix in [7] for a technical discussion on thecgtra of such re-
cursion. It can be proved similarly to see [7] that such hyltgorithm would
still outperform MVA or LBANC, although its effectivenessowld be reduced
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compared to the application of MoM on a non-singular modé¢hwhe same
number of queues, jobs, and classes.

e Other degeneracieginally, there exist rather infrequent cases where the spe
cific values of demands lead to a singular coefficient mafiirese cases can
be addressed again using the hybrid algorithm approachrmtively, if the
service demand values are obtained from measurement,elédgsst solution
involves increasing the number of digits used to specifiiaty the service
demands. This approach would clearly leads to numerictdlilgies in stan-
dard linear algebra solver, however this is no longer trusxéct algebra is
used, as we have assumed for MoM, since the condition nundes dot
affect the correctness of the final solution.

5 Computational Requirements

We derive analytical formulas to estimate the computatioeguirements of the
generalized MoM algorithm. In general, time requiremenéywary in real imple-

mentation due to the specific choice of the programming lagguof the linear
system solver, and of the technique for the exact represemtaf the normal-

izing constants. Below, we propose an analysis assuminghbdinear system
solver uses Gaussian elimination for dense matrices baséd)alecomposition

and back-substitution [18]. This case enjoys simple foamubr the number of
operations used for LU operations and generally providespger bound to the
costs of an optimized implementation using more advancesti system solution
techniques that leverage on sparsity of the matrices. Tercalgo the latter case,
we report in Section 6 experiments with a prototype impletaggon based on the
Wiedemann algorithm [31].

5.1 Time Requirements

The components of the time requirements of the generalizeM Migorithm of
Section 4.2 are as follows:

(1) N outer loop iterations on andn,

(2) M inner iterations ol

(3) for each setn(d), the cost of evaluatingard(m(d)) models

(4) each evaluation solves a linear system of orded(V; (17, N))

(5) overheads due to the exact representation of the naimglonstants

We now derive formulas for the last three components of tlwealkist.
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Component (3)The cardinality ofim(d) is given by the following expression

card(m(d) = (B(d+ 13\;_]\@4— 1)’

which can be easily proved by induction on the recursion $fep d, starting from
the initial conditioncard(m(M)) = card({m}) = 1. The formula states that, at
the step of the recursion where there égueues, we have a number of models to
evaluate that is determined by the branching le¥el + 1) of the step above and
by the number of queuel/ — d that cannot be removed by GCEs. For example,
whend = M — 1 we have
card(m(d)) = (m{Ml B’W}) ~ By

which is exactly the number of different ways of removing vpA,,.. distinct
gueues from a group aff > B,,,..

Component (4)For each modehi € m(d), while processing class we have
I = max{l,r — B(d)} = max{1,r — min{d, B,.. }} which implies

- -1 17 — B q
card(V;(i/, N)) = <d+l )r _ <d+max{ , T dmml{d, maz )} )T'

Recall that for a dense matrix of ordera linear system can be solved by Gaussian
elimination in(2/3)n? operations for LU decomposition amd operations for LU
back-substitution [18]. Noting that the linear systemd@ated in the generalized
MoM require LU decomposition only for adding the first job ofew class, while
the remaining jobs one can reuse the same decompositiolows that evaluating
the linear systems for all the population of clasequires approximatel2/3)n?

at the first population for storing computing the decompaosijtfollowed byn? op-
erations at each population to solve the linear system,avher card(V;(ii/, N)).
Note that this is a pessimistic estimate since it ignoressfyaf matrices.

Component (5)Similarly to [6], it can be shown that for a model wiflqueues the
overhead due to the exact arithmetic representation of thealizing constants
can be approximated as

r—1

S(r,ny, d) & ngg 1og nagt, Ndgt = (nr + Z N8> log(d+1—1),

s=1

wherel = max{1,r — min{d, By, }} is the basis level and,, is an approxima-
tion for the number of digits in the normalizing constantisTapproximation fol-
lows by considering the worst-case number of digits for aradizing constant of a
balanced queueing network where all demands are equakanaxy, . { Dy, Z, },
which can be easily analyzed by closed-form formulas [6].
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SummaryBased on the above derivations, we conclude that the timerements
of the generalized MoM algorithm solved using exact Gaussl@nination may be
approximated by the expression

iﬁ(g(ﬁ 13\4+—Md_d_1) (; ((d;: 1)T>3+ 5 ((d;: 1)r>2s(r,m,d>),

n,=0

for B,... > 1, where the basis level is= max{1,r — min{d, B4, } }. We remark
that the termn,, = 0 accounts for the class initialization phase, which require
solution of the reduced linear system described in Secti@nld the special case
B,.. = 0, the algorithm reduces to the original MoM and the the inn@nsation
ond does not appear in the time requirements expression. THanteterm of the
above expression scales@éN? log N) as the total population grows.

