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Abstract Tuberculosis (TB) is considered a major worldwide
health problem with 10 million new cases diagnosed each
year. Our understanding of TB immunology has become
greater and more refined since the identification of Mycobac-
terium tuberculosis (MTB) as an etiologic agent and the
recognition of new signaling pathways modulating infection.
Understanding the mechanisms through which the cells of the
immune system recognize MTB can be an important step in
designing novel therapeutic approaches, as well as improving
the limited success of current vaccination strategies. A great
challenge in chronic disease is to understand the complexities,
mechanisms, and consequences of host interactions with path-
ogens. Innate immune responses along with the involvement
of distinct inflammatory mediators and cells play an important
role in the host defense against the MTB. Several classes of
pattern recognition receptors (PRRs) are involved in the rec-
ognition of MTB including Toll-Like Receptors (TLRs), C-
type lectin receptors (CLRs) and Nod-like receptors (NLRs)

linked to inflammasome activation. Among the TLR family,
TLR1, TLR2, TLR4, and TLR9 and their down-stream sig-
naling proteins play critical roles in the initiation of the im-
mune response in the pathogenesis of TB. The inflammasome
pathway is associated with the coordinated release of cyto-
kines such as IL-1β and IL-18 which also play a role in the
pathogenesis of TB. Understanding the cross-talk between
these signaling pathways will impact on the design of novel
therapeutic strategies and in the development of vaccines and
immunotherapy regimes. Abnormalities in PRR signaling
pathways regulated by TB will affect disease pathogenesis
and need to be elucidated. In this review we provide an update
on PRR signaling during M. tuberculosis infection and indi-
cate how greater knowledge of these pathways may lead to
new therapeutic opportunities.
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Abbreviations
APC Antigen-presenting cell
BAL Bronchoalveolar lavage
cDC Conventional dendritic cell
COPD Chronic obstructive pulmonary disease
CXCL CXC-chemokine ligand
CTL Cytotoxic T lymphocytes
CMR Cell-mediated reactions
CLR C-type lectin receptors
DTH Delayed-type hypersensitivity
DCs Dendritic cells
IFN-γ Interferon gamma
IL Interleukin
IPAF IL-1β converting enzyme (ICE) protease

activating factor
KO Knockout
LAM Lipoarabinomannan
LM Lipomannan
LPS Lipopolysaccharide
MTB Mycobacterium tuberculosis
MMPs Matrix metalloproteinase
NLRP NACHT, LRR and PYD domain-containing

protein
PTX3 Pentraxin 3
PAMPs Pathogen-associated molecular patterns
pDC Plasmacytoid dendritic cell
PMN Polymorphonuclear cells
PRRs Pattern recognition receptors
ROS Reactive oxygen species
TLR Toll-like receptor
TB Tuberculosis

Introduction

Tuberculosis (TB) is one of the most common infections world-
wide, and in 2012, an estimated 8.6 million people developed
TB and 1.3 million died from the disease (including 320,000
deaths among HIV-positive people) [1, 2]. Mycobacterium
tuberculosis (MTB) is an intracellular pathogen capable of
infecting and surviving within the host’s mononuclear cells
particularly macrophages. This involves sequestration of MTB
within organized granulomas. Elimination of the microorganism
is through a combination of various killing mechanisms includ-
ing apoptosis of host macrophages [3]. These responses are
orchestrated by T helper 1-type (Th1) pro-inflammatory cyto-
kines, which are synthesized by phagocytes upon recognition of
pathogen-associated molecular patterns (PAMPs) on MTB by
pattern recognition receptors (PRRs). MTB is usually transmit-
ted via aerosols and establishes a stable infectious state in the
respiratory system. There,MTB is engulfed bymacrophages and
dendritic cells (DCs), which serve as host cells forMTB survival

and propagation [4]. Binding of MTB ligands to TLR-2,
-4 and -9 initiates release of inflammatory mediators, expres-
sion of adhesion molecules and further recruitment of macro-
phages, DCs and PMN to the MTB infected area [5].

Although the host’s innate immune response to MTB in-
fection is critical for the initial defense against bacteria, the
adaptive immune response is ultimately required for contain-
ment of the infection in the chronic stage of disease. Adaptive
immunity toMTB infection is characterized by the appearance
of antigen specific CD4+ T-cells that secrete IFN-γ, which, in
turn, activates macrophages and other antigen presenting cells
(APC) to kill intracellular bacteria [6]. CD8+ T-cells are also
important cells for controlling MTB during the chronic phase
of infection [7, 8]. In addition, Th17 cells and IL-17 have been
reported to be involved in the pathogenesis of MTB [9]. IL-17
is a proinflammatory cytokine produced by Th17 cells and by
airway structural cells, which provides IFN-γ-dependent or
IFN-γ-independent protection to MTB infection (see Figs. 1
and 2) [10–12].

