
Imperial College London

Department of Electrical and Electronic Engineering

Communication Optimization in Iterative

Numerical Algorithms: An

Algorithm-Architecture Interaction

Abid Rafique

January 2014

Supervised by George A. Constantinides and Nachiket Kapre

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering of Imperial College London

and the Diploma of Imperial College London

1

Declaration

I herewith certify that all material in this dissertation that is not my own work has been prop-

erly acknowledged.

Abid Rafique

2

I would like to dedicate this thesis to my beloved mother (late)

3

Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

4

Abstract

Trading communication with redundant computation can increase the silicon efficiency of com-

mon hardware accelerators like FPGA and GPU in accelerating sparse iterative numerical algo-

rithms. While iterative numerical algorithms are extensively used in solving large-scale sparse

linear system of equations and eigenvalue problems, they are challenging to accelerate as they

spend most of their time in communication-bound operations, like sparse matrix-vector multi-

ply (SpMV) and vector-vector operations. Communication is used in a general sense to mean

moving the matrix and the vectors within the custom memory hierarchy of the FPGA and

between processors in the GPU; the cost of which is much higher than performing the actual

computation due to technological reasons. Additionally, the dependency between the operations

hinders overlapping computation with communication. As a result, although GPU and FPGA

are offering large peak floating-point performance, their sustained performance is nonetheless

very low due to high communication costs leading to poor silicon efficiency.

In this thesis, we provide a systematic study to minimize the communication cost thereby

increase the silicon efficiency. For small-to-medium datasets, we exploit large on-chip memory

of the FPGA to load the matrix only once and then use explicit blocking to perform all it-

erations at the communication cost of a single iteration. For large sparse datasets, it is now

a well-known idea to unroll k iterations using a matrix powers kernel which replaces SpMV

and two additional kernels, TSQR and BGS, which replace vector-vector operations. While this

approach can provide a Θ(k) reduction in the communication cost, the extent of the unrolling

depends on the growth in redundant computation, the underlying architecture and the mem-

ory model. In this work, we show how to select the unroll factor k in an architecture-agnostic

manner to provide communication-computation tradeoff on FPGA and GPU. To this end, we

exploit inverse-memory hierarchy of the GPUs to map matrix power kernel and present a new

algorithm for the FPGAs which matches with their strength to reduce redundant computa-

tion to allow large k and hence higher speedups. We provide predictive models of the matrix

powers kernel to understand the communication-computation tradeoff on GPU and FPGA. We

highlight extremely low efficiency of the GPU in TSQR due to off-chip sharing of data across

different building blocks and show how we can use on-chip memory of the FPGA to eliminate

this off-chip access and hence achieve better efficiency. Finally, we demonstrate how to compose

all the kernels by using a unified architecture and exploit on-chip memory of the FPGA to share

data across these kernels.

Using the Lanczos Iteration as a case study to solve symmetric extremal eigenvalue

problem, we show that the efficiency of FPGAs can be increased from 1.8% to 38% for small-

to-medium scale dense matrices whereas up to 7.8% for large-scale structured banded matrices.

We show that although GPU shows better efficiency for certain kernels like the matrix powers

kernel, the overall efficiency is even lower due to increase in communication cost while sharing

5

data across different kernels through off-chip memory. As the Lanczos Iteration is at the heart of

all modern iterative numerical algorithms, our results are applicable to a broad class of iterative

numerical algorithms.

6

Acknowledgement

I would like to begin thanking my supervisor Dr. George A. Constantinides. I am grateful

to him for his complete support, motivation and encouragement throughout my PhD. He has

continuously guided me, and at the same time gave me enough freedom to explore my own

research direction. I must acknowledge his clarity of thought and intellect to polish my ideas

during our meetings. I am particularly thankful to him for keeping me focused and help me

writing my thesis in a timely manner. Lastly, I am also grateful to him for providing me enough

travel opportunities to present my work in reputed conferences.

I would like to acknowledge my co-supervisor, Dr. Nachiket Kapre. He has not only helped

me in research but also sharpen my presentation skills. I am thankful to him for the time he

spent in multiple iterations of the papers.

I consider myself very fortunate to have two great supervisors. I would be indebted to them

for their guidance and supervision. They helped me learn key skills necessary for independent

research that will be helpful for the rest of my life.

I had the company of many brilliant colleagues at Imperial College with whom I had interest-

ing and fruitful discussions. I would particularly thank to Dr. David Boland, Dr. Juan Jerez,

Dr. Samual Bayliss, Dr. Shakil Ahmed, Dr. Ammar Hassan and Dr. Andrea Suardi. I would

particularly thank Michael Anderson and Mark Hoemmen at PARLab, UC Berkeley who took

time to revise some of my work and provided feedback that helped me in improving the overall

quality.

My time at Imperial College would not have been the same without my friends. They kept

me cheerful and encourage during the hard times working towards my PhD. I would like to

thank particularly Qazi Rashid Hamid, Usman Adeel, Muhammad Usman and Hafiz-Ul-Asad.

On a personal note, I would like to express gratitude to my family and in particular my

mother who is no more in this world to share these moments. She had been a continuous source

of inspiration and great love.

Finally, I would like to acknowledge my wife, Nazia, and the greatest gift of God, i.e. my

daughter Fatima. I am thankful to them for the love and patience they have shown throughout

my PhD.

7

Contents

1 Introduction 22

1.1 Case Study: Lanczos Iteration for Solving Symmetric Extremal Eigenvalue Problem 24

1.2 Thesis Organization . 25

1.3 Statement of Originality . 27

1.4 Publications . 28

2 Applied Numerical Linear Algebra 29

2.1 Standard Problems . 29

2.2 Problem Structure . 30

2.2.1 Dense . 30

2.2.2 Sparse . 30

2.2.3 Structured Sparse . 31

2.3 Numerical Methods . 32

2.3.1 Direct Methods . 32

2.3.2 Iterative Methods . 33

2.4 Thesis Scope . 34

2.5 Symmetric Extremal Eigenvalue Problem . 35

2.5.1 Applications . 36

2.5.2 Iterative Methods for Symmetric Extremal Eigenvalue Problem 37

2.6 Computational Kernels of the Lanczos Iteration 39

2.7 Communication and performance issues . 40

2.7.1 Communication is Data Movement . 40

2.7.2 Modelling Performance . 40

2.7.3 Communication is expensive . 41

2.8 Communication in the Lanczos Iteration . 42

2.8.1 Sparse matrix-vector multiply . 42

2.8.2 axpy and dot products . 44

2.9 Avoiding Communication in the Lanczos Iteration 44

2.9.1 Block Lanczos . 45

2.9.2 Communication-Avoiding Lanczos . 46

2.10 Computational Kernels of CA-Lanczos . 49

2.10.1 Matrix Powers Kernel . 49

2.10.2 QR Factorization . 52

2.10.3 Block Gram Schmidt Orthogonalization 55

2.11 Summary and Conclusion . 55

8

3 Computing Platforms 57

3.1 Single-Core Microprocessor . 57

3.1.1 Pipeline Parallelism . 57

3.1.2 Out of order execution . 58

3.1.3 Data-level Parallelism . 58

3.1.4 Thread-level Parallelism . 59

3.1.5 Communication . 59

3.2 Multi-Core . 61

3.3 Many-Core . 62

3.3.1 Graphical Processing Unit . 62

3.3.2 Intel Xeon Phi . 64

3.4 Custom Computing−Field Programmable Gate Arrays 65

3.5 Architectural Comparison . 66

4 Avoiding Communication in Iterative Numerical Algorithms for Small-to-

Medium Size Problems 68

4.1 Applications Involving Multiple Symmetric Extremal Eigenvalue Problems 69

4.1.1 Multiple Minimum Eigenvalue Problems in Interior-Point Method for

Semi-definite Programming . 69

4.1.2 Multiple Maximum Eigenvalue Problems in Eigenvalue Based Sensing . . 69

4.2 Iterative Framework . 70

4.2.1 Specializing the Lanczos Iteration . 71

4.2.2 Bisection Method . 72

4.3 Sequential Runtime Analysis . 72

4.4 Accelerating Lanczos Iteration using FPGAs . 73

4.4.1 Cost Model . 73

4.4.2 FPGAs vs. GPU . 74

4.4.3 Parallelism Potential . 74

4.4.4 System Architecture . 76

4.4.5 Solving Multiple Extremal Eigenvalue Problems 77

4.4.6 FPGA I/O Considerations . 77

4.5 Methodology . 78

4.6 Results . 80

4.6.1 FPGA Performance Evaluation . 80

4.6.2 Comparison with FPGA-based Eigensolvers 81

4.6.3 Comparison with multi-core and GPU . 82

4.6.4 Silicon Efficiency . 83

4.7 Summary . 83

5 Matrix Powers Kernel 85

5.1 Algorithms for Matrix Powers Kernel . 87

5.2 Related Work . 88

9

5.3 Matrix Powers Kernel on a GPU . 89

5.3.1 GPU Architecture . 89

5.3.2 Partitioning Strategy−One Partition Per Thread Block 90

5.3.3 GPU Optimizations . 90

5.3.4 Kernels . 92

5.3.5 Modelling Performance . 92

5.3.6 Performance Optimization . 96

5.4 Mapping Matrix Powers Kernel to FPGA . 96

5.4.1 Proposed Hybrid Matrix Powers Kernel 97

5.4.2 Custom Hardware Design . 99

5.4.3 Modelling Performance . 100

5.4.4 Resource-Constrained Methodology . 101

5.5 Evaluation Methodology . 102

5.6 Results . 102

5.6.1 Sensitivity to Algorithmic Parameters . 103

5.6.2 Performance Comparison . 106

5.7 Architectural Insight . 107

5.7.1 Sensitivity to GPU Architectural Parameters 107

5.7.2 Sensitivity to FPGA Architectural Parameters 107

5.8 Summary . 109

6 Tall-Skinny QR Factorization 110

6.1 Background . 112

6.1.1 Tall-Skinny QR . 112

6.1.2 Householder QR . 114

6.2 Related Work . 114

6.3 Proposed Architecture . 116

6.3.1 Parallelism . 116

6.3.2 Work vs. Critical Latency . 116

6.3.3 Parallel Architecture for Householder QR 118

6.3.4 Pipeline Parallelism for Mapping TSQR 120

6.3.5 I/O Considerations . 122

6.4 Evaluation Methodology . 122

6.5 Results . 122

6.5.1 FPGA Performance Evaluation . 123

6.5.2 Comparison with GPU . 123

6.5.3 Comparison with Multi-Cores and Related FPGA Work 126

6.6 Summary . 127

7 Communication Optimization in Iterative Numerical Algorithms for Large-

Scale Problems 128

7.1 Basic Linear Algebra Kernels in CA-Lanczos . 131

7.1.1 Matrix Powers Kernel . 131

10

7.1.2 Block Gram-Schmidt Orthogonalization 132

7.1.3 QR Factorization . 132

7.2 Related Work . 132

7.2.1 Communication Optimization . 132

7.2.2 Composition . 133

7.3 Minimizing Communication For GPU . 133

7.3.1 Lanczos Iteration on GPU . 134

7.3.2 CA-Lanczos on GPU . 134

7.3.3 Performance Analysis . 134

7.4 Minimizing Communication For FPGAs . 136

7.4.1 On-chip Memory Driven Data Partitioning 136

7.4.2 Time-Multiplexed FPGA Implementation of CA-Lanczos 137

7.4.3 Compute Schedule . 140

7.4.4 Performance Model . 140

7.4.5 Resource-Constrained Framework . 140

7.5 Experimental Setup . 142

7.6 Evaluation . 142

7.6.1 Impact of k on FPGA Performance . 142

7.6.2 Performance Comparison with GPU . 144

7.7 Summary . 144

8 Conclusion 148

8.1 Future Work . 149

8.1.1 Large Sparse Problems . 149

8.1.2 Low Power Applied Linear Algebra . 149

8.1.3 Parameterizable Tall-Skinny QR Factorization 150

8.1.4 Fixed-Point QR Factorization . 150

11

List of Figures

1.1 FPGA and GPU problem setting for solving small-to-medium scale problems.

Step is not actually performed for both architectures 26

1.2 FPGA and GPU problem setting for solving large-scale problems. Step is not

actually performed for both architectures . 27

2.1 Structured Sparse Matrices . 31

2.2 A taxonomy of direct methods for solving standard linear algebra problems. A

positive definite matrix is the one where all the eigenvalues are greater than zero. 33

2.3 A taxonomy of iterative methods for solving standard linear algebra problems.

A positive definite matrix is the one whose all eigenvalues are greater than zero. 35

2.4 Lanczos Convergence . 39

2.5 Iterations vs. p for extremal eigenvalue computation with accuracy 10−3. The

predicted value is calculated theoretically and not with any model. 46

2.6 k SpMVs vs. parallel matrix powers kernel for a matrix with size n = 12, band

size b = 3, number of levels k = 3 and number of blocks Nq = 3. 50

2.7 Computations within Blocked Householder QR. 53

2.8 Tall-Skinny QR. 54

3.1 Pipeline Parallelism. 58

3.2 Memory Hierarchy in Single-Core Microprocessors (a) Un-Cached (b) L1 (on-

chip) and L2 (off-chip) Cache (c) L1 and L2 (on-chip), L3 (off-chip) Cache 59

3.3 Linear algebra with cache blocking. 61

3.4 Intel Nehalem Eight-Core Architecture [66]. IMC and QPI stands for integrated

memory controller and Quick Processor Interconnect respectively. 62

3.5 Nvidia C2050 Fermi Architecture [71]. SM stands for streaming multiprocessor. 63

3.6 Intel Xeon Phi Coprocessor KNC Card SE10P. 64

3.7 Partial FPGA schematic illustrating its architecture containing CLBs as small

programmable ROMs, embedded RAMs in the region of 18k bit, DSP blocks as

dedicated multiply/add circuitry. The routing fabric is not shown. 66

3.8 Spatial Computation using FPGAs. 66

4.1 Sparse Symmetric Matrices . 70

4.2 Symmetric Extremal Eigenvalue Computation. 70

4.3 The Lanczos Iteration convergence to the maximum eigenvalue of A. 71

4.4 Sequential Runtime Analysis. 72

4.5 Data flow graph of the Lanczos Iteration. 75

12

4.6 Work vs. Latency . 75

4.7 Partial schematic for the implementation of the Lanczos Iteration and the bisec-

tion method displaying main components including a dot product circuit module,

FIFOs for storing Lanczos vectors (qi−1, qi−2) banked memory arrangement for

matrix A, two memories for storing αi and βi and a Bisection Module. 76

4.8 Asymptotic analysis of maximum number of problems. 78

4.9 Total time vs. data transfer from host to GPU (Nvidia C2050 Fermi) with data

averaged over 20 runs. The input matrix A (from benchmarks in Table 4.2) is

transferred only once and the Lanczos Iteration is run until we get an error less

than 10−5 in the maximum eigenvalue. 79

4.10 Single-precision (SP) vs. Double-precision (DP) on Nvidia C2050 Fermi. The

input matrix A is transferred only once and the Lanczos Iteration is run until we

get an error less than 10−5 in the maximum eigenvalue. 80

4.11 Runtime Breakdown (truss5). 82

4.12 Performance Comparison (’single’ is for 1 problem on FPGA, ’full’ is for P prob-

lems on FPGA). 83

4.13 Raw Performance Comparison (’single’ is for 1, ’full’ is for P problems). 84

4.14 Efficiency Comparison (’single’ is for 1, ’full’ is for P problems). 84

5.1 Lanczos Iteration vs. Communication-Avoiding Lanczos (CALanczos) with em-

phasis on the Matrix Powers Kernel. 86

5.2 Computation-communication tradeoff for a banded matrix with band size 27 and

n = 1M on a Virtex6-SX475T FPGA and C2050 Fermi GPU. 86

5.3 k SpMVs vs. parallel matrix powers kernel for a matrix with size n = 12, band

size b = 3, number of levels k = 3 and number of blocks Nq = 3. 88

5.4 GPU Architecture (Nvidia C2050 Fermi). 90

5.5 GPU Optimizations (b = 9, NT = 512, k = 8). 92

5.6 Matrix powers kernel performance (GFLOPs vs. k), modelled vs. measured for

n = 1M. 95

5.7 Proposed hybrid matrix powers graph for n = 12, k = 3, b = 3 and number of

blocks Nq = 2. 97

5.8 FPGA Data-path for Matrix Powers Kernel. 98

5.9 FPGA performance, modelled vs. measured (Modelsim), here bR is equal to 128. 101

5.10 Algorithmic Sensitivity− GPU performance as a function of algorithmic param-

eter k for different values of bR for a matrix with band size b = 9 and n = 1M.

. 103

5.11 Algorithmic Sensitivity for FPGA and GPU (n = 1M). 104

5.12 Analyzing performance limiting factors of matrix powers kernel on C2050 GPU. . 105

5.13 Efficiency of FPGA and GPU as a percentage of peak single-precision floating-

point performance (b = 9). 106

5.14 Matrix Powers Performance Comparison vs. Matrix Size. The optimal values of

k are mentioned on the top of the bar for both FPGA and GPU. 108

13

5.15 Architectural Sensitivity− GPU performance contours in GFLOPs as a function

of global memory bandwidth (βglb) and shared memory bandwidth (βsh) for

band size b = 9 and n = 1M. Specific points (in red) on the steepest ascent

curve (in black) are shown representing (αglb,βglb,αsh,βsh,
Lbase

Lpred
) where Lbase is

the performance obtained on C2050 GPU. αglb and αsh are in cycles whereas βglb

and βsh are in GB/s. 108

5.16 Architectural Sensitivity− FPGA performance in GFLOPs as a function of off-

chip memory bandwidth (βglb) for band size b = 9 and n = 1M. The starting

point of the curves is a Virtex6-SX475T architecture with an off-chip bandwidth

of 34 GB/s. 109

6.1 Lanczos Iteration vs. Communication-Avoiding Lanczos (CALanczos) with em-

phasis on QR factorization of a tall-skinny matrix (A ∈ R
n1 × n1, Qi ∈ R

n1 × k,

Ri ∈ R
k × k, qi ∈ R

n1 × 1, n1≫k) . 111

6.2 Performance Scaling Trends for double-precision QR Factorization (No. of rows

n = 6400). 112

6.3 Performance Scaling Trends for double-precision QR Factorization (No. of columns

k = 51). 112

6.4 Tall-Skinny QR Facotorization [33], B = Qi, (a) local QR stage. (b, c & d) merge

stage. 113

6.5 Householder QR DFG showing the dark grey blocks for ddot and the light grey

block for axpy. The critical path of the Householder QR is shown as the blocks

connected using dotted arrows. 117

6.6 Work vs. Critical Latency (k = 51). 117

6.7 Parallel Architecture for TSQR, Dense Matrices memory stores Bis whereas Tri-

angle Matrices memory stores intermediate R factors. 119

6.8 Pipeline depth of proposed FPGA design. 120

6.9 Mapping of TSQR, Bis ∈ R
2k×k whereas R ∈ R

k×k. 121

6.10 Efficiency of proposed FPGA design as percentage of its peak performance. . . . 124

6.11 GPU Performance Analysis (Number of Rows = 6400). 125

6.12 Performance Comparison with Multi-Cores (Intel MKL), GPUs (CULA, CAQR),

and best FPGA work. 126

7.1 Lanczos Iteration vs. Communication-Avoiding Lanczos (CA-Lanczos) (A ∈
R
n × n, Qi ∈ R

n × (k+1), Qi ∈ R
n ×k Ri ∈ R

k × k, qi ∈ R
n × 1, n≫k). 129

7.2 Single-Precision performance comparison of Communication-Avoiding Lanczos

(CA-Lanczos) on GPU (Nvidia C2050 Fermi) and FPGA (Virtex6-SX475T) in

terms of time/iteration. The input matrices are banded with a band size b = 27.

k is an algorithmic parameter whose optimal value is shown at the top of each

bar for CA-Lanczos. 130

14

7.3 CA-Lanczos performance analysis on Nvidia C2050. In Figure 7.3(a) and 7.3(b),

we show how the algorithmic parameter k is co-tuned for all the kernels. The

speedup over the Lanczos Iteration (k = 1) is shown at the top of the bar in

Figure 7.3(c) for a range of matrices with band size b = 27. The dashed lines in

Figure 7.3(a) and 7.3(b) represent the cost for doing useful operations only. . . . 135

7.4 Three distinct scenarios for CA-Lanczos on Virtex6-SX475T (2128 18Kb BRAMs)

for problems with band size b = 27. The maximum possible value of k is shown

for some matrix sizes. 136

7.5 xT y and ax+ y on GPU and FPGA. 137

7.6 A BLAS Circuit for z ←xT y and y←ax+ y where x, y∈ R
N . The dotted arrow

links show outputs. 138

7.7 A time-multiplexed architecture for CA-Lanczos. The dotted lines show vector

links of length b whereas solid line represents scalars. 139

7.8 CA-Lanczos performance analysis on FPGA. The value of k is selected using the

resource-constrained framework in Figure 7.8(a) and Figure 7.8(b). The speedup

over the Lanczos method (k = 1) on FPGA is shown in Figure 7.8(c) for a range

of matrices with the band size b = 27. 143

7.9 Performance Comparison of CA-Lanczos on GPU (left bar) and FPGA (right

bar). The optimal value of k is shown at the top of the bars. The speedup factor

of FPGAs over GPU is also shown in red for standard Lanczos method on GPU

and in blue for CA-Lanczos on GPU. 145

7.10 Silicon efficiency of FPGA and GPU for iterative numerical algorithms. 146

15

List of Tables

1.1 Silicon Efficiency of FPGA and GPU for Iterative Numerical Algorithms (FPGA

clock frequency is not reported in [87]). 22

3.1 Architectural Features of FPGA and GPU (FPGA clock frequency is not reported

in [87]). 67

4.1 Experimental Setup (FPGA clock frequency is not reported in [87] for peak single-

precision GFLOPs). 79

4.2 Benchmarks. 79

4.3 Comparison of FPGA-based Symmetric Eigenvalues Computation. 81

5.1 Single-Precision Parallel Matrix Powers Kernel Parallel Mapping on C2050 GPU

(n =1M, b =9, k =8). 91

5.2 Model Parameters for GPU Performance. 94

5.3 GPU Analytical Model for Single-Precision Matrix Powers Performance. 94

5.4 Hybrid Matrix Powers Kernel Mapping on Virtex6-SX475T FPGA (n =1M, b =9,

k =10). 99

5.5 Model Parameters for FPGA. 100

5.6 FPGA Analytical Model for Single-Precision Matrix Powers Performance. 101

5.7 Matrix powers kernel performance comparison (Range is for n =2k − 1M). . . . 106

6.1 Comparison of QR Factorization (double-precision).

(Square: 6400×6400, Tall-Skinny (TS): 6400×51, FPGA clock frequency is 315

MHz for our design whereas clock frequency used for peak GFLOPs is not re-

ported in [87]). 116

6.2 Householder QR floating-point units. 119

6.3 Experimental Setup (FPGA clock frequency used for peak GFLOPs is not re-

ported in [87]). 123

6.4 Type of Memory and its peak bandwidth for GPU and proposed FPGA design

in different stages of TSQR. 124

6.5 Limiting Factors for Tall-Skinny Matrices (6400×51) on GPU. A warp comprises

32 threads and there are 48 active warps per cycle for an occupancy of 1. 125

7.1 Basic Linear Algebra Blocks for CA-Lanczos. 132

7.2 Floating-Point Units for CA-Lanczos. 140

7.3 CA-Lanczos FPGA Analytical Performance Model. 141

7.4 FPGA Resource Utilization (Estimated). 142

16

List of Acronyms

GPU Graphical Processing Unit

FPGA Field Programmable Gate Array

BLAS Basic Linear Algebra Sub-Routine

MINRES Minimum Residual Method

GMRES Generalized Minimum Residual Method

CG Conjugate Gradient

SVD Singular Value Decomposition

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

SM Symmetric Multiprocessor

SDP Semi-definite Programming

GFLOPs Giga Floating-Point Operations Per Second

CSR Compressed Sparse Row

CSC Compressed Sparse Column

CDS Compressed Diagonal Storage

SpMV Sparse Matrix-Vector Multiply

SpMM Sparse Matrix-Multiple Vector Multiply

PDE Partial Differential Equation

ODE Ordinary Differential Equation

ED Energy Detection

MED Maximum Eigenvalue Detection

DRAM Dynamic Random Access Memory

NUMA Non-uniform Random Access Memory

CA Communication-Avoiding

MGS Modified Gram-Schmidt

LAPACK Linear Algebra Package

TSQR Tall-Skinny QR

17

BGS Block Gram-Schmidt

IPC Instructions Per Cycle

MKL Math Kernel Library

CUBLAS CUDA Basic Linear Algebra Subroutine

ACML AMD Core Math Library

DAG Directed Acyclic Graph

ILP Instruction Level Parallelism

LUT Look Up Table

FF Flip Flop

DSP Digital Signal Processor

CLB Configurable Logic Block

BW Bandwidth

FP Floating-Point

I/O Input Output

BRAM Block Random Access Memory

PE Processing Element

FIFO First In First Out

MCMC Monte Carlo Markov Chain

18

Nomenclature

α memory or network latency

αg latency of global memory (in cycles)

αsh latency of shared memory (in cycles)

αsync latency of synchronization between threads (in cycles)

β inverse memory or network bandwidth

βg inverse global memory bandwidth (in cycles)

βsh inverse shared memory bandwidth (in cycles)

γ time per floating-point operation

γA latency of floating-point adder (in cycles)

γM latency of floating-point multiplier (in cycles)

λi ith eigenvalue

λmax maximum eigenvalue

λmin minimum eigenvalue

A � 0 positive semi-definite, i.e minimum eigenvalue is greater than equal to zero

A upper case − matrix

AT transpose of a matrix A

Aij the element of the matrix A at row i and column j

b band size

bR number of rows in each partition while partitioning the input matrix A

In an identity matrix of size n× n

k algorithmic parameter to trade communication with computation in communication-

avoiding iterative algorithms

L total latency of the matrix powers kernel (in cycles)

Lq latency of a single thread block in matrix powers kernel (in cycles)

19

lcompute compute latency per thread block (in cycles)

lcondition latency for evaulating conditional statements per thread block (in cycles)

lAglb2reg latency per thread block in data transfer, global memory —> register file (in cycles)

lxglb2sh data transfer latency per thread block, shared memory —> register file (in cycles)

lxreg2glb data transfer latency per thread block, register file —> global memory (in cycles)

lxreg2sh data transfer latency per thread block, register file —> shared memory (in cycles)

m number of rows

n number of columns

Nq number of partitions

NT number of threads

Ntiles number of sub-matrices in tall-skinny QR factorization

nnz number of non-zero elements in a sparse matrix

P number of problems

p block size in Block Krylov methods

Pe total number of processing elements

Q a square n× n orthogonal matrix i.e. QTQ = In

q partition number

Qr a tall-skinny orthogonal matrix of size m× r i.e. QT
r Qr = Ir

R upper triangular matrix

r number of iterations

t cost per iteration (in seconds)

Tr a tri-diagonal matrix of size r × r

tr cost for r iteration (in seconds)

tcomm communication cost (in seconds)

tcomp computation cost (in seconds)

vi householder reflector

x lower case − vector

xij jth element of vector xi

20

Gmeasured measured performance (in GFLOPs)

Gmodelled modelled performance (in GFLOPs)

tmeasured measured time (in cycles or seconds)

tmodelled modelled time (in cycles or seconds)

21

1 Introduction

The main motivation of this thesis is to answer the question: how to optimize communication in

iterative numerical algorithms in order to improve silicon efficiency of common hardware accel-

erators like Field Programmable Gate Arrays (FPGAs) and Graphics Processing Unit (GPU)?

The cost of a numerical algorithm comprises two factors (1) the computation cost of performing

floating-point operations and (2) the communication cost of moving data within the memory

hierarchy in the sequential case and or between processors in the parallel case. The communica-

tion cost includes both latency and bandwidth. Usually the communication cost is much higher

than the computation cost, and there is a wide gap between these costs, e.g. the DRAM latency

and bandwidth is improving by 5.5% and 23% respectively whereas the cost per floating-point

operation decreases by 59% per year [41]. Iterative numerical algorithms belong to the class

of communication-intensive algorithms and are widely used to solve large-scale sparse linear

systems of equations Ax = b and eigenvalue problems Ax = λx [33]. These algorithms are chal-

lenging to accelerate as they spend most of the time in communication-bound computations,

like sparse matrix-vector multiply (SpMV) and vector-vector operations (dot products and vec-

tor additions). Additionally, the data dependencies between these operations hinder overlaping

communication with computation. No matter how much parallelism can be exploited to accel-

erate SpMV, the performance of the iterative numerical algorithms is bounded by the available

off-chip memory bandwidth, e.g. with 2 flops per 4 bytes (single-precision) in SpMV, the max-

imum theoretical performance is 71 GFLOPs on an Nvidia C2050 GPU and 17 GFLOPs on a

Virtex6 FPGA. This results in less than 7% and 4% efficiency of GPU and FPGA respectively

as shown in Table 1.1.

Table 1.1: Silicon Efficiency of FPGA and GPU for Iterative Numerical Algorithms (FPGA
clock frequency is not reported in [87]).

Device Tech. Peak GFLOPs Memory BW Silicon Efficiency
(nm) (single-precision) (Off-Chip) (Upper bound)

Virtex6 40 450 [87] 34 GB/s [87] 4%
(SX475T)

Nvidia C2050 40 1030 144 GB/s 7%
(Fermi)

FPGAs have long been used as an alternative to microprocessors for computing tasks

which do not involve floating-point computation [79] [13] [45]. With increasing silicon densities

due to Moore’s Law, FPGAs have seen much high peak floating-point performance. Similarly,

GPUs have recently been used as another hardware accelerator in high performance scientific

22

computing delivering a higher peak floating-point performance compared to FPGAs as shown

in Table 1.1. Many important applications from science and engineering spend time solving

linear systems of equations or eigenvalue problems, therefore, the question is how much of peak

floating-point performance of GPU and FPGAs can be sustained while accelerating the iterative

numerical algorithms?

