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Abstract

We introduce a new solution technique for closed product-form queueing networks that
generalizes the Method of Moments (MoM), a recently proposed exact algorithm that is
several orders of magnitude faster and memory efficient thanthe established Mean Value
Analysis (MVA) algorithm. Compared to MVA, MoM recursivelycomputes higher-order
moments of queue lengths instead of mean values, an approachthat remarkably reduces the
computational costs of exact solutions, especially on models with large number of jobs.

In this paper, we show that the MoM recursion can be generalized to include multiple re-
cursive branches that evaluate models with different number of queues, a solution approach
inspired by the Convolution algorithm. Combining the approaches of MoM and Convo-
lution simplifies the evaluation of normalizing constants and leads to large computational
savings with respect to the recursive structure originallyproposed for MoM.
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1 Introduction

Product-form queueing networks [1] are popular stochasticmodels used in capac-
ity planning of computer systems with the purpose of predicting the effects of re-
source contention on system scalability under a variety of workload conditions. In
many applications, notably in modern multi-tier applications, workloads are best
described as multiclass, i.e., requests are assigned to different classes according to
the statistical characteristics of the service demand theyplace on the servers. In
spite of their practical importance, multiclass workloadsare challenging to analyze
exactly in queueing networks even using state-of-the-art solution techniques such as
Mean Value Analysis (MVA) [27], Convolution [5,26], RECAL [13], LBANC [10],
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MVAC [14], or more recent methods based on the generating function approach and
Monte Carlo sampling [2, 11, 20, 28]. The main problem is thatmulticlass models
typically involve tens or hundreds of competing requests, possibly belonging to sev-
eral classes, and the underlying network can be composed by many servers [21]. For
models with these characteristics, available exact solution methods require compu-
tational costs that are often prohibitive, for example memory requirements can be
of the order of terabytes. As a result, large multiclass networks cannot be usually
solved with exact techniques and the focus is on approximation methods [9,15,29]
which yet do not return probabilistic measures because theyignore the normalizing
constant of the steady state probabilities. This is a limiting factor because prob-
abilistic measures of queueing networks are becoming increasingly important for
detailed performance assessment of computer system behavior.

A recent proposal to address the above issues is the Method ofMoments (MoM) [6,
7], a new exact technique for multiclass models that recursively computes higher-
order moments of queue lengths instead of mean queue-lengths evaluated in the
MVA algorithm. Higher-order moments have the key characteristic that they can
be computed recursively via a simple linear system of equations from the solution
of a model having a job less of a single class. The structure ofthe MoM recursion
is thus similar to the one used in the single class MVA, but radically differs from
the one used in multiclass MVA algorithm which decreases at each recursive step
the population of multiple classes simultaneously. Hence,the MoM recursion tree
grows linearly with the population size rather than combinatorially as in the mul-
ticlass MVA. This significantly decreases computational requirements in both time
and space.

Although MoM is more efficient than MVA, it has been observed that exact so-
lutions become inefficient if the number of queues and classes grow simultane-
ously because the computational costs of MoM are driven by the minimum between
these two parameters [6]. This feature of MoM is shared also by its “dual” formu-
lation, the Class-oriented Method of Moments (CoMoM) [7], and makes models
with many classes and many queues, at present, very hard or even prohibitive to
analyze with available techniques. In order to extend applicability of exact solu-
tion methods to such models, we propose a new recursive structure for the MoM
approach which yields lower computational requirements than the formulation pro-
posed in [6], while style operating under the same higher-order moment principle.
We show both analytically and experimentally that significant improvements can be
achieved on models with several queues and classes where MoMis less efficient.

Our main idea consists of integrating within MoM the recursive equations used
in the multiclass Convolution algorithm [5, 26]. MoM jointly considers in a lin-
ear system of equations the exact recursive formulas used inRECAL [13] and
LBANC [10], but not those used in Convolution. This linear system is the main
tool used to recursively compute normalizing constants, hence any improvement to
its structure can result in significant reductions of computational costs for MoM.
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By adding the formula used in Convolution to the MoM linear system we obtain a
new computational algorithm which recursively considers also models having less
queues than in the original network. This is a marked difference compared to the
structure of the original MoM in [6], which does not remove queues from the net-
work. We find that this modification provides substantial computational savings in
model solution, thus also showing that adding independent equations to the MoM
linear system provides a simple and effective way to reduce computational costs of
queueing network analysis.

The remainder of this paper is organized as follows. After giving background and
notation in Section 2, we review MoM in Section 3 using a simple multiclass model
which also illustrates the principles of the generalization proposed in this paper.
The effects of integrating in MoM a recursion on models with different number of
queues are discussed in Section 4, where a generalized MoM algorithm is proposed.
Computational requirements of the new algorithm are discussed in Section 5. Ex-
periments showing the performance of the generalized MoM ina software imple-
mentation are provided in Section 6. Section 7 gives concluding remarks. A numer-
ical example that illustrates a recursive step of the generalized MoM algorithm is
given in the final appendix.

2 Background

We consider a closed product-form queueing network withM queues andR work-
load classes. Jobs are routed probabilistically through the queues where they receive
service. After completing service, jobs re-enter the network after a delay ofZr units
of time which depends on the job workload classr = 1, . . . , R. The service demand
Dk,r equals the mean service time multiplied by the mean number ofvisits [16] of
classr jobs at queuek. We assume that theM queues are all distinct, i.e., for each
pair of queues there exist at least a workload classr, 1 ≤ r ≤ R, which places dif-
ferent service demands at the two queues; we refer to a pair ofstations that are not
distinct asreplicasof each other. Finally, the number of jobs of classr is the integer
Nr, ~N = (N1, N2, . . . , NR) is a population vector, andN = N1 +N2 + . . . +NR

is the total number of jobs circulating in the network.

In a closed product-form network, the probability of observing queuek in state
~nk = (nk,1, nk,2, . . . , nk,R), beingnk,r the number of classr jobs in the waiting
buffer or in the server of queuek, is

Pr(~nk) =
Fk(~nk)G(~m−~1k, ~N − ~nk)

G(~m, ~N)
, Fk(~nk) = nk!

R∏

r=1

D
nk,r

k,r

nk,r!
, (1)

whereG(~m, ~N) denotes the normalizing constant of the equilibrium state proba-
bilities of the Markov chain underlying the queueing network [19], ~1k indicates
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a vector composed of all zeros except for a one in thekth position, and~m ≡
(m1, m2, . . . , mM) is amultiplicity vectorsuch that the multiplicitymk is the num-
ber of queues in the network with identical mean service demandsDk,1, Dk,2, . . . , Dk,R.
For instance,G(~m−~1k, ~N−~nk) refers to a model with a replica of queuek less and
where the population is specified by the vector~N−~nk. Similarly,G(~m+~1k, ~N−~1r)
represents the normalizing constant of a model including anadditional queue with
demandsDk,1, Dk,2, . . . , Dk,R, i.e., a replica of queuek, and having a job of class
r removed from the network. Note that if~m ≡ (1, 1, . . . , 1) then each queue in
the network has a distinct set of service demands, i.e., there are no queue replicas.
For ease of presentation, we assume in the rest of the paper that ~m ≡ (1, 1, . . . , 1)
andDk,r > 0, which provide an upper bound on the costs of solving the queue-
ing network model. Our methodology extends also to models falling outside such
assumptions.

The goal of solution algorithms for queueing networks is to evaluate performance
indices such as the mean throughputXr( ~N) and the mean response timeRr( ~N) =

Nr/Xr( ~N)−Zr of classr jobs. Additionally, for each queuek and classr, it is of-
ten useful to compute the utilizationUk,r( ~N) = Dk,rXr( ~N), the mean queue length
Qk,r( ~N), and the mean residence timesRk,r( ~N) = Qk,r( ~N)/Xr( ~N). These quan-
tities are uniquely determined if one knows how to compute efficiently throughput
and mean queue lengths, which are given by the following ratios [24]

Xr( ~N) =
G(~m, ~N −~1r)

G(~m, ~N)
, Qk,r( ~N) =

Dk,rG(~m+~1k, ~N −~1r)

G(~m, ~N)
, (2)

where~m is the multiplicity vector of the model for which performance indexes are
computed. Instead, the marginal probabilitiesPr(~nk) cannot be computed either by
MVA or by local iterative approximations [9, 15, 29] that ignore the normalizing
constant. Thus, the normalization constant approach followed in this paper is more
applicable than MVA if one is interested in evaluating stateprobabilities.

Finally, we stress that increasing the number of queue replicas with the operator
~m + ~1k appearing in (2) and in several derivations throughout the next sections,
is fundamental for the MoM approach. A probabilistic interpretation of the replica
addition operation follows by first observing that the normalizing constant can be
written as

G(~m, ~N) =
∑

~n

m1+m2+...+mM∑

k=1

Fk(~nk), (3)

where we have assumed for simplicity that the network hasZr = 0 for all classes,
~n = (~n1, ~n2, . . . , ~nm1+m2+...+mk

), ~nk = (nk,1, nk,2, . . . , nk,R), describes the state
of all the queues in the network and the termm1 + m2 + . . . + mM is the total
number of queues in the model, also accounting for queue replicas. Using basic
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combinatorial analysis [12], (3) can then be rewritten as

G(~m, ~N) =
∑

~n′

M∑

k=1

(

mk + n′

k − 1

n′

k

)

Fk(~n
′

k), (4)

where~n′ = (~n′

1, ~n
′

2, . . . , ~n
′

M) is the network state and~n′

k = (n′

k,1, n
′

k,2, . . . , n
′

k,R) is
a vector describing the local populations within the subnetwork composed only by
mk queues with identical demandsDk,1,Dk,2, . . .,Dk,R. From (4) it is easy to prove
that increasing the multiplicities in~m is equivalent to computing un-normalized
joint binomial moments of queue-lengths. The same conclusion is obtained if one
considers the general case of a queueing network including delays [6,8].