Figure 3 illustrates the trend of the time requirements foraglel with same num-
ber of queues and classes, i&l,= R . This is the most challenging case for the
original MoM [6]. This case also shows the maximum theogettiap between the
performance of MoMM ) and the performance of the original algorithm. The figure
illustrates that MoM0) and MoM(1) are asymptotically very similar as the number
of queues and class grows. Conversely, M@} appears to be much faster than
the other methods starting from models witlor 5 classes. We have observed in
the experiments reported in Section 6 that with techniqifé=reint from Gaussian
elimination, namely with the Wiedemann algorithm, this G&tome visible from
models starting fron®d or 6 classes. This is because such methods have computa-
tional requirements that are lower than in Gaussian eliti@nathus the effects of

a reduced basis size are initially compensated by suchasedeefficiency. Nev-
ertheless, also in the experiments reported later it iseetithat the generalized
MoM scales much better than the original MoM.

Finally, figures 5 and 4 illustrate the growth in time requients when\/ = 3R or
R = 3M. The trends confirm that MolM//) improves over MoM0) and MoM(1)
whenever the number of classes is greater tham 5. It is also found that the
relative improvement becomes larger whihis much larger tham?. This is a
desirable property since, as shown in [7], the MoM algoritemmost effective for
models with more queues than classes, while for models ictwRi > M the
CoMoM algorithm proposed in [7] is preferable.

5.2 Space Requirements

Space requirements of the generalized MoM algorithm areraebed by

(1) the space requirements for storing the bases,
(2) the space requirements for solving the linear systems.
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Fig. 3. Approximate time requirements of M@¥,,,.,.) for M = R when solved with
Gaussian elimination. The total population in the netwarkét toN = 100 and balanced
across classes.
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Fig. 4. Approximate time requirements of M@i,,,.,.) for M = 3R when solved with
Gaussian elimination. The total population in the netwarket toN = 100 and balanced
across classes.

Both components grow with the number of jobs, classes, aadegi Thus, without
loss of generality, we can estimate the worst-case storeggpation of the gener-
alized MoM at the last step of the recursion when the popatatector isi = N
andr = R.

Component (1)This is given by

% 2card(m(d))S(R, Ng, d)
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Gaussian elimination. The total population in the netwarket toN = 100 and balanced
across classes.

which expands to

M (B(d+1)+ M —d—1\ [ {d+max{1, R — min{d, Bpa,}} — 1
dzf( ) )(( o )R)sm,NR,d).

The factor2 in the above expression follows from the fact that at most aexrto
store bothV/ (m, N) andV (i, N — 1g) in memory to perform the recursion.

Component (2)Recall that, for a dense matrix of orderthe storage requirement
of LU decomposition and back-substitution is approximatél. Hence the maxi-
mum space requirement in the generalized MoM may be estilmate

1, R — min{d, B —1\ )\’
mg}{((d—i—max{ R dmnll{d, maz } } )R) ’

which is independent of (R, Ng, d) since the number of digits in the coefficient
matrix A(Z\7) does not grow beyond range during the recursion.

SummaryThe expression for the space requirements of the geneddltoM are
obtained immediately by taking the maximum between comptn€l) and (2).
Note that these yield a space complexity®(fN log V) as the total populatiofV
grows.

Figure 6 illustrates space requirements for models With- R queues and classes,
assuming dense representation of the involved matricesle8ly to Figure 3, we
see that MoMM ) is superior to MoMO0) and MoM(1) also with respect to storage
requirements. This is essentially due to the quadratic tirofvthe elements of the
linear system coefficient matrix, which is very sensitivehe basis level. Since

[ is minimized in MoM M), this method is clearly more efficient than the other
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Fig. 7. Approximate space requirements of M@B},...) for M = 3R when solved with

Gaussian elimination. The total population in the netwarket toN = 100 and balanced
across classes.

techniques. Yet it should be observed that all techniqupsapto be feasible over
a large range of queueing networks, only for difficult modesing more thar®
queues and classes or more M@M) could help in addressing inefficiencies of
MoM(0) and MoM(1). Thus, we conclude that the main advantage of MoM
over MoM(0) and MoM(1) is the significant decrease of time requirements for
models with several classes and queues.

