IκBα inhibits apoptosis at the outer mitochondrial membrane through a novel, NF-κB–independent, interaction with VDAC1

by

Evangelos Pazarentzos

A thesis submitted for the degree of Doctor of Philosophy

Imperial College London
Faculty of Medicine
Department of Medicine
Division of Experimental Medicine
Acknowledgements

I would like to express my deep and sincere gratitude to my supervisor, Professor Stefan Grimm. His knowledge on the subject and the valuable discussions have been of great value to me. His understanding and personal guidance have provided a good basis for the present thesis. At the same level I would like to express my sincere gratitude to Dr Anne-Laure Mahul-Mellier. Without her the project milestones and several scientific and technical issues wouldn’t have been resolved and special thanks have to be given to her for all the guidance throughout this PhD work.

I am also grateful to Cancer Research UK for offering me the studentship which apart from the total project support, helped me with the tuition fees, living expenses and congresses support for the duration of the project.

Moving from Greece in 2007 has proved challenging at the initial stages of my stay in London and at Imperial College London. I would like to dedicate this present thesis to my parents Voula and Christos and to my sister Anna. Without the support of my family and their valuable advice in difficult moments of this period, this work would never have been as successful as it proved to be.

Contribution to the success of this project and to my personal life achievements has to be recognised for my valuable friends. It would have been
very difficult to overcome certain situations without them on the personal level (all my true friends in Greece – Zacharias, Eva, Chrysta, Marianna, Stamatis, Maria, Vasilis, Petros) and on scientific and personal level (Dr Christopher Watson, Dr Enrico Cristante, Ioanna Eleftheriadou).

I wish to thank Professor Nicholas D Mazarakis and Professor Aristidis Eliopoulos for their suggestions and advice during the evaluation of this thesis. Professor Mazarakis deserves special gratitude for always being next to me and supporting me for difficult scientific and professional challenges. Part of my recent success in my future career is due to his deep knowledge of the field and the people around it. Without him, I believe, the postdoc position in UCSF and the offers I got from Salk Institute and Harvard University, wouldn’t have been feasible.

Last but not least I would like to thank all the members of the Apoptosis research group (Mr Christoph Datler, Ms Ghada Abuali, Mr Bevan Lin, Dr Ryota Iwasawa, Ms Wanwisa Chaisaklert and Mr Ming Hwang) for their help and advices.
Declaration of Originality

I, Evangelos Pazarentzos, hereby declare that the work presented in this thesis is my own and to the best of my knowledge is original. The content of this thesis has not, is not and will not be submitted in any form for another degree or diploma at any university or other institute of tertiary education. Any contents in this thesis, including figures, data, ideas and material obtained from other sources are appropriately cited and acknowledged in the text and a full list of references is given at the end of this thesis.
Abstract

The inducible transcription factor NF-κB is tightly regulated by the inhibitory IκB-family of proteins that associate with the transcription factor and act in response to stress stimuli. The best studied inhibitory protein is IκBα which resides in the cytosol where it retains NF-κB. Our study shows that IκBα also associates with the outer mitochondrial membrane (OMM) and exerts an unexpected novel anti-apoptotic function, independent of NF-κB inhibition. IκBα−/− cells become refractory to apoptosis when IκBα is specifically reconstituted at the OMM. We found that cancer cells with constitutively active NF-κB accumulate IκBα at the OMM and when its expression is down-regulated these cells are sensitised to apoptosis. At the OMM IκBα associates with VDAC1 and hexokinase II (HKII). Our findings show that IκBα inhibits the dissociation of HKII from VDAC1 and prevents Bax-mediated cytochrome c release. Deletion mutants of IκBα reveal a domain necessary for apoptosis inhibition that is different from the domain for NF-κB retention, thereby separating the two functions. These results reveal an unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in diseases involving deregulated NF-κB.
Table of Contents

Acknowledgements .. 2

Declaration of Originality .. 4

Abstract ... 5

Table of Contents .. 6

Publications ... 17

Abbreviations ... 18

A. Introduction ... 22

A.1. Cell Death .. 23

A.1.1. Necrosis .. 23

A.1.2. Apoptosis .. 25

Figure A.1. Necrotic and apoptotic cell death... 27

Table A.1. Differences between apoptosis and necrosis.. 28

Figure A.2. Time lapse images of apoptotic cells: morphological features.. 29

Figure A.3. Time lapse images of apoptotic cells to visualise biochemical features...30

Table A.2. Morphological and biochemical features of apoptotic cells.. 31

A.1.3. The two major pathways of apoptosis initiation... 32
A.1.3.1. Extrinsic apoptotic pathway ..34
A.1.3.1.1. TNF receptor-mediated extrinsic pathway ..34
A.1.3.1.2. Fas receptor-mediated extrinsic pathway ...37
A.1.3.1.3. Caspases and execution of apoptosis in the extrinsic pathway38
A.1.3.2. The intrinsic pathway of apoptosis induction ...39
A.1.3.2.1. The Bcl-2 family members ..41
Table A.3. The Bcl-2 family members ..43
Figure A.4. Bcl-2 family members ..44
A.1.3.2.2. The intrinsic pathway and commitment to apoptosis45
A.1.3.2.3. Bid connects the extrinsic and intrinsic pathway ..46
Figure A.5. Overview of extrinsic and intrinsic apoptosis pathways49
A.1.3.3. Alternative forms of cell death ..50
A.1.3.4. The mitochondrial membrane potential ..52
A.1.3.4.1. Dissecting the molecular mechanism of MOMP ..52
A.1.3.4.2. Bax oligomerization and pore formation ..53
A.2. The mitochondrial permeability transition pore (PTP) ..57
A.2.1. PT-Pore under physiological conditions ..59
A.2.2. PT-Pore under apoptotic/necrotic conditions ...60
A.2.3. VDAC and hexokinase as PT-pore components and modulators...............................66

A.3. The NF-κB system..68

A.3.1. The inducible transcription factor NF-κB ...68

A.3.2. Inhibitors of NF-κB ..70

A.3.3. Activation of NF-κB ...75

A.3.4. Feedback loops and termination of NF-κB ...76

A.3.5. Relation of NF-κB to apoptosis ..78

A.3.6. Mitochondrial localisation of NF-κB and IκBα ..79

A.4. Cancer...82

A.4.1. Cancer and apoptosis..82

A.4.2. Cancer and PT-pore ..83

A.4.2.1. The PT-pore, the Warburg effect and cancer ...86

A.4.2.2. Cancer-associated mechanisms and NF-κB...89

A.4.2.3. Cancer, apoptosis and NF-κB ...91

A.4.2.4. NF-κB in cancers and mechanisms of its activation ...92

Figure A.6. Mechanism of MOMP and apoptosis induction..65

Figure A.7. Structural organisation of NF-κB and IκB proteins ..74

Figure A.8. Representation of IκBα ...81
Figure A.9. Schematic representation of NF-κB-dependent targets which are involved in different stages and aspects of tumourigenesis .. 94

Figure A.10. Constitutive NF-κB activation in human cancers .. 95

B. Objectives and Hypothesis .. 96

B.1. Origin of the project .. 97

Figure B.1. Preliminary data for IκBα .. 99

C. Materials and Methods ... 101

C.1. Reagents and materials ... 102

C.2. Cell culture ... 104

C.3. Plasmid vectors ... 105

C.4. Cloning .. 106

C.4.1. Cloning of MCR1-IκBα ... 106

C.4.2. Cloning of MEET-IκBα .. 107

C.4.3. Cloning of S/D-IκBα .. 107

C.4.4. Cloning of MCR1(AAQQ)-IκBα .. 108

C.4.5. Cloning of IκBα/β-Actin ... 108

C.4.6. Cloning of FLAG-IκBα, MEET-IκBα and IκBα/β-actin into pLenti7.3 109

C.4.7. Cloning of p65BD/β-actin and β-actin into pcDNA3 ... 109

C.4.8. Cloning of 326.CMV.β-actin and 326.CMV.p65BD/β-actin 110
C.4.9. Cloning of deletion mutants ... 110

Table B.1. Primer sets.. 111

C.5. DNA electrophoresis and DNA Recovery .. 112

C.6. Transformation of *E. coli* ... 113

C.7. Extraction of DNA from bacteria ... 114

C.8. Plasmid vector transfections ... 115

C.9. Mitochondria isolation and treatment .. 116

C.10. Nuclear protein extraction .. 117

C.11. Apoptosis assays .. 118

C.11.1. Quantification of cell death .. 118

C.11.2. Propidium Iodide staining .. 118

C.11.3. DiOC₆ / TMRE staining ... 119

C.11.4. Caspase-3 and Bax activity assay ... 119

C.11.5. Cleavage of poly ADP ribosome polymerase (PARP) 120

C.12. Immunoprecipitation .. 120

C.12.1. Immunoprecipitation of endogenous proteins 120

C.12.2. Immunoprecipitation of overexpressed proteins 121

C.13. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting 122
C.13.1. Preparation of whole cell lysate ... 122
C.13.2. Protein concentration measurement ... 123
C.13.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis 123
C.13.4. Immunoblotting ... 124

Table B.2. Antibodies used for immunoblotting and immunoprecipitation 124

C.14. Immunofluorescence .. 126
C.14.1. Immunofluorescence assay .. 126

Table B.3. Primary antibodies used for Immunofluorescence 127
C.14.2. Mitochondrial staining .. 128

C.15. Production of lentiviral particles ... 128
C.15.1. Calculation of viral titre .. 130
C.15.2. Production of stable cell lines ... 131

C.16. IκBα, VDAC and hexokinase II down-regulation by shRNA 131

Table B.4. Sequences of short hairpin DNA used to knock-down the proteins of the indicated genes ... 132

C.17. NF-κB activity assay in 293T and 3T3 IκBα re-constituted cells 133

C.18. In vivo experiments .. 133

C.19. Densitometry analysis .. 135

C.20. Statistical analysis .. 136
C.21. Common buffers used ... 137

D. Results .. 139

D.1. Localisation of IκBα .. 140

D.1.1. Defining the correct experimental setting .. 141

Figure D.1 25ng/ml of Proteinase K (PK) is sufficient to distinguish proteins within mitochondria from those at OMM and in the cytosol ... 141

D.1.2. The kinetics of IκBα degradation by TNF in mitochondria are similar to those in the cytosol .. 142

Figure D.2. Upon TNF treatment, IκBα is degraded with the same kinetics in the mitochondria as in the cytosol .. 143

D.1.3. IκBα degradation in mitochondria is proteasome-independent .. 143

Figure D.3. Mitochondrial IκBα degradation upon TNF treatment is proteasome independent .. 144

D.1.4. IκBα associates with the OMM of several cell lines ... 144

Figure D.4. IκBα is found at the outer mitochondrial membrane ... 147

D.2. IκBα is an apoptosis inhibitor .. 148

D.2.1. Generation and validation of constructs allowing targeting of IκBα to the mitochondria .. 149

Figure D.5. Mcr1-IκBα is targeted to mitochondria ... 150
D.2.2. IκBα is a strong apoptosis inhibitor ...151

Figure D.6. IκBα is a strong apoptosis inhibitor at mitochondria152

D.2.3. Generation and validation of constructs allowing targeting of IκBα to specific sub-mitochondrial localisation ..153

Figure D.7. MEETOIκBα and S/D-IκBα are targeted to the OMM and IMS respectively. ...154

D.2.4. IκBα inhibits apoptosis at the OMM...155

Figure D.8. IκBα is a strong apoptosis inhibitor at the OMM..................................156

D.2.4.1. IκBα but not IκBβ can inhibit apoptosis and its effect is specific at mitochondria ...157

Figure D.9. IκBα but not IκBβ inhibits apoptosis exclusively at the OMM..............158

D.2.5. Reconstitution of IκBα in 3T3 IκBα−/− cells renders them resistant to apoptosis ..159

Figure D.10. Effect of IκBα reconstitution at the OMM and the cytosol in IκBα −/− cells ..163

D.2.6. Knock down of IκBα in cancer cell lines with constitutive NF-κB activity sensitises them for apoptosis...164

Figure D.11. Knock-down of IκBα in cells with constitutively active NF-κB sensitizes them to apoptosis..169
D.2.7. In vivo MDA-231 tumour shrinkage with doxorubicin after knock-down of IκBα...170

Figure D.12. Mouse xenografts from chemotherapy-resistant MDA-231 cells are re-sensitized after IκBα knockdown ..173

D.3. IκBα is a PT-pore modulator ..174

D.3.1. Endogenous interaction of IκBα and components of the PT-pore175

Figure D.13. IκBα interacts with subunits of the PT-pore176

D.3.2. IκBα requires the PT-pore to exert its anti-apoptotic effect177

Figure D.14. IκBα exerts an anti-apoptotic effect through the PT-pore178

D.3.3. IκBα targets VDAC1 to exert its anti-apoptotic effect179

Figure D.15. IκBα targets VDAC1 to exert its anti-apoptotic effect181

D.3.4. IκBα dissociates from VDAC1 upon apoptosis ...182

Figure D.16. IκBα dissociates from VDAC1 upon apoptosis183

D.4. The anti-apoptotic effect of IκBα is structurally and functionally independent from its function on NF-κB inhibition ..184

D.4.1. Functional mutants of IκBα can still inhibit apoptosis186

Figure D.17. Mutants of IκBα for NF-κB inhibition function can diminish apoptosis ...187

D.4.2. The N-terminal domain of IκBα is necessary for apoptosis inhibition188
Figure D.18. The N-terminal domain of IκBα interacts with VDAC1 and is necessary for apoptosis inhibition.

D.4.3. The IκBα domain sufficient for apoptosis inhibition consist of the N-terminus and the first ankyrin repeat.

Figure D.19. IκBα’s N-terminal domains with the first ankyrin repeat are sufficient to inhibit apoptosis.

D.5. Mechanism of apoptosis inhibition by IκBα.

D.5.1. IκBα inhibits Bax-induced cytochrome-C release.

Figure D.20. IκBα inhibits Bax-induced cytochrome-C release.

D.5.2. IκBα stabilizes the VDAC1-HXKII complex.

Figure D.21. IκBα stabilizes the VDAC1-HXKII complex.

E. Discussion

E.1. Summary of the study.

E.2. Mitochondrial localisation of IκBα and apoptosis inhibition.

E.3. Evidence for resistance to apoptosis through mitochondrial IκBα: proof of concept.

E.5. IκBα domain mapping and its dual activity.

Figure E.1. Model of IκBα localisation and function. (A)
F. Appendix .. 229

F.1. Plasmids .. 230

F.2. IκBα and IκBβ .. 237

G. Bibliography .. 238
Publications

Manuscripts in preparation

IκBα inhibits apoptosis at the outer mitochondrial membrane through a novel, NF-κB-independent, interaction with VDAC1 (first author)

CKMT1 inhibits apoptosis and acts as a gatekeeper of mitochondria permeability transition pore opening

Kail is a dependence receptor
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>AIF</td>
<td>Apoptosis Inducing Factor</td>
</tr>
<tr>
<td>ANK</td>
<td>Ankyrin Repeat</td>
</tr>
<tr>
<td>ANT</td>
<td>Adenine Nucleotide Translocator</td>
</tr>
<tr>
<td>Apaf-1</td>
<td>Apoptotic Peptidase Activating Factor 1</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium Persulfate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BA</td>
<td>Bongkrekic Acid</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell Lymphoma 2</td>
</tr>
<tr>
<td>BH domain</td>
<td>Bcl-2 Homology Domain</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CHX</td>
<td>Cycloheximide</td>
</tr>
<tr>
<td>CsA</td>
<td>Cyclosporin A</td>
</tr>
<tr>
<td>Cyp-D</td>
<td>Cyclophilin D</td>
</tr>
<tr>
<td>Cyt-C</td>
<td>Cytochrome C</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DAPI</td>
<td>4,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DIABLO</td>
<td>Direct IAP binding protein with low PI</td>
</tr>
<tr>
<td>DioC</td>
<td>3,3-dihexyloxacarbocyanine iodide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxy nucleotide triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene Glycol-bis(2-aminoethylether)-N-N-N-N-tetraacetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmatic Reticulum</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescent activated cell sorter</td>
</tr>
<tr>
<td>Gag</td>
<td>Group Antigen</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GRP-75</td>
<td>Glucose regulating protein 75</td>
</tr>
<tr>
<td>HBS</td>
<td>HEPES buffered saline</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid</td>
</tr>
<tr>
<td>HXK</td>
<td>Hexokinase</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse Radish Peroxidase</td>
</tr>
<tr>
<td>IkBα</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor</td>
</tr>
<tr>
<td>IKK</td>
<td>IkB kinase</td>
</tr>
<tr>
<td>IMM</td>
<td>Inner Mitochondrial Membrane</td>
</tr>
<tr>
<td>IMS</td>
<td>Inter-membrane space</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>IP</td>
<td>Immunoprecipitation</td>
</tr>
<tr>
<td>IVT</td>
<td>In-Vitro Translated</td>
</tr>
<tr>
<td>MOMP</td>
<td>Mitochondrial Outer Membrane Permeabilisation</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa-light-chain-enhancer of activated B cells</td>
</tr>
<tr>
<td>NLS</td>
<td>Nuclear Localisation Signal</td>
</tr>
<tr>
<td>OMM</td>
<td>Outer Mitochondrial Membrane</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PARP</td>
<td>Poly ADP-Ribose Polymerase</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>Pol</td>
<td>Reverse Transcriptase</td>
</tr>
<tr>
<td>PT-pore</td>
<td>Permeability Transition pore</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene Fluoride</td>
</tr>
<tr>
<td>Rev</td>
<td>Reverse Transcriptase</td>
</tr>
<tr>
<td>RIP</td>
<td>Receptor Interaction Protein</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SC</td>
<td>Scramble</td>
</tr>
<tr>
<td>S.D.</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>shRNA</td>
<td>Short Hairpin RNA</td>
</tr>
<tr>
<td>Smac</td>
<td>Second mitochondria derived activator of caspase</td>
</tr>
<tr>
<td>STS</td>
<td>Staurosporine</td>
</tr>
<tr>
<td>TMRE</td>
<td>TetraMethylRhodamine Ethyl ester</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>TRAIL</td>
<td>TNF-related apoptosis inducing Ligand</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage Dependent Anion Channel</td>
</tr>
<tr>
<td>VSVG</td>
<td>Vesicular Stomatitis Virus Glycoprotein</td>
</tr>
<tr>
<td>WT</td>
<td>Wild Type</td>
</tr>
<tr>
<td>β-gal</td>
<td>beta-galactosidase</td>
</tr>
<tr>
<td>ΔΨm</td>
<td>Mitochondrial Electrochemical protein gradient</td>
</tr>
</tbody>
</table>
A. Introduction
A.1. Cell Death

Homeostasis is a term referring to a property of a system, which controls its internal structure and stabilises any parameter that may affect the balance so as to keep the performance of the system high. Typically, the term is used in biology to describe anything from a cell to a multicellular organism. It was first used by Claude Bernard and Walter Cannon and extensive research has commenced on the molecular factors that might influence homeostasis. Cell death is a critical process for the control of homeostasis and tissue integrity in multicellular organisms. Two major, yet fundamentally different forms of cell death have been identified that accomplish homeostasis: necrosis and apoptosis.

