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1. Introduction

It is common for financial economists to view all asset pricing models only as approximations of

reality. Although these models are likely to be misspecified, it is still useful to empirically eval-

uate the degree of misspecification and their relative pricing performance using actual data. In

their seminal paper, Hansen and Jagannathan (1997, HJ hereafter) propose measures of model

misspecification that are now routinely used for parameter estimation, specification testing and

comparison of competing asset pricing models. The unconstrained (constrained) HJ-distance mea-

sures the distance between the stochastic discount factor (SDF) of a proposed model and the set of

(nonnegative) admissible stochastic discount factors. But despite the recent advances in developing

the appropriate econometric theory for comparing asset pricing models based on the HJ-distance,

a general statistical procedure for model selection in this context is still incomplete. As a result,

many researchers are still ranking alternative models by comparing their corresponding sample HJ-

distances without any use of a formal statistical criterion that takes into account the sampling and

model misspecification uncertainty. In this paper, we provide a fully-fledged statistical framework

for estimation, evaluation and comparison of linear and nonlinear (potentially misspecified) asset

pricing models based on the unconstrained HJ-distances. Given some unappealing theoretical prop-

erties of the constrained HJ-distance (Gospodinov, Kan and Robotti, 2010a), we do not consider

explicitly the sample constrained HJ-distance but the generality of our analytical framework allows

us to easily extend the main results for the unconstrained HJ-distance that we derive in this paper

to its constrained analog (a detailed econometric analysis of the sample constrained HJ-distance is

available from the authors upon request). Our framework could also be used to study the statistical

properties of other measures of model misspecification.

The econometric methodology for using the unconstrained HJ-distance as a specification test

for linear and nonlinear models is developed by Hansen, Heaton and Luttmer (1995), Jagannathan

and Wang (1996) and Parker and Julliard (2005). Kan and Robotti (2009) provide a statistical

procedure for comparing linear asset pricing models based on the unconstrained HJ-distance. Fur-

thermore, Kan and Robotti (2009) propose standard errors for the SDF parameter estimates that

are valid for misspecified models. The objective of this paper is to provide a unifying framework for

improved statistical inference, specification testing and (pairwise and multiple) model comparison

based on the sample HJ-distances of competing linear and nonlinear asset pricing models.
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Our main contributions can be summarized as follows. First, we propose new Lagrange multi-

plier tests for individual and joint testing of correct specification of one or more asset pricing models.

These new specification tests are asymptotically chi-squared distributed and enjoy improved finite-

sample properties compared to the specification test based on the HJ-distance. Second, we derive

the non-degenerate joint asymptotic distribution of the parameters and the Lagrange multipliers

which are not always asymptotically normally distributed.1 Third, we improve upon the model

selection testing procedures in the existing literature. This is achieved by incorporating the appro-

priate null hypotheses which leads to simpler model comparison tests that require the estimation of

far fewer parameters than the existing testing procedures. While the practice of not imposing the

null hypotheses in constructing the test statistics can be justified based on asymptotic arguments, it

produces the undesirable outcome of comparing test statistics that are positive by construction (as

in the nested model case discussed in Section 3) to distributions that can take on negative values.

Our modifications are new to the literature on model selection tests and lead to substantial size

and power improvements in setups with many test assets (moment conditions). Importantly, the

proposed tests can be easily adapted to other setups including the quasi-likelihood framework of

Vuong (1989). Fourth, we propose pivotal (chi-squared) versions of the model comparison tests that

are easier to implement and analyze than their weighted chi-squared counterparts. The chi-squared

tests appear to possess excellent finite-sample properties and their improved power proves to be

particularly important in cases where they are used as pre-tests in sequential testing procedures

for strictly non-nested and overlapping models. Fifth, we develop tests for multiple model com-

parison as well as fast numerical algorithms for computing their asymptotic p-values.2 Finally, we

investigate the finite-sample performance of the proposed inference procedures using Monte Carlo

simulations.

The rest of the paper is organized as follows. Section 2 introduces the population and sample

HJ-distance problems. It also presents the basic assumptions and the asymptotic properties of the

sample HJ-distance and its corresponding estimators. Section 3 develops our pairwise and multiple

model comparison tests based on the sample HJ-distances. Section 4 studies the finite-sample

properties of our testing procedures using Monte Carlo simulation experiments. Some concluding

1This problem is further investigated rigorously in Gospodinov, Kan and Robotti (2010b).
2The Matlab codes for implementing all the statistical tests and procedures discussed in the paper are available

upon request.
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remarks are provided in Section 5. Proofs are collected in the Appendix.

The paper adopts the following notation. Let
A∼ stand for “asymptotically distributed as,”

χ2
p signify a chi-squared random variable with p degrees of freedom, |w| = (w′w)

1

2 denote the

Euclidean norm of a vector w and ||A|| =
√

tr(A′A) be the Euclidean or Frobenius norm of

a matrix A, where tr(·) is the trace operator. Finally, let Z = (Z1, . . . , Zs)
′ be a vector of s

independent standard normal random variables, and let ξ = (ξ1, . . . , ξs)
′ be a vector of s real

numbers. Then, Fs(ξ) =
∑s

i=1 ξiZ
2
i denotes a random variable which is distributed as a weighted

sum of s independent chi-squared random variables with one degree of freedom.

2. Hansen-Jagannathan distance

2.1. Population Hansen-Jagannathan distance

Let xt denote a vector of payoffs of n assets at the end of period t and qt−1 be the corresponding

costs of these n assets at the end of period t− 1 with E[qt−1] 6= 0n.
3 This setup can accommodate

both gross and excess returns on test assets as well as payoffs of trading strategies that are based

on time-varying information. In addition, we assume that U = E[xtx
′
t] is nonsingular so that none

of the test assets is redundant.

Let mt represent an admissible SDF at time t and let M be the set of all admissible SDFs. An

SDF mt is admissible if it prices the test assets correctly, i.e.,4

E[xtmt] = E[qt−1]. (1)

Suppose that yt(γ) is a candidate SDF at time t that depends on a k-vector of unknown parameters

γ ∈ Γ, where Γ is the parameter space of γ.5 An asset pricing model is correctly specified if there

exists a γ ∈ Γ such that yt(γ) ∈ M. The model is misspecified if yt(γ) 6∈ M for all γ ∈ Γ.

When the asset pricing model is misspecified, we are interested in measuring the degree of model

3When E[qt−1] = 0n, the mean of the SDF cannot be identified and researchers have to choose some normalization
of the SDF (see, for example, Kan and Robotti, 2008).

4Strictly speaking, the set of admissible SDFs should be defined in terms of conditional expectations. In this
paper, we use an unconditional version of the fundamental pricing equation. This, in principle, could be justified by
incorporating conditioning information through scaled payoffs (see, for example, Section 8.1 in Cochrane, 2005).

5In this paper, we present results for the case in which the candidate SDF depends on some unknown parameters,
but it is straightforward to adapt our analysis to the case in which the SDF does not depend on parameters.

3



misspecification. HJ suggest using

δ = min
γ∈Γ

min
mt∈M

(

E[(yt(γ) −mt)
2]
)

1

2 (2)

as a misspecification measure of yt(γ). We refer to δ as the HJ-distance measure.

Instead of solving the above primal problem to obtain δ, HJ suggest that it is sometimes more

convenient to solve the following dual problem:

δ2 = min
γ∈Γ

max
λ∈<n

E[yt(γ)
2 − (yt(γ) − λ′xt)2 − 2λ′qt−1], (3)

where λ is an n-vector of Lagrange multipliers.

Let θ = [γ′ , λ′]′ and denote by θ∗ = [γ∗′ , λ∗′]′ the pseudo-true value that solves the population

dual problem in (3):

θ∗ = arg min
γ∈Γ

max
λ∈<n

E[φt(θ)], (4)

where

φt(θ) ≡ yt(γ)
2 −mt(θ)

2 − 2λ′qt−1 (5)

and

mt(θ) ≡ yt(γ) − λ′xt. (6)

Note that yt(γ
∗) prices the n test assets correctly if the vector of pricing errors is zero, i.e.,

e(γ∗) = E[xtyt(γ
∗) − qt−1] = 0n. (7)

In this case, yt(γ
∗) ∈ M, λ∗ = 0n and we refer to γ∗ as the true value.6

By rearranging the dual problem in (3), it is easy to show that

λ∗ = U−1e(γ∗) (8)

and

δ2 = e(γ∗)′U−1e(γ∗). (9)

6The optimization problem in (4) bears some strong resemblance to the structure of the Euclidean likelihood
problem defined as minγ maxλ E[h(λ′e(γ))] with h(ς) = − 1

2
ς2 − ς. Other choices of h(ς) give rise to some popular

members of the class of generalized empirical likelihood (GEL) estimators. See Almeida and Garcia (2009) for further
discussion of the class of GEL estimators in the context of asset pricing models. While the analysis in this paper
can be easily extended to GEL estimators, we choose to present our main results for the HJ-distance measure given
its popularity in empirical asset pricing, nice economic (maximum pricing error) interpretation and computational
simplicity (closed-form solution for the Lagrange multipliers).
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While the quadratic form in the pricing errors in (9) has been widely used in the empirical finance

literature for parameter estimation, model evaluation and comparison, the potential usefulness

of the information regarding model specification contained in the Lagrange multipliers has been

largely ignored. In this paper, we explicitly exploit this information to develop Lagrange multiplier

specification tests for individual and multiple models.

2.2. Sample estimators and assumptions

Since the population HJ-distance of a model and its associated parameters are unobservable, they

have to be estimated from the data. The estimator of θ∗ in (4) is obtained as the solution to the

sample dual problem

θ̂ =

[

γ̂

λ̂

]

= argmin
γ∈Γ

max
λ∈<n

1

T

T
∑

t=1

φt(θ). (10)

Alternatively, let et(γ) = xtyt(γ) − qt−1, eT (γ) = 1
T

∑T
t=1 et(γ) and Û = 1

T

∑T
t=1 xtx

′
t. Then, the

estimator θ̂ = (γ̂′, λ̂
′
)′ can be obtained sequentially as

γ̂ = arg min
γ∈Γ

eT (γ)′Û−1eT (γ), (11)

and

λ̂ = Û−1eT (γ̂). (12)

In the following analysis, we appeal to the empirical process theory to derive the limiting

behavior of the estimators and test statistics under correctly specified and misspecified models.

The main regularity conditions for the consistency and the asymptotic distribution theory are

listed below. They include restrictions on the dependence of the data, identification conditions for

the pseudo-true values and some standard assumptions for deriving the limiting distributions.

We first introduce regularity conditions to ensure the stochastic equicontinuity of the sample

HJ-distance and the consistency of θ̂.

Assumption A. Assume that

(i) φt(θ) is m-dependent,

(ii) the parameter space Θ is compact,
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(iii) φt (θ) is continuous in θ ∈ Θ almost surely,

(iv) |φt (θ1) − φt(θ2)| ≤ At |θ1 − θ2| ∀ θ1, θ2 ∈ Θ, where At is a bounded random variable that

satisfies limT→∞ 1
T

∑T
t=1 E[|At|2+ω] <∞ for some ω > 0,

(v) sup θ∈ΘE[|φt(θ)|2+ω] <∞ for some ω > 0,

(vi) the population dual problem (4) has a unique solution θ∗ which is in the interior of Θ .

Assumptions A(i)–A(v) ensure the stochastic equicontinuity of φt (θ) (see Andrews, 1994 and

Stock and Wright, 2000) and imply that

sup θ∈Θ

∣

∣

∣

∣

∣

1

T

T
∑

t=1

φt(θ) −E[φt(θ)]

∣

∣

∣

∣

∣

p→ 0. (13)

The m-dependence can be relaxed although results for empirical processes with more general de-

pendence structure are still limited (see, for instance, Andrews, 1993 and Andrews and Pollard,

1994). Assumption A(vi) is an identification condition that ensures the uniqueness of the pseudo-

true value θ∗. The uniform convergence in (13) and Assumption A(vi) are sufficient for establishing

the consistency of θ̂:

θ̂
p→ θ∗. (14)

Let

H ≡
[

Hγγ H ′
λγ

Hλγ Hλλ

]

= lim
T→∞

1

T

T
∑

t=1

∂2E[φt(θ
∗)]

∂θ∂θ′
(15)

and

M ≡
[

Mγγ M ′
λγ

Mλγ Mλλ

]

= lim
T→∞

Var

[

1√
T

T
∑

t=1

∂φt(θ
∗)

∂θ

]

. (16)

The next assumption provides conditions for the existence and uniform convergence of the limiting

matrices in (15) and (16 ).

Assumption B. Let N (θ∗) be a neighborhood of θ∗. Assume that

(i) E[φt(θ)] is twice continuously differentiable in θ for θ ∈ N (θ∗),

(ii) supθ∈N (θ∗)

∥

∥

∥

∂2E[φt(θ)]
∂θ∂θ′

∥

∥

∥ <∞ and H is of full rank,
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(iii) M is a finite positive definite matrix when δ > 0, or Mλλ is a finite positive definite matrix

when δ = 0.

