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Abstract

We present an overview of the key building blocka design framework for modeling
and optimization of biomedical systems with maicu® on leukemia, that we have
been developing in the Biological Systems Engimggtiaboratory and the Centre for
Process Systems Engineering at Imperial Collegee Tlamework features the
following areas: (i) a three-dimensional, biomirogein vitro platform for culturing both
healthy and diseased blood; (ii) a novel, hollobefi bioreactor that upgrades tlis
vitro platform to enable expansion and continuous héinge®f healthy and diseased
blood; (iii) a global optimization-based approadn the design and operation of the
aforementioned bioreactor; (iv) a pharmacokinetic plharmacodynamic model
representing patient response to Acute Myeloid kel treatment; (v) an
experimental framework for cell cycle modeling ampliantitative analysis of
environmental stress. This manuscript recapitulttesprogress made in the different
areas as well as the way in which these areasommected, finally leading to a hybrid
in vitro/in silico platform which allows the optimization of thex vivoexpansion of
healthy and diseased blood.

Keywords: Biomedical design framework; Red blood cell prctibn; Bioreactor
design; Chemotherapy modeling and optimization| Gglle; Environmental stress

1. Introduction

One of the most challenging features of modelimym#dical systems is bridging the
gap between phenomena occurring at multiple sc&deswveen molecular, cellular,
patient and population scales, an appropriate latms is needed to evaluate the effects
small scale processes have at large scale andveisa- The study of normal and
abnormal blood production faces these challenges raany others related to the
complexity of the underlying biological system atfte heterogeneity observed in
hematological malignancies. Deriving patient datedlly is not always possible, thus
makingex vivoobservations and studies imperative. For therlattée accomplished it
is essential to develop appropriate experimentalpsethat reproducén vitro the
biological characteristics and behavior of th&ivo system.
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Blood cell production takes place in the bone mar(8M) which is a highly porous
three dimensional organ of high complexity, whereégmatopoietic stem cells (HSCs)
reside. HSCs are unique due to their ability tp:s@lf-renew (ii) mature/differentiate
towards functional cellular units of the immune amdygen-carrying systems
(Quesenberry et al., 2001).

BM failure is characterized by the inability of HS&@ produce healthy blood cells at an
acceptable rate and quality, leading to a varidthealth issues and diseases, among
which lies leukemia. Leukemia is a cancer of thed#epoietic system characterized by
the incapability of blood progenitors (HSCs) to orat normally, leading to the
accumulation of immature white blood cells in thenb marrow (Williams, 2001).
Acute Myeloid Leukemia (AME9 one of the most common types of leukemia;facf
only cells from the myeloid blood lineage. Accomlino Cancer Research UK,
approximately 8,000 cases of AML occur annuallyhie UK alone.

The most frequent treatment for AML ¢hemotherapywhich aims at eliminating the
cancerous population in the BM through attackinghhi proliferative cells (immature
blasts) (Cancer Research UK, American Cancer SQcighis represents a reactive
approach to the disease initiating after the deseagmptoms appear. Current
chemotherapy treatment protocols are designed basgate-clinical animal experiments
and on empirical clinical trials as well as thewdref experience of subspecialist physicians.
However, a very high heterogeneity in the leuketharacteristics between patients but also
within a specific patient exists (Preisler et #095), consequently leading to unpredictable
treatment outcomes. Clinical treatment protocolsld;otherefore, benefit from a more
rational and personalized treatment schedulintestya

In addition to receiving drug treatment, theseqrds (as well as those undergoing other
diseases of the blood or severe accidents) refp@igeient blood transfusions. Despite
the success of blood donations in covering the :i@ednost of the countries (92M
blood units collected globally [WHO, 2011]), thasea shortage in rare types of blood
and a raising demand for regular availability. Tisisncreasingly becoming a problem
for health services; rare blood is extremely expensespecially for patients requiring
frequent transfusions (Tahhan et al., 1994; Mengl.e2013). A promising solution to
cover blood shortages either in time or in typ®wiproduce it artificially. However, the
techniques currently available are extremely exipenat $8,330 per unit of artificial
blood, compared to $225.42 on average per donatgiinon-rare blood (Timmins
and Nielsen, 2009) or up to $3,025 per donated afniére blood (Meny et al., 2013).
Clearly, a more cost-effective solution needs ting@emented in order to shift towards
artificial blood supply.