A.1.1. Necrosis

The origin of the word necrosis comes from the ancient Greek “nekros”, whose literal translation is “a dead body”. This form of cell death is a spontaneous, passive process resulting in an early disruption of the plasma membrane and the progressive breakdown of cellular organelles accompanied by organelle swelling (oncosis). The swelling leads to the lysis of the cell and the leakage of cellular contents into the extracellular space, which provokes an inflammatory response (Figure A.1.) (Leist & Jaattela, 2001). Neighbouring cells can also undergo necrosis upon lysis of an individual cell, thus necrotic cell death can affect a group of cells (Stoica & Faden, 2010). Cellular necrosis is caused by several external causes,
mostly strong perturbation of the environment (extreme high or low temperatures for example), mechanical trauma, infections and poisons. Clinically, hypoxic cells or tissues that underwent ischemic injury often show necrotic cell death. Additionally, venoms produced by certain animals or infections by particular bacteria can cause rapid and severe necrosis, for example Group A streptococcus in necrotizing fasciitis (Roje et al., 2011). As mentioned above, necrotic cell death is generally caused by extreme stress or a major failure in homeostatic regulation (Raffray & Cohen, 1997; Syntichaki & Tavernarakis, 2003). Consequently, it is essentially the accidental death of a cell and can be caused by conditions that are so extreme in nature that the cell has not the opportunity to respond (Syntichaki & Tavernarakis, 2003). However, recently the view that necrosis is not merely an accidental cell death is gaining support. Cells whose apoptosis system is inhibited or compromised, can still die following an apoptotic stimulus but show all the characteristics of necrosis (Edinger & Thompson, 2004). Whether this type of cell death is physiologically relevant or whether it occurs only in very distinct circumstances in nature is a field of intense investigation.
A.1.2. Apoptosis

In the early 1970s, John Kerr and his group noticed a peculiar form of cell death in acute liver injury in rats and named this process shrinkage necrosis (Kerr et al., 1972). Later, during the same decade, having studied the features of shrinkage necrosis in comparison with necrosis, this form of cell death was given the name “apoptosis”. The term ‘apoptosis’ is often used to describe the process of programmed cell death (PCD); also referred to as cell suicide. However, some authors have pointed out that the terms “apoptosis” and “PCD” should not be deemed interchangeable since during development, when most of the cell death is ‘programmed’ in some way, there is some cell death that does not fit the defining characteristics of apoptosis. Some of these features will be mentioned later. Nevertheless, many authors have not adopted this distinction in their writing (Haanen & Vermes, 1995; Kiechle & Zhang, 2002; Sloviter, 2002) and in this text, unless declared otherwise, the terms ‘apoptosis’, ‘programmed cell death’, and ‘cell suicide’ will also be used synonymously.

Apoptosis is a mode of cell death quite distinct from necrosis, not just because it is a programmed and regulated mechanism but also in terms of its morphology and biochemistry (Bohm & Schild, 2003). It can be characterized by special morphological (Figure A.2., Table A.2.) and biochemical features (Figure A.3., Table A.2) such as blebbing of the plasma membrane, chromatin condensation, cell shrinkage, nucleus fragmentation, energy dependence,
containment of lysosomal enzymes and the absence of an inflammatory response (Bohm & Schild, 2003; Kiechle & Zhang, 2002).

In multicellular organisms, apoptosis plays an important role in, among other scenarios, the immune response, development, and tissue homeostasis (Bohm & Schild, 2003; Haanen & Vermes, 1995; Janssen et al., 2000; Kerr et al., 1972). In particular apoptosis is important for the elimination of unnecessary neurons during the development of the nervous system, the removal of autimmune lymphocytes in the thymus, and the maintenance of the stability in cell numbers in dynamic tissues such as the skin and those of the gut (Haanen & Vermes, 1995). Apoptosis exerts its effect even in unicellular organisms that seem capable of employing this mode of cell death for their suicide. Bacteria as unicellular organisms will commit to an altruistic death in order to prevent damage or promote survival of the total population. For instance, a viral infection would promote the activation of the cell death machinery of this bacterium in order to prevent the spread of the infection. Another example would be the autolytic pathway of the bacteria which serves as a programmed suicide mechanism and allows the exchange and acquisition of the lysed bacteria DNA from other surrounding bacteria (Lewis, 2000). Though PCD may look detrimental from the perspective of an individual cell, it can have a positive effect in a more complex multicellular community – namely the elimination of defective cells in order to aid the survival of those that function properly. Removal of DNA-damaged cells for
reducing the mutation rate is another aspect of apoptosis that multicellular organisms can benefit from and this response is also observed in both unicellular prokaryotes and eukaryotes (Lewis, 2000; Pereira et al., 2008).

![Figure A.1. Necrotic and apoptotic cell death.](image)

Figure A.1. Necrotic and apoptotic cell death. (A) Necrotic cell undergoing cell lysis and the contents of the intracellular organelles are released into the extracellular environment. (B) Late stage apoptotic cell forming several membrane enclosed vesicles as depicted by the presence of small vacuolar structures in the cytosol. (C) An apoptotic cell is engulfed for clearing. *Figure was taken from thesis of Dr A-L Mahul Mellier*
Apoptosis is an integral part of cell homeostasis with several distinct or interconnected aspects. Morphological changes, cell cycle alterations, DNA and phenotypical variability, although important, are not central to the findings of this study and hence will not be extensively covered. However, those aspects of apoptosis that link molecular signalling pathways to disease will be discussed and extensively analysed with special emphasis on genes and proteins affecting the signalling pathways of apoptosis inhibition or execution and its connection to tumourigenesis.

<table>
<thead>
<tr>
<th>Apoptosis</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affects individual cells</td>
<td>Affects group of neighbouring cells</td>
</tr>
<tr>
<td>No inflammatory response</td>
<td>Major inflammatory response</td>
</tr>
<tr>
<td>Cell shrinkage</td>
<td>Cell swelling</td>
</tr>
<tr>
<td>Membrane blebbing with maintained integrity</td>
<td>Loss of membrane integrity</td>
</tr>
<tr>
<td>Increase of mitochondrial membrane permeability, release of proapoptotic factors and formation of apoptotic bodies</td>
<td>Organelle swelling and lysosomal leakage</td>
</tr>
<tr>
<td>Chromatin condensation and controlled DNA fragmentation</td>
<td>Random DNA degradation</td>
</tr>
<tr>
<td>Apoptotic bodies ingested by neighbouring cells</td>
<td>Macrophage phagocytosis of lysed cells</td>
</tr>
</tbody>
</table>

Table A.1. Differences between apoptosis and necrosis
Hela cells were transfected with eGFP and cells undergoing spontaneous apoptosis were captured. Initially cells present equal cytoplasmic staining and gradually spherical structures start appearing when cells begin to die (second pane onwards). As apoptosis progresses, numerous apoptotic bodies appear and eventually cells round up and lose focal adhesion. *Pictures were taken using a Leica scanning confocal microscope in intervals of 2 hours.*
Figure A.3. Time lapse images of apoptotic cells to visualise biochemical features. Hela cells were transfected with the cytosolic calcium indicator YC3.6. Cells were subsequently treated with doxorubicin (2µM) and CaspaTag caspase 3/7 sulforhodamine (a dye that only binds to activated caspase-3 or/and -7 and emits red fluorescence upon binding). The top 6 panels show the time course of cytosolic calcium increase (as indicated by the increased green fluorescence) and the activation of caspase 3/7 (as indicated by the red fluorescence). The bottom two figures show the cytosolic calcium elevation and the caspase 3/7 activation of a representative cell. Images and graphs were taken from the thesis of Dr R. Iwasawa
Table A.2. Morphological and biochemical features of apoptotic cells.

<table>
<thead>
<tr>
<th>Morphological Features</th>
<th>Biochemical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell shrinkage</td>
<td>Free $[\text{Ca}^{+2}]_c$ rise</td>
</tr>
<tr>
<td>Chromatin condensation</td>
<td>DNA degradation</td>
</tr>
<tr>
<td>Nuclear fragmentation</td>
<td>Caspase activation</td>
</tr>
<tr>
<td>Membrane blebbing</td>
<td>Loss of mitochondrial membrane potential</td>
</tr>
<tr>
<td>Cell detachment</td>
<td>Phosphatidylserine externalisation</td>
</tr>
<tr>
<td>Production of apoptotic bodies</td>
<td></td>
</tr>
<tr>
<td>Phagocytosis of cell corpses</td>
<td></td>
</tr>
</tbody>
</table>
A.1.3. The two major pathways of apoptosis initiation

Two major pathways that lead to the induction of programmed cell death are known: the extrinsic and intrinsic pathway. Apoptosis can be instigated by the activation of death receptors (DR) on the cell surface or can be induced by signaling processes that are initiated within the cell as a result of stress and/or damage by, say, exposure to particular drugs (Elliott & Elliott, 2009; Kiechle & Zhang, 2002). The former type of apoptosis is termed receptor-mediated or extrinsic while the latter is called mitochondria-mediated or intrinsic (Figure A.5.)

Apoptotic pathways involve many proteins that are required to orchestrate the complex signalling pathways. The two apoptosis pathways share a basic signaling cascade: the initiation phase, the integration/decision phase and the execution phase. The initial reception of the apoptotic signal is highly heterogeneous and depends on the nature of the death-inducing signals. In the extrinsic pathway, it is the ligand interacting with a "death receptor" and in the case of the intrinsic pathway, it is damage inflicted on cellular organelles (such as the nucleus, endoplasmic reticulum, lysosomes, Golgi apparatus or mitochondria). The integration/decision phase involves the formation of a caspase-activation complex and initiation of the enzymatic activity of the caspase proteases. Cells then pass the point of no return and are destined to die. In the last, the execution phase, morphological and biochemical changes occur due to the cleavage of
cellular proteins by caspases. The biggest difference between the extrinsic and the intrinsic pathway is the initial reception of the death signals. In the extrinsic pathway the cell obtains its first apoptotic signal from plasma membrane receptors, whereas BH3-only proteins of the Bcl-2 family usually sense the signals in the intrinsic pathway.

In essence, the receptor-mediated, extrinsic pathway is initiated by DRs, situated at the cell’s plasma membrane, when binding to their ligands. This process, via specific mediators, goes on to trigger a proteolytic cascade that leads to the cleavage of specific proteins in the cell, thus committing the cell to apoptosis (Ashkenazi, 2008).

The mitochondria-mediated, intrinsic apoptotic pathway does not require the binding of ligands to receptors at the cell surface but rather is a stress-induced process involving mitochondria. In particular, specific cellular events take place under conditions of cell stress that lead to the disruption of the outer mitochondria membrane (OMM). This allows the release of several pro-apoptotic mitochondrial factors, which trigger a cascade of effector caspases that can then, as in the extrinsic pathway, commit the cell towards apoptosis (Green & Kroemer, 2004).
A.1.3.1. Extrinsic apoptotic pathway

As mentioned above the extrinsic or death receptor-dependent pathway of apoptosis receives its signal from plasma membrane receptors (Ashkenazi & Dixit, 1998). These receptors belong to the tumour necrosis factor (TNF) receptor superfamily and are characterized by the presence of two to five copies of cysteine-rich extracellular repeats. This superfamily includes Fas (also known as Apo-1 or CD95), TNF-receptor-1 (TNF-R1), death receptor-3, TNF-related apoptosis inducing ligand receptor-1 (TRAIL-R1 or DR4), TRAIL-R2 (DR5) and death receptor 6. Of all the plasma membrane receptors that can mediate a signal for apoptosis the TNF-R1- and the Fas receptor are the most intensively studied and hence will be further discussed.

A.1.3.1.1. TNF receptor-mediated extrinsic pathway

Tumour necrosis factor (TNF) is a multifunctional pro-inflammatory cytokine mainly produced by macrophages. TNF is involved in the progression of many diseases such as rheumatoid arthritis and Crohn’s disease and inhibitors of TNF are used for therapeutic purposes. TNF can bind two kinds of TNF receptors (TNFR), TNFR1 and TNFR2 (de Jong et al., 2001).
On the plasma membrane, TNF-R1 forms, upon binding its ligand, a homotrimer. This brings the death domain (DD) in the cytosolic moiety of the proteins in close proximity, which facilitates the recruitment of several adaptor proteins to form a death-inducing signaling complex (DISC) leading to the activation of initiator caspases. In the absence of TNF the receptor is bound to Silencer of DD (SODD), which inhibits the recruitment of the adaptor proteins for caspase activation thus acting as a negative regulator of apoptosis (Figure A.5.) (Jiang et al., 1999). Upon binding of the ligand, SODD dissociates from the TNF-R1 complex exposing the DD and facilitating the recruitment of another DD-containing protein, the “TNF-R1-associated death domain protein” (TRADD) (Figure A.5.) (Hsu et al., 1995). Following the binding of TRADD to the TNF-R1 complex, there are two possible consequences.

One scenario is that the DD of TRADD recruits the “receptor interaction protein (RIP)” and the “TNF receptor-associated factor-2” (TRAF2) (Chen & Goeddel, 2002; Hsu et al., 1996). This tetra-protein complex consisting of TNF-R1, TRADD, RIP1, and TRAF2 is known as complex I (Figure A.5.), (TNF receptor mediated pathway, left). This complex can lead to one of three different responses (Figure A.5.). In one case the “nuclear factor-κB” (NF-κB) is activated and promotes survival of the cells (Lin et al., 1999). This is triggered and regulated by the phosphorylation of its inhibitor IκBα. This begins with the recruitment of the heterodimer of IκBα kinases (IKKα and IKKβ) and the regulatory protein NEMO

Evangelos Pazarentzos | PhD Thesis
(also known as IKKγ) to the TNF-R1 signaling complex I by TRAF2 (Devin et al., 2003). RIP1 seems to stabilise the IKK complex. In the second response, c-Jun N-terminal kinase (JNK) is activated through complex I. Upon activation of JNK, it translocates to the nucleus and activates transcription factors, for example, c-Jun and ATF-2, by phosphorylation. These transcription factors control the regulation of several genes including those involved in apoptosis regulation, for example c-IAP and c-FLIP (Hu et al., 1997; Srinivasula et al., 1997)) thereby preventing the induction of apoptosis. In the last response, “RIP1-associated ICH-1/CED-3 homologous protein with death domain” (RAIDD) or synonymously known as “caspase and RIP adapter with death domain” (CRADD) associates with RIP (Ahmad et al., 1997; Duan & Dixit, 1997). A domain similar to the caspase recruitment domain (CARD) of RAIDD is able to activate initiator procaspase-2 to a mature caspase-2 for the induction of cell death (Baud & Karin, 2001; Duan & Dixit, 1997; Shearwin-Whyatt et al., 2000).

The second, fundamentally different scenario of TNF-R1-mediated apoptosis involves a different set of proteins that are recruited to the receptor. TRADD associates with TNF-R1 complex through its DD, which then recruits “Fas-associated death domain” (FADD). In addition to a DD, FADD also contains a death effector domain (DED) for the recruitment of DED-containing initiator caspases (procaspase-8 and -10). The complex of TNF-R1, TRADD, FADD and procaspases-8 or -10 is known as “complex II” (Figure A.5.). This recruitment of procaspases
results in a temporal elevation of caspases concentration around the TNF-R1, which leads to their mutual cleavage and activation (Kim et al., 2000) via the proximity-induced dimerization model. The activated caspase-8 or -10 then cleave and activate effector caspases such as procaspase-3 or -7 for the execution of cell death (Figure A.5.)

Consequently, the TNF-R1 activation does not uniformly induce cell death as it can both result in a pro-survival pathway or in a pro-apoptotic pathway. The NF-κB pathway and the JNK pathway lead to the expression of pro-survival proteins (Stehlik et al., 1998; Wajant et al., 2003). A study in mice indicated that the loss-of-function of proteins involved in the NF-κB activation pathway are either embryonic lethal or results in neonatal fatality (Beg et al., 1995b). This indicates that the ability of TNF to induce apoptosis is concomitantly suppressed in vitro by a constitutive activation of NF-κB. Research I conducted during this PhD thesis as part of another project revealed that the ubiquitin-specific protease USP2a is a component of the TNFR1 complex and has a pivotal role in the conversion of complex I into complex II and hence the decision for cell death over survival (Mahul-Mellier et al., 2011).

A.1.3.1.2. Fas receptor-mediated extrinsic pathway

Fas is a heavily glycosylated 40-45kDa plasma membrane protein involved in cytotoxic T-cell killing. The Fas receptor homotrimerizes at the plasma
membrane upon ligand binding similarly to the TNF-R1 (Ashkenazi & Dixit, 1998; Pitti et al., 1996; Smith et al., 1994). Association of the Fas ligand with the Fas receptor forms a platform for caspase activation known as “death inducing signalling complex (DISC)” via the DD of the Fas receptor (Figure A.5.) Fas receptor mediated pathway (Boldin et al., 1995; Chinnaiyan et al., 1995; Kischkel et al., 1995; Nagata, 1997). The adaptor protein FADD is first recruited to the Fas-receptor, and the DED of the FADD allows the association of procaspases-8 or -10 (Chinnaiyan et al., 1995; Medema et al., 1997). The formation of the DISC quickly increases the local concentration of pro-caspases, which in turn cleave each other and thereby become mature, active caspases (Boatright et al., 2003; Donepudi et al., 2003; Walczak & Krammer, 2000). As is the case of the TNFR complex, activated caspase-8 or -10 then activate downstream effector pro-caspases such as procaspases-3 or -7 (Stennicke et al., 1998), which execute apoptosis by substrate cleavage (Figure A.5.)

A.1.3.1.3. Caspases and execution of apoptosis in the extrinsic pathway

The caspases that bind the adaptor proteins of the DISC are called initiator (or activator) caspases and comprise caspases-8 and -10 (Ashkenazi, 2008; Budihardjo et al., 1999). All caspases involved in apoptosis in a physiologically normal cell are present as inactive precursors (“pro-caspases”) which, when
brought into close proximity of one another, are, due to the low intrinsic protease activity possessed by pro-caspases, able to cleave each other to form a large and small subunit that associate as tetramers to make up the active form of the enzyme. Once activated, the caspases can go on to cleave other pro-caspase molecules into their active states. Active caspases are thus able to activate even more caspases to ultimately result in a caspase cascade (Budihardjo et al., 1999; Elliott & Elliott, 2009; Kiechle & Zhang, 2002; Mancini et al., 1998).

