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This paper investigates some of the successes and failures of density functional theory in the study of
high-pressure solid hydrogen at low temperature. We calculate the phase diagram, metallization pressure,
phonon spectrum, and proton zero-point energy using three popular exchange-correlation functionals: the local
density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the
semilocal Becke-Lee-Yang-Parr (BLYP) functional. We focus on the solid molecular P 63/m, C2/c, Cmca-12,
and Cmca structures in the pressure range from 100 < P < 500 GPa over which phases I, II, and III are observed
experimentally. At the static level of theory, in which proton zero-point energy is ignored, the LDA, PBE, and
BLYP functionals give very different structural transition and metallization pressures, with the BLYP phase
diagram in better agreement with experiment. Nevertheless, all three functionals provide qualitatively the same
information about the band gaps of the four structures and the phase transitions between them. Going beyond
the static level, we find that the frequencies of the vibron modes observed above 3000 cm−1 depend strongly on
the choice of exchange-correlation functional, although the low-frequency part of the phonon spectrum is little
affected. The largest and smallest values of the proton zero-point energy, obtained using the BLYP and LDA
functionals, respectively, differ by more than 10 meV/proton. Including the proton zero-point energy calculated
from the phonon spectrum within the harmonic approximation improves the agreement of the BLYP and PBE
phase diagrams with experiment. Taken as a whole, our results demonstrate the inadequacy of mean-field-like
density functional calculations of solid molecular hydrogen in phases I, II, and III and emphasize the need for
more sophisticated methods.
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I. INTRODUCTION

In 1935, Wigner and Huntington1 predicted that the
molecules in solid molecular hydrogen at very high pressure
would dissociate to form a metallic atomic solid. Solid
hydrogen is expected to transform into a metallic liquid ground
state at high pressure,2 may exhibit high-Tc superconduc-
tivity and superfluidity,3–5 and plays an important role in
astrophysics.6 Although it is not yet possible to reach the static
pressure of more than 400 GPa normally thought necessary
to dissociate the hydrogen molecules, recent experimental
results obtained using diamond anvil cell techniques have been
interpreted as indicating metallization and the transition of
molecular hydrogen to an atomic liquid, known as phase IV,
below 300 GPa (Ref. 7). Other experimental groups disagree,
observing no evidence of the optical conductivity expected of
a metal over the entire range of temperatures to the highest
pressures explored and no signature of an atomic liquid.8 The
interpretation of experimental results is complicated by the
fact that, unlike phase I (<110 GPa), which is a molecular
solid of quantum rotors on a hexagonal close packed lattice,
the structures of phase II (known as the broken-symmetry
phase9) and phase III (>150 GPa) are unknown.10 In addition,
it remains unclear whether or not phase III is metallic.11

Metallization is believed to occur either via the dissociation
of hydrogen molecules and a structural transformation to
an atomic metallic phase or via band overlap (band-gap
closure) within the molecular phase. There is more evidence
in favor of the latter assumption. Quantum Monte Carlo
(QMC) calculations of metallic hydrogen12 and our knowledge
of the experimental equation of state13 suggest that the
hydrogen molecules remain undissociated at pressures up to
620 GPa. Density functional theory (DFT) calculations using

the ab initio random structure searching approach14 predict
dissociation near 500 GPa (Ref. 15). These values are so large
that it seems likely that metallization takes place by band-gap
closure in the molecular phase well before dissociation occurs.

Experimental vibrational and scattering results are not
yet sufficient to allow an unambiguous determination of the
structure of phase III, leaving theorists free to speculate.16–21

However, the range of structures proposed is so wide and
the energy differences between them so small (typically a
few meV/proton) that it is unclear which, if any, correspond
to the global free energy minimum. Finding the most stable
arrangements of atoms in solids and molecules is and will
remain a very difficult task, but significant progress has
been made over the past few years. Recent advances based
on simulated annealing, metadynamics, random sampling,
evolutionary algorithms,22,23 basin hopping, minima hopping,
and data mining were discussed by the authors of Ref. 24.

