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A theoretical study is reported of the molecular-to-atomic transition in solid hydrogen at high pressure.
We use the diffusion quantum Monte Carlo method to calculate the static lattice energies of the competing
phases and a density-functional-theory-based vibrational self-consistent field method to calculate
anharmonic vibrational properties. We find a small but significant contribution to the vibrational energy
from anharmonicity. A transition from the molecular Cmca-12 direct to the atomic I41=amd phase is found
at 374 GPa. The vibrational contribution lowers the transition pressure by 91 GPa. The dissociation
pressure is not very sensitive to the isotopic composition. Our results suggest that quantum melting occurs
at finite temperature.
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In 1935, Wigner and Huntington [1] predicted that solid
molecular hydrogen would dissociate at high pressure to
form a metallic atomic solid. The properties of atomic
hydrogen have fascinated high-pressure scientists and
astrophysicists ever since [2,3]. Various exotic predictions
have been made, such as the stability of atomic metallic
hydrogen in a superfluid state or as a room-temperature
superconductor [4–6], but neither an insulator-to-metal
transition nor a molecular-to-atomic transition has yet been
observed unambiguously at low temperatures.
The nature of hydrogen at high pressure is currently the

subject of intense interest. Experimental studies of hydro-
gen and deuterium have been performed up to pressures
above 300 GPa using static diamond-anvil-cell (DAC)
techniques [3,7–12]. A new high-pressure phase IV of
hydrogen and deuterium was recently observed, which is
believed to consist of alternate layers of strongly bonded
molecules and weakly bonded graphenelike sheets [8,13].
The precise pressures achieved in these experiments may
have been overestimated and are still controversial [14].
Even more controversial is the suggestion that conductive
dense hydrogen has been produced in room-temperature
experiments [7]. However, the discovery of weak bonding
in phase IV suggests that static DAC experiments could
probe the conditions under which the full molecular
dissociation of hydrogen and deuterium take place. The
results of our work corroborate this suggestion.
We have studied hydrogen in the pressure range 300–

650 GPa, within which the transition from molecular to

atomic structures is thought likely to occur. The most
important contribution to the structural energy is the static
lattice energy. The energy differences between competing
phases in hydrogen are small, and a very accurate description
of the electronic energy is required to resolve them. We have
therefore calculated static lattice energies using the diffusion
quantum Monte Carlo (DMC) method, which is the most
accurate method known for evaluating the energies of large
assemblies of interacting quantum particles [15–18].
Experimental measurements [19–21] and classical

molecular dynamics simulations using density-functional-
theory (DFT) methods [22,23] suggest that the melting
temperature of hydrogen increases with pressure and reaches
a maximum value of roughly 1000 K at a pressure in the
region of 100 GPa, whereafter it declines with pressure. Path-
integral molecular dynamics simulations have suggested that
the inclusion of the zero-point (ZP) energy of the protons
reduces the melting temperature to about 160 K at 500 GPa
and 100 K at 800 GPa [24]. This suggests that the interatomic
bonding becomes very weak at these pressures, and anhar-
monic effects could become important.
We have performed vibrational self-consistent field

(VSCF) calculations within DFT to calculate the anharmonic
vibrational ZP energies [25]. We used the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation density
functional, which is well suited for very high-pressure
studies, as the charge density is more uniform than at low
densities, and it obeys the uniform limit and gives a good
account of the linear response of the electron gas to an
external potential [26].
Static lattice DFT calculations using ab initio random

structure searching [27] indicate that there are three
energetically competitive structures in the range of interest.
The molecular Cmca-12 phase is insulating up to 373 GPa
in the GW approximation [28], although proton zero-point
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and finite-temperature effects are expected to lower the
metallization pressure [29]. The molecular Cmca-4 phase
and the atomic phase of I41=amd symmetry (the structure
of Cs-IV) are both metallic [30–32]. DFT with the PBE
functional predicts that Cmca-12 is stable up to 385 GPa,
Cmca-4 is stable in the range 385–490 GPa, and I41=amd
is stable from 490 GPa up to pressures beyond 1 TPa.
DFT studies of high-pressure phases of hydrogen have

been performed using several approximate density func-
tionals [13,24,29,33,34], and a significant dependence of
the results on the functional has been noted. The enthalpy
differences between phases are so small that changes of
only a few meV per proton can make a noticeable differ-
ence to the phase diagram. It is therefore important to use
an accurate approach for calculating the energies of the
competing phases. We have chosen to use the DMCmethod
[15,16] to calculate the static lattice energies. This method
solves the many-electron Schrödinger equation, is, in prin-
ciple, exact for the ground states of the hydrogen atom and
molecule, and rigorously excludes self-interaction errors. It is
likely that the DMC method provides a considerably more
accurate description of the energetics of hydrogen than the
currently available exchange-correlation density functionals.
We used the CASINO code [35] to perform fixed-node