Activated initiator caspases proceed to cleave and activate a group of caspases known as effector caspases (e.g. caspases-3, -6, and -7). These effector caspases can also cleave and activate further caspases, to enhance the caspase cascade (Ashkenazi, 2008; Budihardjo et al., 1999; Mancini et al., 1998). Effector caspases are able to process key proteins such as ICAD (inhibitor of caspase activated DNase), thereby facilitating DNA degradation by caspase-activated DNases (CAD), and cleaving intermediate filament proteins, which generate nuclear lamins that are involved in the composition of the cytoskeleton, ultimately producing the cellular phenotype of apoptosis (McConkey et al., 1996; Mow et al., 2001; Nicholson & Thornberry, 1997).

A.1.3.2. The intrinsic pathway of apoptosis induction

As its name suggests, the intrinsic pathway or the mitochondria-dependent pathway of apoptosis is initiated from an organelle within the cell. This is usually in
response to cellular signals resulting from irreparable DNA damage, presence of toxic levels of oxidative stress, endoplasmatic reticulum stress, growth factor deprivation, calcium flux, UV irradiation or treatment with chemotherapeutic drugs. All these signals converge on mitochondria (Figure A.5.) (Green et al., 2004) for the induction of mitochondrial outer membrane permeabilisation (MOMP (Green & Kroemer, 2004)).

For years mitochondria have solely been considered a chemical powerhouse and a cellular compartment that hosts several biosynthetic and biodegrading pathways. It still is the organelle where the vast majority of ATP is produced. So its role in the survival of the cell is considered critical. Now this organelle is also regarded as the major player in the intrinsic pathway of apoptosis. Proteins that are involved in the respiratory chain are major players in the apoptotic machinery. Cytochrome c (Cyt-c) or complex II proteins are some examples (Lemarie & Grimm, 2011; Lemarie et al., 2011). The architecture of mitochondria as revealed through biochemical and electron microscopy studies possess a rather complex structure. (Newmeyer & Ferguson-Miller, 2003). Outer membrane and intermembrane space proteins proved to be major players in the apoptotic machinery such as Cyt-c. During apoptosis, the permeabilisation of the OMM often coincides with the reduction of the mitochondrial membrane potential ($\Delta \Psi_m$) over the inner mitochondrial membrane (Goldstein et al., 2000). Maintaining the $\Delta \Psi_m$ appears now as an important prerequisite for cell survival.
Details of the induction of MOMP will be discussed in later sections, but the activation of Bax or Bak seems to be fundamentally required for MOMP. The signalling cues for the activation of the intrinsic pathway either directly promote Bax/Bak activation or achieve this indirectly by modulating/inhibiting the activity of anti-apoptotic Bcl-2 family members, such as Bcl-2 or Bcl-X\textsubscript{L} (Figure A.5.).

A.1.3.2.1. The Bcl-2 family members

Bcl-2 was first identified as a proto-oncogene by a common translocation in human follicular B-cell lymphoma and the overexpression of Bcl-2 in transgenic animal models mimicked the human disease (McDonnell et al., 1989; McDonnell & Korsmeyer, 1991; Tsujimoto et al., 1985). Unlike other oncogenes that promote cell proliferation to produce cancer, Bcl-2 was found to inhibit cell death induced by multiple physiological and pathological stimuli (Hockenbery et al., 1990; Kinloch et al., 1999; Vaux et al., 1988). There are over twenty Bcl-2 family members identified and examples are shown in Table A.3.. The sequence alignment of Bcl-2 family members revealed that they share at least one of the possible four conserved Bcl-2 homology domains (BH domain) and often contain trans-membrane domains (TM) at the C-terminus for membrane anchorage (Figure A.4.). Functionally, the Bcl-2 family members can be divided into three groups: anti-apoptotic, pro-apoptotic, and BH3-only pro-apoptotic (Table A.3.). The anti-apoptotic members, such as Bcl-2 and Bcl-XL (Boise et al., 1993), contain all four BH domains (BH1, BH2, BH3 and BH4 domains, Figure A.4.). The pro-apoptotic members, Bax (Oltvai

Evangelos Pazarentzos | PhD Thesis
et al., 1993) and Bak (Chittenden et al., 1995; Farrow et al., 1995; Kiefer et al., 1995) for example, contain only three BH domains (BH1, BH2 and BH3 domains, Figure A.4.). Lastly, BH3-only members, such as Bim and Bid possess only the BH3 domain (Figure A.4.) and act by either suppressing the activity of anti-apoptotic Bcl-2 family members or by activating/promoting the activity of pro-apoptotic members of the Bcl-2 family.

The founding family member, Bcl-2, is a 26kDa protein localized to mitochondria (Hockenbery et al., 1990), the endoplasmic reticulum (ER) and other peri-nuclear membranes (Korsmeyer, 1995). It is involved in the maintenance of mitochondrial membranes. It balances the interaction between other members of Bcl-2 family members such as Bax. Together with other anti-apoptotic Bcl-2 family members or with other mitochondrial apoptosis modulators, Bcl-2 works to prevent MOMP and the release of cytochrome c from mitochondria, and thereby promotes cell survival.

On the contrary, pro-apoptotic members promote the release of cytochrome c from mitochondria, and this decision is regulated by the ratio between anti-apoptotic and pro-apoptotic Bcl-2 members present in the cell (Danial & Korsmeyer, 2004). Bax was the first pro-apoptotic member of Bcl-2 family to be identified through its interaction with Bcl-2 (Oltvai et al., 1993). In its inactive state, Bax is localized largely in the cytosol as a monomer although some Bax molecules are loosely attached to the outer mitochondrial membrane. Upon reception of
apoptosis signals, however, Bax undergoes an allostERIC conformational change and gets inserted into the outer mitochondrial membrane (OMM) (Desagher et al., 1999). The activated Bax then undergoes homo-oligomerization or hetero-oligomerization with Bak, another pro-apoptotic Bcl-2 member (Gross et al., 1998). This oligomerization has been postulated to form a pore to allow the release of inter-membrane space (IMS) proteins (discussed later in detail). The double knockout of Bax and Bak makes cells resistant to almost all death-stimuli for the intrinsic pathway of apoptosis (Lindsten et al., 2000; Wei et al., 2001) and hence, these two proteins constitute a required gateway for the intrinsic pathway to be operative in mitochondria (Wei et al., 2001). BH-3 only members trigger apoptosis in response to various stimuli by acting as upstream sentinels, which selectively respond to specific signals by first receiving the death signals and transmitting them to other members of Bcl-2 family proteins (Cheng et al., 2001).

<table>
<thead>
<tr>
<th>Anti-apoptotic members</th>
<th>Pro-apoptotic members</th>
<th>BH3-only pro-apoptotic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>Bcl-X<sub>L</sub></td>
<td>Bcl-W</td>
</tr>
<tr>
<td>Bim</td>
<td>Bik</td>
<td>Bad</td>
</tr>
</tbody>
</table>

Table A.3. The Bcl-2 family members
Figure A.4. Bcl-2 family members. The Bcl-2 family members can be divided into three functional groups: anti-apoptotic, pro-apoptotic and pro-apoptotic BH3-only. Their functions vary but at least one of the Bcl-2 homology domains (BH domains) is present in all members. Anti-apoptotic members contain all four BH domains (BH1,2,3 and 4) whereas pro-apoptotic members possess only three BH domains (BH1,2 and 3). Many family members also contain a transmembrane domain for membrane anchorage. Bcl-Xs contains a BH3 and BH4 domain and NOXA contains two BH3 domains. Mcl-1 contains only BH1 and BH3 domains.
A.1.3.2.2. The intrinsic pathway and commitment to apoptosis

Following the activation of Bax and the induction of MOMP, several pro-apoptotic proteins are released from mitochondria into the cytosol (Figure A.5), These include endonuclease G (endoG), Omi/Htra2, apoptosis inducing factor (AIF), Smac/Diablo (second mitochondria-derived activator of caspases), and most importantly cytochrome-c (Halliwell & Gutteridge, 2007; Leung & Halestrap, 2008; Liu et al., 1996a; Pereira et al., 2007). AIF translocates to the nucleus and brings about apoptosis in a caspase-independent manner by causing chromatin condensation and DNA fragmentation (Kang et al., 2010). Smac/Diablo is believed to act by inhibiting the activity of caspase through blocking proteins belonging to the inhibitors of apoptosis (IAP) family (Adrain et al., 2001; Halliwell & Gutteridge, 2007). Released cytochrome-c forms a complex comprising itself, an adaptor protein called “apoptotic proteinase activating factor-1” (Apaf-1), procaspase-9, and ATP as a heptamer known as the apoptosome. The apoptosome is capable of activating caspase-9 (Acehan et al., 2002; Li et al., 1997; Srinivasula et al., 1998). Caspase-9 can then cleave effector caspases -3, -7 and -6, in a similar way as the initiator caspases of the receptor-mediated pathway, and initiate a caspase cascade leading to apoptosis (Adrain et al., 2001; Beurel & Jope, 2006; Brown & Borutaite, 2008; Halliwell & Gutteridge, 2007; Kang et al., 2010).
MOMP can also occur in a manner independent of Bax activation, namely through the opening of the permeability transition pore that will be extensively discussed later.

A.1.3.2.3. Bid connects the extrinsic and intrinsic pathway

The extrinsic and intrinsic pathways of apoptosis are initiated in a fundamentally distinct manner. Thus, the two pathways were thought to be completely separable. However, they both depend in their execution on effector caspases activation. The knockout of either caspase-8 (Varfolomeev et al., 1998) or FADD (Yeh et al., 1998) abrogates the responses mediated by death receptor ligand-induced apoptosis whereas the mitochondrial pathway of apoptosis remains intact. Conversely, the knockout of either Apaf-1 (Cecconi et al., 1998; Yoshida et al., 1998) or caspase-9 (Hakem et al., 1998; Kuida et al., 1998) abolishes apoptosis induced by stimuli affecting the intrinsic pathway like cell stress but the cells still execute apoptosis through death receptor ligands. A controversy arose when expression of Bcl-2 was found to alleviate Fas-induced apoptosis (Scaffidi et al., 1998). This led to the consideration that mitochondrial Bcl-2 family members may be involved in the extrinsic pathway. It was later found that a BH3-only protein, named Bid, bridges the two pathways. Recruitment and the activation of procaspase-8 in the DISC complex provides sufficient concentration of activated caspase-8 for the execution of apoptosis in certain cell types (type I cells). However, in type II cells activation of caspase-8 in the DISC complex is insufficient
to fully induce apoptosis and requires the presence of Bid. Bid is a substrate of caspase-8 (Gross et al., 1999; Li et al., 1998; Luo et al., 1998) and the truncated Bid (tBid-after activation from caspase-8) translocates to mitochondria where it triggers the release of Cyt-c by interacting with Bax (Figure A.5.) (Desagher & Martinou, 2000; Eskes et al., 2000; Zamzami et al., 2000). This promotes the formation of the apoptosome and the activation of procaspase-9. The ectopic expression of Bid was also found to enhance the activation of procaspase-3 induced by TNF indicating the importance of Bid in linking the extrinsic and the intrinsic pathways of apoptosis (Luo et al., 1998)
Figure A.5. Overview of extrinsic and intrinsic apoptosis pathways.

Receptor-mediated extrinsic pathway

Upon binding of TNF to the TNF-R1, SODD dissociates and the receptor forms either complex I or complex II. Complex I consists of TNF-R1, TRADD, TRAF2 and RIP. It can either activate NF-κB, recruit RAIDD to activate procaspase-2 or activate the JNK pathway. USP2a levels are important for the decision of formation of complex II. The latter is constituted of TNF-R1, TRADD, FADD and either procaspase 8 or -10. These caspases are activated at this complex. The ligation of Fas-L to the Fas-R results in the homo-trimerization of Fas-R and recruitment of FADD along with the pro-caspases-8 or -10. Those group together to form the DISC where procaspases-8 or -10 are activated and in turn they activate downstream caspases.

Mitochondria-mediated intrinsic pathway

Cellular stress such as DNA damage, calcium influx, UV irradiation, chemotherapeutic drug treatment, growth factor deprivation, ischemia or ER-stress, signal to BH3-only members of the Bcl-2 family. They either suppress the anti-apoptotic Bcl-2 family proteins or promote the activation of Bax to induce the permeabilisation of the outer mitochondrial membrane. The permeabilisation occurs either by Bax forming pores or via the activation of the PT-pore. Both lead to the rapture of the OMM and release of pro-apoptotic proteins from the mitochondria intermembrane space such as cytochrome-c, AIF, endonuclease G or Smac/DIABLO. Released cytochrome-c forms a complex with Apaf-1 and procaspase-9 that is termed apoptosome where caspase-9 is activated and alone or through caspases3/7 lead to apoptosis.
A.1.3.3. Alternative forms of cell death

As mentioned earlier, classic apoptosis is defined by biochemical and morphological changes which include caspase activation, mitochondrial dysfunction, membrane blebbing, and DNA fragmentation. There are, however, some forms of cell death that cannot easily be categorised. An irreversible inhibitor of caspases (zVAD-fmk), that binds to the catalytic site of a caspase through an aspartate residue by mimicking the cleavage site and a fluoromethyl ketone (fmk) group forming a covalent inhibitor-enzyme complex (Thornberry et al., 1994), should be able to inhibit all apoptotic pathways. However, not all cell death pathways are inhibited by this compound. Ectopic expression of Bax without another death stimulus triggers cell death leading to the breakdown of mitochondrial function (loss of membrane potential, release of Cyt-c, AIF and other pro-apoptotic proteins), which was reported not to be inhibited by zVAD-fmk (Xiang et al., 1996). Moreover, other proteases like granzymeA/B, cathepsins and calpains, seem to play a role in apoptosis (Johnson, 2000; Leist & Jaattela, 2001). Caspase-independent apoptosis is thus triggered by these proteases with many apoptotic characteristics still present.

Upon MOMP apoptosis inducing factor (AIF) is released from mitochondria. As mentioned before, AIF translocates to the nucleus when released and induces chromatin condensation and DNA fragmentation (Susin et al., 2000). This process is also promoted by another inner mitochondrial protein, endonuclease G, which
likewise translocates to the nucleus upon its release (Li et al., 2001). This apoptotic function is pivotal for mouse morphogenesis during embryoid body cavitation (Joza et al., 2001). Of note, this death-inducing pathway also cannot be inhibited by zVAD-fmk (Green & Reed, 1998; Vermeulen et al., 2002; Xiang et al., 1996).

Virally infected cells are eliminated by T cells and natural killer cells by a process of granule exocytosis pathway. The cytotoxic granules deliver a pore-forming protein, perforin, and a family of serine proteases. These granzymes have two isoforms and one of them, granzyme B, is able to activate caspase-3 and -9, which leads to the cleavage of Bid and iCAD resulting in apoptosis (Alimonti et al., 2001). Statins can induce apoptosis via activation of caspases but without the release of cytochrome c but with Smac and Omi/HtrA2 (Ghavami et al., 2010). Calpains represent another example of cell death proteases that initiate a type of cell death that is difficult to be classified with the known characteristics of apoptosis. It is known that calpains share some substrates of caspases but the fine line between necrotic and apoptotic cell death resides in the balance of these cysteine proteases (Harwood et al., 2005). During development and in neuronal cells, another type of cell death is observed. It is termed “paraptosis” and it is characterised by vacuolation and mitochondria swelling (as observed in necrosis) but also it requires energy and new protein synthesis (as observed in apoptosis). Although caspase 9 is required for paraptosis, its function is different between
apoptosis and paraptosis since BAF (Boc-Asp(O-methyl)CH₂F) caspase inhibitor is incapable of inhibiting caspase 9 during paraptosis (Sperandio et al., 2000).

A.1.3.4. The mitochondrial membrane potential

Permeabilisation of the OMM leading to a loss of ΔΨm is regarded as a critical event in the mitochondria-mediated apoptosis pathway, but whether loss of ΔΨm is the decisive mechanism for apoptosis induction or a consequence is still under intense investigation. There are two significant ways in which loss of ΔΨm can take place (Green & Kroemer, 2004). Bax proteins can associate with the OMM and form pores that lead to its permeabilisation as well as sequester Bcl-2 proteins, which suppress apoptosis thereby contributing towards the initiation of the disruption of the OMM, and ultimately the release of pro-apoptotic factors into the cytoplasm (Beurel & Jope, 2006; Green & Kroemer, 2004; Kiechle & Zhang, 2002) Beurel & Jope, 2006). Another route for the loss of ΔΨm is through the activation of the mitochondrial permeability transition pore complex (Grimm & Brdiczka, 2007).

A.1.3.4.1. Dissecting the molecular mechanism of MOMP

The mitochondria have been presented so far in this thesis as pivotal organelles for the intrinsic pathway of apoptosis. One of the key regulatory events in the mitochondria-dependent apoptosis pathway is the mitochondrial outer membrane permeabilisation (MOMP), which results in the release of proteins from
the intermembrane space (IMS) of mitochondria (Kroemer et al., 2007) with Cyt-C being an example. The MOMP is regarded as the “point of no return” in the cascade of events leading to apoptosis (Kroemer & Reed, 2000) and precedes apoptotic cell death both in vitro (Zamzami et al., 1995a) and in vivo (Zamzami et al., 1995b). The molecular mechanism of OMM permeabilisation remains not fully understood, although it has been observed universally during apoptosis. As mitochondria release all of their Cyt-c within minutes following the apoptotic stimulus in a temperature-independent manner, it was thought that an enzymatic transport is not involved in this process (Goldstein et al., 2000). It is now widely accepted that an enzymatic process of transport is not responsible since the transporter proteins of the pore do not function as such but become unspecific channels. There are now two dominant theories to explain the mechanism of MOMP. One involves the pro-apoptotic Bcl-2 family member proteins, Bax and Bak, and their oligomerization and insertion into the OMM to form a pore (see above). The other theory involves a mega-protein complex known as permeability transition (PT) pore that connects the inner and outer mitochondrial membranes and is converted into an unspecific channel to allow membrane permeabilisation.