Before discussing different approaches to improve efficiency of these hardware accelerators,

we describe runtime of a single iteration of the numerical algorithm in terms of communication

and computation costs by Equation (1.1)

tcomm = #msg × α+msize× β.

tcomp = flops× γ.

t = tcomm + tcomp. (1.1)

We consider communication happens in the form of messages, which can be words from slow

memory to fast memory or between different processors. Overall runtime is the sum of three

factors, memory latency (α), inverse memory bandwidth (β) and time per flop (γ). For r itera-

tions of the iterative numerical algorithm, SpMV is launched r times to build a representation

of the Krylov subspace span(x, Ax, A2x,, Arx) [34]. The total cost for r iterations is then

given by

tr = r × tcomm + r × tcomp. (1.2)

Due to technology scaling, computational performance is increasing at a dramatic rate (flop-

s/sec improves by 59% each year) whereas communication performance is also improving but

at a much lower rate (DRAM latency improves by 5.5% and bandwidth improves by 23% each

year) [41]. To minimize communication cost, knowing that the matrix A stays constant, an

obvious approach is to store the matrix in the on-chip memory [31] [61] and then reuse it

for r iterations. The communication cost is effectively reduced by a factor of r as shown in

Equation (1.3).

t
′

r = tcomm + r × tcomp. (1.3)

However, for large matrices which do not fit on-chip, the matrix needs to be moved r times

within the memory hierarchy making it both a latency-bound as well as bandwidth-bound

problem [65]. In order to bridge the gap between computation and communication performance,

the communication-avoiding iterative solver [48] is recently proposed, which is an algorithmic

approach to trade communication with redundant computation. As the same matrix is used over

and over to generate a new vector in each iteration, the SpMV kernel is replaced with a matrix

powers kernel which unrolls k iterations to generate k vectors in a single sweep. The key idea is

to partition the matrix into blocks and performs k SpMVs on blocks without fetching the block

again in the sequential case and performing redundant computation to avoid communication

with other processors in the parallel case [48]. As a result, for a given accuracy, the number of

iterations is reduced by k. This reduces the communication cost by k but at the expense of f(k)

23

growth in redundant computation.

t
′′

r =
r

k
× tcomm + r × tcomp +

r

k
× f(k). (1.4)

The maximum value of k to which we can unroll depends on the underlying architecture, its

memory model and computation to communication ratio for a given problem. Therefore, we

need to pick this parameter k carefully for different architectures as well as varying problem

sizes. Besides replacing k SpMVs with the matrix powers kernel, the vector-vector operations in

a standard iterative solver are also replaced with new kernels like Block Gram-Schmidt Orthog-

onalization Orthogonalization (BGS) and QR factorization [48]. The addition of these kernels

not only introduces extra computation but also poses a composition challenge involving more

communication cost while sharing data across these kernels. There are three main challenges

associated with this communication-avoiding approach on parallel architectures

• how to keep the redundant computation as low as possible in each kernel to minimize the

computation cost?

• how to compose different kernels to minimize the communication cost in sharing data

across these kernels?

• how to select the optimal value of the algorithmic parameter k which minimizes overall

runtime by providing a tradeoff between computation and communication cost?

In this thesis, we attempt to address these challenges in a systematic way to minimize com-

munication cost and thereby increasing the silicon efficiency of FPGAs in accelerating iterative

numerical algorithms. To this end, we present an algorithm for the matrix powers kernel that

matches with the strengths of the FPGA to avoid redundant computation. We make use of the

large on-chip memory of the FPGAs to share data across different kernels and highlight that

such sharing is not possible using the present GPU architecture. In order to trade communica-

tion with computation, we provide a resource-constrained methodology to select the algorithmic

parameter k. The end result is a recipe to generate custom hardware by picking the algorith-

mic parameter k in an automatic fashion to minimize overall cost and thereby increase silicon

efficiency. We compare our results with GPU and show that for a range of problem sizes, the

FPGA outperforms the GPU.

1.1 Case Study: Lanczos Iteration for Solving Symmetric

Extremal Eigenvalue Problem

The choice of iterative numerical algorithm depends on the characteristics of the matrix A,

e.g. for solving Ax = b, the Conjugate Gradient [39] is used if A is positive definite, often the

Minimum Residual Method (MINRES) is used for indefinite but symmetric matrices. A recipe

is given in [16] and [12] to choose the particular algorithm for solving linear system of equations

and eigenvalue problem respectively. However, at the heart of each iterative numerical algo-

rithm is a Lanczos Iteration [39] and the results obtained for the Lanczos Iteration are generally

applicable to all iterative numerical algorithms. We use Lanczos Iteration to solve symmetric

24

extremal eigenvalue problem, i.e. finding only the maximum and minimum eigenvalue of the

symmetric matrix A. In various applications including semidefinite optimization programs [94]

and eigen-based channel sensing [104], we need to solve multiple of these problems and therefore

it is highly desirable to accelerate these iterative numerical algorithms.

1.2 Thesis Organization

Chapter 2 introduces the reader to the four main problems in applied numerical linear algebra

including solution to the linear systems of equation and eigenvalue problem. It discusses differ-

ent structures involved in these problems. Chapter 2 also classifies the numerical methods as

direct and iterative methods, which are used to solve dense and sparse problems respectively.

Iterative numerical algorithms are discussed in general and the Lanczos Iteration in partic-

ular. The chapter also highlights the communication-bound kernels in the Lanczos Iteration.

It then discusses different approaches used for accelerating communication-bound kernels and

highlights the limitations in terms of increased communication cost particularly for large-scale

problems. Finally, it talks about the communication-avoiding variant of the Lanczos Iteration,

the Communication-Avoiding Lanczos, its building blocks and the challenges it poses for algo-

rithm designers as well as hardware architects. We also introduce structurally sparse banded

matrices which are of great interest both for their applications and their use as benchmark for

architecture evaluation.

Chapter 3 discusses various computing platforms including multi-cores, many-cores (GPUs,

Intel Xeon Phi Co-processor) and custom computing architectures like FPGAs. We compare

their architectural features including peak floating-point performance, on-chip memory band-

width, on-chip memory capacity and off-chip memory bandwidth. We finally highlight the low

silicon efficiency of these architectures in accelerating the communication-bound iterative nu-

merical algorithms.

Chapter 4 talks about hardware acceleration of Lanczos Iteration working on small-to-medium

size data sets. We use explicit cache-blocking to minimize communication cost as shown in Equa-

tion (1.3). We design a single-precision hardware architecture for the Lanczos Iteration similar

to [61] to minimize computation cost and thereby reduce overall runtime. We show how we

can increase the silicon efficiency by exploiting pipeline parallelism and solving multiple inde-

pendent symmetric extremal eigenvalue problems. We finally compare the results with GPU

and show that FPGAs have better silicon efficiency due to explicit cache-blocking and pipeline

parallelism. The problem setting for Chapter 4 is shown in Figure 1.1. In case of the FPGAs,

we assume that the matrices are transferred from host memory to the internal memory of the

FPGA, where they are blocked and are reused for all iterations. For GPUs, due to small on-chip

memory, the matrices are transferred from host memory to the external memory, from where

they are fetched in each Lanczos iteration. At the end, the eigenvalue is transferred back to the

host.

Chapter 4 talks about hardware acceleration of Lanczos Iteration working on small-to-medium

size data sets. We use explicit cache-blocking to minimize communication cost as shown in Equa-

25

• A custom architecture for enhancing performance of tall-skinny QR factorization. We show

how we can make use of on-chip memory of FPGA to share data across different blocks

which is only possible through off-chip shared memory in case of GPUs.(Chapter 6, [76])

• Application composition and communication optimization in iterative solvers using FP-

GAs.(Chapter 7, [78])

1.4 Publications

The following publications have been written during the course of this thesis:

• Abid Rafique, Nachiket Kapre, and George A. Constantinides, A high throughput FPGA-

Based implementation of the Lanczos Method for the symmetric extremal eigenvalue prob-

lem. In Reconfigurable Computing: Architectures, Tools and Applications, pages 239−250.
Springer, 2012.

• Abid Rafique, Nachiket Kapre, and George A. Constantinides, Enhancing performance of

Tall-Skinny QR factorization using FPGAs. In Proceedings of the 22nd IEEE International

Conference on Field Programmable Logic and Applications (FPL), pages 443−450, 2012.

• Abid Rafique, Nachiket Kapre, and George A. Constantinides, Application composition

and communication optimization in iterative solvers using FPGAs. In Proceedings of

the 21st IEEE International Conference on Field-Programmable Custom Computing Ma-

chines (FCCM), 2013.

• Abid Rafique, George A. Constantinides and Nachiket Kapre, Communication Optimiza-

tion of Iterative Sparse Matrix-Vector Multiply on GPUs and FPGAs. accepted in IEEE

Transactions on Parallel and Distributed Systems, 2014.

28

2 Applied Numerical Linear Algebra

In this chapter, we introduce basic problems of linear algebra. We introduce different matrix

structures together with the numerical methods used to solve problems involving a particular

structure. The scope of the thesis is also defined in this chapter. A major focus of this chapter

is to identify communication as a basic problem in iterative numerical algorithms, which are

used for solving sparse linear algebra problems. We discuss different approaches to minimize this

communication on parallel and sequential architectures. Additionally, we also discuss related

research questions that arise when these approaches are used for minimizing communication in

iterative numerical algorithms on modern computing platforms like FPGA and GPU.

2.1 Standard Problems

There are four standard problems of numerical linear algebra, which often arise in engineering

and scientific computations.

• Linear systems of equations: Given an n× n non-singular matrix A and an n× 1 vector

b, solve Ax = b to compute the n× 1 unknown vector x. This problem arises in all fields

of science and engineering: biology, chemistry, applied mathematics, finance, mechanical,

civil and electrical engineering, etc. The most common source is the numerical solution of

differential equations which arise in mathematical models of many engineering and physical

systems. The numerical methods for solving such equations involve discretization of the

system by finite element or finite difference methods. This discretization process leads

to a linear system Ax = b which is repeatedly solved to find an approximate solution

to the differential equations. One such application is SPICE circuit simulation where

Ax = b is solved repeatedly to find solution of non-linear differential equations. Here A

is the matrix comprising conductances, b is the vector containing the known currents and

voltage quantities and x contains the unknown branch currents and voltage quantities.

Other application areas include mathematical optimization solvers [5], computational fluid

dynamics [47] and finance [85].

• Least squares problems: Given an m × n matrix A with m > n and a m × 1 vector b,

compute the n× 1 vector x that minimizes ||Ax− b||2. When there are more observations

than the number of variables, we solve Ax = b to find the solution x which minimizes sum

of the squares of the errors made in the results of every single equation. Such problems

arise in many areas like linear regression within machine learning [99] where we fit a

polynomial or curve to experimental data, as well as in engineering applications such as

signal processing [82].

29

• Eigenvalue problems: Given an n× n matrix A, find a n× 1 vector x and a scalar λ such

that Ax = λx. A simple application is determining the non-negativity of the minimum

eigenvalue λmin of the matrix A, a condition that needs to be checked to ensure semi-

definiteness while solving semi-definite optimization programs [89]. Other applications

include principal component analysis [53], eigen-based channel sensing [104], etc.

• Singular value problems: Given anm×nmatrix A, find a n×1 vector x and a scalar λ such

that ATAx = λx. Examples include robust principal component analysis for stationary

video background subtraction [8], where the vector x corresponding to the largest λ values

of the matrix ATA represents the background information. This problem arises in many

other areas like latent semantic indexing [36], total least squares minimization [49].

Although there are textbook methods which can be easily described to solve these problems,

not all are tractable even for small problems. As an example, consider Cramer’s rule [10] for

solving Ax = b. Solving a 20×20 linear system using Cramer’s rule on modern computing

platforms can take millions of years using the usual definition of the determinant of a matrix [34].

Therefore, numerical methods are usually employed to solve these problems. Before discussing

these numerical methods, we discuss a few matrix structures as they determine the selection of

the numerical method.

2.2 Problem Structure

Based on the structure of the matrix A, we can broadly categorize linear algebra problems into

three classes.

2.2.1 Dense

A problem is dense if a large number of elements in the matrix A are non-zeros. Such prob-

lems arise while solving linear system of equations originating from semi-definite optimization

problems [5], solution to electromagnetic scattering problems [74] and many other application

areas. The dense matrices are stored as 2-D arrays.

2.2.2 Sparse

A problem is sparse if a large number of elements in the matrix A are zeros as shown in Fig-

ure 2.1(a). A vast majority of engineering and scientific applications involve sparse matrices like

solving partial differential equations, SPICE circuit simulation to name a few. Usually sparsity is

exploited to minimize storage and computational cost. To store general sparse matrices, usually

compressed sparse row (CSR) or compressed sparse column (CSC) format is used which does

not require any knowledge of the sparsity pattern and also does not store any unnecessary ele-

ments. The CSR format puts all the matrix rows in contiguous memory locations. Three vectors

are used: a vector (val) for storing floating-point values and the other two vectors (col ind,

row ptr) storing the integer indices. The val vector contains all the non-zeros when the matrix

is traversed in a row-wise fashion. The col in stores the corresponding column number of the

30

non-zero element. The row ptr stores the location in the val vector that starts a row. We show

this format using a toy example.

A =













10 0 1 0

0 1 0 0

3 0 −1 0

0 0 0 4













The corresponding vectors will contain the following values for the sparse matrix A.

• val=[10, 1, 1, 3, -1, 4]

• col in=[0, 2, 1, 0, 2, 3]

• row ptr=[0, 2, 3, 5]

Instead of storing n2 elements, the total storage requirement is 2nnz+n+1. Here, nnz denotes

the number of non-zeros in the matrix A. Although they are efficient in storage, they nonetheless

have an overhead of indirect addressing for each scalar operation in a matrix-vector product, a

kernel which is at the heart of iterative numerical algorithms used to solve sparse linear algebra

problems (see Section 2.6).

(a) sparse (b) banded (c) block diagonal

Figure 2.1: Matrix Structures.

2.2.3 Structured Sparse

Besides dense and sparse problems, there is another category where the problem contains matri-

ces with a special structure, usually known as structured sparse matrices. A problem is consid-

ered structured sparse when the non-zeros in the matrix A exhibit some structure. A common

example is a tridiagonal matrix where all elements are zeros except the main diagonal, sub-

diagonal and super-diagonal as shown below.

A =













10 1 0 0

3 1 2 0

0 4 −1 2

0 0 1 4













Other possible structures include general banded matrices as shown in Figure 2.1(b) and block

diagonal structure in Figure 2.1(c). The advantage with structured sparse matrix is that the

31

storage scheme is efficient as compared to general sparse matrix formats like CSR and CSC. For

banded matrices, we can store the sub-diagonals of the matrix in consecutive locations using

compressed diagonal storage (CDS). Not only do we eliminate the vector required for storing

row and column, but we can store the non-zeros in such a way as to make the matrix-vector

product more efficient. We can store the example tridiagonal matrix A in CDS format as shown

below.

• val(:,-1)=[0, 3, 4, 1]

• val(:, 0)=[10, 1, -1, 4]

• val(:,+1)=[1, 2, 2, 0]

Here the second argument of the val matrix is the index of the sub-diagonal relative to the main

diagonal. Although we need to store some zeros as well which are not present in the original

matrix, but if the band of the matrix is small compared to the size of the matrix, then this

overhead is minimal. See [20] for more details on the compressed diagonal storage for thin and

wide bands. Instead of storing n2 elements for a banded matrix of band size b, we need to store

only n× b elements and there is no indexing overhead unlike CSR and CSC.

2.3 Numerical Methods

Depending on the structure of the matrix A, whether it is dense or sparse (including structured

sparse), generally a broad class of direct or iterative numerical methods are used to solve these

problems. However, the computational template of both of these classes comprises the following

three steps:

1. The problem is first transformed into an easier to solve problem by converting the asso-

ciated matrices into new matrices with special structure.

2. The transformed problem is then solved by exploiting the structure in the matrix.

3. The solution of the original problem is then recovered from the solution of the transformed

problem.

We now briefly discuss direct and iterative methods along with their potential use.

2.3.1 Direct Methods

Direct methods are commonly used when the matrix A is dense. In this case, we can get the

solution in a fixed number of steps provided there is no roundoff error (an error generated due

to finite data representation), and we need to perform all these steps before we can get the

solution. For example, solving symmetric eigenvalue problem Ax = λx using the direct method

of QR Algorithm [39] comprises following three steps.

• Transform the matrix A into a tridiagonal matrix T such that A = QTAQ.

• Use the QR Algorithm to compute the eigenvalues of the matrix T .

32

of the original matrix. Usually, the input matrix is transformed into a matrix with a favorable

spectrum. This transformation matrix is called a preconditioner and without using this precon-

ditioning the iterative method may even fail to converge.

Iterative methods are useful when only partial or a less accurate solution is desired, e.g. if one

is interested in only in largest eigenvalue (in magnitude), the power method [39] can be used

with a computational complexity of O(rn2) where r is the number of iterations for a desired

accuracy in the eigenvalue and r<<n. As a result, the computational complexity of iterative

algorithms is much lower than that of O(n3) with the direct methods. Additionally, if the spar-

sity in the input matrix is exploited, this complexity is further decreased.

A vast majority of the iterative methods are based on a Krylov subspace Kr(A, q0) = [q0,

Aq0, A
2q0, , A

r−1q0] where q0 is an initial n×1 random vector. The most common methods

belonging to this class are the Conjugate Gradient (CG) [39], Generalized Minimum Residual

Method (GMRES) [80] for solving Ax = b and the Lanczos Iteration [39] for solving Ax = λx.

As these iterative methods only access the matrix A through a matrix-vector multiplication, this

provides opportunity to fully exploit sparsity or any special structure of A. Therefore, for large

sparse problems, iterative methods are the only choice. Depending on the characteristics of the

matrix, whether it is symmetric or non-symmetric, positive definite or indefinite (eigenvalues

can be less than zero), we can select a particular iterative method from [16] for Ax = b and [12]

for solving Ax = λx. We show the taxonomy of iterative methods for the four standard linear

algebra problems in Figure 2.3.

2.4 Thesis Scope

Although the Krylov subspace-based iterative methods have nice properties of low complexity

and better exploitation of sparsity in the input matrix, they are nonetheless communication-

intensive algorithms due to the dominant matrix-vector multiplication. In this thesis, the main

focus is on optimizing communication within these Krylov subspace-based iterative methods

while accelerating solution to standard numerical linear algebra problems using hardware ac-

celerators like GPU and FPGA. In this work, we target very large structured sparse banded

matrices due to two main reasons. First, computations on such matrices have been used as an

architectural evaluation benchmark due to high parallelism and low computational intensity,

offering opportunities to exploit on-chip parallelism and challenges with associated memory

systems [30]. Secondly, they naturally arise in numerous scientific computations like stencils in

partial differential equation (PDE) solvers [84] and semi-definite optimization problems [1]. We

take the Lanczos Iteration [39] as a case study to accelerate the solution to symmetric extremal

eigenvalue problem, a sub-class of eigenvalue problem where one is interested in only either min-

imum or maximum eigenvalue of a symmetric matrix. Since the Lanczos Iteration is an integral

part of all modern Krylov subspace-based methods including CG, MINRES, etc., our results

are directly applicable to solving general eigenvalue problem as well as other standard prob-

lems including solution to sparse linear systems of equations. Additionally, while accelerating

the Lanczos Iteration for large-scale problems, we use the recently proposed communication-

34

2.5.1 Applications

Line Search in Interior-Point Method for Semi-definite Programming

Semi-definite Programming (SDP) [94] is a sub-class of convex optimization [22] where a linear

objective function in matrix variable X is minimized subject to some equality constraints and

an additional constraint that X � 0, i.e. positive semi-definite matrix (where all eigenvalues are

greater than equal to 0). A most popular method for solving SDP is the primal-dual interior-

point method [5] which is an iterative algorithm used to find the optimal values of the primal

matrix variable X ∈ R
n×n and dual matrix variable Z ∈ R

n×n simultaneously. SDP has lot of

applications in control theory [93] and polynomial optimization [63]. Of particular interest are

the applications where the SDP is solved online [63] at each time instant and the sampling time

is on the order of a few milliseconds.

In each iteration of the primal-dual interior-point method, starting with some initial values

of X and Z, we compute search directions ∆X and ∆Z. In order to update X = X + αp∆X

and Z=Z + αd∆Z, we estimate αp and αd by solving the following line search problem for the

newly computed search directions.

αp = max{α ∈ [0, 1] : X + α∆X � 0} (2.2)

αd = max{α ∈ [0, 1] : Z + α∆Z � 0} (2.3)

The condition X + α∆X � 0 and Z + α∆Z � 0 involves checking whether these matrices are

positive semi-definite, i.e. whether the minimum eigenvalue of these matrices is greater than

equal to zero.

Eigenvalue Based Sensing

Channel sensing, i.e. detecting the presence of any primary user, is one of the fundamental

tasks in cognitive radio. Matched filters (MF) [81], [25] require prior knowledge of the channel

whereas energy detection (ED) [92], [81] is optimal for detecting independent and identically

distributed (i.i.d) signals but not optimal for detecting correlated signals. A covariance based

approach is presented in [104] where a covariance matrix is formed from few samples of the

received signals. The maximum eigenvalue of the covariance matrix is used as the test statistic.

This maximum eigenvalue detection (MED) method can be used without any knowledge of the

channel and the signal source. It is shown in [104] that MED is optimal for correlated signals

whereas it approaches the ED for i.i.d signals.

For signal detection there are two hypotheses: H 0, signal does not exist and H 1, signal

exists.

H0 : x(n) = η(n)

H1 : x(n) = s(n) + η(n)

where s(n) is the transmitted signal that passes through the wireless channel after going through

path loss and fading, and η(n) is white noise which is i.i.d with mean zero and variance σ2
η. We

36

can estimate the statistical covariance matrices of x(n) and s(n) as:

Rx = E[x(n)x(n)T]

Rs = E[s(n)s(n)T]

Let λmax and ρmax be the maximum eigenvalue of Rx and Rs respectively then λmax = ρmax +

σ2
η. If the signal is present then λmax > σ2

η. Thus channel sensing can be cast as a symmetric

extremal eigenvalue problem where we have to find the maximum eigenvalue λmax of the sym-

metric covariance matrix Rx to test the two hypotheses H 0 and H 1.

2.5.2 Iterative Methods for Symmetric Extremal Eigenvalue Problem

Iterative methods are natural choice for the symmetric extremal eigenvalue problem as direct

methods like the QR Algorithm perform all the steps even if only the maximum or minimum

eigenvalue is desired. As a result, the computational complexity is still O(n3). On the other hand,

iterative methods can approximate the extremal eigenvalue after a few steps and therefore offer

lower computational complexity. We briefly survey iterative methods for solving the symmetric

extremal eigenvalue problem.

Power Method

The power method is the most simple iterative method. The basic idea is that if a given vector

is repeatedly multiplied by the symmetric matrix A, then it will ultimately lie in the direction

of the eigenvector corresponding to the eigenvalue which has the largest absolute value. The

power method is shown in Algorithm 1. As shown the only dominant operation is the matrix-

vector multiplication. The problem with the power method is that it gives eigenvalue with the

maximum absolute value, not the maximum numerical value. It can be used for a particular

class of symmetric matrices which have either non-negative or negative eigenvalues but not

both. However, in our application setting we are interested in finding extremal (minimum or

maximum) eigenvalue of a general symmetric matrix and therefore this method can not be

applied.

Algorithm 1 Power Method

Require: Symmetric matrix A∈ R
n×n, initial

orthonormal vector q0 ∈ R
n×1 and number

of iterations r
1: for i = 1 to r - 1 do
2: qi := Aqi−1

3: qi := qi/‖qi‖2
4: λi := qTi Aqi
5: end for
6: return λr−1 as the eigenvalue with the

largest absolute value and qr−1 as the cor-
responding eigenvector.

Algorithm 2 Inverse Iteration

Require: Symmetric matrix A∈ R
n×n, initial

orthonormal vector q0 ∈ R
n×1 and number

of iterations r and shift σ
1: for i = 1 to r - 1 do
2: qi := (A - σI)−1qi−1

3: qi := qi/‖qi‖2
4: λi := qTi Aqi
5: end for
6: return λr−1 as the eigenvalue closest to σ

and qr−1 as the corresponding eigenvector.

37

Inverse Iteration

In order to find not only the eigenvalue with the maximum absolute value but any desired

eigenvalue closest to some initial guess σ, an inverse iteration method is usually used shown

in Algorithm 2. Here, we have to solve a linear system in each iteration to get a new vector.

The method is superior to the power method but is only useful once we have an approximate

eigenvalue σ. It is particularly useful when we have an eigenvalue and we are interested in finding

the corresponding esigenvector. In our case, the inverse iteration is not applicable because of

the prior knowledge of the eigenvalue to be computed.

Lanczos Iteration

Starting with any given vector q0, r iterations of either the power method or inverse iteration

produce a sequence of vectors q0, q1, q2, q3, , qr−1. These vectors span the Krylov subspace.

In case of the power method this subspace is Kr(A, q0) = [q0, Aq0, A
2q0, , A

r−1q0] and for

inverse iteration it is Kr((A − σI)−1, q0). Both the methods use only the last vector from this

subspace to compute the eigenvector and the corresponding eigenvalue. Since Kr has dimension

r (in general), we can actually use it to compute the r best approximate eigenvalues and

eigenvectors. The Lanczos Iteration is also a Krylov subspace method which utilizes the whole

subspace Kr(A, q0) and approximates the eigenvalues of A. It is based on the same idea of

similarity transformation on A (QTAQ = T) which is a usual first step in direct methods to

reduce a symmetric matrix A to a tridiagonal matrix T . The matrix T has the dimensions of A

and its eigenvalues are exactly the same as the eigenvalues of the original matrix A.

Instead of doing a complete tridiagonalization, the Lanczos Iteration performs partial

tridiagonalization of the matrix A.

QT
r AQr = Tr

Tr =



















α1 β1 0 · · · 0

β1 α2 0 · · · 0
...

...
. . .

...
...

0 · · · 0 αr−1 βr−1

0 · · · 0 βr−1 αr



















The eigenvalues of the tridiagonal matrix Tr are good approximations to the r eigenvalues of

the input matrix A and the approximations get better with increasing number of iterations. It

has been shown in [34] that the extremal eigenvalues of Tr converge to the extremal eigenvalues

of A much faster than the internal eigenvalues. The entries of the tridiagonal matrix Tr are

computed using Algorithm 3. We show the convergence behavior of the Lanczos Iteration in

Figure 2.4. We first plot λmax(A) = 1.407 and λmin(A) = -2.084. We then plot λmin(Tr) along

with 2 other smallest eigenvalues and λmax(Tr) along with 2 other largest eigenvalues. We show

that λmin(Tr) converges to λmin(A) and λmax(Tr) converges to λmax(A) in a few iterations as

compared to the internal eigenvalues.

We observe that the Lanczos Iteration is the only method for the extremal eigenvalue problem

38

because since it converges to both ends of the spectrum, we can find algebraically minimum

or maximum eigenvalue. We now introduce the kernels involved in the Lanczos Iteration and

discuss issues related to their computational performance.

Algorithm 3 Lanczos Method in Exact Arithmetic [39]

Require: Symmetric matrix A∈ R
n×n, initial orthonormal vector q0 ∈ R

n×1 and number of
iterations r, β0 = 0.

1: for i = 1 to r do
2: qi := Aqi−1

3: αi := qTi qi−1

4: qi := qi - αiqi−1 - βi−1qi−2

5: βi = ‖qi‖2;
6: qi := qi/βi
7: end for
8: return Tridiagonal matrix Tr containing βi and αi i=1, 2,..., r

-2.084

 1.407

-2.55

-1.7

-0.85

 0

 0.85

 1.7

 4 8 12 16 20 24 28 32

 λ
(T

)

Lanczos Iterations

λmin(A)
λmax(A)
λmin(T)
λmax(T)

Figure 2.4: Lanczos Convergence

2.6 Computational Kernels of the Lanczos Iteration

If we analyze a Krylov method like the Lanczos Iteration shown in Algorithm 3, there are three

kernels:

• Sparse matrix-vector multiplication (SpMV), y = Ax.

39

• Scalar-vector multiplication followed by vector-vector addition (axpy), y = ax+ y.

• Dot products, a = yTx.

After introducing communication formally in the next section, we show that the performance

of these kernels is bounded by the communication cost. There is a data dependency between

these operations. Due to this data dependency, the kernels’ communication cost can not be

overlapped by their computation cost. Therefore, if the kernels are communication-bound, so is

the Krylov method which involves sequential execution of these kernels one after another. We

now discuss the performance issues related to the communication cost (see [48] for details).

2.7 Communication and performance issues

In this section we describe what communication is, and why it is desirable to avoid communi-

cation for accelerating iterative numerical methods. We introduce the LogP [28] model which

measures performance of an algorithm on computing platforms in terms of communication and

computation cost. We provide evidence that communication is expensive relative to computa-

tion and this will likely be the case for many years to come. In Section 2.8, we discuss the impact

of communication on the performance of kernels in the Lanczos Iteration and in Section 2.9, we

introduce different approaches for avoiding this communication.

2.7.1 Communication is Data Movement

Communication refers to data movement between various levels of a memory hierarchy in se-

quential architectures and between processors in parallel architectures. In a parallel architecture,

communication can take different forms:

• Message passing between processors in a distributed architecture.

• Cache coherency traffic in a shared memory architecture.

• Data transfer between a host (CPU) and a hardware accelerator (FPGA or GPU).

In a sequential architecture, data movement involves a slow memory (disk or a DRAM) and a

fast memory (DRAM or a cache). This data movement may be under manual control (FPGA)

or automatic control (CPU).

2.7.2 Modelling Performance

The total runtime of an algorithm involves computation and communication cost. A LogP model

captures these costs separately. In this model, communication occurs in the form of messages.

The message is used regardless of whether it is a distributed or shared-memory architecture or

whether the data is moved between slow and fast memory in a sequential architecture. The time

required to transfer a message comprising M words can be modelled as:

tcomm = α+ βM. (2.4)

40

where α is the latency (in seconds) and β corresponds to the inverse bandwidth (seconds per

word). If we represent γ as the cost of performing a single floating-point operation, the compu-

tation cost of M floating-point operations is then:

tcomp = γM. (2.5)

Most models do not take into account both latency and bandwidth terms, e.g. the introduction

of memory wall by Wulf and McKee [103] only refers to the memory bandwidth. However, for

all communication media as well as DRAM access, there is a different cost in sending a long and

a short message. This is because of the latency term. We, therefore, use both these quantities

as latency does matter even in dense linear algebra operations [15].

2.7.3 Communication is expensive

The communication problem has historical roots in the memory wall problem which is a hard

upper bound on the performance of a sequential architecture due to memory bandwidth being

slower than the instruction throughput. There is then the power wall, which constrains perfor-

mance of the sequential architecture and shifts the focus towards parallel processing leading to

an era of multi-cores and many-cores. All these techniques to improve sequential performance

either lead to too much power dissipation, or have diminishing returns. More parallelism means

more communication which then exacerbates the memory wall problem. Even radical changes in

hardware technology is not going to break either of these walls any time soon, which means we

should look for algorithmic approaches which minimize communication even if a few redundant

computations are performed.

A. The Memory Wall Problem

The memory wall problem refers to exponentially increasing gap between the main memory

bandwidth and the instruction throughput for performing floating-point operations. Wulf and

McKee [41] coined this term. They argued that if a processor needs to perform M floating-point

operations and other non-memory instructions, if it then requires within a constant factor of that

number of memory read/write operations, it will have memory-bound performance. It is true

even if cache has infinite bandwidth and even true if the whole data can fit in the cache, as long

as the data is not in the cache when the program starts. SpMV is particularly affected by the

memory wall problem, because there are as many memory operations as there are floating-point

operations.

B. Latency

It is well-known that DRAM and other storage media can be accessed with full bandwidth only

if the data is contiguous or has a regular layout. The linear algebra algorithms operating on

sparse data sets do not access data in a regular way, so they must pay latency cost to access

their data. However, there is a big gap between improvements in latency cost and the cost of

actually performing the floating-point operations. Graham et al. [41] show that between 1988

and 2004, the computational performance increases by 59% per year whereas the DRAM latency

41

only decreases by 5.5%. In 1988, one floating-point operation took six times as long as fetching

a single word from the main memory, but in 2004, one memory operation took as long as 100

floating-point operations. Even after the introduction of multi-cores, this trend continues with

the DRAM latency being three order of magnitude higher than processor cycle time [18]. The

latency of sending messages over a network follows similar trends like the DRAM latency. For

example, sending a short message from one node to another over a network interface may take

time as long as thousands of floating-point operations performed at the individual node [18].