The ab initio random structure searching method14 has also
been used to investigate the zero-temperature phase diagram of
molecular solid hydrogen.15 Searches excluding the effects of
proton zero-point energy (ZPE) found a sequence of molecular
crystal structures within the pressure range over which phase
III is observed experimentally. The C2/c structure was stable
up to 270 GPa; Cmca-12 was stable from 270 to 385 GPa;
and Cmca was stable above 385 GPa. The consequences
of including proton ZPE (see Sec. IV) were investigated
only after the structures had been found. The authors of
Ref. 15 provided many new ideas about the phase diagram
of solid molecular hydrogen, but the energies of the crystal
structures considered were obtained using a simple semilocal
approximation to the unknown exchange-correlation (XC)
functional of density functional theory (DFT), which may
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or may not be accurate. Since DFT has limited accuracy
for all materials, it cannot ensure such accuracy need for the
study of the phase diagram. Moreover, since DFT substantially
underestimates the fundamental band gap for essentially all
materials, it also underestimates the pressure at which the
band gap closes.25 Finally, it is worth noting that crystal
structures obtained using random searching do not always
agree with structures obtained using other techniques or
experiments.26,27 This is not surprising as the probability
that a random search will find the ground state decreases
exponentially with increasing system size.24

DFT is one of very few quantum mechanical methods
capable of calculating the energies and enthalpies of all phases
of interest over all relevant pressure regimes and has played an
important role in studies of high-pressure hydrogen. However,
serious doubts about the accuracy of the results persist. How
do the interatomic interaction energy, the bond-stretch energy,
the phase diagram, the metallization mechanism, and the
phonon spectrum depend on the approximation used for the XC
functional? How accurate should we expect DFT calculations
of measured quantities such as infrared (IR) and Raman
spectra to be? Answering these questions is necessary to
assess the reliability of the many existing DFT simulations
of high-pressure solid hydrogen.28,29 On the minus side,
because the enthalpy differences between rival structures are
so small (a few meV/proton), it is very difficult to be sure
that a specific structure represents the global minimum. The
failures of DFT to describe water and other systems containing
hydrogen at low pressure and temperature have already been
documented.30 Perhaps surprisingly, the errors of DFT are
already troublesome even for a single H2O molecule: it was
shown recently31,32 that some common XC functionals provide
rather poor estimates of the O–H bond-stretch energy. Because
of the limited experimental data, theoretical and computational
studies have an unusually important role to play in the study
of solid hydrogen, but only if they are correct.

Our purpose in this paper is to investigate the successes
and failures of several widely used XC functionals in the
study of high-pressure solid hydrogen. We emphasize that
the failures we identify do not signal a breakdown of DFT
itself; they demonstrate only the limited accuracy of certain
XC functionals. We believe that identifying and investigating
deficiencies such as these provides useful information to
developers of new XC functionals and may bring us closer to
one of the main goals of DFT, which is to design functionals
capable of providing accurate total energies for as wide a
variety of systems as possible.

Starting at the static level of theory, we calculate the zero-
temperature phase diagram using three different functionals:
the Perdew-Zunger (PZ) parametrization of the local density
approximation33 (LDA), the Perdew-Burke-Ernzerhof (PBE)
version of the generalized gradient approximation34 (GGA),
and the semilocal Becke-Lee-Yang-Parr (BLYP) functional.35

We focus on four specific structures with space groups P 63/m,
C2/c, Cmca-12, and Cmca. According to previous static DFT
calculations using the PBE functional,15 these are stable in the
pressure ranges <105, 105–270, 270–385, and 385–490 GPa,
respectively.

Nuclear quantum effects are generally neglected in DFT
calculations because of the computational cost.36,37 However,

there is strong evidence to show that this neglect has a
significant impact on the results for solid hydrogen, even at
finite temperature.38 We investigate quantum nuclear effects at
zero temperature by calculating the proton ZPE as a function
of pressure within the quasiharmonic approximation. Our cal-
culations of the phonon spectrum also enable us to investigate
the effect of the choice of XC functional on the frequencies
of the Raman and IR active modes. We demonstrate that adding
the proton ZPE to the calculated enthalpy produces “dynamic”
phase diagrams in better agreement with the experiment than
the static phase diagrams obtained excluding ZPE.