A.1.3.4.2. Bax oligomerization and pore formation

Structural similarities of Bcl-2 family members with bacterial toxins that get inserted into the membrane were the initial reason why Bcl-2 family members were thought to be involved in MOMP (Suzuki et al., 2000). It was made clear later
that they are indeed major regulators of MOMP (Kroemer, 1997; Susin et al., 1996; Vaux & Korsmeyer, 1999; Wei et al., 2001): Anti-apoptotic members of Bcl-2 family were shown to prevent the release of Cyt-c from mitochondria indicating that Bcl-2, regulates the integrity of the OMM (Gross et al., 1999; Kluck et al., 1997; Yang et al., 1997; Zamzami & Kroemer, 2001). On the contrary, pro-apoptotic members of the Bcl-2 family, such as Bax or Bak, were reported to induce Cyt.-c release (Rosse et al., 1998). In healthy cells, Bax is localized mainly in the cytosol as a non-active monomer but there are some Bax molecules loosely attached to mitochondrial membrane (Hsu et al., 1997; Wolter et al., 1997). It was discussed earlier that upon an apoptotic stimulus Bax undergoes an allosteric conformation, which is required for a Bax-induced MOMP (Antonsson et al., 2000; Desagher et al., 1999). This activated form of Bax is then believed to homo-oligomerize to create selective protein-permeable pores (Figure A.6.) that allow Cyt-c to be released into the cytosol (Dewson & Kluck, 2009). Bax activation possibly coincides with Bak activation, which exists inserted into the OMM in healthy cells (Griffiths et al., 1999) and likewise undergoes an allosteric conformational change so it becomes activated to homo-oligomerize contributing to the pore formation (Green, 2005; Mikhailov et al., 2003). Growing evidence allows supports that the BH3 domain of Bax and/or Bak is exposed and the oligomerization takes place between BH3 and the hydrophobic groove of another activated Bax or Bak molecule (Dewson & Kluck, 2009). This pore allows proteins in the IMS to be released into the cytosol
without affecting the function of the inner mitochondrial membrane (IMM) and/or the mitochondrial matrix. However, how these factors, especially Bax, “find their way” to the OMM or how they interact with the OMM to form a macromolecular protein-permeable pore remains an ongoing conundrum. It is possible that the lipid-protein interaction is important (Lucken-Ardjomande & Martinou, 2005; Zamzami & Kroemer, 2003) and it is also possible that Bax or Bak do not form a pore but simply destabilize the lipid bilayers instead (Basanez et al., 2002).

Transgenic double knockout Bax/Bak −/− cells are resistant to apoptosis induced by UV irradiation, staurosporin (STS), growth factor deprivation, etoposide, and ER stress by thapsigargin and tunicamycin (Wei et al., 2001). Ectopic expression of anti-apoptotic Bcl-2 proteins can likewise inhibit the apoptosis induced by overexpression of BH3-only proteins (Gross et al., 1999), which induce apoptosis via Bax or Bak. Vesicles composed of purified mitochondrial outer membranes can be permeabilized in response to the activated form of recombinant Bax and vesicles made of mitochondrial lipids without the presence of any mitochondrial proteins were permeabilized by the introduction of recombinant monomeric Bax in the presence of Bid or Bid-derived BH3 peptide (Antonsson et al., 2000; Eskes et al., 1998; Jurgensmeier et al., 1998; Narita et al., 1998).

Bcl-2 family members are very important for the regulation and initiation of MOMP as explained above. Yet, more signals contribute to MOMP upstream of
Bcl-2 members. Bim, Bid and PUMA which are BH3-only proteins directly associate with Bcl-2 family and act upstream of Bax or Bak activation, whereas Bad or Bik inhibit the activity of anti-apoptotic Bcl-2 therefore favouring the process of MOMP (Cheng et al., 2001; Kuwana et al., 2002; Letai et al., 2002). There are other non-Bcl-2 family proteins that possess similar properties. The tumour suppressor p53 regulates the expression of BH3-only members such as Puma and Noxa by certain stimuli (Vousden & Lu, 2002), and Puma-deficient cells display resistance to p53-induced apoptosis (Jeffers et al., 2003). However, p53 can also trigger MOMP and apoptosis in the absence of its transcription factor activity through direct activation of Bax (Chipuk et al., 2004) or Bak (Leu et al., 2004). Additionally, many other nuclear proteins function in the cytosol leading to MOMP. An example is histone 1.2, which is released upon X-ray-induced DNA damage and can trigger apoptosis (Konishi et al., 2003). Hexokinases, which reside in the cytosol can interact with VDAC, and this interaction can inhibit the MOMP induced by Bax (Majewski et al., 2004a). VDAC-Hexokinase interaction will be extensively covered in other sections of this study.
A.2. The mitochondrial permeability transition pore (PTP)

In late 80s research conducted on calcium (Ca\(^{2+}\)) led to the discovery of the permeability transition (PT) concept (Hunter et al., 1976). It was observed that Ca\(^{2+}\) addition to isolated mitochondria led to a transition of mitochondria with an increase in the permeability of the inner mitochondrial membrane (IMM). This led to matrix swelling and eventually to a catastrophic collapse of the mitochondria membrane potential (ΔΨ\(_m\)) and the shutdown of the energy synthesis. Patch-clamp experiments showed that a megachannel or PT-pore as it was named, mediated high conductances, which were attenuated by cyclosporine A (CsA), Mg\(^{2+}\) and adenosine di-phosphate (ADP). However, the same molecules could inhibit the effects observed on isolated mitochondria after calcium administration. This observation lead to the proposal that the megachannel was responsible of the Ca\(^{2+}\)-dependent permeability transition (Broekemeier et al., 1989; Petronilli et al., 1989; Szabo & Zoratti, 1991, 1992).

The PTP complex is composed of several, albeit not clearly defined, proteins. It is currently believed that the major PTP complex consists of “voltage-dependent anion channel” (VDAC), an OMM protein; “adenine nucleotide translocator” (ANT), which spans the IMM; and “Cyclophillin D” (CypD), which associates with ANT and resides in the matrix (Figure A.6.) (Beutner et al., 1996;
Crompton et al., 1998). In addition, hexokinase-II (HK), peripheral benzodiazepine receptor (PBR) associate with the OMM and creatine kinase1 (CK1) is localized in the IMS, all of which have been reported to interact with the PTP complex (Verrier et al., 2004). The above mentioned PT-pore components constitute the classical PT-pore although the exact composition of the PTP is still the subject of scientific debate, since there are several reports that describe contradictory information about the composition of the pore. Nevertheless, the classical PT-pore fits the results of the present study and further insight will be given at later chapters.

Irrespective of any dispute on the pore composition there is agreement on the localisation of this structure at contact sites between the outer and the inner mitochondrial membrane (Brdiczka, 1991; Crompton, 2000). A consensus on the approximate size of this megachannel also exists with the PTP being a multi-protein complex of 600 kDa (Beutner et al., 1996; Faustin et al., 2004). PTP proteins can also be part of other sub-complexes that control energy metabolism or initiation of cellular death (Crompton et al., 2002; Zoratti et al., 2005). The outer mitochondrial membrane has a semi-permeable nature due to VDAC which allows the passage of small solutes of up to 1.5kDa allowing the exchange of respiratory-chain substrates such as NADH, FADH, and ATP/ADP between the IMS and the cytosol. In contrast, the IMM is almost impermeable and this sustains an electrochemical proton gradient ($\Delta \Psi m$) by the oxidative phosphorylation by complex I to IV of the respiratory chain (Colombini, 1983; Mitchell & Moyle, 1965a,
b). Under physiological conditions, $\Delta \Psi_m$ ranges between 120 to 180mV, with the intra-mitochondrial side being negative. This polarization attracts lipophilic cations and they accumulate at 100 to 1000 fold higher concentration in the matrix than in cytosol. As a result, several different cationic fluorochromes are employed to measure the $\Delta \Psi_m$ (Castedo et al., 2002).

A.2.1. PT-Pore under physiological conditions

It is common knowledge that the mitochondria are the energy factories of every cell and in order to maintain the normal functions such as the $\Delta \Psi_m$, the biosynthesis of molecules and the movement of metabolites, mitochondria have to be tightly controlled. ADP/ATP channelling is one of the main functions of the PT-pore. Matrix, IMS and cytosol are all compartments that are involved in this process including ANT and VDAC. CK and hexokinase are feeding this process according to cellular energy demand (Brenner & Grimm, 2006).

The pool of adenine nucleotides, the matrix pH, the redox state and the $\Delta \Psi_m$ are all parameters that need to be controlled and in turn regulate the physiological function of the PT-pore (Halestrap et al., 1997). A transient permeability of the IMM to protons, water and solutes can stabilise the mitochondria homeostasis under certain conditions but more extended alterations can also affect the cell fate by changing the physiological function of PT-pore (Le Bras et al., 2005).
A.2.2. PT-Pore under apoptotic/necrotic conditions

Cellular stress such as excessive production of reactive oxygen species (ROS) or the deregulation of calcium homeostasis lead to the opening of the PTP (Bernardi, 1999; Duchen, 2000; Zoratti & Szabo, 1995). Persistent PTP opening initiates a bioenergetic crisis accompanied by depletion of ATP, calcium deregulation and influx of solutes and H$_2$O. Ultimately, these changes result in the loss of the mitochondrial membrane potential ($\Delta \Psi_m$), a distorted balance of osmotic pressure leading to swelling of the mitochondrial matrix and cristae remodelling (Figure A.6.) (Kroemer & Reed, 2000; Susin et al., 1998). The matrix swelling induces the swelling of the IMM and finally the rupture of the OMM leading to the release of IMS proteins such as Cyt-c and AIF (Figure A.6.), resulting in the loss of mitochondrial structure and functional integrity (Green & Kroemer, 2004; Zamzami & Kroemer, 2001). Apoptosis through calcium-mediated mitochondrial PT has been observed in variety of treatments such as calcium ionophores, thapsigargin, neurotoxins, chemotherapeutic agents and pro-oxidants. Such calcium-mediated apoptosis can often be suppressed by the repression of calcium uptake into mitochondria (treatment with ruthenium red or its derivative Ru360) or by the inhibition of PTP by cyclosporine A, sangliferin or bongkrekic acid (Waldmeier et al., 2002). The opening of PTP does not necessarily result in the permeabilisation of membranes. Transient opening (“flickering”) of the PTP is physiological and provides mitochondria with a fast calcium release, which
helps to regulate calcium homeostasis and signalling thereby preventing the induction of apoptosis. Calcium is released from ER and is taken up from mitochondria but it can still be released without affecting the mitochondrial integrity through the PT-pore “flickering” (Petronilli et al., 1999; Zoratti & Szabo, 1995). In addition, although the loss of the mitochondrial membrane potential has been regarded as one of the characteristics of apoptosis, this - especially if it happens only for a short duration - does not necessarily originate from persistent PTP opening as many different signals can induce a transient loss of ∆Ψm. As it will be discussed later, the duration and the strength of the stimulus determines the involvement of PT pore in necrosis or apoptosis (Kroemer et al., 1998).

It has been proposed that there are three different possibilities about how the permeabilisation of the OMM is accomplished in cooperation with the PT pore during apoptosis and they all deal with the kinetics of Bax. The first scenario proposes that PT-pore opening precedes the Bax translocation from the cytosol to the mitochondria (Precht et al., 2005). In the second scenario the PT-pore opens only after Bax has translocated to the OMM (Eldering et al., 2004; Weaver et al., 2005), whereas according to the third scenario Bax and Bak co-operate on the OMM forming pores and allowing permeabilisation without the involvement of the IMM or the PT-pore (Eskes et al., 1998; Piret et al., 2004). An explanation for the difficulty to determine the scenario involved in OMM permeabilisation could lie in the different detection sensitivities of the methods used. The detection of one
pathway or protein activation is not enough to determine the sequence of events since another, more sensitive method can be utilized and the activation of another factor or signalling pathway would appear earlier.

Apoptosis is not the only type of cell death that the PT pore can regulate. Numerous examples of cell damage show that the PT-pore is also involved in necrosis (Grimm & Brdiczka, 2007). When comparing the energy dependence of the apoptosis signals a general conclusion can be drawn: if ATP is involved the cell will undergo apoptosis and where energy is not needed the passive, necrotic procedure will be activated (Leist et al., 1997). Ischemia of cells with subsequent reperfusion represents an instance of PT-pore involvement in necrosis. During this process free ADP and Ca\(^{+2}\) increase and the subsequent reperfusion is characterised by an imbalance of high intra-mitochondrial substrates for the respiratory chain versus low ADP, which in turn leads to superoxide production and oxidative stress (Crompton & Costi, 1990). Oxidative stress then activates the PT-pore and results in further increase of the free ADP. In agreement with this example, cyclosporin A, which is a PT-pore inhibitor, was found to protect cardiomyocytes from \(\Delta \Psi_m\) collapse and cell death induced by ischemia/reperfusion (Grimm & Brdiczka, 2007).

Cyclophilin D as a pore component was also seen to be involved in necrosis and in some cases the respective experimental procedure determined the involvement of cyp-D only in necrosis and not apoptosis. One study (Nakagawa et
al., 2005) showed that upon H₂O₂ administration the PT-pore was involved via cypD and claimed that only necrosis is regulated by PT-pore. On the other hand H₂O₂ was also used in a study in which Cyp-D was absent and it was found that apoptosis was affected (Baines et al., 2005). The difference in those studies is probably due to the different concentrations of the drugs that were used to induce cell death. Consequently, the duration and the strength of the signal for the induction cell death can determine which type of cell death is induced but conclusion for the exclusive involvement of the PT-pore in either of the pathways cannot be drawn.

Hence, depending on the experimental model, the PT-pore can be consequence or cause of the fatal signalling pathway and only after the characterization of the cell death type can its real contribution be defined.
Figure A.6. Mechanism of MOMP and apoptosis induction.

Bax/Bak pores (left side). Pro-apoptotic members of Bcl-2 family member, Bax and Bak, form a macromolecular protein permeable pore after Bax has been activated and translocated to the outer mitochondrial membrane by homo-oligomerization. The pore allows the egression of intermembrane space proteins, such as Cyt-c and AIF.

PT-pores (right side). The classical permeability transition pore (PTP) complex which is comprised of VDAC1, ANT1, cyclophilin D (cyp-D) and Hexokinase, regulate the MOMP. In healthy cells (upper panel), PTP complex allows small molecules such as NADH and FADH to pass between cytosol and mitochondrial matrix. However, upon stress such as calcium influx or ROS production, the PTP becomes leaky resulting in the influx of water into the matrix. This causes matrix swelling, cristae remodelling and eventually rapture of the OMM allowing pro-apoptotic proteins to get released into the cytosol. Hexokinases bind to VDAC at the OMM and occupy the binding site where Bax can bind. Upon apoptosis, hexokinases are released and Bax can bind to VDAC allowing the opening of a mega pore which leads in the release of pro-apoptotic proteins from the IMS.
A.2.3. VDAC and hexokinase as PT-pore components and modulators

VDAC was characterized as a hexokinase binding protein at the OMM and soon it became apparent that hexokinase I or II bind to the OMM and this binding is enhanced via their interaction with VDAC1 (as one of the most abundant OMM proteins) (Fiek et al., 1982). Hexokinases are differentially expressed in most tissues but in cancer cells hexokinase II (HXKII) is highly overexpressed and bound to mitochondria contributing to high tumour glycolysis, also known as the Warburg effect (Pedersen et al., 2002). There are four isoforms of hexokinases identified so far but HXKI and HXKII are mostly involved in mitochondria binding, have greater glucose affinity and possess a 15aa N-terminal sequence that allows them to bind to VDAC1 (Azoulay-Zohar et al., 2004).

Recent studies demonstrate that the VDAC1-HXKII interaction is critical and when stabilized, prevents apoptosis induction in tumours (Pastorino & Hoek, 2003; Vyssokikh & Brdiczka, 2004). Conversely, disruption of this protein complex can induce apoptosis or sensitise tumour cells to cell death (Zaid et al., 2005). Hexokinase as an anti-apoptotic molecule promotes the "closed" conformation of VDAC, leading to inhibition of Ca\(^{2+}\)-induced apoptosis through the PT-pore. (Azoulay-Zohar et al., 2004). Binding of HXKII to VDAC1 restricts the availability of free VDAC sites that can interact with Bax and also prevents Bad to associate with the OMM and induce apoptosis (Capano & Crompton, 2002; Pastorino et al.,
Another model of how the VDAC1-HXKII complex affects the PT-pore could be through ANT-1. Cyp-D alters the conformation of ANT-1 which in turn alters the VDAC1 conformation that allows strong binding of hexokinase so that the permeability transition is inhibited and so that ultimately the PT-pore cannot open. According to that model the level of Cyp-D and its interaction with ANT-1 stabilises VDAC1 through enhanced hexokinase binding (Crompton, 1999; Machida et al., 2006; Vyssokikh & Brdiczka, 2003).

As mentioned above, Cyclophilin D (CypD) is a member of the PT-pore megachannel localized in the matrix of mitochondria. Overexpression, knockout and knock-down studies conclude that CypD appears to be a critical component of the PT-pore with anti-apoptotic or pro-apoptotic characteristics (Baines et al., 2005; Schinzel et al., 2005; Schubert & Grimm, 2004). Recent studies demonstrate that mitochondrial binding of HXKII is affected by Cyp-D and the anti-apoptotic effects of Cyp-D maybe exerted via the stabilized binding of HXKII to mitochondria (Chiara et al., 2008; Machida et al., 2006) thereby contributing to the high glycolytic rate that is observed in cancers and enhancing the Warburg effect (see below).
A.3. The NF-κB system

A.3.1. The inducible transcription factor NF-κB

The “nuclear factor κ-light-chain-enhancer of activated B-cells” (NF-κB) family of transcription factors is expressed in a diverse number of cell and tissue types and is understood to play an important role in the inflammatory response (Baeuerle & Henkel, 1994; Baichwal & Baeuerle, 1997). NF-κB is in its active state dimeric; this can be a homodimer or heterodimer of five known subunits: NF-κB1 (p50/p105), NF-κB2 (p52/p100), RelA (p65), RelB, and c-Rel (Gilmore, 2006). All the subunits possess a structurally conserved region of about 300 amino acids, termed the Rel homology domain (RHD), which contains the domains necessary for subunit dimerization, nuclear localisation, and also DNA binding. The subunits also feature a region called the transactivation domain (TD), which is necessary to promote the transcription of target genes. However, two subunits, NF-κB1 and NF-κB2, when they form homodimers, can only act as repressors of transcription since they do not have the TD (Li & Verma, 2002). An example of their ability to positively and negatively regulate transcription is exemplified with the KAI1 metastasis suppressor gene. In this case p50 is converted into a suppressing complex with the help of the β-catenin oncoprotein (Kim et al., 2005). All the subunits can be classified in two groups. The “NF-κB protein” group contains p50 and p52, which is generated after removal of the c-terminus of p105 and p100.
respectively, and the “Rel group” of proteins consisting of p65, RelB and c-Rel. In most cells NF-κB dimers are mainly, but not exclusively, composed of NF-κB1 and RelA (p50/p65) (Aggarwal, 2000; Bauerle et al., 2010).