In order to avoid the memory wall problem, hardware architects usually use deep memory

hierarchies. However, for algorithms with lower temporal locality, this may exacerbate the sit-

uation due to the cache overhead. We will see in Section 2.8, that the Lanczos Iteration and

most other Krylov methods lie in this category.

C. Bandwidth

Like latency, there is an exponential gap between computational performance and the memory

bandwidth. While the computational performance has increased by 59% per year, the memory

bandwidth only increases at annual rate of 26% [41]. Typical ways to improve bandwidth include:

• Interleaving data across different devices, with the overall bandwidth equal to the memory

bandwidth multiplied by the number of attached devices. For example, in DRAM, this

can be achieved using multiple banks.

• In shared-memory parallel architectures, partitioning the storage into regions each of which

is assigned to a subset of processors. This increases effective bandwidth of a processor to

its local subset of storage. For DRAM, this approach is known as Non-Uniform Random

Memory Access (NUMA).

Although these bandwidth enhancement approaches increase the access bandwidth, they may

increase latency as well [18]. For example, interleaving data across multiple banks increases the

overhead of accessing a single word of data. Furthermore, increasing the bandwidth of a storage

device or network interface increases the complexity of the underlying hardware, and therefore

cost and energy consumption.

2.8 Communication in the Lanczos Iteration

In Section 2.6, we identified three kernels in the Lanczos Iteration: SpMV, axpy and dot prod-

ucts. We now analyze these kernels to see how the performance of these kernels is bounded by

the communication cost.

2.8.1 Sparse matrix-vector multiply

A. Sequential sparse matrix-vector multiply

It is well-known that memory operations dominate the cost of performing sequential SpMV. The

operation y = Ax, with an n× n sparse matrix A and dense vectors x and y, can be computed

42

as

yi =
∑

0≤j≤n−1, Aij 6=0

Aijxj (2.6)

Different sparse matrix formats compute this sum in different ways. However, all the non-zero

entries of A need to be fetched at least once. If they are not available in cache, they need to be

fetched at no greater than the memory bandwidth. For each word accessed from main memory,

there are only two floating-point operations (multiply followed by add operation). Therefore,

there is an arithmetic intensity (number of floating-point operations per each word fetched from

the memory) of no more than two. As an example, the memory bandwidth of an NVidia C2050

GPU is 144 GB/s. For single-precision floating-point numbers we fetch four bytes for each word

to perform two floating-point operations. As a result, the performance of C2050 GPU is bounded

from above by this memory bandwidth and we can achieve a maximum performance of up to 72

GFLOPs which is approximately 7% of its peak single-precision performance (1030 GFLOPs).

This is in sharp contrast to the performance of dense matrix-matrix multiplication which can

achieve 80% of the peak single-precision performance. This is because the dense matrix-matrix

multiplication has a higher arithmetic intensity (O(n2) memory operations and O(n3) floating-

point operations).

Some optimizations can improve the performance of SpMV operation for certain types of ma-

trices. For example, we can store a group of non-zeros of A as a block−a technique called register

blocking−and we can achieve up to a small constant factor of reuse of matrix entries [101]. Ad-

ditionally, we can use another kind of optimization−cache blocking−which provides reuse in the

source vector x [69]. None of these optimizations can make the performance of the sequential

SpMV any way closer to the performance of the dense matrix-matrix multiplication.

B. Parallel sparse matrix-vector multiply

Compared to sequential SpMV, it is difficult to characterize the performance of SpMV on

parallel architectures. The factors affecting the performance of SpMV are:

• structure of the matrix,

• how the vectors and the matrix is partitioned and divided among the processors,

• whether the partition assigned to a single processor fits in the cache.

There are many ways to partition and divide the matrix A among the parallel processors. A

common method is to

1. partition the vector y into blocks y1, y2, . . . , yPe and assign these blocks to Pe processors,

2. partition the matrix A into blocks AIJ with 1≤I, J≤Pe,

3. assign xI ,yI and AIJ to the processor I.

43

This is a 1-D block row decomposition and the overall SpMV looks like:













y1

y2
...

yPe













=













A11 A12 · · · A1Pe

A21 A22 · · · A2Pe

...
...

...
...

APe1 APe2 · · · APePe

























x1

x2
...

xPe













Now processor I computes its vector partition yI by performing the following summation:

yI =
∑

1≤j≤Pe

AIJxJ (2.7)

Each AIJ is a sparse matrix partition which processor I can access directly. If I 6= J , the proces-

sor I needs to fetch the entry xJ from the Jth processor. In a distributed-memory architecture,

this communication happens in the form of messages whereas in a shared-memory system we

access memory region assigned to a different processor. In both cases, processor I has to pay a

latency as well as bandwidth cost in order to access xJ .

The above simple 1-D decomposition shows that in parallel SpMV, most of the time is

spent in performing sequential SpMV on each processor. It is hard to estimate how much time

is actually spent in sequential SpMV and how much time is consumed in communication be-

tween different processors. This is because there are different kinds of parallel processors and

sparse matrices. Nevertheless, from experience, if both communication and computation loads

are balanced evenly among the processors, the cost of communication is still enough to justify

complicated reordering in order to avoid communication volume [102]. This indicates that inter-

processor communication is an important part of parallel SpMV, and in order to achieve higher

performance we should minimize it as much as possible.

2.8.2 axpy and dot products

Besides SpMV, axpy and dot products are also communication-bound as they require O(n)

memory operations and also perform O(n) floating-point operations. For axpy, in the parallel

case, there is no inter-processor communication but we may need synchronization before using

the results. In the sequential case, the cost of reading the vectors from the main memory exceeds

that of actually doing the computation. For parallel dot products, we need to perform sequential

dot products at each processor followed by a scalar reduction operation. This scalar reduction is

a latency-bound operation and its latency cost competes with the bandwidth cost of performing

the dot products.

2.9 Avoiding Communication in the Lanczos Iteration

In the last section, we identified that all the kernels in the Lanczos Iteration and hence all Krylov

methods are communication-bound. Improving communication performance through hardware

modifications may not be entirely useful, increasing bandwidth might end up increasing the

latency as well. Therefore, the only logical choice is to avoid communication wherever possible.

44

Usually, communication can be avoided in one of the two possible ways:

• Blocking the matrix in the fast memory and reuse it as much as possible [20] [61]. This

is only applicable for small dense matrices which are loaded once from the main memory

and are reused for all the iterations. This is even true for matrices having special structure

like block-diagonal matrices shown in Figure 2.1(c). Here, disjoint blocks can be assigned

to different processors and there is no need of inter-processor communication as no vector

entries need to be shared.

• Designing communication-avoiding algorithms that aim at minimizing communication

even if we have to perform redundant floating-point operations.

In this work, we have used both of these approaches to avoid communication on modern hard-

ware accelerators like FPGA and GPU (see Chapter 3 for details about these computing plat-

forms). While the first approach is well-known, we explore communication-avoiding approaches

in the next section that tend to optimize communication in the Lanczos Iteration and other

Krylov methods.

2.9.1 Block Lanczos

Block Lanczos and other Block Krylov methods are related to the Krylov subspace methods.

The Krylov subspace method works with the subspace Kr(A, q0) = [q0, Aq0, A
2q0, , A

r−1q0],

where q0 is a single vector. On the other hand, Block Krylov methods operate on multiple vectors

to generate

Kr(A, Q0) = [Q0, AQ0, A2Q0,, Ar−1Q0] (2.8)

where Q0∈ R
n×p is a dense matrix comprising linearly independent columns. Block methods

originated as modifications of the Lanczos Iteration for finding eigenvalues of a sparse symmetric

matrix [29] [40]. The Lanczos Iteration can not resolve multiple eigenvalues or closely located

eigenvalues. Block Lanczos method resolves a cluster of eigenvalues as it operates on a different

subspace. The parameter p is selected based on the expected number of eigenvalues that we

want to resolve.

Although Block Lanczos method was originally used for qualitative purposes, it nonetheless

can help in performance improvement as well. Computing the subspace in Block Lanczos require

a different kernel, sparse multiple-vector multiplication (SpMM), which multiplies the input ma-

trix A with multiple vectors in the dense matrix Q0 as shown in Algorithm 4. This new kernel

SpMM can be implemented in a communication-avoiding manner such that the matrix A is

read only once. The parameter p provides better tradeoff between computation and communi-

cation cost [39]. In this case, for SpMM, we have O(nnz) memory operations while we perform

O(nnz×p) floating-point operations. Here, nnz is the number of non-zeros in the input matrix

A. This method has arithmetic intensity of p which can be exploited by parallel architectures

like multi-core, GPUs and FPGAs. The benefit is reduction in the communication cost as the

number of iterations will be reduced to obtain eigenvalue of a desired accuracy as shown in

Figure 2.5. It is generally assumed that Block Lanczos essentially reduces the communication

45

cost by p [12]. However, in practice, it is seen that reduction is not a factor of p and that is

because of slow convergence due to loss of orthogonality among the Lanczos vectors. This loss

of orthogonality is due to finite precision [34]. The choice of block size p is an important design

parameter which not only determines the resolution factor for eigenvalues but also provides the

tradeoff between computation and communication cost.

Algorithm 4 Block Lanczos [39]

Require: Symmetric matrix A∈ R
n×n, Q0 ∈ R

n×p and number of iterations r1,
(B0 = 0).

1: for i = 1 to r1 do

2: Qi := AQi−1 Ci ∈ R
n×p

3: Mi := QT
i−1Qi

4: Qi := Qi−Qi−1Mi−Qi−2Bi−1

5: [Qi,Bi] := qr(Qi)
6:
7: end for

8: return Block tridiagonal matrix Tr1 containing Mi and Bi i=1, 2, . . . , r where Mi ∈ R
p×p symmetric matrix

and Bi ∈ R
p×p upper triangular matrix.

 0

 10

 20

 30

 40

 50

 60

 70

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

B
lo

ck
 L

an
cz

o
s

It
er

at
io

n
s

p

Lanczos Iterations p = 1

Measured
Predicted

Figure 2.5: Iterations vs. p for extremal eigenvalue computation with accuracy 10−3. The pre-
dicted value is calculated theoretically and not with any model.

2.9.2 Communication-Avoiding Lanczos

While Block Lanczos is mainly used to resolve cluster of eigenvalues, communication-avoiding

Lanczos (CA-Lanczos) [48], on the other hand is designed to improve performance by moving

k steps into the Lanczos Iteration at once. CA-Lanczos is based on s-step Krylov methods [58]

which break the dependency between SpMV and other operations including axpy and dot

products. CA-Lanczos generates k basis vectors at a time by repeated SpMV operation (q0, Aq0,

A2q0, . . . , A
kq0) and as a result, overall communication cost can potentially be decreased by k.

Although CA-Lanczos has not been studied previously from performance perspective, however

46

such a communication-avoiding approach has been successfully used to speed up the solution to

linear systems of equations. Mohiyuddin et al. [65] presented a communication-avoiding GMRES

(CA-GMRES) to solve linear system of equations and demonstrated up to 4.1× speedup over

standard GMRES method for solving banded matrices on an Intel 8-core clovertown machine.

In this work, we intend to use CA-Lanczos as a potential communication-avoiding approach

to minimize communication on hardware accelerators like FPGA and GPU. We first introduce

some notation for CA-Lanczos followed by a brief description of the algorithm. Finally, we

discuss the computational kernels of CA-Lanczos which help in avoiding communication to

achieve higher performance.

Notation

We borrow the following notations from [48].

• Vectors and group of vectors

– vi denotes a single vector of length n

– Vi denotes a group of k vectors in outer iteration i, e.g. Vi=[vik+1, vik+2,....., vik+k]

• Groups of basis vectors

– Given the following matrix comprising basis vectors

Vi=[vik+1, vik+2,....., vik+k, vik+k+1]

– We use a variety of notations

Vi=[vik+1, vik+2,....., vik+k]

Vi=[Vi, vik+k+1]

V
′

i =[vik+2, vik+2,....., vik+k]

V
′

i =[V
′

i , vik+k+1]

Outline of the Algorithm

Communication-avoiding Lanczos is presented in Algorithm 5. Although the algorithm seems

complex, from a higher level perspective, it performs the following basic operations

• takes the input matrix A of size n×n and the initial vector v of length n,

• generates k vectors by performing k SpMVs,

• orthogonalize with previous set of k + 1 vectors (if any),

• orthogonalize these k vectors with each other using QR factorization,

• take the last vector from the set of k vectors and repeat the whole process again

In order to explain CA-Lanczos algorithm, we need to introduce the matrix Bi = [e2, e3, . . . ,

ek+1] where ej is a unit vector of length n with a one at an index j. Additionally, we re-write

the R matrices (see details in [48]).

47

Algorithm 5 CA-Lanczos [48]

Require: Symmetric matrix A ∈ R
n × n, initial Lanczos vector v1 ∈ R

n × 1 and number of
iterations t= r

k , where r is the number of iterations in Lanczos Iteration and k is the step
size

1: β0 = ‖v1‖2, q1 = v1
β0

2: for i = 0 to t-1 do
3: Compute V

′

i by repeatedly multiplying A with qik+1 −− Matrix Powers−−

4: if i == 0 then
5: Compute the QR factorization V 0=Q

0
R0 −−QR Factorization−−

6: T 0 =R0 B0 R−1
0 , Γ0=T0

7: else
8: R

′

i−1=QT
i−1

V
′

i −−Block Gram Schmidt Orthogonalization 1−−
9: V

′

i= V
′

i − Q
i−1

R
′

i−1 −−Block Gram Schmidt Orthogonalization 2−−
10: Compute the QR factorization V

′

i=Q
′

i
Ri

′ −−QR Factorization−−
11: Compute T i from Eq. (2.9) and βk(i+1)+1 from Eq. (2.10).
12:

Γi =





Γi−1 βik+1ek(i−1)e
T
1

βik+1e1e
T
k(i−1) Ti

01,k(i−1) βk(i+1)+1e
T
k





13: end if
14: end for
15: return Approximate tridiagonal matrix Γi

Ri−1 =
(

ek+1 R
′

i−1

)

Ri =
(

e1 R
′

i

)

where the last row of Ri−1 and first row of Ri are the same. The k+1 × k+1 matrix Ri can

be further decomposed into

Ri =

(

Ri zi

0 ρi

)

The k+1 × k basis matrix Bi can be decomposed as

Bi =

(

Bi

eTk

)

We now get the Ti as

Ti = RiBiR
−1
i + ρ−1

i zie
T
k − βik+1e1e

T
kRi−1R

−1
i (2.9)

48

where ρi = Ri(k, k) and similarly Ri−1 is the k × k sub-matrix of Ri−1. The expression for

βk(i+1)+1 = T i(k + 1, k) is given by

βk(i+1)+1 =
ρi
ρi

(2.10)

2.10 Computational Kernels of CA-Lanczos

If we analyze Algorithm 5, there are three computational kernels, the matrix powers kernel

(line 3), QR factorization of a tall-skinny matrix (line 5 and 10) and Block Gram Schmidt

Orthogonalization (line 8 and 9). All these kernels perform computation in a communication-

avoiding manner. For example, to perform k SpMVs in the matrix powers kernel, we can fetch

the matrix once and re-use it k times for generating k vectors. We now discuss these kernels of

CA-Lanczos and identify different research questions that we might have to answer in order to

minimize communication within the iterative numerical algorithms in general and the Lanczos

Iteration in particular.

2.10.1 Matrix Powers Kernel

This kernel is a replacement for SpMV in standard Lanczos Iteration. It computes k vectors in

a single sweep and therefore it requires Θ(k) fewer messages in the parallel case and similarly

Θ(k) fewer memory reads in the sequential architecture. In order to achieve this, it performs

no more than a constant number of redundant floating-point operations. Given an n×n sparse

matrix A, a general dense vector x(0) of length n, the matrix powers kernel is computed as

x(i+1) = Ax(i) 0 ≤ i ≤ k (2.11)

In order to understand the communication patterns in this although simple looking kernel, we

unroll the computation in Equation (2.11) as a graph. An example of such a graph is shown in

Figure 2.6 for a tri-diagonal matrix A. Starting with a vector xi and matrix A, k levels of the

graph G are generated by repeated matrix-vector multiplication as shown in Equation (2.11),

i.e each new level corresponds to a new vector x(i+1). The dependency graph G is defined as

follows: associate a vertex with each element of the vector x
(i)
j for j = 0, 1,. . . , n − 1 vector

entries and i = 0, 1,. . . , k levels, and an edge from x
(i)
m to x

(i+1)
j if Ajm 6= 0. In other words,

the edges correspond to the dependency of the jth vector element x
(i+1)
j on the elements of the

previous vector xi.

We assume that the graph G can be partitioned into Nq blocks. Each vertex x
(i)
j has an affinity

q corresponding to the block where it is stored and all the vertices x
(0)
j to x

(k)
j have the same

affinity depending only on j. If we consider any subset S of vertices of G, then we denote R(S)

as the set of vertices that are reachable from any vertex in S and R(S, m) as the set of vertices

on a path length at most m from any vertex in S. We denote Rq(S), R
(i)(S) and R

(i)
q (S) as the

subsets of R(S) with affinity q, with level i and with affinity q and level i respectively. A similar

notation is used for R(S,m).

As the graph is partitioned in Figure 2.6(b)(i), each partition comprises three types of ver-

49

is determined (see bounded box in Figure 2.6(b)(ii)) and the vertices in the set R(0)(V q, k)

− V
(0)
q which reside on other processors are communicated at level 0 (see white vertices in

Figure 2.6(b)(ii)). We then use these vertices for redundant computation (see white vertices with

dotted lines) to avoid communication at higher levels. This communication-avoiding approach

is now well-known and the pseudo-code is shown in Algorithm 6 for a shared-memory parallel

architecture.

Algorithm 6 Parallel Matrix Powers Kernel (for proc. pq) [65]

copy entries in R(0)(Vq, k) − V
(0)
q from shared memory

for i = 1 to k do
compute all x

(i)
j ∈ R(i)(Vq, k)

end for

C. Sequential Matrix Powers Kernel

For sequential architecture, the matrix A is partitioned into blocks which are then loaded

one after another into the fast memory. For architectures where the fast memory is managed

explicitly, the parallel matrix powers kernel is used where each block is computed independently

form the other in a communication-avoiding manner by performing redundant computation [65].

The blocks can be loaded in any order. On the other hand, for architectures with implicitly

managed fast memory, there is no redundant compuation. However, since the the computation

on the new block depends on the already computed vector components, one has to take care of

the order in which blocks are loaded into the fast memory. An implicit sequential matrix powers

kernel is shown in Algorithm 7.

Algorithm 7 Implicit Sequential Matrix Powers Kernel [65]

C=∅ (C =set of computed entries)
for q = 1 to Nq do

for i = 1 to k do
compute all x

(i)
j ∈ R(i)(Vq, k) − C

C← R(i)(Vq, k) ∪ C
end for

end for

D. Challenges

As the communication cost is highly dependent on the architecture, we need to choose or design

architecture-aware algorithms for the matrix powers kernel. We will introduce different archi-

tectures in the next chapter. However, there are two main challenges associated with the matrix

powers kernel on every architecture (1) how to minimize redudant computation to keep the

computation cost as low as possible (2) how to select the value of k which trades communica-

51

tion with computation. In Chapter 5, we address these challenges to minimize communication

cost on GPU and FPGA while accelerating the matrix powers kernel.

2.10.2 QR Factorization

In each iteration of CA-Lanczos, we need to generate an orthogonal set of k vectors for the

Krylov subspace. QR factorization has been the de-facto technique to decompose an m × n

matrix A into an orthogonal component Q of size m×m and an upper triangular matrix R of

size m× n.

A = QR (2.12)

When the matrix A is tall and skinny with m >> n, then we perform economy-size QR factor-

ization where Q is an m×n matrix and R is a square matrix of size n. Besides communication-

avoiding iterative methods like CA-Lanczos, matrices with such aspect ratio arise in many differ-

ent areas including block iterative methods, linear least squares problem and more importantly

panel factorization of a general QR factorization. There are many different QR factorization

methods including Cholesky QR, Gram Schmidt Orthogonalization, Modified Gram Schmidt

Orthogonalization (MGS), Givens Rotations and Householder QR [39]. Often we require stable

orthogonalization, i.e. the orthogonalization procedure should be independent of the input ma-

trix entries. Out of all these methods, Householder QR is the most stable method along with

MGS whose stability has been proved in the context of iterative numerical methods [42]. We first

discuss the Householder QR approach, identify inherent problems for tall-skinny matrices and

then review some approaches which have been recently proposed to achieve higher performance.

A. Householder QR

The Householder QR algorithm transforms the matrix A of size m×n into an upper triangular

matrix R by applying successive transformations.

QnQn−1 . . . Q2Q1A = R (2.13)

The idea is to design Qi (i = 1, 2, . . . , n) matrices in such a way that we zero out entries i+1 : m

of column i of the matrix A as shown below for a 4×3 matrix.

A =













x x x

x x x

x x x

x x x













→ Q1A =













x x x

0 x x

0 x x

0 x x













→ Q2Q1A =













x x x

0 x x

0 0 x

0 0 x













→ Q3Q2Q1A =













x x x

0 x x

0 0 x

0 0 0













The Qi matrix only affects rows i : m and therefore does not change i − 1 rows and columns.

We can write Qi matrix as

Qi =

(

Ii−1 O

O Hi

)

52

The parallel TSQR algorithm exposes parallelism where the QR factorization of each sub-matrix

can be mapped onto each processor within a parallel environment. The processors only exchange

R factors of the sub-matrices using the nearest neighbour communication as shown in Figure 2.8.

It has been shown in [33], that such a parallel TSQR is optimal in terms of communication. For

sequential architectures, the TSQR algorithm optimizes communication between fast and slow

memories and it has been proved that such an algorithm is also communication-optimal.

C. Challenges

The TSQR algorithm addresses communication problem in Householder QR for both sequential

and parallel architectures. However, there are some challenges associated with TSQR. Firstly,

with each successive stage within TSQR, the workload decreases leading to under utilization

of the compute resources. Secondly, the intermediate R factors still need to be communicated

which degrades performance due to memory or network latency. In Chapter 6, we address these

challenges by exploiting the architectural features of the FPGA and demonstrate that TSQR

on FPGA outperforms GPU due to tight algorithm-architecture interaction.

2.10.3 Block Gram Schmidt Orthogonalization

Gram-Schmidt Orthogonalization [39] is an approach where a vector x is orthogonalized with

vector y such that xT y = 0. Block Gram-Schmidt Orthogonalization (BGS) performs the same

computation but for matrices. As shown in Algorithm 5, BGS is dominated by BLAS3 matrix-

matrix multiplication and hence it is a compute bound operation. However, in Chapter 5, we

identify that BGS involves matrix multiplication of short and fat matrix with a tall-skinny

matrix and multiplication of these matrices have low arithmetic intensity compared to general

square matrices. These aspect ratios lead to poor performance on architectures like GPU [56]

where they are fetched from global memory. We demonstrate that we can achieve higher per-

formance in BGS on FPGAs due to the on-chip storage of the input matrices.

2.11 Summary and Conclusion

We introduced the four main problems in applied numerical linear algebra. We presented var-

ious problem structures and the numerical methods used to solve each of these problems. We

defined the scope of the thesis, i.e. to minimize communication in iterative numerical algorithms

for solving structured sparse problems. We chose the Lanczos Iteration to solve the symmetric

extremal eigenvalue as a case study. We identified the communication problem in these iterative

methods and argued that this problem is going to stay for future computing architectures as

well. We then presented a few algorithmic approaches, which aim at trading communication

with computation to achieve higher performance.

We conclude that iterative numerical algorithms are communication-bound, and that they

lead to poor silicon efficiency due to the ever increasing gap in communication and computa-

tion performance of modern computing platforms. Architecture-aware linear algebra algorithms

including those for iterative numerical algorithms is a promising approach to minimize commu-

nication cost thereby increasing overall silicon efficiency. In future chapters of this thesis, we

55

investigate how we can use the communication-avoiding approach to increase the silicon effi-

ciency of FPGA and GPU in accelerating iterative numerical algorithms. We intend to achieve

this in three different ways. Firstly, we design custom architecture using an FPGA that has an

affinity for a particular algorithm. Secondly, we tune algorithmic parameters for both architec-

tures including FPGA and GPU. Thirdly, we design architecture-aware algorithms.

56

3 Computing Platforms

Historically, numerical computation is one of the benchmarks for evaluating the power of the

computing platforms. The LINPACK benchmark suite [35] has been used over the years to

measure floating-point power of the computing system. The core benchmark in this suite is LU

factorization used for solving systems of linear equations Ax = b. Usually, highly optimized

linear algebra libraries are written for numerical computation on these platforms, e.g. Linear

Algebra Package (LAPACK) [7] is widely used on general purpose processors. In this chapter,

we provide a brief introduction of different computing platforms that are evolved over the

period, what is state of the art and how the future computing systems may evolve in order

to achieve higher performance in numerical computation involving sparse iterative numerical

algorithms. In doing so, our focus is not a distributed system comprising multiple nodes like

a grid or a supercomputer, rather we limit ourselves with the computing power available at a

single node. Additionally, we will go through different approaches to optimize communication

while performing linear algebra operations on these systems.

3.1 Single-Core Microprocessor

Since the invention of first silicon integrated circuit in 1959, computing technology has followed

the Moore’s Law, which states that the number of transistors in a given amount of silicon will

double after every 18 months [67]. Most of the initial computers were based on the von Neumann

architecture [68], which comprise a processing unit consisting of an arithmetic logic unit and

registers, a control unit containing an instruction register and a program counter and a memory

to store instructions and data. In the beginning, the focus was to design computer architecture

which can process a set of sequential instructions as fast as possible. In this regard, new transis-

tors were designed which can switch at higher clock frequencies and the abundant transistors,

thanks to the Moore’s Law, were arranged in a way to increase instruction throughput, i.e.

number of instructions executed per clock cycle (IPC). We discuss a few techniques that are

used to increase IPC.

3.1.1 Pipeline Parallelism

For an instruction to execute on a computer, it has to go through different stages like instruction

fetch (IF), instruction decode (ID), execute (EX), memory read/write (MEM) and write back

(WB). Figure 3.1(a) illustrates different stages of an instruction. If each stage takes one cycle,

then five clock cycles are required to execute one instruction. In this case, one can achieve

an IPC equal to 1
5 . To increase throughput, usually registers are introduced in between these

stages to store intermediate results. Now the next instruction does not have to wait for the

57

ear algebra libraries use explicit and implicit cache blocking to exploit data re-use in certain

computations, e.g. the matrix-matrix multiplication. A naive algorithm for matrix-matrix mul-

tiplication is described in Algorithm 9 to compute C = C + A × B and this is illustrated in

Figure 3.3(a). In this case, the total memory accesses can be calculated as

M = n3(for B) + n2(for A) + 2n2(for C) (3.1)

With 2n3 floating-point operations, for large n, the arithmetic intensity is 2. This is exactly

the same arithmetic intensity in communication-bound matrix-vector multiplication. However,

if we use blocking in the matrix-matrix multiplication, we can increase the arithmetic intensity.

We divide the matrix into N2 blocks, perform the multiplication on small blocks as shown

in Figure 3.3(b). We describe the algorithm in Algorithm 10 and calculate the total memory

accesses as

M = N × n2(read each block of B N3 times) +N × n2(read each block of A N3 times)

+2n2(read each block of C once) (3.2)

The arithmetic intensity in this blocked variant is n
N , which is equal to the block size. We can

achieve higher performance if we increase the block size. In all linear algebra operations, blocking

is used wherever possible to achieve performance. In fact, algorithms are usually modified to

enable blocking like the Blocked Householder QR [83]. However, for operations like SpMV or

even dense matrix-vector multiply, arithmetic intensity is low (O(n2) memory operations, O(n2)

FLOPs) and therefore cache blocking is not a viable option for minimizing communication with

the main memory.

Algorithm 9 A naive matrix-matrix multipli-
cation.
Require: Input square matrices A∈ R

n×n, B∈
R
n×n.

1: for i = 1 to n do
2: Read row i of A into cache.
3: for j = 1 to n do
4: Read C(i, j) into cache.
5: Read col j of B into cache.
6: for k = 1 to n do
7: C(i, j) = C(i, j)+A(i, k) ∗B(k, j).

8: end for
9: Write C(i, j) back to main memory.

10: end for
11: end for
12: return Output matrix C∈ R

n×n.

Algorithm 10 A blocked matrix-matrix multi-
plication.

Require: Input square matrices A∈ R
n×n, B∈

R
n×n, number of blocks N .

1: for i = 1 to N do
2: for j = 1 to N do
3: Read block C(i, j) into cache.
4: for k = 1 to n do
5: Read block A(i, k) into cache.
6: Read block B(k, j) into cache.
7: C(i, j) = C(i, j)+A(i, k) ∗B(k, j).

matrix-multiply on blocks
8: end for
9: Write C(i, j) block into main memory.

10: end for
11: end for
12: return Output matrix C∈ R

n×n.

60

It contains eight memory controllers to provide a memory bandwidth of 352 GB/s. There

are 61 cores clocked at 1.05 GHz. All cores and memory controllers are connected using a ring

network with a peak bandwidth of 220 GB/s. Each core has 32 KB L1 cache and a 512 KB

L2 cache. There are four hardware contexts for a core at any one time. At each clock cycle,

the instructions from a single thread runs on the core. No more than two instructions from

the same context can run consecutively since the goal is to hide latency by launching threads

from multiple contexts. The bulk of the performance comes from the vector processing unit

within each core. There are 32×512-bit SIMD registers within each core, which can be used for

either double-precision or single-precision operations. The vector processing unit performs basic

functions like addition, multiplication, sine and sqrt allowing 16 single-precision operations.

The unit also supports Fused Multiply-Add (FMA), which is counted as two operations for

benchmarking purposes. Thus a total of 2.0496 single-precision TFLOPs and 1.0248 double-

precision TFLOPs can be achived on SE10P card.

The main focus of this Intel Xeon Phi architecture is to accelerate communication-bound

operations. It has recently been used for accelerating dense as well as sparse linear algebra

operations. Due to its high memory bandwdith (352 GB/s) compared to contemporary GPUs

like that of K20 (208 GB/s), the Intel Xeon Phi architecture can attain higher performance for

the communication-bound operations, e.g. the matrix-vector multiplication.

3.4 Custom Computing−Field Programmable Gate Arrays

Custom computing is another architecture design approach where the hardware is specialized

for a particular algorithm with a reconfiguration support to change all or some part of the

hardware statically or dynamically. Although there are different devices which support custom

computing, Field Programmable Gate Arrays are the most widely used technology. An FPGA

is a two-dimensional array of simple hardware units, such as configurable logic blocks (CLBs)

containing lookup tables (LUTs) to implement any boolean function, larger random-access

memories (RAMs), some arithmetic units (DSP blocks) and a flexible routing structure as

shown in Figure 3.7.

The content of each of the CLBs together with the information defining the topology of the

interconnect between the computational units can be programmed to generate an arbitrary

circuit. The potential to use FPGAs in high-performance computing arises from the fact that

computer architecture can be specialized to accelerate a particular task. As an example, let us

say that we have to implement the data-flow graph shown on the left side in Figure 3.8 on a

CPU. All the variables are stored in memory and ALU needs to be shared in a temporal fashion

to perform add and divide operations. The intermediate results are stored back in memory. On

an FPGA, we can implement these operations as pipelined spatial circuits while implementing

the dependencies between the operations physically using pipelined wires to get high perfor-

mance. This allows the FPGA mapping to start a new evaluation in each cycle delivering higher

throughput than the CPU. With FPGAs, we can exploit different types of parallelism including

pipelining using deeply pipelined floating-point operators, spatial parallelism and data-level par-

65

memory bandwidth and off-chip memory bandwdith. We show these parameters in Table 3.1

for three different architectures including the Nvidia C2050 GPU, Virtex6-SX475T and an Intel

Xeon Phi XNC SE10P.