Finally, figures 8 and 7 confirm the above observations onscagereR = 3M
and M = 3R. Similarly to the time requirements, it is found that theagest im-
provements are obtained whéhis much larger tha®k, whereas the computational
costs of the three methods tend to converge whéslarger than\/.
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6 Experimental Results

We have performed an experimental campaign to provide realéhat the gen-
eralized MoM algorithm is more efficient than the original M@n models with
several queues and classes. In particular, due to theveekficiency of existing
algorithms on models wher >> R andR >> M, we have focused on the most
difficult case wheré\l = R.

We have defined a prototype implementation of the genethizeM algorithm
based on the Wiedemann algorithm solver [31] of the LinBogropource library
(http://ww i nal g. org). We have then run an experimental campaign on
36 models having different numbers of queues, classes, arsdtgollustrate the
growth of computational requirements in the MoOM},....) algorithm introduced

in Section 4.2. Experiments have been run on a dual-coré @R& with 3GHz
frequency andiGB of RAM. Service demands are random integers in the range
[1,50]; think times are set to zero. For instance,Iét= {D, ,} be the matrix

of service demands such that a column refers to a given ctasa aow refers to

a given queue. The model used fof = R = 7 for all population values is as
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follows: ) )
9 2344 9 16 38 14

273328 2 251849
321538 1 14 30 10
D=2 4845303724 16
24354231 7 5 21
44 11 7 46 38 42 13
| 7 2810 37 41 35 11}

The maximum branching factor has been choseR,as = {0, 1, M} such that

e MoM(0) is the original MoM algorithm
e MoM(1) is a fixed branching recursion generalizing the one in Fig(a¢
e MoM(M) is a variable branching recursion generalizing the onegafé 2(b)

Results of the proposed experimental campaign are illigstia Table 1. The ta-
ble reports the cumulative processor time for the soluticth® generalized MoM
linear systems (cpu) and the respective maximum memorypaticuin (mem). We
have set a time limit for execution of the slowest algorithi"8® minutes. Under
this constraint all techniques complete models with Upgoeues and classes, with
the hardest model being for a populationdf= 100 jobs divided homogeneously
over the classes (fractional population values are rounged the closest integer).

Experimental results suggest the following remarks.

For the simplest models whefd = R = 3, the original MoM is slightly more effi-
cient than MoM1) and MoM(M ). However, computational requirements are very
low for all techniques. The relative efficiency of MdW may be explained by the
fact that additional recursions on the number of queuesareguly advantageous
in this case, since the orderof the linear system coefficient matrix is very small
in all algorithms . < 30).

Models withM = R = 4 illustrate cases where the MW algorithm is the most
efficient. These models are intermediate cases where meguwmn the number of
queues can be advantageous with respect to KoMrovided that the recursion
tree is not too large. This is because the size of the MyMoefficient matrices is
only n = 140, hence a combinatorial recursion tree has size that is cablgain
magnitude and may not provide substantial savings.

Models with M = R = 5 show the first case where MoW/) becomes more
efficient than MoMO0) and MoM(1). It is interesting to note that Mol) requires
about100% more CPU time than Mol ) and MoM(A/), while the latter have
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Table 1
Evaluation of the generalized MoM. Fractional class pojpuote are rounded up.