Indeed, in models of MTB infection, IL-17 and Th17 cells
were first implicated in the protective immune response to
rapidly growing extracellular bacteria in the lung and gut muco-
sal surfaces through efficient induction of neutrophil recruitment
and tissue repair [13–15]. IL-17 and Th17 cells are important
during the initial stages of infection and act upon hematopoietic
and non-hematopoietic cells to promote the secretion of antimi-
crobial peptides such as G-CSF and CXC chemokines. As a
consequence of this, DCs migrate to the local lymph nodes and
induce the differentiation of both Th1 and Th17 cells. The
increased levels of chemokines in the infected lung also promote
recruitment of other protective cells such as macrophages and
PMN and the formation of mononuclear granulomas. More-
over, an accumulation cytokines such as IL-6 and IL-23 in the
lungs can further induce the differentiation and activation of
Th17 cells and accelerate the pathogenesis of TB [16].

In this review we focus on the role of signal transduction
pathways which have an impact on the pathogenesis of TB.
Among these, the generation of ROS and the later activation of
PPRs including TLRs and of the inflammasome are highlighted.

Role of Reactive Oxygen Specious (ROS) in Pathogenesis
of TB

Reactive oxygen species (ROS) and reactive nitrogen species
(RNS) are considered to play important role in the pathogen-
esis of various inflammatory diseases [17, 18]. Under physi-
ologic conditions; ROS are generated as byproducts of oxy-
gen metabolism [17]. ROS are found in all biological systems
and originate from the metabolism of molecular oxygen (O2).
Under physiological conditions O2 undergoes reduction by
accepting four electrons which results in the formation of
water [18]. During this process, reactive intermediates such
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as the superoxide anion ( O2), hydrogen peroxide (H2O2) and
hydroxyl ( OH)− radicals are formed [19]. Activated macro-
phages express two major enzymes, phagocyte oxidase
(NOX2/gp91phox) and inducible nitric oxide synthase
(NOS2), which are able to generate reactive oxygen interme-
diates (ROI) and reactive nitrogen intermediates (RNI), re-
spectively. Upon phagocytosis, the preformed NOX2 subunits
assemble into an enzymatically active enzyme complex that
transfers electrons across the membrane from cytosolic
NADPH to molecular oxygen. This produces O2 which
dismutate into hydrogen peroxide (H2O2) and thus generate
OH radicals which are toxic to MTB [20]. Following inhala-
tion of MTB, alveolar macrophages engulf the bacilli and
initiate their killing using a number of mechanisms including
the generation of ROI and RNI [21, 22].

The rapid generation of ROS is critical in host defense
against many bacteria and fungi, and ROS has broad signaling
functions [23]. For example, the NADPH oxidase protein

complexes generate the superoxide anion and downstream
ROS. NADPH oxidase is the principal source of ROS gener-
ation in activated neutrophils and macrophages. Thus,
NADPH oxidase has an important role in host defense against
MTB and any patients with a loss of function mutation in
genes encoding components of this enzyme complex could
be deficient in killing bacilli. Indeed, mutations in the CYBB
gene encoding the gp91 (phox) subunit of the phagocyte
NADPH oxidase is associated with MTB [21]. In addition,
a hemizygous splice mutation in intron 5 of CYBBwas linked
to the concomitant occurrence of chronic granulomatous dis-
ease (CGD) with MTB [24].

IFN-γ induces NOS2 and its product nitric oxide (NO)
which in turn can be broken down to nitrite and nitrate. Under
acidic conditions, such as within the phagosomes of IFN-γ
activated macrophages, nitrite forms nitrous acid, which
dismutates to NO and the toxic radical, nitrogen dioxide
[25]. NO can synergize with superoxide, produced by the
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macrophage or generated as byproduct of respiratory metab-
olism by the pathogen, to form the highly poisonous
peroxynitrite (ONOO−) radical [26]. These ROI and RNI react
with a wide range of molecules, including nucleic acids,
proteins, lipids and carbohydrates, resulting in the killing of
MTB. To counteract these actions, MTB uses a variety of
molecules to either detoxify ROI and RNI before they can
inflict damage or to repair the damage they cause [27]. In
particular, the presence of MTB results in glucose-6-
phosphate (G6P) being oxidised by NADP-dependent and
F420-dependent (FGD1) dehydrogenases to generate
NADPH, an important source of electrons, and thereby over-
come oxidative stress [28]. In addition, MTB uses a combi-
nation of its cell surface alpha-ketoacid dehydrogenase com-
plexes to form a NADH-dependent peroxidase and
peroxynitrite reductase [29].