Table 3.1: Architectural Features of FPGA and GPU (FPGA clock frequency is not reported
in [87]).

Memory Memory BW Memory BW
Device Tech. Peak GFLOPs (On-Chip) (On-Chip) (Off-Chip)

(nm) (single-precision) Total. RAM Registers RAM Registers

Virtex6 40 450 4 MB 74 KB 5.4 TB/s 36 TB/s 34 GB/s
(SX475T) [87] [87]

Nvidia 40 1030 672 KB 1.7 MB 1.3 TB/s 8 TB/s 144 GB/s
(C2050) Aggregate Aggregate [96] [96]

Intel Xeon Phi 22 2049 31 MB (L2) 1.9 MB (L1) 1.23 TB/s 352 GB/s
KNC SE109 Aggregate Aggregate (L1) [37]

From Table 3.1, we analyze that Intel Xeon Phi has relatively large peak floating-point per-

formance, on-chip memory capacity and off-chip memory bandwidth compared to the other two

devices. It is because of its high off-chip bandwidth, that this architecture will perform better

for communication-bound operations like the sparse iterative numerical algorithms. However,

until now, there is no benchmark studies on this architecture for such algorithms. However, an

upper bound can be computed based on the dominant SpMV kernel where for each word that is

fetched we need to perform two FLOPs. This results into 176 GFLOPs at an off-chip memory

bandwidth of 352 GB/s. The silicon efficiency is 8.5%, slightly higher than the GPU device

where it is 7% and on FPGA where it is close to 4%. We do not consider this architecture

in our study because it has recently been introduced and we target more on improving the

silicon efficiency of FPGA and GPU. As we have seen in case of Intel Xeon Phi architecture

that by just changing the architectural parameters, although the floating-point performance of

communication-bound operations may increase, there might be no effect on silicon efficiency.

In future chapters, therefore, we discuss techniques how to improve silicon efficiency by a tight

interaction between algorithm and architecture. However, as the architecture resembles GPU

because of its SIMT compute organization, the results and techniques to improve silicon ef-

ficiency of GPU can well be extended to the Intel Xeon Phi architecture. Although FPGAs

have the lowest off-chip memory bandwdith, they have the highest on-chip memory bandwidth.

We intend to exploit this architecture feature to saturate the floating-point units thereby in-

creasing the silicon efficiency. In order to minimize communication on FPGAs, we will see

in subsequent chapters how we use different techniques including explicit cache blocking and

more architecture-aware algorithms. We emphasize that the ultimate goal is to increase silicon

efficiency, i.e. even if both architectures offer same sustained performance (GFLOPs), we are

interested in picking the one that has better silicon efficiency (the ratio of sustained performance

to peak performance).

67

4 Avoiding Communication in Iterative

Numerical Algorithms for

Small-to-Medium Size Problems

In this chapter we focus on accelerating iterative numerical algorithms for dense problems

involving small-to-medium size data sets (matrix size n∼ 10s to a few 100s). As mentioned in

Chapter 2, we choose the symmetric extremal eigenvalue problem as a case study. We provide

motivation to accelerate the solution with real examples where we need to solve multiple of

such problems independently. We argue that previous approaches [4] [60] [23] have limitations

in solving this problem for two reasons. First they deal with only very small matrices (n∼20).
Secondly they use direct methods which are good when one is interested in all eigenvalues and

eigenvectors but are inefficient when only a few eigenvalues are required, especially if only the

extremal (maximum or minimum) eigenvalue is desired. We show how the Lanczos Iteration [34]

can be specialized for problems where only the extremal eigenvalue is desired. We highlight the

key features of FPGAs which help us in avoiding communication in the Lanczos Iteration for such

problem sizes and also provide us the opportunities to solve multiple problems simultaneously.

We present an IEEE 754 single precision floating-point implementation of the Lanczos Iteration

on an FPGA. The proposed approach is scalable and particularly suitable for small-to-medium

sized problems. We show that by avoiding communication and exploiting parallelism of multiple

problems, we can increase the efficiency of FPGA from a mere 1.8% to 38% and that this

efficiency is limited by on-chip memory resources. We compare our results with other parallel

architectures like multi-core and GPU which have 3.3% and 0.13% efficiency respectively. As

the Lanczos Iteration is at the heart of all modern iterative numerical algorithms, our results

are applicable to a broad class of algorithms which are not only used for solving eigenvalue

problem but also solving linear system of equations. The main contributions in this chapter are

therefore:

• A specialized iterative framework comprising the Lanczos Iteration for computing only

the extremal eigenvalues of a dense symmetric matrix with a computational complexity

of O(rn2) where r is the number of iterations and r≪n.

• A mechanism to avoid communication in the Lanczos Iteration and an architecture mod-

ified from [61] for accelerating multiple small-to-medium size symmetric extremal eigen-

value problems.

• An FPGA implementation of the proposed architecture capable of a sustained performance

of 175 GFLOPs on a 260 MHz Virtex6-SX475T for a maximum matrix of size 335 × 335.

68

• A quantitative comparison with an Intel Xeon X5650 and an Nvidia C2050 GPU showing

a speed up of 8.2-27.3× (13.4× geo. mean) and 26.2-116× (52.8× geo. mean) respec-

tively when FPGA is solving a single eigenvalue problem whereas a speed up of 41-520×
(103× geo.mean) and 131-2220× (408× geo.mean) when it is solving multiple eigenvalue

problems.

4.1 Applications Involving Multiple Symmetric Extremal

Eigenvalue Problems

In Chapter 2, we introduce applications where we need to solve the symmetric eigenvalue prob-

lem. In this section we show that often we need to solve multiple of such problems in these

applications.

4.1.1 Multiple Minimum Eigenvalue Problems in Interior-Point Method for

Semi-definite Programming

In each iteration of the primal-dual interior-point method to solve semi-definite programs [5],

starting with some initial values of optimization variablesX and Z, we compute search directions

∆X and ∆Z. In order to update X = X + αp∆X and Z = Z + αd∆Z, we estimate αp and

αd by solving the following line search problem for the newly computed search directions.

αp = max{α ∈ [0, 1] : X + α∆X � 0} (4.1)

αd = max{α ∈ [0, 1] : Z + α∆Z � 0} (4.2)

Referrring to Equation (4.1) and (4.2), in order to check X + α∆X � 0 and Z + α∆Z � 0 we

need to compute the minimum eigenvalue of the matrices X + α∆X and Z + α∆Z.

Traditionally, Equation (4.1) and (4.2) are computed using backtracking where one can select

initial values of αp and αd close to 1 and keep decreasing the values until the minimum eigenvalue

becomes greater than equal to zero. This process can be parallelized by using a set of values

of αp and αd and solving multiple minimum eigenvalue problems. We can then finally pick the

value from the set which corresponds to the minimum eigenvalue greater than equal to zero.

Another level of parallelism comes from the structure of the matrices X and Z. For block-

diagonal matrices that arise in polynomial optimization [98] and are shown in Figure 4.1, the

minimum eigenvalue can be calculated by computing the minimum eigenvalue of each diagonal

block independently and then finding out the minima among those eigenvalues.

4.1.2 Multiple Maximum Eigenvalue Problems in Eigenvalue Based Sensing

Channel sensing, i.e. detecting the presence of a primary user, is one of the fundamental tasks

in cognitive radio. In IEEE 802.22, multiple channels used by the primary users are sensed

simultaneously to look for inactivity. The idea is to provide these inactive channels to the

secondary users for communication. A covariance based approach is presented in [104] where a

covariance matrix is formed from a few samples of the received signals. The maximum eigenvalue

69

4.2.1 Specializing the Lanczos Iteration

Given an n×n symmetric matrix A, the Lanczos Iteration applies orthogonal transformations

to reduce it to a tridiagonal matrix Tr in an iterative manner

QT
r AQr = Tr (4.3)

where r is the iteration count and Qr ∈ R
n×r, Tr ∈ R

r×r. The eigenvalues of Tr are approx-

imations to the eigenvalues of A. The extremal eigenvalues start converging first after a few

iterations as shown in Figure 4.3. The Lanczos Iteration is shown in Algorithm 11.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60 70 80 90 100

λ

Lanczos Iterations

λ1(A)
λ1(T

r
)

λ2(A)
λ2(T

r
)

λ3(A)
λ3(T

r
)

Figure 4.3: The Lanczos Iteration convergence to the maximum eigenvalue of A.

Algorithm 11 Lanczos Iteration in Exact
Arithmetic [39]

Require: Symmetric matrix A∈Rn×n, initial orthonormal
Lanczos vector q0 ∈Rn×1 and number of iterations r, β0

= 0.
for i = 1 to r do

qi := Aqi−1 (lz1)
ci := qi - βi−1qi−2 (lz2)
αi := qi

T qi−1 (lz3)
di := ci - αiqi−1 (lz4)
b := di

T di (lz5)

βi :=
√
b (lz6)

f := 1/βi (lz7)
qi := f di (lz8)

end for
return Tridiagonal matrix T r containing βi and αi i = 1,
2,..., r

Algorithm 12 Bisection Method for λmax [39]
Require: αi and βi for i = 1,2, r

a:= 0, b:= 0, eps := 5.96x10−8

for i = 1 to r do
a := max(a , αi − (| βi| + |βi−1|))
b := max(b , αi + (| βi| + |βi−1|))

end for
i := 1, s:= 1
while (|b−a| < eps(|a| + |b|)) do

λ := (a + b)/2
p := αi − λ − β2

i /s
if (p > 0) then

a := λ, i := 1, s := 1
else if (i >= r) then

b := λ, i := 1, s := 1
else

s := p, i := i + 1
end if

end while
return λ

Loss of orthogonality among the vectors is an inherent problem with the Lanczos Iteration

and often a costly step of re-orthogonalization is introduced [39], which has a computational

complexity of O(rn) and a storage requirement of O(rn) as well. However, investigation of

the loss of orthogonality reveals it does not affect extremal eigenvalues [34] and therefore we

71

do not need to perform re-orthogonalization. This phenomenon is shown in Figure 4.3 where

the loss of orthogonality affects only the 2nd and 3rd largest eigenvalues (they mis-converged

to the maximum eigenvalue). We exploit this behaviour of the Lanczos Iteration to design an

architecture highly specialized for extremal eigenvalues computation.

4.2.2 Bisection Method

The bisection method is an efficient method for finding the eigenvalues of a symmetric tridiag-

onal matrix T r and it has a computational complexity of O(r) for extremal eigenvalue compu-

tation [34]. An extremal eigenvalue of the matrix T r is computed by finding an extremal root

of the polynomial.

pr(λ) = det(T r − λI). (4.4)

The extremal root can be computed recursively from the roots of the polynomials pi(λ) where

0 ≤ i ≤ r (see Algorithm 12). We find out the interval where the maximum or minimum eigen-

value is located and only perform bisection method in this interval instead of the whole spectrum.

4.3 Sequential Runtime Analysis

We use sequential runtime analysis to find out the computationally intensive part of the flow

shown in Figure 4.2. We pick small to medium size matrices from SDPLIB [21], a collection of

benchmarks for solving SDPs, and use the Intel MKL library for sequential implementation on

an Intel Xeon X5650. We show the runtime distribution in Figure 4.4(a) and observe that it is

the Lanczos Iteration which takes most of the time reaching 99% for higher order matrices. On

the other hand, the time taken by the bisection method is independent of the problem size as

it only varies with the number of desired eigenvalues and their distribution [39]. We therefore

focus our attention on parallelizing the Lanczos Iteration.

 0

 20

 40

 60

 80

 100

control1

control2

control4

control6

gpp124-1

theta3

theta4

theta6

truss5

R
u

n
ti

m
e

P
er

ce
n

ta
g

e

Lanczos Bisection

(a) Extremal Eigenvalues Computation.

 0

 20

 40

 60

 80

 100

control1

control2

control4

control6

gpp124-1

theta3

theta4

theta6

truss5

R
u

n
ti

m
e

P
er

ce
n

ta
g

e

lz1
lz2

lz3
lz4

lz5 & lz6
lz7 & lz8

(b) The Lanczos Iteration.

Figure 4.4: Sequential Runtime Analysis.

72

The runtime distribution of the Lanczos Iteration is plotted in Figure 4.4(b) demonstrating

that lz1 (matrix-vector multiplication) is the dominant operation with O(rn2) FLOPs and

O(rn2) memory operations for r Lanczos iterations. As memory access is costly compared to

performing the floating-point operations, we need to minimize this cost in order to accelerate

the Lanczos Iteration. We will now discuss how we accelerate Lanczos Iteration by minimizing

memory access time using FPGAs.

4.4 Accelerating Lanczos Iteration using FPGAs

4.4.1 Cost Model

If we consider the Lanczos Iteration in Algorithm 11, we need to perform matrix-vector multipli-

cation (lz1) in each iteration followed by some vector-vector operations. Assuming the vectors

(qi−1, qi−2) and the matrix are stored in the off-chip memory and therefore need to be fetched

in each iteration, the total cost for r iterations can be shown by Equation (4.7).

tcomm = #msg × α+msize× β. (4.5)

tcomp = flops× γ. (4.6)

tr = r × tcomm + r × tcomp. (4.7)

The cost model is based on LogP model [28] which comprises three terms i.e. latency α, inverse

bandwidth β and the time per flop γ. The first two terms contribute towards the communica-

tion cost (Equation (4.5)) and the last term determines the computation cost (Equation (4.6)).

We are interested in minimizing the communication cost in the Lanczos Iteration as it is a

communication-bound computation (Section 4.2.1) but at the same time we intend to achieve

high throughput to reduce the computation cost. Our desired cost model is shown in Equa-

tion 4.8.

t
′

r =
r

k
× tcomm + r × t

′

comp where t
′

comp < tcomp (4.8)

We assume tcomp is the computation cost of a sequential implementation. While the algorithmic

parameter k in Equation (4.8) can be used as a control knob to reduce the communication cost,

its maximum value depends on the underlying architecture and its memory model. For small-

to-medium size dense problems, we only consider two choices of k, i.e. k = 1 where the matrix is

fetched from off-chip memory in each iteration and k = r where it is loaded in on-chip memory

only once. This restriction is because of the dependencies between successive operations in the

Lanczos Iteration. In subsequent chapters, we show how this dependency can be broken and the

value of k greater than 1 and less than r is used to minimize communication cost for large-scale

sparse problems. This becomes possible only at the expense of redundant computation which

increases with k. In the particular case of k = 1 or k = r, the computation cost is independent

of k as we are not performing any redundant computation.

73

4.4.2 FPGAs vs. GPU

Two most common hardware accelerators used in scientific computing are the GPUs and

the FPGAs. The efficiency of both of these devices depends on the nature of the problem, i.e.

whether it is a compute-bound problem or a communication-bound problem. We perform a

comparative analysis of the two devices for the following two cases.

Case 1: Fully Off-Chip (k =1)

In this case, the matrix is loaded from off-chip memory in each Lanczos iteration. We observe

from Table 3.1 that, compared to FPGAs, the GPU has ∼5× higher off-chip memory bandwidth

and ∼2× higher peak floating-point performance. One should expect GPU to perform better

theoretically. Nonetheless, the performance is bounded by its off-chip memory bandwidth, i.e.

with 2 flops per 4 bytes (single-precision) in dominant matrix-vector multiplication, the maxi-

mum theoretical performance of GPU is 72 GFLOPs with an efficiency of 7% (actual efficiency is

even lower as maximum memory bandwidth is not utilized practically). Likewise, the maximum

performance of the FPGAs is 17 GFLOPs with an efficiency of 4%. Although the efficiency of

GPU and FPGA is very low, an arbitrarily large problem can be solved.

Case 2: Fully On-Chip (k = r)

In this case, the matrix and the vectors are loaded once and then they are re-used for r Lanczos

iterations. GPU has an inverse memory hierarchy [96], i.e. the registers have large capacity

as compared to the on-chip shared memory. However, this is distributed among all streaming

multiprocessors (SMs). If the total on-chip capacity is utilized to solve one large problem by all

SMs, the data dependency between different operations in Algorithm 11 enforces the results to

be stored back in the off-chip global memory. On the other hand, multiple independent problems

can be solved by storing the matrices in the individual register file of each SM, however, the

maximum size will be restricted, e.g. on C2050 GPU having a 128KB register file, the maximum

size of the matrix that can be stored is 181 (in single-precision).

In contrast, compared to GPUs, FPGAs not only have 2× on-chip memory capacity (see

Table 3.1) but also the memory is less spatially distributed and can be used to solve relatively

large problems (n∼335). Additionally, FPGAs have ∼5× larger on-chip memory bandwidth

which can be used to saturate the floating-point cores to achieve much higher silicon efficiency.

We now discuss the parallelism potential within the Lanczos Iteration followed by an architecture

which exploits this potential.

4.4.3 Parallelism Potential

We can identify the parallel potential in the Lanczos Iteration from its dataflow graph shown in

Figure 4.5. We plot the number of floating-point operations per Lanczos iteration as well as the

critical latency assuming ideal parallel hardware as a function of the matrix size in Figure 4.6.

We find out that the work grows with O(n2) due to dominant matrix-vector multiplication (lz1)

whereas the latency grows with O(log n), i.e. the latency of a single dot product circuit [61]

(assuming there are n such dot product circuits working in parallel to perform matrix-vector

74

is given by

Total FP Units(n) = 2n+ 6. (4.9)

Referring to Equation (7.2), 2n - 1 units are used for the dot product circuit whereas 7 FP units

are used for other operations.

The Interval Calculation module computes the initial interval for the extremal eigenvalue

using the Gershgorin circle theorem [39] and the Bisection Module computes the extremal

eigenvalue in that interval in a sequential fashion as shown in Algorithm 12.

4.4.5 Solving Multiple Extremal Eigenvalue Problems

For solving a single extremal eigenvalue problem, the deeply pipelined nature of the dot product

circuit in Figure 4.7 leads to high throughput but also considerable latency. As a result, the

pipeline will be under-utilized if only a single problem is solved. Therefore, the mismatch between

throughput and latency is exploited to solve multiple independent extremal eigenvalue problems.

The initiation interval of this circuit is n + 2 clock cycles (for lz1, lz3 and lz5) after which a

new problem can be streamed into this circuit. The pipeline depth (P) of the circuit is given by

Equation (6.5) which indicates how many problems can be active in the pipeline at one time.

Latency(n) = 3n+ c1⌈log2n⌉+ c2. (4.10)

Pipeline Depth P(n) =

⌈

3n+ c1⌈log2n⌉+ c2
n+ 2

⌉

. (4.11)

Referring to Equation (4.10), the 3n comes from n cycles for (lz1) and 2n cycles for (lz4) and

(lz8). The log2n term comes from the adder reduction tree and c1 = 36 and c2 = 137 derive from

the latencies of the single precision floating-point operators. We can see from Equation (4.11)

that the number of independent eigenvalue problems approaches to a constant value for large

matrices (P → 5 as n → ∞).

4.4.6 FPGA I/O Considerations

We use double-buffering to store P matrices so that as one set of P problems are being solved,

other set is being loaded from the off-chip memory. The total bytes required for P matrices, the

initial vector and the eigenvalue output is given by Equation (4.12).

I/O Bytes = 4P(n2 + n+ 1) (4.12)

The extremal eigenvalues start converging after a few iterations as shown in Figure 4.3. If we

take r as the number of Lanczos iterations, then the I/O bandwidth can be calculated by

Equation (4.13).

I/O Bandwdith = Freq× I/O Bytes

(r × Latency)
(4.13)

77

 5

 10

 15

 20

 25

 30

 35

 40

 45

 32 64 96 128 160 192 224 256 288 320

P
ip

el
in

e
D

ep
th

 (
P

)

Matrix Order (n)

Figure 4.8: Asymptotic analysis of maximum number of problems.

For the maximum matrix size n to be equal to 335, average number of Lanczos Iterations r

equal to 30 and a maximum operating frequency of 260 MHz (see Section 4.5), the required I/O

bandwidth is ∼8 GB/s. This I/O bandwidth is approximately 25% of the maximum off-chip

memory bandwidth available on Virtex6-SX475T FPGA as shown in Table 3.1.

4.5 Methodology

The experimental setup for performance evaluation is summarized in Table 4.1 and dense matri-

ces are extracted from SDPLIB [21] benchmarks shown in Table 4.2. We implement the design

for a single problem and estimate the results for multiple problems. We implement the proposed

architecture in VHDL and synthesize the circuit for Xilinx Virtex6-SX475T FPGA, a device

with the largest number of DSP48Es and a large on-chip capacity. The placed and routed design

has an operating frequency of 260 MHz. We actually measure the latency of solving a single

problem and then estimate the total number of problems P that can be solved in a pipeleined

fashion. For a matrix of size 335×335, P is equal to 5 and we occupy nearly all the BRAMs

available in the device. There is 50% utilization for the DSP48Es and 70% for the Slice LUTs

and they show a linear increase as the number of floating-point units grows with O(n). Op-

timized Basic Linear Algebra Subroutine (BLAS) libraries are used for the multi-core (Intel

MKL) and GPU (CuBLAS) implementations to perform all operations in Algorithm 11. In the

multi-core case, the number of threads is set equal to the number of physical cores whereas in

case of a GPU, the grid configuration is picked by CuBLAS automatically. We do not use multi-

78

Table 4.1: Experimental Setup (FPGA clock frequency is
not reported in [87] for peak single-precision
GFLOPs).

Platform Peak GFLOPs Compiler Libraries Timing
Single Precision

Intel Xeon 127.8 [27] gcc Intel MKL PAPI
X5650 (4.4.3(-O3)) (10.2.4.032) (4.1.1.0)
Nvidia GPU 1050 [71] nvcc CUBLAS cudaEvent-
C2050 (3.2) Record()
Xilinx 450 [87] Xilinx ISE Xilinx ModelSim
Virtex6-SX475T (10.1) Coregen

Table 4.2: Benchmarks.

Benchmark n

control1 15
control2 30
control4 60
control6 90
gpp124-1 124
theta3 150
theta4 200
theta6 300
truss5 335

threading in the multi-core for solving multiple eigenvalue problems. We do not consider the

host to FPGA/GPU transfer time because it is negligible compared to the actual computation

as shown in Figure 4.9.

10
1

10
2

10
3

10
4

15 30 60 90 124 150 200 300 335

T
im

e
 (

µ
s)

Matrix Size (n)

Total Time
Host --> GPU Transfer Time

Figure 4.9: Total time vs. data transfer from host to GPU (Nvidia C2050 Fermi) with data
averaged over 20 runs. The input matrix A (from benchmarks in Table 4.2) is trans-
ferred only once and the Lanczos Iteration is run until we get an error less than
10−5 in the maximum eigenvalue.

We only consider single-precision implementation because for the applications of our interest,

we require an accuracy of 10−3 in the maximum eigenvalue. In Figure 4.10, we show how the

error in the maximum eigenvalue decreases as we increase iterations for both single-precision

and double-precision implementations. We observe that to achieve the desired accuracy, the

number of Lanczos iterations are approximately the same (with a difference of one iteration)

for both single-precision and double-precision implementations. This behaviour results from the

fact that the precision affects only the inner eigenvalues as shown in Figure 4.3, where the

maximum eigenvalue once converged, remains unchanged. We therefore choose single-precision

representation because it saves us in terms of FPGA resources that leads to not only savings

(∼2×) in terms of area but also storage as well.

79

10
-5

10
-3

10
-1

10
0

10
1

 2 6 10 14 18 22

|λ
m

a
x
(A

)
-

λ
m

a
x
(T

r)
|

Iterations (r)

n = 90 (SP)
n = 124 (SP)
n = 200 (SP)
n = 335 (SP)

n = 90 (DP)
n = 124 (DP)
n = 200 (DP)
n = 335 (DP)

Figure 4.10: Single-precision (SP) vs. Double-precision (DP) on Nvidia C2050 Fermi. The input
matrix A is transferred only once and the Lanczos Iteration is run until we get an
error less than 10−5 in the maximum eigenvalue.

4.6 Results

We now present the performance achieved by our FPGA design and compare it with previous

FPGA-based implementations. We then compare our work with multi-core and GPU and then

discuss the underlying factors that explain our results.

4.6.1 FPGA Performance Evaluation

As we load the matrix only once and that too in an overlapped fashion for a set of P problems,

we do not consider the time for loading the matrix. We analyze the performance based on the

time spent in floating-point operations. The peak and sustained single-precision floating-point

performance of the FPGA is given by Equation (4.14) and Equation (4.15) respectively. For

a matrix of size 335×335 and an operating frequency of 260 MHz, the peak performance of

our design is 175 GFLOPs and sustained performance is 35 GFLOPs for a single problem. The

sustained performance approaches the peak performance when P problems are solved simulta-

neously. There is a linear increase in performance with the problem size as the floating-point

80

units grow with O(n).

Peak Throughput = Total FP Units = 2n+ 6 FLOPs/cycle. (4.14)

Sustained Throughput =
P (2n2 + 8n)

P(n+ 2) + P− 1
FLOPs/cycle. (4.15)

Efficiency(n) =
P(2n2 + 8n)

Total FP Units × (P(n+ 2) + P− 1)
. (4.16)

where 2n2 + 8n represent the number of floating-point operations per Lanczos iteration. It is

observed that even for low order matrices a high efficiency (70%) is achieved for the architecture

in Figure 4.7 and that the efficiency tends to 100% for large matrices. This is because the number

of floating-point operators in the dot product circuit grows linearly with n and by design the

the dot product circuit remains busy. However, the overall efficiency of the FPGA is low as not

all of the FPGA resources are utilized due to insufficient BRAMs (see Section 4.5).

4.6.2 Comparison with FPGA-based Eigensolvers

We briefly survey the existing FPGA-based eigensolvers. Ahmedsaid et al. [4], Liu et al. [60]

and Bravo et al. [23] target eigenvalue applications involving the Principal Component Analysis

(PCA) where the matrix size does not usually go over 20 × 20. The direct method of Jacobi [39]

and its variants are used for these small eigenvalue problems. The main reason behind using

the Jacobi method is its inherent parallelism which can be exploited by systolic architectures

requiring n
2 diagonal processors and n(n - 1)

4 off-diagonal processors for a n × n matrix. Existing

FPGA-based eigensolvers are not suitable for the extremal eigenvalue computation of matrices

of our interest for two reasons. Firstly, they target very small matrices and are not resource

efficient as the number of processors grows with O(n2). Additionally, since the Jacobi method

inherently computes all eigenvalues and eigenvectors, the approach utilized in these architectures

is wasteful for computing only the extremal eigenvalues. Table 4.3 summarizes the previous

eigenvalue computations on FPGA with device, method, precision and the performance results.

Table 4.3: Comparison of FPGA-based Symmetric Eigenvalues Computation.

Ref. Method n Device Eigen- Freq. GFLOPs Precision Resources
values MHz (asymptotic)

[4] Direct 8 Virtex-E All 84.44 Not fixed point O(n2)
2003 Reported (16-bit)
[60] Direct 8 Virtex-II All 70 Not fixed point O(n2)
2006 Reported (16-bit)
[23] Direct 16 Virtex-II All 110 0.243 fixed point O(n2)
2006 Pro (18-bit)

This Work Iterative 335 Virtex-6 Extremal 260 175 floating point O(n)
2011 (32-bit)

Unlike previous approaches, the proposed architecture can address medium-size (n ∼ a few

100s) problems and is resource efficient as the number of floating-point units grows with O(n).

Additionally due to repeated matrix-vector multiplication, we show much higher throughput

compared to division and square root operations in direct methods.

81

4.6.3 Comparison with multi-core and GPU

Our multi-core and GPU implementations are based on the optimized BLAS libraries with two

limitations. First, the data between different BLAS routines is shared using off-chip memory.

Secondly, unlike FPGAs, there is no explicit cache blocking and the matrix is fetched in each

iteration. The runtime percentage of each part of the Lanczos Iteration is plotted in Figure 4.11

for different architectures. We take the runtime on single-core as the baseline. In the case

of an FPGA, matrix-vector multiplication (lz1) is computed as n dot products where each

new dot product is launched every clock cycle. Due to high on-chip memory bandwidth and

the streaming nature of the architecture, the overall design has much lower latency and high

throughput. We get a speed up of 7.6-25.9× (12.5× geo. mean) using the high on-chip memory

bandwidth and high throughput architecture for dot product. We additionally get a 1.04-1.22×
(1.14× geo. mean) using thread-level parallelism with a combined speed up of 8.8-27.3×
(13.4× geo. mean) for solving a single eigenvalue problem as shown in Figure 4.12(a). Using

pipeline parallelism we additionally get a speed up of 4.3-19.1× (7.19× geo. mean) and,

therefore deliver an overall speed up of 41-520× (103× geo. mean) when solving P independent

eigenvalue problems.

Although GPUs are highly efficient for dense linear algebra, we observe in Figure 4.11 that

 0

 50

 100

 150

 200

 250

single-core

m
ulti-core

G
PU

FPG
A

R
u

n
ti

m
e

P
er

ce
n

ta
g

e

lz1 (Matrix-Vector)
lz2
lz3
lz4
lz5 & lz6
lz7 & lz8

Figure 4.11: Runtime Breakdown (truss5).

the performance of GPU is even worse than the multi-core. This is due to medium-size data

sets (n ∼ a few 100s) for which the GPU exhibits a performance less than 1 GFLOPs for BLAS

1 (lz2 to lz8) and BLAS 2 (lz1) operations [11]. Additionally, we are using CuBLAS routines

for matrix-vector multiplication which does not cache the matrix in the shared memory or

register file of the GPU and therefore the matrix is fetched repeatedly from off-chip memory in

each iteration. When compared to our FPGA design, we get a speed up of 24.5-110.7× (49.4×
geo. mean) using high bandwidth on-chip memory and high throughput architecture for dot

82

 1

 3

 9

 27

 81

 243

 729

control1

control2

control4

control6

gpp124-1

theta3

theta4

theta6

truss5

S
p

ee
d

 U
p

13.4x

103x

multi-core
FPGAsingle
FPGAfull

(a) single-core as a baseline.

 1

 10

 100

 1000

control1

control2

control4

control6

gpp124-1

theta3

theta4

theta6

truss5

S
p

ee
d

 U
p

52x

408x

FPGASingle
FPGAFull

(b) GPU as a baseline.

Figure 4.12: Performance Comparison (’single’ is for 1 problem on FPGA, ’full’ is for P problems
on FPGA).

product. We additionally get 1.04-1.22× (1.14× geo. mean) using thread-level parallelism

with a combined speed up of 26.2-116x× (52.8× geo. mean) for solving a single eigenvalue

problem shown in Figure 4.12(b). Using pipeline parallelism we additionally get a speed up

of 4.3-19.1× (7.19× geo. mean) and, therefore deliver an overall speed up of 131-2220× (408×
geo. mean) when solving P independent eigenvalue problems.

4.6.4 Silicon Efficiency

The raw performance of our FPGA design is compared with that of the multi-core and GPU

implementations in Figure 4.13. We observe that FPGA shows better performance primarily

because we use explicit cache blocking and utilize high bandwidth on-chip memory. We show

that the sustained performance approaches peak performance of the architecture as we solve

multiple independent problems. We finally compare the silicon efficiency of all architectures as

a proportion of peak performance (see Table 4.1) in Figure 4.14. For the maximum matrix size,

the efficiency of the FPGA when solving single problem is approximately 7.79% whereas with P

problems it increases to 38.9% of the peak performance. The efficiency of multi-core is around

3.34% and that of GPU is 0.13% and their efficiency increases with the problem size.