DMC simulations with a trial wave function of the
Slater-Jastrow (SJ) form

ΨSJðRÞ ¼ exp½JðRÞ� det½ψnðr↑i Þ� det½ψnðr↓j Þ�; (1)

where R is a 3N-dimensional vector of the positions of the
N electrons, r↑i is the position of the ith spin-up electron, r

↓
j

is the position of the jth spin-down electron, exp½JðRÞ� is a
Jastrow factor, and det½ψnðr↑i Þ� and det½ψnðr↓j Þ� are Slater
determinants of spin-up and spin-down one-electron orbi-
tals. These orbitals were obtained from DFT calculations
performed with the plane-wave-based QUANTUM ESPRESSO

code [36], employing a norm-conserving pseudopotential
constructed within DFT using the local density approxi-
mation (LDA) exchange-correlation functional. The choice
of exchange-correlation functional used to generate the
orbitals has almost no effect on the DMC energies of solid
hydrogen phases [28,37]. Earlier work also suggests that
using a pseudopotential has only a small impact on results
for high-pressure solid hydrogen [32]. We chose a very
large basis-set energy cutoff of 300 Ry to approach the
complete basis-set limit [38], as detailed in the Supplemental
Material [39]. The plane-wave orbitals were transformed into
a localized “blip” polynomial basis [40]. Our Jastrow factor
consists of polynomial one-body electron-nucleus and two-
body electron-electron terms, the parameters of which were
optimized by minimizing the variance of the local energy at
the variational Monte Carlo level [41,42]. The quantum
Monte Carlo calculations were performed with simulation
cells containing N ¼ 128 protons. We used twist-averaged
boundary conditions with 24 randomly chosen twists to

reduce the single-particle finite-size effects [43]. We have
corrected our results for the effects of using finite simulation
cells, employing the approach described in Refs. [44,45]. The
residual finite-size effects are estimated to lead to errors in the
enthalpy differences between phases of less than 5 meV per
proton. The finite-size corrections are detailed in the
Supplemental Material [39]. The statistical errors in our data
are smaller than the reported accuracy [39].
The enthalpy was evaluated by fitting a polynomial to

the finite-size-corrected DMC energy as a function of
volume and differentiating the fit. The resulting enthalpy-
pressure relations are shown in the upper plot of Fig. 1. At the
static lattice level, we find a transition from Cmca-12 to
Cmca-4 at 431 GPa and a transition from the molecular
Cmca-4 to the atomic I41=amd structure at about 465 GPa.
DMC calculations predict that the Cmca-4 phase is signifi-
cantly less stable than in the PBE DFT.
To explore the accuracy of the DMC results further, we

performed calculations with trial wave functions incorpo-
rating an inhomogeneous backflow (BF) transformation
[46], which modifies the nodal surface of the wave function
and can introduce additional correlation effects. The BF
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FIG. 1 (color online). Enthalpy as a function of pressure for the
Cmca-12, Cmca-4, and I41=amd phases, relative to the
I41=amd phase. Top: Static phase diagram from DMC calcu-
lations. Bottom: Phase diagram including the ZP enthalpy from
the harmonic and anharmonic vibrational calculations. The inset
shows the harmonic ZP enthalpy as a function of pressure.
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wave functions give energies lower than the SJ wave
functions by about 19–13 meV per proton with increasing
density for Cmca-4, while the I41=amd energies were
lowered by about 17 meV per proton, approximately
independently of density. The energy reduction in the
molecular Cmca-4 phase is slightly larger than in the
I41=amd atomic phase, but the energy reductions of
the Cmca-4 and I41=amd phases are almost the same in
the region of the phase transition. We conclude that the
introduction of BF correlations does not significantly alter
our results. Further details of the effects of BF are described
in the Supplemental Material [39].
The above results are based on static lattice calculations

in which the vibrational motion of the protons has been
neglected. We have also performed calculations of the ZP
enthalpy arising from the proton motion using (a) the
quasiharmonic approximation and (b) a VSCF approach that
enables the calculation of anharmonic vibrational energies
[25]. The quasiharmonic phonon calculations were per-
formed with the PBE functional using both the supercell
finite displacement method and density-functional perturba-
tion theory as implemented in QUANTUM ESPRESSO [36].
Previous calculations of quasiharmonic proton ZP ener-