Role of Toll Like Receptors (TLRs) in Pathogenesis
of MTB

Pattern recognition receptors (PRRs) are a group of receptors
which sense the presence of bacteria, fungi and viruses. PRRs
are also responsible for recognizing endogenous molecules
released from damaged cells, which are named damage asso-
ciated molecular patterns (DAMPs) [30, 31]. To date, four
different types of PRR families have been characterized [32].
These families include transmembrane proteins such as the TLRs
and c-type lectin receptors (CTLRs), as well as cytoplasmic
proteins such as the Retinoic acid-inducible gene (RIG)-I-like
receptors (RLRs) and NOD-like receptors (NLRs) [33].

TLRs are a family of single membrane-spanning receptors
of which 10 have been characterized in man and 13 in mouse
[34–36]. TLRs play a critical role in both innate resistance and
the initiation of adaptive immunity to infectious agents
[37–40]. They act by recognizing pathogen-associated molec-
ular patterns (PAMPs) or endogenous inflammation-
associated molecules [36, 41, 42]. These are distinct molecu-
lar structures on microbes and different sets of TLRs have
been associated with the response to different classes of mi-
croorganisms e.g. recognition of viruses by TLR3, TLR7,
TLR8 and TLR9 [36, 41, 43–46].

Bacterial DNA which contains unmethylated CpG oligo-
nucleotides (ODN) motifs also acts as important regulators of
human neutrophil functions via TLR9. For example, stimula-
tion of the TLR9 pathway by CpGODN induces CXCL8
production by human neutrophils via the generation of
ONOO− [47, 48]. TLR-ligand binding can induce two signal-
ing pathways, the myeloid differentiation primary response
gene 88 (MyD88)-dependent and MyD88-independent path-
ways, which induce the production of both pro-inflammatory
cytokines and type I IFNs [36, 49, 50]. MyD88 is used by
all TLRs except TLR3. These two distinct responses are

mediated via the selective use of adaptor molecules recruited
to the Toll/IL-1 receptor (TIR) domains of TLRs after ligand
binding. Four adaptor molecules have been identified to date:
MyD88, TIR-associated protein (TIRAP), TIR domain-
containing adaptor protein-inducing IFN-β (TRIF) and TRIF
related adaptor molecules (TRAM) [51].

MyD88 and TIRAP are responsible for the induction of
pro-inflammatory genes, and TRIF and TRAM induce IFNs.
In MyD88-dependent signaling, MyD88 is recruited to, and
associates with, the cytoplasmic domain of the TLRs upon
ligand binding. Then IL-1R-associated kinase 4 (IRAK-4) and
IRAK- 1 are subsequently recruited and activated by phos-
phorylation. Activated IRAK-4 phosphorylates IRAK-1,
which then, in turn, associates with tumor necrosis factor
receptor (TNFR)-associated factor 6 (TRAF6). TRAF6 acti-
vates transforming growth factor (TGF) activating kinase 1
(TAK1) [36], which, in turn, phosphorylates IKK-β and
mitogen-activated protein kinase (MAPK) kinase6 (MKK6),
leading to degradation of I-κB, nuclear translocation of
NF-κB and induction of inflammatory genes [52].

As a result TLR activation upregulates the transcription of
proinflammatory cytokines including IL-1β, TNF-α and IL-6
which are essential for the recruitment of immune cells to the
site of infection and controlling MTB infection [53–55]. Ac-
tivation of the MyD88-dependent pathway also results in the
activation of mitogen-activated protein (MAP) kinases
(MAPK) such as p38 and JNK, which leads to the activation
of AP-1 [56]. During MyD88-independent signaling TLR4
activation triggers the induction of a type 1 IFN response,
leading to the induction of IFN-α and IFN-inducible genes
[55]. The TLRs known to be involved in recognition of MTB
are TLR2, TLR4, TLR9, and possibly TLR8 [36, 41, 43–46].
Four primary immunodeficiencies (PIDs) involving mutations
in MyD88, IRAK4, NEMO and IKBA are associated with
altered susceptibility to M. tuberculosis [57–59].