The current trends and developments in genomicgepmics and metabolomics open
the possibility for obtaining specific informatioelated to the genetic characteristics,
together with the proteomic and metabolomics pesfibf an individual patient, which
can then be used towardsrsonalized medicinén this context, personalized healthcare
is expected to deliver step changén quality and value of care, through more precise
and personalized diagnostics as well as cost-efeeeind targeted therapies. Some of
the challenges in the delivery of personalized wiedilie in (a)in vitro: thefidelity and
validity of current experimental systems used teestigate human diseased) In
silico: the integration of patient-specific and eé#se-specific datasets and the
development of validated predictive adaptive moadeid (c)In vivo: the application of
these models to identifgyimple targetsand more efficient, yet less toxic therapies and
drugsfor a specific condition
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Figure 1: A framework for the optimization of blopdoduction and personalized leukemia
treatment in AML

Here, we present the fundamental features of aegiated framework which aims to
address (some of) these challenges - with mairsfoadeukemia.

2. Design framework.

Fig.1 presents key building blocks of the integlatdesign framework under
development at the BSEL in the Imperial College EP8 involves (i) a suitable
platform for on-demand production of artificial bl (regularly needed for transfusions
in critical patients); and (ii) an optimization atiegy for personalized chemotherapy
treatment design through closing the loop: frionvivo to in vitro andin silico. More
specifically, hematopoietic cells donated from ANdatients are cultured ex vivo via
appropriately-designed in vitro platforms (SectioBs 4 & 6) which expose to
measurement a variety of parameters crucial forcereer evolution: cell growth; cell
cycle kinetics; metabolic evolution under approtrignvironmental conditions. The
parameters derived from tlire vitro studies are incorporated in advanced mathematical
tools (Section 5) that enable the prediction ofiqmdtresponse to chemotherapy. In
parallel, umbilical cord HSCs are cultured in a rbimetic, cost-effective, 3D
bioreactor, expanded and differentiated into rego#l cells by careful signaling to
externally control the same process of blood prtdocthat is diseased in leukemia
(Sections 3 & 4).

3. A novel 3D bioreactor for ex-vivo culture of healthy and diseased blood

As mentioned in Section 1, both normal and abnotmahatopoiesis take place in the
BM. A first step towards understanding and furtbptimizing chemotherapy for AML
treatment is executing vitro studies that recapitulate threvivo micro-environment.
Blood cell production naturally occurs in the banarrow, where stem cells receive the
appropriate signals to proliferate and speciall4eese signals consist of both chemical
(nutrients, oxygen and growth factors, which argnaling proteins that provide
extracellular stimuli to the cells) and mechani¢aihesion, cell-cell contact) stimuli
that are unique to the 3D microenvironment (Pantsikeet al., 2005). However, most
of current research is still performed in under 2Diture systems, wherein the
mechanical stimuli received by the cells are nameaind thus the cellular proliferation
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is reduced. This limitation is typically overcomg imcreasing chemical stimulation in
the form of the expensive, specialized growth fagmteins (Timmins and Nielsen,
2009).

Taking into consideration the architecture of thid Biicroenvironment, we describe, in
the sequel, the development of two BDvitro platforms which serve as amvitro bone
marrow mimicry allowing the expansion of normal afiseased blood.

3.1.A high throughput 3D micro-bioreactor for ex vivermal and diseased blood
expansion

A 3D micro-bioreactor was developed by Mortera let(2010, 2011), consisting of
highly porous Polyurethane (PU, pore size approtetgd 0Qum), of dimensions 5x5x5
mm, as shown in Fig.2, which allows perfusion ofriemts and oxygen within the
matrix. The adhesion signals of the ECM are reodgiitd by coating this PU cube with
collagen type I. This micro-bioreactor successfgilypported the long-term expansion
of three leukemic cell lines (K-562, HL-60 and Kast6), resembling three different
leukemia sub-types, i.e., human erythromyelobldstatute promyelocytic and acute
myeloid leukemia respectively, for over 6 weeks.rdtwer, it successfully supported
expansion and differentiation of Umbilical CordoBd Cells (blood cells with high
proliferation/differentiation potential that areteacted from the cord which arises from
the navel that connects the fetus with the plagemitiilout any exogenous cytokines for
a time frame of 4 weeks, in contrast to traditioB8l culture systems that allowed
Umbilical Cord Blood Cells expansion only for a felays in absence of exogenous
growth factors. This 3@ex vivoBM mimicry enabled the formulation and long-term
maintenance of a dynamic culture population commgjsbf erythroid and myeloid
precursors as well as progenitor and myeloid maducells. The 3D micro-bioreactor
provides an ideal laboratory high throughput techhplatform for screening several
environmental factors and identifying those that arucial for the successfak vivo
expansion of normal and leukemic blood. In orderptoduce blood at quantities
sufficient for transfusion purposes, it is esséitisscale up thex vivoblood expansion
(Rousseau et al., 2014). Moving on that directioe, developed a 3D hollow fiber
reactor which enables red blood cell expansiongdter and continuous rate.