2.1 Computational Algorithms

The analysis of queueing networks can be performed efficiently either by approaches
that directly evaluate mean queue lengths and throughputs in a recursive fashion,
such as the MVA [27], or by computational methods for the normalizing con-
stant [4]. Among the two solution paradigms, the normalizing constant approach
is slightly more efficient [3], but it often suffers numerical issues that do not ap-
ply to mean value formulas. In particular, the rapid growth of the state space size
can lead the summation in (3) to floating-point range overflows or underflows [23].
However, issues of this kind can be easily addressed in modern software at the cost
of overheads for representing normalizing constants with programming libraries
that support exact multi-precision arithmetic or modulo representations [17].

From a probabilistic perspective, the MVA algorithm and some methods for the
normalizing constant, such as the LBANC algorithm [10], canbe interpreted as a
recursive evaluation of mean queue lengths, un-normalizedin the case of LBANC,
over models with different population sizes. Recently, [6,7] have noted that re-
cursively evaluating a set of higher-order moments of queuelengths can be much
more efficient computationally than obtaining mean values,while still returning at
the end of the execution the correct solution of the model; this solution includes
mean performance indexes, such asXr( ~N) andQk,r( ~N). The Method of Moments
(MoM) [6] is an algorithm that implements this higher-ordermoment paradigm
and that we generalize for increased efficiency in the next sections. Due to limited
space and thanks to wide availability of material on the subject, we point to the lit-
erature for an introduction to MVA [27], LBANC [10], RECAL [13], MVAC [14],
and Convolution [5,26], comparative analyses can be found in [3,6]; the remainder
of this section focuses instead on MoM.
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2.1.1 Method of Moments (MoM)

MoM computes the normalizing constant by simultaneously considering into a lin-
ear system of equations the following exact formulas for normalizing constants: the
convolution expression(CE) [10,24]

G(~m+~1k, ~N) = G(~m, ~N) +
R∑

r=1

Dk,rG(~m+~1k, ~N −~1r) (5)

for all 1 ≤ k ≤ M , and thepopulation constraint(PC) [6,13]

NrG(~m, ~N) = ZrG(~m, ~N −~1r) +
M∑

k=1

mkDk,rG(~m+~1k, ~N −~1r) (6)

for all 1 ≤ r ≤ R, which are also the fundamental recursive equations used inthe
LBANC and RECAL algorithms. These recursions are subject tothe termination
conditionsG(~m,~0) = 1 andG(~m, ~N) = 0 if any entry in ~N is negative. It is
important to note that, while (5) is similar to the recursiveequation used in the
Convolution algorithm [5, 26], (5) fundamentally differs from the latter because it
does not allow to remove queues. We illustrate the practicaldifference between the
CE and the formula used in Convolution in Section 3.2.

In classic algorithms,G(~m, ~N) is obtained by recursively evaluating either (5) or
(6) until termination conditions are met and possibly with ascaling of the nor-
malizing constants into mean values. Following this approach, time and space re-
quirements grow with respect to the population size asO(NR) if (5) is used (e.g.,
LBANC, MVA) and asO(NM) if (6) is used (e.g., RECAL, MVAC). In practice,
these costs are often prohibitive since in modeling modern systems it is not rare to
haveN of the order of hundreds or even thousands, and several queues and classes
(see [21] for a recent case study). This makes the storage requirement of hundreds
of gigabytes or terabytes regardless of the recursion used.

MoM overcomes these computational problems by observing that, if one tries to
compute a certain vector of normalizing constantsV (~m, ~N), henceforth calledba-
sis1 , then with a proper definition this vector can be evaluated recursively by using
jointly (5) and (6) in a matrix recurrence equation

A(~m, ~N)V (~m, ~N) = B(~m, ~N)V (~m, ~N −~1R). (7)

In the above equation,V (~m,~0) is known from the termination conditions of (5)-(6)
and the matricesA(~m, ~N) andB(~m, ~N) are square of identical size and defined

1 The name “basis” stresses thatV (~m, ~N ) usually carries the minimum information
needed to perform a recursion that is linear in the total population of the network. Yet,
suboptimal implementations whereV (~m, ~N) is not minimal are also useful to simplify im-
plementation efforts [8]. To avoid unnecessary complexity, we use the term basis also for
such implementations.
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by the coefficients of the equations (5)-(6) that relateall and onlythe normalizing
constants inV (~m, ~N) with those inV (~m, ~N−~1R). The fundamental conditions for
application of (7) are

• to define a basis that allows to formulate the linear system exactly as in (7);
• to have a non-singular matrixA(~m, ~N).

In particular, if the choice of the normalizing constants ismade such that the co-
efficient matrix of the linear system (7) is square and non-singular, it is easy to
compute

V (~m, ~N) = A
−1(~m, ~N)B(~m, ~N)V (~m, ~N − 1R)

and solve recursively the model. Equivalently, for a rectangular over-determined
A(~m, ~N) of maximum rank it is

V (~m, ~N) = (AT (~m, ~N)A(~m, ~N))−1
A

T (~m, ~N)B(~m, ~N)V (~m, ~N − 1R). (8)

Indeed, matrix inversion can be replaced in implementations by much more effi-
cient linear system solution techniques, such as sparse Gaussian elimination or the
Wiedemann algorithm [22,31], which apply effectively to problems where the nor-
malizing constants are formulated using modulo or exact arithmetic representations
to address range overflows and underflows problems2 .

MoM leverages on the above linear system approach by definingthe basis as

V (~m, ~N) = {G(~m+ ~δ, ~N), G(~m+ ~δ, ~N −~11), . . . , G(~m+ ~δ, ~N −~1R−1)

|~δ = (δ1, δ2, . . . , δM), R− 1 ≤
∑M

k=1δk ≤ R, 0 ≤ δk ≤ R, δk ∈ N}, (9)

which is the set of normalizing constants of models where we have addedR or
R − 1 queue replicas, for all possible choices of the multiplicity increase vector~δ,
and where the models are evaluated over populations~N , ~N−~11, . . ., ~N−~1R−1. Fol-
lowing the probabilistic interpretation of (4), we see thatMoM definesV (~m, ~N) as
the set of all (un-normalized) joint binomial moments of orderR− 1 andR condi-
tioned on different populations. Recalling that conditioning on a population~N −~1s
equals evaluating the network state at arrival times of class s jobs at any tagged
queue [30], we conclude that the recursive computation ofV (~m, ~N) in MoM is
also a recursive evaluation of higher-order moments of queue lengths, including
both the values at equilibrium and the values embedded at jobarrival times. It is
found that such values are sufficient to uniquely determine performance indexes
such as mean throughput and mean queue-lengths [6, 8]. Furthermore, we remark
that other definitions of the basis exist which enjoy similarproperties, but different
computational trade-offs, such as the basis proposed in CoMoM [7]. The CoMoM
basis provides reduced complexity for models having a largenumber of classes by

2 At present, the LinBox open source library (http://www.linalg.org)offers a free
implementation of the Wiedemann algorithm, exact Gaussianelimination, and other exact
methods that can be used to solve the MoM recursion.
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applying the~δ vector in (9) to the population vector~N rather than to the multi-
plicity vector ~m. However, due to the substantially different recursive structure of
this algorithm compared to MoM we do not longer consider it throughout the next
sections.

Finally, we remark that the MoM basis definition in (9) has been shown to meet
the requirements for formulating (7), which is solved usinga recursion that grows
linearly with the total population of jobsN . Therefore, the normalizing constant
can be computed in justN steps instead of theO(NR) orO(NM) steps required by
(5) or (6) when evaluated in isolation. It can be shown that the extra costs required to
adopt exact or modulo arithmetic in implementations lead toa complexity for MoM
of O(N2 logN) time andO(N logN) space with respect to the total populationN .

3 Motivating Example

In the remainder of this paper, we describe a new technique for defining the basis
V (~m, ~N) that offers computational advantages with respect to existing approaches.
Our approach is first illustrated by the motivating example in this section.

3.1 Structure and Improvement of the MoM Recursion

We begin by illustrating the principles of the MoM recursion(7) on a simple queue-
ing network withM = 2 distinct queues andR = 2 classes. The job population
vector is ~N = (N1, N2) and we assume that all queues are distinct. Following
definition (9), the basis of normalizing constants for this model has the struc-
ture depicted in Figure 1. Informally, the figure representsun-normalized joint
binomial moments of orderR − 1 andR: each circle stands for the normaliz-
ing constantsG(~m + ~δ, ~N) and G(~m + ~δ, ~N − 11) in V (~m, ~N), we have ar-
gued previously that these constants are equivalent to binomial moments. Labels
specify the multiplicity increase vector~δ in (9), e.g., the circle labeled+~12 repre-
sents the set{G(~m + ~12, ~N), G(~m + ~12, ~N − 11)}. Arrows indicate dependen-
cies between normalizing constants that arise due to CEs andPCs. In order to
express compactly such dependencies, we often denote in therest of this section
dz,k,s ≡ (z + mk) · Dk,s andG+a,b

c,d ≡ G(~m + ~1a + ~1b, ~N − ~1c − ~1d); similar

abbreviations, such asG−a ≡ G(~m−~1a, ~N), are also used throughout.