The paper is organized as follows. Section II describes
the details of our DFT calculations. Section III investigates
the effect of the choice of XC functional on the calculated
phase diagram and metallization pressure of solid molecular
hydrogen at the static level of theory, and shows how the
choice of functional affects the pressures at which the phase
transitions I → II → III are predicted to take place. In
Sec. IV, we go beyond the static level by investigating the
effects of ZPE. Section VI concludes.

II. COMPUTATIONAL DETAILS

Since the energy differences between high-pressure solid
molecular structures are very small, the calculations must
be done with the highest possible numerical precision.39 Our
DFT calculations were carried out within the pseudopotential
and plane-wave approach using the QUANTUM ESPRESSO

suite of programs.40 All calculations used norm-conserving
pseudopotentials and a basis set of plane waves with a cutoff
of 200 Ry. Geometry and cell optimizations employed a
dense 16 × 16 × 16 k-point mesh. The BFGS quasi-Newton
algorithm was used for cell and geometry optimization,
with convergence thresholds on the total energy and forces
of 0.01 mRy and 0.1 mRy/Bohr, respectively, to guarantee
convergence of the total energy to better than 1 meV/proton
and the pressure to better than 0.1 GPa/proton.

To include the effects of ZPE and investigate the phonon
spectrum, vibrational frequencies were calculated using den-
sity functional perturbation theory as implemented in QUAN-
TUM ESPRESSO.40 The ZPE per proton at a specific cell
volume V was estimated within the harmonic approximation
EZPE(V ) = 3h̄ω/2, where ω = ∑

q

∑Nmode
i=1 ωi(q)/(NqNmode).

Here Nmode and Nq are the numbers of vibrational modes in
the unit cell and phonon wave vectors q, respectively, and
the summation over q includes all k points on a 2 × 2 × 2
grid in the Brillouin zone. McMahon41,42 demonstrated that
a q-point grid of this density is sufficient to converge ZPE
differences between structures to within a few percent. The
enthalpy at pressure P , including ZPE effects, was obtained
by minimizing H (P ) = E(V ) + EZPE(V ) + PV with respect
to V at constant P , where E(V ) is the static ground state
energy at volume V .

III. STATIC RESULTS AND DISCUSSION

This section reports the ground state phase diagram of solid
molecular hydrogen in the pressure range corresponding to
phases I, II, and III (100 < P < 500 GPa). Three different XC
functionals were used to calculate the enthalpies of the Cmca,
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FIG. 1. (Color online) A layer of the hexagonal P 63/m structure
at 300 GPa. The layers are stacked in an ABAB fashion. The primitive
unit cell contains 16 atoms, which form hydrogen molecules of two
types: 75% of the molecules lie flat within the plane and 25% lie
perpendicular to the plane.

C2/c, Cmca-12, and P 63/m structures found by recent
PBE calculations15 to be stable (have the lowest enthalpy)
at different pressures within this range. These structures are
illustrated in Figs. 1–4.

Figure 5 shows the static lattice enthalpy as a function
of pressure calculated using the LDA, PBE, and BLYP
functionals. According to our LDA calculations, the P 63/m,
C2c, Cmca-12, and Cmca phases are stable in the pressure
ranges <70, 70–165, 165–260, and >260 GPa, respectively.
Our PBE phase diagram is in agreement with previous work,15

indicating that the P 63/m, C2/c, Cmca-12, and Cmca phases
are stable in the pressure ranges <110, 110–245, 245–370,
and >370 GPa, respectively. According to the experiment, the
phase transition from phase I to phase II happens around 110
GPa and is characterized by a change in the low-frequency
region of the Raman and IR spectra.43 It is interesting that
the structural transition from P 63/m to C2/c is also observed

FIG. 2. (Color online) A layer of the monoclinic C2/c structure
at 300 GPa. The layers are arranged in an ABCDA fashion and the
primitive unit cell contains 12 atoms.