The site where NF-κB transcription factors bind is a highly variable 9-10 base pair DNA sequence (κB site) with the following consensus 5’-GGGRNWYYCC-3’ where R=A or G, N=any nucleotide, W=A or T and Y=C or T. With the exception of RelB, all the subunits from both groups can form homodimers. This high combination capacity of the NF-κB subunits gives the cell, dependent on its protein expression profile, the ability to activate specific genes since the various dimers exhibit differential binding affinities to promoters (Gilmore, 2006).

In most cells NF-κB is present with its subunits sequestered in the cytosol by a family of inhibitory proteins called “inhibitors of κB” (IκB), which will be further covered below (Baeuerle & Henkel, 1994; Li & Verma, 2002). In stimulated cells a sequence of molecular events take place that lead to the degradation of these inhibitory proteins, allowing the NF-κB dimer to enter the nucleus and carry out its function as a transcriptional activator or repressor. The cytokines interleukin-1 (IL-1) and TNF-α, the latter of which we discussed earlier as being involved in apoptosis induction, are two of the most important activators of NF-κB (Li & Verma, 2002). In fact, almost every cytokine of the TNF family and also chemotherapeutic apoptosis-inducing agents activate NF-κB (Aggarwal, 2000). Figure A.7. shows the structural organization of Rel and NF-κB protein families.

Evangelos Pazarentzos | PhD Thesis
A.3.2. Inhibitors of NF-κB

IκBs are primarily cytoplasmic proteins and function by sequestering and maintaining the inactivity of NF-κB (Gilmore, 2006). The IκB family, as the NF-κB transcription factor family, has several members such as IκBα, IκBβ, IκBε and Bcl-3, all of which are identifiable by the presence of several copies of a structural motif known as ankyrin repeat – the motif is involved in protein-protein interactions (Hayden & Ghosh, 2012). Different IκBs bind differentially to NF-κB dimers and their expression levels also vary in different tissues. From biochemical studies and after their structures were determined it became apparent that IκBs are directly interacting with NF-κBs by making multiple contacts (Chen & Ghosh, 1999).

Generally, the contact sites cover the nuclear localization signal (NLS) and sequences responsible for DNA binding.

The general structural organisation of IκBs is shown on Figure A.7. The best characterised IκB family member is IκBα (Figure A.8. The structural analysis of the IκBα:NF-κB complex revealed that IκBα contains 5 or 6 ankyrin repeats (depending on the classification of the sixth ankyrin repeat as independent or as part of the C-terminus domain of the IκBα protein (Jacobs & Harrison, 1998; Sachdev et al., 1998b). For this study the five ankyrin repeat structure was followed as described in the protein database Uniprot. The IκBα is comprised of three distinct regions: The N-terminal regulatory domain for signal dependent degradation, the ankyrin
repeat domain and the C-terminal part, which contains a PEST sequence (Haskill et al., 1991).

Bacterial infections, cytokines, or stress signals, all lead to the phosphorylation of the N-terminal part of IκBα at position 32 and 36. This phosphorylation allows the ubiquitination of the protein at lysines 21 and 22 by K48 ubiquitin chains, leading to its proteasomal degradation (DiDonato et al., 1996; DiDonato et al., 1997; Lee et al., 1997; Lee et al., 1998; Palombella et al., 1994; Rodriguez et al., 1996; Roff et al., 1996; Scherer et al., 1995). Proteolytic removal of IκBα leads to the exposure of the NLS of p65 or similar subunits, which in turn allows the translocation of NF-κB into the nucleus. A mutation on residues 32 and 36 substituting the serines with alanines converts IκBα into a super-repressor (IκBα-SR) since proteolytic degradation cannot take place and NF-κB is permanently inhibited (Van Antwerp et al., 1996).

The ankyrin repeat domain (ARD) allows the interaction of IκBα with NF-κB subunits. For example, there are several contact sites on IκBα that are responsible for the interaction with p65 or p50. ANK1 and ANK2 bind to the NLS of p65 allowing IκBα to adopt the correct conformation to bind to the rest of p65. ANK3 has the fewest sites for p65 binding and ANK4 and ANK5 also facilitate binding of p50 and the dimerization domain of p65 (Jacobs & Harrison, 1998).
It is believed that the ankyrin repeats of IκBα bind directly to the NLS of only one of the two NF-κB dimer subunits – this is enough to prevent NF-κB’s transcriptional activity (Li & Verma, 2002). The NLS of the other, unbound, subunit allows entry of an inactive IκBα:NF-κB complex into the nucleus while a nuclear export sequence (NES) found on the IκBα molecule at aa45-54, facilitates the export of this complex out of the nucleus. In this way a balance is maintained by continually shuffling the inactive complexes between the two compartments (Baeuerle & Henkel, 1994; Li & Verma, 2002; Turpin et al., 1999). The export process has been found to be much more efficient than the import process, thereby creating a much higher quantity of the inactive complex in the cytoplasm. Mutagenesis of IκBα within the second ankyrin repeat (IκBα-110A3) at residues 115,117 and 120 render IκBα completely incapable to enter the nucleus in this complex and inhibit DNA binding and transcriptional activation (Sachdev et al., 1998b). The precise reason why a cell would carry out the energy dependent process of moving the inactive IκBα:NF-κB complex in and out of the nucleus is not clear.

There are several functions attributed to IκB proteins. In the cytoplasm, IκBs prevent the translocation of NF-κB to the nucleus, whereas in the nucleus, IκBα can dissociate DNA-bound NF-κB from the DNA and also export the NF-κB back to the cytoplasm as an inactive complex (Baeuerle & Henkel, 1994; Ghosh et al., 1998; Gilmore, 2006; Li & Verma, 2002). Responsible for the dissociation of DNA-
bound NF-κB is the C-terminal part of IκBα. When in the nucleus, IκBα, through its acidic residues at the c-terminus (aa282-308), is able to remove DNA-bound NF-κB and export it to the nucleus. Deletion analysis of IκBα C-terminus revealed that deletion of aa280-317 inactivated the ability of IκBα to inhibit p65, p50 (Hatada et al., 1993b) and c-Rel Δ282-308 (Luque & Gelinas, 1998). Deletion of the PEST-like sequence within the C-terminus of IκBα completely abrogated the ability of IκBα to release NF-κB from the DNA (Ernst et al., 1995).

Generation of IκBα−/− mice gave further insight into the properties of IκBα. These mice show constitutive NF-κB activation, enhanced granulopoiesis and neonatal lethality, suggesting IκBα to be the prototype IκB that can primarily control the p50/p65 complex (Beg et al., 1995a; Hayden & Ghosh, 2012). TNF stimulation of these cells extensively activated the NF-κB pathway and due to the absence of IκBα the kinetics of NF-κB termination of transcription was very slow. The expression of IκBβ under the promoter of IκBα reconstituted the kinetics of NF-κB signalling (Beg et al., 1995a; Cheng et al., 1998; Klement et al., 1996). The mechanism by which IκBα and other IκBs control the NF-κB response became more complicated through the finding that the model of cytoplasmic sequestration is only partially true since the absence of IκBα, IκBβ and IκBε does not alter the distribution of p65 between cytosol and nucleus but confirmed that stimulus-dependent NF-κB activation requires the above mentioned IκBs (Tergaonkar et al., 2005).
Figure A.7. Structural organisation of NF-κB and IκB proteins. Members of the NF-κB and IκB families are shown. NF-κB family members form dimers with the most abundant being the p50/p65 heterodimer. p65 has a strong transactivation domain (TAD) and is responsible for most of NF-κB’s transcriptional activity. p50/p65 and p50/c-Rel dimers are regulated by IκBs which cause their retention in the cytosol. All NF-κB proteins contain a Rel-homology domain (RHD) which mediates their dimerization and binding to the DNA. IκBs trap NF-κB proteins by masking the NLS which is within the RHD. Activation of NF-κB requires the proteolytic degradation of IκBs via their N-terminal region which contains sequences prone to ubiquitination. PEST sequences are acidic and are required for the inhibition of NF-κB from DNA binding. GRR: glycine-rich region; LZ: leucine zipper domain; DD: death domain. On the right the amino-acid sequence length is shown.
A.3.3. Activation of NF-κB

There are two well-established pathways for NF-κB activation and a novel third pathway, which comprises a distinct processing of the NF-κB proteins. Although their importance is unquestionable, the analysis for the current thesis will focus on the so-called canonical NF-κB activation pathway.

NF-κB activation is accomplished by stimuli that degrade IkBα. Phosphorylation of IkBα proteins and subsequent ubiquitination, targets them to the 26s proteasome and the IKK complex is primarily involved in this phosphorylation process (Karin & Ben-Neriah, 2000). The IKK components are IKKα and IKKβ and the NF-κB essential modulator (NEMO) or IKKγ. IKKα and IKKβ form homo or hetero-dimers however, IKKβ is mostly involved in the canonical pathway to phosphorylate IkBα (Delhase et al., 1999). NEMO is a scaffold, sensing protein that binds IKKα or IKKβ and amplifies the signal transduction pathway of kinases to phosphorylate IkBα (Hayden & Ghosh, 2012). The distinction between the canonical and non-canonical pathways is made by the requirement of NEMO. In the non-canonical pathway an upstream inducing kinase (NIK) activates IKKα and signals towards the activation of p100 which is phosphorylated and converted into p52 (Hayden & Ghosh, 2012).

Generally, the two pathways can be activated concurrently but they have very distinct regulatory functions (Bonizzi & Karin, 2004; Silverman & Maniatis, 2001). The activation of the canonical pathway is triggered by activation of
Tumour necrosis factor receptors 1/2 (TNFR1/2), T cell receptors (TCR), B cell receptors (BCR) and Toll like receptors (TLR). Upon upregulation of transcription of genes regulating chemokines, cytokines, adhesion molecules, cell survival and inflammatory responses, the canonical pathway shuts down. On the other hand the non-canonical pathway is triggered by activation of specific TNF receptor family members like LTβR (lymphotoxin β receptor), BAFF-R (B cell activating factor), CD40 or CD30. This pathway is controlling development of lymphoid organs and adaptive immune system (Gilmore, 2006; Hayden & Ghosh, 2004, 2008, 2012).

The above mentioned third mechanism of NF-κB activation does not necessarily result in the degradation of the NF-κB inhibitory protein and involves NF-κB kinases. IKKα, by itself, possesses NF-κB kinase activity as well as many other proteins, which are part of the NF-κB kinase family of proteins are able to phosphorylate RelA, in this way causing IkB dissociation but not ubiquitination (Hayashi et al., 1993).

A.3.4. Feedback loops and termination of NF-κB

Active NF-κB in the nucleus promotes the transcription of several genes involved in inflammation, such as cytokines, cytokine receptors, growth factors, and adhesion molecules. It was mentioned earlier that pro-inflammatory cytokines, e.g. IL-1 and TNF-α, can trigger NF-κB activation; the cytokines expressed by these
genes, which make up a number of the NF-κB target genes, result in a positive feedback cascade, further enhancing the inflammatory response (Halliwell & Gutteridge, 2007).

To counter the inflammatory cascade, NF-κB can also promote the transcription of anti-inflammatory cytokines such as IL-10 to generate a negative feedback (Macdonald et al., 2003). An important target gene of NF-κB is IκBα. By promoting the expression of one of its own inhibitors the signal is able to generate a negative feedback, which is normally sufficient to turn itself off. However, this mechanism does not explain how the active DNA-bound NF-κB is diminished once signalling is terminated. Newly synthesised IκBα can, in the nucleus, dissociate NF-κB from the DNA to stop the transcriptional activation of target genes and also, in the cytoplasm, sequester active NF-κB dimers to again inactivate them, as described earlier. However, p65, IKKα, suppressor of cytokine signalling (SOCS-1) are some of the molecules that can themselves affect the termination of the NF-κB response (Hayden & Ghosh, 2008). Efforts are under way to further analyse this aspect of NF-κB, which proves extremely important especially in diseases that have de-regulated NF-κB (Baeuerle & Henkel, 1994; Hayden & Ghosh, 2008; Li & Verma, 2002).
A.3.5. Relation of NF-κB to apoptosis

NF-κB targets many genes that promote cell proliferation and survival and has often been found to be associated with an ability to negatively influence the cell’s susceptibility to apoptosis (Aggarwal, 2000; Baichwal & Baeuerle, 1997; Bauerle et al., 2010; Clifton et al., 1998; Edderkaoui et al., 2008; Van Antwerp et al., 1996; Van Antwerp et al., 1998).

RelA−/− mice, for example, did not live to birth and showed high levels of apoptotic cell death in the developing liver, suggesting an anti-apoptotic activity for NF-κB (Baichwal & Baeuerle, 1997). TNF-α induced apoptosis is known to be variable in its effectiveness in different cell types. This property of the cytokine has been attributed to the activity of NF-κB, which we know it also activates (Baichwal & Baeuerle, 1997; Beg & Baltimore, 1996; Liu et al., 1996b; Van Antwerp et al., 1996; Van Antwerp et al., 1998; Wang et al., 1996). NF-κB stimulates the transcription of TNF as was already mentioned, but also other anti-apoptotic molecules such as cellular inhibitors of apoptosis (cIAPs), caspase 8/FADD-like ILβ-converting enzyme inhibitory protein (cFLIP) and members of the Bcl2 family like Bcl-XL (Karin et al., 2002; Karin & Lin, 2002). Apoptosis induced by ionizing radiation and chemotherapeutics is also attenuated by NF-κB and this ability of NF-κB has led several groups to analyse this effect (Wang et al., 1999). Many cancers in which NF-κB subunits are highly expressed or NF-κB constitutively activated have been shown to become more susceptible to apoptosis when
treated with compounds that inhibit NF-κB activation (Edderkaoui et al., 2008). It is understood, too that some pathogenic bacteria activate NF-κB in their host cells in order to prevent apoptosis and promote cell survival (Clifton et al., 1998).

With the aforementioned in mind, NF-κB is regarded as an anti-apoptotic protein system. Hence IκBα, in its cytoplasmic role as an inhibitor of NF-κB, is widely deemed to possess a pro-apoptotic function since it inhibits the anti-apoptotic NF-κB.

A.3.6. Mitochondrial localisation of NF-κB and IκBα

In recent years it has become apparent that NF-κB subunits and IκBα can also be found at mitochondria. Electron microscopy studies revealed that IκBα can be identified in all the mitochondrial compartments, the inter mitochondrial membrane space (IMS), the matrix and OMM (Bottero et al., 2001; Cogswell et al., 2003; Lee et al., 2008; Zamora et al., 2004). Emphasis was given to the IκBα localised in the IMS since it was found to be able to interact with ANT1. NF-κB subunits were also detected in mitochondria and were also found to negatively regulate apoptosis induced by ANT1 overexpression. NF-κB was recruited to mitochondria after ANT1 overexpression thereby abolishing its DNA binding, gene activation, and contributing to extensive apoptosis (Zamora et al., 2004).

NF-κB that has been found to be localised to mitochondria and is believed to be involved in the regulation of mitochondrial gene expression (Cogswell et al.,
2003; Lee et al., 2008; Reuther & Baldwin, 1999). However, using mitochondrially localised IkBα (IkBα when overexpressed is found to be localised in mitochondria as well as the cytosol) to block NF-κB activation in mitochondria during TNF-α treatment, revealed no reduction in the mRNA levels of proteins encoded by mitochondria-specific genes compared to the normal state where a reduction occurs when NF-κB can be normally activated (Cogswell et al., 2003).

The IkBα:NF-κB complex has been found in the IMS, where it is currently thought to interact with ANT, one of the components of the PT-Pore and the IkBα:NF-κB complex is supposed to have at least some influence on the apoptotic cascade (Bottero et al., 2001; Zamora et al., 2004) since it was found that p65 and IkBα were released from mitochondria upon Fas-ligand induced apoptosis.
Figure A.8. Representation of IκBα. (A) Cartoon representation of IκBα domains (blue) which bind p65. Ankyrin repeats and the C-terminus are responsible of p65 binding. (B) Structural representation of IκBα binding to p65 (Bergqvist S et al., 2009). (C) Important residues and domains of IκBα protein.
A.4. Cancer

A.4.1. Cancer and apoptosis

Cancer is a disease that originates from diverse aetiologies and affects equally diverse cell targets, therefore resulting in an extremely heterogeneous appearance. Even though this complexity seems to make it daunting to define general mechanisms underlying all human cancers, defects in the programmed suicide machinery characterise all tumours. This apoptosis inhibition can contribute to cell immortality and represents one of the cancer hallmarks (Hanahan & Weinberg, 2000). It is supposed to thwart pro-apoptotic signals that arise during the transformation process. The discovery of oncogenes such as \textit{bcl-2} or \textit{myc} and their ability to inhibit apoptosis (Kerr et al., 1972; Strasser et al., 1990), initiated the now vast field of apoptosis investigation on cancer, at the molecular level. The emerging conclusion is that maintaining the balance of pro-apoptotic and anti-apoptotic signals within a normal cell is a fundamental prerequisite for its homeostasis. Current research so far suggests that obstructing the apoptotic machinery can then dramatically affect the dynamics of tumour progression. Moreover, a plethora of data indicate that anti-cancer compounds such as 5-fluorouracil, cis-platin, and etoposide exert their effect by inducing apoptosis in malignant cells (Mow et al., 2001). So, apoptosis can be harnessed for cancer therapy. (Barry et al., 1990; Kaufmann, 1989; Walker et al., 1991). During treatment,
tumour cells are selected for the repression of this cell death program. In order to enhance current drug efficacy and discover more effective treatment options, it is essential to unravel how cells attain their insensitivity to cell death signals. Therefore, the molecular regulators of anti-apoptotic signalling pathways are currently the subject of intense investigation.

A.4.2. Cancer and PT-pore

As mentioned above, the molecular pathways that govern apoptosis are pivotal for controlling tumourigenesis, cancer progression, and for cancer treatment. One of the molecular complexes that play such a role is the aforementioned PT-pore. During tumourigenesis, specific modulators of the PT-pore are activated hence contributing to tumour formation. Evading hypoxia, metastasis, OMM permeabilisation, reactive oxygen species (ROS) formation or Ca$^{2+}$ release are only some of the processes that contribute to carcinogenesis, relate to apoptosis and involve the PT-pore (Brenner & Grimm, 2006).

More specifically, hypoxia is an environmental condition of reduced oxygen levels. It is a scenario that all tumour cells experience especially at the initial stages of tumour formation and metastasis. Normally, hypoxia constitutes a pro-apoptotic signal and a stimulus for PT-pore activation. The mechanisms that cancer cells use in order to maintain survival under hypoxic conditions are largely unknown but inhibition of the PT-pore opening even in low oxygen is a
characteristic of cancer cells (Harris, 2002). Hypoxia inducible factor (HIF) and pro-apoptotic Bcl-2 family members are thought to be involved in the PT-pore activation and in normal cells the PT-pore is very sensitive to hypoxia (Kubasiak et al., 2002; Vande Velde et al., 2000).