Following Andrews (1994), let ht(θ) = ∂φt(θ)/∂θ and define the empirical process
√
T v̄T (θ),

where

v̄T (θ) =
1

T

T
∑

t=1

vt(θ) ≡
1

T

T
∑

t=1

(ht(θ) − E[ht(θ)]). (17)

The next assumption ensures that
√
T v̄T (θ) obeys the central limit theorem.

Assumption C. Assume that vt(θ) satisfies the conditions

(i) |vt (θ1) − vt (θ2)| ≤ Bt |θ1 − θ2| ∀ θ1, θ2 ∈ Θ, where Bt is a bounded random variable that

satisfies limT→∞ 1
T

∑T
t=1 E[|Bt|2+ω] <∞ for some ω > 0,

(ii) sup θ∈ΘE[|vt (θ) |2+ω] <∞ for some ω > 0.

It proves useful for our subsequent analysis to provide explicit expressions for the partitioned

matrices in (15) and (16). Using the fact that

∂φt(θ
∗)

∂γ
= 2[yt(γ

∗) −mt(θ
∗)]
∂yt(γ

∗)
∂γ

, (18)

∂φt(θ
∗)

∂λ
= 2[xtmt(θ

∗)− qt−1], (19)

and under Assumptions A, B and C, we can write

Hγγ = 2E

[

(yt(γ
∗)−mt(θ

∗))
∂2yt(γ

∗)
∂γ∂γ′

]

, (20)

Hλγ = 2E

[

xt
∂yt(γ

∗)
∂γ′

]

, (21)

Hλλ = −2E
[

xtx
′
t

]

≡ −2U, (22)

and

Mλλ = 4
∞
∑

j=−∞
E
[

(xtmt(θ
∗)− qt−1)(xt+jmt+j(θ

∗) − qt+j−1)
′] . (23)

If the model is correctly specified, we have λ∗ = 0n and yt(γ
∗) = mt(θ

∗). Then, it follows

that Hγγ = 0k×k and Mλλ =
∑∞

j=−∞ E[(xtyt(γ
∗) − qt−1)(xt+jyt+j(γ

∗) − qt+j−1)
′]. Furthermore,

we have ∂φt(θ
∗)/∂γ = 0k which yields Mγγ = 0k×k and Mλγ = 0n×k. This is the reason why

Assumption B(iii) requires only Mλλ, and not M, to be positive definite when δ = 0.
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2.3. Asymptotic results

Let

C = E

[

ut
∂2yt(γ

∗)
∂γ∂γ′

]

, (24)

D = E

[

xt
∂yt(γ

∗)
∂γ′

]

, (25)

S =

∞
∑

j=−∞
E
[

et(γ
∗)et+j(γ

∗)′
]

, (26)

where ut = e(γ∗)′U−1xt.

The following lemma presents the asymptotic distributions of the sample squared HJ-distance

under correctly specified and misspecified models.

Lemma 1. Under Assumptions A, B and C,

(a) if δ = 0,

T δ̂
2 A∼ Fn−k(ξ), (27)

where the ξi’s are the eigenvalues of

A = P ′U− 1

2SU− 1

2P, (28)

with P being an n × (n− k) orthonormal matrix whose columns are orthogonal to U− 1

2D.

(b) if δ > 0,
√
T (δ̂

2 − δ2)
A∼ N (0, σ2

b), (29)

where σ2
b =

∑∞
j=−∞ E[btbt+j] and bt = 2utyt − u2

t − 2λ∗′qt−1 − δ2.

The asymptotic distribution and matrix A in part (a) of Lemma 1 coincide with the ones derived

by Jagannathan and Wang (1996) and Parker and Julliard (2005) for the case of linear and nonlinear

models, respectively. The asymptotic normality in part (b) of Lemma 1 has been established by

Hansen, Heaton and Luttmer (1995). To conduct inference, the covariance matrices in Lemma 1

should be replaced with consistent estimators. In particular, in part (a), we can replace A with its

sample analog

Â = P̂ ′Û− 1

2 ŜÛ− 1

2 P̂ , (30)
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where Ŝ is obtained using a nonparametric heteroskedasticity and autocorrelation consistent (HAC)

estimator (see, for example, Newey and West, 1987 and Andrews, 1991), P̂ is an orthonormal matrix

whose columns are orthogonal to Û− 1

2 D̂ and D̂ = 1
T

∑T
t=1

[

xt
∂yt(γ̂)
∂γ′

]

. Similarly, in part (b) we can

use a HAC estimator to estimate the variance σ2
b .

It has been documented (see Ahn and Gadarowski, 2004) that if we use Â to estimate the

eigenvalues ξi’s, the specification test in part (a) of Lemma 1 tends to overreject substantially

when the number of test assets n is large relative to the time series observations T . One way to

reduce the overrejection problem is to use a different estimator of S. The consistent estimator of

SA = Mλλ/4, denoted by ŜA, is a good alternative. While ŜA converges to S under the correctly

specified model, ŜA tends to be larger than Ŝ in finite samples, thus rendering the overrejection

problem less severe.

Lemma 2 below establishes the asymptotic normality of the estimates of the SDF parameters

and of the Lagrange multipliers, θ̂, based on the HJ-distance.

Lemma 2. Under Assumptions A, B and C,

(a) if δ > 0,
√
T (θ̂ − θ∗)

A∼ N (0n+k,Σ), (31)

where Σ =
∑∞

j=−∞ E[ltl
′
t+j] with lt = [l′1t , l

′
2t]

′ given by

l1t = (C +D′U−1D)−1

[

D′U−1et(γ
∗) +

{

∂yt(γ
∗)

∂γ
−D′U−1xt

}

ut

]

, (32)

l2t = U−1[Dl1t− et(γ
∗) + xtut]. (33)

(b) if δ = 0,
√
TΠ(θ̂ − θ∗)

A∼ N (0n, Σ̃), (34)

where Σ̃ =
∑∞

j=−∞ E[l̃tl̃
′
t+j] with l̃t = [l̃′1t , l̃

′
2t]

′ given by

l̃1t = (D′U−1D)−1D′U−1et(γ
∗), (35)

l̃2t = −P ′U− 1

2 et(γ
∗), (36)

and

Π =

[

Ik 0k×n
0(n−k)×k P ′U

1

2

]

. (37)
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The covariance matrices Σ and Σ̃ in Lemma 2 can be consistently estimated using the sample

analogs of (32)–( 33) and (35)–(36), respectively. Tests of parameter restrictions based on the Wald

or distance metric statistics can be easily developed from the results in Lemma 2.

While the estimator γ̂ is asymptotically normally distributed under both the null and alternative

hypotheses, the asymptotic distribution of some linear combinations of λ̂ is not always normal when

δ = 0. To illustrate this, note that when δ = 0, the expression for l2t in (33) simplifies to

l2t = [U−1D(D′U−1D)−1D′ − In]U
−1et(γ

∗). (38)

Since D′l2t = 0k, the asymptotic covariance matrix of
√
T λ̂ is singular when δ = 0. This implies

that for a nonzero vector α in the span of the column space of D,
√
Tα′λ̂ is not asymptotically

normal because α′l2t = 0.7

More generally, Gospodinov, Kan and Robotti (2010b) show that when α is in the span of the

column space of D, then

Tα′λ̂ d→ −ṽ′1v2, (39)

where ṽ1 and v2 are jointly normally distributed vectors of random variables.

The possible breakdown in the asymptotic normality of
√
T λ̂ is the reason why in Lemma 2

we report the asymptotic distribution of
√
TP ′U

1

2 λ̂ which always has a non-degenerate asymptotic

normal distribution. It is also interesting to note that premultiplying λ̂ by P ′U
1

2 is similar in spirit

to the decomposition of Sowell (1996) in which the n-vector of normalized population moment

conditions U− 1

2 et(γ
∗) is decomposed into k identifying restrictions used for the estimation of γ

that characterize the space of identifying restrictions and (n− k) over-identifying restrictions that

characterize the space of over-identifying restrictions. This type of decomposition provides the

basis for establishing the limiting distribution of the test for over-identifying restrictions. Next, we

use the asymptotic result for
√
TP ′U

1

2 λ̂ in part (b) of Lemma 2 to develop a Lagrange multiplier

(LM) test for model specification.

Theorem 1. Define the LM statistic as

LMλ̂ ≡ T λ̂
′
Û

1

2 P̂
(

P̂ ′Û− 1

2 ŜÛ− 1

2 P̂
)−1

P̂ ′Û
1

2 λ̂. (40)

7It should be emphasized that when the SDF does not have parameters (as in the case of Proposition 4.1 of
Hansen, Heaton and Luttmer, 1995), then

√
T λ̂ has an asymptotic normal distribution even when δ = 0.
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Then, under H0 : δ = 0 and Assumptions A, B and C,

LMλ̂

A∼ χ2
n−k. (41)

Since δ = 0 if and only if λ = 0n, the LM test in Theorem 1 provides an alternative model spec-

ification test that measures the distance of the Lagrange multipliers from zero.8 Similar arguments

can be used for developing an asymptotically equivalent specification test on the model’s pricing

errors.

3. Model selection tests

In this section, we first present model selection tests of two competing models. Our analysis is

similar in spirit to the model selection methodology of Vuong (1989), Rivers and Vuong (2002),

Golden (2003), Marcellino and Rossi (2008), and Li, Xu and Zhang (2010), but we provide several

improvements upon the results in the literature. First, since for nested models the HJ-distance

of the nesting model is always smaller than the HJ-distance of the nested model, the difference

between the sample HJ-distances of two nested models should be compared with a distribution

that only takes on positive values. However, the existing tests do not impose this restriction and

are expected to exhibit size distortions in finite samples. In contrast, we take into account the

nested model structure and develop model comparison tests with this desirable property. Second,

we develop chi-squared versions of the model comparison tests for strictly non-nested, nested and

overlapping models that are easier to implement than the weighted chi-squared tests. In addition

to model selection tests of two competing models, we provide multiple model comparison tests

that allow us to compare a benchmark model with a set of alternative models in terms of their

HJ-distances.

3.1. Pairwise model comparison

Define models

F = {yFt (γF ) ; γ F ∈ ΓF} (42)

8A similar test, that uses the whole vector of Lagrange multipliers and a generalized inverse of their n × n

asymptotic covariance matrix, is used by Smith (1997) and Imbens, Spady and Johnson (1998) in the context of GEL
estimation of moment condition models.
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and

G = {yGt (γG) ; γ G ∈ ΓG}, (43)

where γF and γG are k1 and k2 parameter vectors, respectively, and ΓF and ΓG denote their

corresponding parameter spaces. The population squared HJ-distances for models F and G are

given by

δ2F = min
γF

max
λF

E[φFt (θF)] (44)

δ2G = min
γG

max
λG

E[φGt (θG)], (45)

where λF and λG are the vectors of Lagrange multipliers for models F and G, respectively,

θF = [γ′F , λ
′
F ]′, θG = [γ′G , λ

′
G ]′, φFt (θF ) ≡ yFt (γF )2 − [mF

t (θF)]2 − 2λ′Fqt−1, φ
G
t (θG) ≡ yGt (γG)2 −

[mG
t (θG)]2 − 2λ′Gqt−1, m

F
t (θF) ≡ yFt (γF ) − λ′Fxt, and mG

t (θG) ≡ yGt (γG) − λ′Gxt. Denote by

θ∗F = [γ∗′F , λ
∗′
F ]′ and θ∗G = [γ∗′G , λ

∗′
G ]′ the pseudo-true parameters of models F and G, respec-

tively. If F ∩ G = ∅, we have the case of strictly non-nested models. For nested models, we have

F ⊂ G or G ⊂ F . Finally, if F ∩ G 6= ∅, F 6⊂ G, and G 6⊂ F , we refer to F and G as overlapping

models.

A simple way of testing H0 : δ2F = δ2G is suggested by Hansen, Heaton and Luttmer (1995,

pp. 255–256) who establish that the difference between the sample squared HJ-distances of models

F and G under H0 : δ2F = δ2G is asymptotically normally distributed:

√
T (δ̂

2
F − δ̂

2
G)

A∼ N (0, σ2
d), (46)

where

σ2
d =

∞
∑

j=−∞
E[dtdt+j] (47)

and dt = φFt (θ∗F) − φGt (θ∗G).

It is important to emphasize that the result in (46) holds only if σ2
d 6= 0. To determine whether

the use of the normal test in (46) is appropriate, one could do a pre-test of H0 : σ2
d = 0 (see, for

example, Rivers and Vuong, 2002, Golden, 2003 and Marcellino and Rossi, 2008). Alternatively,

since σ2
d = 0 if and only if φFt (θ∗F) = φGt (θ∗G), one could do a pre-test of H0 : φFt (θ∗F) = φGt (θ∗G). This

is the approach that we pursue in this paper. 9 There are two possible reasons for φFt (θ∗F) = φGt (θ∗G):

9Other inference procedures such as subsampling and moon (m-out-of- n, m < n) bootstrap could potentially
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(i) the two SDFs are equal, i.e., yFt (γ∗F) = yGt (γ∗G), or (ii) the two SDFs are different but correctly

specified, so that δ2F = δ2G = 0, which implies φFt (θ∗F) = φGt (θ∗G) = 0.