FIG. 3. (Color online) A layer of the monoclinic Cmca-12
structure at 300 GPa. The layers are arranged in an ABA fashion
and the primitive unit cell contains 12 atoms.

at 110 GPa when the PBE functional is used in the static
approximation. The static PBE phase diagram does not provide
any information about the transition from phase II to phase
III, which is observed experimentally at around 150 GPa and
is accompanied by a large low-temperature discontinuity in
the Raman scattering and a strong rise in the IR molecular
vibrons.43,45 The static BLYP phase diagram, by contrast,
identifies the transition from phase II to phase III with the
structural change from P 63/m to C2/c. As Fig. 5(c) illustrates,
BLYP calculations predict that the P 63/m, C2c, Cmca-12,
and Cmca phases are stable in the pressure ranges of <160,
160–370, 370–430, and >430 GPa, respectively.

Figure 6 illustrates how the DFT band gaps of the Cmca-12,
C2/c, and P 63/m structures close as the pressure increases.

FIG. 4. (Color online) A layer of the Cmca structure at 300 GPa.
The layers are arranged in an ABA fashion and the primitive unit cell
contains eight atoms.
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FIG. 5. (Color online) Enthalpy per proton as a function of
pressure calculated using three different XC functionals: (a) LDA,
(b) PBE, (c) BLYP. The static lattice enthalpies of three different
insulating crystal structures are reported relative to the enthalpy
of the metallic Cmca structure. The Cmca-12 structure, which
is insulating at low pressure, transforms into the metallic Cmca

structure at 260, 370, or 430 GPa according to the LDA, PBE, and
BLYP approximations, respectively.

The results obtained using different XC functionals differ
markedly. The DFT band gap does not correspond to the
measured quasiparticle band gap and is usually much smaller,
so these results are not expected to agree with the experiment;
the true pressures at which the band gaps of these structures
close are likely to be significantly higher than suggested by
Fig. 6.
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FIG. 6. (Color online) Single-particle band gaps versus pressure
calculated using (a) the LDA, (b) the PBE, and (c) the BLYP
functionals. The BLYP band gap is larger than the LDA and PBE gaps
and consequently yields larger metallization pressures. The P 63/m

and Cmca-12 phases have the highest and lowest metallization
pressures, respectively, regardless of the XC functional used.

Exact-exchange (EXX) DFT calculations yield band gaps
1–2 eV higher than LDA gaps.21 Although this 1–2 eV differ-
ence was obtained by comparing LDA and EXX calculations,
Pickard15 investigated the effect of adding 1–2 eV to the PBE
band gap of the C2/c phase. Increasing the PBE gap by 1 or
2 eV and extrapolating to the pressure at which the increased
gap vanished gave metallization pressures of 350 and 410 GPa,
respectively. Table I reports the pressures of band-gap closure
obtained using the LDA, PBE, and BLYP functionals with and
without band-gap corrections of 1, 1.5, and 2 eV. The use of
the BLYP functional yields the highest calculated metallization
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TABLE I. Calculated pressure in GPa at which the band gap
of solid molecular hydrogen in the Cmca-12, C2/c, and P 63/m

structures closes. The metallization pressure is obtained by plotting
the band gap as a function of pressure and extrapolating to the point
at which the gap vanishes. Band gaps obtained using the LDA, PBE
and BLYP XC functionals are shown. The effects of adding band-
gap corrections of 1.0, 1.5, and 2.0 eV to the LDA results are also
indicated.

Space group LDA LDA+1 LDA+1.5 LDA+2 PBE BLYP

Cmca-12 160 205 228 248 230 320
C2/c 230 283 313 343 298 420
P 63/m 240 305 336 366 325 480

pressures for all three structures, even higher than the pressures
obtained by applying a 2-eV correction to the LDA gap.