TLR2 can form heterodimers with both TLR1 and TLR6.
These heterodimers have been implicated in the recognition of
mycobac te r i a l ce l l wa l l g lyco l ip id s inc lud ing
lipoarabinomannan (LAM), lipomannan (LM), 38-kDa and
19-kD mycobacterial glycoproteins, phosphatidylinositol
mannoside (PIM), triacylated (TLR2/TLR1) or diacylated
(TLR2/TLR6) lipoproteins [49, 60, 61]. TLR2 and TLR1 act
together to mediate responses to M. tuberculosis [62, 63] and
the role of TLR1/2 gene variants in the predisposition to
tuberculosis has been investigated. Most studies have focused
on TLR2 variants and only weak and non-replicated associa-
tions have been reported to date [62, 63]. TLR2 is believed to
be important in the initiation of the innate host defense against
MTB [61, 64]. In addition, IL-1β production is dependent
upon TLR2 and TLR6, but not TLR4 or TLR9, stimulation
[65]. TLR2 is also important for IL-12 release in macro-
phages, but not in DCs [66]. TLR2−/− mice show defective
granuloma formation following MTB infection and have a
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greatly enhanced susceptibility to infection compared to the
WT mice [53, 67]. In addition, TLR2−/− mice are unable to
control chronic infection with MTB [67, 68]. Mice lacking
TLR9 also succumb earlier to MTB infection than wild-type
animals [61, 66, 69–72].

The role of other TLRs, such as TLR4 and TLR9 in the
pathogenesis of MTB has not studied in such detail [65, 73,
74]. Mice deficient in the TLR/IL-1R family receptor adaptor
moleculeMyD88 have been shown to be highly susceptible to
infection with MTB, which suggests a major role for this
pathway in the innate defense against the MTB [68, 75–86].
In addition, TLR2-induced ROS production plays a crucial
role in the expression of CXCL8 and CCL2 in human mono-
cytes requiring the activation of both p38 and ERK1/2MAPK
pathways [78]. Overexpression of both TLR2 and TLR4 are
important for viable MTB infection in human cell lines [79].

Other studies in mice with inactivated TLR genes indicated
that TLR2 is important in controlling and surviving MTB
infection [68, 73]. However, other studies suggested that
TLR4 is critical for surviving MTB infection [80, 87]. The
importance of TLR4may depend on the dose ofMTB used for
challenge [88] or the mouse strain used [81]. Human studies
show that polymorphisms in both TLR2 and TLR4 are asso-
ciated with increased susceptibility to microbial infections
possibly by changing the Th1/Th2 response [82–85]. Interest-
ingly, Fenhalls et al. reported that the expression of TLRs in
TB lung granulomas related to the presence or absence of
immunohistologically detectable IL-4 [86].

Changes in TLR expression and/or their down-stream ac-
tivation state might represent useful markers of the immuno-
logical status of TB patients and their contacts. The TLR
distribution in TB granulomas lesions indicates that TLR1,
TLR2, and TLR4 are expressed in both immune cells and non-
immune cells; however TLR9 is only detectable in immune
cells [89]. Furthermore, in an animal model of TB, TLR8-
deficient mice succumb more rapidly to infection with
M. tuberculosis, despite efficiently controlling the number of
viable bacilli in different organs. Although no changes in
CD4+ and CD8+ T-cells were observed there were increases
in lung neutrophils and macrophages. Exaggerated mortality
was due to massive liver necrosis and was reversed by a
combination of blocking antibodies to IL-1 and TNF-α. Thus,
in this model of MTB infection, TLR8 plays a key role in
dampening inflammation and tissue damage [90]. Overall,
Recognition of MTB by TLRs triggers various intracellular
signaling cascades ultimately resulting in the production of
cytokines, chemokines and antimicrobial molecules [91, 92].

In humans, the association of TLR polymorphisms with
susceptibility to TB remains to be confirmed [92]. Different
polymorphisms in the human TLR2 gene were reported to
associate with increased susceptibility to TB in some studies
[93–97] but not others [98–101]. Furthermore, aMAL/TIRAP
functional variant, affecting signaling through TLR2, was

shown to be protective in TB [102]. Genetic polymorphisms
in TLR4 were linked to an increased susceptibility and sever-
ity of pulmonary TB in an Asian population in India [103] but
not in Indian or Chinese TB patients in Gambia [101, 102,
104]. This discrepancy might be due to a dynamic host-
pathogen interplay between genetic and pathogen phenotypes
[102].