For strictly non-nested models, we cannot have yFt (γ∗F) = yGt (γ∗G). As a result, we only have to

test H0 : δ2F = δ2G = 0 before using the test in (46). 10 For nested models, the test in (46) should

not be performed because under H0 : δ2F = δ2G , we must have yFt (γ∗F) = yGt (γ∗F ). The reason is that,

in general, the larger model has a smaller HJ-distance and the only case in which the two models

can have the same HJ-distance is when yFt (γ∗F ) = yGt (γ∗G). Therefore, we should only perform a

test of H0 : yFt (γ∗F) = yGt (γ∗G) for nested models. Finally, for overlapping models, it is possible

that either yFt (γ∗F) = yGt (γ∗G) or δ2F = δ2G = 0, so we need to conduct two pre-tests before using

the test in (46). We discuss the strictly non-nested, nested and overlapping cases in the following

subsections.

3.1.1. Strictly non-nested models

To test H0 : δ2F = δ2G = 0 for strictly non-nested models, we can use the test statistic T (δ̂
2

F − δ̂
2

G)

based on the difference of the sample HJ-distances of models F and G. Alternatively, using our

results in Section 2, we can also develop an LM test that measures the distance of the Lagrange

multipliers of the two models from zero. This will provide a joint test of correct model specification

for models F and G.

To set up the notation, define eFt (γ∗F) = xty
F
t (γ∗F) − qt−1, e

G
t (γ∗G) = xty

G
t (γ∗G) − qt−1, and

S ≡
[

SF SFG

SGF SG

]

=

∞
∑

j=−∞
E
[

ẽtẽ
′
t+j

]

, (48)

where ẽt = [eFt (γ∗F)′, eGt (γ∗G)′]′. Let PF and PG denote orthonormal matrices with dimensions

n× (n− k1) and n× (n− k2) whose columns are orthogonal to U− 1

2DF and U− 1

2DG, respectively,

where DF (DG) is the D matrix for model F (G ) defined in Section 2.3. Also, denote by P̂F , P̂G ,

deal with the degeneracy of the asymptotic distribution that occurs at σ2
d = 0 and provide correct inference. To the

best of our knowledge, the asymptotic validity of these procedures in our context has not been established in the
literature. Also, since both of these resampling procedures reduce the number of effective time series observations
per moment condition, it is not clear whether they can provide any finite-sample size and power improvements given
the excellent finite-sample properties of our asymptotic tests reported in Section 4 below.

10In a likelihood framework (see Vuong, 1989), two strictly non-nested models cannot be both correctly specified.
However, in our context, a correctly specified model is defined in terms of moment conditions and it is possible for
two strictly non-nested models to be both correctly specified. We offer such an example in the Appendix. See Kan
and Robotti (2009) and Hall and Pelletier (2011) for further discussion of this point.
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ŜF , ŜG , ŜFG , ŜGF , λ̂F , and λ̂G the sample counterparts of PF , PG , SF , SG , SFG , SGF , λF and λG ,

respectively. Finally, let

λ̃FG =

[

P̂ ′
F Û

1

2 λ̂F

P̂ ′
GÛ

1

2 λ̂G

]

. (49)

The following theorem provides the appropriate asymptotic distributions of the difference in

the sample squared HJ-distances when both models are correctly specified and an LM test of

H0 : λF = λG = 0n (which is equivalent to testing H0 : δ2F = δ2G = 0).

Theorem 2. Suppose that Assumptions A, B and C hold for each model and yFt (γ∗F ) 6= yGt (γ∗G).

Then, under H0 : δ2F = δ2G = 0,

(a)

T (δ̂
2
F − δ̂

2
G)

A∼ F2n−k1−k2(ξ), (50)

where the ξi’s are the eigenvalues of the matrix

[

P ′
FU

− 1

2SFU− 1

2PF −P ′
FU

− 1

2SFGU− 1

2PG

P ′
GU

− 1

2SGFU− 1

2PF −P ′
GU

− 1

2SGU− 1

2PG

]

, (51)

(b)

LMλ̃FG
= T λ̃

′
FGΣ̂−1

λ̃FG

λ̃FG
A∼ χ2

2n−k1−k2 , (52)

where

Σ̂λ̃FG
=

[

P̂ ′
F Û

− 1

2 ŜF Û− 1

2 P̂F P̂ ′
F Û

− 1

2 ŜFG Û− 1

2 P̂G

P̂ ′
GÛ

− 1

2 ŜGF Û− 1

2 P̂F P̂ ′
GÛ

− 1

2 ŜGÛ− 1

2 P̂G

]

. (53)

Since the eigenvalues ξi’s in part (a) of Theorem 2 can take on both positive and negative

values, the test of the hypothesis H0 : δ2F = δ2G = 0 should be two-sided. The LM test in part (b) of

Theorem 2 provides an alternative way of testing H0 : δ2F = δ2G = 0 (using the equivalence between

H0 : δ2F = δ2G = 0 and H0 : λF = λG = 0n) but it is easier to implement and is expected to deliver

power gains compared to the test in part (a). The reason is that the test in part (a) may have low

power in finite samples when δ̂
2

F ≈ δ̂
2

G 6= 0 although it is still consistent since under the alternative

δ̂
2

F − δ̂
2

G = Op(T
−1/2) and |T (δ̂

2

F − δ̂
2

G)| → ∞.

In summary, our proposed test of equality of the squared HJ-distances of two strictly non-nested

models involves first testing whether the two models are both correctly specified using one of the
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tests in Theorem 2. If we reject, then we can perform the test in (46). Suppose that α1 and α2

are the asymptotic significance levels used in the pre-test δ2F = δ2G = 0 and in the normal test in

(46), respectively. Then, our sequential test has a significance level that is asymptotically bounded

above by max[α1, α2]. Thus, if α1 = α2 = 0.05, the significance level of this procedure, as a test of

H0 : δ2F = δ2G , is asymptotically no larger than 5%.

3.1.2. Nested models

For nested models, σ2
d is zero by construction under the null of equal HJ-distances. Therefore,

the normal test in (46) cannot be used. In addition, for nested models, δ2F = δ2G if and only if

yFt (γ∗F ) = yGt (γ∗G), so we can simply test H0 : yFt (γ∗F ) = yGt (γ∗G).

Let HF = limT→∞ 1
T

∑T
t=1

∂2E[φFt (θ∗F)]

∂θF∂θ
′
F

and MF = limT→∞ Var
[

1√
T

∑T
t=1

∂φt(θ
∗
F)

∂θ

]

with HG and

MG defined similarly. Marcellino and Rossi (2008) among others show that under H0 : φFt (θ∗F) =

φGt (θ∗G),11

T (δ̂
2

F − δ̂
2

G)
A∼ F2n+k1+k2(ξ), (55)

where the ξi’s are the eigenvalues of the matrix

1

2

[ −H−1
F MF −H−1

F MFG
H−1

G MGF H−1
G MG

]

. (56)

Several remarks regarding this inference procedure are in order. First, estimating the ξi’s from

the sample counterpart of the matrix in (56) produces more nonzero estimated ξi’s than the theory

suggests. In addition, the estimated ξi’s do not have the same sign. This is problematic because

for nested models, the larger model has a smaller sample HJ-distance by construction. By not

imposing the constraints that the ξi’s should have the same sign, the nonnegative test statistic

T (δ̂
2

F − δ̂
2

G) is compared with a distribution that can take on both positive and negative values.

This could result in serious finite-sample distortions of the test. In the ensuing analysis, we will

show that under H0 : δ2F = δ2G , some of the ξi’s are equal to zero and the nonzero ξi’s have the

same sign.

11Alternatively, we can directly test H0 : σ2
d = 0. In this case,

Tσ̂2
d

A
∼ F2n+k1+k2

(ξ), (54)

where σ̂2
d is a consistent estimator of σ2

d and the ξi’s are four times the squared eigenvalues of the matrix in (56) (see
Golden, 2003).
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Without loss of generality, we assume F ⊂ G. Suppose that the null hypothesis H0 : yFt (γ∗F ) =

yGt (γ∗G) can be written as a parametric restriction of the form H0 : ψG(γ∗G) = 0k2−k1 for model G
against H1 : ψG(γ∗G) 6= 0k2−k1 , where ψ(·) is a twice continuously differentiable function in its

argument. Define

ΨG(γG) =
∂ψG(γG)

∂γ′G
(57)

as a (k2−k1)×k2 derivative matrix of the parametric restrictions ψG . For many models of interest,

yFt (γF ) = yGt (γG) when a subset of the parameters of model G is equal to zero (or a constant vector

c). In this case, we can rearrange the parameters such that ψG(γG) = [0(k2−k1)×k1, Ik2−k1 ]γG − c.

Then, ΨG(γG) = [0(k2−k1)×k1 , Ik2−k1 ], which is a selector matrix that selects only the part of the

parameter vector γG that is not contained in model F . Also, let Σγ̂G be the asymptotic covariance

matrix of γ̂G given by the upper left k × k block of Σ in part (a) of Lemma 2, ΨG
∗ ≡ ΨG(γ∗G), and

H̃G = (CG + DG′U−1DG)−1, where the matrices C, D, and U are defined in Section 2.3. Finally,

define the Wald test statistic

Wald
ψ̂G

= T ψ̂
′
G(Ψ̂GΣ̂γ̂G Ψ̂G′)−1ψ̂G , (58)

where ψ̂G = ψG(γ̂G), Ψ̂G = ΨG(γ̂G), and Σ̂γ̂G is a consistent estimator of Σγ̂G .

Theorem 3 below presents the asymptotic distribution of T (δ̂
2

F − δ̂
2

G) and the Wald test under

H0 : ψG(γ∗G) = 0k2−k1 .

Theorem 3. Suppose that Assumptions A, B and C hold and F ⊂ G. Then, under H0 : ψG(γ∗G) =

0k2−k1 ,

(a)

T (δ̂
2
F − δ̂

2
G)

A∼ Fk2−k1(ξ), (59)

where the ξi’s are the eigenvalues of the matrix

(ΨG
∗ H̃GΨG

∗
′)−1ΨG

∗Σγ̂GΨG
∗
′, (60)

(b)

Waldψ̂G

A∼ χ2
k2−k1 . (61)

16



Part (a) of Theorem 3 shows that, under H0 : yFt (γ∗F) = yGt (γ∗G), only k2 −k1 of the eigenvalues

of (56) are nonzero and they all have the same sign.12 In practice, we need to estimate the ξi’s to

construct the test. Using the sample version of the matrix in part (a) of Theorem 3 instead of the

sample version of the matrix in (56) to estimate the ξi’s results in a substantial reduction of the

number of estimated eigenvalues. In addition, the resulting estimated eigenvalues are guaranteed to

be positive. The Wald test in part (b) of Theorem 3 offers an alternative way of testing the equality

of two nested SDFs by testing directly H0 : ψG(γ∗G) = 0k2−k1 . This Wald test is asymptotically

pivotal and is easier to implement than the test in part (a).

3.1.3. Overlapping models

For overlapping models, the variance σ2
d can be zero when (i) yFt (γ∗F ) = yGt (γ∗G) or (ii) both models

are correctly specified.13 Since Theorem 2 is applicable to the second scenario, here we only need

to derive the test of H0 : yFt (γ∗F ) = yGt (γ∗G).

It is well known that for linear models, the equality of the SDFs implies zero restrictions on the

parameter vectors (see, for example, Lien and Vuong, 1987 and Kan and Robotti, 2009). Similar

restrictions can also be obtained for nonlinear models. Let yHt (γH) be the SDF of model H, where

H = F ∩ G and γH is a k3-vector. Therefore, yFt (γ∗F ) = yGt (γ∗G) implies yFt (γ∗F) = yHt (γ∗H) and

yGt (γ∗G) = yHt (γ∗H). Suppose that H0 : yFt (γ∗F ) = yHt (γ∗H) and yGt (γ∗G) = yHt (γ∗H) can be written as

a parametric restriction of the form H0 : ψF (γ∗F) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 , where ψF (·) and

ψG(·) are some twice continuously differentiable functions of their arguments. Let

ΨF (γF ) =
∂ψF (γF )

∂γ′F
(63)

and

ΨG(γG) =
∂ψG(γG)

∂γ′G
(64)

be (k1 − k3) × k1 and (k2 − k3)× k2 derivative matrices of the parametric restrictions ψF and ψG ,

respectively. In many cases, H0 : yFt (γ∗F ) = yHt (γ∗H) implies that a subset of the parameters of model

12It can also be shown that for nested models, the test in (54) can be simplified to

Tσ̂
2
d

A
∼ Fk2−k1

(ξ), (62)

where the ξi’s are four times the squared eigenvalues of the matrix in (60). The proof of this result is available from
the authors upon request.