The enthalpy-pressure relationships plotted in Fig. 5 show
that the LDA favors the metallic Cmca phase relative to the
insulating phases, and hence that the structural transition to
the Cmca phase occurs at a lower pressure within the LDA.
Furthermore, Fig. 6 shows that the band gaps of the insulating
phases close at lower pressures when the LDA functional is
used. The BLYP functional, by contrast, makes insulating
structures relatively more stable than the metallic Cmca

structure and predicts that the insulating Cmca-12 phase does
not transform into the metallic Cmca phase until the pressure
reaches 430 GPa. All three XC functionals suggest that the
P 63/m phase has the largest band gap and, consequently, the
highest metallization pressure of the three insulating structures
considered. The band gap of the Cmca-12 phase closes at the
lowest pressure.

All three XC functionals also indicate that the insulating
wide-band-gap hexagonal structure P 63/m is stable in the low-
pressure regime. Indeed, all three predict the same sequence
of structural transitions, P 63/m → C2/c → Cmca-12 →
Cmca, although at different pressures. They also agree that
the band gap of the Cmca-12 structure (which is insulating
at low pressure) closes before the transition to the Cmca

structure (which is metallic at low pressure) takes place.
However, the quantitative disagreements between the results
obtained using different XC functionals are so large that it is
barely possible to compare the calculated DFT phase diagram
with the experiment. Assuming that the I → II and II → III
phase transitions observed experimentally at around 110 and
150 GPa are related to structural transformations, different
functionals ascribe qualitatively different structural transitions
to each. The PBE phase diagram predicts a transition from
P 63/m to C2/c at around 105 GPa, which could be the I →
II transition. The LDA and BLYP phase diagrams show no
structural transformations near 110 GPa but two different
transformations, P 63/m → C2/c and C2/c → Cmca-12, in
the pressure range 150–160 GPa, possibly related to the
II → III transition. None of the three XC functionals is able to
explain both phase transitions.

IV. DYNAMIC RESULTS AND DISCUSSION

The treatment of nuclear quantum effects (ZPE) within
DFT is a challenging problem, but is especially important

in hydrogen due to the small nuclear mass. Indeed, we show
below that including the proton ZPE has a large effect on the
phase diagram. DFT is also used to study other properties
that depend on lattice vibrations, including Raman and IR
spectra and the electron-phonon interaction.42 As in the static
case, the question arises as to how these dynamical aspects
of the behavior of high-pressure solid hydrogen are affected
by the choice of XC functional. Answering this question is
more important in the dynamic than the static case, since
the experimental techniques most widely used to study high-
pressure solid hydrogen are Raman and IR spectroscopy, both
of which are interpreted using phonon calculations.44

Figure 7 shows the phonon densities of states of the
Cmca-12 and C2/c structures calculated using the LDA, PBE,
and BLYP XC functionals. The principal effect of the choice
of functional is on the size of the phonon band gap, which
depends on pressure and decreases as the pressure increases.
As in the case of the electronic band gap, the BLYP and
LDA functionals give the largest and smallest phonon gaps,
respectively. Surprisingly, at low frequencies (<2200 cm−1),
the phonon spectra obtained using the three different XC
functionals are quite similar. The XC functional has a much
larger effect in the high-frequency regime (>3500 cm−1).
As Fig. 7 shows, the LDA, PBE, and BLYP functionals
all predict two strong modes above the phonon gap, but at
significantly different frequencies. The uncertainties in the
frequencies of these modes complicate the comparison of
computational and experimental Raman and IR spectra. To
illustrate this difficulty, we have investigated the sensitivity of
the calculated IR spectrum of C2/c, Cmca-12, and P 63/m

phases at 175 GPa to the choice of XC functional.
As illustrated in Fig. 8, the computed IR spectrum of the