A cell detached from the main tissue or tumour will, under normal conditions, undergo apoptosis in the blood stream through a form of apoptosis called anoikis. Tumour cells are able to bypass this process and survive forming metastases at a distant site. Anoikis is thought to be controlled by the pro-apoptotic proteins Bid and Bax that can directly modulate the PT-pore (Valentijn & Gilmore, 2004; Valentijn et al., 2003) as described previously.

Excessive levels of ROS have been shown to induce apoptosis through the PT-pore but at normal levels ROS are favouring cell proliferation (Pelicano et al., 2004; Petronilli et al., 1994). Oxidative stress is caused by elevated ROS levels, which all cancer cells generate excessively putting them under permanent oxidative stress. It is logical to assume that such high levels of ROS would make cancer cells more prone to apoptosis induction but tumours are found to escape this signal as well. The PT-pore can be effectively activated by ROS but due to the upregulation of antioxidants, tumours are able to evade apoptosis and survive under conditions of stress (Brenner & Grimm, 2006; Le Bras et al., 2005).
Calcium levels between cell organelles and the balance of Ca\(^{+2}\) should be maintained for cell homeostasis. It was mentioned before that the PT-pore is extremely sensitive to Ca\(^{+2}\) and under several conditions Ca\(^{2+}\) increases and extensive permeability transition occurs leading to the rapture of the OMM and subsequently apoptosis. A large number of tumours show resistance to several chemotherapeutic drugs that force the release of calcium from intracellular stores. Calcium is released from the endoplasmatic reticulum (ER) under conditions of oxidative stress (Ermak & Davies, 2002) and, as it was noted before, cancer cells are under permanent oxidative stress. As a potent activator of the megapore, Ca\(^{+2}\) is expected to activate apoptotic signaling extremely efficiently, however, again cancer cells seem to manipulate intracellular signalling circuits in order to evade apoptosis (Brenner & Grimm, 2006).

The composition of the PT-pore is still under intense investigation but there is a consensus about the proteins that modulate the activation of this megachannel. Irrespective of being a component of the pore or a modulator of the pore, several proteins are found to mediate anti-apoptotic signals via PT-pore inhibition. Hence, protein-protein interactions and protein levels play a pivotal role in maintaining cell homeostasis. Cancer cells show differential expression of proteins associated with or comprising the pore, thereby contributing to cell survival and evading apoptosis. Peripheral Benzodiazepine Receptor (PBR), Cyclophillin D (Cyp-D), creatine kinase 1 (CK1) adenine nucleotide translocase 2

Evangelos Pazarentzos | PhD Thesis
(ANT2) and hexokinase II are the PT-pore modulators or components that are found to be up-regulated in many cancers (Azoulay-Zohar et al., 2004; Baines et al., 2005; Bonod-Bidaud et al., 2001; Giraud et al., 1998; Hardwick et al., 1999; Katz et al., 1990; Nakagawa et al., 2005; Schubert & Grimm, 2004).

Summarizing the above, it appears that tumourigenesis is accompanied by differential expression of PT-pore components/modulators and coincides with processes that inhibit apoptosis through opening of this megachannel. It seems that protein-protein interactions in general are absolutely pivotal for controlling apoptosis in contrast to cellular processes like the cell cycle that is mainly controlled by protein phosphorylation (Brenner & Grimm, 2006). The importance of protein levels in complexes should be also applicable to the PT-pore complex, which is so important in governing cell death via apoptosis and necrosis depending on the stimulus and the protein level of the pore constituents as described above. As it can be concluded from the above, the PT-pore appears to be a major modulator of apoptosis and since apoptosis evasion is a cancer hallmark, the PT-pore should be considered as one of the main determinants of cancer formation.

A.4.2.1. The PT-pore, the Warburg effect and cancer

Nobel prize winner Otto Warburg has made a significant contribution to the cancer field after he discovered that cancer cells prefer to conduct glycolysis
over respiration even under conditions of sufficient oxygen. This high glycolytic rate observed in cancer was named the "Warburg Effect". This effect is so universal that cancer imaging in the clinic makes use of the glucose analogue 2^{-18}Fluoro-2-deoxy-D-glucose in combination with positron emission tomography in order to detect primary tumours and metastases (Kroemer & Pouyssegur, 2008). The reason for this shift of cancer cells by metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis relies on (1) a reduced dependence on oxygen that might be observed before angiogenesis takes place in the tumour, (2) a rearrangement of the tumour environment to recycle products of anaerobic metabolism, (3) the production of anti-oxidants through nicotinamide dinucleotide phosphate (NADPH) and (4) the usage of glycolytic pathway intermediates for anabolic reactions (Kroemer & Pouyssegur, 2008).

Hexokinase catalyses the first step of glycolysis, namely the conversion of glucose to glucose-6-phosphate and in highly glycolytic tumours hexokinase II (HXKII) is localized at the OMM anchored to VDAC1 (Azoulay-Zohar et al., 2004). It is thought that the HXKII bound to the OMM prevents apoptosis via several routes, primarily by preventing the activation of the PT-pore through reducing the availability of VDAC sites that can bind BAX (Crompton et al., 2002; Pastorino et al., 2002). It is also thought to prevent the localisation of Bad at the OMM or change the formation of the megachannel thus altering the conformation of VDAC and ANT (Mathupala et al., 2006).
The Akt protein and its signalling is widely accepted as a modulator of the VDAC-HXKII interaction through stabilisation of the complex. Akt can inhibit apoptosis via strengthening the VDAC-HXKII interaction irrespective of Bax and Bak. The VDAC-HXKII complex is now considered as an anti-apoptotic complex since it can prevent the activation of Bax and Bak by tBid (Majewski et al., 2004a; Majewski et al., 2004b). Another protein that showed that the stabilisation of the VDAC-HXKII complex and ultimately the inhibition of the PT-pore is crucial for cancer progression and tumour survival is the enterobacterial protein FimA. It was shown that FimA can inhibit apoptosis via strengthening the complex between VDAC1 and HXKII. It was shown to prevent Bax integration to mitochondria and inhibit cytochrome c release. In this study MOMP was inhibited by this interaction in human colon cancer cells, providing another link between cancer and the PT-pore (Sukumaran et al., 2010b) since VDAC and hexokinase are modulators of the megachannel.

Cyclophilin D along with ANT was also implicated in the complex of VDAC-HXKII. It is thought that ANT, as a modulator of PT-pore, alters its conformation to a state so that permeability transition cannot occur. Also cyclophilin D, which is a core component of the megapore, can, when overexpressed, prevent pore opening and inhibit apoptosis. It is thought that this anti-apoptotic effect of CypD is due to the binding of HXKII and vice versa and directly correlates with the level of association. The way how a matrix component like Cyp-D can affect an
OMM associated component of the PT pore, is not known but it is believed that through conformational changes of other PT-pore components (Azoulay-Zohar et al., 2004; Chiara et al., 2008; Crompton, 1999; Machida et al., 2006; Majewski et al., 2004b; Mathupala et al., 2006; Pastorino & Hoek, 2008b; Vyssokikh & Brdiczka, 2003).

Either by abrogating Bax binding to mitochondria or by changing the conformation of pore components or modulators, HXKII binding to VDAC1 is inhibiting the formation of the PT-pore and this is a phenomenon observed in the majority of cancers. Hexokinase, which was once considered only to mediate glycolysis in highly malignant tumours, has now been shown to be one of the most important anti-apoptotic effectors upon its binding to VDAC1. Understanding the molecular mechanisms that facilitate this interaction will provide more effective treatment choices via targeting the PT-pore and cancer metabolism since this complex (VDAC-HXK) is considered as cancer’s Achilles’ hill (Kroemer & Pouyssegur, 2008; Mathupala et al., 2006).

A.4.2.2. Cancer-associated mechanisms and NF-κB

As already mentioned above NF-κB is a small family of closely related proteins that share a sequence domain that is able to bind to DNA and activate transcription of a large number of genes involved in the immune response, inflammation, and cell survival (Ghosh et al., 1998). A justification for analysing NF-
κB mechanisms in the context of cancer is to obtain further insight in the already established link between NF-κB, apoptosis, the PT-pore and cancer. This study attempts to interconnect these major fields so as to provide a basis for targeting cancer through NF-κB and the PT-pore.

The discovery that one of the subunits of NF-κB (p50) is a member of the reticuloendotheliosis family (REL) and the fact that v-REL is an retroviral oncoprotein, provided the first link between cancer and NF-κB (Gilmore, 1999). Moreover, p52 was found to be structurally mutated in myelomas and lymphomas and Bcl-3 (a member of the IκB family) was found overexpressed in leukemias. The IκBα gene contains deletions and mutations in a set of Hodgkin’s lymphomas and c-rel gene is found to be amplified in a number of such malignancies (Courtois & Gilmore, 2006).

Biochemical and translational alterations might also occur along with genetic changes. Since NF-κB is a transcription factor controlling hundreds of genes, it was found that modification of the transcription of genes affecting apoptosis, angiogenesis, growth and proliferation are altered in cancers (Basseres & Baldwin, 2006). NF-κB-dependent targets include cytokines, chemokines, cyclin D1, anti-apoptotic proteins of Bcl-2 family, matrix metalloproteinases, c-Myc, cIAPs, c-FLIP, A20 and many more. The most important link between this transcription factor and cancer is that NF-κB has been shown to mediate the resistance to apoptotic stimuli (Ravi & Bedi, 2004). Hence, accumulating evidence
shows that NF-κB plays a major role in cancer initiation, establishment and progression at later stages (metastasis) (Baldwin, 2001; Karin et al., 2002).

A.4.2.3. Cancer, apoptosis and NF-κB

NF-κB can promote the proliferation of cells by the regulation of target genes and cancer cells use this ability of NF-κB to proliferate and grow. Cyclin D1, which is involved in the cell cycle, is affected by the NF-κB activity directly or indirectly by Bcl-3 that potently trans-activates NF-κB through p52 (Karin, 2006; Kim et al., 2006b; Westerheide et al., 2001). IKKα is required for the expression of cyclin D1 during the development of mammary glands and HIF1 factor depends on NF-κB for its upregulation during hypoxia providing a direct link between cancer, PT-pore and NF-κB (Jung et al., 2003). Consistent with the above are studies with mouse xenografts that use inhibitors of NF-κB and show a decreased growth and proliferation when NF-κB is impaired (Baldwin, 2001; Karin et al., 2002).

The link between apoptosis and NF-κB has already been discussed in this report. However, it provides the basis for a more direct link between NF-κB and cancer since apoptosis evasion is one of the cancer hallmarks. Bcl-2 and Bcl-XL are target genes of NF-κB and act on the mitochondrial pathway to inhibit apoptosis. Numerous cancers have been found to up-regulate these two genes thus creating conditions of robust apoptosis inhibition (Burstein & Duckett, 2003; Dutta et al.,
2006). Blocking NF-κB by IκBα or transcriptional inhibitors of NF-κB leads to extensive apoptosis in many tumours confirming that survival of these cells are dependent on constitutive NF-κB activation (Baldwin, 2001; Karin et al., 2002; Kim et al., 2006b). Mutation or loss of expression of p53 and Foxo3 (both transcription factors) affect cell survival during cancer. Both are targets of NF-κB and also activate this transcription factor. NF-κB can suppress c-Jun NH2-terminal kinase activation and generation of ROS thereby providing another method by which NF-κB is blocking cell death (Basseres & Baldwin, 2006). Figure A.9. shows a representation of NF-κB target genes that affect different stages of oncogenesis.

A.4.2.4. NF-κB in cancers and mechanisms of its activation

Major control points in the pathway of NF-κB activation are the activation of the IKK complex, the degradation of IκBα, the formation of p52 from p100, and the binding of NF-κB to specific promoters to activate transcription of target genes. It was described previously how this pathway is stimulated under physiological conditions but the same check points are also used in cancer cells to de-regulate NF-κB and escape apoptosis.

Several reports show that the activation of oncoproteins is affecting the NF-κB activation pathway. H-Ras and ErbB2 impact on the IKK complex and require Rel proteins for their transformation (Arsura et al., 2000). In chronic myeloid leukemias the oncoprotein Bcr-Abl is permanently activating NF-κB. The super
repressor \(\text{IkB}\alpha-\text{SR} \) can inhibit this thus providing evidence for the dependence of these tumour cells on constitutive NF-\(\kappa B \) activation by Bcr-Abl (Cilloni et al., 2006). Pim-2, Vav, B-Raf and Tax oncoproteins are only few of those drivers of cancer formation that were found to directly bind the IKK complex or the IKK scaffold protein NEMO and activate it (Basseres & Baldwin, 2006; Hiscott et al., 2006).

Apart from the oncoproteins directly affecting the activation of NF-\(\kappa B \), oncogene-associated pathways and growth factors can also influence the NF-\(\kappa B \) system. For instance the PI3/Akt-dependent signalling is stimulating NF-\(\kappa B \) via IKK\(\alpha \) and its level affects the tumour progression and cell survival in lymphoid malignancies or melanomas (Gustin et al., 2004). Additionally, the IKK complex can also be activated by FADD phosphorylation, CK2 and \(\beta \)TRCP1, which are all members of signalling pathways that can affect cancer progression and resistance in lung adenocarcinomas, breast cancer and pancreatic cancer respectively (Basseres & Baldwin, 2006). An example of a growth factor affecting NF-\(\kappa B \) signalling is the epidermal growth factor (EGF), which can induce the recruitment of p65 to specific promoters without subsequent canonical NF-\(\kappa B \) signalling and thereby affecting tumourigenesis (Sitcheran et al., 2005).

Nearly all malignancies include cancer sub-types in which NF-\(\kappa B \) is constitutively active and the description of specific pathways or proteins that confer this would require a review of hundreds of papers and would probably be incomplete since the exact mechanisms are still not completely understood. A
basis for all those malignancies is that NF-κB contributes to the inhibition of apoptosis and thereby to chemotherapy resistance. A few major examples are breast cancers, melanomas, pancreatic cancers, and haematological malignancies, which provide evidence that NF-κB turned from friend to foe and hence to a major culprit for tumourigenesis (Basseres & Baldwin, 2006; Karin et al., 2002; Ravi & Bedi, 2004). Cancers with constitutive NF-κB activity are listed in Figure A.10.

Figure A.9. Schematic representation of NF-κB-dependent targets which are involved in different stages and aspects of tumourigenesis
Figure A.10. Constitutive NF-κB activation in human cancers (figure from Basseres DS & Baldwin AS, 2006). Representation of several cancers showing constitutive and enhanced NF-κB activation. The list is only showing a few types since it is currently extended. Many established cell lines are now shown to have constitutive NF-κB activation.
B. Objectives and Hypothesis
B.1. Origin of the project

Determining the mechanisms that underlie the resistance of cancer cells to apoptosis induction is important to improve current treatment regimes and to reveal novel strategies against cancer. NF-κB is a transcription factor that is constitutively active in many tumour cells and protects them from apoptosis by inducing the transcription of anti-apoptotic genes. However, because of the widespread importance of the NF-κB factor for inflammatory responses, it has been difficult to develop NF-κB inhibitors that act specifically in cancer cells and do not compromise the immune response in patients.

Over the years the focus of the laboratory has been signalling of apoptosis and the isolation of genetic apoptosis inducers or inhibitors. The finding that ANTU1 can dominantly induce apoptosis was a success story of our laboratory (Bauer et al., 1999). The effect on ANTU1 to induce apoptosis is dramatic given that even potent apoptosis inhibitors such as Bcl-X_L are virtually unable to overcome the strong apoptosis signal of ANTU1 (Schubert & Grimm, 2004). Given that apoptosis inhibition is a hallmark of cancer cells (Hanahan & Weinberg, 2000), identification of molecules that can inhibit apoptosis are potentially targets for cancer treatment provided that the level of these proteins are altered during cancer progression.

In 2001, Virginie Bottero and colleagues (Bottero et al., 2001) found that ANTU1 can interact with IκBα, the inhibitor of NF-κB. There was a direct implication
of IκBα in apoptosis since NF-κB subunits were found to be released from mitochondria upon Fas ligand binding and also it was found that ANT-1 immunoprecipitates with IκBα in an overexpression pull-down. That finding was of specific importance to the laboratory since potential inhibitors of apoptosis and especially ANT-1 was studied. Two other studies revealed that IκBα resides in the IMS of mitochondria and it was speculated that is involved in mitochondrial apoptosis (Cogswell et al., 2003; Zamora et al., 2004). However, none of the above publications could demonstrate a functional role of IκBα and NF-κB in mitochondria and no mechanism was identified. The effect of IκBα on apoptosis was only indirect and was only put into a context of NF-κB inhibition.

Dr Foy Osborne initiated experiments (Figure B.1.) in our laboratory that could potentially address the question of the role of IκBα in mitochondria. She found that IκBα-wt can reduce apoptosis induced by ANT-1 overexpression. The inhibitory potential of IκBα was also tested with other apoptosis inducers such as arsenic trioxide and TNF and apoptosis reduction was also observed upon IκBα overexpression. Consequently, a hypothesis was formulated that IκBα in mitochondria can inhibit apoptosis. Overexpression of IκBα was visualized on a western blot and fractionation experiments revealed that part of the overexpressed IκBα is directed to mitochondria. In 2005 another paper was published on TRAIL apoptosis with one of the experiments showing that adenovirus-mediated ectopic expression of IκBα could inhibit apoptosis of TRAIL. However,
this result was not discussed as a feature of IκBα itself but rather as related to its inhibitor activity of NF-κB.

The current study was initiated taking into consideration all the preliminary results and the literature that existed until then. The aim of the project was to identify the role of IκBα in mitochondria in respect to apoptosis regulation. The identification of interaction partners was another part of the project's aim since they could provide important information about the mechanism. The results section of this thesis provides information and experiments confirming the role and the mechanism of IκBα in apoptosis inhibition when associated with mitochondria.