Role of Pentraxin 3 (PTX3) in Pathogenesis of MTB

Pentraxin 3 (PTX3), or TNF-stimulated gene 14 (TSG-14), is
a 42-kDa soluble pattern-recognition receptor produced by
phagocytes and non-immune cells at sites of inflammation
or injury and plays an important role in female fertility and
vascular biology [103]. PTX3 shows up to 28 % sequence
identity to human C-reactive protein (CRP) and serum amy-
loid P-component (SAP) [104, 105]. It is a member of the
pentraxin family which are involved in the acute phase re-
sponse to injury, trauma and infection [106]. PTX3 is rapidly
secreted into the serum of mice and humans from extra-
hepatic sources after LPS, IL-1 or TNF-α stimulation [107].

PTX3 binds to the complement component C1q [108] and
to microorganisms, including Pseudomonas aeruginosa, Sal-
monella typhimurium and Aspergillus fumigates to induce
innate immune responses [109, 110] and to drive a protective
adaptive immunity [111]. Since whole mycobacteria and my-
cobacterial lipoarabinomannan strongly induce PTX3 produc-
tion by human mononuclear phagocytes [112] a role for PTX3
in the immunobiology of mycobacterial infection has been
inferred. Interestingly, PTX3 receptor gene variants are asso-
ciated with an increased risk of pulmonary tuberculosis in
West Africans [113]. Furthermore, PTX3, levels are signifi-
cantly correlated with the severity of clinical presentation at
diagnosis and of lung involvement in disease and may repre-
sent a good biomarker for inflammation and disease activity
during MTB infection [112].

Role of Inflammasome Signaling in MTB

There are two classes of innate immune receptors de-
scribed: a) TLRs, located on cell membranes or intracellu-
larly, and b) NLRs located in the cytoplasm [114–118].
Both classes of receptors are programmed to recognize
microbial PAMPs and danger-associated molecular pat-
terns (DAMPs) and switch cells for activation to releasing
of proinflammatory and chemokines. The importance of
two receptors in pathogenesis of chronic lung disease has
elicited much attention [119, 120]. In the next section, we
describe the regulation of inflammasome signaling and
discuss whether abnormalities in NLRP3 inflammasome
function may be associated with MTB.
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The inflammasome consists of a multimeric cytosolic com-
plex comprising the adaptor protein apoptosis associated
speck-like protein containing a caspase recruiting domain
(ASC), a sensor protein such as NRLP3 together with the
effector proteins caspase-1 and caspase 5 [119]. Several NLRs
function in immunity through the formation of a multi-protein
complex known as an inflammasome which play critical roles
in the 0 pathogenesis of chronic disorders [119–121].

NLRs exist in three families; the NODs, the NLRPs and the
(IPAFs). Stimulation of cells with PAMPs, or by DAMPs,
leads to increased expression of IL-1β and other IL-1 cytokine
family members, such as IL-18 and IL-33 [120]. Proinflam-
matory cytokines of the IL-1 family may play an important
role in anti-mycobacterial host defense mechanisms [121].
Moreover, MTB stimulates inflammatory cells to release IL-
1β through pathways involving TLR2/TLR6 and NOD2 re-
ceptors [122]. Recognition of MTB by TLR and NOD2 leads
to increased transcription of pro-IL-1β through mechanisms
involving ERK, p38 and Rip2, but not JNK. Interestingly,
although caspase-1 is necessary for the processing of pro-IL-
1β, activation of caspase-1 is not dependent on the stimulation
of cells by MTB [123]. In human THP-1 macrophages, MTB
activation results in secretion of IL-1β in an ASC/NLRP3-
dependent manner [124]. In addition, Mycobacterium
marinum activates IL-1β production in an NLRP3- and
caspase-1-dependent manner in vitro highlighting the poten-
tial importance of inflammasome signaling in the pathogene-
sis of MBT [125, 126].