C2/c phase exhibits a single strong vibron peak, although the
peak intensity depends on the choice of XC functional. The
peak frequencies calculated using the LDA, PBE, and BLYP
functionals are approximately 3800, 4200, and 4600 cm−1,
respectively. In the case of the Cmca-12 phase, all three
functionals produce two peaks of similar intensity in the
high-frequency regime. The LDA peak frequencies are 3500
and 3750 cm−1; the PBE frequencies are 3820 and 4050 cm−1;
and the BLYP frequencies are 4250 and 4460 cm−1. The sim-
ulated IR spectrum of the P 63/m phase shows a single high-
frequency peak, which appears at 4250, 4470, or 4860 cm−1

for the LDA, PBE, and BLYP functionals, respectively.
Experimental IR spectra8 taken at 158 GPa show a single

strong vibron peak with a frequency of 4400 cm−1. As the
pressure increases, the frequency of this peak decreases, reach-
ing 4300 cm−1 at 208 GPa, suggesting a frequency close to
4350 cm−1 at P = 175 GPa. The experiment also shows8 that
the vibron intensity below 150 GPa is approximately three or-
ders of magnitude lower than at higher pressures. Although no
XC functional yields the experimental IR frequency accurately,
all indicate that the C2/c phase has a very strong IR peak in
roughly the right frequency range. As pointed out by Pickard
and Needs,15 this observation is consistent with the suggestion
that phase III has the C2/c structure. Regardless of the choice
of XC functional, the C2/c vibron peak is much more intense
than the vibron peaks for the other structures studied.

The effect of ZPE on the phase diagram is normally studied
by applying a simple, additive, pressure-dependent correction
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FIG. 7. (Color online) The phonon densities of states of the
Cmca-12 and C2/c structures calculated using the LDA, PBE, and
BLYP functionals at 175 and 250 GPa. All three functionals yield
almost the same low frequency (<2200 cm−1) phonon spectrum.
The frequencies of the vibron modes in the high-frequency regime
(>3500 cm−1) depend strongly on the choice of functional.

to the static ground state total energy. The zero-point motion is
assumed to be harmonic and the phonon frequencies calculated
as a function of volume using DFT. This was the procedure
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FIG. 8. (Color online) Simulated IR spectra of the C2/c, Cmca-
12, and P 63/m phases at 175 GPa. The intensity scale used for the
P 63/m phase is double that used for the Cmca-12 and P 63/m phases.

adopted here. The limitations of the harmonic approximation
can be overcome using DFT-based path-integral molecular
dynamics,46 but this is very costly and still relies on the
accuracy of the XC functional, which is clearly in doubt.
Ground state QMC simulations treating both the electrons
and protons as quantum mechanical particles16 do not rely on
an approximate XC functional, but are even more expensive.
Furthermore, only a few QMC simulations of this type have
ever been attempted and there are good reasons to doubt their
accuracy in practice.

Figure 9 summarizes the results of our proton ZPE
calculations using the LDA, PBE, and BLYP functionals.
The proton ZPEs of all the structures investigated, Cmca-12,
C2/c, P 63/m, and Cmca, are shown in the pressure range
of phases I, II, and III. It is clear that the ZPE increases
with increasing pressure regardless of the crystal structure
or choice of XC functional, and that the BLYP and LDA
functionals give the largest and smallest ZPEs in all cases.
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FIG. 9. (Color online) The proton zero-point energies of the
Cmca-12, C2/c, P 63/m, and Cmca crystal structures within the
pressure range of phases I, II, and III as calculated using the LDA,
PBE, and BLYP functionals. The ZPE per proton increases with pres-
sure. At any given pressure, the difference between ZPEs calculated
using the BLYP and LDA functionals is more than 10 meV/proton;
this is large in comparison to the few meV/proton enthalpy differ-
ences between structures.

For the insulating phases, Cmca-12, C2/c, and P 63/m,
increasing the pressure also increases the differences between
the proton ZPEs obtained using different XC functionals. For
the metallic Cmca phase, these differences are approximately

independent of pressure. The differences between the proton
ZPEs of the candidate crystal structures can be comparable to
the differences between their static total energies. Therefore,
structure-searching algorithms including an approximate ZPE
should be considered.

The crystal structures investigated here were all mechani-
cally stable and fully relaxed in the supercells used for structure
searching, but the existence of small imaginary phonon
frequencies indicates that some may be weakly unstable with
respect to structural distortions on longer length scales.15 The
imaginary phonon frequencies are relatively small, however,
and their number can be reduced by time-consuming small
relaxations of the structures in larger supercells.