4.7 Summary

We use large on-chip memory of FPGA for explicit cache blocking to load matrix once and

then re-use it for all Lanczos iterations to solve symmetric extremal eigenvalue problem. As

the Lanczos Iteration is memory-bound, we use high-bandwidth on-chip memories to saturate

deeply pipelined floating-point cores to demonstrate a sustained performance of 175 GFLOPs

with an overall silicon efficiency of 38%. In contrast, we show that the multi-core and GPU are

under-utilized for the medium-size data sets as the matrix is accessed from off-chip memory in

each iteration. As a result they can achieve an efficiency of 3.34% and 0.13% respectively. We

therefore highlight iterative numerical algorithms with high memory bandwidth requirements

but medium-size data sets as highly appropriate for FPGA acceleration.

83

 0.01

 0.1

 1

 10

 100

 32 64 96 128 160 192 224 256 288 320

G
F

L
O

P
s

Matrix Order (n)

multi-core
FPGAsingle
FPGA3

FPGA5
FPGAfull
GPU

Figure 4.13: Raw Performance Comparison (’single’ is for 1, ’full’ is for P problems).

0.01

0.1

1

5
10

45
100

 32 64 96 128 160 192 224 256 288 320

%
 P

e
a
k

 P
e
rf

o
rm

a
n

c
e

Matrix Order (n)

multi-core
FPGAsingle

FPGAfull
GPU

Figure 4.14: Efficiency Comparison (’single’ is for 1, ’full’ is for P problems).

84

5 Matrix Powers Kernel

In the previous chapter, we target small-to-medium size dense problems where the matrices are

fetched only once and can be re-used for r iterations. However, if the matrices are large and

can not be stored on-chip, they need to be fetched in each iteration from the off-chip memory.

As a result, performance is bounded from above by the off-chip memory bandwidth of the

modern computing platforms. While this is true for dense problems, for sparse problems, we

can trade communication with redundant computation by algorithmic transformation discussed

in Chapter 2. An important kernel in such a communication-avoiding approach is a matrix

powers kernel which replaces SpMV in iterative numerical algorithms as shown in Figure 5.1.

The key idea is to partition the matrix into blocks and performs SpMVs on blocks without

fetching the block again in the sequential case and performing redundant computation to avoid

communication with other processors in the parallel case. While k iterations of an iterative

numerical algorithm can be unrolled using this matrix powers kernel to provide Θ(k) reduction

in communication cost, the extent of this unrolling depends on the underlying architecture,

its memory model and the growth in redundant computation. In this chapter, we present a

systematic procedure to select this algorithmic parameter k which provides communication-

computation tradeoff on hardware accelerators like FPGA and GPU as shown in Figure 5.2.

We observe that in standard iterative solver (k equal to 1), the communication cost is higher on

FPGA as compared to GPU due to marked difference in off-chip memory bandwidth as shown

in Table 3.1 (see page 65). However, we see a unique value of k which trades communication with

redundant computation to reduce overall cost and that this value needs to be selected carefully

for each architecture. Additionally, we observe that unlike GPU, the computation cost does

not grow in FPGAs allowing larger values of k which leads to higher performance. We provide

predictive models to understand this tradeoff and show how careful selection of k can lead to

performance improvement which otherwise demands significant increase in memory bandwidth.

The main contributions of this paper are:

1. Communication optimization within the memory hierarchy of a single stream multipro-

cessor (SM) as well as between different SMs while mapping the matrix powers kernel to

a GPU. As a result of these optimizations, we show 1.9×−42.6× speedup over k SpMVs

from CUSP library [17] for a range of randomly generated banded matrices.

2. An architecture-aware matrix powers kernel that matches the strength of the FPGAs to

avoid redundant computation and a resource-constrained methodology to pick k for a

particular FPGA.

3. A unified predictive model of the matrix powers kernel for GPU and FPGA, which helps

85

4. For a range of problem sizes, a quantitative comparison of the matrix powers kernel on

FPGA shows 0.3×−3.2× and 1.7×−4.4× speedup over GPU for largest and smallest band

sizes respectively.

5.1 Algorithms for Matrix Powers Kernel

Although we provided necessary background about the matrix powers kernel in Chapter 2, we

discuss important algorithms here, which we will refere in the rest of this chapter. We specifically

target banded matrices, which naturally arise in numerous scientific computations like stencils

in partial differential equation (PDE) solvers [84] and semi-definite optimization problems [1].

k SpMVs

Given an n×n sparse matrix A with band size b, a dense vector x(0) of length n, the matrix

powers kernel is computed as

x(i) = Ax(i−1) 1 ≤ i ≤ k (5.1)

The computation in Equation (5.1) can be unrolled for k iterations as a graph as shown in Fig-

ure 5.3(b) for an example tri-diagonal matrix A (see details of the graph notation in Chapter

2). Each vertex of the graph represents vector entry x
(i)
j and there are n vertices for j = 0,

1,. . . , n− 1 entries for each level i = 0, 1,. . . , k. The vertices of new vector x(i) = Ax(i−1) can

be computed by multiplying the entries of the previous vector with the corresponding entries

of the matrix as shown by the edges. In order to parallelize, the graph can be partitioned into

Nq blocks where each block q can be mapped on a single processor. We can generate k vectors

using repeated SpMV, we need to synchronize after each step to get the corresponding entries

of the previous vector which are computed by the neighbouring processors as shown by white

vertices in Figure 5.3(b)(i). This frequent synchronization in k SpMVs leads to a latency-bound

problem in parallel architectures.

Parallel Matrix Powers Kernel

The synchronization in k SpMVs is avoided by the parallel matrix powers kernel which trades

communication with redundant computation. The key idea is to compute the dependency chain

for each partition q in order to compute the entries of the kth vector as shown by the bounded

box in Figure 5.3(b)(ii). The vertices which are required from the neighbouring processors are

fetched at once as shown by the white vertices in Figure 5.3(b)(ii). The redundant computation

is then performed at each step (dotted white vertices) in order to avoid communication with

neighbours. While this approach helps in avoiding communication, two factors are crucial for

optimal performance. First, it is desired to keep the surface to volume ratio (Redundant Flops
Useful Flops)

as low as possible by efficient partitioning of the matrix. Secondly, the value of k needs to be

picked carefully as redundant flops grow as O(k2b2) [33].

87

framework [32] is also proposed to map SpMV graph on FPGAs by exploiting high on-chip

memory bandwidth to perform computation in a data parallel fashion. As on-chip BRAMs are

limited on a particular FPGA, large matrices require multiple FPGAs which lead to communi-

cation problem as after each iteration, results need to be exchanged from processing elements

located in different FPGAs. Boland et al. [20] proposed an Integer Linear Programming (ILP)

framework to optimally utilize the on-chip BRAMs to buffer the largest possible symmetric

banded matrix on a single FPGA and re-use it for all iterations. However, their approach is

restricted to small matrix sizes (n = 8k with band size b = 20 on Virtex6-SX475T). In all cases,

if the matrix is large enough and does not fit on-chip, the performance is bounded by the off-

chip memory bandwidth of the FPGA. In this work, we present a hybrid matrix powers kernel

specifically for FPGAs for such matrices. Knowing that FPGAs are rich in on-chip communi-

cation between floating-point cores, we minimize redundant flops at the cost of synchronization

between floating-point cores at each step. We show that a relatively large value of k is possible

using this tight coupling between algorithm and architecture and this can lead to significant

performance improvement over GPU.

We perform a quantitative comparison of these parallel architectures and show which archi-

tecture is better for different problem and band sizes. We also highlight the performance limiting

factors and give insight into architectural improvements for next generation of these parallel

architectures.

5.3 Matrix Powers Kernel on a GPU

While mapping the matrix powers kernel on a GPU, we want to answer two important questions

(1) How to optimally utilize the current GPU memory subsystem and pick the algorithmic

parameter k to get the desired performance for a particular architecture? (2) How can current

GPU architecture be changed to enhance the performance of iterative solvers? We first present

the current GF100 GPU architecture and then discuss different optimization techniques that

lead to high throughput. We then present an analytical model to predict and understand the

performance of the matrix powers kernel on any GPU device (model parameters are obtained

using micro-benchmarks). We use the same model to select k for current GPU architectures

(see Section 5.6.1) and also make architectural projections to get a desired performance with

future devices (see Section 5.7).

5.3.1 GPU Architecture

We select the Nvidia GF100 variant C2050 GPU which is intended for high-performance numer-

ical computing [30] [96]. A simplified architectural description of the GPU is shown in Figure 5.4

highlighting memory hierarchy as well as capacity, bandwidth and latency of each memory.

The GPU comprises 14 streaming multiprocessors (SMs) each operating at 1.15 GHz. Each

SM has 32 floating-point cores capable of performing 1 single-precision flop/cycle reaching a

peak throughput of 1.03 TFLOPs for single-precision and 515 GFLOPs for double-precision.

Tasks are scheduled on GPU as thread blocks. Each thread block can run independently on SM

without any communication with other SMs during a single parallel task, e.g. each SM can

89

to perform k SpMVs with a performance of 34.8 GFLOPs. We now briefly discuss the three

possible GPU optimizations.

Table 5.1: Single-Precision Parallel Matrix Powers Kernel Parallel Mapping on C2050 GPU
(n =1M, b =9, k =8).

Global Shared Reg. GFLOPs Effic-
Memory Memory iency

k SpMVs [17] A, x(i) 34.8 3.3%

Matrix Powers A x(i) 63 6.12%
(Thread Blocking)

Matrix Powers A, x(i) 97.6 9.4%
(Thread Blocking +
Cache Blocking)

Matrix Powers x(i) A 123 11.9%
(Thread Blocking +
Reg. Blocking)

Thread Blocking (63 GFLOPs)

Each thread within the thread block is responsible for computing a single entry of the vector

x(i) from the entries of matrix A and vector x(i−1). We, therefore, only store NT = bR + k(b−
1) components of the vector x(i−1) within the shared memory of each SM. The entries from

neighbouring blocks are pre-fetched in order to avoid communication with other SMs. As the

entries of the matrix A are not modified and do not require inter-SM synchronization at each

level, we can access A from global memory.

Thread Blocking + Explicit Cache Blocking (97.6 GFLOPs)

In this case, in addition to thread blocking, we also use explicit cache blocking to store the

partition of matrix A into on-chip shared memory of each SM (see Listing 5.1). Using this

approach we not only avoid communication between different SMs but also with the global

memory as well. As a result, we see a significant performance improvement over k SpMVs.

Thread Blocking + Register Blocking (123 GFLOPs)

GPUs have an inverse memory hierarchy [96], i.e. registers have relatively large capacity as

compared to L1 cache/shared memory and L2 cache. Also registers have low latency (∼1 cycle)

compared to shared memory (∼27 cycles). To get high throughput, they have been recently used

to block matrices arising in small linear algebra problems with high arithmetic intensities [9].

In the matrix powers kernel, each matrix partition can be blocked within the registers of SM

(see Listing 5.2). We store the NT×b partition matrix in a row cyclic distributed fashion within

these registers, i.e. each thread can store a single row of length b. The vector partition is not

register-blocked as its entries need to be shared among different threads and is, therefore, kept

in the shared memory. We show the performance of these optimizations in Figure 5.5.

91

The matrix powers kernel with thread blocking and register blocking gives higher throughput

10

20

40

60

80

100

120

140

2 5 20 50 120 250 500 1000

G
F

L
O

P
s

Matrix Size (n x 1000)

k SpMVs
Matrix Powers (Thread Blocking)
Matrix Powers (Exp. Cache Blocking)
Matrix Powers (Register Blocking)

Figure 5.5: GPU Optimizations (b = 9, NT = 512, k = 8).

as we not only avoid communication within different SMs and within memory hierarchy of a

single SM but also utilize low latency and high bandwidth memories of GPU. We see more than

3.5× speedup over k SpMVs for large matrices and this speedup is even more pronounced for

small matrices with higher value of k (see Table 5.7).

5.3.4 Kernels

We show CUDA code for variants of the matrix powers kernel in Listing 5.1− 5.2. For the

parallel matrix powers kernel graph G shown in Figure 5.3, all partitions q = 1, 2, . . . , Nq run

the same kernel. The computation comprises two loops, an outer loop moving through k levels

in the graph and an inner loop performing dot product operation at each vertex using serial

reduction. The only difference in all these kernels is the memory layout for storing matrix and

vector partitions as highlighted in Listings 5.1− 5.2.

5.3.5 Modelling Performance

Mapping matrix powers kernel on GPU and selecting optimal k to trade communication with

computation is not obvious due to the complex GPU architecture. We characterize our discus-

sion using bandwidth and latency of entire GF100 memory hierarchy in order to understand

and predict the performance of matrix powers kernel on the GPU. To that end, we assume

data is either stored in global or shared memory and use two simple models to predict GPU

performance. Our model is based on the LogP model used for distributed architectures [28].

92

Listing 5.1: Matrix Powers Kernel
with cache-blocking.

{
i n t t i d = blockIdx . x∗bR + threadIdx . x ;

s h a r e d f l o a t A block sh [b∗NT] ;
f l o a t x b l o ck r e g [b] ;

s h a r e d f l o a t x sh [NT] ;
. .
load A sh(A,A block sh,tid,N,k) ;
load x sh(x,x sh,tid,N,k) ;

s ync th r ead s () ;
i n t row = t id − k ∗(b−1)/2;
f o r (i n t i =0; i<k ; i++)
{
l o ad x r e g (x sh , x b l o ck r e g) ;
sum=0;
#pragma un r o l l
f o r (i n t j =0; j<b ; j++)
{
sum+=A block sh[threadIdx.x+b*j]*x block reg[j] ;

}
. .
y [index+row] = sum ;
x sh [threadIdx . x] = sum ;

sync th r ead s () ;
index += N ;
}

}

Listing 5.2: Matrix Powers Kernel
with register-blocking.

{
i n t t i d = blockIdx . x∗bR + threadIdx . x ;
f l o a t A block reg [b∗NT] ;
f l o a t x b l o ck r e g [b] ;

s h a r e d f l o a t x sh [NT] ;
. .
load A reg(A,A block reg,tid,N,k) ;
load x sh(x,x sh,tid,N,k) ;

s ync th r ead s () ;
i n t row = t id − k ∗(b−1)/2;
f o r (i n t i =0; i<k ; i++)
{
l o ad x r e g (x sh , x b l o ck r e g) ;
sum=0;
#pragma un r o l l
f o r (i n t j =0; j<b ; j++)
{
sum+=A block reg[j]*x block reg[j] ;

}
. .
y [index+row] = sum ;
x sh [threadIdx . x] = sum ;

sync th r ead s () ;
index += N ;
}

}

The global and shared memory latency models (in cycles) are shown as

lglb = #msg × αglb +msize× βglb + flops× γ. (5.4)

lsh = #msg × αsh +msize× βsh + nsync× αsync + flops× γ. (5.5)

Like the LogP model, our models comprise three parameters α, β and γ. Overall runtime is the

sum of three factors, memory latency (αglb or αsh), inverse memory bandwidth (βglb or βsh) and

time per flop (γ). Additionally, the shared memory model also captures time required for thread

synchronizations (nsync×αsync). We estimate the model parameters for GF100 architecture

using micro-benchmarks [9] and summarize them in Table 5.2.

We estimate the performance of the matrix powers kernel shown in Listing 5.2. Each thread

within the thread block executes three phases.

1. Load : Load partition NT×b of matrix A with each thread loading a single row of length

b in its registers. Load partition NT×1 of vector x(0) in shared-memory with each thread

loading only a single element. We show the total cycles required in loading the partition

from the global memory in the first row of Table 5.3. In order to give intuition behind

the analytical expression, αglb is the latency of accessing the global memory, NT×b×4 is

the total number of bytes to be loaded, βglb/Pe is the inverse global memory bandwidth

allocated to a single SM, Freq is the operating frequency (1.15 GHz) of the SM. In this

way, we calculate the total number of cycles required to fetch the partition from the global

memory into the register file.

2. Compute: Load b components of x(i−1) parition from shared-memory in registers. Perform

93

dot product operation on vectors of length b involving a row of matrix A and entries of

vector x(i−1) loaded in registers.

3. Store: Store the result as an element of x(i) back in shared memory by overwriting the

location of x(i−1). Store the same result as an element of new vector x(i) in global memory.

Repeat Compute and Store phases for k steps.

Table 5.2: Model Parameters for GPU Performance.

C2050 C2075 K20

Specifications

Peak TFLOPs (single-precision) 1.03 1.03 3.95

Global memory clock (GHz) 3.0 3.0 5.2

Global memory bandwidth (GB/s) 144 144 250

Core clock rate (Freq) GHz 1.15 1.15 0.732

Number of SMs (Pe) 14 14 14

Number of cores per SM (Nc) 32 32 192

Parameter Estimation with Micro-benchmarks

Global memory 95 95 235
latency (αglb) cycles

Global memory 1
108

1
96.5

1
129

inverse bandwidth (βglb) s/GB

Shared memory 27 26 23
latency (αsh) cycles

Shared memory 1
880

1
898

1
864

inverse bandwidth (βsh) s/GB

Sync. Latency (αsync) cycles 154 114 53

FP Pipeline latency (γ) cycles 18 18 10

We show the communication and computation estimates of the matrix powers kernel for a

single thread block mapped on a single SM in Table 5.3. We use inverse bandwidth per SM

(βglb/Pe, βsh/Pe) for our estimates. We count floating-point multiply-add a single γ as GF100

has a dual-issue pipeline. We build separate models for global and shared memory accesses

Table 5.3: GPU Analytical Model for Single-Precision Matrix Powers Performance.

Phase Latency

lAglb2reg = αglb +
b×NT×Freq×4

βglb/Pe

Load lxglb2sh = αglb +
NT×Freq×4

βglb/Pe
+NT×Freq×4

βsh/Pe

+ αsync

lxsh2reg = αsh +
b×NT×Freq×4

βsh/Pe

Compute lcompute = b× γ
lcondition = 9γ

lxreg2sh = NT×Freq×4
βsh/Pe

+ αsync

Store lxreg2glb =
NT×Freq×4

βglb/Pe

Matrix Lq = lAglb2reg + lxglb2sh + k(lxsh2reg
Powers +lcompute + lcondition + lxreg2sh)

and then combine them to find out the latency Lq of a single thread block. We calculate total

94

cycles by plugging in the parameters from Table 5.2 and then find out overall runtime L by

taking into account total number of thread blocks (Nq), number of SMs (Pe) and the number

of thread blocks concurrently running per SM (we obtain this information using CUDA Visual

Profiler [70]). We compare the predicted performance with the actual measured results for a

range of band sizes on C2050 GPU as shown in Figure 5.6(a).

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64 128

G
F

L
O

P
s

k

Gmeasured (b = 3)
Gmodel (b = 3)
Gmeasured (b = 9)

Gmodel (b = 9)
Gmeasured (b = 27)
Gmodel (b = 27)

(a) Performance on C2050 for varying band sizes, b = 3 (ǫµ= 5.4%, ǫσ= 3.7%), b = 9
(ǫµ= 1.5%, ǫσ= 1.6%), b = 27 (ǫµ= 5.6%, ǫσ= 6.1%)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64

G
F

L
O

P
s

k

G
measured

 - C2075

G
model

 - C2075

G
measured

 - C2050

G
model

 - C2050

G
measured

 - K20

G
model

 - K20

(b) Performance on different GPU architectures for b = 9, C2050 (ǫµ= 1.5%, ǫσ= 1.6%),
C2075 (ǫµ = 13.8%, ǫσ = 5.3%) , and K20 (ǫµ = 7.5%, ǫσ = 4.2%)

Figure 5.6: Matrix powers kernel performance (GFLOPs vs. k), modelled vs. measured for n =
1M.

95

In order to indicate the accuracy of our model, we also show the mean (ǫµ) and standard devi-

ation (ǫσ) of error (absolute difference in measured and modelled performance) as a percentage

of measured performance for each band size. Our model does not capture register spilling, i.e.

when the data does not fit in GPU registers, the data is stored to local memory which is a part

of the global memory. Each thread can have a maximum of 64 registers which are enough to

store a single row of the matrix, the length of which is equal to the band size. The band sizes

that arise in all practical applications can fit in these registers and therefore, there is no register

spilling in our implementation. To ensure the general applicability of the performance model,

we apply it on other GPUs as well like the GF100 variant C2075 GPU and the newer Kepler

based K20 GPU as shown in Figure 5.6(b).

5.3.6 Performance Optimization

Having an accurate model to predict performance on the GPU in terms of the problem parame-

ters (n, b), the architectural parameters (γ,αglb,βglb,αsh,βsh,P) and the algorithmic parameters

(k, bR), we can solve the following optimization problem to select the algorithmic parameters.

min
k,bR

L(n, b, γ, αglb, βglb, αsh, βsh, Pe, k, bR)

Freq

subject to

k ≤ 2
bR

b− 1
(5.6)

Referring to (5.6), the constraint ensures only nearest neighbour communication in the matrix

powers kernel as shown in Figure 5.3. We carry out sensitivity analysis of GPU performance with

respect to the algorithmic parameters with constant architectural parameters in Section 5.6.1.

We also highlight in Section 5.7 that by carefully picking the algorithmic parameters we can

achieve higher performance over k SpMVs that otherwise requires significant architectural mod-

ifications in terms of global memory bandwidth and latency.

5.4 Mapping Matrix Powers Kernel to FPGA

The potential to use FPGAs in high-performance computing arises from the fact that computer

architecture can be specialized to accelerate a particular task. Table 3.1 lists the important

architectural features of FPGAs in terms of raw floating-point performance, on-chip memory

capacity and on-chip as well as off-chip memory bandwidth. Referring to Table 3.1, although

the off-chip memory bandwidth and peak floating-point performance is 5× and 2.3× lower

than that of the same generation GPU device, it is the on-chip capacity and on-chip memory

bandwidth coupled with rich communication-fabric which make FPGAs suitable for accelerating

iterative solvers. We now introduce the proposed hybrid matrix powers kernel which exploits

these features to get high throughput. In this regard, we also present a resource-constrained

methodology for selecting an optimal k for a target FPGA device.

96

Table 5.4: Hybrid Matrix Powers Kernel Mapping on Virtex6-SX475T FPGA (n =1M, b =9,
k =10).

Off-Chip On-Chip GFLOPs Efficiency
Memory Memory

k SpMVs A, x(i) 14.21 3.1%

k SpMVs A x(i) 15.68 3.4%

Hybrid Matrix A,x(i) 85 18.8%
Powers

5.4.2 Custom Hardware Design

We organize the processing elements (PEs) as a linear array which work in a SIMD fashion

to perform k matrix-vector multiplications for sub-blocks in parallel. The distributed on-chip

memory of the FPGA provides the necessary bandwidth to saturate these PEs. Unlike the

GPU, where the SMs need to perform redundant computation in order to avoid communication

through high-latency global shared memory, the PEs within FPGA avoid redundant computa-

tion by exchanging dependencies using low-latency FIFOs.

Data-path

Each vertex in the graph involves a dot product operation on vectors of length b (see Figure 5.7).

In order to get high throughput, we use a fully-parallel multiplier array followed by an adder

reduction-tree as shown in Figure 5.8. Although the design has high throughput, it has con-

siderable latency as well due to deeply pipelined floating-point adders and multipliers [2]. We

exploit the pipeline depth to feed a new dot product operation in each clock cycle in order to

compute the next vertex. In this way, we keep the data-path busy all the time. The latency of

the data-path for computing all the vertices for a single sub-block at any given level is given by

lcompute = b+ bR − 1 + γA⌈log2b⌉+ γM (5.7)

Referring to Equation (5.7), b cycles are required to load the shift register before the computation

begins, bR−1 cycles are used to compute all the remaining vertices within the sub-block except

the first one which takes γA⌈log2b⌉+γM cycles. Here, γA and γM are the latencies of single-

precision floating-point adder and multiplier respectively and ⌈log2 b⌉ is the depth of the adder

reduction-tree.

Memory Subsystem

The input matrix A is partitioned into Nq blocks such that each block fits in the on-chip

memory. Each block is further partitioned into sub-blocks. Each sub-block is stored as a b-bank

Matrix Memory of depth bR and provides the necessary bandwidth to saturate the PE. V ector

Memory is used to store x(i) to x(i+k) for that particular block. There are two left and right

FIFOs which are used to receive remote data for computing vertices with remote dependencies.

99

The shift register is used to hold b components of vectors x(i) at any given instant to compute

dot product on each vertex. The memory required by each PE in terms of BRAMs (FPGA

on-chip memories each 18kbit) is given by

Matrix Memory = b

⌈

32bR
18× 1024

⌉

(5.8)

Vector Memory =

⌈

32bRk

18× 1024

⌉

(5.9)

FIFOs = 2

⌈

32(b− 1)

2× 18× 1024

⌉

(5.10)

Control Unit

Each PE has its own light-weight control unit which performs address generation for the Matrix

Memory and the Vector Memory. It controls the read and write from the left and right FIFO

as well as it manages the loading of shift register in order to compute local vertices or vertices

with remote dependencies.

5.4.3 Modelling Performance

In order to understand the performance of matrix powers kernel on FPGA, we propose an

analytical model for FPGA which comprises both computation as well as communication cost

similar to GPU shown in Section 5.3.5. We show the parameters of the model in Table 5.5.

Table 5.5: Model Parameters for FPGA.

Parameters Virtex6-SX475T

Global memory 6
latency (αglb) cycles

Global memory 1
34 [87]

inverse bandwidth (βglb) s/GB

FP Add latency (γA) cycles 11 [2]

FP Mult latency (γM) cycles 8 [2]

FP Operating Frequency (Freq) MHz 258

No. of FP Adders Pe(b−1)
No. of FP Multipliers Peb

The model is exact due to the highly predictive nature of FPGAs as a computing platform. We

validate our model (Equation 5.7) using measurements from Modelsim in Figure 5.9. There is

six cycles difference between the modelled and the measured cycles and these cycles are actually

taken by the finite state machine within the control unit of our architecture.

As FPGA has relatively larger on-chip memory compared to GPU, we intend to store the k

vectors on-chip to be utilized by subsequent modules in communication-avoiding iterative solver.

There are three stages in the matrix powers kernel on FPGA, loading the block, computing the

sub-blocks in parallel and an optional stage for storing the k vectors back to the off-chip memory

if they do not fit on-chip.

100

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

3 7 9 13 27

C
y
cl

es

Band Size (b)

t
measured

t
model

Figure 5.9: FPGA performance, modelled vs. measured (Modelsim), here bR is equal to 128.

1. Load : Load partition bR×b of matrix A and bR components of the vector x(i) for each PE.

2. Compute: Compute bR components of the vector x(i+1) in a pipelined fashion.

3. Store: Store the result back in the off-chip memory. Repeat Compute and Store phases

for k steps.

We show the detailed models for each of these three stages followed by the latency of a single

block in Table 5.6.

Table 5.6: FPGA Analytical Model for Single-Precision Matrix Powers Performance.

Phase Latency

Load lAglb2local = αglb +
b×Pe×bR×Freq×4

βglb

lxglb2local = αglb +
Pe×bR×Freq×4

βglb

Compute lcompute = b+ bR − 1 + γA⌈log2b⌉+ γM)

Store lxlocal2glb =
Pe×bR×Freq×4

βglb

Matrix Lq = lAglb2local + lxglb2local + k(lcompute

Powers +lxlocal2glb)

The latency Lq of a single block is the summation of the latency of these three stages. The

overall latency L is then calculated by multiplying Lq with total number of blocks Nq.

5.4.4 Resource-Constrained Methodology

Like GPU, the performance of the matrix powers kernel depends on the problem parameters

(n,b), the architectural parameters (Pe,γA,γM ,αglb,βglb) and the algorithmic parameters (k,bR).

We find the maximum number P of PEs that can be synthesized within the FPGA device for

the given band size b (the number of floating-point units only depends on this parameter shown

101

in Table 5.5). We calculate the memory bandwidth required for these Pe PEs (2b words per

PE), partition the available on-chip memory in bR×b blocks and assign these blocks to Pe PEs.

We solve the following constrained optimization problem to pick k on a particular FPGA for a

given problem.

min
k,bR

L(n, b, γA, γM , αglb, βglb, Pe, k, bR)

Freq

subject to

R(Pe) ≤ FPGALogic

M(Pe, bR, k) ≤ FPGABRAMs

k ≤ 2
bR

b− 1
(5.11)

Referring to Equation (5.11), our objective is to minimize the runtime based on constraints on

FPGA resources. M(Pe, k, bR) is the number of BRAMs (FPGA on-chip memories) required and

R(Pe) is a vector containing the number of resources in terms of LUTs, FFs and DSP48Es that

are used in floating-point adders and multipliers [2]. The last constraint ensures only nearest

neighbour communication in the matrix powers kernel as shown in Figure 5.7.

5.5 Evaluation Methodology

We use the same generation (40nm) of GPU (NVidia C2050) and FPGA (Virtex6-SX475T)

devices as mentioned in Table 3.1. We use CUDA 5.0 for compiling CUDA kernels and also

use cusp-v0.3.1 [17] which is a sparse library optimized for GPUs. The spmv dia kernel

routine from this library is used for computing k SpMVs and is used as a baseline for GPU. For

FPGA, we implement a set of 3 PEs alongwith their memory subsystem and their FIFO inter-

connections. We use Xilinx IP Core [2] for BRAMs, adders and multipliers. We synthesize as

well as place and route the circuit using Xilinx ISE 13.4. We actually measure the total number

of DSP48Es, FFs and LUTs required for a single PE and then estimate the total number of PEs

that can be synthesized on a given FPGA device. We actually measure the latency of computing

a single block using a single PE and then estimate the total number of cycles required for the

whole matrix powers kernel when all PEs are working in parallel. We use a range of randomly

generated matrices with varying band sizes in order to evaluate the performance of matrix

powers kernel on GPU and FPGA.

5.6 Results

As FPGAs and GPU are radically different computing platforms, we first analyze how the

communication-avoiding approach of the matrix powers kernel can enhance their individual

performance over k SpMVs in standard iterative solvers. We then compare the matrix powers

kernel with optimal k for both GPU and FPGA and show which architecture is better in different

problem and band sizes.

102

5.6.1 Sensitivity to Algorithmic Parameters

We use the formulations in (5.6) and (5.11) to select the algorithmic parameters for minimiz-

ing the runtime on GPU and FPGAs respectively. There are two algorithmic parameters, the

partition size bR and the unroll factor k. While both parameters affect surface to volume ratio,

the impact of the partition size bR is marginal compared to the unroll factor k as shown in

Figure 5.10.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 32 64

G
F

L
O

P
s

k

b
R
 with N

T
 = 256

b
R
 with N

T
 = 512

b
R
 with N

T
 = 1024

Figure 5.10: Algorithmic Sensitivity− GPU performance as a function of algorithmic parameter
k for different values of bR for a matrix with band size b = 9 and n = 1M.