13Similar to the case of strictly non-nested models, it is possible for two overlapping SDFs to be both correctly
specified. Examples are available upon request.
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F is equal to zero, and H0 : yFt (γ∗G) = yHt (γ∗H) implies that a subset of the parameters of model G is

equal to zero. For such cases, we can arrange the parameters so that ΨF(γF ) = [0(k1−k3)×k3 , Ik1−k3 ]

and ΨG(γG) = [0(k2−k3)×k3 , Ik2−k3 ]. Let Σγ̂FG
be the asymptotic covariance matrix of γ̂FG =

[γ̂F
′, γ̂G

′]′, H̃F = (CF +DF ′U−1DF )−1, H̃G = (CG +DG′U−1DG)−1, ΨF
∗ = ΨF (γ∗F ), ΨG

∗ = ΨG(γ∗G)

and

ΨFG
∗ ≡

[

ΨF
∗ 0(k1−k3)×k2

0(k2−k3)×k1 ΨG
∗

]

. (65)

Define the Wald test statistic

Waldψ̂FG
= T ψ̂

′
FG(Ψ̂FG Σ̂γ̂FG

Ψ̂FG ′)−1ψ̂FG , (66)

where ψ̂FG = [ψF(γ̂F )′, ψG(γ̂G)′]′,

Ψ̂FG =

[

ΨF (γ̂F) 0(k1−k3)×k2
0(k2−k3)×k1 ΨG(γ̂G)

]

, (67)

and Σ̂γ̂FG
is a consistent estimator of Σγ̂FG

.

The next theorem establishes the asymptotic distribution of T (δ̂
2
F−δ̂2G) and Waldψ̂FG

test under

the null hypothesis H0 : ψF(γ∗F ) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 .

Theorem 4. Suppose that F ∩ G 6= ∅, F 6⊂ G, G 6⊂ F , and Assumptions A, B and C hold. Then,

under H0 : ψF (γ∗F) = 0k1−k3 and ψG(γ∗G) = 0k2−k3 ,

(a)

T (δ̂
2

F − δ̂
2

G)
A∼ Fk1+k2−2k3(ξ), (68)

where the ξi’s are the eigenvalues of the matrix

[

−(ΨF
∗ H̃FΨF

∗
′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG
∗ H̃GΨG

∗
′)−1

]

ΨFG
∗ Σγ̂FG

ΨFG
∗

′, (69)

(b)

Waldψ̂FG

A∼ χ2
k1+k2−2k3

. (70)

Unlike the case of nested models, the eigenvalues in part (a) of Theorem 4 are not always

positive because δ̂
2

F − δ̂
2

G can take on both positive and negative values. As a result, we need to

perform a two-sided test of H0 : yFt (γ∗F) = yGt (γ∗G). Similarly to the nested case, an alternative way
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of testing the equality of two overlapping SDFs is to directly test the constraints ψF (γ∗F) = 0k1−k3

and ψG(γ∗G) = 0k2−k3 using the asymptotically pivotal Wald test in part (b) of Theorem 4.

In summary, our proposed sequential testing procedure of equality of the squared HJ-distances

of two overlapping models is the following. First, we need to test whether the two models are both

correctly specified using either the test in part (a) of Theorem 2 or the chi-squared test in (52). It

should be noted that the tests in part (a) of Theorem 2 and part (a) of Theorem 4 are both Op(T
−1)

and will have low power against each other. Furthermore, the test in part (a) of Theorem 4 will

not be consistent against the alternative H1 : yFt (γ∗F ) 6= yHt (γ∗H) when both models are correctly

specified. As a result, our recommendation is to use the LM test in part (b) of Theorem 2 as a pre-

test of whether the two models are both correctly specified. If the null is rejected, we can proceed

with testing if the SDFs of the two models are equal using the tests in Theorem 4. Finally, if we

still reject, we can then perform the normal test in (46). The significance level of this procedure,

as a test of H0 : δ2F = δ2G , is asymptotically bounded above by max[α1, α2, α3], where α1, α2, and

α3 are the asymptotic significance levels used in these three tests.

The results in Theorems 3 and 4 offer substantial advantages over the inference procedure (55)–

(56) in Section 3.1.2. Imposing the parametric restrictions that directly arise from the structure

of the models and the appropriate null hypotheses results in a drastic reduction of the number of

weights that are used to compute the critical values of the tests. More specifically, the number of

eigenvalues in the weighted chi-squared distribution is reduced from 2n + k1 + k2 to k2 − k1 for

nested and to k1 + k2 − 2k3 for overlapping models. This proves to be particularly advantageous

when the number of test assets n is large. The reduced dimensions of the matrices in part (a) of

Theorems 3 and 4 are expected to lead to improved finite-sample (size and power) behavior of the

model selection tests.

3.2. Multiple model comparison

Thus far, we have considered pairwise model comparison. However, when multiple models are

involved, pairwise model comparison may not determine unambiguously the best performing model.

In this subsection, we develop formal multiple model comparison tests for non-nested and nested

models. Our non-nested model comparison test is a multivariate inequality test based on the
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results of Wolak (1987, 1989).14 Suppose we have p + 1 models. We are interested in testing the

null hypothesis that the benchmark model, model 1 (we could think of model 1 as model F in the

pairwise model comparison subsection), performs at least as well as the other p models. Let δ2i

denote the population squared HJ-distance of model i and let ρ ≡ (ρ2, . . . , ρp+1), where ρi ≡ δ21−δ2
i .

Therefore, the null hypothesis is H0 : ρ ≤ 0p while the alternative is H1 : ρ ∈ <p.

The test is based on the sample counterpart, ρ̂ ≡ (ρ̂2, . . . , ρ̂p+1), where ρ̂i ≡ δ̂
2
1 − δ̂

2
i . Assume

that
√
T (ρ̂− ρ)

A∼ N (0p,Ωρ̂). (71)

As in Section 3.1, sufficient conditions for asymptotic normality are: i) δ2i > 0, and ii) the SDFs

of the different models are distinct.15 Let ρ̃ be the optimal solution in the following quadratic

programming problem:

min
ρ

(ρ̂− ρ)′Ω̂−1
ρ̂ (ρ̂− ρ) s.t. ρ ≤ 0p, (72)

where Ω̂ρ̂ is a consistent estimator of Ωρ̂. The likelihood ratio-type test of the null hypothesis is

LR = T (ρ̂− ρ̃)′Ω̂−1
ρ̂ (ρ̂− ρ̃). (73)

Since the null hypothesis is composite, to construct a test with the desired size, we require the

distribution of LR under the least favorable value of ρ, which is ρ = 0p. Under this value, LR

follows a “chi-bar-squared distribution,”

LR
A∼

p
∑

i=0

wp−i(Ωρ̂)Xi, (74)

where the Xi’s are independent χ2 random variables with i degrees of freedom, χ2
0 is simply de-

fined as the constant zero and the weights wi sum up to one.16 We use this procedure to obtain

asymptotically valid p-values.17

14Kan, Robotti and Shanken (2010) adapt the multivariate inequality test of Wolak (1987, 1989) to compare the
performance of alternative asset pricing models in a two-pass cross-sectional regression framework.

15As in Section 3.1, pre-tests of correct specification and equality of SDFs can be easily developed also for multiple
models by generalizing the chi-squared tests in (52) and (70) to the p > 1 case.

16An explicit formula for the weights wi(Ωρ̂) is given in Kudo (1963) and the computational details are provided in
the Appendix. Although the Monte Carlo simulations in the next section show that our asymptotic approximation
works well in experiments with realistic sample sizes, researchers could also use bootstrap methods to obtain the
p-value for the proposed test statistic. See also Andrews and Soares (2010), among others, for various subsampling,
moon (m-out-of-n) bootstrap and “plug-in-asymptotic” procedures for parameter inference in models defined by
moment inequalities.

17There are alternatives to the multivariate inequality test described above. Under the assumption in (71), White
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Before using the multivariate inequality test to compare a benchmark model with a set of

alternative models, we remove those alternative models that are nested by the benchmark model

since, by construction, ρi ≤ 0 in this case. If any of the remaining alternatives is nested by another

alternative model, we remove the “nested” model since the δ2 of the nesting model will be at least as

small. Finally, we also remove from consideration any alternative models that nest the benchmark,

since the normality assumption on ρ̂i does not hold under the null hypothesis that ρi = 0.

Since the multivariate inequality test described above is not applicable when the benchmark

is nested by some alternative models, a different multiple model comparison test is needed in this

case. When the alternative models nesting the benchmark are nested within each other, we remove

the “nested” models since the δ2 of the nesting model will be at least as small. In this scenario,

one could simply use the pairwise model comparison techniques developed in Section 3.1.2. The

situation, however, becomes more complicated when the alternative models exhibit an overlapping

structure.

Suppose that the benchmark (with k1 parameter vector γ1) is nested by model i (with ki

parameter vector γi, i = 2, . . . , p+ 1). Similar to the setup of Section 3.1.2, suppose that y1
t (γ

∗
1) =

yit(γ
∗
i ) can be written as a parametric restriction of the form ψi(γ

∗
i ) = 0ki−k1 , where ψi(·) is a

twice continuously differentiable function in its argument. The null hypothesis for multiple model

comparison can therefore be formulated as H0 : ψ2(γ
∗
2) = 0k2−k1 , . . . , ψp+1(γ

∗
p+1) = 0kp+1−k1 .

Having derived the asymptotic distribution of γ̂i in Lemma 2, we can use the delta method to

obtain the asymptotic distribution of ψ̂i = ψi(γ̂i). Specifically, let

ψ =







ψ2(γ
∗
2)

...
ψp+1(γ

∗
p+1)






(75)

and denote by ψ̂ a consistent estimator of ψ. Also, let Σψ̂ be the asymptotic covariance matrix of

ψ̂ with rank l under the null hypothesis and Σ̂ψ̂ denote its consistent estimator. Then, we have

Waldψ̂ = T ψ̂
′
Σ̂+

ψ̂
ψ̂

A∼ χ2
l , (76)

where Σ̂+

ψ̂
is the generalized inverse of Σ̂ψ̂. To perform this test, we need to determine the rank of

(2000) and Hansen (2005) provide reality check tests that can be used to compare the performance of multiple models.
Computing p-values for their tests, however, requires either Monte Carlo simulation or bootstrap methods and can
be very time consuming. See Chen and Ludvigson (2009) for an application of the tests of White (2000) and Hansen
(2005) to the study of the HJ-distances of competing asset pricing models.
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Σ
ψ̂

under the null hypothesis. For linear SDFs, l is simply the number of distinct factors in the

set of alternative models minus the number of factors in the benchmark model.18 For nonlinear

SDFs, determining the rank of Σ
ψ̂

under H0 depends on the particular overlapping structure of the

nesting models which needs to be analyzed on a case-by-case basis.

To conclude, if the benchmark model is nested by some competing models, one should separate

the set of competing models into two subsets. The first subset will include competing models that

nest the benchmark. To test whether the benchmark performs as well as the models in this subset,

one can use the chi-squared nested multiple model comparison test described above. The second

subset includes competing models that do not nest the benchmark. For this second subset, we can

use the test in (74). If we perform each test at a significance level of α/2 and fail to reject the null

hypothesis in both tests, then, by the Bonferroni inequality, the size of the joint test will be less

than or equal to α.

4. Monte Carlo simulations

In this section, we undertake a Monte Carlo experiment to explore the small-sample properties

of all the test statistics discussed in the theoretical part of the paper. We focus on linear asset

pricing models given their popularity in the literature. To make our simulations more realistic, we

calibrate the parameters by using almost 50 years, 1952:2–2000:4, of quarterly gross returns on the

three-month T-bill and the well-known 25 Fama-French size and book-to-market portfolios. The

time-series sample size is taken to be T = 120, 240, 360, 480 and 600. These choices of T reflect

sample sizes that are typically encountered in empirical work. The factors and the returns on the

test assets are drawn from a multivariate normal distribution (a more detailed description of the

various simulation designs can be found in a separate Appendix available on the authors’ websites).

We compare actual rejection rates over 100,000 iterations to the nominal 10%, 5% and 1% levels

of our tests. The parameters in our simulation study are calibrated using actual data from the

18For example, suppose we have three linear models with factors [1, f1t]
′, [1, f1t, f2t, f3t]

′ and [1, f1t, f2t, f4t]
′,

respectively. Note that the first model is the nested (benchmark) model and the last two models are the alternative
models nesting the benchmark. The number of distinct factors in the set of alternative models is five (1, f1t, f2t, f3t

and f4t) and l = 3 is obtained by subtracting the number of factors in the benchmark model (1 and f1t). This
procedure is used in Section 4.3 below.
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following models:19

CAPM: the capital asset pricing model

yCAPMt = γ0 + γ1rmkt,t,

where rmkt is the excess return on the market portfolio;

CCAPM: the consumption CAPM

yCCAPMt = γ0 + γ1cndur,t,

where cndur is the log growth rate of non-durable consumption;

YOGO: the durable consumption CAPM of Yogo (2006)

yY OGOt = γ0 + γ1rmkt,t + γ2cndur,t + γ3cdur,t,

where cdur denotes the log consumption growth rate of durable goods;

FF3: the three-factor model of Fama and French (1993)

yFF3
t = γ0 + γ1rmkt,t + γ2rsmb,t + γ3rhml,t,

where rsmb is the return difference between portfolios of small and large stocks and rhml is

the return difference between portfolios of high and low book-to-market ratios;

LL: the conditional consumption CAPM of Lettau and Ludvigson (2001)

yLLt = γ0 + γ1cndur,t + γ2cayt−1 + γ3cndur,tcayt−1,

where cay is the consumption-wealth ratio.