Using the new notation, we have that the MoM basis in Figure 1 is the vector

V (~m, ~N) = [G+1,1, G+1,1
1 , G+1,2, G+1,2

1 , G+2,2, G+2,2
1 , G+1, G+1

1 , G+2, G+2
1 ]T
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+11 +12

+11 +12+ 2·11 + 2·12

R-1 added queues

R added queues

Fig. 1. Basis of normalizing constantsV (~m, ~N ) for M = 2 queues andR = 2 classes

and similarly, forR = 2, it is

V (~m, ~N −~1R) = [G+1,1
2 , G+1,1

1,2 , G+1,2
2 , G+1,2

1,2 , G+2,2
2 , G+2,2

1,2 , G+1
2 , G+1

1,2, G
+2
2 , G+2

1,2]
T .

Dependencies arising between these two bases due to CEs fork = 1 are

G+1,1 =G+1 +D1,1G
+1,1
1 +D1,2G

+1,1
2 (10)

G+1,2 =G+2 +D1,1G
+1,2
1 +D1,2G

+1,2
2 (11)

and similarly due to CEs fork = 2 are

G+1,2 =G+1 +D2,1G
+1,2
1 +D2,2G

+1,2
2 (12)

G+2,2 =G+2 +D2,1G
+2,2
1 +D2,2G

+2,2
2 . (13)

The PCs for class1 are instead

N1G
+1 = Z1G

+1
1 + d1,1,1G

+1,1
1 + d0,2,1G

+1,2
1 (14)

N1G
+2 = Z1G

+2
1 + d0,1,1G

+1,2
1 + d1,2,1G

+2,2
1 , (15)

while the PCs for class2 are

N2G
+1 = Z2G

+1
2 + d1,1,2G

+1,1
2 + d0,2,2G

+1,2
2 (16)

N2G
+1
1 = Z2G

+1
1,2 + d1,1,2G

+1,1
1,2 + d0,2,2G

+1,2
1,2 (17)

N2G
+2 = Z2G

+2
2 + d0,1,2G

+1,2
2 + d1,2,2G

+2,2
2 (18)

N2G
+2
1 = Z2G

+2
1,2 + d0,1,2G

+2,1
1,2 + d1,2,2G

+2,2
1,2 . (19)

Note that all normalizing constants used to formulate the above equations are in-
cluded in one betweenV (~m, ~N) andV (~m, ~N − ~1R). Other equations exist that
involve some of the constants inV (~m, ~N) or V (~m, ~N − ~1R), however these also
involve normalizing constants not included in these two bases and for this reason
are not considered in MoM. For example, observe that the PCs for class1 are less
than those for class2 because removing a job of class1 from G+1

1 would require
the constantG+1

1,1 that is not included inV (~m, ~N) or in V (~m, ~N −~1R).

Following the above discussion, the MoM solution approach consists in rearranging

9



the above equations into the linear system























1 −D1,1 · · · · −1 · · ·

· · 1 −D1,1 · · · · −1 ·

· · 1 −D2,1 · · −1 · · ·

· · · · 1 −D2,1 · · −1 ·

· −d1,1,1 · −d0,2,1 · · N1 −Z1 · ·

· · · −d0,1,1 · −d1,2,1 · · N1 −Z1

· · · · · · N2 · · ·

· · · · · · · N2 · ·

· · · · · · · · N2 ·

· · · · · · · · · N2























︸ ︷︷ ︸

A(~m, ~N)






















G+1,1

G
+1,1
1

G+1,2

G
+1,2
1

G+2,2

G
+2,2
1

G+1

G+1

1

G+2

G+2

1






















︸ ︷︷ ︸

V (~m, ~N)

=























D1,2 · · · · · · · · ·

· · D1,2 · · · · · · ·

· · D2,2 · · · · · · ·

· · · · D2,2 · · · · ·

· · · · · · · · · ·

· · · · · · · · · ·

d1,1,2 · d0,2,2 · · · Z2 · · ·

· d1,1,2 · d0,2,2 · · · Z2 · ·

· · d0,1,2 · d1,2,2 · · · Z2 ·

· · · d0,1,2 · d1,2,2 · · · Z2






















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B(~m, ~N)






















G
+1,1
2

G
+1,1
1,2

G
+1,2
2

G
+1,2
1,2

G
+2,2
2

G
+2,2
1,2

G+1

2

G+1

1,2

G+2

2

G+2

1,2






















︸ ︷︷ ︸

V (~m, ~N−~1R)

where · indicates a zero element and the four blocks of the coefficient matrices
represent from top: the CEs (10)-(11) formulated fork = 1, the CEs (12)-(13)
for k = 2, the PCs (14)-(15) forr = 1, and the PCs (16)-(19) forr = 2. The
above structure is exactly the one expressed by (7) and provides a way to compute
recursively the normalizing constants that compose the MoMbasis. This can be
achieved provided that the coefficient matrix is non-singular, which may depend on
the specific values of the service demands. Note in particular that the CEs involve
only constants withδ1 + δ2 = 2, and not those withδ1 + δ2 = 1, because in the
latter case one would need also the value of the constantG in the left hand side of
(6), which is not included in the basis.

The questions addressed in the rest of the paper is whether the integration in the
linear system of the recursive equations used in the Convolution algorithm, which
require some constants not included in the MoM basis, could be performed in a
computationally efficient manner. In particular, we study whether it is possible to
obtain linear systems throughout the recursion that have smaller order than those
used in MoM. We found this to be possible in practice and we show later that the
same model considered in the previous example can be solved by a linear system
having only 6 equations and 6 unknowns instead of the 10 equations and 10 un-
knowns used in MoM. The main observations leading to this improvement are the
following:

(1) we first note that it is possible to add independent equations to the linear sys-
tem shown in this subsection by taking in consideration a generalization of
the convolution expression (5) which corresponds to the equation used in the
Convolution algorithm. This generalization provides independent information
and makes the linear system over-determined.

(2) Given that the linear system is over-determined, we showthat the basisV (~m, ~N)
can be defined in a different way that makes the basis size smaller, while still
allowing to solve recursively the model. This basis size reduction leads to
remarkable computational savings in the linear system solution.
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(3) However, as we explain in Section 4, for models of arbitrary size the addi-
tional independent information comes at the price of additional recursions
over models with different number of queues. We investigatein the rest of
the paper if accepting these additional recursions is cost effective in light of
the computational savings implied by the basis size reduction.

The previous observations are further illustrated in the next subsection.

3.2 Improved Computation of the Basis of Normalizing Constants

We begin by observing that (5) can be seen as a specializationof the recursive
equation used by the Convolution Algorithm [5,26], which wecall throughout this
paper thegeneral convolution expression(GCE)

G(~m, ~N) = G(~m−~1k, ~N) +
R∑

r=1

Dk,rG(~m, ~N −~1r), (20)

for all 1 ≤ k ≤ M . In the GCE, queues are removed through the parameter~m−~1k,
instead of being added as in the CE, up to reaching the termination condition
G(~0, ~N) =

∏R
r=1 Zr/Nr!. This implies that a recursion involving (20) evaluates

models which contain less queues than in the original queueing network, while us-
ing only CEs implies the opposite. However, by formulating (20) for a model with
multiplicity ~m + ~1k instead of~m, it is found that the GCE expression becomes
identical to the CE expression, thus CEs can be seen as a subset of GCEs formu-
lated for normalizing constants with increased multiplicities3 . However, if a GCE
is formulated on models with fewer queues than in the original network, then the in-
formation provided by (20) is linearly independent with respect to the one provided
by (5) because the two equations are defined over models with different network
structure. Since we are only interested in adding independent information to the
MoM linear system,we henceforth refer to GCEs meaning the subset of equations
(20) that are not CEs.

As an example of application of GCEs, it is useful to add (20) to the linear system
of Section 3.1, formulated as

G+1,1 = G+1,1,−2 +D2,1G
+1,1
1 +D2,2G

+1,1
2 , (21)

because the normalizing constantG+1,1,−2 ≡ G(~m + 2 · ~11 − ~12, ~N) lies outside
the basisV (~m, ~N), thus (21) does not reduce to a CE and brings independent in-
formation into the linear system. Note thatG+1,1,−2 is not included inV (~m, ~N)

3 This property also clarifies the term “general” that we have used in the GCE acronym.
Note that GCEs are slightly more general than CEs, for example it is impossible to consider
with CEs a recursion that involves only normalizing constants for models withM ≤ 1.
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or V (~m, ~N − ~1R), yet this term is easily obtained being the normalizing constant
of a model where queue2 has been completely removed, i.e.,m2 = 0. Thus, the
normalizing constant can be computed immediately by the closed-form formulas
for the normalizing constant of a network composed only ofm1 identical queues
with demandsD1,1, D1,2, . . . , D1,R. ForZ1 = Z2 = 0, such normalizing constant
may be obtained by the closed-form formula [25]

G((0, . . . , 0, mk, 0, . . . , 0), ~N) =

(

mk +N − 1

N

)

Fk(~m, ~N). (22)

Thanks to the last observations, we conclude that the addition of (21) to the lin-
ear system of the example model provides additional information and does not
increase the number of unknowns in the linear system. This property has been il-
lustrated for the case of a model without delays, but we show in Section 4.2 that
extends to general models. The main question investigated in the remainder of this
paper is whether this independent information can be used toreduce the size of the
basisV (~m, ~N).

To illustrate the applicability of this concept, consider anew basis

V ′(~m, ~N) = [G+1, G+1
1 , G+2, G+2

1 , G,G1]
T

that is composed by less normalizing constants thanV (~m, ~N), and consider also
the same basis formulated for a model without queueM = 2, i.e.

V ′(~m−~1M , ~N) = [G+1−2, G+1−2
1 , G−2, G−2

1 ]T .