3.2.A 3D bioreactor for scaling up ex vivo normal aridesed blood expansion

Based on our 3D micro-bioreactor we scaled up yiséesn and incorporated circulation
of oxygenated nutritious medium, resulting in a BBrfusion bioreactor capable of
producing artificial blood (see Fig.1) which wagegded by Panoskaltsis et al. (2012).
It recapitulates the architectural and functionabperties of blood formation and
thereby reduces the need for expensive growth madiy more than an order of
magnitude. The red blood cells (RBC) produced cgnwith the clinically required
properties in terms of oxygen-carrying capacityfate markers, and shape (Macedo,
2011).

Figure 2: (a): Geometry of the 3D micro-bioreadtnr(c): Scanning Electron microscopy (SEM)
images of the highly porous 3D micro-bioreactofuding seeded leukemic cells.
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Figure 3: (a) Diagram of blood-producing bioreagtdacedo 2011); (b) Cross-section of a
bioreactor (SEM); (c)(d) Krogh Cyclinder approxiimoat; (e) Poiseuille flow

In comparison to other perfusion bioreactors forGdSexpansion (Engelhardt et al,
2011), our solution costs 10x less per cell produesih a 28x reduction in bioreactor
size; a cell output 18x superior was also achie(@tbudhuri and Al-Rubeai, 2005).
Similarly, 2D cultures producing RBCs require 5xrmgrowth factors (6x higher cost)
and 4000x larger volumes (Neildez-Nguyen et alg20

From an architectural point of view, the bioread®composed of a 3D polyurethane
scaffold traversed by two different circuits as whoin Fig.3a, (i) a high-uptake
(“nutrient delivery”) circuit which delivers nutnis and oxygen and removes waste
through a plastic hollow fiber with very narrow posize, (ii) a low-uptake (“protein
delivery”) circuit which circulates the growth facs required for cell differentiation
towards RBCs through a ceramic hollow fiber wittgkr pore size, allowing the exit of
mature RBCs only.

The current bioreactor has also been efficientfylied forin vitro leukemia cultivation,
therefore serving as an ideal platform for thevivoexpansion and study of diseased
blood (Rende et al., 2013).

4. Bioreactor design optimization

Experiments in the bioreactor described in 3.2.tgpecally cost- and labor- intensive;
in silico optimization strategies for the design and openatif the bioreactor can be
highly beneficial. While different optimization amaches have previously improved
individual degrees of freedom in hollow fiber biaotors (Davidson et al., 2010,
Shipley et al., 2011), our proposed bioreactor glesind bioprocess optimization
considers multiple design choices and explicitlgoiporates uncertainty into the
framework (Misener et al., 2014).

Our modeling approach for the bioreactor desigmiced the cost of producing one unit
of RBC while maintaining enough nutrients/growthcttas to satisfy the quality
requirements; operating choices include: (i) exderhameter and length (aspect ratio)
of the cylindrical bioreactofRy, L); (ii) number of hollow fibers for delivering re@mnts
and extracting products and by-produdid); (iii) flow rate of nutritious medium
through the bioreactorp); (iv) medium inlet composition in terms of glueosnd
growth factors Gy n), (v) ambient oxygen concentratio@efygen,in:
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Ck,IN:LrRrB%IrI-IIF:NRrUZ Uz X Ng X Nyg X Z Pk X Crin Q)
where R represents the price of the material enteringrélaetor at concentration
and flowing at rate Ythrough each of the M hollow fibres in each of the equivalent
Nr parallel reactors. Modeling occurs across differecales: cellular growth,
metabolism, fluid dynamics and chemical diffusidore specifically, perfusion of
nutrients, oxygen and proteins in the bioreactomeled as axial flow within the
fibers (Fig.3e) following Poiseuille flow, while fflision in the scaffold occurs radially
(Fig-3d). In addition, mass exchange is reducefiviorepresentative species: glucose
corresponds to cellular nutrients; lactate modedste; oxygen stands in for cellular
metabolism; stem cell factor (SCF) represents leellexpansion; erythropoietin (EPO)
is mapped to cellular differentiation. The modal éellular growth, proliferation, and
differentiation is derived from Ma et al. (2012)dagolijn and Mackey (2005). The
model is implemented in GAMS 24.1 and solved ushegMINLP solver ANTIGONE
1.1 (Misener and Floudas, 2013a; 2013b). The opédibioreactor would produce
RBCs at a competitive price compared to rare bl@dd-3k).