19See Gospodinov, Kan and Robotti (2010a) for a detailed description of the various risk factors. In this simulation
study, we only consider linear models due to the substantial difficulties involved in generating data from nonlinear
asset pricing models that are potentially misspecified with strictly non-nested, nested or overlapping structure. An
application of the proposed tests to the comparison of nonlinear asset pricing models, including external and internal
habit models, estimated using actual data is available from the authors upon request.
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4.1. Parameter estimates and model specification tests

In this subsection, we investigate the size properties of the SDF parameter estimates and the size

and power properties of the model specification tests. The data are simulated using two SDFs:

CAPM and YOGO. CAPM is an example of models with traded factors since rmkt is a portfolio

return. YOGO is an example of models with traded and non-traded factors since cndur and cdur

are macroeconomic factors. As we will see later on, our inference procedures and simulation results

are sensitive to whether the included risk factors are traded or not.

We start by analyzing the finite-sample properties of the SDF parameter estimates under model

misspecification. One way to summarize the sampling behavior of the SDF parameter estimates

and their corresponding asymptotic approximations is to focus on the rejection rates of the t-tests

of H0 : γi = 0. In the simulations, the expected returns are chosen such that the SDF parameter

associated with a given factor is equal to zero. The t-tests are constructed using the asymptotic

covariance matrices in Lemma 2 and are compared against the critical values from a standard

normal distribution. We refer to the t-tests based on (31) and (32) as t-tests under potentially

misspecified models. For comparison, we also report results using the traditional standard errors

derived under correctly specified models based on the asymptotic covariance matrix in (34) and

(35). We refer to the corresponding t-tests as t-tests under correctly specified models. The reason

for investigating the finite-sample performances of the t-tests under correctly specified models in

a simulation setup where the model fails to hold exactly is that researchers typically rely on these

t-tests in drawing inferences on the SDF parameters even when a model is strongly rejected by the

data.

Table 1 presents the empirical size of both t-tests of the null hypothesis H0 : γi = 0 for realistic

values of the HJ-distance measure: δ = 0.6524 for CAPM and δ = 0.6514 for YOGO.20 Panel A is

for the t-tests under potentially misspecified models, while Panel B is for the t-tests under correctly

specified models.

Table 1 about here

For CAPM, the empirical rejection rates of both t-tests are very close to the nominal size. In

20To preserve space, we do not report simulation results for the t-ratios associated with the SDF intercept terms.
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contrast, the finite-sample performances of these two tests are very different for YOGO. The t-test

under potentially misspecified models is well-behaved in this scenario and its empirical size is close

to the nominal level with only a slight underrejection.21 On the contrary, the t-test under correctly

specified models tends to overreject substantially. For example, the t-test on the SDF parameter

of durable consumption rejects the null hypothesis 30% of the time at the 5% nominal level for

T = 600. Interestingly, the presence of non-traded factors in YOGO also leads to significant size

distortions of the t-test on the traded factor. Finally, in the YOGO case, the performances of the

t-tests under correctly specified models deteriorate as T increases.22

The difference in behavior between the two t-tests when the model contains non-traded factors

warrants some explanation. In the case of linear SDFs, Kan and Robotti (2009) prove that when

factors and returns are multivariate elliptically distributed, the standard errors under potentially

misspecified models are always bigger than the standard errors constructed under the assumption

that the model is correctly specified. They show that the magnitude of the misspecification ad-

justment term, that reflects the difference between the asymptotic variances of the SDF parameter

estimates under correctly specified and misspecified models, depends on, among other things, the

degree of model misspecification (as measured by the HJ-distance measure) and the correlations of

the factors with the returns. The misspecification adjustment term can be huge when the underly-

ing factor is poorly mimicked by asset returns – a situation that typically arises when some of the

factors are macroeconomic variables as in YOGO. Therefore, when the model is misspecified and

the factors are poorly spanned by the returns, the t-test under correctly specified models can lead

to the erroneous conclusion that certain factors are priced. Our simulation evidence further demon-

strates that the t-test under correctly specified models can be seriously oversized and researchers

should exercise caution when using it to determine whether a risk factor is priced. Another related

issue is the deterioration in the size properties of the t-test under correctly specified models as T

increases. This is likely to be a symptom of the fact that some non-traded factors such as cndur

and cdur are almost uncorrelated with the returns. For further discussion, we refer the reader to

21We should note that the t-test under potentially misspecified models maintains its good size properties even when
the data are generated under correctly specified models (results are not reported to conserve space).

22The size distortions of the t-tests under correctly specified models documented in Table 1 are somewhat conser-
vative. In unreported simulation experiments, we further analyzed the size properties of the t-tests of H0 : γi = 0.
While the t-test under potentially misspecified models maintained its excellent size properties, there were several
instances in which the t-test under correctly specified models exhibited even stronger overrejections. These were
typically situations in which the factors and the returns were generated under stronger model misspecification.
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Kan and Zhang (1999) who show that when the model is misspecified and a factor is “useless,” i.e.,

independent of the returns, increasing the sample size also increases the severity of the overrejection

problem. For these reasons, we strongly recommend using the t-test under potentially misspecified

models in factor pricing.

We now turn our attention to the model specification tests developed in Section 2.3. In partic-

ular, we assess the finite-sample performance of three specification tests: (i) the HJ-distance test in

part (a) of Lemma 1 based on the matrix S, (ii) the HJ-distance test based on the matrix SA, and

(iii) the LM test in Theorem 1. To examine size, we generate returns such that the model holds ex-

actly, i.e., we set E[xt] = (1n − Cov[xt, yt]) /E[yt], where 1n is an n-vector of ones. The covariance

matrix of the factors and returns and the factor means are chosen based on the covariance matrix

and the factor means estimated from the data. To examine power, the return means are chosen

based on the means estimated from the data, which implies that the population HJ-distances for

CAPM and YOGO are 0.6524 and 0.6514, respectively. The empirical size and power of the three

tests are presented in Table 2.

Table 2 about here

The overrejections of the HJ-distance test based on S have already been documented in the

literature (see, for example, Ahn and Gadarowski, 2004). This typically happens when the number

of assets is large relative to the number of time series observations. Our results confirm the overre-

jections of the HJ-distance test across the different model specifications (24% for CAPM and 17.4%

for YOGO at the 5% significance level for T = 120) and show that the empirical size approaches the

nominal level of the test as T increases (7.3% for CAPM and 6.4% for YOGO at the 5% significance

level for T = 600).

To the best of our knowledge, the HJ-distance test based on SA is new to the literature. As we

argued in Section 2.3, using ŜA instead of Ŝ appears to be particularly important when there are

fewer observations per moment condition. This HJ-distance test enjoys much better size properties

although it tends to be somewhat conservative. As T increases, the rejection rates approach the

nominal size of the test.

Finally, our new LM test has excellent size properties across different models and for all sample

sizes. It should be emphasized that the improved sizes of the HJ-distance test that uses SA and
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of the LM test are accompanied by impressive power performance, very similar to the one of the

HJ-distance test that uses S. All tables in this section report actual power.23

In summary, the LM test in Theorem 1 appears to dominate the other two tests given its

simplicity and superior size properties.

4.2. Model selection tests for strictly non-nested models

In Table 3.A, we evaluate the size and power properties of the tests ofH0 : δ2F = δ2G = 0. We consider

the weighted chi-squared test and the LM test in parts (a) and (b) of Theorem 2, respectively. In

light of the discussion in Section 3, one should test whether models F and G are correctly specified

before applying the normal test in (46).24 To examine size, we consider two correctly specified

one-factor models (with no intercept) whose factors are generated as rmkt plus two different normal

noise terms. To analyze power, we set the return means equal to the means estimated from the

sample and compare one of the two one-factor models described above with a model (also with no

intercept) that contains a market factor contaminated with a normal noise term, cndur and cdur. In

the size and power experiments, we set the mean of the market factor such that it prices the risk-free

asset correctly. This guarantees that the HJ-distances of the two models in the power experiment

are close to each other and to values typically encountered in empirical work. The noise terms here

and in Section 4.4 have mean zero, standard deviation which is 10% of the standard deviation of

rmkt and are independent of the returns and the market factor.

Table 3 about here

The size properties of the two tests are quite good when T is bigger than 120. The weighted

chi-squared test slightly overrejects for small sample sizes while the LM test slightly underrejects

which, again, appears to be due to the relatively large number of test assets considered in the

simulation experiment. The empirical size of the tests quickly approaches the nominal level as T

increases. Consistent with the discussion below Theorem 2, the LM test delivers nontrivial power

23Computing size-adjusted power seems infeasible for several of our tests. Their null distributions depend on many
nuisance parameters and the simulation of their exact distributions is complicated by the fact that those nuisance
parameters are in general not known.

24The finite-sample performance of the normal test will be evaluated in Section 4.4 in the context of overlapping
models.
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gains compared to the weighted chi-squared test and rejects the null H0 : δ2F = δ2G = 0 with

probability one for T ≥ 240.

4.3. Model selection tests for nested models

In Panels B and C of Table 3, we report simulation results for pairwise and multiple nested model

comparison tests. CCAPM represents our benchmark model. For pairwise model comparison, we

consider CCAPM nested by YOGO, while for multiple model comparison we consider CCAPM

nested by YOGO and LL. The tests under investigation are the restricted weighted chi-squared

test and Wald test in Theorem 3, the unrestricted weighted chi-squared test in (55)–(56) and the

chi-squared multiple model comparison test described in Section 3.2.

To analyze the finite-sample behavior of the pairwise model comparison tests under the null of

equality of squared HJ-distances, we choose the return means such that the nesting model’s slope

coefficients associated with the factors that do not belong to the benchmark are zero and both the

benchmark and the nesting model are misspecified. To analyze power, the return means are chosen

based on the means estimated from the data, which implies that the population HJ-distances for

CCAPM and YOGO are 0.6768 and 0.6514, respectively. Turning to multiple model comparison,

the size of the chi-squared test is evaluated by choosing the return means such that the nesting

models’ slope coefficients associated with the factors that do not belong to the benchmark are

zero and the benchmark as well as the two nesting models are misspecified. To evaluate power,

the return means are chosen based on the means estimated from the data, which implies that the

population HJ-distances for CCAPM, YOGO and LL are 0.6768, 0.6514 and 0.6561, respectively.

Table 3.B shows that the test in (55)–(56), that does not impose the restrictions arising from the

nested structure of the models, exhibits overrejections that are nontrivial even for T = 600 (14.7%

and 8.0% at the 10% and 5% nominal levels, respectively). This is due to fact that estimating

eigenvalues from the sample counterpart of the matrix in (56) produces more nonzero estimated

eigenvalues than the theory suggests. The weighted chi-squared and Wald tests in Theorem 3 have

very good size properties and high power (despite the small differences in HJ-distances between

models), with the Wald test performing better overall. It should be stressed again that Table 3

reports actual (not size-adjusted) power and the seemingly similar power of the restricted and un-
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restricted weighted chi-squared tests is likely due to the overrejections of the unrestricted weighted

chi-squared test in (55)–(56) under the null.

For multiple model comparison, the size and power of the chi-squared test in Panel C are

impressive. This simulation evidence is very encouraging for the use of this new test in empirical

work.

4.4. Model selection tests for overlapping models

The case of overlapping models is arguably the most important case in practice since many empirical

asset pricing specifications contain a constant term and different systematic factors.

Starting with pairwise model comparison, we evaluate the finite-sample behavior of the pre-tests

of equality of SDFs in Theorem 4 and the unrestricted weighted chi-squared test in (55)–(56). The

simulated data are generated using FF3 and YOGO. To evaluate size, we choose the return means

such that the slope coefficients associated with the non-overlapping factors in FF3 and YOGO are

zero and the two models are misspecified. To analyze power, the return means are chosen based

on the means estimated from the data which implies that the population HJ-distances for FF3 and

YOGO are 0.5822 and 0.6514, respectively. Table 3.D shows that all three tests have good size. In

terms of power, however, the restricted weighted chi-squared test proposed in part (a) of Theorem 4

performs better than the unrestricted test in (55)–(56) while the chi-squared test in part (b) of

Theorem 4 provides further power gains and dominates both weighted chi-squared tests. The high

power of the Wald test appears to be particularly important given the fact that this test (along

with the test that the models are jointly correctly specified) serves only as a preliminary step in

establishing whether two or more models have equal pricing performance.

If the null hypotheses of SDF equality and correct specification of the two models are rejected,

then the researcher can proceed with the normal test in (46). In the size computations, the data

are simulated from two misspecified three-factor models with intercept, rsmb and rhml as common

factors and a non-overlapping part that is obtained from contaminating the market factor with

two independent normal noise terms defined as in Section 4.2. In the power comparison, the two

overlapping models are FF3 and YOGO. Table 3.E (p = 1 case) shows that the size properties of

the normal test are very good even for small T and that the empirical power quickly approaches 1
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as T increases.