Then, by (5), (6), and (21) we can formulate a linear system

A
′(~m, ~N)V ′(~m, ~N) = B

′(~m, ~N)V ′(~m, ~N−~1R)+C
′(~m, ~N)V ′(~m−~1M , ~N) (23)
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where in the specific example we are considering it is













1 −D1,1 · · −1 ·

· · 1 −D2,1 −1 ·

1 −D2,1 · · · ·

· −d0,1,1 · −d0,2,1 N1 −Z1

· · · · N2 ·

· · · · · N2













︸ ︷︷ ︸

A′(~m, ~N)













G+1

G+1

1

G+2

G+2

1

G

G1













︸ ︷︷ ︸

V ′(~m, ~N)

=













D1,2 · · · · ·

· · D2,2 · · ·

D2,2 · · · · ·

· · · · · ·

d0,1,2 · d0,2,2 · Z2 ·

· d0,1,2 · d0,2,2 · Z2













︸ ︷︷ ︸

B′(~m, ~N)













G+1

2

G+1

1,2

G+2

2

G+2

1,2

G2

G1,2













︸ ︷︷ ︸

V ′(~m, ~N−~1R)

+













· · · ·

· · · ·

1 · · ·

· · · ·

· · · ·

· · · ·













︸ ︷︷ ︸

C′(~m, ~N)








G+1−2

G+1−2

1

G−2

G−2

1








︸ ︷︷ ︸

V ′(~m−~1M , ~N)

.

In the above expression the new vectorV ′(~m − ~1M , ~N) includes the known nor-
malizing constantG+1,−2 ≡ G(~m + ~11 − ~12, ~N) and the blocks of the coefficient
matrix are from the top: the CE fork = 1, the CE fork = 2, the GCE (20), the PC
for r = 1, and the PC forr = 2. Note that this linear system has square coefficient
matrix, thus if the inverse ofA′(~m, ~N) exists the solution of the linear system (23)
provides a new way to recursively compute normalizing constants that is cheaper
than in the MoM linear system (7). Specifically, (23) almost halves the order of the
coefficient matrix with respect to (7), which is significant since the computational
costs of linear system solution are quadratic or cubic, depending on the algorithm
used, with respect to the coefficient matrix order. We stressthat without (21) the
new system (23) would be under-determined, thus GCEs are thekey tool behind
this new approach.

The fundamental issue connected with the approach outlinedin this subsection is
that, for queueing networks larger than the one considered in the previous example,
the normalizing constants inV ′(~m − ~1M , ~N) may not be available from closed-
form expressions. In this case, the computation ofV ′(~m − ~1M , ~N) requires a new
recursive branch that is orthogonal to the usual recursion over the population vec-
tors ~N , ~N −~1R, . . .,~0; this additional recursion is over models having less queues
than in the queueing network under study. The proposed recursive structure is thus
more complex than in MoM and requires detailed investigation, presented in the
next sections, to clarify its computational properties.
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(1,1,0)

3 queues

m=

(1,1,1)

2 queues

1 queue
(1,0,0)

k=3

k=2

linear recursion

(a) B = 1

(0,1,1)

m=

(1,1,1)

(0,1,0) (0,0,1)(1,0,0)

(1,1,0) (1,0,1)

k=2
k=3

k=1 k=3 k=2
k=1

k=3 k=2 k=1

multi-branched recursion

(b) B = M

Fig. 2. Recursion after adding a single or multiple GCEs to the MoM linear system for a
model withM = 3 queues

4 The Generalized Method of Moments

We generalize the observations in Section 3.2 and prove that(20) can help in reduc-
ing the computational costs of the MoM recursion in models with arbitrary number
of queues, classes, and jobs. For ease of exposition, we initially assume that the
model has no delays such thatZr = 0 for all workload classesr. The generaliza-
tion to the case with arbitrary delay values is simple and discussed in Section 4.2.

We begin with observing that, in a model withM distinct queues, (20) can be for-
mulated and added to the MoM linear system either for a singlequeue with given
indexk or jointly for several queues having different indexesk, up to a maximum
of M queues. Let us callbranching factorB, 1 ≤ B ≤ M , the number of equa-
tions (20) that are added simultaneously to the MoM linear system for a given
model withM queues. A comparison of two possible recursion trees arising from
the two limiting casesB = 1 andB = M is given in Figure 2. In Figure 2(a), a
single queue is removed at a time from the model under study, yielding a recur-
sion that evaluates a total ofM models, each differing from the previous one only
for having a queue less. Each model is studied using a different basis of binomial
momentsV (~m, ~N), where~m describes the number of queues considered at the cur-
rent stage of the recursion. The recursion terminates upon reaching models with a
single queue for which the normalizing constant is computedby (22). Conversely,
Figure 2(b) shows the recursive branch that derives from removing simultaneously
multiple queues at each step of the recursion. Note that at the initial step the model
includesM = 3 queues and therefore up to three GCEs can be formulated. Instead,
at the level immediately below there are onlyM − 1 = 2 queues which reduces
the number of GCEs to two; finally the recursion terminates atthe bottom level
by evaluating trivial models with a single distinct queue. Indeed, the recursive ap-
plication of this approach leads to a quick growth in the number of models to be
considered. However, we find in Section 5 the counter-intuitive result that the case
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B = M is the most efficient in practice, and the combinatorial growth of recursions
with multiple branches such as in Figure 2(b) is widely compensated by the con-
current decrease in the computational costs of the linear systems solved throughout
the recursion. The general structure of the recursion arising for arbitraryB values
is investigated below.

4.1 Solution of Generalized Linear System

Studying the structure of the MoM linear system when (20) is included requires to
distinguish between:

• cases where afixednumber of queues is removed in all models considered
throughout the recursion and until termination conditionsare reached. For
instance, in the case shown in Figure 2(a), it is always possible to formulate
the requestedB = 1 GCEs at all steps of the recursion, provided that the
specific queuek chosen in (20) is selected among the queues left in the current
model. Note that cases whereB > 1 can be implemented with this paradigm
only if terminations conditions have been previously computed for models
havingB − 1 queues or more, otherwise one would not be able to formulate
B distinct GCEs for such models since there are onlyB − 1 queues left.

• Cases where the number of queues to be removed isvariableand thusB can
depend on the number of queues left in the model. For instance, the choice
B = M leads to first removingM queues from the initial queueing network,
then for the resulting models withM − 1 queues one could set at mostB =
M − 1, and so forth up to the termination conditions (22) whereB = 1.

Indeed, there is a difference in the recursive structure of the algorithm depending on
B being fixed or variable. Hence, we characterize the MoM linear system solution
in the two cases separately.

4.1.1 Recursion by Fixed Branching Factor

Understanding the properties of the generalized MoM linearsystem requires first
looking into the block matrix reformulation of (7). Let us define abasis of levell,
l ≥ 1, as

Vl(~m, ~N) = {G(~m+ ~δ, ~N), G(~m+ ~δ, ~N −~11), . . . , G(~m+ ~δ, ~N −~1R−1)

|~δ = (δ1, . . . , δM),
∑M

k=1 δk = l, δk ∈ {0, 1}},

which is the set of normalizing constants withl additional queue replicas or, equiv-
alently, a set of un-normalized joint binomial moments of orderl. According to this
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definition, the MoM basis is simply the union

V (~m, ~N) = VR(~m, ~N) ∪ VR−1(~m, ~N)

as we have illustrated in Figure 1. Note that a basis of levell has cardinality

card(Vl(~m, ~N)) =

(

M + l − 1

M − 1

)

R.

Using the new notation, it is easy to see that the MoM recursion (7) may be rewrit-
ten in upper block triangular form as






Al,l Al,l−1

0 NRI






︸ ︷︷ ︸

A(~m, ~N)






Vl(~m, ~N)

Vl−1(~m, ~N)






︸ ︷︷ ︸

V (~m, ~N)

=






Bl,l 0

Bl−1,l Bl−1,l−1






︸ ︷︷ ︸

B(~m, ~N)






Vl(~m, ~N −~1R)

Vl−1(~m, ~N −~1R)




 ,

︸ ︷︷ ︸

V (~m, ~N−~1R)

(24)

wherel = R, the notation0 indicates a matrix of all zeros of proper size,Ai,j and
Bi,j indicate matrices havingcard(Vi(~m, ~N)) rows andcard(Vj(~m, ~N)) columns,
andNRI is diagonal of ordercard(Vl−1(~m, ~N)). In (24) the matricesAl,l, Al,l−1,
andBl,l are defined by the coefficients of the PCs for classesr = 1, . . . , R −
1 and by the coefficients of all the CEs (5). Conversely,Bl−1,l andBl−1,l−1 are
coefficients of the PCs for classR. SpecificallyBl−1,l−1 includes all and only the
ZR terms, thus it reduces toBl−1,l−1 = 0 in the caseZR = 0 studied in this
subsection. Note that a solution of (24) can be easily decomposed into two steps

(1) computeVl−1(~m, ~N) = (Bl−1,lVl(~m, ~N−~1R)+Bl−1,l−1Vl−1(~m, ~N−~1R))/NR

(2) solveAl,lVl(~m, ~N) = −Al,l−1Vl−1(~m, ~N) +Bl,lVl(~m, ~N −~1R)

thus MoM complexity is dominated by the cost of solving a linear system of order

card(Vl(~m, ~N)) = card(VR(~m, ~N)) =

(

M +R− 1

R

)

R.