Figure B.1. Preliminary data for IκBα. HeLa cells were transfected with a luciferase vector and a vector for IκBα-wt. Fractionation was performed according to standard methods and lysates was loaded on a 10% SDS-PAGE. WT IκBα can inhibit apoptosis. HeLa were transfected with either luciferase or IκBα and cells were treated with hydrogen peroxide (250µM), arsenic trioxide (10µM) and TNF 20ng/ml with cycloheximide (100ng/ml). Apoptosis was assessed 24h post-treatment using PI staining and FACS 293T cells were transfected with ANT-1 and IκBα in a ratio 1:1 and apoptosis was quantified using PI staining.
\[\beta - \text{actin} \]
\[\text{Cyt-C} \]
\[\text{IkB} \alpha \]

Cytosol vs Mitos

\[\text{H}_2\text{O}_2 \]

\[\text{TNF} + \text{Cyclohexamide} \]

\[\text{As}_2\text{O}_3 \]

\[\% \text{Apoptosis (PI)} \]
C. Materials and Methods
C.1. Reagents and materials

The following reagents were purchased from Sigma-Aldrich: 2-mercaptoethanol (M7522), acrylamide (40% solution, A7168) actinomycin D (A1410), agarose (A9539), ammonium persulfate (A3678), ampicillin sodium salt (A9518), arsenic trioxide (A1010) bovine serum albumin (BSA, A7906), calcium chloride (C7902), clotrimazole (C6019), cycloheximide (C7698), dimethyl sulfoxide (D2650), Dulbecco’s modified eagles media (D6429), doxorubicin (D1515), EGTA (E4378), etoposide (E1383), faecal calf serum (F7524), glucose (G7021), HEPES (H3375), hexamethrine bromide (H9268), ionomycin (I3909), Kanamycin (K1876), Luria-Bertani broth (LB, L3022), L-glutamine (G7513), magnesium sulphate heptahydrate (63138), menadione (M5625) NP-40 (I3021), phosphate buffered saline (D8537) Polybrene® (H9268), propidium iodide solution (P4864), puromycin dihydrochloride (p8833), RPMI-1640 (R5886), sodium azide (S8032), sodium butyrate (30,341-0), sodium citrate (S1804) sodium deoxycholate (30970), sodium pyruvate (S8636), staurosporin (S4400), TEMED (T9281), Triton X-100 (T8532), Trypsin-EDTA (T4174), TWEEN® (P5927) and yeast extract (Y1625).

DAPI (D3571), DiOC6 (D273), blotting filter papers (25mm thickness, LC2010) library efficiency® DH5a™ chemocompetent bacteria (18263-012), MAX efficiency DH5α (18258-012) non-essential amino acids (11140035) OPTI-MEM (22600134), penicillin/streptomycin (100U/ml and 100µg/ml respectively, 15070-063), pLenti7.3/V5-TOPO® TA cloning kit (K5310-00) PureLink™ HiPure plasmid
filter purification kit (K2100-07), TMRE (T669), were from Invitrogen or Molecular Probes (now both under Life Technologies). DNA oligos were also purchased from Invitrogen.

The reagents below were purchased from Fermentas (Part of Thermofisher): 5x protein loading buffer (R0891), 6x DNA loading dye (R0611), 50x TAE buffer (#B49), Bradford (500-0006), GeneRuler™ 1kb DNA ladder (SM0314), GeneRuler™ 1kb plus DNA ladder (SM1334), T4 DNA ligase HC (EL0013), PageRuler™ prestained protein ladder (SM1811 or SM0671), ProteoBlock™ protease inhibitor cocktail (R1321) and Phusion® polymerase (F530-L). All the restriction endonucleases from FastDigest™ series were also purchased from Fermentas.

0.5M Tris-HCl pH 6.8 solution (161-0799), 1.5M Tris-HCl pH 8.8 solution (161-0798), 10x TGS buffer (161-0772) and SDS solution (10% w/v, 161-0416) were from Bio-Rad Laboratories; Hyper film™ high performance chemoluminescent film (28906837) was from GE Healthcare; PureProteome™ Protein G Magnetic Beads (LSKMAGG10) and PVDF membrane (IPVH00010) were from Millipore.

QuickChange II site directed mutagenesis kit (#200523) and StrataClone mammalian expression vector systems (#240230) were from Agilent Technologies; potassium chloride (101984) and sodium chloride (10241) from BDH Laboratory Supplies; polyvinyl alcohol mounting medium with DABCO (10981) and saponine (47036) from Fluka; pAdVantage™ vector (E1711), Wizard SV gel PCR clean-up
system (A9282) and TNT® Quick Coupled Transcription/Translation System (L1170) were from Promega; Effectene (301427), Superfect (301307) from QIAGEN.

GelRed™ nucleic acid gel stain (41002) from Biotium; trypton (0123-17-3) was from DIFCO laboratories; TNF-α (520-002-C050) and N-Oleyldopamine (BML-VR102-0025) from Enzo Lifesciences; LB-agar (852323) from OXOID Ltd.; enhanced chemoluminescent reagent (#32106) and mitochondria isolation kit for cultured cells (89874) and paraformaldehyde (28908) from PIERCE Thermo Scientific.

C.2. Cell culture

HeLa (human cervical carcinoma), MCF7 (Metkar et al., 2003), 293T (human embryonic kidney), 293FT (for viral production), MDA-MB-231 cells (human breast adenocarcinoma), HCT-116 (human colon carcinoma, gift from Dr Nabil Hajji), MEF WT (mouse embryonic fibroblasts), MEF PPiF /− (mouse embryonic fibroblasts), 3T3 (mouse embryonic fibroblasts) and 3T3 lkBα /− (mouse embryonic fibroblasts, gift from David Baltimore/Shengli Hao, California Institute of Technology) were cultivated in high glucose (4.5g/L) Dulbecco’s modified eagle medium (DMEM, Sigma-Aldrich). PC3 (human prostate cancer), were cultured in RPMI-1640 media (Roswell Park Memorial Institute) with HEPES modification (Sigma-Aldrich). Both culture media were supplemented with 10% v/v heat inactivated foetal calf serum (FCS, Sigma-Aldrich), 2mM L-glutamine (Sigma-Aldrich), 2mM sodium pyruvate (Sigma-Aldrich), penicillin (100U/ml, Invitrogen) and streptomycin (100µg/ml,
Invitrogen). Cells were cultured in tissue culture flasks or dishes and maintained in 5% atmospheric CO$_2$ at 37 °C in a humidified incubator.

The cell lines with stably down-regulated proteins by Lentiviral shRNA were cultured as above in the presence of 1µg/ml puromycin (Sigma-Aldrich).

Cells were routinely passaged to a new tissue culture dish or flask by detaching them with trypsin-EDTA solution (final concentration of 0.05% diluted in phosphate buffered saline, Sigma-Aldrich).

C.3. Plasmid vectors

All genes were cloned into mammalian expression vectors with Cytomegalovirus (CMV) promoters and U6 promoter for the expression of shRNA. The pcDNA3 (Invitrogen) vector was used for the expression of genes into cells. pLenti7.3 (Invitrogen) was used for the production of lentiviruses. pLKO.1 (Sigma-Aldrich) was used for the production of lentiviruses for the expression of shRNA. pEGFP-N1 (Clontech), pEGFP-C1 (Clontech) were used for the expression and verification of targeting sequences to mitochondria and as intermediate vectors for the sub-cloning of mammalian genes. pCMV-SC-CF (Agilent technologies) was used to tag a gene with a FLAG®. Apoptosis inducing genes were isolated from a genetic screen for apoptosis inducers (Albayrak & Grimm, 2003) and subsequently tagged C-terminally with hemagglutinin (HA-tag). Bax-β was purchased from Origene into the Myc-DDK-tagged pCMV6-Entry vector. Mammalian expression
vectors coding for DsRed-ER, CFP-mito, YFP-mito or GFP-mito were a kind gift of Dr Remy Sadoul (INSERM U836, Grenoble, France). IκBα gene FLAG-tagged at the N-terminus was previously cloned into pCMV4 mammalian expression vector by Dr Foy Osborne. The Super-Repressor-IκBα (SR-IκBα) and IκBα-110A3 were a kind gifts from L. Schmitz, Giessen, Germany. The IκBα-110A3 protein contains alanine substitutions at leucine 115, leucine 117, and isoleucine 120 in IκBα. The reporter plasmid pNFkB-hrGFP was purchased from Stratagene (Agilent Technologies, UK).

C.4. Cloning

Standard molecular biology techniques were used for cloning. Genes of interest were cloned either by recombinant PCR, restriction digest cloning, INFUSION cloning or TOPO cloning. It should be made clear that wherever IκBα gene is fused for targeting to the mitochondria, only the localization sequence (targeting) was used for fusion and not the entire gene.

C.4.1. Cloning of MCR1-IκBα

The yeast MCR1 (NADH-cytochrome reductase b5) gene contains a 47 aa N-terminal sequence for mitochondrial targeting (Haucke et al., 1997). Recombinant PCR was used to amplify and fuse the MCR1 localization sequence with the IκBα gene. Primer set 1a was used to amplify 141 bp with the BamHI enzyme and a Kozak sequence and the set 1b to amplify the IκBα gene with XbaI restriction enzyme sequence. PCR products were mixed and the forward primer
from set 1a and the reverse primer for set 1b were used to amplify and fuse the sequences. Functionality of the construct was tested and will be analysed further in the results section. A C-terminal FLAG-tagged version of MCR1-IκBα was generated using primers that contained the FLAG-tag (primer set 1a and 1b).

C.4.2. Cloning of MEET-IκBα

MitoNEET is an outer mitochondrial membrane protein with a very distinct and clear OMM localization signal. Primer set 2 was used to amplify only the N-terminal 32 aa of MitoNEET that are sufficient to target any protein at the OMM (Wiley et al., 2007b). pEGFP-N1 vector was digested at HindIII/PstI sites and MitoNEET (1-32) was inserted in frame with the following eGFP gene of the vector creating MEET-eGFP vector. Primer set 3 was used to amplify IκBα (2-317) –full length human IκBα – with restriction sites KpnI and BamHI and 5’ and 3’ end respectively. The PCR product was inserted into the MEET-GFP vector in frame with MitoNEET (1-32). HindIII and BamHI was used to excise MitoNEET (1-32) and IκBα gene fusion and subsequently was inserted into pcDNA3 vector linearized with the same enzymes. The latter ligation generated MEET-IκBα. This encodes an IκBα protein targeted to OMM.

C.4.3. Cloning of S/D-IκBα

The targeting sequence of Smac/DIABLO gene to the intermembrane space (IMS) of mitochondria was used for a fusion with eGFP and also IκBα. Following
the same procedure as for MEET-IκBα, the N-terminal 57 aa of Smac/DIABLO were amplified with Primer Set 4 and inserted into pEGFP-N1 (Ozawa et al., 2007b). That created the S/D-eGFP vector were IκBα was inserted afterwards. The full fusion was then inserted into pcDNA3 to create S/D-IκBα that encodes an IκBα protein targeted to OMM.

C.4.4. Cloning of MCR1(AAQQ)-IκBα

The MCR1 targeting sequence was found after its discovery that is able to direct proteins to two different sub-mitochondrial compartments (Haucke et al., 1997). In order to identify a more specific pathway we introduced alanine substitutions to the localization sequences at positions 23 and 24 that virtually abolish the ability of the precursor localization sequence to insert itself into the OMM so it only targets the fused protein to the IMS. To generate the MCR1(AAQQ)-IκBα we used site directed mutagenesis using primer set 5 and introduced the mutations and amplified with long PCR the whole vector and transformed into super competent bacteria. The same principle is used with the Stratagene’s kit QuickChangeII Site-Directed mutagenesis kit II.

C.4.5. Cloning of IκBα/β-Actin

Primer set 6 and primer set 7 were used to amplify by PCR IκBα and β-actin genes respectively. After amplification the constructs were mixed. A forward
primer from set 6 and reverse from set 7 were used for a recombinant PCR reaction to generate IκBα/β-actin fusion protein.

C.4.6. Cloning of FLAG-IκBα, MEET-IκBα and IκBα/β-actin into pLenti7.3

A commercial lentiviral expression system was used to generate the transfer vector plasmids for the production of lentiviral particles for the reconstitution of 3T3 IκBα-/- cells. pLenti7.3 is a TOPO cloning system and it was used according to the manufacturer’s instruction to generate pLenti7.3.FLAG-IκBα, pLenti7.3.MEET-IκBα, pLenti7.3.IκBα/β-actin and pLenti7.3GW.lacZ.TOPO (Control). The plasmid backbone bares a cytomegalovirus high expression promoter and an SV40 promoter in a bi-cistronic format. EM488 is a green fluorescence protein under the SV40 promoter within the LTRs of the HIV lentivirus.

C.4.7. Cloning of p65\textsubscript{BD}/β-actin and β-actin into pcDNA3

p65 bears a site where it binds with high affinity IκBα (Ganchi \textit{et al.}, 1992) and its binding has no effect on the ability of p65 to bind DNA κB sites. Amino acids 151-312 from p65 (RelA) were amplified with PCR and restriction sites HindIII/KpnI and an ATG were inserted using primer set 8. The β-actin gene was amplified by PCR flanked with KpnI/BamHI sites using primer set 9. Both sequences were ligated into pcDNA3 sequentially with β-actin ligating first which
created the β-actin vector and after the ligation of p65’s where IκBα is binding to, the p65_{BD}/β-actin was created.

The 326.CMV is a monocistronic lentiviral expression vector that can facilitate high expression of a transgene stably and potently. β-actin and p65_{BD}/β-actin were cloned into the 326.CMV vector with the use of the INFUSION kit from Clontech. Primer sets used were set 10 for β-actin and set 11 for p65_{BD}/β-actin. In short the kit makes use of homologous recombination. The designing of the primers is in a way they include a 15-20bp sequence identical to the insertion site of the vector. After linearization of the vector at the appropriate site that should be identical to the one included in the primer, purified vector and PCR product are mixed together and with the help of the INFUSION enzyme, homologous recombination is taking place between the same sequence so the transgene is inserted into the vector. Virtually any gene can be cloned into any vector directionally.

C.4.9. Cloning of deletion mutants

In order to identify the necessary domain of IκBα that is responsible to inhibit apoptosis, deletion mutants were generated using site directed mutagenesis, in the same way as the generation of mcr1_{A23/24Q}-IκBα (see above). In
order to identify the sufficient domain of IκBα for apoptosis inhibition, deletion mutants were generated using conventional cloning. The vector MEET-IκBα was used as the backbone and the primer set 12a (MEET-IκBα1-31), set 12b (MEET-IκBα1-70), set 12c (MEET-IκBα1-109) and set 12d (MEET-IκBα1-142) were used to create the indicated deletions and subsequently cloned with the same strategy into pcDNA3 vector under the HindIII/BamHI sites. All the deletions contained a C-terminal FLAG tag and was introduced into the reverse primer.

Table B.1. Primer sets. Primer sets for the amplification of genes or sequences. Unless otherwise stated, Phusion high fidelity DNA polymerase was used for all normal PCR and mutagenesis reactions.

<table>
<thead>
<tr>
<th>Primer Set</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 1a (mcr1)</td>
<td>(FOR)-ACTGTGGATCCCCGCCATTTTCCAGATT
(REV)-ACTGTGAACACTTTATTAGA</td>
</tr>
<tr>
<td>Set 1b (IκBα)</td>
<td>(FOR)-ATGGTCCAGGCGGCGAGG
(REV)-TCTAGATCATACGTCAGACGCTG</td>
</tr>
<tr>
<td>Set 2 (mitoNEET)</td>
<td>(FOR)-GTAAGCTTCCACCATAGCTGACTTC
(REV)-GCTGCTGAGTTGTAAGCTAGATAACC</td>
</tr>
<tr>
<td>Set 3 (IκBα)</td>
<td>(FOR)-ACTGTGGTACCATTCCAGGCGG
(REV)-ACTGTGGATCCTCATAACGTCAGACG</td>
</tr>
<tr>
<td>Set 4 (Smac)</td>
<td>(FOR)-ACTGTGAAGTCTCCGGCATGGCGGCTCTGAGA
(REV)-ACTGTCTGAGATTAGGAACCGCACACAG</td>
</tr>
<tr>
<td>Set 5 (mcr1AAQO)</td>
<td>CAAAAGCATTACCGATTGTGCTCTAGGTACAGGGTCTATACAGCAGGCTACC
GCAATCTTATTTGCA
TGCAAAATAGATGCGGTAGGGCTGATGAGCAACTGTACCTAGAGCA</td>
</tr>
</tbody>
</table>
C.5. DNA electrophoresis and DNA Recovery

The DNA electrophoresis was performed using agarose (Sigma-Aldrich) gels. Briefly, agarose (usually 1% w/v) was dissolved in TAE buffer (Fermentas). The
Gel Red™ nucleic acid stain (Biotium) was then added (1/20000) dilution), cooled and poured into custom-made DNA gel electrophoresis cassette to solidify. The DNA was mixed with 6x DNA loading dye (Fermentas) and separated by gel electrophoresis in TAE buffer (Fermentas). The GeneRuler™ 1kb plus DNA ladder or GeneRuler™ 1kb DNA ladder (Fermentas) was used for the size estimation.

Upon completion of DNA electrophoresis, the piece of agarose containing DNA of interest was excised under the UV lamp and subsequently DNA was recovered using Wizard SV gel and PCR clean-up system (Promega). Briefly, a gel piece was mixed with binding buffer to dissolve agarose. The dissolved gel and the buffer were transferred to a spinning column, centrifuged, washed twice and eluted with DNAase / RNAase-free H$_2$O or TE buffer.

C.6. Transformation of E. coli

Plasmid DNA was transformed into chemo-competent, library efficient DH5α E. coli bacteria or MAX efficient DH5α E. coli bacteria (Invitrogen). Aliquots stored in -80°C were thawed on ice, the corresponding plasmid DNA was added to the cells. After 30 minutes of incubation on ice, the cells were treated by heat shock (45 seconds at 42°C) with a subsequent quick chill on ice (2 minutes). Then 1ml of SOC medium (2% tryptone, 0.5% yeast extract, 10mM NaCl, 10mM MgSO4, 2.5mM KCl, 20mM glucose) was added to the transformed cells and incubated for 1 hour at 37 °C in a shaker to allow bacteria to express resistance
gene. Afterwards, bacteria were either given LB medium containing appropriate antibiotics (usually 100µg/ml of Ampicillin or 50µg/ml Kanamycin) or were plated onto LB agar containing the appropriate antibiotics (usually 100µg/ml of Ampicillin) and cultured over night at 37°C incubator.