Finally, we extend the simulation setup described in the previous paragraph to three three-factor

models and employ the LR test in (74) for multiple model comparison. In the size comparison, we

add another model with a constant, rsmb and rhml as common factors and a non-overlapping part

given by the market factor contaminated with independent normal noise. For power evaluation, we

consider LL (the benchmark model) in addition to YOGO and FF3. Table 3.E (p = 2 case) reveals

the very good finite-sample properties of the LR test for comparing multiple asset pricing models.

Overall, these simulation results suggest that the tests developed in this paper should be fairly

reliable for the sample sizes typically encountered in empirical work.

5. Concluding remarks

This paper develops a general statistical framework for evaluation and comparison of possibly

misspecified asset pricing models using the unconstrained HJ-distance. We propose new pivotal

specification and model comparison tests that are asymptotically chi-squared distributed. We also

derive new versions of the weighted chi-squared specification and model comparison tests that are

computationally efficient and possess improved finite-sample properties. Finally, we develop com-

putationally attractive tests for multiple model comparison. The excellent size and power properties

of the proposed tests are demonstrated with simulated data from popular asset pricing models. The

simulation results clearly suggest that the standard tests for model specification and selection as

well the typical practice of conducting inference on the SDF parameters under the assumption of

correctly specified models could be highly misleading in various realistic setups. One of the main

findings that emerges from our analysis is that properly incorporating the uncertainty arising from

model misspecification as well as imposing the extra restrictions implied by the structure of the

models lead to substantially improved inference.

Although our simulation results are encouraging, the small-sample properties of the test statis-

tics proposed in this paper should be explored further. In addition, it is of interest to compare

the performance of various linear and nonlinear asset pricing models using the test procedures

developed in this paper. A comprehensive empirical application of the proposed methodology is

currently being carried out by the authors.
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Appendix

Preliminary lemma

We first present a preliminary lemma that develops an expansion of the sample HJ-distance that

will be used in the proofs of the subsequent lemmas and theorems for model specification and model

selection tests.

Lemma A.1. Under Assumptions A, B and C,

δ̂
2 − δ2 =

1

T

T
∑

t=1

(φt(θ
∗)− E[φt(θ

∗)]) − 1

2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(

1

T

)

. (A.1)

Proof. We start by expanding E[φt(θ
∗)] = δ2 about θ̂. Since 1

T

∑T
t=1 ∂φt(θ̂)/∂θ = 0n+k, we obtain

E[φt(θ
∗)] =

1

T

T
∑

t=1

φt(θ̂)−
1

T

T
∑

t=1

(

φt(θ̂) −E[φt(θ̂)]
)

+
1

2
(θ̂ − θ∗)′

∂2E[φt(θ̃)]

∂θ∂θ′
(θ̂ − θ∗), (A.2)

where θ̃ is an intermediate point between θ̂ and θ∗. Let

h̄∗T (θ) =
1

T

T
∑

t=1

E[ht(θ)]. (A.3)

A mean value expansion of h̄∗T (θ∗) about θ̂ yields

0n+k =
√
T h̄∗T (θ∗) =

√
T h̄∗T (θ̂) − ∂h̄∗T (θ̌)

∂θ

√
T (θ̂ − θ∗), (A.4)

where θ̌ is another intermediate point on the line segment joining θ̂ and θ∗. From Assumption B(ii)

and the consistency of θ̂, we have

√
T (θ̂ − θ∗) = H−1

√
T h̄∗T (θ̂) + op(1). (A.5)

Using the definition of v̄T (θ) in (17) and the first order condition of 1
T

∑T
t=1 ht(θ̂) = 0n+k, it follows

that
√
T v̄T (θ̂) =

1√
T

T
∑

t=1

(

ht(θ̂) −E[ht(θ̂)]
)

= − 1√
T

T
∑

t=1

E[ht(θ̂)] = −
√
T h̄∗T (θ̂). (A.6)

This allows us to rewrite
√
T h̄∗T (θ̂) as

√
Th̄∗T (θ̂) = −

√
T v̄T (θ̂) =

√
T [v̄T (θ∗) − v̄T (θ̂)] −

√
T v̄T (θ∗). (A.7)
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By the consistency of θ̂, P [|θ̂ − θ∗| > ω] → 0 for any arbitrarily small ω > 0. Then,

√
T |v̄T (θ∗) − v̄T (θ̂)| ≤ sup

θ∈Θ:|θ−θ∗|≤ω

√
T |v̄T (θ∗) − v̄T (θ)| . (A.8)

From the stochastic equicontinuity of the empirical process
√
T v̄T (·),

sup
θ∈Θ:|θ−θ∗|≤ω

√
T |v̄T (θ∗) − v̄T (θ)| p→ 0. (A.9)

Therefore, we have
√
T [v̄T (θ∗) − v̄T (θ̂)] = op(1) and

√
T h̄∗T (θ̂) = −

√
T v̄T (θ∗) + op(1). (A.10)

Finally, substituting (A.10) into (A.5) yields

√
T (θ̂ − θ∗) = −H−1

√
Tv̄T (θ∗) + op(1). (A.11)

Thus, from (A.11), the consistency of θ̂, and Assumption B(ii), we obtain

δ̂
2 − δ2 =

1

T

T
∑

t=1

(

φt(θ̂) −E[φt(θ̂)]
)

− 1

2
(θ̂ − θ∗)′

∂2E[φt(θ̃)]

∂θ∂θ′
(θ̂ − θ∗)

=
1

T

T
∑

t=1

(φt(θ
∗) − E[φt(θ

∗)])− 1

2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(

1

T

)

. (A.12)

This completes the proof.

Proofs

Proof of Lemma 1. (a) From the definition of H in (15), we can use the partitioned matrix

inverse formula to obtain

H−1 =

[

2C 2D′

2D −2U

]−1

=
1

2

[

H̃ H̃D′U−1

U−1DH̃ −U−1 + U−1DH̃D′U−1

]

, (A.13)

where H̃ = (C +D′U−1D)−1. Under the null hypothesis H0 : δ = 0, (A.1) in Lemma A.1 becomes

δ̂
2

= −1

2
v̄T (θ∗)′H−1v̄T (θ∗) + op

(

1

T

)

(A.14)

since λ∗ = 0n and φt(γ
∗, 0n) = E[φt(γ

∗, 0n)] = 0. Let v̄T (θ∗) = [v̄1,T (θ∗)′ , v̄2,T (θ∗)′]′ , where

v̄1,T (θ∗) denotes the first k elements of v̄T (θ∗). Under the null, v̄1,T (θ∗) = 0k and C = 0k×k.
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Then, it follows that

T δ̂
2

= −1

2

√
T v̄T (θ∗)′H−1

√
T v̄T (θ∗) + op(1)

=
1

4

√
T v̄2T (θ∗)′[U−1 − U−1D(D′U−1D)−1D′U−1]

√
T v̄2,T (θ∗) + op(1)

=
1

4

√
T v̄2T (θ∗)′U− 1

2PP ′U− 1

2

√
Tv̄2,T (θ∗) + op(1) (A.15)

by using the fact that In − U− 1

2D(D′U−1D)−1D′U− 1

2 = PP ′. Also, Assumptions A, B and C

ensure that the empirical process
√
T v̄2,T (θ∗) obeys the central limit theorem and

√
T v̄2,T (θ∗)

A∼ N (0n,Mλλ). (A.16)

Thus, using the fact that Mλλ = 4S under the null, we obtain

T δ̂
2 A∼ z′S

1

2U− 1

2PP ′U− 1

2S
1

2 z, (A.17)

where z ∼ N (0n, In). Since S
1

2U− 1

2PP ′U− 1

2S
1

2 has the same nonzero eigenvalues as P ′U− 1

2SU− 1

2P ,

we have

T δ̂
2 A∼ Fn−k(ξ), (A.18)

where the ξi’s are the eigenvalues of P ′U− 1

2SU− 1

2P . This completes the proof of part (a).

(b) Now consider the case δ > 0. In this situation, the asymptotic behavior of
√
T (δ̂

2 − δ2) is

determined by 1√
T

∑T
t=1(φt(θ

∗)−E[φt(θ
∗)]), which converges weakly to a Gaussian process. Under

Assumptions A, B and C, and since E[φt(θ
∗)] = δ2, we have

√
T (δ̂

2 − δ2) =
1√
T

T
∑

t=1

(φt(θ
∗) −E[φt(θ

∗)]) + op(1)
A∼ N (0, σ2

b). (A.19)

This completes the proof of part (b).

Proof of Lemma 2. (a) For δ > 0 and under Assumptions A, B and C,

√
T v̄T (θ∗)

A∼ N (0n+k,M). (A.20)

Then, combining (A.11) and (A.20), we obtain

√
T (θ̂ − θ∗) A∼ N (0n+k, H

−1MH−1). (A.21)
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To derive an explicit expression for the asymptotic covariance matrix of θ̂, we write

H−1MH−1 =

∞
∑

j=−∞
E[ltl

′
t+j], (A.22)

where

lt ≡
[

l1t

l2t

]

= H−1∂φt(θ
∗)

∂θ
. (A.23)

Using (A.13), (18) and (19), we can express l1t and l2t as

l1t = (C +D′U−1D)−1

[

(yt(γ
∗) −mt(θ

∗))
∂yt(γ

∗)
∂γ

+D′U−1[xtmt(θ
∗) − qt−1]

]

, (A.24)

l2t = U−1[Dl1t− xtmt(θ
∗) + qt−1]. (A.25)

Using the definition of mt(θ
∗) and rearranging delivers the desired result. This completes the proof

of part (a).

(b) When δ = 0, C = 0k×k and mt(θ
∗) = yt(γ

∗). Therefore, l1t and l2t simplify to

l1t = l̃1t = (D′U−1D)−1D′U−1et(γ
∗), (A.26)

l2t = U−1[Dl1t − et(γ
∗)]. (A.27)

Premultiplying l2t by P ′U
1

2 yields l̃2t = −P ′U− 1

2 et(γ
∗). This completes the proof of part (b).

Proof of Theorem 1. From part (b) of Lemma 2, we have

√
TP ′U

1

2 λ̂
A∼ N (0n−k, P

′U− 1

2SU− 1

2P ) (A.28)

when δ = 0, or equivalently

√
T (P ′U− 1

2SU− 1

2P )−
1

2P ′U
1

2 λ̂
A∼ N (0n−k, In−k). (A.29)

Then, under Assumptions A, B and C,

LMλ̂ = T λ̂
′
Û

1

2 P̂
(

P̂ ′Û− 1

2 ŜÛ− 1

2 P̂
)−1

P̂ ′Û
1

2 λ̂

= T λ̂
′
U

1

2P
(

P ′U− 1

2SU− 1

2P
)−1

P ′U
1

2 λ̂+ op(1)

A∼ χ2
n−k. (A.30)

This completes the proof.
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Proof of Theorem 2. (a) From Lemma A.1 and under the null H0 : δ2F = δ2G = 0, we can use

(A.15) to obtain

T (δ̂
2
F − δ̂

2
G)

=
1

4

[ √
T v̄F2,T (θ∗F )

√
T v̄G2,T (θ∗G)

]′ [
U− 1

2PFP ′
FU

− 1

2 0n×n

0n×n −U− 1

2PGP ′
GU

− 1

2

][ √
T v̄F2,T (θ∗F)

√
T v̄G2,T (θ∗G)

]

+ op(1). (A.31)

From Assumptions A, B and C, we have

[ √
T v̄F2,T (θ∗F)

√
T v̄G2,T (θ∗G)

]

A∼ N (02n, 4S) . (A.32)

Hence,

T (δ̂
2
F − δ̂

2
G)

A∼ z′S 1

2

[

U− 1

2PFP ′
FU

− 1

2 0n×n

0n×n −U− 1

2PGP ′
GU

− 1

2

]

S 1

2 z, (A.33)

where z ∼ N (02n, I2n). Furthermore, the nonzero eigenvalues of

S 1

2

[

U− 1

2PFP ′
FU

− 1

2 0n×n

0n×n −U− 1

2PGP ′
GU

− 1

2

]

S 1

2 (A.34)

are the same as the eigenvalues of the matrix

[

P ′
FU

− 1

2 0(n−k1)×n

0(n−k2)×n P ′
GU

− 1

2

]

S
[

U− 1

2PF 0n×(n−k2)

0n×(n−k1) −U− 1

2PG

]

. (A.35)

Then, it follows that

T (δ̂
2
F − δ̂

2
G)

A∼ F2n−k1−k2(ξ), (A.36)

where the ξi’s are the eigenvalues of the matrix

[

P ′
FU

− 1

2SFU− 1

2PF −P ′
FU

− 1

2SFGU− 1

2PG

P ′
GU

− 1

2SGFU− 1

2PF −P ′
GU

− 1

2SGU− 1

2PG

]

. (A.37)

This completes the proof of part (a).