gies in solid hydrogen have encountered significant num-
bers of unstable phonon modes [31,32] at high pressures.
We found that the Cmca-12 and I41=amd structures had
stable modes at the supercell sizes considered. For Cmca-4,
we found a small unstable region around the Γ point which
was further reduced, but not entirely eliminated, by using
cells with up to 256 protons. This small unstable region
does not affect our estimates of the ZP energy, as shown in
the Supplemental Material [39]. As illustrated in the inset
of the lower panel of Fig. 1, the proton ZP enthalpy of all
three phases increases with pressure.
Systems of light atoms with weak bonding often exhibit

large vibrational amplitudes, which are likely to give rise to
anharmonic vibrations. There is evidence for the impor-
tance of anharmonicity in hydrogen, especially in the high-
density regime [2,29]. Utilizing our recently developed
variational VSCF scheme [25,47], we have calculated the
anharmonicity of the proton ZP motion of both the
molecular and atomic phases. We use the principal axes
approximation to map the Born-Oppenheimer energy sur-
face along independent but anharmonic vibrational modes
[25,48] and solve the resulting equations within a VSCF
scheme [25,49]. We also calculate the contribution from
phonon-phonon two-body coupling in the most anhar-
monic modes to estimate the effects of these terms on
the anharmonic vibrational energy [39]. The Born-
Oppenheimer energy surface is mapped within plane-wave
DFT using the CASTEP code [50]. By comparing the
energies of the highest- and lowest-energy modes with
those of the static lattice, we estimate that our choice of
computational parameters leads to energy differences
between frozen phonon configurations that are converged

to within 10−4 eV=proton. All calculations were performed
with the PBE functional and supercells containing 96 and
108 atoms. Supercell-size convergence tests indicate that
the anharmonic ZP energy correction is accurate to within
1 meV=proton for all three phases. Further details of the
VSCF calculations are given in the Supplemental Material
[39]. We performed calculations for the atomic I41=amd
phase at pressures of P ¼ 400, 500, and 600 GPa,
obtaining anharmonic corrections of −7.2, −8.1, and
−7.3 meV=proton, respectively. Similar calculations for
the molecular Cmca-4 phase at pressures of P ¼ 400
and 500 GPa give anharmonic corrections of þ8.7
and þ8.3 meV=proton, respectively. Calculations at P ¼
400 GPa for the Cmca-12 structure lead to an anharmonic
correction of þ4.0 meV=proton. The anharmonic correc-
tions to the proton ZP energy lower the energy of the
atomic phase and raise the energy of the molecular phases.
As an example of thevibrational properties of the I41=amd

structure, we plot in Fig. 2 the Born-Oppenheimer energy
surface and the corresponding anharmonic wave function
density at P ¼ 500 GPa for a Γ-point optical phonon of the
I41=amd structure, and a comparison with the harmonic
quantities. The I41=amd structure can be viewed as a
sequence of four stacked planes with square lattices, as
shown in the lower panel of Fig. 2. The mode corresponds to
an in-plane motion of the protons, where alternate stacked
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FIG. 2 (color online). Top: Harmonic (dashed black lines) and
anharmonic (solid red lines) Born-Oppenheimer (BO) energy
surfaces and corresponding wave function densities jΦharj2 and
jΦanhj2 for an optical mode at the Γ point of the I41=amd
structure. Bottom:A supercell of the I41=amd structurewith arrows
indicating the proton motion corresponding to the phonon mode
in the top figure. Alternate planes move in antiphase.
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planes oscillate in opposite directions. The minima of the
anharmonic potential are separated by about 0.427 Å in real
space. Adjacent minima correspond to equivalent I41=amd
structures connected by this in-plane proton motion. This is
the mode with the largest anharmonicity in the I41=amd
structure.
We note that the fermionic nature of the protons has not

been taken into account at either the harmonic or anhar-
monic level. In order to estimate the effects of this
approximation, we consider the real space amplitude of
the motion of the protons about their equilibrium positions.
The root-mean-square atomic amplitude in the I41=amd
phase at P ¼ 500 GPa is

ffiffiffiffiffiffiffiffiffi

hu2i
p

¼ 0.099 Å, which is
much smaller than the nearest neighbor distance of
a ¼ 0.99 Å. This indicates a small overlap between the
proton wave functions and justifies the neglect of their
quantum statistics. The Lindemann criterion [51] for the
melting of a solid is usually taken to be