In order to see how the performance of GPU and FPGA varies with k, we take a problem

size with n equal to 1×106 and show both the communication and computation costs for band

size equal to 3 and 9 in Figure 5.11 and for band size equal to 27 in Figure 5.2. We observe

that in case of GPU, the optimal value of k decreases as we increase the band size whereas in

case of FPGA, it shows the opposite trend. After a certain value of k, both computation and

communication costs dominate on GPU. Using the performance model, we further explore what

limits the maximum value of k and hence the maximum performance. We separately measure

both computation as well as communication costs. The communication cost involves both global

as well as shared memory accesses. We use time
flop as the metric to measure these cost factors and

show them in Figure 5.12(a) and Figure 5.12(b) for band size equal to 9 and 27 respectively.

We observe that as we increase the value of k, the global communication cost decreases whereas

the computation as well as the shared memory communication cost starts increasing until there

is a point which minimizes the overall cost. The computation cost increases because of O(k2b2)

growth in redundant operations and shared memory communication increases as for each thread

103

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128 256 512

T
im

e/
F

lo
p

 (
p

s)

k

tcomp - FPGA
tcomm- FPGA
ttotal - FPGA
tcomp - GPU
tcomm- GPU
ttotal - GPU

(a) Time/Flop vs. k, b = 3)

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128 256 512

T
im

e/
F

lo
p

 (
p

s)

k

tcomp - FPGA
tcomm- FPGA
ttotal - FPGA
tcomp - GPU
tcomm- GPU
ttotal - GPU

(b) Time/Flop vs. k, b = 9 (n =1M)

Figure 5.11: Algorithmic Sensitivity for FPGA and GPU (n = 1M).

we need to load b components of the vector from shared memory and we have to access them for

k iterations. Both of these costs dominate for large band sizes and hence we see smaller values

of k as shown in Figure 5.12(b).

In case of FPGA, the optimal value of k increases with increasing band size. The communica-

tion cost decreases with increasing value of k for all band sizes until it flattens as the vectors can

no more be stored on-chip and they have to be stored back. For large band sizes, the computa-

104

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16 32

T
im

e/
F

lo
p

 (
p

s)

k

tglbcomm
tshcomm
tcomp
ttotal

(a) Time/Flop vs. k, b = 9 (n = 1M)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16

T
im

e/
F

lo
p

 (
p

s)

k

tglbcomm
tshcomm
tcomp
ttotal

(b) Time/Flop vs. k, b = 27 (n = 1M)

Figure 5.12: Analyzing performance limiting factors of matrix powers kernel on C2050 GPU.

tion to communication ratio is large and these vectors can be stored in an overlapped fashion.

This allows large values of k as shown in Figure 5.2 and Figure 5.11. As a result of careful

selection of the unroll factor k on both GPU and FPGA, we see a significant increase in the

silicon efficiency of these architectures as shown in Figure 5.13. We also observe that FPGAs

have much better silicon efficiency as compared to GPU because of the relatively large values

of k as shown in Table 5.7.

105

0.25

0.5

1

2

5

10

20

40

100

2 5 20 50 120 250 500 1000

E
ff

ic
ie

n
cy

 (
P

er
ce

n
ta

g
e)

Matrix Size (n x 1000)

k = 1 GPU
Optimal k GPU

k = 1 FPGA
Optimal k FPGA

Figure 5.13: Efficiency of FPGA and GPU as a percentage of peak single-precision floating-point
performance (b = 9).

Table 5.7: Matrix powers kernel performance comparison (Range is for n =2k − 1M).

Band GPU FPGA FPGA vs. GPU
Size k Range Efficiency(%) k Range Efficiency(%) SpeedUp

k =1 Optimal k k =1 Optimal k

3 160 − 32 0.04 − 2.6 2 − 11.6 354 − 16 2.8 − 3.3 15.1 − 8.8 3.2× − 0.3×
7 58 − 16 0.1 − 3.2 2.3 − 10.5 436 − 28 3.0 − 3.3 19.8 − 16.1 3.7× − 0.7×
9 43 − 8 0.11 − 3.3 2.4 − 11.9 458 − 12 3.0 − 3.3 19.6 − 18.6 3.5× − 0.7×
13 30 − 16 0.2 − 3.5 2.7 − 9.1 466 − 21 3.0 − 3.3 23.1 − 22.7 3.6× − 1.1×
27 10 − 5 0.3 − 3.7 2.6 − 7.4 481 − 28 3.1 − 3.3 27.3 − 29.9 4.4× − 1.7×

5.6.2 Performance Comparison

Although FPGAs have better silicon efficiency than GPU as a result of careful selection of k,

to compare these architectures in terms of raw performance for a range of problem and band

sizes, we see three interesting scenarios in Figure 5.14.

Small Problem Sizes (n ≤ 20K)

In this case, across all band sizes, due to small matrix size, k vectors can also be stored in the on-

chip memory of the FPGA with k having large values. Since there is no off-chip communication

involved except loading the matrix once, therefore, the problem remains compute-bound leading

to high throughput. On the other hand, with GPU, the value of k decreases with increasing

band sizes due to increase in redundant operations. As a result, we see up to 4.4× speedup over

GPU in this region due to the large on-chip capacity and zero redundant operations in FPGA.

106

Large Problem Sizes (n ≥ 20K), Small Band Sizes (b ≤ 9)

For large problem sizes and small band sizes, GPU performs slightly better than FPGA since

the vectors spill into off-chip memory in case of FPGA and due to its relatively low off-chip

memory bandwidth, the problem becomes communication-bound. On the other hand, GPU has

higher off-chip bandwidth and as a result we see up to ∼3× speedup.

Large Problem Sizes(n ≥ 20K), Large Band Sizes (b > 9)

In this region, as the band size increases, number of redundant operations grow rapidly which

constrain GPU performance and as a result we see very small values of k. On the other hand, as

the computation and communication (storing the vectors) ratio is high , the problem remains

compute-bound as vectors can be stored in an overlapped fashion. As a result, FPGAs perform

better and we get up to 1.7× speedup over GPU.

5.7 Architectural Insight

Since we have an accurate predictive model for GPU and FPGA, we can answer the following

relevant questions

• How to optimally change the architectural parameters to get a desired performance?

• How we can achieve the same performance for a fixed architecture by only changing the

algorithmic parameters?

5.7.1 Sensitivity to GPU Architectural Parameters

We solve the optimization problem in (5.6) using a steepest ascent method. The steepest ascent

curve shows different points of performance enhancement and the corresponding architectural

parameters as shown in Figure 5.15. We show that our optimization vector (αglb, βglb,αsh,βsh) for

a hypothetical GPU should be scaled as (∼ 1
10 ,∼10, 1

13 ,1.23) in order to get a 3.5× speedup over

the same problem running on C2050 GPU. However, using our predictive model and measured

results, we have already shown in Figure 5.6(a) that same performance can be obtained by

careful selection of k without changing the architecture.

5.7.2 Sensitivity to FPGA Architectural Parameters

We show the sensitivity of the FPGA performance with respect to off-chip memory bandwidth

in Figure 5.16 for two cases. Firstly, when we have fixed algorithm with k =1 and second with

optimal value of k. We observe that by carefully picking k we can get a 5.6× performance for

a Virtex6-SX475T FPGA. In order to achieve similar performance, k =1 curve shows that off-

chip memory bandwidth needs to be scaled by 8.6×. In case we can not tolerate such significant

modifications in architecture, a tight algorithm-architecture interaction is necessary to accelerate

such kind of communication-bound problems.

107

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

160
160

77
56

32
32

32 32

354

139

35

14

17 16 17 16

GPU Optimal k
FPGA Optimal k

(a) Band Size b = 3

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

43
40

19
19

16 16 8 8

458

184
47

14

17 19 15 12

GPU Optimal k
FPGA Optimal k

(b) Band Size b = 9

20

40

60

80

10

120

140

160

180

2K 5K 20K
50K

120K
250K

0.5M
1M

G
F

L
O

P
s

10
9

8
6 6 6 6 5

481

193

26 45 30 29 28 28

GPU Optimal k
FPGA Optimal k

(c) Band Size b = 27

Figure 5.14: Matrix Powers Performance Comparison vs. Matrix Size. The optimal values of k
are mentioned on the top of the bar for both FPGA and GPU.

122

52

70

87

104

122

52

70

87

104

Shared Memory Bandwidth (GB/s)

(10,979,2,1101,3.5x)
o

122

87

70

52

104

(10,685,2,974,3x)
o

(91,325,23,902,2x)

(100,110,27,894,1x)

o

 o

G
lo

b
a

l
M

e
m

o
ry

 B
a

n
d

w
id

th
 (

G
B

/s
)

900 1000 1100 1200 1300 1400

200

400

600

800

1000

1200

1400

60

70

80

90

100

110

120

Figure 5.15: Architectural Sensitivity− GPU performance contours in GFLOPs as a function
of global memory bandwidth (βglb) and shared memory bandwidth (βsh) for band
size b = 9 and n = 1M. Specific points (in red) on the steepest ascent curve (in
black) are shown representing (αglb,βglb,αsh,βsh,

Lbase

Lpred
) where Lbase is the perfor-

mance obtained on C2050 GPU. αglb and αsh are in cycles whereas βglb and βsh
are in GB/s.

108

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200

Off−Chip Memory Bandwidth (GB/s)

G
F

L
O

P
s

k = 10

k = 1

Figure 5.16: Architectural Sensitivity− FPGA performance in GFLOPs as a function of off-chip
memory bandwidth (βglb) for band size b = 9 and n = 1M. The starting point of the
curves is a Virtex6-SX475T architecture with an off-chip bandwidth of 34 GB/s.

5.8 Summary

Trading communication with computation increases the silicon efficiency of hardware accel-

erators like FPGAs and GPU for accelerating communication-bound sparse iterative solver.

Although unrolling k iterations using the matrix powers kernel provides significant performance

improvement compared to standard k SpMVs on a GPU, the performance is constrained due to

quadratic growth in redundant computations and increase in shared memory communication.

Our proposed hybrid matrix powers kernel for FPGA exploits the architectural features of this

radically different platform to minimize redundant computations. This allows us large value of

k and hence superior silicon efficiency compared to GPU. For a range of randomly generated

banded matrices, we demonstrate 0.3×−3.2× and 1.7×−4.4× speedup over GPU for small and

large band sizes respectively. Our architectural insight shows a tight algorithm-architecture in-

teraction can provide similar performance which otherwise requires significant enhancements in

memory bandwidth.

109

6 Tall-Skinny QR Factorization

In the previous chapter, we introduce the matrix powers kernel where we fetch the matrix once

and generate k vectors in one shot. This provides a k times reduction in the communication

cost which in turn increases the silicon efficiency in accelerating the iterative numerical algo-

rithms. However, this reduction in communication is only possible at the expense of redundant

computation. One such computation is the QR factorization of a tall-skinny matrix used for

orthogonalization of these k vectors, a step necessary for the convergence of the communication-

avoiding variant of the iterative numerical algorithm. QR factorization is a fundamental problem

in linear algebra where anm×nmatrix B is factorized into anm×m orthogonal matrix Q and an

m×n upper triangular matrix R [39]. Of particular interest is the QR factorization of tall-skinny

matrices where m≫n and the aspect ratio can be 5 to 1, 100 to 1 or in some cases even 100,000

to 1. Matrices with such extreme aspect ratios not only arise in communication-avoiding itera-

tive numerical algorithms as shown in Figure 6.1 but they also exist naturally in many practical

applications of QR factorization. These include least squares data fitting [19], stationary video

background subtraction [8] and block iterative methods [39] used for solving linear systems and

eigenvalue problems. These applications demand high-performance tall-skinny QR factorization.

Subtracting the stationary video background from a 10-second surveillance video, for example,

requires over a teraflop of computation [8].

Traditionally, in high performance linear algebra libraries like LAPACK and Intel MKL, QR

factorization is performed using Block Householder QR [83]. Block Householder QR comprises

two kernels, a communication-bound panel factorization with dominant matrix-vector multi-

plications followed by a compute-bound trailing matrix update with dominant matrix-matrix

multiplications. While most of the time is spent in trailing matrix update for square matrices,

it is the sequential panel factorization which dominates in case of extremely tall-skinny matri-

ces. Recently, Demmel et al. [33] proposed Tall-Skinny QR (TSQR), a communication-avoiding

algorithm for tall-skinny matrices which parallelizes the panel factorization by decomposing it

into tiles, performing local QR factorization on tiles using Householder QR and then merging

the results (see Section 6.1.1). The key idea is to do less communication at the cost of more

computations because of the ever increasing gap between advancements in compute (GFLOPs)

and communication (bandwidth and latency) capabilities of modern architectures.

In this chapter, we present a custom architecture for TSQR which bridges the performance

gap that still exists between the parallel potential available in TSQR and that which has been

exploited by mapping on variety of parallel architectures like multi-cores [44], GPUs [8] and

FPGAs [88]. In order to motivate, we show the performance scaling trends for QR factorization

as a function of matrix width in Figure 6.2. We observe that as the matrix gets skinny, the

proposed architecture clearly outperforms the existing implementations and the performance

improvement is even more pronounced for extremely tall-skinny matrices as shown in Figure 6.3.

110

10

20

40

60

80

100

120

6 12 25 50 100 200 400 800 1600 3200 6400

G
F

L
O

P
s

Number of Columns (k)

FPGA
is better

GPU
is better

Multi-Core
GPU

FPGA (Tai et.al.)
FPGA (Proposed)

Figure 6.2: Performance Scaling Trends for double-precision QR Factorization (No. of
rows n = 6400).

10

20

40

60

80

90

200 400 800 1600 3200 6400 12000

G
F

L
O

P
s

Number of Rows (n)

Tall-Skinny
Matrices

Multi-Core
GPU

FPGA (Tai et.al.)
FPGA (Proposed)

Figure 6.3: Performance Scaling Trends for double-precision QR Factorization (No. of
columns k = 51).

6.1 Background

6.1.1 Tall-Skinny QR

The Tall-Skinny QR (TSQR) factorizes the matrix in a divide-and-conquer fashion with optimal

communication between processing elements [33]. It comprises a local QR stage followed by a

merge stage as shown in Algorithm 14. In the local QR stage, the input matrix Qi∈ R
n×k is

divided into small tiles each of size bR × k, where bR is the number of rows in the tile (bR =

2k for binary tree) and there are Ntiles = ⌈ n
bR
⌉ tiles in total. These tiles may then be factorized

112

Algorithm 14 Tall-Skinny QR

Require: A matrix Qi ∈ R
n × k decomposed into Ntiles tiles.

– local QR stage –
for i = 0 to Ntiles-1 do

Bi = Qi(i× bR : (i+ 1)× bR)
[Vi,0,ti,0 Ri,0] := Householder QR(Bi)

end for

– merge stage binary tree –
for j = 1 to log2(Ntiles) do

p := 0
q := 0
while p < Ntiles

2j−1 do
[Vq,j ,tq,j Rq,j] := Householder QR([Rp,j−1; Rp+1,j−1])
p := p + 2
q := q + 1

end while
end for
return The upper triangular matrix R ∈ R

k × k and intermediate V matrices and t vectors
which can be combined to find the final Q matrix.

QR [39]. We pick Householder QR due to its high numerical stability [33].

6.1.2 Householder QR

In Householder QR, the matrix B ∈ R
n×k is factorized as R = Qk···Q2Q1B where Q =

Q−1
1 ···Q−1

k−1Q
−1
k and Qi =

(

Ii−1 0

0 Hi

)

. The matrixHi is the Householder transformation matrix

and is computed as Hi = Ii − τiviv
T
i where vi is called the Householder reflector for column

i having length n−i−1. The computational complexity of Householder QR is O(nk2) and is

primarily dominated by BLAS Level 1 and 2 operations as shown in Algorithm 15.

6.2 Related Work

We survey recent work on tall-skinny QR factorization on parallel architectures like multi-

cores [44], GPUs [8] and FPGAs [88]. While the performance of multi-cores is good for square

matrices (90 GFLOPs with 58.8% efficiency), it decreases significantly for tall-skinny matrices

(2 GFLOPs with 1.2% efficiency). This is because of the dominant matrix-vector multiplications

in Householder QR (inner loop of Algorithm 15) which are less efficient on multi-cores due to

low memory bandwidth. We observe 7× performance improvement with GPU for tall-skinny

matrices because they fine-tuned the matrix-vector multiplication by keeping the matrix inside

the register file. However, with a limited number of registers per multiprocessor inside GPU,

there are fewer threads to saturate the floating-point units. Additionally, the intermediate re-

sults are merged using global memory leading to high communication latency. We therefore see

an extremely low efficiency for tall-skinny matrices, e.g. 2.8% efficiency on Nvidia C2050 for

114

Algorithm 15 Householder QR [39]

– Notations –
– C(i:bR, j) represents a column vector starting from row i to row bR –
– xi represents i

th column vector –
– xi(l) represents element l in vector xi –
– ddot(x, y, bR) represents x

Ty for vectors having length bR –
– axpy(α, x, y, bR) represents y← αx + y with x, y of length bR –

Require: A matrix C ∈ R
bR×k

for i = 1 to k − 1 do
– Generate Householder reflector –
xi := C(i : bR, i) (hqr1)
d1 := ddot(xi, xi, bR − i− 1) (hqr2)
d2 :=

√
d1 = ‖xi‖2 (hqr3)

vi := xi (hqr4)
vi(1) := xi(1) + sign(xi(1))d2 (hqr5)
d3 := ddot(vi, vi, bR − i− 1) (hqr6)
τi :=

−2
d3

(hqr7)

– Update trailing columns of C –
for j = i to k do

yj := C(i : bR, j) (hqr8)
d4 := ddot(yj , vi, bR − i− 1) (hqr9)
d5 := τid4 (hqr10)
y
′

j := axpy(d5, vi, yj , bR − i− 1) (hqr11)

C(j : bR, j) : = y
′

j (hqr12)
end for

end for
return The upper triangular part of C containing the matrix R ∈ R

k×k and matrix V ∈
R
bR×k where individual columns are indexed vi and a vector t ∈ R

k×1 containing τi values.

6400×51 matrix. We discuss this in more detail in Section 6.5.2. We observe low performance

with previous FPGA-based QR factorization [88] as the architecture is optimized for large

square matrices. Table 6.1 summarizes the performance of different implementations with the

year, method, GFLOPs and the efficiency for square and tall-skinny matrices. We use 6400×6400
as the square matrix in order to compare against the results reported in [44] and 6400×51 as

the tall-skinny matrix since 51 is the maximum number of columns in our design as discussed

in Section 6.4.

115

Table 6.1: Comparison of QR Factorization (double-precision).
(Square: 6400×6400, Tall-Skinny (TS): 6400×51, FPGA clock frequency is 315 MHz
for our design whereas clock frequency used for peak GFLOPs is not reported in [87]).

Ref. Year Method Device Matrix GFLOPs Efficiency
Structure (% Peak)

[8] 2010 CAQR Nvidia Square 104.7 20.3%
C2050 TS 14.8 2.8%

[44] 2010 Tile Intel Square 90 58.8%
CAQR E7340 TS 2.0 1.2%

[88] 2011 Tile Virtex-6 Square 24 11%
CAQR LX760 TS 12 7%

Our 2012 TSQR Virtex-6 TS 62 36%
Work SX475T

6.3 Proposed Architecture

6.3.1 Parallelism

Coarse-Grain Parallelism in TSQR

In TSQR, tiles in the local QR stage and within each merge stage can be factorized in parallel

as shown in Figure 6.4.

Fine-Grain Parallelism in Householder QR

We show the data-flow graph (DFG) of Algorithm 15 in Figure 6.5. From the DFG, we observe

that the main computationally extensive parts are the BLAS Level 1 ddot operations, i.e.

dot products xTi xi (hqr2), vTi vi (hqr6) and yTj vi (hqr9) where i≤j≤ k. ddot operation has

a sequential latency of O(bR) but it can be implemented as a tree-reduction circuit with a

O(log bR) latency. Additionally, the inner loop of Algorithm 15 can be fully unrolled to compute

yTj vi (hqr9) in parallel for different values of j.

There is another BLAS Level 1 operation axpy, i.e. multiplication of vector by a scalar

followed by a vector addition operation (hqr11). axpy has a sequential latency of O(bR) but

since it is a data-parallel operation it can be fully unrolled to complete with O(1) latency.

6.3.2 Work vs. Critical Latency

We now explore the gap between the parallelism that is available and the parallelism that can

be exploited with limited resources. The latency of the critical path of fully-parallel TSQR is

given by Equation (6.1) and (6.2).

lTSQR = (⌈log2Ntiles⌉+ 1)lhqr = (⌈log2
n

2k
⌉+ 1)lhqr (6.1)

lhqr = (k− 1)(c1⌈log2k⌉+ c2). (6.2)

116

for a 6400×51 matrix and this gap increases with the increase in the height of the matrix. We

also plot the proposed latency and show that it approaches critical latency of the fully-parallel

implementation. We now discuss the parallel architecture which achieves the proposed latency.

6.3.3 Parallel Architecture for Householder QR

Before introducing our proposed design, we briefly survey a few architectures already presented

for Householder QR. A systolic architecture is introduced in [59] for QR factorization in real-

time signal processing applications having very small matrices (n ∼ a few 10s). Recently, Tai

et.al. [88] presented an architecture comprising linear array of processing elements (PEs) for

the Householder QR targeting large square matrices. Each PE is responsible for computing an

iteration of the outer loop in Algorithm 15. Starting from the first column, the first PE of the

linear array computes the Householder reflector and then performs the trailing update on the

second column. Meanwhile, the first PE is performing the trailing update on the rest of the

columns, the second column is then transferred to the second PE for repeating the same calcu-

lations. Hence, this architecture only exploits fine-grain parallelism within a single tile without

paying attention to the coarse-grain parallelism as discussed in Section 6.3.1. Our architecture

is novel in the sense that it exploits both coarse-grain as well as fine-grain parallelism. We now

discuss how we exploit the fine-grain parallelism in Householder QR and leave the coarse-grain

parallelism until Section 6.3.4.

The computational complexity of Householder QR is O(bRk
2) with O(bRk) memory opera-

tions for a bR×k input matrix. We design our architecture to exploit this arithmetic intensity.

As identified in Section 6.3.1, there are two main computational blocks in Householder QR,

i.e. ddot and axpy. We take advantage of high on-chip memory bandwidth of the FPGA and

use a deeply-pipelined tree-reduction circuit for ddot which is capable of computing a new dot

product at every clock cycle. We share the circuit for computing dot products (hqr2, hqr6 and

hqr9) in Algorithm 15. We store the matrix Bi in a banked row fashion and feed the vectors

xi or yj to the dot product circuit during different phases of Algorithm 15. We use a parallel-

in parallel-out shift register to store vi. We completely unroll the axpy operation and use an

array of multipliers and adders to perform this operation in parallel. The parallel architecture

is shown in Figure 6.7 where the number of floating-point units grows linearly with n as given

by Equation (6.3). Table 6.2 lists the actual number of each floating-point unit used in our

proposed architecture.

Total FP Units = 8k + 3. (6.3)

We exploit all the fine-grain parallel potential available within Householder QR except that

we do not unroll the inner loop of Algorithm 15 due to high memory bandwidth requirements

and instead, use pipelining to feed a new dot product operation in each clock cycle to perform

yTj vi (hqr9) for different values of j. The latency of QR factorization of Bi∈R2k×k using the

118

6.3.4 Pipeline Parallelism for Mapping TSQR

For QR factorization of a single tile, the deeply-pipelined nature of the dot product circuit in

Figure 6.7 leads to high throughput but also considerable latency. As a result, the pipeline will

be underutilized if only single tile is factorized, therefore, we exploit this mismatch between

throughput and latency to factorize multiple independent tiles within TSQR. The initiation

interval of this circuit is 2(k−1) + k(k+1)
2 clock cycles (for hqr2, hqr6 and inner loop of Algo-

rithm 15 containing hqr9) after which a new QR factorization can be streamed into this circuit.

The pipeline depth (P) of the circuit is given by Equation (6.5) which indicates how many QR

factorizations can be active in the pipeline at one time as shown in Figure 6.8.

P(k) =

⌈

k(k+1)
2 + (k− 1)(c1⌈log2k⌉+ c2)

2(k− 1) + k(k+1)
2

⌉

. (6.5)

 5

 10

 15

 20

 25

 30

 35

 40

 32 64 96 128

P
ip

el
in

e
D

ep
th

 (
P

)

Number of Columns (k)

Figure 6.8: Pipeline depth of proposed FPGA design.

We map the QR factorizations in local QR and merge stages of the TSQR on the same

architecture as a set of P Householder QR factorizations as shown in Figure 6.9. The interme-

diate R factors are stored on-chip, therefore, there is no global communication involved in the

merge stage. The total latency of TSQR is then calculated as

l
′

TSQR = l
′

hqr

⌈log2 Ntiles⌉
∑

i=0

⌈

Ntiles

2iP

⌉

. (6.6)

120

6.3.5 I/O Considerations

We assume that the matrix is stored in an off-chip memory just like in the GPU case. We

factorize P dense sub-matrices from the double-buffer and P sub-matrices from Triangle Matrices

memory before we require a new set of P sub-matrices from the off-chip memory. Therefore,

our I/O time to fetch P sub-matrices is double the computation time for QR factorization of P

such sub-matrices.

I/O bandwidth =
64P(3bRk − k2 + k)

2P(2k − 2 + k(k+1)
2)

bits/cycle. (6.7)

Referring to Equation (6.7), we require 64P(3bRk − k2 + k) bits to be exchanged between

the FPGA and the off-chip memory where the bRk term comes from the size of input sub-

matrix, 2bRk − k2 + k from the vi vectors and τi values for explicit formation of Q matrix

(see Section 6.1.2). The latency of factorizing P sub-matrices after matching the pipeline depth

is P(2k − 2 + k(k+1)
2) cycles and it is twice of this time that is available to load new set of

P sub-matrices. Given the maximum value of bR (2k for binary tree) to be 102 resulting into

maximum value of k = 51 (see Section 6.4), we find the I/O requirement to be 11.53 GB/sec

(∼30% of maximum memory bandwidth available in Virtex-6 SX475T [87]).

6.4 Evaluation Methodology

The experimental setup for performance evaluation is summarized in Table 6.3. We use GFLOPs

as the metric for comparing performance on different architectures. We use highly optimized lin-

ear algebra libraries for GPU (CULA), multi-cores (Intel MKL) and hybrid systems (MAGMA).

For FPGA, we only implemented the Householder QR block which can factorize a single sub-

matrix. We actually measure the latency of factorizing a single sub-matrix and estimate the to-

tal number of sub-matrices that can be factorized in a pipelined fashion. The double-buffering

as well as mapping of TSQR on the same architecture is only estimated. We implement the

proposed architecture in VHDL using double-precision floating-point cores and synthesize the

circuit for Xilinx Virtex-6 SX475T FPGA, a device with the largest number of DSP48Es and a

large on-chip capacity. The placed and routed design has an operating frequency of 315 MHz.

We find out the maximum value of bR to be 102 before 90% of the Slice LUTs, 96% of DSP48Es

and 77% of BRAMs are utilized. Although, m can take on any value only limited by off-chip

memory, bR limits the maximum value of n because bR should be greater than or equal to n (in

our design bR = 2k for binary tree). The value of k is appropriate for tall-skinny QR applications

where it is on the order of a few 10s. The proposed design needs to be re-synthesized only if the

input matrix size changes in the column dimension (k).

6.5 Results

We now present the performance achieved by our FPGA design, compare it with optimized QR

routines from linear algebra libraries and the state of the art in FPGAs, multi-cores and GPU

and then discuss the underlying factors that explain our results.

122

Table 6.3: Experimental Setup (FPGA clock frequency used for peak GFLOPs is not reported
in [87]).

Platform Peak GFLOPs Compiler Libraries Timing
Double-Precision

Intel Xeon 63.9 [27] gcc Intel MKL PAPI
X5650 (4.4.3(-O3)) (10.2.4.032) (4.1.1.0)
(32 nm)

Nvidia GPU 515 nvcc CULA-R11 cudaEvent-
C2050 MAGMA-rc5 Record()
(40 nm)

Virtex-6 171 [87] Xilinx ISE Xilinx ModelSim
SX475T (10.1) Coregen
(40 nm)

6.5.1 FPGA Performance Evaluation

The peak and sustained double-precision floating-point performance of the FPGA is given by

Equation (6.8) and Equation (6.9) respectively.

Peak Throughput = 8k + 3 FLOPs/cycle. (6.8)

Sustained Throughput =
2nk2 − 2

3k
3

l
′

TSQR

FLOPs/cycle (6.9)

where 8k + 3 is the total number of floating-point units in the proposed design and 2nk2 − 2
3k

3

represents FLOPs in TSQR. For an operating frequency of 315 MHz, the peak performance of

our design for maximum value of k = 51 is 129 GFLOPs and it is observed that the efficiency of

the proposed architecture is greater than 80% for tall-skinny matrices as shown in Figure 6.10.

6.5.2 Comparison with GPU

We compare our work against a custom implementation of QR factorization using communication-

avoiding QR (CAQR) algorithm on Nvidia C2050 Fermi [8]. In this implementation, the matrix

is divided into panels which are factorized using TSQR (hh factor dense and hh factor triangle)

and then the trailing matrix update (hh update dense and hh update triangle) is performed. We

use Compute Visual Profiler [70] to profile GPU code for a range of extremely tall-skinny to

square matrices as shown in Figure 6.11. We observe that TSQR dominates in case of extremely

tall-skinny matrices (∼70% of runtime contribution).

Firstly, we compare the arithmetic intensity in TSQR in GPU with our design. In GPU, the

Householder QR factorizations are performed by keeping the tiles inside the register file due to

its high access bandwidth (∼ 8 TB/s). The panel width is tuned to a value of 8 and a tile size

of 64×8 is chosen such that it can fit into the register file of each stream multiprocessor (SM)

for best performance. This restricts the arithmetic intensity in Householder QR as there are

O(bRk
2) FLOPs for O(bRk) memory operations. The width of the panel (k) can be increased

at the expense of height (bR) but it then increases the number of stages in the merge stage of

123

 50

 60

 70

 80

 90

 100

 8 16 32 64 128 256 512 1024 2048 3400 6400

E
ff

ic
ie

n
cy

 (
P

er
ce

n
ta

g
e)

Number of Rows(n)

k = 8
k = 16
k = 32

Figure 6.10: Efficiency of proposed FPGA design as percentage of its peak performance.

TSQR. In our design, the panel width can be at most 51, a 49× increase in arithmetic intensity

compared to GPU. The relatively large panel width not only reduces the number of merge stages

in TSQR but also the number of panels to be factorized, e.g. for a matrix of size 6400×51, there
will be seven panels which need to be factorized using TSQR in GPU whereas in our design

only single TSQR factorization is required.

Secondly, we compare the type of memory and its bandwidth used in local QR and merge

stages of TSQR for both cases. In the GPU, during local QR stage, tiles are loaded into the

register file of each SM from global memory. The tiles are then factorized using the register file

as well as shared memory and the local R factors are then stored back in global memory. In the

merge stage, the R factors are loaded back into register file from distributed locations of global

memory and are then factorized. In our design, however, we perform both local QR and merge

stages using on-chip memory to minimize memory latency. Table 6.4 lists the type of memories

used in each stage for GPU as well as FPGA.

Table 6.4: Type of Memory and its peak bandwidth for GPU and proposed FPGA design in
different stages of TSQR.