(b) Using the result in part (b) of Lemma 2, it can be shown that when λF = λG = 0n,

√
Tλ̃FG

A∼ N (02n−k1−k2 ,Σλ̃FG
), (A.38)

where

Σλ̃FG
=

[

P ′
FU

− 1

2SFU− 1

2PF P ′
FU

− 1

2SFGU− 1

2PG

P ′
GU

− 1

2SGFU− 1

2PF P ′
GU

− 1

2SGU− 1

2PG

]

. (A.39)
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Using the fact that Σ̂λ̃FG
is a consistent estimator of Σλ̃FG

, we have

LMλ̃FG
= T λ̃

′
FGΣ̂−1

λ̃FG

λ̃FG
A∼ χ2

2n−k1−k2 . (A.40)

This completes the proof of part (b).

Proof of Theorem 3. (a) Since yFt (γ∗F ) = yGt (γ∗G) under the null, it follows that λ∗F = λ∗G and

mF
t (θ∗F ) = mG

t (θ∗G) which implies that φFt (θ∗F ) = φGt (θ∗G). Using these identities, we have

∂φFt (θ∗F)

∂λF
= 2[xtm

F
t (θ∗F ) − qt−1] = 2[xtm

G
t (θ∗G) − qt−1] =

∂φGt (θ∗G)

∂λG
(A.41)

and

v̄F2,T (θ∗F ) = v̄G2,T (θ∗G). (A.42)

It is convenient to express the null hypothesis H0 : ψG(γ∗G) = 0k2−k1 as a functional dependence

H0 : γ∗G = g(γ∗F), (A.43)

where g(·) is a twice continuously differentiable function from ΓF to ΓG (see Gallant, 1987 and

Vuong, 1989).25 Denote by

G(γF ) =
∂g(γF )

∂γ′F
(A.44)

the k2 × k1 matrix of derivatives of g(γF) with respect to γF . Gallant (1987, p. 241) shows that

ΨG(γ∗G)G(γ∗F) = ΨG(g(γ∗F))G(γ∗F ) = 0(k2−k1)×k1 . (A.45)

Define the matrices

S = [ΨG
∗ , 0(k2−k1)×n], Q =

[

G(γ∗F ) 0k2×n

0n×k1 In

]

(A.46)

and note that SQ = 0(k2−k1)×(n+k1). Then, using (A.42) and (A.43), it follows that (see Lemma B

in Vuong, 1989)

v̄FT (θ∗F ) = Q′v̄GT (θ∗G) (A.47)

and

HF = Q′HGQ. (A.48)

25Gallant (1987, Section 3.6) provides a discussion of these two alternative representations of the null hypothesis.
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By Lemma A.1 and the fact that φFt (θ∗F ) = φGt (θ∗G) under the null, we obtain

T (δ̂
2
F − δ̂

2
G)

= −1

2

√
T v̄FT (θ∗F )′H−1

F
√
T v̄FT (θ∗F ) +

1

2

√
T v̄GT (θ∗G)′H−1

G
√
T v̄GT (θ∗G) + op(1)

= −1

2

√
T v̄GT (θ∗G)′Q(Q′HGQ)−1

Q′√T v̄GT (θ∗G) +
1

2

√
T v̄GT (θ∗G)′H−1

G
√
T v̄GT (θ∗G) + op(1)

=
1

2

√
T v̄GT (θ∗G)′H

− 1

2

G [In+k2 −H
1

2

G Q(Q′HGQ)−1
Q′H

1

2

G ]H
− 1

2

G
√
T v̄GT (θ∗G) + op(1). (A.49)

Using SQ = 0(k2−k1)×(n+k1), it can be shown that (see pp. 241–242 in Gallant, 1987)

In+k2 −H
1

2

G Q(Q′HGQ)−1
Q′H

1

2

G = H
− 1

2

G S′(SH−1
G S′)−1

SH
− 1

2

G . (A.50)

Substituting (A.50) into (A.49) yields

T (δ̂
2
F − δ̂

2
G) =

1

2

√
T v̄GT (θ∗G)′H

− 1

2

G [H
− 1

2

G S′(SH−1
G S′)−1

SH
− 1

2

G ]H
− 1

2

G
√
T v̄GT (θ∗G) + op(1)

=
1

2

√
T v̄GT (θ∗G)′H−1

G S′(SH−1
G S′)−1

SH−1
G

√
T v̄GT (θ∗G) + op(1). (A.51)

Furthermore, invoking
√
Tv̄GT (θ∗G)

A∼ N (0n+k2 ,MG) , (A.52)

we have

T (δ̂
2

F − δ̂
2

G)
A∼ 1

2
z′
[

M
1

2

G H
−1
G S′(SH−1

G S′)−1
SH−1

G M
1

2

G

]

z, (A.53)

where z ∼ N (0n+k2 , In+k2). Denote by Σ
θ̂G

the asymptotic covariance matrix of θ̂G given in part (a)

of Lemma 2. Since the eigenvalues of the matrix 1
2M

1

2

GH
−1
G S′(SH−1

G S′)−1
SH−1

G M
1

2

G are the same as

the eigenvalues of the matrix

1

2
(SH−1

G S′)−1
SH−1

G MGH
−1
G S′ =

1

2
(SH−1

G S′)−1
SΣθ̂G

S′ = (ΨG
∗ H̃GΨG

∗
′)−1ΨG

∗ Σγ̂GΨG
∗
′, (A.54)

we conclude that

T (δ̂
2

F − δ̂
2

G)
A∼ Fk2−k1(ξ), (A.55)

where the ξi’s are the eigenvalues of the matrix in (A.54). Since A = ΨG
∗ H̃GΨG

∗
′ and B = ΨG

∗Σγ̂GΨG
∗
′

are two symmetric positive definite matrices, A− 1

2BA− 1

2 is also symmetric positive definite with

positive eigenvalues. Furthermore, because A−1B and A− 1

2BA− 1

2 share the same eigenvalues, the

eigenvalues of A−1B are also positive. This completes the proof of part (a).
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(b) Note that, under the null and using the delta method,

√
T ψ̂G

A∼ N (0k2−k1 ,Ψ
G
∗Σγ̂GΨG

∗
′). (A.56)

Substituting consistent estimators for ΨG
∗ and Σγ̂G and constructing the Wald test delivers the

desired result. This completes the proof of part (b).

Proof of Theorem 4. (a) Define the following matrices

SF =
[

ΨF
∗ , 0(k1−k3)×n

]

, SG =
[

ΨG
∗ , 0(k2−k3)×n

]

. (A.57)

Since H ⊂ F and H ⊂ G, we can use the results from the proof of part (a) of Theorem 3 to obtain

T (δ̂
2

H − δ̂
2

F) =
1

2

√
T v̄FT (θ∗F )′H−1

F S′
F (SFH

−1
F S′

F )−1
SFH

−1
F

√
T v̄FT (θ∗F ) + op(1) (A.58)

and

T (δ̂
2
H − δ̂

2
G) =

1

2

√
Tv̄GT (θ∗G)′H−1

G S′
G(SGH

−1
G S′

G)−1
SGH

−1
G

√
T v̄GT (θ∗G) + op(1). (A.59)

Taking the difference yields

T (δ̂
2
F − δ̂

2
G) = −1

2

√
T v̄FT (θ∗F)′H−1

F S′
F (SFH

−1
F S′

F )−1
SFH

−1
F

√
T v̄FT (θ∗F) (A.60)

+
1

2

√
T v̄GT (θ∗G)′H−1

G S′
G(SGH

−1
G S′

G)−1
SGH

−1
G

√
T v̄GT (θ∗G) + op(1).

From Assumptions A, B and C, the joint empirical process
√
T [v̄FT (θ∗F)′ , v̄GT (θ∗G)′]′ converges to

a Gaussian process:
[ √

T v̄FT (θ∗F )
√
T v̄GT (θ∗G)

]

A∼ N (02n+k1+k2 ,M) , (A.61)

where

M =

[

MF MFG
MGF MG

]

= lim
T→∞

Var





1√
T

∑T
t=1

∂φFt (θ∗F)
∂θF

1√
T

∑T
t=1

∂φGt (θ∗
G
)

∂θG



 . (A.62)

Hence,

T (δ̂
2
F − δ̂

2
G)

A∼

z′
[

1

2
M

1

2

(

−H−1
F S′

F (SFH
−1
F S′

F )−1
SFH

−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G S′

G(SGH
−1
G S′

G)−1
SGH

−1
G

)

M
1

2

]

z,(A.63)
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where z ∼ N (02n+k1+k2 , I2n+k1+k2). Then, using the fact that AB and BA share the same nonzero

eigenvalues, the matrix in the square brackets in (A.63) has the same nonzero eigenvalues as the

matrix

1

2

[

−(SFH
−1
F S′

F )−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (SGH
−1
G S′

G)−1

]

×
[

SFH
−1
F 0(k1−k3)×(n+k2)

0(k2−k3)×(n+k1) SGH
−1
G

]

M

[

H−1
F S′

F 0(n+k1)×(k2−k3)

0(n+k2)×(k1−k3) H−1
G S′

G

]

. (A.64)

Using the fact that SFH
−1
F S′

F = 1
2ΨF

∗ H̃FΨF
∗
′, SGH

−1
G S′

G = 1
2ΨG

∗ H̃GΨG
∗
′ and

Σθ̂FG
=

[

H−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]

M

[

H−1
F 0(n+k1)×(n+k2)

0(n+k2)×(n+k1) H−1
G

]

(A.65)

is the asymptotic covariance matrix of [θ̂
′
F , θ̂

′
G ]′, the matrix in (A.64) can be written as

[

−(ΨF
∗ H̃FΨF

∗
′)−1 0(k1−k3)×(k2−k3)

0(k2−k3)×(k1−k3) (ΨG
∗ H̃GΨG

∗
′)−1

]

ΨFG
∗ Σγ̂FG

ΨFG
∗

′. (A.66)

Therefore,

T (δ̂
2

F − δ̂
2

G)
A∼ Fk1+k2−2k3(ξ), (A.67)

where the ξi’s are the eigenvalues of the matrix in (A.66). This completes the proof of part (a).

(b) By the delta method,

√
Tψ̂FG

A∼ N (0k1+k2−2k3 ,Ψ
FG
∗ Σγ̂FG

ΨFG
∗

′). (A.68)

Using consistent estimators of ΨFG
∗ and Σγ̂FG

for constructing

Waldψ̂FG
= T ψ̂

′
FG(Ψ̂FG Σ̂γ̂FG

Ψ̂FG ′)−1ψ̂FG , (A.69)

we obtain immediately

Waldψ̂FG

A∼ χ2
k1+k2−2k3 . (A.70)

This completes the proof of part (b).

Additional results

Example of two strictly non-nested models that are both correctly specified. Let R

be the gross returns on N risky assets and R0 be the gross return on the risk-free asset. Suppose
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that Rp is the gross return on the tangency portfolio of the N risky assets. Simple mean-variance

mathematics gives

E[R] = R01N + Cov[R,Rp]γ
∗, (A.71)

where γ∗ = (µp − R0)/σ
2
p, with µp = E[Rp] and σ2

p = Var[Rp]. In addition, assume that R is

multivariate normally distributed. Consider the following SDF

yF (γF) =
1

R0
exp (a0 − γFRp) , (A.72)

where

a0 = −
γ∗2σ2

p

2
+ γ∗µp. (A.73)

Let 1N denote an N -vector of ones. Using Stein’s lemma, we can easily establish that

E[R0y
F(γ∗)] = 1, E[RyF(γ∗)] = 1N , (A.74)

so that yF (γ∗) ∈ M.

Now consider a factor f = Rp+ε, where ε is a normal mean-zero measurement error independent

of the returns. It follows that µf = E[f ] = µp and σ2
f = Var[f ] > σ2

p. Consider an alternative SDF

yG(γG) =
1

R0
exp

(

ã0 − γGf
)

, (A.75)

where

ã0 = −
γ∗2σ2

f

2
+ γ∗µp. (A.76)

Using Stein’s lemma again, we obtain

E[R0y
G(γ∗)] = 1, E[RyG(γ∗)] = 1N , (A.77)

and yG(γ∗) is also a correctly specified model. Note that yF (γF ) and yG(γG) are two strictly non-

nested models because there are no choices of γF and γG that can make these two SDFs identical.

This example shows that we can have two strictly non-nested SDFs that are both correctly specified.

Computation of p-values for multivariate inequality test. The biggest hurdle in determining

the p-value of LR in (74) is the computation of the weights. For a given p × p covariance matrix

Ω = (ωij), the expressions for the weights wi(Ω), i = 0, . . . , p, are given in Kudo (1963). The weights
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depend on Ω through the correlation coefficients ρij = ωij/(ωiωj). When p = 1, w0 = w1 = 1/2.