In the proposed generalization, for a model withM queues andB = 1 we consider
GCEs involving models obtained by removing only queueM . This creates a new
recursive branch such that

A(~m, ~N)V (~m, ~N) = B(~m, ~N)V (~m, ~N −~1R) +C(~m, ~N)V (~m−~1M , ~N),
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which has the following block structure










Al,l′ 0

Al,l Al,l−1

0 NRI










︸ ︷︷ ︸

A(~m, ~N)






Vl(~m, ~N)

Vl−1(~m, ~N)






︸ ︷︷ ︸

V (~m, ~N)

=










Dl,l 0

Bl,l 0

Bl−1,l 0










︸ ︷︷ ︸

B(~m, ~N)






Vl(~m, ~N −~1R)

Vl−1(~m, ~N −~1R)






︸ ︷︷ ︸

V (~m, ~N−~1R)

+










Cl,l′ Cl,l′−1

0 0

0 0










︸ ︷︷ ︸

C(~m, ~N)






Vl′(~m−~1M , ~N)

Vl′−1(~m−~1M , ~N)






︸ ︷︷ ︸

V (~m−~1M , ~N)

(25)

wherel′ is the maximum basis level set for models havingM − 1 queues, and the
matricesAl,l′, Cl,l′, Cl,l′−1, andDl,l include all and only coefficients of the GCEs
that relateVl(~m, ~N) with V (~m, ~N − ~1R) andV (~m − ~1M , ~N). The problem we
consider in this section is the determination of the smallest l and l′ such that the
above linear system can be solved forV (~m, ~N) for arbitrary number of classes,
queues, and jobs. Note that having the smallest possible basis level provides the
largest computational savings in linear system solutions,sincel and l′ determine
the cardinality of the bases being evaluated.

Theorem 1 The basis levell such that (25) can be solved recursively using a fixed
branching factorB = 1, . . . ,M , provided that all coefficient matrices are non-
singular4 , is given by

l = l′ = max{1, R−B},

which is strictly lower than in the MoM basis wherel = R. Thus,Cl,l′−1 ≡ 0 and
the termination conditions for the recursion on the number of queues are known
bases of models havingB − 1 queues or more.

Proof 1 The proof is by induction on the number of queuesM in the model.
CaseM = B − 1. Straightforward, the bases are known.
CaseM ≥ B. We show the following properties that prove the theorem:

P1) V (~m − ~1M , ~N) includes all constants of models withM − 1 queues that are
needed to formulate the GCEs;

P2) Vl−1(~m, ~N) can be obtained recursively fromV (~m, ~N −~1R);

4 For a model whereA(~m, ~N ) is rectangular, the coefficient matrix is defined to be the
matrixAT (~m, ~N )A(~m, ~N ) accordingly with (8).
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P3) if l = max{1, R− B}, then the linear system






Al,l′

Al,l




Vl(~m, ~N) =






Cl,l′Vl′(~m−~1M , ~N)

−Al,l−1Vl−1(~m, ~N)




+






Dl,lVl(~m, ~N −~1R)

Bl,lVl(~m, ~N −~1R)




 (26)

used to computeVl(~m, ~N) in (25) has square or over-determined coefficient
matrix.

Proof of property P1.We have the inductive hypothesis thatl′ = max{1, R − B},
thusV (~m − ~1M , ~N) is available from the previous recursive steps on models with
M − 1 queues. For example, suppose that queueM in a model ofVl(~m, ~N) is
removed by a GCE, then the corresponding normalizing constant is in Vl(~m −
~1M , ~N), using the fixed branching approach it is alwaysl = l′ thus

Vl(~m−~1M , ~N) ≡ Vl′(~m−~1M , ~N),

which proves the property.

Proof of property P2.Let us observe that, similarly to MoM, we can compute

Vl−1(~m, ~N) = (Bl−1,lVl(~m, ~N −~1R) +Bl−1,l−1Vl−1(~m, ~N −~1R))/NR

provided thatNR > 0. If NR = 0, the model hasR − 1 non-empty classes and
the conditionl = max{1, R − B} implies thatVl−1(~m, ~N) is simply the union of
the basisVl(~m, ~N) for a model withR − 1 classes, which is available from previ-
ous recursive computations, with a vector of zeros that represent the normalizing
constantsG(~m + ~δ, ~N − ~1R−1) not included in the basis for models withR − 1
classes.

Proof of property P3.Using the expression of the cardinality of a basis of orderl,
the linear system coefficient matrix is square or over-determined if and only if

nGCE + nCE + nPC ≥

(

M + l − 1

l

)

R, (27)

where the right hand side is the number of unknownscard(Vl(~m, ~N)), while the
left hand side terms describe, respectively, the number of GCEs, CEs, and classr
PCs,r = 1, . . . , R−1. Note that the integer parameterl requiresl ≥ 1, otherwise it
would not be possible to formulate the basisVl−1(~m, ~N). In what follows, we show
that (27) is equivalent tol ≥ max{1, R− B}.

From [6], it is known that

nCE+nPC =

(

M + l − 2

l − 1

)

M+

(

M + l − 2

l − 1

)

(R−1) =

(

M + l − 2

l − 1

)

(M+R−1).
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Instead, the number of GCEs is derived as follows. Without loss of generality, sup-
pose that only the queues labeledk = M −B +1, . . . ,M can be removed, thus up
to a maximum ofB GCEs can be formulated simultaneously for a given model. We
first observe that we can formulate a GCE relatingVl(~m, ~N) andV (~m − ~1M , ~N)
only if the queue removed among theB tagged queues has still unit multiplicity
after addition of thel replicas. Consider a normalizing constant inVl(~m, ~N), where
thus we have addedl queue replicas. Defineh as the number of distinct queues in-
terested by the replica addition and callb ≤ h the number of queues that belong to
the tagged set of cardinalityB. The number of normalizing constants inVl(~m, ~N)
for a given pair(h, b) is thus

(

l − 1

l − h

)(

M − B

h− b

)(

B

b

)

whereM − B is the number of stations that cannot be removed by a GCE and the
first binomial coefficient is the number of ways of distributing thel − h residual
replicas among theh queues selected. Hence, one concludes that the number of
GCEs is

nGCE =
min(M,l)
∑

h=1

(

l − 1

l − h

)min(B,h)
∑

b=0

(

M − B

h− b

)(

B

b

)

(B − b)

being(B − b) the number of queues among theB tagged queues that are left with
unit multiplicity and thus where GCEs can be formulated. By Vandermonde’s con-
volution formula [12], the above expression remarkably simplifies to

nGCE =

(

M + l − 2

l

)

B,

thus condition (27) becomes
(

M + l − 2

l − 1

)

(M +R − 1) +

(

M + l − 2

l

)

B ≥

(

M + l − 1

l

)

R,

that readily simplifies to

l(M +R− 1) + (M − 1)B ≥ (M + l − 1)R.

However, the last expression holds true exactly forl ≥ max{1, R− B}. 2

The theorem states that, given termination conditions for models havingB − 1
queues, it is possible to solve the model by a recursion with fixed branching factor.
However, it should be noted that such technique appears of practical interest only
in the casesB ≤ 2, where one can compute the basis for a model havingB − 1
queues from the closed-form expression (22). Unfortunately, as we show in the
experimental validation section, small values ofB often make the generalized MoM
algorithm scale quite similarly to the original MoM asM andR grow. Hence, we
focus below on the analysis of the more flexible variable branching factor approach.
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4.1.2 Recursion by Variable Branching Factor

In variable branching, the factorB changes while recurring on the number of
queues of the model. Assume that the recursion proceeds in a bottom-up fashion,
evaluating first all models with1 queue, then all models with2 queues, up to the
original model withM queues. Denote byd = 1, . . . ,M the number of queues for
the currently evaluated model. A variable branching factorallows to express the
number of GCEs being as a functionB ≡ B(d) ranging inB(d) = 1, . . . , d. Us-
ing a branching factorB(d) means that all models havingd queues are recursively
computed from models withd − 1 queues throughB(d) GCEs. Without loss of
generality, we assume that for a model withM queues we remove by GCEs the
set of queues indexed byM − B(M) + 1, . . . ,M − 1,M . This brings a recursive
structure of the type

A(~m, ~N)V (~m, ~N) = B(~m, ~N)V (~m, ~N−~1R)+
M∑

j=M−B(M)+1

C(~m, ~N)V (~m−~1j , ~N),

which generalizes straightforwardly to models withd < M queues. The properties
of the recursive structure described above are given by the following theorem.

Theorem 2 Consider a model that is solved recursively using a variablebranching
factorB(d), whered is the number of queues for the models evaluated in the current
step of the recursion. If all coefficient matrices are non-singular, then the model can
be solved recursively provided that the basis for models with d queues has levels

l =max{1, R− B(d)} (28)
l′ =max{1, R− B(d− 1)} (29)

andB(d) is defined such that for all values ofd it is l = l′−1 or l = l′. Termination
conditions are given by (22) for models with a single queue (d = 1).

Proof 2 We have to evaluate for each set of models withd queues the same three
properties verified in the proof of Theorem 1. It is easy to seethatP2 andP3 still
hold afterl is replaced byl(d). PropertyP1 is instead affected by the changes of
the branching factor.

Proof of property P1.Consider a step of the recursion whered queues are evaluated,
then the GCEs involve models havingd+ l andd + l − 1 queues. This means that
the normalizing constants inV (~m − ~1j, ~N), for some values ofj, should include
the ones of models havingd+ l − 1 queues. However, it is sufficient thatl′ = l or
l′ = l − 1 to achieve this result sinceV (~m − ~1j, ~N) includes bothVl′(~m, ~N) and
Vl′−1(~m, ~N). 2

According to the above theorem, if the basis level for modelswith a queue less isl
or l − 1, then it is possible to recursively formulate the linear system of equations.
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Note in particular that ifl′ = l the linear system hasCl,l′−1( ~N) ≡ 0, otherwise it
isCl,l′( ~N) ≡ 0.

Finally, we remark that variable branching includes fixed branching as a special
case, i.e.,B(d) = 1 for d ≥ 1.

4.2 Generalized MoM Algorithm

We begin by observing this general property of variable branching.

Corollary 1 The variable branching factorB(d) = d that adds to the linear system
the maximum possible number of GCEs satisfies the assumptions of Theorem 2.