The static phase diagrams presented in Fig. 5 assume that
the protons are infinitely massive. By adding the proton ZPE
to the static results we obtain the dynamic phase diagrams
reported in Fig. 10. The LDA dynamic phase diagram shows
three phase transformations: P 63/m to C2/c at around 50 GPa,
C2/c to Cmca-12 at around 170 GPa, and the Cmca-12
to Cmca metal-insulator transition at around 200 GPa. The
PBE and BLYP dynamic phase diagrams place the P 63m

to C2/c transition at 110–130 GPa. This suggests that the
I–II phase transition observed experimentally at 110 GPa
corresponds to the P 63m to C2/c structural transformation,
even though the IR data suggest that C2/c corresponds to
phase III. The dynamic PBE and BLYP phase diagrams agree
that the Cmca-12 structure is never stable in the pressure
range associated experimentally with phase III and that the
C2/c structure transforms directly, or almost directly, into the
metallic Cmca structure. The transition to Cmca-12 proposed
by Pickard and Needs15 has not been observed experimentally8

and a recent metadynamics calculation47 also suggested that,
at finite temperature, phase III may transform to Cmca without
passing through Cmca-12. If the Cmca-12 phase is ever stable,
it is only within a very narrow window just below the pressure
of the transition to the metallic Cmca structure.

The inclusion of the effects of proton ZPE substantially
decreases the metallization pressure. Although the PBE and
BLYP dynamic phase diagrams can both be interpreted as in
agreement with experimental results concerning metallization,
they do not agree with the same experimental results. Eremets
and Troyan claimed that7 hydrogen transforms into a metal at
260–270 GPa: the conductance increases sharply and changes
little on increasing the pressure to 300 GPa or cooling to 30 K;
and the sample reflects light well. As is shown in Fig. 10(b),
the PBE dynamic phase diagram supports this claim: C2/c

remains the most stable structure throughout phases II and
III and transforms directly or almost directly into the metallic
Cmca phase at 240–250 GPa. On the other hand, Hemley and
co-workers8 saw no evidence of a metallic state up to 360 GPa,
but reported electronic properties consistent with semimetallic
behavior. The BLYP dynamic phase diagram, Fig. 10(c), shows
a metal-insulator transition at 350–360 GPa, related to a phase
transition from the C2/c structure to the Cmca structure. The
dynamic phase diagrams also suggest that metallization of
high-pressure solid hydrogen happens through a molecular
structural transformation, not band-gap closure. The pressure
at which the band gap of the C2/c phase closes, as shown in
Table I and also as calculated using the more accurate GW

approximation,29,48 is considerably higher than the pressure
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FIG. 10. (Color online) Enthalpy per proton included ZPE
(dynamic enthalpy) as a function of pressure calculated using
three different XC functionals: (a) LDA, (b) PBE, and (c) BLYP.
The dynamic lattice enthalpies of three different insulating crystal
structures are reported relative to the enthalpy of the metallic Cmca

structure.

at which the transition to the metallic Cmca structure takes
place. Since metallization is likely to take place via a structural
transformation, the failure of DFT to produce accurate band
gaps is unlikely to be relevant.

Last, but not least, we ask why DFT is unable to reproduce
the phase diagram of high-pressure solid hydrogen. We believe
that there are two main problems. One is caused by the very
small enthalpy differences of a few meV per proton between
phases. Exhaustive tests for molecules, where accurate results
can be obtained using quantum chemical methods, have

shown that no current XC functional is consistently capable
of achieving such accuracy.32 The second is the many-body
self-interaction (XC-SI) error present in the XC functionals
used here. A systematic investigation49 found the XC-SI errors
of the LDA, GGA, and BLYP total energies of a single H2

molecule to be 1.264, −0.126, and 0.0846 eV, respectively.
These values are more than two orders of magnitude larger than
the DFT enthalpy differences between the crystal structures
of high-pressure solid hydrogen. The GGA functional has a
lower X-SIE than the LDA functional, but the C-SIE, which
is negative by definition, is larger than the X-SIE in this case.
The XC-SIE of the BLYP functional is relatively small because
the LYP functional by construction does not suffer from the
C-SIE. In previous work28 we showed that the use of hybrid XC
functionals, which generally suffer from smaller XC-SI errors
than pure density functionals,32 changes the phase diagram
considerably.