When p = 2,

w0 =
1

2
− w2, (A.78)

w1 =
1

2
, (A.79)

w2 =
1

4
+

arcsin(ρ12)

2π
. (A.80)

When p = 3,

w0 =
1

2
− w2, (A.81)

w1 =
1

2
− w3, (A.82)

w2 =
3

8
+

arcsin(ρ12·3) + arcsin(ρ13·2) + arcsin(ρ23·1)
4π

, (A.83)

w3 =
1

8
+

arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23)

4π
, (A.84)

where

ρij·k =
ρij − ρikρjk

[(1− ρ2
ik)(1− ρ2

jk)]
1

2

. (A.85)

For p > 3, the computation of the weights is more complicated. Following Kudo (1963), let

P = {1, . . . , p}. There are 2p subsets of P , which are indexed by M . Let n(M) be the number of

elements in M and M ′ be the complement of M relative to P . Define ΩM as the submatrix of Ω

that consists of the rows and columns in the set M , ΩM ′ as the submatrix of Ω that consists of

the rows and columns in the set M ′, ΩM,M ′ the submatrix of Ω with rows corresponding to the

elements in M and columns corresponding to the elements in M ′ (ΩM ′,M is similarly defined), and

ΩM ·M ′ = ΩM − ΩM,M ′Ω−1
M ′ΩM ′,M . Kudo (1963) shows that

wi(Ω) =
∑

M : n(M )=i

P (Ω−1
M ′)P (ΩM ·M ′), (A.86)

where P (A) is the probability for a multivariate normal distribution with zero mean and covariance

matrix A to have all positive elements. In the above equation, we use the convention that P [Ω∅·P ] =

1 and P [Ω−1
∅ ] = 1. Using (A.86), we have w0(Ω) = P (Ω−1) and wp(Ω) = P (Ω).

Researchers have typically used a Monte Carlo approach to compute the positive orthant prob-

ability P (A). However, the Monte Carlo approach is not efficient because it requires a large number

of simulations to achieve the accuracy of a few digits, even when p is relatively small.
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We overcome this problem by using a formula for the positive orthant probability due to Childs

(1967) and Sun (1988a). Let R = (rij) be the correlation matrix corresponding to A. Childs (1967)

and Sun (1988a) show that

P2k(A) =
1

22k
+

1

22k−1π

∑

1≤i<j≤2k

arcsin(rij)

+

k
∑

j=2

1

22k−jπj
∑

1≤i1<···<i2j≤2k

I2j

(

R(i1,...,i2j)

)

, (A.87)

P2k+1(A) =
1

22k+1
+

1

22kπ

∑

1≤i<j≤2k+1

arcsin(rij)

+

k
∑

j=2

1

22k+1−jπj
∑

1≤i1<···<i2j≤2k+1

I2j

(

R(i1,...,i2j)

)

, (A.88)

where R(i1,...,i2j) denotes the submatrix consisting of the (i1, . . . , i2j)-th rows and columns of R, and

I2j(Λ) =
(−1)j

(2π)j

∫ ∞

−∞
· · ·
∫ ∞

−∞

(

2j
∏

i=1

1

ωi

)

exp

(

−ω
′Λω
2

)

dω1 · · ·dω2j, (A.89)

where Λ is a 2j × 2j covariance matrix and ω = (ω1, . . . , ω2j)
′. Sun (1988a) provides a recursive

relation for I2j(Λ) that allows us to obtain I2j starting from I2. Sun’s formula enables us to compute

the 2j-th order multivariate integral I2j using a (j − 1)-th order multivariate integral, which can

be obtained numerically using the Gauss-Legendre quadrature method. Sun (1988b) provides a

Fortran subroutine to compute P (A) for p ≤ 9. We improve on Sun’s program and are able to

accurately compute P (A) and hence wi(Ω) for p ≤ 11.
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Table 1

t-tests under model misspecification

Panel A: t-tests under potentially misspecified models

CAPM YOGO

Size (mkt) Size (mkt) Size (ndur) Size (dur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.097 0.047 0.008 0.076 0.032 0.004 0.083 0.037 0.006 0.084 0.039 0.006
240 0.098 0.048 0.009 0.078 0.033 0.004 0.085 0.039 0.006 0.083 0.038 0.006
360 0.097 0.048 0.009 0.082 0.037 0.005 0.089 0.042 0.006 0.087 0.040 0.006
480 0.098 0.049 0.010 0.085 0.039 0.006 0.090 0.044 0.007 0.088 0.041 0.007
600 0.098 0.049 0.010 0.089 0.041 0.006 0.092 0.044 0.008 0.091 0.042 0.007

Panel B: t-tests under correctly specified models

CAPM YOGO

Size (mkt) Size (mkt) Size (ndur) Size (dur)

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.098 0.048 0.008 0.157 0.086 0.018 0.282 0.189 0.066 0.291 0.199 0.073
240 0.098 0.048 0.009 0.194 0.117 0.033 0.317 0.225 0.097 0.331 0.239 0.106
360 0.098 0.049 0.009 0.221 0.140 0.046 0.337 0.248 0.120 0.357 0.265 0.130
480 0.099 0.049 0.010 0.236 0.153 0.057 0.352 0.263 0.132 0.374 0.283 0.147
600 0.099 0.049 0.010 0.248 0.166 0.064 0.360 0.272 0.142 0.385 0.296 0.158

The table presents the empirical size of the t-tests of H0 : γi = 0. We report results for different levels of
significance (10%, 5% and 1% levels) and for different values of the number of time series observations (T )
using 100,000 simulations, assuming that the factors and the returns are generated from a multivariate normal
distribution. The various t-ratios are compared to the critical values from a standard normal distribution. Panel A
reports results for t-tests under potentially misspecified models based on the asymptotic covariance matrix in
(31) and (32), while Panel B reports results for t-tests under correctly specified models based on the asymptotic
covariance matrix in (34) and (35).
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Table 2

Model specification tests

Panel A: HJ-distance test using S

CAPM YOGO

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.343 0.240 0.101 1.000 0.999 0.995 0.267 0.174 0.064 0.991 0.982 0.946
240 0.202 0.123 0.037 1.000 1.000 1.000 0.166 0.096 0.027 1.000 1.000 0.999
360 0.162 0.092 0.025 1.000 1.000 1.000 0.139 0.077 0.019 1.000 1.000 1.000
480 0.145 0.079 0.020 1.000 1.000 1.000 0.127 0.068 0.016 1.000 1.000 1.000
600 0.134 0.073 0.017 1.000 1.000 1.000 0.122 0.064 0.014 1.000 1.000 1.000

Panel B: HJ-distance test using SA

CAPM YOGO

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.061 0.019 0.001 0.988 0.958 0.716 0.052 0.017 0.001 0.941 0.869 0.563
240 0.083 0.036 0.005 1.000 1.000 1.000 0.072 0.030 0.004 1.000 0.999 0.995
360 0.089 0.041 0.006 1.000 1.000 1.000 0.080 0.036 0.005 1.000 1.000 1.000
480 0.091 0.042 0.007 1.000 1.000 1.000 0.084 0.039 0.006 1.000 1.000 1.000
600 0.093 0.044 0.008 1.000 1.000 1.000 0.086 0.040 0.007 1.000 1.000 1.000

Panel C: LM test

CAPM YOGO

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.117 0.054 0.008 0.995 0.984 0.905 0.121 0.058 0.009 0.982 0.959 0.846
240 0.111 0.054 0.010 1.000 1.000 1.000 0.104 0.050 0.009 1.000 1.000 0.999
360 0.106 0.053 0.010 1.000 1.000 1.000 0.099 0.049 0.009 1.000 1.000 1.000
480 0.104 0.051 0.010 1.000 1.000 1.000 0.099 0.049 0.009 1.000 1.000 1.000
600 0.103 0.052 0.010 1.000 1.000 1.000 0.099 0.047 0.009 1.000 1.000 1.000

The table presents the empirical size and power of three tests of H0 : δ2 = 0. Panel A is for the test in part (a) of
Lemma 1 that uses the matrix S. Panel B is for the HJ-distance test based on SA. Finally, Panel C is for the LM
test in Theorem 1. We report results for different levels of significance (10%, 5% and 1% levels) and for different
values of the number of time series observations (T ) using 100,000 simulations, assuming that the factors and the
returns are generated from a multivariate normal distribution.

48



Table 3

Model selection tests

Panel A: Joint tests of correct specification for two strictly non-nested SDFs

Weighted χ2 test LM test

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.187 0.113 0.035 0.585 0.499 0.336 0.049 0.013 0.000 0.831 0.663 0.247
240 0.138 0.077 0.020 0.806 0.747 0.611 0.078 0.031 0.004 1.000 1.000 1.000
360 0.127 0.069 0.016 0.913 0.881 0.791 0.088 0.038 0.005 1.000 1.000 1.000
480 0.119 0.063 0.014 0.961 0.944 0.892 0.092 0.042 0.006 1.000 1.000 1.000
600 0.115 0.060 0.013 0.984 0.975 0.946 0.093 0.043 0.007 1.000 1.000 1.000

Panel B: Pairwise model comparison tests for nested SDFs

Restricted weighted χ2 test Wald test Unrestricted weighted χ2 test

Size Size Size

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.123 0.065 0.014 0.108 0.052 0.010 0.189 0.112 0.032
240 0.106 0.053 0.010 0.101 0.047 0.007 0.180 0.106 0.030
360 0.102 0.050 0.010 0.099 0.046 0.007 0.166 0.095 0.025
480 0.099 0.049 0.009 0.099 0.047 0.007 0.154 0.086 0.022
600 0.098 0.048 0.009 0.100 0.048 0.008 0.147 0.080 0.021

Power Power Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.337 0.198 0.046 0.469 0.334 0.130 0.311 0.188 0.050
240 0.505 0.343 0.112 0.647 0.524 0.284 0.451 0.311 0.115
360 0.634 0.474 0.195 0.760 0.656 0.421 0.563 0.419 0.183
480 0.732 0.585 0.285 0.836 0.751 0.535 0.657 0.518 0.256
600 0.807 0.681 0.377 0.888 0.821 0.634 0.737 0.610 0.333

Panel C: Multiple model comparison test for nested SDFs

Wald test

Size Power

T 10% 5% 1% 10% 5% 1%

120 0.155 0.084 0.020 0.372 0.246 0.083
240 0.118 0.059 0.012 0.573 0.441 0.215
360 0.110 0.055 0.011 0.713 0.597 0.359
480 0.109 0.054 0.010 0.809 0.713 0.491
600 0.108 0.053 0.010 0.875 0.802 0.606
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Table 3 (continued)

Model selection tests

Panel D: Pairwise tests of equality for overlapping SDFs

Restricted weighted χ2 test Wald test Unrestricted weighted χ2 test

Size Size Size

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.091 0.042 0.007 0.109 0.053 0.010 0.101 0.051 0.010
240 0.091 0.043 0.007 0.099 0.048 0.008 0.108 0.057 0.013
360 0.093 0.044 0.007 0.098 0.047 0.009 0.108 0.058 0.013
480 0.094 0.045 0.008 0.099 0.048 0.009 0.106 0.056 0.013
600 0.095 0.045 0.008 0.100 0.049 0.009 0.105 0.054 0.012

Power Power Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.649 0.560 0.359 0.776 0.654 0.374 0.418 0.327 0.171
240 0.888 0.857 0.758 0.980 0.957 0.851 0.722 0.663 0.528
360 0.959 0.948 0.914 0.999 0.997 0.982 0.870 0.838 0.760
480 0.984 0.980 0.968 1.000 1.000 0.998 0.941 0.925 0.883
600 0.993 0.992 0.987 1.000 1.000 1.000 0.973 0.964 0.944

Panel E: Pairwise (p = 1) and multiple (p = 2) model comparison tests for overlapping distinct SDFs

p = 1 p = 2

Size Power Size Power

T 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

120 0.136 0.069 0.011 0.432 0.310 0.127 0.134 0.065 0.009 0.357 0.243 0.086
240 0.110 0.052 0.007 0.623 0.490 0.251 0.105 0.047 0.005 0.527 0.393 0.176
360 0.102 0.048 0.007 0.754 0.635 0.388 0.098 0.045 0.005 0.668 0.541 0.297
480 0.102 0.048 0.007 0.842 0.746 0.513 0.098 0.045 0.006 0.775 0.664 0.419
600 0.101 0.048 0.008 0.901 0.827 0.623 0.098 0.045 0.007 0.850 0.759 0.532

The table presents the empirical size and power of pairwise and multiple model comparison tests for strictly
non-nested (Panel A), nested (Panels B and C) and overlapping (Panels D and E) models. In Panel A, we report
simulation results for the weighted chi-squared and LM tests in parts (a) and (b) of Theorem 2, respectively. In
Panel B, we report, in the order, results for the restricted weighted chi-squared test in part (a) of Theorem 3,
the Wald test in part (b) of Theorem 3 and the unrestricted weighted chi-squared test in (55)–(56). Panel C is
for the Wald test for multiple nested model comparison analyzed in Section 3.2. Panel D reports results for the
restricted weighted chi-squared test in part (a) of Theorem 4, the Wald test in part (b) of Theorem 4 and the
unrestricted weighted chi-squared test in (55)–(56). Finally, Panel E presents results for the pairwise (p = 1)
and multiple (p = 2) model comparison tests in (46) and (74), respectively. We report results for different levels
of significance (10%, 5% and 1% levels) and for different values of the number of time series observations (T )
using 100,000 simulations, assuming that the factors and the returns are generated from a multivariate normal
distribution.
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