Proof 3 We havel = max{1, R − d} andl′ = max{1, R − d + 1}, thus we have
that l andl′ are either equal to1 or they differ by a unit whenl = R − d + 1 and
l = R− d, which proves the corollary. 2

Based on the last result, we define the generalized MoM algorithm using a variable
branching with levels

B(d) = min{d, Bmax},

whereBmax is a user specified maximum branching factor. This structureallows to
use in the recursion all available GCEs up to a maximum ofBmax for each model.
Intuitively, this choice ofB(d) corresponds to the case where we use all available
information of the GCEs within the constraints provided by the user on the growth
of the recursion tree. In practice, the choicesBmax = 1 andBmax = M are the most
relevant, since the former corresponds to minimum overheaddue to the growth of
the recursion tree, while the latter yields the largest reduction of the linear system
size. Note also thatBmax = 0 corresponds to the original MoM recursion, since in
this case there are no GCEs and the basis levell = R is sufficient to perform the
recursion without branching into models with less queues.

Compared to other definitions ofB(d), the definition used in the generalized MoM
allows to terminate always by the closed-form formulas (22). The structure of the
generalized MoM algorithm is summarized by the following pseudo-code; further-
more, an illustration of a recursive step of the MoM algorithm is provided in the
final appendix.

ALGORITHM MoM(Bmax)
m(M) = {~m}
FOR d = M − 1,M − 2, . . . , 1
m(d) = { set of models obtained by removing the lastmin{d, Bmax} queues

from each model inm(d+ 1)}
END FOR
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FOR r = 2, . . . , R
INITIALIZE new class
FORnr = 1, . . . , Nr

~n = (N1, N2, . . . , Nr−1, nr, 0, . . . , 0)
FOREACH ~m′ ∈ m(1)

COMPUTEV (~m′, ~N) by the closed-form formulas (22)
END FOREACH

FOR d = 2, . . . ,M
FOREACH ~m′ ∈ m(d)

SOLVE A(~m′, ~n)V (~m′, ~n) = B(~m′, ~n)V (~m′, ~n−~1R) +C(~m′, ~n)V (~m′ −~1M , ~n)
END FOREACH

END FOR

END FOR

END FOR

RETURN normalizing constants inV (~m, ~N)
END ALGORITHM

The generalized MoM algorithm computes the joint binomial moments inV (~m, ~N)
from which performance indexes can be easily derived [6, Sec. 4.3]. The execution
of the algorithm is organized as a double recursion on the number of queues and
jobs. It should be noted that the lowest computational costsare usually obtained
if the iteration on the number of queues is executed as the inner loop, since in the
opposite case one should keep in memory a set of normalizing constants for allN
populations evaluated in the recursion. Therefore queues are added in a bottom-
up fashion through the innermost loop on the variabled, up to reaching the target
model withM queues. For each value ofd, we consider all models~m′ that are
analyzed due to the recursive branching specified by theB(d) function. In the out-
ermost loops onr andnr, jobs are added progressively one class at a time. An
initialization phase is required before processing a classpopulation in order to in-
crease the basis level if the levell increases when moving from a model withr
classes to a model withr+1 classes. Letl be the basis level for classr and letl∗ be
the basis level for classr + 1. Then, if l∗ = l, the basisVl( ~N) is immediately con-
verted into the basisVl∗( ~N) by adding zero entries for the normalizing constants
G(~m + ~δ, ~n − ~1r+1). Conversely, ifl∗ = l + 1 we fall in the case discussed in the
proof of propertyP2 in Theorem 1, whereVl( ~N) providesVl∗−1( ~N) and the basis
Vl∗( ~N) is obtained from the reduced linear system






Al∗,l
′

∗

Al∗,l∗




Vl(~m, ~N) =






Cl∗,l
′

∗
Vl′∗(~m−~1M , ~N)

−Al∗,l∗−1Vl∗−1(~m, ~N)






wherel′
∗

is the basis level used for models withr + 1 classes and a queue less, and
which uses the conditionVl(~m, ~N−~1r+1) = ~0 since there are no jobs of classr+1.
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Finally, we observe that the application of the generalizedMoM approach to models
with arbitrary delaysZr requires the following simple modification. Upon consid-
ering a model with a single queue, the corresponding normalizing constant cannot
be evaluated directly by (22), since this does not include the delaysZr. In practice,
such delays cannot be incorporated in the termination formula directly and an al-
gorithmic evaluation of the normalizing constant becomes necessary. However, it
is immediately found that the recursive computation of the normalizing constants
with a single queue follows efficiently from (24). In particular, the order of the
linear system coefficient matrix for a model with a single queue is given by

(

1 +R − 1

R

)

R = R,

which is inexpensive for all models of practical interest.

4.3 Handling Singular Models

In the previous sections, we have assumed that the models being evaluated lead to a
non-singular coefficient matrix in all recursive steps of the generalized MoM algo-
rithm. Indeed, such condition is a basic requirement for theapplication of systems
of linear equations to the solution of closed queueing networks. Indeed, as observed
also in our earlier works [6–8], there exist a number of situations where it is known
in advanced that the linear system will be singular. These are as follows:

• Sparsity of service demands. This case arises when one or more service de-
mands are equal to zero. This leads the coefficient matrices to include column
of all zeros. This situation can be corrected by removing such columns from
the evaluation, an approach that leads to considering an over-determined (and
thus still solvable) system of linear equations.

• Identical queues. If two queues are replicas of each others, it is mandatory that
this is accounted for in the multiplicity vector. In fact, iftwo identical queues
are considered explicitely assuming that for each of them the multiplicity is
unitary, then the system of linear equations would include identical rows.

• Identical demands for some workload classes. A problem that is harder to
address arises when there exist a subset of classesr such thatDk,r = Dk′,r

for two distinct queuesk andk′. This situation leads again to a singular coeffi-
cient matrix, but unfortunately does not appear possible tocorrect this problem
within the MoM framework. A solution proposed in our earlierwork, that ap-
plies immediately also to the generalized MoM is to perform the computation
of the normalizing constants for a subset of classes under anhybrid algorithm
that jointly uses the MoM linear system and the LBANC or MVA algorithm,
see the appendix in [7] for a technical discussion on the structure of such re-
cursion. It can be proved similarly to see [7] that such hybrid algorithm would
still outperform MVA or LBANC, although its effectiveness would be reduced
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compared to the application of MoM on a non-singular model with the same
number of queues, jobs, and classes.

• Other degeneracies. Finally, there exist rather infrequent cases where the spe-
cific values of demands lead to a singular coefficient matrix.These cases can
be addressed again using the hybrid algorithm approach. Alternatively, if the
service demand values are obtained from measurement, a lesselegant solution
involves increasing the number of digits used to specify initially the service
demands. This approach would clearly leads to numerical instabilities in stan-
dard linear algebra solver, however this is no longer true ifexact algebra is
used, as we have assumed for MoM, since the condition number does not
affect the correctness of the final solution.

5 Computational Requirements

We derive analytical formulas to estimate the computational requirements of the
generalized MoM algorithm. In general, time requirements may vary in real imple-
mentation due to the specific choice of the programming language, of the linear
system solver, and of the technique for the exact representation of the normal-
izing constants. Below, we propose an analysis assuming that the linear system
solver uses Gaussian elimination for dense matrices based on LU decomposition
and back-substitution [18]. This case enjoys simple formulas for the number of
operations used for LU operations and generally provides anupper bound to the
costs of an optimized implementation using more advanced linear system solution
techniques that leverage on sparsity of the matrices. To cover also the latter case,
we report in Section 6 experiments with a prototype implementation based on the
Wiedemann algorithm [31].

5.1 Time Requirements

The components of the time requirements of the generalized MoM algorithm of
Section 4.2 are as follows:

(1) N outer loop iterations onr andnr

(2) M inner iterations ond
(3) for each setm(d), the cost of evaluatingcard(m(d)) models
(4) each evaluation solves a linear system of ordercard(Vl(~m

′, ~N))
(5) overheads due to the exact representation of the normalizing constants

We now derive formulas for the last three components of the above list.
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Component (3). The cardinality ofm(d) is given by the following expression

card(m(d)) =

(

B(d+ 1) +M − d− 1

M − d

)

,

which can be easily proved by induction on the recursion stepM −d, starting from
the initial conditioncard(m(M)) = card({~m}) = 1. The formula states that, at
the step of the recursion where there ared queues, we have a number of models to
evaluate that is determined by the branching levelB(d + 1) of the step above and
by the number of queuesM − d that cannot be removed by GCEs. For example,
whend = M − 1 we have

card(m(d)) =

(

min{M,Bmax}

1

)

= Bmax,

which is exactly the number of different ways of removing up to Bmax distinct
queues from a group ofM ≥ Bmax.

Component (4). For each model~m′ ∈ m(d), while processing classr we have
l = max{1, r − B(d)} = max{1, r −min{d, Bmax}} which implies

card(Vl(~m
′, ~N)) =

(

d+ l − 1

d− 1

)

r =

(

d+max{1, r −min{d, Bmax}} − 1

d− 1

)

r.

Recall that for a dense matrix of ordern, a linear system can be solved by Gaussian
elimination in(2/3)n3 operations for LU decomposition andn2 operations for LU
back-substitution [18]. Noting that the linear systems evaluated in the generalized
MoM require LU decomposition only for adding the first job of anew class, while
the remaining jobs one can reuse the same decomposition, it follows that evaluating
the linear systems for all the population of classr requires approximately(2/3)n3

at the first population for storing computing the decomposition, followed byn2 op-
erations at each population to solve the linear system, wheren = card(Vl(~m

′, ~N)).
Note that this is a pessimistic estimate since it ignores sparsity of matrices.