MoM (0) MoM(1) MoM (M)
N M R| cpu[s] mem[Mb]| cpu[s] mem][Mb]| cpuls] mem [Mb]
10 3 3 0.01 2.4 0.02 24 0.04 2.4
10 4 4 0.15 2.4 0.11 24 0.31 2.4
10 5 5 2.28 2.7 1.01 24 1.01 2.4
10 6 6 28.38 4.1 15.83 3.1 3.67 2.4
10 7 7| 740.75 30.8 356.63 27.3 14.15 2.4
10 8 8| LIMIT N/A LIMIT N/A 186.74 2.5
10 9 9| LiMmIT N/A LIMIT N/A LIMIT N/A
50 3 3 0.31 2.4 0.34 24 0.91 2.4
50 4 4 1.79 2.4 1.31 2.4 1.52 2.4
50 5 5| 22.02 2.8 10.0 2.7 9.19 2.4
50 6 6| 393.02 4.7 166.65 3.5 31.98 2.5
50 7 7 | uMIT N/A LIMIT N/A 164.39 2.5
50 8 8 | LIMIT N/A LIMIT N/A 1837.45 3.3
50 9 9 | uMIT N/A LIMIT N/A LIMIT N/A
100 3 3 1.06 2.4 1.08 2.4 1.91 2.4
100 4 4 5.48 2.4 4.44 2.4 10.6 2.4
100 5 5 | 78.97 2.9 37.24 2.8 35.02 2.5
100 6 6 | 1324.19 5.4 533.02 4.2 111.87 2.5
100 7 7| LMIT N/A LIMIT N/A 512.10 2.5
100 8 8 | LIMIT N/A LIMIT N/A LIMIT N/A

very similar computational requirements. Hence, one aated thatV/ = R = 5
may be used as a practical threshold to discriminate whétb&t (1) or MOM (M)
should be used for model solution.

The caseM = R = 6 provides clear evidence of the computational gains of
MoM (M) over the other techniques on the most challenging modet¢sgdectively

of the population size value, MojM/) requires approximately one order of magni-
tude less in time requirements than M@M. This is because the maximum order of
the MoM(0) matrices isn = 2772, while for MOM(M) it is justn = 60. MOM(1)
provides substantial gains over M@l sincen = 1512, yet these gains are not
competitive with the ones of Mol\/), especially for large populations. Interest-
ingly, the ratio of cpu times of Moll) and MoM(M) is roughly constant ad/
increases.

It is easy to see that that these trends are expected to negapibetween Mok\/)

and the other methods even bigger for models with more @hgureues or classes.
The caseV/ = R = 7 show that MOM M) is always efficient, whereas Mo(W)
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and MoM(1) can solve within the time limits models with just ten jobstelrest-
ingly, M = R = 8 show a case where Mo/ ) still scales for networks with up to
N = 50 jobs. We have been also successfully run Mal in the caseV = 100,

but the execution takes more a few hours, thus falling oatsiie time limit of
2000s. Finally, the cas@/ = R = 9 represents a limit case where none of the tech-
nigue can successfully obtain a solution. For such modetsdyiMd) and MoM(1)

are too memory consuming. Conversely, MgM) becomes quite expensive due
to the combinatorial growth in the number of models to be sdlat each step of
the recursion, therefore the bottleneck is computatiared tather than memaory.

Storage requirements are instead low for all algorithmge tiwat the valu€.4Mb
appears frequently in the results since this is a minimum amgrallocation per-
formed by the LinBox library for linear system solution. Lawemory require-
ments are a substantial advantage of the higher-order mapproach compared
to established techniques such as the multiclass MVA, wb#en it is a mem-
ory bottleneck to limit applicability rather than time reggments. We notice that,
among the MoM techniques, the MdW/) algorithm appears also in this case the
best choice, since storage requirements did not changdicamtly throughout the
experimental campaign.

Comparison with ConvolutionTo illustrate that the generalized MoM provides
substantial gains over techniques that do not follow thédrgrrder moment ap-
proach, we have also run the Convolution algorithm on the sfwlenging models
with N = 100 jobs. For models of this scale, Convolution has the lowestmo
tational costs among all algorithms that do not follow thghi@r-order moments
approach, for instance, it is usually orders of magnitudgefathan RECAL [7].
For the models with the smallest number of classes, cpu toh€snvolution are
quite similar to the best between the three MoM algorithnig, éorAM = R =5
Convolution require84.98 seconds. The relative efficiency of Convolution is also
because the populatia¥ = 100 is only moderately large, however on larger pop-
ulation sizes the method becomes intractable compared M [p However, we
have found that the storage requirements of Convolutiow gery quickly as the
model complexity increases. For a model with= R = 4, Convolution requires
145MB, which grows to1638MB for M = R = 5: this quick growth makes mod-
els with larger number of queues and classes infeasiblealy zmwith Convolution
due to a memory bottleneck. Thus, the examples\o= R = 6 document a case
where the generalized MoM is superior to Convolution. Thaekes the case that
the proposed methodology improves computational analgstmiques for closed
gueueing network models.