ffiffiffiffiffiffiffiffiffi

hu2i
p

=a≳ 0.1, but

for quantum melting, a value of
ffiffiffiffiffiffiffiffiffi

hu2i
p

=a≳ 0.25 is
considered more accurate [52–54]. From our data [39],
ffiffiffiffiffiffiffiffiffi

hu2i
p

=a ¼ 0.1 at T ¼ 0 K, which is not in the regime of a
zero-temperature quantum liquid [6]. The inclusion of
quantum statistics would increase the kinetic energy of
the liquid and make it even less favorable at zero temper-
ature. The Lindemann criterion applied to the correspond-
ing atomic phase for the heavier deuterium would lead to
a higher melting temperature. The Lindemann criterion
cannot definitely answer the question of whether the
ground-state atomic phase is a metallic solid or a quantum
liquid, but it suggests that the melting temperature is higher
than 0 K. These conclusions should be compared with
recent path-integral molecular dynamics results at P ¼
500 GPa [24], which suggest a melting temperature
of 160 K.
We estimate the dynamical enthalpy as the sum of the

static DMC enthalpy and the ZP enthalpy calculated using
the quasiharmonic approximation corrected by the VSCF
scheme to account for the effects of anharmonicity. The
contribution to the total pressure from the ZP motion for the
atomic I41=amd phase increases with pressure from 25 to
45 GPa over the pressure range of the inset in the lower
panel of Fig. 1, while the ZP pressures of the molecular
Cmca-4 and Cmca-12 phases increase from 19 to 24 GPa
and 10 to 13.5 GPa, respectively. As shown in the
dynamical phase diagram of Fig. 1, the transition from
the Cmca-12 to the atomic I41=amd phase occurs at
374 GPa, and there is no stability region for the
Cmca-4 phase.
At the static level, the phase diagrams of hydrogen and

deuterium are identical. At the dynamic level and using the
quasiharmonic approximation, the deuterium ZPE is calcu-
lated by dividing the hydrogen ZPE by

ffiffiffi

2
p

. As illustrated in
the Supplemental Material [39], the dynamical phase
diagram of deuterium shows that the molecular-to-atomic

phase transition happens at a pressure of 390 GPa, also
through a structural transformation from molecular
Cmca-12 to atomic I41=amd. Therefore, the molecular-
to-atomic phase transition is fairly isotope independent.
We find that our DMC results are essentially independent

of the exchange-correlation (XC) functional used to cal-
culate the orbitals for the trial wave function. However, the
value of the proton ZP energy depends on the choice of XC
functional. To investigate the effect of this, we have
recalculated the harmonic ZP enthalpy for the Cmca-4,
Cmca-12, and I41=amd structures using the Becke-Lee-
Yang-Parr XC functional [55], as detailed in the
Supplemental Material [39], which gives significantly
different results from the PBE functional at the static lattice
level. The phase diagram including the effects of the ZP
harmonic enthalpy calculated with the Becke-Lee-Yang-
Parr functional leads to a reduction of 28 GPa in the
transition pressure for hydrogen dissociation, compared to
the PBE-based phase diagram. The differences in dissoci-
ation pressure due to the flavor of XC functional used for
the treatment of atomic vibrations do not affect the
qualitative results presented in this work and only have
a limited quantitative effect.
In conclusion, we have studied the dissociation of solid

molecular hydrogen at the static lattice and dynamical
lattice levels. At the static lattice level, our calculations give
a transition from the Cmca-12 molecular phase to the
Cmca-4 molecular phase at P ¼ 431 GPa, and a transition
to the I41=amd atomic phase at 465 GPa. At the dynamical
level, the molecular Cmca-12 phase transforms directly to
the atomic I41=amd phase at 374 GPa. The limited
precision of our calculations prevents us from stating
categorically that the Cmca-4 phase does not exist, but
the pressure range over which it might exist is very narrow.
The atomization pressure is close to being within range of
DAC experiments [56]. Therefore, the low-temperature
molecular-to-atomic phase transition of high-pressure
hydrogen might be observable experimentally. By compar-
ing the dynamical phase diagrams of hydrogen and
deuterium, we predict that the molecular-to-atomic phase
transition is almost isotope independent. The proton ZP
vibrational energies increase with pressure, and the anhar-
monic contribution leads to an increase in the vibrational
energy of the molecular Cmca-4 and Cmca-12 phases and
a decrease in that of the I41=amd atomic phase. Our results
suggest that quantum melting of hydrogen would occur at
finite temperature. Since metallic hydrogen is thought to be
present in large amounts in the interiors of Jupiter, Saturn,
and some extrasolar planets, planetary models should
consider incorporating our prediction of the existence of
an atomic metallic state at lower pressures than previously
assumed.
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