Component (5). Similarly to [6], it can be shown that for a model withd queues the
overhead due to the exact arithmetic representation of the normalizing constants
can be approximated as

S(r, nr, d) ≈ ndgt log ndgt, ndgt =

(

nr +
r−1∑

s=1

Ns

)

log(d+ l − 1),

wherel = max{1, r −min{d, Bmax}} is the basis level andndgt is an approxima-
tion for the number of digits in the normalizing constant. This approximation fol-
lows by considering the worst-case number of digits for a normalizing constant of a
balanced queueing network where all demands are equal toD = maxk,r{Dk,r, Zr},
which can be easily analyzed by closed-form formulas [6].
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Summary. Based on the above derivations, we conclude that the time requirements
of the generalized MoM algorithm solved using exact Gaussian elimination may be
approximated by the expression

R∑

r=1

M∑

d=1

(

B(d+ 1) +M − d− 1

M − d

)


2

3

((

d+ l − 1

d− 1

)

r

)3

+
Nr∑

nr=0

((

d+ l − 1

d− 1

)

r

)2

S(r, nr, d)



 ,

for Bmax ≥ 1, where the basis level isl = max{1, r−min{d, Bmax}}. We remark
that the termnr = 0 accounts for the class initialization phase, which requires
solution of the reduced linear system described in Section 4.2. In the special case
Bmax = 0, the algorithm reduces to the original MoM and the the inner summation
on d does not appear in the time requirements expression. The leading term of the
above expression scales asO(N2 logN) as the total population grows.

Figure 3 illustrates the trend of the time requirements for amodel with same num-
ber of queues and classes, i.e.,M = R . This is the most challenging case for the
original MoM [6]. This case also shows the maximum theoretical gap between the
performance of MoM(M) and the performance of the original algorithm. The figure
illustrates that MoM(0) and MoM(1) are asymptotically very similar as the number
of queues and class grows. Conversely, MoM(M) appears to be much faster than
the other methods starting from models with4 or 5 classes. We have observed in
the experiments reported in Section 6 that with techniques different from Gaussian
elimination, namely with the Wiedemann algorithm, this canbecome visible from
models starting from5 or 6 classes. This is because such methods have computa-
tional requirements that are lower than in Gaussian elimination, thus the effects of
a reduced basis size are initially compensated by such increased efficiency. Nev-
ertheless, also in the experiments reported later it is evident that the generalized
MoM scales much better than the original MoM.

Finally, figures 5 and 4 illustrate the growth in time requirements whenM = 3R or
R = 3M . The trends confirm that MoM(M) improves over MoM(0) and MoM(1)
whenever the number of classes is greater than4 or 5. It is also found that the
relative improvement becomes larger whenM is much larger thanR. This is a
desirable property since, as shown in [7], the MoM algorithmis most effective for
models with more queues than classes, while for models in which R > M the
CoMoM algorithm proposed in [7] is preferable.

5.2 Space Requirements

Space requirements of the generalized MoM algorithm are determined by

(1) the space requirements for storing the bases,
(2) the space requirements for solving the linear systems.
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Fig. 3. Approximate time requirements of MoM(Bmax) for M = R when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.
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Fig. 4. Approximate time requirements of MoM(Bmax) for M = 3R when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.

Both components grow with the number of jobs, classes, and queues. Thus, without
loss of generality, we can estimate the worst-case storage occupation of the gener-
alized MoM at the last step of the recursion when the population vector is~n = ~N
andr = R.

Component (1). This is given by

M∑

d=1

2card(m(d))S(R,NR, d)
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Fig. 5. Approximate time requirements of MoM(Bmax) for R = 3M when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.

which expands to

M∑

d=1

2

(

B(d+ 1) +M − d− 1

M − d

)((

d+max{1, R−min{d, Bmax}} − 1

d− 1

)

R

)

S(R,NR, d).

The factor2 in the above expression follows from the fact that at most we need to
store bothV (~m, ~N) andV (~m, ~N − 1R) in memory to perform the recursion.

Component (2). Recall that, for a dense matrix of ordern, the storage requirement
of LU decomposition and back-substitution is approximately n2. Hence the maxi-
mum space requirement in the generalized MoM may be estimated

max
d

((

d+max{1, R−min{d, Bmax}} − 1

d− 1

)

R

)2

,

which is independent ofS(R,NR, d) since the number of digits in the coefficient
matrixA( ~N) does not grow beyond range during the recursion.

Summary. The expression for the space requirements of the generalized MoM are
obtained immediately by taking the maximum between components (1) and (2).
Note that these yield a space complexity ofO(N logN) as the total populationN
grows.

Figure 6 illustrates space requirements for models withM = R queues and classes,
assuming dense representation of the involved matrices. Similarly to Figure 3, we
see that MoM(M) is superior to MoM(0) and MoM(1) also with respect to storage
requirements. This is essentially due to the quadratic growth of the elements of the
linear system coefficient matrix, which is very sensitive tothe basis levell. Since
l is minimized in MoM(M), this method is clearly more efficient than the other
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Fig. 6. Approximate space requirements of MoM(Bmax) for M = R when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.
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Fig. 7. Approximate space requirements of MoM(Bmax) for M = 3R when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.

techniques. Yet it should be observed that all techniques appear to be feasible over
a large range of queueing networks, only for difficult modelshaving more than8
queues and classes or more MoM(M) could help in addressing inefficiencies of
MoM(0) and MoM(1). Thus, we conclude that the main advantage of MoM(M)
over MoM(0) and MoM(1) is the significant decrease of time requirements for
models with several classes and queues.

Finally, figures 8 and 7 confirm the above observations on cases whereR = 3M
andM = 3R. Similarly to the time requirements, it is found that the greatest im-
provements are obtained whenM is much larger thanR, whereas the computational
costs of the three methods tend to converge whenR is larger thanM .
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Fig. 8. Approximate space requirements of MoM(Bmax) for R = 3M when solved with
Gaussian elimination. The total population in the network is set toN = 100 and balanced
across classes.

6 Experimental Results

We have performed an experimental campaign to provide evidence that the gen-
eralized MoM algorithm is more efficient than the original MoM on models with
several queues and classes. In particular, due to the relative efficiency of existing
algorithms on models whereM >> R andR >> M , we have focused on the most
difficult case whereM = R.

We have defined a prototype implementation of the generalized MoM algorithm
based on the Wiedemann algorithm solver [31] of the LinBox open source library
(http://www.linalg.org). We have then run an experimental campaign on
36 models having different numbers of queues, classes, and jobs to illustrate the
growth of computational requirements in the MoM(Bmax) algorithm introduced
in Section 4.2. Experiments have been run on a dual-core Intel CPU with 3GHz
frequency and4GB of RAM. Service demands are random integers in the range
[1, 50]; think times are set to zero. For instance, letD = {Dk,r} be the matrix
of service demands such that a column refers to a given class and a row refers to
a given queue. The model used forM = R = 7 for all population values is as
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follows:

D =
























9 23 44 9 16 38 14

27 33 28 2 25 18 49

32 15 38 1 14 30 10

2 48 45 30 37 24 16

24 35 42 31 7 5 21

44 11 7 46 38 42 13

7 28 10 37 41 35 11
























The maximum branching factor has been chosen asBmax = {0, 1,M} such that

• MoM(0) is the original MoM algorithm
• MoM(1) is a fixed branching recursion generalizing the one in Figure2(a)
• MoM(M) is a variable branching recursion generalizing the one in Figure 2(b)

Results of the proposed experimental campaign are illustrated in Table 1. The ta-
ble reports the cumulative processor time for the solution of the generalized MoM
linear systems (cpu) and the respective maximum memory occupation (mem). We
have set a time limit for execution of the slowest algorithm of 30 minutes. Under
this constraint all techniques complete models with up to9 queues and classes, with
the hardest model being for a population ofN = 100 jobs divided homogeneously
over the classes (fractional population values are roundedup to the closest integer).

Experimental results suggest the following remarks.

For the simplest models whereM = R = 3, the original MoM is slightly more effi-
cient than MoM(1) and MoM(M). However, computational requirements are very
low for all techniques. The relative efficiency of MoM(0) may be explained by the
fact that additional recursions on the number of queues are not truly advantageous
in this case, since the ordern of the linear system coefficient matrix is very small
in all algorithms (n ≤ 30).

Models withM = R = 4 illustrate cases where the MoM(1) algorithm is the most
efficient. These models are intermediate cases where recurring on the number of
queues can be advantageous with respect to MoM(0), provided that the recursion
tree is not too large. This is because the size of the MoM(0) coefficient matrices is
only n = 140, hence a combinatorial recursion tree has size that is comparable in
magnitude and may not provide substantial savings.

Models withM = R = 5 show the first case where MoM(M) becomes more
efficient than MoM(0) and MoM(1). It is interesting to note that MoM(0) requires
about100% more CPU time than MoM(1) and MoM(M), while the latter have
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Table 1
Evaluation of the generalized MoM. Fractional class populations are rounded up.