33



7 Conclusions

In this paper, we have presented a generalization of theddethMoments (MoM),
arecently proposed algorithm for the exact analysis oficlalis queueing network
models which are widely used in capacity planning of compsystems and net-
works [6, 7]. We have integrated in the MoM equations alsordweirsive formula
used in the Convolution Algorithm [5,26], here called thegel convolution equa-
tion (GCE). We have shown that using the GCE in MoM signifisacbanges the
structure of its recursion leading to the evaluation of nte®aéth different num-
ber of queues, which can be solved much more efficiently thariarger models
considered by MoM. As a result, the computational costsnretand space of the
generalized algorithm are much smaller than the originaMMecursion. Future
work will focus on a similar extension for the CoMoM algomtipresented in [7].

A MoM (M) Linear System: an Illustrative Example

This appendix illustrates the structure of the M@M) recursion on an example.
We consider a model with the following demands;; = 2,D,, = 4,D;5 =
8,D271 - 5,D272 = 6,D273 = 3,D371 - 10,D372 = 3,D373 - 6, Z1 = Z2 =
Z3 = 0, thus the model had/ = 3 and R = 3 classes. We evaluate the final
step in the solution of a model with populatid‘?ﬁ = (1,1,1). The basis levels
arel = l(d) = 1 for all d, and the intermediate models evaluated ard) =
{(1,0,0),(0,1,0),(0,0,1)}, m(2) = {(1,1,0),(1,0,1),(0,1,1)}, andm(3) =
{(1,1,1)}. We do not report the recursion eh= 1 since these models have a
single queue and are solved by (22). As in the proof of Thedreafter computing
the based/_, (i, N) using the CEs of class = R = 3, the basisV;(i1i, N) is
obtained by the reduced linear system

A.l’l/ o —
Al,l _Al,lfl‘/lfl(mu N) Bl,lw<m7 N — R)

Vo

Table A.1 illustrates the above linear system for the exampbdel. This example
case is interesting for two reasons: first, it involves theelsd;_, (1, (1, 1,0)),
which include zero elements corresponding to normalizongstants for population
(1,1,—1). Such normalizing constants are used only in the CEs of clas® = 3
for computation of the basd$_, (171, N). Additionally, this case illustrates a basis
level where the coefficient matrix for the mod@&l = (1,1, 1) is rectangular and
overdetermined. This is because Theorem 1 and Theorem 2tdssure that the
coefficient matrices used in the generalized MoM recursiensguare. Yet the
solution of the linear system follows easily by (8).
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Al,l’ Dl,l R . -
Ve | Viem, N - Ta) | Viem, §)
| A | | Bi |
d=3,m=(111),7=(1,1,1)
[1-10-3- 11 Ts 11 [ s100]
1 -5 -6 3 7176 [ 399 [ 14490]
1-10-3- - - A 5680 17 525
1-2 4. . . N 7830 0 582
1-5 -6 - 9464 516 15074
1-2 -4 - 9720 19 466
1-2 4. - . . . . 8 . 7920 0 546
1.5 6. . . R N 7920 530 17956
1-10 =3 Y 7920 16 454
. -2 . . -5 . .—-10 - e e e —7920 L 0 | L 772 |
i —4- - —6- - -3 L] | —7920 |
d=21m=(1,1,0),7=(1,1,1)
[1-5-6. . ] T [ 1536] [ 172] [ 5100]
1-2-4 N 2160 14 348
1-2-4. . . s . . . .. 2156 0 218
1-5-6 o3 2156 260 5680
.2 . .5 . S —2156 16 292
L -4 - —6 L ] | —2156 | L 0 | | 214 ]
d=2,1m=(1,0,1),7 = (1,1,1)
(1-10-3. . ] e . . ] [ 1536] [ 200] [ 7176 ]
1 -2 4 N 4320 11 324
1 -2 —4. . . 8 - . . 3328 0 400
1-10 -3 N 3328 288 9464
. -2 . .10 - S e —3328 10 268
i 1 L ] | —3328 | | 0 ] | 576 |
d=21m=(011),7=(1,1,1)
[1-10-3. - ] e o . ] [ 2160 [ 390] [ 7830]
1 -5 -6 N 4320 15 234
1 -5 —-6- - - 3 - - 3510 0 330
1-10 -3 N A 3510 390 9720
.5 . ._10 - e —3510 12 234
.. 6. . _3 e —3510 0 510
Table A.1 } } } i } B } i

Elements of the MoM{/) recursion for an example model wittf = 3 andR = 3
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