This approach uses superstructure optimizationieghpb hollow fiber bioreactors for
the first time; previous attempts varied individuphrameters instead of using
deterministic global optimization for a simultansathoice of design and operation.

5. Design of optimal personalized treatmentsfor AML

As described in Section 1, chemotherapy in the cdsAML involves the use of
cytotoxic drugs, which interact with cells that gmliferating. More specifically, only
cells that are in one of the phases of the cellecftbe process by which cells duplicate)
will be eliminated. Since healthy cells also praiite in order to renew the cellular
material, they will equally be affected; it is veimiportant to keep a balance between
the number of cancer cells killed and the loss eélthy cells. However, clinical
treatment protocols ignore the mechanisms behing) drction on the normal and
abnormal population, which can lead to over- orarntteatment. Here, a more rational
approach for the design of clinical treatment pcots based on the personalization of
the chemotherapy schedule for each patient (Pefaal., 2013) is presented (see also
Fig.1).

5.1.Model overview

As shown in Fig.4, the model is composed of two nmsgctions: pharmacokinetics

(PK), which describe the elimination of the drug dmgans, and pharmacodynamics
(PD), which account for the effects of the drugtloa cells in the BM, where the tumor
resides.

The main input to the system is the treatment wfla is calculated according to the

administration route and the injection rate. Theuling drug concentration then

reaches the body through the blood streams, deliyérto the organs, which absorb it
at different rates. Mass balances are performexhah of these organs, giving the drug
concentration profiles. The drug concentration ipgsfcalculated in the PK model are
the main input for the PD model, in which the effetthe drug on the normal and the
cancer cells is computed according to cell cycleetics of each population. Two

separate models are used for each of them.
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Figure 4: Design of clinical treatment protocols

Because most of the cancer cells are proliferating, cell cycle model in this case
incorporates 3 compartments in which the cells moe-resting. Each of them is
described by the mass balance between compartrfientsding cell death by drug
action if applicable). The transition rates areateent on cell cycle times and natural
apoptosis rates in each of the phases (Basse, &088). The normal cell population
model considers a proliferative population andstimg population that can move into a
proliferative state. In both cases, the cell cydleetics are modeled through a set of
Ordinary Differential Equations (ODES) (one per gartmenty):

ar _
dt

whereP, andPy., are the number of cells in compartmentndy-1, k(T,) andk,.(Ty.1)
are the transition rates from compartmgnand y-1 respectively (dependent on the
duration of the corresponding phasgsandT,.;) andeffect is the effect of drugin the
compartment.

A more refined cell cycle model based on the wdr&arcia Miinzer et al. (2013, 2014)
has been developed consisting of a multi-stage lptpn balance model (MS-PBM). It
is distributed on cell cycle progress-related esggt protein expression, DNA). Cell
cycle kinetics are tracked not only between commpents but also within them. The
transition rate(s,) are now dependent on the state variable leveldthg effects are
not considered):

oP, 6
ot asy

=k, (T, ) [P, =k (T,) [P, —effect [P, 2)

“y— max
|7k (5P 05, -k (), ®

-1,0

The MS-PBM is discretized in the state variablecspasing a fully stable upwind
scheme; it has been proven to accurately predp#réxental data (Section 6.1.).

5.2.Model analysis and optimization

The output of the optimization section is an imgd\determination of patient-specific
drug dosage and infusion duration. The decision drwsures that clinically mandatory
constraints are satisfied, informing a new chemmagtwe cycle of the effect of the
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Figure 5.: Comparison of experimental (squares)paadicted (lines) kinetics of the G1 phase %
population over time (x-axis: time in hours; y-a¥is G1 phase cells) for four different cell lines.

previous one and suggesting a better treatment.aReaily, treatments suggested by
the tool use similar drug dosages to those usedcally but, for instance, the
scheduling is different; based on the predictedepatesponse to both protocols given
by the model, the optimized treatment would havehrhetter outcomes (Pefani, 2014).
Global sensitivity analysis was performed on thiginal model following the method
described in Kiparissides et al. (2009); the moisical parameters affecting the model
output were found to be the cell cycle times (Piefa®l3).