MoM(0) MoM(1) MoM(M)
N M R cpu [s] mem [Mb] cpu [s] mem [Mb] cpu [s] mem [Mb]

10 3 3 0.01 2.4 0.02 2.4 0.04 2.4

10 4 4 0.15 2.4 0.11 2.4 0.31 2.4

10 5 5 2.28 2.7 1.01 2.4 1.01 2.4

10 6 6 28.38 4.1 15.83 3.1 3.67 2.4

10 7 7 740.75 30.8 356.63 27.3 14.15 2.4

10 8 8 LIMIT N /A LIMIT N /A 186.74 2.5

10 9 9 LIMIT N /A LIMIT N /A LIMIT N /A

50 3 3 0.31 2.4 0.34 2.4 0.91 2.4

50 4 4 1.79 2.4 1.31 2.4 1.52 2.4

50 5 5 22.02 2.8 10.0 2.7 9.19 2.4

50 6 6 393.02 4.7 166.65 3.5 31.98 2.5

50 7 7 LIMIT N /A LIMIT N /A 164.39 2.5

50 8 8 LIMIT N /A LIMIT N /A 1837.45 3.3

50 9 9 LIMIT N /A LIMIT N /A LIMIT N /A

100 3 3 1.06 2.4 1.08 2.4 1.91 2.4

100 4 4 5.48 2.4 4.44 2.4 10.6 2.4

100 5 5 78.97 2.9 37.24 2.8 35.02 2.5

100 6 6 1324.19 5.4 533.02 4.2 111.87 2.5

100 7 7 LIMIT N /A LIMIT N /A 512.10 2.5

100 8 8 LIMIT N /A LIMIT N /A LIMIT N /A

very similar computational requirements. Hence, one concludes thatM = R = 5
may be used as a practical threshold to discriminate whetherMoM(1) or MoM(M)
should be used for model solution.

The caseM = R = 6 provides clear evidence of the computational gains of
MoM(M) over the other techniques on the most challenging models. Irrespectively
of the population size value, MoM(M) requires approximately one order of magni-
tude less in time requirements than MoM(0). This is because the maximum order of
the MoM(0) matrices isn = 2772, while for MoM(M) it is justn = 60. MoM(1)
provides substantial gains over MoM(0) sincen = 1512, yet these gains are not
competitive with the ones of MoM(M), especially for large populations. Interest-
ingly, the ratio of cpu times of MoM(1) and MoM(M) is roughly constant asN
increases.

It is easy to see that that these trends are expected to make the gap between MoM(M)
and the other methods even bigger for models with more than6 queues or classes.
The caseM = R = 7 show that MoM(M) is always efficient, whereas MoM(0)
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and MoM(1) can solve within the time limits models with just ten jobs. Interest-
ingly,M = R = 8 show a case where MoM(M) still scales for networks with up to
N = 50 jobs. We have been also successfully run MoM(M) in the caseN = 100,
but the execution takes more a few hours, thus falling outside the time limit of
2000s. Finally, the caseM = R = 9 represents a limit case where none of the tech-
nique can successfully obtain a solution. For such models, MoM(0) and MoM(1)
are too memory consuming. Conversely, MoM(M) becomes quite expensive due
to the combinatorial growth in the number of models to be solved at each step of
the recursion, therefore the bottleneck is computational time rather than memory.

Storage requirements are instead low for all algorithms; note that the value2.4Mb
appears frequently in the results since this is a minimum memory allocation per-
formed by the LinBox library for linear system solution. Lowmemory require-
ments are a substantial advantage of the higher-order moment approach compared
to established techniques such as the multiclass MVA, whereoften it is a mem-
ory bottleneck to limit applicability rather than time requirements. We notice that,
among the MoM techniques, the MoM(M) algorithm appears also in this case the
best choice, since storage requirements did not change significantly throughout the
experimental campaign.

Comparison with Convolution. To illustrate that the generalized MoM provides
substantial gains over techniques that do not follow the higher-order moment ap-
proach, we have also run the Convolution algorithm on the most challenging models
with N = 100 jobs. For models of this scale, Convolution has the lowest compu-
tational costs among all algorithms that do not follow the higher-order moments
approach, for instance, it is usually orders of magnitude faster than RECAL [7].
For the models with the smallest number of classes, cpu timesof Convolution are
quite similar to the best between the three MoM algorithms, e.g., forM = R = 5
Convolution requires34.98 seconds. The relative efficiency of Convolution is also
because the populationN = 100 is only moderately large, however on larger pop-
ulation sizes the method becomes intractable compared to MoM [8]. However, we
have found that the storage requirements of Convolution grow very quickly as the
model complexity increases. For a model withM = R = 4, Convolution requires
145MB, which grows to1638MB for M = R = 5: this quick growth makes mod-
els with larger number of queues and classes infeasible to analyze with Convolution
due to a memory bottleneck. Thus, the examples forM = R = 6 document a case
where the generalized MoM is superior to Convolution. This makes the case that
the proposed methodology improves computational analysistechniques for closed
queueing network models.
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7 Conclusions

In this paper, we have presented a generalization of the Method of Moments (MoM),
a recently proposed algorithm for the exact analysis of multiclass queueing network
models which are widely used in capacity planning of computer systems and net-
works [6, 7]. We have integrated in the MoM equations also therecursive formula
used in the Convolution Algorithm [5,26], here called the general convolution equa-
tion (GCE). We have shown that using the GCE in MoM significantly changes the
structure of its recursion leading to the evaluation of models with different num-
ber of queues, which can be solved much more efficiently than the larger models
considered by MoM. As a result, the computational costs in time and space of the
generalized algorithm are much smaller than the original MoM recursion. Future
work will focus on a similar extension for the CoMoM algorithm presented in [7].

A MoM(M) Linear System: an Illustrative Example

This appendix illustrates the structure of the MoM(M) recursion on an example.
We consider a model with the following demands:D1,1 = 2, D1,2 = 4, D1,3 =
8, D2,1 = 5, D2,2 = 6, D2,3 = 3, D3,1 = 10, D3,2 = 3, D3,3 = 6, Z1 = Z2 =
Z3 = 0, thus the model hasM = 3 andR = 3 classes. We evaluate the final
step in the solution of a model with population~N = (1, 1, 1). The basis levels
are l = l(d) = 1 for all d, and the intermediate models evaluated arem(1) =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}, m(2) = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, andm(3) =
{(1, 1, 1)}. We do not report the recursion ond = 1 since these models have a
single queue and are solved by (22). As in the proof of Theorem1, after computing
the basesVl−1(~m, ~N) using the CEs of classr = R = 3, the basisVl(~m, ~N) is
obtained by the reduced linear system






Al,l′

Al,l




Vl(~m, ~N) =






∑

i∈m(d) C
i
l,l′Vl′(~m−~1i, ~N)

−Al,l−1Vl−1(~m, ~N)






︸ ︷︷ ︸

V ∗

+






Dl,lVl(~m, ~N −~1R)

Bl,lVl(~m, ~N −~1R)






Table A.1 illustrates the above linear system for the example model. This example
case is interesting for two reasons: first, it involves the basesVl−1(~m, (1, 1, 0)),
which include zero elements corresponding to normalizing constants for population
(1, 1,−1). Such normalizing constants are used only in the CEs of classr = R = 3

for computation of the basesVl−1(~m, ~N). Additionally, this case illustrates a basis
level where the coefficient matrix for the model~m = (1, 1, 1) is rectangular and
overdetermined. This is because Theorem 1 and Theorem 2 do not assure that the
coefficient matrices used in the generalized MoM recursion are square. Yet the
solution of the linear system follows easily by (8).
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


Al,l′

Al,l








Dl,l

Bl,l



 V ∗ Vl(~m, ~N −~1R) Vl(~m, ~N)

d = 3, ~m = (1, 1, 1), ~n = (1, 1, 1)
























1 −10 −3 · · · · · ·

1 −5 −6 · · · · · ·

· · · 1 −10 −3 · · ·

· · · 1 −2 −4 · · ·

· · · · · · 1 −5 −6

· · · · · · 1 −2 −4

1 −2 −4 · · · · · ·

· · · 1 −5 −6 · · ·

· · · · · · 1 −10 −3

· −2 · · −5 · · −10 ·

· · −4 · · −6 · · −3

















































6 · · · · · · · ·

3 · · · · · · · ·

· · · 6 · · · · ·

· · · 8 · · · · ·

· · · · · · 3 · ·

· · · · · · 8 · ·

8 · · · · · · · ·

· · · 3 · · · · ·

· · · · · · · 6 ·

· · · · · · · · ·

· · · · · · · · ·

















































5100

7176

5680

7830

9464

9720

7920

7920

7920

−7920

−7920












































399

17

0

516

19

0

530

16

0







































14490

525

582

15074

466

546

17956

454

772




















d = 2, ~m = (1, 1, 0), ~n = (1, 1, 1)












1 −5 −6 · · ·

· · · 1 −2 −4

1 −2 −4 · · ·

· · · 1 −5 −6

· −2 · · −5 ·

· · −4 · · −6

























3 · · · · ·

· · · 8 · ·

8 · · · · ·

· · · 3 · ·

· · · · · ·

· · · · · ·

























1536

2160

2156

2156

−2156

−2156

























172

14

0

260

16

0

























5100

348

218

5680

292

214













d = 2, ~m = (1, 0, 1), ~n = (1, 1, 1)












1 −10 −3 · · ·

· · · 1 −2 −4

1 −2 −4 · · ·

· · · 1 −10 −3

· −2 · · −10 ·

· · −4 · · −3

























6 · · · · ·

· · · 8 · ·

8 · · · · ·

· · · 6 · ·

· · · · · ·

· · · · · ·

























1536

4320

3328

3328

−3328

−3328

























200

11

0

288

10

0

























7176

324

400

9464

268

576













d = 2, ~m = (0, 1, 1), ~n = (1, 1, 1)












1 −10 −3 · · ·

· · · 1 −5 −6

1 −5 −6 · · ·

· · · 1 −10 −3

· −5 · · −10 ·

· · −6 · · −3

























6 · · · · ·

· · · 3 · ·

3 · · · · ·

· · · 6 · ·

· · · · · ·

· · · · · ·

























2160

4320

3510

3510

−3510

−3510

























390

15

0

390

12

0

























7830

234

330

9720

234

510













Table A.1
Elements of the MoM(M ) recursion for an example model withM = 3 andR = 3
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