Inflammasome-mediated IL-1β secretion is triggered by a
combination of signal transduction pathways activated via
TLRs and purinergic (P2X7) receptors. In turn, IL-1β induces
the release of GM-CSF which leads to the activation and
increased survival of monocytes/macrophages and enhanced
oxidative burst in the lungs, thus maintaining and prolonging
inflammatory reactions [127]. The purinergic P2X7 receptor
is the key driver of ATP-mediated inflammasome maturation
and release of IL-1β [122, 128, 129]. Pro-inflammatory cyto-
kine regulation by the inflammasome may be critical to long-
term survival of MTB infection since experiments in IL-1α/β,
IL-1R and IL-18 knockout (KO) mice have shown that these
cytokines play a role in limiting bacterial burden in the lung, in
regulating the subsequent expression of other cytokines, in
controlling NO production and in the formation of granulomas
[122, 128, 129].

Caspase-1 independent IL-1β production may also be crit-
ical for host resistance to MTB and this occurs independently
of TLR signaling in vivo. Furthermore, although IL-1β in-
duction by MTB in vitro depends on TLR triggering and the
inflammasome, both triggers are dispensable for IL-1β pro-
duction in mice infected with the pathogen in vivo [130].
Thus, although recent data established that IL-1β plays a
critical component in innate resistance to MTB, the pathways
involved in the expression and regulation of IL-1β induction

following MTB infection in vivo are complex and may in-
volve mechanisms that do not fit the classical paradigms of
TLR recognition and inflammasome-mediated caspase-1 pro-
cessing seen with other infections or in the response to MTB
observed in vitro [130].

MTB-induced IL-1β secretion in human and mouse mac-
rophages in vitro and this process was dependent on ASC,
caspase-1, and NLRP3, but not NLCR4 [130]. In vivo, murine
ASC helps protect the host from death during chronic MTB
infection whilst the effects of Casp-1 and NLP3 were negli-
gible. The inability of ASC KO mice to form organized
granulomas and the reduced presence of lung dendritic cells
indicates a breakdown in host defense against MTB. Thus,
ASC was identified as a critical protein involved in the host
response to MTB infection in an inflammasome-independent
manner [75]. Other cytokines activated by the inflammasome
have also been reported to play a role in the pathogenesis of
MTB. Thus, IL-12 and IL-18 produced by dendritic cells and
macrophages induce NK-cell activity and skew the immune
response towards an IFN-γ-dependent Th1 response, which is
considered critical for protection against MTB [8].

Data in MyD88-deficient mice which are highly suscepti-
ble to MTB and succumb very rapidly to infection supports a
role for MyD88 in regulating MTB infection [75, 131].
MyD88, however, plays a role in both inflammasome and
TLR signaling and this raises the possibility that a lack of
IL-1β or IL-18 is responsible for the heightened susceptibility
of MyD88 KO mice to MTB infection [122]. Fremond et al.
reported that IL-1R-signalling is important for protection
against MTB whilst IL-18R-signalling is not [128]. In con-
trast, Schneider et al has reported a similar degree of suscep-
tibility to MTB infection to that observed in MyD88 KOmice
in IL-18 KO mice [129]. IL-18 KO mice succumbed much
more readily to experimentalMTB infection thanWTor TLR-
2/-4 double KO (TLR-2/-4 DKO) mice. In the absence of IL-
18, immunity to MTB was hampered by decreased Th1 re-
sponses and PMN-dominated lung immunopathology con-
comitant with unrestrained growth of the tubercle bacilli.
Thus, some controversy still remains as to the precise role of
IL-18 in the protective immunity against MTB infection
[129].

Conclusion and Future Outlook

TB remains one of the leading causes of death from a single
infectious agent worldwide. In order to generate better protec-
tive strategies we need to further define the pathological
mechanisms underlying the immune response toMTB.Whilst
inflammasome and TLR cross talk does not seem to be essen-
tial for the primary control of MTB infection, recent data
suggests a critical role of these pathways in the persistence
of MTB. Activation of these pathways results in the release of
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inflammatory mediators that recruit protective cells to the
infected area. However, there is a down side to this effect.
Excessive production of IL-23 and IL-17 causes pathology
due to excessive recruitment and phenotypic changes in in-
flammatory cells. Hence, there is a fine balance between Th1
and inflammasome/TLRs responses that is central in defining
the outcome of MTB infection. The role and mechanisms
underpinning PTX3 and other PPRs in the immune response
to MTB still requires further elucidation however.

In addition, it is critical to further define the mechanisms
associated with the cross talk between TLRs and the
inflammasome and to use this knowledge to generate rational
protective strategies that promote a balanced acquired immune
response with minimal collateral damage. Determination of
key nodes within the pathways involved in the pathogenesis
of MTB may provide new therapeutic targets to prevent the
persistence of disease.

Open Access This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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