Kernel GPU Memory FPGA Memory

Register Shared Global Register BRAMs
(∼8 TB/s) (∼1.3 TB/s) (144 GB/s) (∼36 TB/s) (∼5.4 TB/s)

local
√ √ √ √

QR

merge
√ √ √ √ √

stage

124

 0

 20

 40

 60

 80

 100

8 16 32 64 128
256

512
1024

2048
4096

6400

R
u

n
ti

m
e

P
er

ce
n

ta
g

e

Number of Columns

hh_factor_dense
hh_update_dense
hh_factor_triangle

hh_update_triangle
others

Figure 6.11: GPU Performance Analysis (Number of Rows = 6400).

Lastly, we compare the utilization of floating-point units in GPU and our custom archi-

tecture. We identify the limiting factors in the kernels used for TSQR in GPU as shown in

Table 6.5. Both the kernels perform QR factorization by a thread block having 64 threads and

there are 8 thread blocks used per SM. Each thread has 63 registers and therefore maximum

number of threads is limited and as a result occupancy is low. It is due to this low occupancy

ratio particularly in the hh factor triangle kernel that we get very low performance for tall-

skinny matrices. On the other hand, we get almost 80% of peak performance (129 GFLOPs)

for extremely tall-skinny matrices (see Section 6.5.1). As a result, we get a speed up of 3.38× -

12.70× (6.47× geo.mean) shown in Figure 6.12(a) and 6.12(b).

Table 6.5: Limiting Factors for Tall-Skinny Matrices (6400×51) on GPU. A warp comprises 32
threads and there are 48 active warps per cycle for an occupancy of 1.

Kernel Active Warps / Occupancy Limiting
Active Cycles Ratio Factor

hh factor dense 9.05 0.18 Registers

hh factor triangle 2.98 0.06 Registers

We also compare QR routines from CULA which uses Block Householder QR with dominant

sequential panel factorization for tall skinny matrices. We show a speed up of 52× - 258× (117×
geo.mean) due to parallel TSQR algorithm and its efficient FPGA implementation.

125

0.25

0.5

1

2

5

10

20

40
60

8 16 24 32 40 51

G
F

L
O

P
s

Number of Columns (k)

FPGA (Proposed)
FPGA (Tai et.al.)
CAQR

CULA
MKL

(a) GFLOPs vs. k (n = 6400)

0.25

0.5

1

2

5

10

20

40

85

200 400 800 1600 3200 6400 12000

G
F

L
O

P
s

Number of Rows (n)

FPGA (Proposed)
FPGA (Tai et.al.)
CAQR

CULA
MKL

(b) GFLOPs vs. n (k = 51)

Figure 6.12: Performance Comparison with Multi-Cores (Intel MKL), GPUs (CULA, CAQR),
and best FPGA work.

6.5.3 Comparison with Multi-Cores and Related FPGA Work

We now compare our design with QR routines from MKL and MAGMA which perform panel

factorization in a sequential fashion on multi-cores. We observe a speed up of 21.7× - 50.2×
(31.5× geo.mean) and 7.28× - 36.7× (16× geo.mean) over MKL and MAGMA respectively. We

finally compare our design with the most recent work on QR factorization on FPGAs by Tai

et.al. [88]. In [88], the architecture is tuned for large square tiles and therefore we see increase in

126

performance with increase in the width of the matrix as shown in Figure 6.12(a). However, since

no parallelism is exploited along the row dimension, therefore, we see constant performance as

we increase the height of the matrix shown in Figure 6.12(b). We, therefore, observe a speed up

of 0.57× - 7.7× (2.2 × geo.mean) across a range of matrix sizes.

6.6 Summary

We show that customizing an FPGA architecture to the shape of the matrix for TSQR can give

us up to 7.7× and 12.7× speed up over state of the start in FPGAs and GPUs respectively.

We highlight the low efficiency of GPUs and multi-cores as percentage of their peak theoretical

performance for QR factorization of tall-skinny matrices. We identify that on GPUs it is due

to low arithmetic intensity caused by limited registers, low occupancy during the merge stage,

and global communication during the merge stage where as in case of multi-cores it is primarily

due to low memory bandwidth. We show how we can exploit the high on-chip bandwidth of

the FPGA to design a high-throughput architecture for QR factorization and large on-chip

capacity to perform the merge stage without any global communication. We conclude that even

though GPU has 3× higher peak double-precision floating-point performance, by exploiting the

architectural features of FPGAs we can outperform the GPU for communication-avoiding linear

algebra algorithms like TSQR.

127

7 Communication Optimization in Iterative

Numerical Algorithms for Large-Scale

Problems

In Chapter 1, we introduce the communication problem in iterative numerical algorithms for

solving sparse linear system of equations Ax = b and eigenvalue problems Ax = λx. This com-

munication problem arises due to the repeated access of the matrix A from the off-chip memory

for sparse matrix-vector multiplication (SpMV) to generate a new vector in each iteration. We

further highlight the low silicon efficiency of the common hardware accelerators (FPGAs and

GPUs) in accelerating such algorithms due to a big gap in their communication (off-chip memory

bandwidth and latency) and computational (flops/sec) performance. In Chapter 4, for small-

to-medium scale problems, we show how we can exploit large on-chip memory of the FPGAs to

store the matrix and then re-use it for all iterations. In this way, we reduce the communication

cost by a factor of r equal to the total number of iterations. This helps us to increase the silicon

efficiency from 4% to 38% in case of a Virtex6-SX475T FPGA. In Chapter 5 and Chapter 6, we

focus on individual kernels within the communication-avoiding iterative numerical algorithm,

an algorithmic approach which trades communication with redundant computation to minimize

overall runtime for the problems where the matrix A can not be stored in the on-chip memory.

The basic idea behind the communication-avoiding approach is partitioning the matrix into

blocks, fetching the blocks once and generating k vectors in one shot. This reduces the com-

munication cost by a factor of k but at the expense of an increase in computation as shown in

Equation (1.4) for r iterations, repeated below for convenience.

t
′′

r =
r

k
× tcomm + r × tcomp +

r

k
× f(k).

While the re-use of the matrix reduces the iterations by a factor of k for a desired accuracy

in solving Ax = b and Ax = λx, overall performance is determined by two factors (1) how

to compose the kernels to keep the computation cost as low as possible (2) how to select the

optimal value of algorithmic parameter k that minimizes overall runtime by providing a tradeoff

between computation and communication cost.

In this chapter, we present a systematic approach to compose multiple linear algebra kernels

and show how to carefully select the algorithmic parameter k within the communication-avoiding

iterative numerical algorithms. There are multiple factors that influence the selection of the

parameter k. Firstly, a higher value of k incurs an additional computation cost of O(nk2) due

to the introduction of new kernels like BGS and QR factorization as shown in Figure 7.1.

Secondly, we need an extra on-chip storage cost of O(nk) as k vectors need to be stored. In

128

 0

 0.5

 1

 1.5

 2

 2.5

 3

2k - - - 5k - - - 20k
- - - 50k

- - - 120k
- - - 250k

- - -

R
e
la

ti
v

e
 R

u
n

ti
m

e
/I

te
ra

ti
o

n

Matrix Size

k=8 k=8

k=16

k=16

k=16

k=16

k=5 k=7 k=7
k=9

k=3

k=1

Lanczos Iteration (GPU)
CA-Lanczos (GPU)
Lanczos Iteration (FPGA)
CA-Lanczos (FPGA)

Figure 7.2: Single-Precision performance comparison of Communication-Avoiding Lanczos (CA-
Lanczos) on GPU (Nvidia C2050 Fermi) and FPGA (Virtex6-SX475T) in terms of
time/iteration. The input matrices are banded with a band size b = 27. k is an
algorithmic parameter whose optimal value is shown at the top of each bar for
CA-Lanczos.

GPU and FPGAs.

2. For medium to large scale problems, composition of kernels on a GPU increases overall

runtime due to off-chip sharing of data (see Section 7.3.2). While performance of standard

Lanczos Iteration on FPGAs is worse than the GPU due to its relatively low off-chip

memory bandwidth, CA-Lanczos on the other hand shows superior performance due to

efficient composition and optimal selection of the algorithmic parameter.

3. For extremely large problems, compared to the Lanczos Iteration, CA-Lanczos is worse

on both GPU and the FPGAs due to high computation cost as large datasets are shared

using off-chip memory.

We demonstrate that FPGAs are superior over GPUs in composing kernels for a range of

problem sizes (case 1 and 2 in the list above) where data can be shared across the kernels using

the on-chip memory of the FPGAs (see Section 7.4.1). We achieve a silicon efficiency of up to

8% on FPGAs compared to a 2.1% on GPU in accelerating iterative numerical algorithms (see

Section 7.6.2). The main contributions of this chapter are

• A time-multiplexed architecture optimized for linear algebra which exploits high on-chip

capacity and bandwidth of the FPGA to map all three kernels of communication-avoiding

iterative algorithm.

130

• A resource-constrained methodology for selecting algorithmic parameter for a particular

FPGA.

• A quantitative comparison between FPGA and GPU highlighting their architectural lim-

itations.

7.1 Basic Linear Algebra Kernels in CA-Lanczos

CA-Lanczos advances by k steps into the Lanczos Iteration by generating k vectors in a single

sweep as shown in Algorithm 16. CA-Lanczos comprises three kernels, a matrix powers ker-

nel (Line 2) replacing SpMV to generate k vectors, a Block Gram-Schmidt Orthogonalization

(BGS) [48] kernel (Lines 3−4) to orthogonalize with previous k + 1 vectors and a QR factor-

ization kernel (Lines 5−10) to orthogonalize these k vectors with each other. We now briefly

discuss each kernel with its basic linear algebra blocks.

Algorithm 16 Communication-Avoiding Lanczos [48]

Require: A ∈ R
n×n, q0∈ R

nwith ‖q0‖2 = 1, Q1 ∈ R
n×(k+1) = 0

Ri ∈ R
k×k, Ri ∈ R

k+1×k, Qi ∈ R
n×k

1: for i = 0 to r
k do

2: Qi ← [Akqki, A
k−1qki, . . . , Aqki] −Matrix Powers−

3: Ri ← Qi
TQi − BGS1 −

4: Qi ← Qi − QiRi − BGS2 −

−QR Factorization−
5: for l = 1 to k do
6: rll ← ‖ql‖2 −entry at row l and col l of Ri+1−
7: ql ← ql

rll
−ql is the lth col of Qi−

8: for m = l+1 to k do
9: rlm ← qTl qm

10: qm ← qm − rlmql
11: end for
12: end for
13: Qi+1 ← [Qi qki]
14: qk(i+1) ← Qi(1:n, k)
15: end for
16: return Ri+1 and Ri

7.1.1 Matrix Powers Kernel

As discussed in Chapter 5, the matrix powers kernel replaces SpMV and re-uses the matrix to

generate k vectors in one shot. There are both sequential and parallel variants of the matrix

powers kernel where the former minimizes communication within the memory hierarchy whereas

the latter reduces communication between proccessors. In Chapter 5, we also propose a hybrid

algorithm which matches the strengths of FPGAs for structured banded matrices. We minimize

communication with the off-chip memory but allow communication locally between different

floating-point units. This reduces redundant computation and allows larger values of k and

131

hence higher speedups. In order to compute an element of the new vector, we need to perform

a dot production operation xT y where x, y∈ R
b and b is the band size of the banded matrix A.

7.1.2 Block Gram-Schmidt Orthogonalization

Gram-Schmidt Orthogonalization [39] is an approach where a vector x is orthogonalized with

vector y such that xT y = 0. Block Gram-Schmidt Orthogonalization (BGS) performs the same

computation but for matrices as shown in Lines 3−4 of Algorithm 16. The computations involved

are xT y and ax+ y on Line 3 and 4 respectively with x, y∈ R
n and a is a scalar.

7.1.3 QR Factorization

The k vectors compose a tall-skinny matrix on Line 4 of Algorithm 16 and QR factorization of

this matrix is required using some numerically stable method. We use Modified Gram-Schmidt

Orthogonalization (MGS) [39] due to its parallel potential and its stability which is proved for

iterative numerical algorithms [42]. Like BGS, the computations involved are xT y (Line 6 and

9) and ax+ y (Line 7 and 10) with x, y∈ R
n. We summarize the basic linear algebra blocks for

all three kernels in Table 7.1.

Table 7.1: Basic Linear Algebra Blocks for CA-Lanczos.

Kernel Basic Linear Algebra Block

Matrix Powers z←xT y (x, y∈ R
b)

BGS z←xT y and y←ax+ y (x, y∈ R
n)

QR Factorization z←xT y and y←ax+ y (x, y∈ R
n)

7.2 Related Work

7.2.1 Communication Optimization

The communication problem in scientific comptuations has historical roots in the memory

wall [41]. Additionally, with the introduction of many-core and multi-core architectures of-

fering high peak floating-point performance, the inter-core communication determines how

much of this peak can be sustained on these architectures. This severely limits the silicon

efficiency of modern parallel architectures. As a result, we see a family of new algorithms

which communicate less (both within the memory hierarchy as well as between different cores)

at the expense of increase in computation. Communication-avoiding iterative numerical al-

gorithms [48], communication-avoiding dense linear algebra [15], communication-avoiding QR

factorization [33] and communication-avoiding parallel Strassen [14] are a few examples. Such

algorithms not only approach theoretical lower bounds of communication but also show good

performance in practice. For QR factorization, Anderson et al. [8] show that communication-

avoiding approach is promising on GPUs and demonstrate up to 13× speedup compared to

standard QR factorization. For iterative numerical algorithms, Mohiyuddin et al. [65] show that

compared to Generalized Mininum Residual Method (GMRES), its variant the Communication-

Avoiding GMRES can provide a 4.3× speedup for banded matrices and up to 2.3× for general

132

sparse matrices on an 8-core Intel Clovertown architecture.

In this work, we investigate how such a communication-avoiding approach can enhance the

performance of hardware accelerators like GPUs and FPGAs while accelerating iterative nu-

merical algorithms. We highlight the factors which limit the performance on current GPU

architectures and show how we can exploit FPGAs to minimize communication and thereby

provide better silicon efficiency. On FPGAs, we minimize communication in two ways. Firstly,

we propose a matrix powers kernel which avoids redundant computation at the expense of an in-

crease in local communication within floating-point cores of the FPGA. This allows large k and

hence less communication with the off-chip memory. Secondly, we keep the resulting k vectors

entirely on-chip so that other blocks (BGS and QR factorization) avoid off-chip memory access

and instead exploit high on-chip memory bandwidth to minimize computation time. To this

end, we provide a resource-constrained framework which selects the maximum value of k such

that the resulting vectors can fit in the on-chip memory of the FPGAs and which minimizes

overall runtime by providing a communication-computation tradeoff.

7.2.2 Composition

In FPGAs, composition of kernels can be done in three different ways,

• Fully spatial architecture for each kernel [55].

• A dynamically reconfigurable architecture using full FPGA area for each kernel [95].

• A unified architecture with time-multiplexed scheduling of different kernels.

We use the third approach by designing a high throughput architecture for the primitive linear

algebra operations identified in Table 7.1 and then launch all the kernels in a time-multiplexed

fashion. In this way, we avoid the inefficiency of the first approach due to non-overlapped

kernels and reconfiguration overhead of the second approach. As our proposed architecture is

based on primitive linear algebra operations, it is flexible to support any scientific computation

besides iterative solvers. We use on-chip memory to share data across kernels and the only

communication involved is to access matrix A from the off-chip memory. We compare our work

with GPU which also computes kernels in a time-multiplexed fashion but it lacks support of data

sharing across kernels using on-chip memory. We show that this results in high computation

cost leading to poor performance as compared to FPGAs for a range of problem and band sizes.

7.3 Minimizing Communication For GPU

GPUs support two types of communication 1) data movement between global memory and

shared memory or register file of a single streaming-multiprocessor (SM) 2) data sharing between

different SMs through global memory. Although modern GPU architectures offer teraflops of

raw computing power, their communication performance is at least an order of magnitude lower

than their computational performance (see Table 3.1). As a result, there is very low silicon

efficiency in accelerating communication-intensive iterative numerical algorithms. We briefly

discuss the GPU implementations of the Lanczos Iteration and CA-Lanczos and then compare

their performance.

133

7.3.1 Lanczos Iteration on GPU

The Lanczos Iteration involves the SpMV kernel followed by vector-vector operations as shown

in Figure 7.1(a). We use CUSP [17], an open-source library optimized for sparse linear algbera

operations on GPU. The spmv dia kernel is used for SpMV, a routine which is optimized

for banded matrices stored in compressed diagonal storage (CDS) format. For vector-vector

operations, we use level 1 BLAS routines.

7.3.2 CA-Lanczos on GPU

CA-Lanczos comprises three kernels as shown in Figure 7.1(b). The matrix powers kernel in-

volves sparse linear algebra operations whereas the other two kernels (BGS and QR) involve

dense operations. We use a highly optimized parallel matrix powers kernel implementation as

discussed in Chapter 3. BGS involves multiplication of a short wide matrix (Qi) with a tall

skinny matrix (Qi−1). The generalized matrix-matrix multiplication routine cublassgemm from

CuBLAS library suffers from kernel overhead and short vector effects [56] for matrices of this

aspect ratio as the block sizes are optimized for square matrices. Therefore, we tune the block

size of an open source magmablas sgemm routine from the MAGMA [91] library and get a 4×
speedup over cublassgemm. The QR factorization involves a tall-skinny matrix (Qi) and fac-

torizing such matrices involves more communication than any other aspect ratio due to the

sequential nature of the computation. We, therefore, use a communication-avoiding QR routine

for GPUs [8] which provides up to 13× speedup over standard QR routines from GPU libraries

like CULA [50].

7.3.3 Performance Analysis

We use time
flop as the metric to see whether we get any performance improvement using the

communication-avoiding approach on GPUs. In Figure 7.3(a) and 7.3(b), we vary k and show

the performance considering useful operations (i.e. not counting the redundant computation)

as well as actual operations. In both problems, we observe a reduction in time for the matrix

powers kernel until k = 8 and then it starts increasing due to redundant computation with a

computational complexity of O(nk2). On the other hand, we observe two things with BGS and

QR kernels. First, they perform more redundant computation as shown by the marked difference

between actual and useful (dashed lines) performance curves. Secondly, with increasing problem

size they start to dominate overall time, mitigating the benefits of cost reduction with the matrix

powers kernel. We perform source code instrumentation on all these kernels to measure their

communication and computation time. The k vectors generated by the matrix powers kernel are

stored in global memory due to low on-chip capacity and since BGS and QR operate on these

vectors, the communication cost becomes the dominating factor due to low arithmetic intensity

in these kernels as shown in Figure 7.3(c). Hence, composition of kernels on GPU is inefficient

due to this off-chip sharing of data across the kernels. We, therefore, see 3×−0.3× speedup over

the Lanczos Iteration from small to large problems as shown in Figure 7.3(c).

134

10

10
2

10
3

10
4

1 2 4 8 16

T
im

e/
F

lo
p
 (

p
s)

 k

Matrix Powers
BGS
QR
CA-Lanczos

(a) Performance vs. k (n = 5k)

10

10
2

10
3

10
4

1 2 4 8 16

T
im

e/
F

lo
p
 (

p
s)

 k

Matrix Powers
BGS
QR
CA-Lanczos

(b) Performance vs. k (n = 50k)

 0

 0.5

 1

 1.5

 2

 2.5

 3

2k 5k 20k
50k

120k
250k

R
el

at
iv

e
R

u
n
ti

m
e/

It
er

at
io

n

Matrix Size

k=8 k=8

k=16

k=16

k=16

k=16

3x 2.6x

1.2x

0.7x

0.4x

0.3xMatrix Powers (comm)
Matrix Powers (comp)
BGS (comm)
BGS (comp)
QR (comm)
QR (comp)

(c) Performance vs. n

Figure 7.3: CA-Lanczos performance analysis on Nvidia C2050. In Figure 7.3(a) and 7.3(b), we
show how the algorithmic parameter k is co-tuned for all the kernels. The speedup
over the Lanczos Iteration (k = 1) is shown at the top of the bar in Figure 7.3(c)
for a range of matrices with band size b = 27. The dashed lines in Figure 7.3(a)
and 7.3(b) represent the cost for doing useful operations only.

135

7.4 Minimizing Communication For FPGAs

FPGAs have relatively low off-chip memory bandwidth but a large on-chip capacity and high

on-chip memory bandwidth as shown in Table 3.1. So how we can use this on-chip capacity and

memory bandwidth?

7.4.1 On-chip Memory Driven Data Partitioning

We divide CA-Lanczos into three possible scenarios based on the size of matrix A (n×b stored

in Compressed Diagonal Storage (CDS) format) and the Lanczos vectors (Qi ∈ R
n×(k+1) and

Qi ∈ R
n×k).

1. n · b is small : Matrix and vectors are stored on-chip.

2. n · k ≪ n · b : Matrix is stored off-chip whereas the vectors are stored on-chip.

3. n · k is large : Matrix and vectors are stored off-chip.

We show the range of matrices that can be solved with these three scenarios in Figure 7.4.

200

400

800

1200

1600

2000

2400

1k 2k 5k 10k 20k 50k 120k 250k 0.5M 1M

N
o
.

O
f

B
R

A
M

s

Number of Rows (n)

Fully
on-chip

Matrix off-chip
Lanczos Vectors on-chip

Fully
off-chip

k = 16 k = 16

k = 16

k = 16 k = 9 k = 3 k = 1

Figure 7.4: Three distinct scenarios for CA-Lanczos on Virtex6-SX475T (2128 18Kb BRAMs)
for problems with band size b = 27. The maximum possible value of k is shown for
some matrix sizes.

As the parameter k influences the decision where to store the data, we therefore select it

carefully to optimize performance (see Section 7.4.5). From Figure 7.4, we observe that there

136

is a wide range of matrices where we can keep either both the matrix as well as the Lanczos

vectors on-chip or only the Lanczos vectors on-chip. In both cases, we eliminate communication

with the off-chip memory during BGS and QR factorization as they operate on the Lanczos

vectors. As the on-chip capacity of new FPGA devices continues to grow (∼2× on Virtex7), the

range of matrices where Lanczos vectors can be stored on-chip will be pushed further.

7.4.2 Time-Multiplexed FPGA Implementation of CA-Lanczos

CA-Lanczos comprises three kernels, matrix powers, BGS and QR factorization. A fully spatial

architecture is not the design choice as the FPGA area gets wasted during different phases. We

can populate the FPGA with each kernel and using dynamic reconfiguration we can schedule

different kernels, but that comes with reconfiguration overhead which is of the same order as the

application time itself. We design a unified architecture for basic linear algebra blocks identified

in Table 7.1 and then schedule all these kernels in a time-multiplexed fashion. In this way, we

re-use logic to enhance the compute capacity of FPGAs for each kernel.

Basic Linear Algebra Subroutine (BLAS) Circuit

The GPU organizes everything in a simple data-parallel fashion ideally suitable for data-parallel

ax + y but inefficient for reduction operations like xT y. We show the performance of these

operations on GPU and FPGA in Figure 7.5 (assuming x and y are stored in global memory

of GPU as in Section 7.3.2 and in on-chip memory of FPGAs as shown in Section 7.4.1).

Using superior communication and on-chip memory bandwidth of the FPGAs, we design a high

throughput architecture for these compute patterns in Figure 7.6 which we refer to as a Basic

Linear Algebra Subroutine (BLAS) circuit.

10

20

40

60

80

100

120

140

2k 5k 20k 50k 120k 250k

G
F

L
O

P
s

Matrix Size (n)

x
T
y GPU

x
T
y FPGA

ax+y GPU

ax+y FPGA

Figure 7.5: xT y and ax+ y on GPU and FPGA.

For x and y vectors of length N , both ax+y and xT y have a sequential latency of O(N) cycles.

Our proposed architecture has O(1) cycles latency for ax + y and performs xT y in O(logN)

137

Table 7.2: Floating-Point Units for CA-Lanczos.

Floating-Point Unit Total Number Latency

Add Pe(2b−1)+Pe+5 11

Mult Peb 8

Div 1 27

Sqrt 1 27

the number of PEs and bR is the number of rows in each sub-block. Matrix Memory as well as

the Vectors Memory (for Lanczos vectors) is distributed across P PEs with each PE accessing

them as a bank of width b as shown in Figure 7.7(b). The memory used in single-precision

implementation of CA-Lanczos in terms of BRAMs (18kbit each) is given by

Matrix Memory = Peb

⌈

32bR
18× 1024

⌉

(7.1)

Vectors Memory = 2Peb









32
⌈

n
Peb

⌉

(k + 1)

18× 1024









(7.2)

FIFOs = 2Pe

⌈

32(b− 1)

2× 18× 1024

⌉

(7.3)

7.4.3 Compute Schedule

The architecture shown in Figure 7.7 implements CA-Lanczos in a time-multiplexed fashion.

We show the compute schedule for CA-Lanczos in Algorithm 17 and highlight the blocks used

in each kernel in Figure 7.7(a).

7.4.4 Performance Model

We build an analytical model for overall latency which we will use in a resource-constrained

framework to select an optimal value of k. The latencies of single-precision floating point multi-

plier, adder, divider and sqrt and accumulator are denoted by lM , lA, lD , lS and lacc respectively.

We use Xilinx Coregen for these operators and their latencies are given in Table 7.2. Using the

compute schedule in Algorithm 17, we show the latencies (in cycles) of all the kernels in Ta-

ble 7.3.

7.4.5 Resource-Constrained Framework

In order to select k which trades communication with computation and gives optimal perfor-

mance, we develop the following resource-constrained framework.

• Find the maximum number Pe of PEs that can be synthesized within the FPGA for a

given band size b.

• Find the memory bandwidth required to saturate these Pe PEs. Partition the available

on-chip memory such a way that Lanczos vectors can fit on-chip.

140

Algorithm 17 Compute Schedule

Matrix Powers Kernel
Step 1 : Load a block of the matrix A and divide it into sub-blocks to be stored in Matrix
Memory of each PE.
Step 2 : Configure each PE to compute z←xT y (x, y∈ R

b). Launch a operation every clock
cycle to compute all bR vertices in each sub-block of Figure 3. Store the results in Vectors
Memory (Qi). Compute k levels of the compute graph in the same fashion. Go to Step 1 until
all blocks Nb = ⌈ n

PebR
⌉ of A are not finished.

Block Gram-Schmidt Orthogonalization
Step 3 : In each PE, load components of vectors b at a time from Qi and Qi shown as q
and q respectively in Figure 7.7(b). Compute dot product and accumulate the results from
P PEs.
Step 4 : Go to Step 3 and load next b components ζ = ⌈ n

Peb
⌉ times until we reach at the end

of the vectors. Compute all dot products at Line 2 of Algorithm 16. Save the accumulator
output in Ri.
Step 5 : Compute Line 3 of Algorithm 7.1(b) by configuring each PE to compute y ← ax+y.
Here a is −rij i.e entry of matrix Ri scanned as column-major order. x is the vector from Qi

whereas y is from Qi.

QR Factorization
Step 6 : Compute QR factorization like BGS.

Table 7.3: CA-Lanczos FPGA Analytical Performance Model.
Kernel Latency Reference

lBC = lM + lA + lA⌈log2b⌉ Figure 7.6
Matrix Powers lMP = Nbk(b+ lBC + bR − 1)

lBGS,1 = (k2 + 1)(lBC + ζ + lred) Line 3 of Algorithm 16
BGS lBGS,2 = (k2 + 1)(lM + lA + ζ) Line 4 of Algorithm 16

ζ = ⌈ n
Pb

⌉, lred = ⌈log2 Pe⌉+ lacc
lQR,1 = (k + 1)(lBC + lred + lM Outer loop of QR

QR Factorization +lA + 2ζ + lS + lD)

lQR,2 = k
(k+1)

2
(lBC + lred + lM Inner loop of QR

+lA + 2ζ)

L = lMP + lBGS,1 + lBGS,2

CA-Lanczos +lQR,1 + lQR,2

• Pick k and bR based on the following constrained optimization problem

min
k,Pe,bR

L(k, Pe, bR)

k(2nb+ 7n)

subject to

M(Pe, k, bR) ≤ FPGABRAMs

R(Pe) ≤ FPGALogic

k ≤ 16

k ≤ 2
bR

b− 1
(7.4)

141

Referring to Equation (7.4), time(cycles)
flop is our objective we want to minimize. L(k, Pe, bR) cor-

responds to the total compute latency per CA-Lanczos iteration shown in Table 7.3 and k(2nb

+ 7n) is the total number of flops in k iterations of the Lanczos method. M(Pe, k, bR) is the

number of BRAMs required and R(Pe) is a vector containing the number of resources in terms

of LUTs, FFs and DSP48Es from Table 7.2. k ≤ 16 is an algorithmic constraint due to loss of

orthogonality in CA-Lanczos [62]. The last constraint is to allow the partition size large enough

to ensure only nearest neighbour communication at the boundaries of blocks in the matrix pow-

ers kernel shown in Figure 5.7.

7.5 Experimental Setup

The experimental setup comprises a Virtex6-SX475T FPGA and an Nvidia C2050 Fermi device

with architectural features shown in Table 3.1. We use time
iteration as our metric relative to the

Lanczos Iteration on GPU which is used as a baseline. We use banded matrices with common

band sizes that commonly arise in stencil computation in practical applications. For FPGA,

we implemented a set of 3 PEs with their memory subsystems and FIFO connections. We use

Xilinx Coregen single-precision floating-point cores for our hardware operators. Our placed and

routed design has an operating frequency of 258 MHz. We actually calculate the total number of

DSP48Es, LUTs and FFs which are required for a single PE and then estimate the total number

of PEs that can be synthesized on a given FPGA device. We show the resource utilization for

different band sizes in Table 7.4. We maximize the use of DSP48Es for high performance. We

do not show BRAMs here because they also depend on the value of k and n. We use 50% of the

maximum possible I/O bandwidth of the FPGA in order to compute the communication cost.

Table 7.4: FPGA Resource Utilization (Estimated).

Band Size DSP48Es (%) LUTs (%) FFs (%) PEs

3 99.6 70.3 41.3 95

9 97.5 68.8 40.4 31

27 94.3 66.6 39.0 10

7.6 Evaluation

We first evaluate the impact of k on FPGA performance and then compare the results of CA-

Lanczos on FPGA and GPU.

7.6.1 Impact of k on FPGA Performance

We show time
flop for computation (tcomp) and communication (tcomm) separately in Figure 7.8. We

select the value of k which minimizes total time, i.e. ttotal=tcomp+tcomm. Ideally, we should see

a reduction in this cost by k as the matrix is fetched only once to generate k vectors. However

from Figure 7.8(a), we see the total cost decreases until k = 7 and then it increases due to

142

 20

 40

 60

 80

 100

 120

 140

2 4 6 8 10 12 14 16

 20

 40

 60

 80

 100

T
im

e/
F

lo
p

 (
p

s)

B
R

A
M

s
(P

er
ce

n
ta

g
e)

k

tcomp
tcomm
ttotal

(a) Performance vs. k, (n =5k)

 20

 40

 60

 80

 100

 120

 140

2 4 6 8 10 12 14 16

 20

 40

 60

 80

 100

T
im

e/
F

lo
p

 (
p

s)

B
R

A
M

s
(P

er
ce

n
ta

g
e)

k

tcomp
tcomm
ttotal

(b) Performance vs. k, (n =50k)

 0

 0.5

 1

2k 5k 20k
50k

120k
250k

R
e
la

ti
v

e
 R

u
n

ti
m

e
/I

te
ra

ti
o

n

Matrix Size

k=5
k=7

k=7 k=9

k=3

k=1

2.2x
3x

3.8x 4.2x

2.5x

1x

Matrix Powers
BGS
QR

(c) Performance vs. n

Figure 7.8: CA-Lanczos performance analysis on FPGA. The value of k is selected using the
resource-constrained framework in Figure 7.8(a) and Figure 7.8(b). The speedup
over the Lanczos method (k = 1) on FPGA is shown in Figure 7.8(c) for a range of
matrices with the band size b = 27.