6. Model parametersderived from experiments

Sensitivity analysis identified cell cycle kinetiegs one the key factors affecting

treatment outcomes (Section 5.2). Hence, it wasnddenecessary to direct our

experimental efforts towards (i) the determinat@fnthe duration of each of the cell

cycle phases, (i) the impact of environmental dest such as oxygen and glucose
concentration as these factors highly affect thédenic kinetics and, consequently, the
pharmacokinetic profile of the BM compartment of moodel (Section 5.1) as well as

the cell cycle evolution.

6.1.Obtaining parameters for an MS-PBM of the cell eycl

The cell cycle times of four different leukemialdates (K-562, HL-60, MEC-1 and
MOLT-4) were determined experimentally by followitige timings of entry and exit
events of a subpopulation of cells to and from ezdhe phases under 2D conditions at
a first step. In parallel, protein and DNA prodoctirates were recorded and assumed to
be constant. The kinetics of the subpopulation tepart were then simulated and
compared to the experimental (independent) regblientes-Gari et al.,, 2014). Good
agreement was observed in all four cell lines, egfig in the first cycle (Fig.5: G1
(gap 1) phase; the kinetics of the other phaseshadtsimilarly well with experimental
data (not shown)).

6.2. Tackling parameters that incorporate the impacew¥ironmental stress
Fluctuations of the oxygen and glucose concenmatio the different body
compartments (in the BM) and the peripheral bloodhe liver, and between AML
patients (individual cases of hypoglycemia, hypgrgiia) may lead to a different
stress adaptation of the leukemic population. Blted will most likely affect the cancer
growth and inactivation kinetics as well as thepmese to a chemotherapeutic ding
vivo.

We monitored and compareith vitro the proliferation, cell cycle and metabolic
evolution of an AML model system in our 3D micrabiactor (Section 3.1) and in a
conventional 2D culture for different oxygen anduagise conditions close to
physiological {n vivo) levels (Velliou et al., 2013; 2014a; 2014b). Mspecifically, K-
562 cell line was cultivated in the 3D micro bi@ctor as well as in 2D suspension
cultures in 5% (hypoxia) as well as 20% (normoxigygen and for three different
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glucose levels, i.e., 4.3 g/L (optimal level getigrapplied in laboratory growth
media), 1.3 g/L (highest human physiological leimeVivo) and 0.6 g/L (lowest human
physiological leveln vivo) for 2 weeks.

The experimental results presented in Fig.6 shattiere are significant differences in
the K-562 proliferation in the 3D micro-bioreactand the 2D culture. The lower
proliferation in the 3D system can be attributed(1d possible nutrient and oxygen
transfer limitations in certain parts of the midioreactor, especially after the
formation of cell bulks and (2) the consumptionceflular energy for the interaction
with the collagen matrix, i.e., production of siting molecules such as shock proteins
and chemokines. In both the 2D and the 3D systéumpge is identified as the limiting
factor that highly affects the kinetic evolutionKf562 only under hypoxic conditions.
These observations are of importance when applgimgmotherapyin vitro. Most
chemotherapy agents generally applied for the rtreat of patients with AML are
targeting highly proliferative cells. Therefore,dem oxidative or glucose stress or in a
3D microenvironment, cells with a slower proliféost may be less susceptible to
chemotherapeutics.

This quantitative information can be readily incorgted in the
pharmacokinetics/pharmacodynamics and the celeqgyait of our model.

7. Conclusions and futur e per spectives

An integrated framework was presented for the ogitimesign of chemotherapy
treatment strategies in leukemia, featurieg vivo, in vivo, in vitroand in silico
components. A predictive tool for the optimizatiof chemotherapy delivery was
developed whicla priori suggests patient-specific treatments with outcobbedter than
those resulting from current clinical protocols.eTépplication of our established GSA
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framework emphasized the need to determine actyratell cycle parameters.
Experimental monitoring of the cell cycle kinetiosvitro provided the most significant
parameters needed silico to predict growth kinetics in leukemia. With redarto the
production of healthy blood, a self-contained bémter with promising RBC expansion
capabilitiesin vitro was constructed. In preparation for large scatdical blood
production, optimization of the bioreactor supersture defined the optimal physical
bioreactor layout in order to minimize the cospafducing one unit of blood.

Future work will focus on elucidating key mechanséfactors of genetic or
proteomic/metabolomics that affect the evolution rafrmal and abnormal blood
expansion. Quantitative information on these keychmaisms will serve as an
appropriate input for the construction of more dethpredictive models for then
silico description of healthy and diseased blood evalutf@uantification of appropriate
intra-cellular biomarkers that are related to theod in vitro kinetics can enable the
combination of macroscopic kinetics with microseopinformation leading to the
construction of more detailed models of grey orterhiox nature.
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