V. CONCLUSION

This paper reported DFT calculations using the LDA, PBE,
and BLYP XC functionals of various proposed structures
of solid molecular hydrogen at low temperature and high
pressure. Static results obtained using all three XC functionals
are consistent with the following scenario: at the highest
pressures considered here, the Cmca-12 structure, which is
insulating at low pressure but becomes semimetallic with
increasing pressure, transforms into the Cmca structure, which
is metallic even at low pressure. Since the Cmca-12 and
Cmca structures have the same space group, differing only
in the number of hydrogen molecules per unit cell, this seems
reasonable. More generally, as the pressure is increased, the
band gaps of the insulating structures of solid hydrogen
become smaller. As the band gaps decrease, we find that
structures with wider gaps become progressively less stable
relative to structures with smaller gaps, and a series of
transitions to structures with smaller gaps takes place. This
process culminates in the transition to the metallic Cmca

structure.
The above scenario changes significantly when the effects

of proton ZPE are added to the static phase diagram. Our ZPE
calculations were based on the harmonic approximation, which
is standard but may be problematic. However, it is clear from
our results that the effects of proton ZPE are essential and must
be taken into account, even if only approximately. Surprisingly,
but perhaps fortuitously, the agreement between the PBE
and BLYP dynamic phase diagrams is much better than the
agreement between the corresponding static phase diagrams.
In particular, both dynamic phase diagrams suggest that the
experimentally observed I–II phase transition corresponds to
a structural transformation from P 63m to C2/c, that C2/c is
the most stable of the structures considered over the whole
pressure range of phases II and III, and that metallization
happens via a molecular structural transformation from C2/c

to Cmca without passing through Cmca-12. The main differ-
ence between the PBE and BLYP dynamic phase diagrams is
the pressure of the C2/c to Cmca transition, which the PBE
functional places at 240–250 GPa and the BLYP functional
places at 350–360 GPa. As discussed above, both results can
be interpreted as being in agreement with recent experimental
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results, but different and conflicting ones. The low-frequency
(<2200 cm−1) parts of the phonon spectra of all structures
considered are surprisingly independent of the choice of XC
functional, but this is not true of the high-frequency vibronic
parts. In general, it appears that the BLYP functional produces
stiffer phonons than the PBE functional and considerably
stiffer phonons than the LDA functional.

This work focused on four specific crystal structures
recently proposed on the basis of PBE calculations.15 Although
the phase diagrams obtained using different XC functionals
differed substantially in quantitative terms, especially at the
static level, the four structures always appeared in the same
order as the pressure was increased. We think it likely, however,
that if we had considered a wider range of structures, we
would have seen qualitative as well as quantitative differences
between the phase diagrams calculated using different XC
functionals. DFT is probably not accurate enough to allow
reliable comparisons of the stabilities of the insulating,
semimetallic, and metallic phases of solid molecular hydrogen.
Indeed, since simple DFT calculations fail to describe van der
Waals interactions and severely underestimate band gaps, it
would be unreasonably optimistic to expect such comparisons

to be reliable. Actually, DFT has problems for hydrogen not
because of its special chemical bonding, but simply because
there are many structures with tiny energy differences and
DFT cannot ensure such accuracy even for normal systems.
We conclude that using DFT results as the basis of our
understanding of high-pressure solid hydrogen is likely to
lead to serious errors. To obtain reliable results, it is almost
certainly necessary to go beyond DFT and take many-body
effects properly into account.29 In any case, it is clear
that more work needs to be done, both theoretically and
experimentally, to understand solid molecular hydrogen at low
temperature.
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