143

computation cost (O(nk2) work in BGS and QR). This is the optimal value of k which provides

a ∼3× performance improvement over the standard Lanczos Iteration (k = 1). In Figure 7.8(b),

the value of k is restricted due to BRAMs as beyond k =9 the vectors can no longer be stored

on-chip. By picking the value of k using this framework, we optimally trade communication

with redundant computation to minimize the overall cost. As a result, for a range of problem

sizes, we get 1×−4.2× speedup over the FPGA-based Lanczos Iteration shown in Figure 7.8(c).

7.6.2 Performance Comparison with GPU

We compare the performance of our proposed design with a GPU in Figure 7.9 for b = 3 and b =

27, showing the runtime breakdown of each kernel. From these results, we find that the matrix

powers kernel on the GPU is efficient compared to the FPGA because of the GPUs ∼5× larger

off-chip bandwidth to fetch the matrix A. However, the communication-avoiding approach is

not as useful on the GPU as it is on the FPGA for two reasons. First the composition of kernels

requires sharing data, i.e. vectors through global memory. Even if they can be stored on-chip

for small problem sizes, they are distributed across all streaming multiprocessors (SMs). The

communication between different SMs is required in reduction operations involved in BGS and

QR, and as this communication is only possible through global shared memory, it therefore

increases communication cost (see Section 7.3.2). Secondly, the matrices involved in BGS and

QR are either short and fat or long and thin and both of these aspect ratios are not well suited

on GPUs [56]. As a result, CA-Lanczos on the GPU is up to ∼3× slower than the standard

Lanczos Iteration.

On the other hand, as the vectors are stored on-chip in FPGAs, our architecture expliots high

on-chip bandwidth to keep the computation cost of BGS and QR kernels as low as possible as

shown in all of our results. For small band size b = 3 and small to medium problem sizes where

vectors can be stored fully on-chip, we get orders of magnitude speedup, and for the largest

problem size the FPGA is 1.6× as fast as the standard Lanczos Iteration from CUSP. However,

for large matrix and band sizes, the problem becomes communication-bound as the vectors can

no longer be stored in the on-chip memory of the FPGA and therefore we see that FPGA is

∼3× slower than the GPU.

We finally compare the silicon efficiency of FPGA and GPU in Figure 7.10. For the GPU, we

see CA-Lanczos is even worse than the standard Lanczos Iteration except for small problems

where the communication cost of BGS and QR is relatively low as shown in Figure 7.9. For the

FPGA, for small band sizes, there is very little improvement in efficiency due to small value

of k. However, for larger band size in Figure 7.10(b), we see up to 8% efficiency compared to

2% with the standard Lanczos Iteration. This is only possible due to relatively large values of

k. With future FPGA devices having relatively large on-chip memory capacity, we can achieve

much higher efficiency due to large values of k as the vectors can be stored on-chip.

7.7 Summary

Communication-avoiding algorithms are an alternative to multi-level cache hierarchy where we

trade communication with redundant computation. In current GPU architectures, composition

144

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2k - 5k - 20k
- 50k

- 120k
- 250k

-

R
e
la

ti
v
e
 R

u
n
ti

m
e
/I

te
ra

ti
o
n

Matrix Size

k=8 k=8

k=16

k=16

k=16

k=16

k=2 k=3 k=4 k=4
k=2

k=1

106x 72x 25.7x 11.8x
3.8x

1.6x

30x 24.7x 18.0x 14.6x
10.1x

6.3x

Matrix Powers (GPU)
BGS (GPU)
QR (GPU)
Matrix Powers (FPGA)
BGS (FPGA)
QR (FPGA)

(a) band size b = 3

 0

 0.5

 1

 1.5

 2

 2.5

 3

2k - 5k - 20k
- 50k

- 120k
- 250k

-

R
e
la

ti
v
e
 R

u
n
ti

m
e
/I

te
ra

ti
o
n

Matrix Size

k=8
k=8

k=8

k=16

k=16

k=16

k=5 k=7
k=7

k=9

k=3

k=1

28.5x 17.4x
6.7x

3.3x

1.1x

0.3x

8.6x 7.1x
5.4x

4.7x

2.6x

1.0x
Matrix Powers (GPU)
BGS (GPU)
QR (GPU)
Matrix Powers (FPGA)
BGS (FPGA)
QR (FPGA)

(b) band size b = 27

Figure 7.9: Performance Comparison of CA-Lanczos on GPU (left bar) and FPGA (right bar).
The optimal value of k is shown at the top of the bars. The speedup factor of FPGAs
over GPU is also shown in red for standard Lanczos method on GPU and in blue
for CA-Lanczos on GPU.

145

0.1

0.5

2

10

100

2k 5k 20k 50k 120k 250k

E
ff

ic
ie

n
cy

 (
%

)

Matrix Size (n)

Lanczos Iteration (GPU)
CA-Lanczos (GPU)
Lanczos Iteration (FPGA)
CA-Lanczos (FPGA)

(a) band size b =3

0.1

0.5

2

10

100

2k 5k 20k 50k 120k 250k

E
ff

ic
ie

n
cy

 (
%

)

Matrix Size (n)

Lanczos Iteration (GPU)
CA-Lanczos (GPU)
Lanczos Iteration (FPGA)
CA-Lanczos (FPGA)

(b) band size b =27

Figure 7.10: Silicon efficiency of FPGA and GPU for iterative numerical algorithms.

146

of different kernels involves sharing data using off-chip global memory and this increases the

computation cost to the point where we do not see any benefit of using the communication-

avoiding approach. In FPGAs, by explicitly sharing data across kernels using on-chip memory

and desiging an architecture which exploits the on-chip memory and communication bandwidth,

we keep the computation cost as low as possible. We show how to select the algorithmic param-

eter to optimally trade communication with redundant computation. Using CA-Lanczos as a

case study, we show up to 4.2× performance improvement over vanilla algorithm on the FPGAs,

up to orders of magnitude speedup over GPU for small problems and a single-digit performance

improvement for medium to large-scale problems. For large problems where we cannot store

data on-chip, we see a ∼3× slow down as the problem becomes communication-bound.

147

8 Conclusion

This thesis has presented techniques to improve silicon efficiency of FPGAs and GPUs in accel-

erating communication-bound sparse iterative solvers. In this chapter we summarize the major

contributions in this thesis and present some research directions as future work.

Different approaches have been used to minimize communication in iterative numerical algo-

rithms for small-to-medium size dense data sets and large structured banded data sets, which

arise in different application settings such as solving semi-definite optimization problems. It is a

common myth that GPUs with their higher peak floating-point capabilities are highly suitable

for accelerating dense linear algebra. While this is true for compute-bound problems like matrix-

matrix multiplication, we show that for communication-bound matrix-vector multiplication, a

dominant operation in iterative numerical algorithms, the performance is bounded from above

by the off-chip memory bandwidth of GPUs. This is also true for the FPGAs. However, we use

explicit cache blocking to load the matrices in the relatively large on-chip memory of the FPGAs

and re-use it for all iterations thereby minimize communication with the off-chip memory. This

explicit cache blocking allows us to utilize higher on-chip memory bandwidth to saturate the

floating-point cores of the FPGA, which leads to higher silicon efficiency. We therefore conclude

that iterative numerical algorithms operating on small-to-medium size data sets requiring high

memory bandwidth are highly appropriate for acceleration using FPGAs.

For large dense problems that do not fit on-chip, the performance of standard iterative nu-

merical algorithms is still bounded by the off-chip memory bandwidth. However, for sparse

problems, algorithmic transformations have been recently proposed, which trade communica-

tion with redundant computation. The matrix powers kernel is an important kernel in this

approach, which performs k SpMVs at the communication cost of a single SpMV. We proposed

an architecture-aware algorithm for the FPGAs, which avoids redundant computation to allow

large values of k and hence higher speed ups. Using a predictive model, we show that by careful

selection of the algorithmic parameter, we can increase the silicon efficiency of FPGAs and

GPUs which otherwise require significant architectural modifications.

There is extremely low silicon efficiency of multi-cores and GPUs in tall-skinny QR factor-

ization (TSQR), a kernel that arises in communication-avoiding iterative algorithms and many

other areas of science and engineering. We identify that on GPUs this is due to low arithmetic

intensity caused by limited registers, low occupancy during the merge stage, and global commu-

nication during the merge stage whereas in case of multi-cores it is primarily due to low memory

bandwidth. We show how we can exploit the high on-chip bandwidth of the FPGA to design

a high-throughput architecture for QR factorization and large on-chip capacity to perform the

merge stage without any global communication. We conclude that even though GPU has 3×
higher peak double-precision floating-point performance, by exploiting the architectural features

of FPGAs we can outperform the GPU for communication-avoiding linear algebra algorithms

148

like TSQR.

In current GPU architectures, composition of different kernels involves sharing data using

off-chip global memory and this increases the computation cost to the point where we do not

see any benefit of using the communication-avoiding approach. In FPGAs, by explicitly shar-

ing data across kernels using on-chip memory and designing an architecture which exploits the

on-chip memory and communication bandwidth, we keep the computation cost as low as pos-

sible. Using the CA-Lanczos as a case study, we demonstrate that FPGAs have better support

for composing different kernels due to relatively large on-chip memory. This leads to superior

performance over GPU even though FPGAs have lower peak floating-point performance.

From architectural perspective, in order to increase silicon efficiency in communication-bound

operations like the iterative numerical algorithms, we believe that future FPGA and GPU archi-

tectures might require some modifications. First, instead of having a shared memory architecture

in GPU where different SMs can only communicate through global off-chip memory, an on-chip

interconnect, e.g. a ring network in Intel Xeon Phi Co-processor, can lead to better silicon effi-

ciency. Secondly, the shared memory of each SM needs to be increased like a large on-chip L2

cache in modern multi-cores. Thirdly, there should be architectural support for on-chip sharing

of data across different kernels. In case of FPGAs, besides increasing on-chip memories, the

off-chip memory bandwidth needs to be increased much like GPUs and Intel Xeon Phi Co-

processor.

Lastly, even with advancements in hardware technology, architecture-aware linear algebra al-

gorithms need to be designed in order to exploit the full potential of a particular architecture.

We have demonstrated this using our hybrid matrix powers kernel for the FPGAs. We there-

fore conclude that an inter-disciplinary research is required involving computing and numerical

linear algebra community to increase silicon efficiency of modern computing platforms.

8.1 Future Work

8.1.1 Large Sparse Problems

The work in this thesis can be extended to general sparse matrices with hyper-graph partitioning

as a pre-processing step. We intend to use the matrix powers kernel instead of SpMV for

applications [5] where we have to solve Ax = b repeatedly in each iteration. As the sparsity

pattern does not change over the iterations, we believe that the cost of this pre-processing step

will be quite low compared to the actual computation.

8.1.2 Low Power Applied Linear Algebra

In this thesis, the focus is on high performance computing. However, since we minimized com-

munication with the off-chip memory, a major source of power consumption, it needs to be

investigated how such a technique can reduce overall power consumption. This will help in re-

ducing energy footprint of data centers, e.g. a low power tall-skinny QR factorization can reduce

power consumption in Singular Value Decomposition (SVD), which is an important kernel used

149

in Latent Semantic Indexing (LSI) [36], a ubiquitous operation for information retrieval in large

data centers.

8.1.3 Parameterizable Tall-Skinny QR Factorization

The hardware core presented in this thesis for the tall-skinny QR factorization takes an input

matrix with variable number of rows but fixed number of columns. Although this meets the

requirement in applications such as iterative numerical algorithms, there are other applications

where we require QR factorization of a tall-skinny matrix with variable number of columns. An

example for such a QR factorization arises in Monte Carlo Markov Chain (MCMC) based data

association for real-time target tracking [57].

8.1.4 Fixed-Point QR Factorization

In this thesis, we have only used single-precision or double-precision floating-point number pre-

sentation. These are the only two number representations available with multi-cores and GPUs,

but FPGAs can be customized for any arbitrary precision. There is some recent work on fixed-

point Lanczos Iteration [52] where all the variables are bounded using a novel preconditioner

and sustained TFLOPs performance is demonstrated. One can extend this work for a fixed-point

QR factorization to improve performance for a given orthogonalization error ||QTQ− I||2.

150

Bibliography

[1] SMCP benchmarks. http://abel.ee.ucla.edu/smcp/benchmarks/index.html, 2010.

[2] Xilinx DS816 Floating-Point Operator v6.0. http://www.xilinx.com/support/

documentation/ip_documentation/floating_point/v6_0/ds816_floating_point.

pdf, 2012.

[3] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou, H. Ltaief, P. Luszczek,

and S. Tomov. Numerical linear algebra on emerging architectures: The PLASMA and

MAGMA projects. In Journal of Physics: Conference Series, volume 180. IOP Publishing,

2009.

[4] A. Ahmedsaid, A. Amira, and A. Bouridane. Improved SVD systolic array and implemen-

tation on FPGA. In Proceedings of IEEE International Conference on Field-Programmable

Technology (FPT), pages 35–42. IEEE, 2003.

[5] F. Alizadeh, J. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods

for semidefinite programming: convergence rates, stability and numerical results. SIAM

Journal on Optimization, 8(3):746–768, 1998.

[6] AMD. Core Math Library (ACML). http://developer.amd.com/wordpress/media/2013/

05/acml.pdf, 2012.

[7] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du. Croz,

A. Greenbaum, S. Hammarling, A. Mckenney, and D. Sorensen. LAPACK Users’ guide.

Society for Industrial and Applied Mathematics, third edition, 1999.

[8] M. Anderson, G. Ballard, J. Demmel, and K. Keutzer. Communication-avoiding QR

decomposition for GPUs. In Proceedings of the 25th IEEE Interantional Parallel and

Distributed Processing Symposium (IPDPS), pages 48–58, 2011.

[9] M. J. Anderson, D. Sheffield, and K. Keutzer. A predictive model for solving small linear

algebra problems in GPU registers. In Proceedings of the 26th IEEE International Parallel

and Distributed Processing Symposium (IPDPS), pages 2–13, 2012.

[10] H. Anton. Elementary linear algebra. Wiley, 2010.

[11] H. Anzt, T. Hahn, V. Heuveline, and B. Rocker. GPU Accelerated Scientific Computing:

Evaluation of the NVIDIA Fermi Architecture; Elementary Kernels and Linear Solvers.

KIT, 2010.

151

[12] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H.v.d Vorst. Templates for the solution of

algebraic eigenvalue problems. Society for Industrial and Applied Mathematics, 2000.

[13] Z. K. Baker and V. K. Prasanna. Efficient hardware data mining with the Apriori al-

gorithm on FPGAs. In Proceedings of the 13th Annaual IEEE Symposium on Field-

Programmable Custom Computing Machines, pages 3–12, 2005.

[14] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. Communication-optimal

parallel algorithm for strassen’s matrix multiplication. In Proceedinbgs of the 24th ACM

symposium on Parallelism in Algorithms and Architectures, pages 193–204. ACM, 2012.

[15] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication in numer-

ical linear algebra. SIAM Journal on Matrix Analysis and Applications, 32(3):866–901,

2011.

[16] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. V. Vorst. Templates for the solution of linear systems:

building blocks for iterative methods. Society for Industrial and Applied Mathematics,

1987.

[17] N. Bell and M. Garland. CUSP: Generic parallel algorithms for sparse matrix and graph

computations. http://code. google. com/p/cusp-library, 2009.

[18] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon,

W. Harrod, K. Hill, J. Hiller, et al. Exascale computing study: Technology challenges

in achieving exascale systems. Technical report, Defense Advanced Research Projects

Agency Information Processing Techniques Office (DARPA IPTO), 2008.

[19] Å. Björck. Numerical methods for least squares problems. Society for Industrial and

Applied Mathematics, 1996.

[20] D. Boland and G. A. Constantinides. Optimizing memory bandwidth use and performance

for matrix-vector multiplication in iterative methods. ACM Transactions on Reconfigur-

bale Technology and Systems (TRETS), 4(3):22:1–22:14, August 2011.

[21] B. Borchers. SDPLIB 1.2, a library of semidefinite programming test problems. Opti-

mization Methods and Software, 11(1):683–690, 1999.

[22] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New

York, NY, USA, 2004.

[23] I. Bravo, P. Jiménez, M. Mazo, J. L. Lázaro, and A. Gardel. Implementation in FPGAs of

Jacobi method to solve the eigenvalue and eigenvector problem. In Proceedings of IEEE

International Conference on Field Programmable Logic and Applications, pages 1–4, 2006.

[24] A. Buttari, J. Langou, Kurzak J, and J. Dongarra. A class of parallel tiled linear algebra

algorithms for multicore architectures. Parallel Computing, 35(1):38–53, 2009.

152

[25] H. S. Chen, W. Gao, and D. G. Daut. Signature based spectrum sensing algorithms for

IEEE 802.22 WRAN. In Proceedings of the IEEE International Conference on Commu-

nications, pages 6487–6492, 2007.

[26] G. Chrysos. Intel R© Xeon Phi coprocessor (codename Knights corner). In Proceedings of

the 24th Hot Chips Symposium, HC, 2012.

[27] Intel Corporation. Intel microprocessor export compliance metrics. http://download.

intel.com/support/processors/xeon/sb/xeon_5600.pdf, 2010.

[28] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,

and T. Vonf Eicken. LogP: Towards a realistic model of parallel computation, volume 28.

ACM, 1993.

[29] J. Cullum and W. E. Donath. A block Lanczos algorithm for computing the q algebraically

largest eigenvalues and a corresponding eigenspace of large, sparse, real symmetric matri-

ces. In Proceedings of the IEEE Conference on Decision and Control including the 13th

Symposium on Adaptive Processes, volume 13, pages 505–509. IEEE, 1974.

[30] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,

and K. Yelick. Stencil computation optimization and auto-tuning on state-of-the-art

multicore architectures. In Proceedings of the ACM/IEEE Conference on Supercomputing,

pages 1–12, 2008.

[31] M. Delorimier and A. DeHon. Floating-point sparse matrix-vector multiply for FPGAs. In

Proceedings of the 13th ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, pages 75–85, 2005.

[32] M. Delorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. Uribe, T. F. Knight,

and A. DeHon. GraphStep: A system architecture for sparse-graph algorithms. In Proceed-

ings of the 14th Annaual IEEE Symposium on Field-Programmable Custom Computing

Machines, pages 143–151, 2006.

[33] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in

sparse matrix computations. In Proceedings of the 22nd IEEE International Symposium

on Parallel and Distributed Processing (IPDPS), pages 1–12, 2008.

[34] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial and Applied

Mathematics, 1997.

[35] J. J. Dongarra. LINPACK Users’ Guide. Society for Industrial and Applied Mathematics,

1979.

[36] S. Dumais, G. Furnas, T. Landauer, S. Deerwester, et al. Latent semantic indexing. In

Proceedings of the Second Text Retrieval Conference, pages 271–289, 1995.

[37] J. Fang, A. L. Varbanescu, H. Sips, L. Zhang, Y. Che, and C. Xu. Benchmarking Intel

Xeon Phi to Guide Kernel Design. Technical Report PDS-2013-005, Delft University of

Technology, 2013.

153

[38] M. J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–

1909, 1966.

[39] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, third edition, 1996.

[40] G. H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues.

Mathematical software, 3:361–377, 1977.

[41] S. L. Graham, M. Snir, and C. A. Patterson. Getting up to speed: The future of super-

computing. National Academies Press, 2004.

[42] A. Greenbaum, M. Rozložńık, and Z. Strakoš. Numerical behaviour of the modified Gram-

Schmidt GMRES implementation. BIT Numerical Mathematics, 37(3):706–719, 1997.

[43] J. L. Gross and J. Yellen. Handbook of graph theory. CRC press, 2003.

[44] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Enhancing Parallelism of Tile QR

Factorization for Multicore Architectures. Matrix, 2(4):8, 2010.

[45] B. Harris, A. C. Jacob, J. M. Lancaster, J. Buhler, and R. D. Chamberlain. A banded

Smith-Waterman FPGA accelerator for Mercury BLASTP. In Proceedings of the IEEE

International Conference on Field Programmable Logic and Applications, pages 765–769,

2007.

[46] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach.

Elsevier, fourth edition, 2012.

[47] C. Hirsch. Numerical Computation of Internal and External flows: The Fundamentals of

Computational Fluid Dynamics. Butterworth-Heinemann, second edition, 2007.

[48] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, University

of California at Berkeley, Berkeley, USA, 2010.

[49] S. V. Huffel and J. Vandewalle. The total least squares problem: computational aspects

and analysis, volume 9. Society for Industrial and Applied Mathematics, 1991.

[50] J. R. Humphrey, D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis. CULA:

hybrid GPU accelerated linear algebra routines. In Proceedings of SPIE, pages 770502–

770507. International Society for Optics and Photonics, 2010.

[51] Intel. Intel math kernel library. http://software.intel.com/sites/products/documentation/

// hpc/userguides/mkl userguide lnx.pdf, 2007.

[52] J. L. Jerez, , G. A. Constantinides, and E. C. Kerrigan. Fixed Point Lanczos: Sustain-

ing TFLOP-equivalent Performance in FPGAs for Scientific Computing. In Proceedings

of 20th IEEE International Symposium on Field-Programmable Custom Computing Ma-

chines (FCCM), pages 53–60. IEEE, 2012.

[53] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2005.

154

[54] J. Kahle. The Cell Processor Architecture. In Proceedings of the 38th Annual IEEE/ACM

International Symposium on Microarchitecture, pages 3–3. IEEE Computer Society, 2005.

[55] N. Kapre and A. DeHon. SPICE2 : Spatial Processors Interconnected for Concurrent Exe-

cution for Accelerating the SPICE Circuit Simulator Using an FPGA. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 31(1):9–22, 2012.

[56] S. Kestur, J. D. Davis, and O. Williams. BLAS comparison on FPGA, CPU and GPU.

In Proceedings of IEEE Computer Society Annual Symposium on VLSI (IVLSI), pages

288–293, 2010.

[57] Z. Khan, T. Balch, and F. Dellaert. MCMC data association and sparse factorization

updating for real time multitarget tracking with merged and multiple measurements. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28(12):1960–1972, 2006.

[58] S. K. Kim and A. T. Chronopoulos. A class of Lanczos-like algorithms implemented on

parallel computers. Parallel Computing, 17(6):763–778, 1991.

[59] K. R. Liu, S. F. Hsieh, and K. Yao. Systolic block Householder transformation for RLS

algorithm with two-level pipelined implementation. IEEE Transactions on Signal Pro-

cessing, 40(4):946–958, 1992.

[60] Y. Liu, C. S. Bouganis, P. Y. K. Cheung, P. H. W. Leong, and S. J. Motley. Hardware

efficient architectures for eigenvalue computation. In Proceedings of Design, Automation

and Test in Europe, volume 1, pages 1–6. IEEE, 2006.

[61] A. R. Lopes and G. A. Constantinides. A high throughput FPGA-based floating point

conjugate gradient implementation. In Proceedings of Reconfigurable Computing: Archi-

tectures, Tools and Applications, pages 75–86. Springer, 2008.

[62] G. Magnus, J. Demmel, and S. Holmgren. Numerical evaluation of the communication-

avoiding Lanczos algorithm. Technical Report 2012-001, Department of Information Tech-

nology, Uppsala University, Uppsala, Sweden, 2012.

[63] A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control design along trajectories with

sums of squares programming. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2013.

[64] D. T. Marr. Hyper-threading technology architecture and microarchitecture: a hyperhtext

history. Intel Technology Journal, 2002.

[65] M. Mohiyuddin, M. Hoemmeno, J. Demmel, and K. Yalick. Minimizing communication in

sparse matrix solvers. In Proceedings of the 21st ACM Conference on High Performance

Computing Networking, Storage and Analysis, pages 1–12, 2009.

[66] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory performance and cache

coherency effects on an Intel Nehalem multiprocessor system. In Proceedings of 18th

International Conference on Parallel Architectures and Compilation Techniques, pages

261–270. IEEE, 2009.

155

[67] G. E. Moore et al. Cramming more components onto integrated circuits. Proceedings of

the IEEE, 86(1):82–85, 1998.

[68] J. V. Neumann. First Draft of a Report on the EDVAC. Annals of the History of

Computing, IEEE, 15(4):27–75, 1993.

[69] R. Nishtala, R. W. Vuduc, J. Demmel, and K. Yelick. When cache blocking of sparse

matrix vector multiply works and why. Applicable Algebra in Engineering, Communication

and Computing, 18(3):297–311, 2007.

[70] Nvidia. Compute Visual Profiler. http://developer.download.nvidia.com/compute/

cuda/3_2_prod/toolkit/docs/VisualProfiler/Compute_Visual_Profiler_User_

Guide.pdf, 2010.

[71] Nvidia. TESLA C2050 / C2070 GPU computing processor, supercomputing at 1/10th the

cost. http://www.nvidia.co.uk/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_

lores.pdf, 2010.

[72] Nvidia. CuBLAS library. https://developer.nvidia.com/cublas, 2011.

[73] Nvidia. CUSPARSE library. https://developer.nvidia.com/cusparse, 2011.

[74] A. F. Peterson, S. L. Ray, and R. Mittra. Computational methods for electromagnetics,

volume 24. IEEE Press, New York, 1998.

[75] A. Rafique, G. A. Constantinides, and N. Kapre. Communication optimization of iterative

sparse matrix-vector multipy on GPUs and FPGAs. Submitted in Transactions on Parallel

and Distributed Systems, 2013.

[76] A. Rafique, N. Kapre, and G. A. Constantinides. Enhancing performance of Tall-Skinny

QR factorization using FPGAs. In Proceedings of the 22nd IEEE International Conference

on Field Programmable Logic and Applications (FPL), pages 443–450, 2012.

[77] A. Rafique, N. Kapre, and G. A. Constantinides. A high throughput FPGA-Based imple-

mentation of the Lanczos Method for the symmetric extremal eigenvalue problem. In Re-

configurable Computing: Architectures, Tools and Applications, pages 239–250. Springer,

2012.

[78] A. Rafique, N. Kapre, and G. A. Constantinides. Application composition and commu-

nication optimization in iterative solvers using FPGAs. In Proceedings of the 21st IEEE

International Conference on Field-Programmable Custom Computing Machines (FCCM),

2013.

[79] B. D. Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, and E. Hendriks. FPGA accelerator

for real-time skin segmentation. In Proceedings of the IEEE/ACM/IFIP Workshop on

Embedded Systems for Real Time Multimedia, pages 93–97, 2006.

156

[80] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific Computing and Statistical

Computing, 7(3):856–869, 1986.

[81] A. Sahai and D. Cabric. Spectrum sensing: fundamental limits and practical challenges. In

Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum

Access Networks (DySPAN), November 2005.

[82] L. L. Scharf. Statistical Signal Processing, volume 98. Addison-Wesley, 1991.

[83] R. Schreiber and C. V. Loan. A storage-efficient WY representation for products of

Householder transformations. SIAM Journal on Scientific and Statistical Computing,

10(1):53–57, 1989.

[84] G. Sewell. The numerical solution of ordinary and partial differential equations. Wiley-

InterScience, 2005.

[85] R. U. Seydel. Tools for computational finance. Springer, fifth edition, 2012.

[86] M. M. Strout, L. Carter, and J. Ferrante. Rescheduling for Locality in Sparse Matrix

Computations. In Proceedings of the International Conference on Computational Science,

Lecture Notes in Computer Science, pages 28–30. Springer-Verlag, 2001.

[87] P. Sundararajan. High Performance Computing Using FPGAs. WP (Xilinx): WP375

(v1. 0), 10:105, September 2010.

[88] Y.G. Tai, K. Psarris, and C. T. D. Lo. Synthesizing Tiled Matrix Decomposition on

FPGAs. In Proceedings of IEEE International Conference on Field Programmable Logic

and Applications (FPL), pages 464–469, 2011.

[89] K. C. Toh. A note on the calculation of step-lengths in interior-point methods for semidef-

inite programming. Computational Optimization and Applications, 21(3):301–310, 2002.

[90] S. A. Toledo. Quantitative performance modeling of scientific computations and creating

locality in numerical algorithms. PhD thesis, Massachusetts Institute of Technology, 1995.

[91] S. Tomov, J. Dongarra, V. Volkov, and J. Demmel. MAGMA library.

http://icl.cs.utk.edu/magma/software/, 2009.

[92] H. Urkowitz. Energy detection of unknown deterministic signals. Proceedings of the IEEE,

55(4):523–531, 1967.

[93] L. Vandenberghe and V. Balakrishnan. Algorithms and software for LMI problems in

control. IEEE Control Systems Magazine, 17(5):89–95, 1997.

[94] L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review, 38(1):49–95,

1996.

157

[95] J. Villasenor, B. Schoner, K. N. Chia, C. Zapata, H. J. Kim, C. Jones, S. Lansing, and

B. M. Smith. Configurable computing solutions for automatic target recognition. In

Proceedings of the IEEE International Symposium on Field-Programmable Custom Com-

puting Machines, pages 70–79, 1996.

[96] V. Volkov. Better performance at lower occupancy. In Proceedings of the GPU Technology

Conference, GTC, volume 10, 2010.

[97] V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proceed-

ings of the ACM/IEEE Conference on Supercomputing, pages 31:1–31:11. IEEE Press,

2008.

[98] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto. Algorithm 883:

SparsePOP—a sparse semidefinite programming relaxation of polynomial optimization

problems. ACM Transactions on Mathematical Software (TOMS), 35(2):1–13, 2008.

[99] S. Weisberg. Applied Linear Regression, volume 528. Wiley, 2005.

[100] J. H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press, USA, 1988.

[101] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization of

sparse matrix–vector multiplication on emerging multicore platforms. In Proceedings of

the 2007 ACM/IEEE Conference on Supercomputing, SC’ 07, pages 1–12, New York, NY,

USA, 2007. ACM.

[102] M. M. Wolf, E. G. Boman, and B. Hendrickson. Optimizing parallel sparse matrix-vector

multiplication by corner partitioning. PARA08, Trondheim, Norway, 2008.

[103] A. W. Wulf and A. S. Mckee. Hitting the memory wall: implications of the obvious. ACM

SIGARCH computer architecture news, 23(1):20–24, 1995.

[104] Y. Zeng, C. L. Koh, and Y. C. Liang. Maximum eigenvalue detection: theory and appli-

cation. In Proceedings of the IEEE International Conference on Communications, pages

4160–4164, 2008.

158

Glossary

basis vectors basis vectors are orthogonal vectors that can span a whole subspace, e.g. [1,0,0],

[0,1,0] and [0,0,1] are the basis vectors for spanning a three dimensional space. 42

extremal either maximum or minimum value (not the magnitude). 21

Gram-Schmidt Orthogonalization a technique to orthogonalize two vectors x and y such that

xT y = 0, two operations are required: a = xT y and then y = y − ax. 20

QR factorization decompose an m × n matrix A into an m × m orthogonal matrix Q and a

m× n upper triangular matrix R. 20

Silicon Efficiency a ratio of sustained performance to the peak performance of a particular

architecture. 18

SIMD Single Instruction Multiple Data is a compute architecture where all processors are

executing a same instruction on their own portion of the data. 54

spectrum all eigenvalues of a matrix. 31

tall-skinny matrix an m× n matrix where m >> n. 31

159