C.7. Extraction of DNA from bacteria

For the extraction of plasmid DNA from transformed bacteria, the bacteria were grown (3ml for miniprep and 250ml for maxiprep) in a Lauria-Bertani broth supplemented with yeast extract (10g/L, Sigma-Aldrich) in the presence of appropriate antibiotics overnight in a shaking incubator at 37°C. The plasmid DNA was extracted from the bacteria using the Plasmid Maxi Prep kit (QIAGEN) or the PureLink™ HiPure plasmid filter purification kit (Invitrogen). The resulting DNA pellet was re-suspended in 500-1000µl of DNase, RNase free water or TE buffer and the concentration measured using NanoDrop (ThermoScientific) or with PicoGreeen (Molecular Probes). Briefly, DNA was sequentially diluted to make concentration of approximately 0.1µg/µl. 1µl of diluted DNA was added to a well of a 96-well plate. 1µl of standard DNA (0.1µg/µl) was also included as a reference. Then 50µl of TE buffer was added to each well followed by 50µl of diluted PicoGreen (1:200 in TE buffer). Plate was incubated 5 minutes. The fluorescence was measured with FLUOstar OPTIMA (BMG Labtech) with excitation at 480nm and emission at 520nm.
C.8. Plasmid vector transfections

HeLa cells were plated onto either 24-well (2-2.4*10^4 cells/well) or 6-well (1-1.2*10^5 cells/well) plates approximately 15 hours prior to the transfections. HEK293T cells were plated onto either 24-well (10-12*10^4 cells/well) or 6-well (5-6*10^5 cells/well) plates approximately 15 hours prior to the transfections. Effectene (QIAGEN) was used for HeLa cells and either SuperFect (QIAGEN) or Xfect (Clontech), was used for HEK293T cells for the DNA transfection. Briefly, plasmid DNA (0.2µg per 24-well plate or 0.8µg per 6-well plate) was mixed in EC buffer with Enhancer, incubated for 5 minutes, Effectene reagent was added (2.5µl or 5µl for 24- or 6-well plate, respectively), incubated for 10 minutes, and the DNA-lipid mix was added to the cells for Effectene transfection. For SuperFect transfections, DNA was diluted in DMEM (1µg or 2µg for 24- or 6-well plate, respectively), SuperFect was added (5µl or 10µl for 24- or 6-well plate, respectively), incubated for 10 minutes and the DNA-lipid mix was added to the cells. For Xfect transfections, DNA was diluted in the Xfect Reaction buffer (1µg or 7.5µg for 24- or 6-well plate, respectively) and was mixed with the same volume of reaction buffer with the Xfect polymer. After vortexing and incubating for 10 minutes, complexes were transferred dropwise onto the HEK293T cells. Transfection mixes were removed from the plate after 5-6 hours, fresh medium added and incubated.
C.9. Mitochondria isolation and treatment

Mitochondria were isolated with an established protocol (Gogvadze et al., 2003), re-suspended in the protocol’s mitochondria buffer and kept at -80°C. Briefly, after trypsinisation, cells were harvested, washed with PBS and centrifuged for 5 minutes at 2100 rpm. 400µl to 600µl of mitochondria lysis buffer [Buffer A: (20mM HEPES pH 7.5, 1.5mM MgCl$_2$ (6H$_2$O), 10mM KCl, 1mM EDTA, pH 7.4), Lysis Buffer: 12ml Buffer A with 3ml sucrose 1.25M] was added to the pellet and left for 2 minutes on ice. Meanwhile, a dounce homogenizer (Wheaton 357542) was washed with cold lysis buffer and homogenized by 60-80 strokes. 200µl of lysis buffer were added and lysed cells were left on ice for 20 minutes. A centrifugation step followed (3000rpm) for 10 minutes in which the nuclei and debris were pelleted. The supernatant which contained the mitochondria was re-centrifuged at 13000rpm for 20 minutes. The pellet contained the isolated mitochondria and the supernatant constituted the cytosolic fraction. For greater mitochondria purity but smaller yield a commercial kit from Pierce (Thermofisher, UK) was also used. 25ng/ml of Proteinase K (Sigma, UK) was applied to isolated mitochondria for 30 min at 4 °C and PMSF was used to stop the reaction. Cleavage of outer mitochondria membrane (OMM) proteins was observed on western blots. Recombinant Bax was purchased from ProSpec-Tany TechnoGene LTD (Israel), diluted with mitochondria buffer and incubated with isolated mitochondria for 30min at 25°C. Transfected mitochondria with IκBα were used or in vitro translated.
(IVT) proteins using the TNT Quick Coupled Transcription-Translation kit (Promega). IVT proteins were run on an SDS page for their integrity determination and equal amounts were applied on isolated mitochondria for 30min at 25°C prior to addition of recombinant Bax. Association of IVT proteins to isolated mitochondria and the cytochrome c release induced by recombinant Bax protein from isolated mitochondria were analysed as described previously (Kim et al., 2006a)

C.10. Nuclear protein extraction

Cells were pelleted at 1200 rpm and were re-suspended in 300µl of L-Buffer (0,1 % Triton X-100, 0,1% NP-40 in PBS with the addition of protease inhibitors). Lysates were left on ice for 15 min and subsequently centrifuged at 1000g for 10 min at 4°C. The supernatant which is the cytosol was removed and kept and the pellet was re-suspended in 1ml of L-buffer and centrifuged 7min at 1000g. This step was repeated 3 times and the pellet was lysed in RIPA buffer. It was left on ice for 40 min while vortexing every 10 min. The samples were finally centrifuged at 15000rpm for 20 min at 4°C.
C.11. Apoptosis assays

C.11.1. Quantification of cell death

Mitochondria dyes TMRE (tetramethylrhodamine, ethyl ester) and DiOC₆ (3,3′-dihexyloxacarbocyanine iodide) were used in conjunction with propidium iodide to quantify apoptosis (Chiara et al., 2008; Majewski et al., 2004a). In short, floating and adherent cells were harvested and centrifuged at 2100 RPM. Supernatant was discarded and cells were re-suspended in 150µl of PBS were DioC₆/PI mix was added. Cells were incubated in total for 90 minutes and were then analysed using FACS (BD Biosciences) with the CellQuest programme (BD Biosciences, UK). FlowJo (TreeStar Inc.) was used for data analysis.

C.11.2. Propidium Iodide staining

The supernatant and the adherent cells were harvested, centrifuged (1500rpm, 5 minutes) and re-suspended in lysis buffer (0.1% sodium citrate and 0.1% Triton X-100 in PBS) containing propidium iodide (PI, 20µg/ml). Upon the lysis of cells, resulting nuclei were acquired with flow cytometer (FACSCaliburTM, BD Biosciences) using FL-2 channel to quantify the percentage of cell population with subG1/G0 DNA content. The pan-caspase inhibitor, zVAD-fmk (MP Biomedicals), was used at a concentration of 20µM.
C.11.3. DiOC$_6$ / TMRE staining

To quantify the percentage of cells undergoing mitochondrial outer membrane depolarization, supernatant and the adherent cells were harvested, centrifuged (1500rpm, 5 minutes) and re-suspended in 100-200µl of PBS containing 40nM DiOC$_6$ or 40nM TMRE for 40 minutes in the incubator and further incubated for 40 minutes at room temperature in the dark. Cells were then analysed using a flow cytometer (BD Biosciences) using FL-1 (for DiOC$_6$ staining) or FL-3 (for TMRE staining) channel. Bongkrekic acid (Sigma-Aldrich), a blocker of the permeability transition pore, was used at a concentration of 75µM.

C.11.4. Caspase-3 and Bax activity assay

The supernatant and the adherent cells were harvested and centrifuged (1500rpm, 5 minutes) and fixed in 4% paraformaldehyde in PBS (PFA, Thermo Scientific) for 20 minutes at 4ºC, then blocked in 3% bovine serum albumin (BSA) for 30 minutes in Tris-buffered saline (TBS, 50mM Tris-HCl, 155mM NaCl, pH 7.6) and permeabilized with saponine (0.02% w/v) in TBS (TBSS) for 30 minutes in the incubator. Cells were then centrifuged (1500rpm, 5 minutes) and the primary antibody, diluted in TBSS, that recognizes either active caspase-3 (polyclonal rabbit anti-cleaved Caspase-3 Asp175, Cell Signaling, #9661) or Bax (monoclonal mouse anti-Bax, BD Pharmingen, 556467, clone 6A7) was added (50µl) at a dilution of 1/200 or 1/100, respectively, and incubated for 1 hour in the incubator. Cells were then washed with 2ml of TBSS, centrifuged and the isotype-matched
secondary antibody conjugated with Alexa Fluor 488 (Molecular probes), diluted in TBSS at a dilution of 1/500, was added to the tube (50µl) and incubated for 1 hour in the incubator. TBSS (2ml) was then added to wash the secondary antibody; the cells were centrifuged, re-suspended in TBSS (300µl), and analysed with flow cytometer (BD Biosciences) using the FL-1 channel.

C.11.5. **Cleavage of poly ADP ribosome polymerase (PARP)**

The supernatant and the adherent cells were harvested and the pellet was lysed in RIPA buffer (150mM NaCl, 1% NP-40, 0.5% w/v sodium deoxycholate, 0.1% w/v SDS, 50mM Tris-HCl pH 8) containing protease inhibitors (Fermentas). The total cell lysate was separated and immunoblotted with PARP antibody to determine the procession of procaspase-3 or full length PARP (see section "SDS-PAGE and Immunoblotting").

C.12. **Immunoprecipitation**

C.12.1. **Immunoprecipitation of endogenous proteins**

Cells were washed once with PBS and lysed in 500µl of RIPA buffer containing protease inhibitors (Fermentas). Approximately 7mg of total cell lysate per condition was used. The cell lysates were placed on ice for 30min, centrifuged (13x10³ rpm) for 30 minutes at 4°C. The supernatant was pre-cleared twice with 50µl of protein G sepharose™ 4 fast flow (GE Healthcare) or with
PureProteome magnetic protein G beads (Millipore) for 30 minutes each with gentle rotation at 4°C. After the pre-clearing, appropriate amount of antibody (usually what was suggested in the antibodies’ data sheets) was added to the supernatant and incubated overnight with rotation at 4°C. For VDAC1-HXKII interaction experiments, VDAC1 antibodies (D-16 or N-18) (dilution 1:50) were used to immunoprecipitate complexes from isolated mitochondria (~100µg of protein) following the protocol above. No antibody was added to the control immunoprecipitations. The antibody-protein complexes were then precipitated with 80µl or 20µl (for the VDAC1-HXKII experiments) of beads and incubated for at least 2 hours at 4°C. Beads were washed five times with the lysis buffer and re-suspended in gel loading dye (Fermentas) supplemented with reducing agent (usually 2-mercaptoethanol). Each tube was immediately boiled for 10 minutes and immunoprecipitates were subjected to protein separation by SDS-PAGE (see section “SDS-PAGE and Immunoblotting”). For ANT-1 immunoprecipitation 10 mg of protein was used (5xT175) from Hela or MCF7 and lysed in a buffer containing mitochondria lysis buffer and 1% (final) n-dodecyl-D-maltoside. The lysates were incubated on ice for 35 minutes and subsequently centrifuged at 32000g for 30 min. The rest of the procedure was the same as above.

C.12.2. Immunoprecipitation of overexpressed proteins

HEK293T cells were transfected with the appropriate plasmids as indicated and cell lysates were prepared in RIPA buffer. Protein concentration was measured
(see section “SDS-PAGE and Immunoblotting”) and equal amounts of protein in an equal volume (adjusted with RIPA buffer) were pre-cleared once with 50µl of PureProteome magnetic protein G beads (Millipore) for 30 minutes with gentle rotation at 4°C. The supernatant was then immunoprecipitated with the indicated antibodies overnight. No antibody was added for the control tubes. The antibody-protein complexes were then precipitated with 80µl of beads and incubated for 1 hour at 4°C. Beads were washed five times with lysis buffer and re-suspended in gel loading dye (Fermentas) supplemented with reducing agent. Each tube was immediately boiled for 10 minutes and immunoprecipitates were subjected to protein separation by SDS-PAGE.

Antibodies used were polyclonal rabbit α-Flag (Sigma-Aldrich, F7425, used at 1/50 dilution), monoclonal mouse α-HA (Sigma-Aldrich, H3663, used at 1/50 dilution) and the protein raised antibodies where no tag was available.

C.13. SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting

C.13.1. Preparation of whole cell lysate

Cells were trypsinized, centrifuged (1500rpm, 5 minutes) and lysed, or were directly lysed on the plate by adding RIPA buffer. Total cell lysates were then incubated on ice for 30 min and subsequently centrifuged for at least 45 minutes
(13x10³ rpm) at 4°C. The resulting supernatant, which contained soluble proteins, was transferred to a new tube and used immediately or stored at -20°C until use.

C.13.2. Protein concentration measurement

Protein concentration was determined using the Bradford assay (BioRad).

To obtain a standard curve, BSA of known concentration was sequentially diluted (from 0-6µg/µl) and placed on a flat-bottom 96-well plate. To each well, 199µl of Bradford (diluted 5 times in water) was added and the absorbance measured at 595nm using FLUOstar OPTIMA (BMG Labtech). The resulting absorbance values were plotted against BSA concentration and used as a standard curve to measure the protein concentration.

C.13.3. Sodium dodecyl sulphate polyacrylamide gel electrophoresis

Following the protein concentration measurement, 20-100µg of the total cell lysate was separated by SDS-PAGE (stacking gel: 4.8% polyacrylamide, 125mM Tris-HCl pH6.8, 0.1% SDS, 0.1% APS, 0.1% TEMED; resolving gel: 10-15% polyacrylamide, 375mM Tris-HCl pH8.8, 0.1% SDS, 0.1% APS, 0.05% TEMED) in TGS-running buffer (25mM Tris-HCl, 192mM Glycin, 0.1% w/v SDS). PageRuler™ pre-stained protein ladder (Fermentas) was used for the protein size estimation. Proteins were then transferred to nitrocellulose or PVDF membrane (Millipore) in transfer buffer (20% methanol in TGS buffer). Conditions used for the transfer were
as follows: limited to 500 mA and 20 volts. Proteins were transferred for 90 minutes (if two gels are transferred together) or 60 minutes (if only one gel is transferred) in a semi-dry transfer system from Bio-Rad.

C.13.4. Immunoblotting

The membranes were blocked with 3% BSA (Sigma-Aldrich) or 5% FCS in TBS containing 0.1% Tween (TBS-T) for minimum of 30 minutes, incubated with the primary antibody, washed three times with TBS-T (10 minutes each), and incubated with horseradish peroxidase-conjugated isotype-matched secondary antibody. The membrane was then washed as before, treated with enhanced chemoluminescent reagent (Pierce) and subjected to autoradiography using high performance chemoluminescence film (GE Healthcare).

Antibodies used for immunoblotting and immunoprecipitation are listed below (Table B.2.).

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Source</th>
<th>Clonality</th>
<th>Dilution</th>
<th>Company</th>
<th>Cat. no</th>
</tr>
</thead>
<tbody>
<tr>
<td>IκBα</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:1000 (WB) 1:100 (IP)</td>
<td>Santa-Cruz</td>
<td>sc-371</td>
</tr>
<tr>
<td>IκBα</td>
<td>Goat</td>
<td>polyclonal</td>
<td>1:750 (WB) 1:100 (IP)</td>
<td>Santa-Cruz</td>
<td>sc-371-G</td>
</tr>
<tr>
<td>IκBα</td>
<td>Rabbit</td>
<td>monoclonal</td>
<td>1:1000</td>
<td>Abcam</td>
<td>ab-32518</td>
</tr>
<tr>
<td>Protein</td>
<td>Species</td>
<td>Type</td>
<td>Dilution</td>
<td>Source</td>
<td>Catalogue</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IκBα</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:500(WB)</td>
<td>Santa-Cruz</td>
<td>sc-1643</td>
</tr>
<tr>
<td>β-actin</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:2000</td>
<td>Sigma-Aldrich</td>
<td>A2228</td>
</tr>
<tr>
<td>Bax</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:2000</td>
<td>BD Pharmingen</td>
<td>556467</td>
</tr>
<tr>
<td>FLAG</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:2000</td>
<td>Sigma-Aldrich</td>
<td>F7425</td>
</tr>
<tr>
<td>FLAG</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:100(IP)</td>
<td>Origene</td>
<td>TA50011-1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:2000</td>
<td>Santa-Cruz</td>
<td>sc-32233</td>
</tr>
<tr>
<td>HA</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:2000</td>
<td>Sigma-Aldrich</td>
<td>H6908</td>
</tr>
<tr>
<td>PARP</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:1000</td>
<td>Cell Signaling</td>
<td>#9542</td>
</tr>
<tr>
<td>ANT-1</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:100</td>
<td>Mitoscience</td>
<td>MSA02</td>
</tr>
<tr>
<td>ANT-1</td>
<td>Rabbit</td>
<td>monoclonal</td>
<td>1:500</td>
<td>Proteintech</td>
<td>15997-1</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:1000</td>
<td>Abcam</td>
<td>15895</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:500</td>
<td>Santa-Cruz</td>
<td>sc-58649</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Goat</td>
<td>polyclonal</td>
<td>1:1000</td>
<td>Santa-Cruz</td>
<td>sc-32063</td>
</tr>
<tr>
<td>VDAC1/2/3</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:500</td>
<td>Santa-Cruz</td>
<td>sc-98708</td>
</tr>
<tr>
<td>GRP75</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:500</td>
<td>Santa-Cruz</td>
<td>sc-13967</td>
</tr>
<tr>
<td>HSP60</td>
<td>Goat</td>
<td>polyclonal</td>
<td>1:500</td>
<td>Santa-Cruz</td>
<td>sc-1722</td>
</tr>
<tr>
<td>Tom20</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:1000</td>
<td>Santa-Cruz</td>
<td>sc-11415</td>
</tr>
<tr>
<td>Cytochrome-C</td>
<td>Mouse</td>
<td>monoclonal</td>
<td>1:1000</td>
<td>BD Pharmingen</td>
<td>556433</td>
</tr>
<tr>
<td>Antibody</td>
<td>Source</td>
<td>Dilution</td>
<td>Code</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p65 Rabbit polyclonal 1:300</td>
<td>Santa Cruz</td>
<td></td>
<td>sc-372</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p50 mouse monoclonal 1:300</td>
<td>Santa Cruz</td>
<td></td>
<td>sc-8414</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexokinase 2 Mouse monoclonal</td>
<td>Sigma Aldrich</td>
<td>1:500</td>
<td>SAB1402221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bax Rabbit polyclonal 1:300</td>
<td>Santa Cruz</td>
<td></td>
<td>sc-493</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creatine Kinase 1 Rabbit</td>
<td>Proteintech</td>
<td>1:750</td>
<td>15346-1AP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclophilin D (ppiF) Mouse</td>
<td>Calbiochem</td>
<td>1:500</td>
<td>AP1035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse HRP Goat</td>
<td>Molecular Probes</td>
<td>1:5000</td>
<td>G21040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit HRP Goat</td>
<td>Sigma Aldrich</td>
<td>1:20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat HRP Rabbit</td>
<td>Sigma Aldrich</td>
<td>1:20000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biotin HRP Mouse</td>
<td>Sigma Aldrich</td>
<td>1:20000</td>
<td>A0185</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C.14. Immunofluorescence

C.14.1. Immunofluorescence assay

Cells, seeded on coverslips (CS), were transfected by mitoCFP, mitoGFP or mitoYFP with Effectene (Qiagen, UK) and grown for 24 hours, then fixed in 4% paraformaldehyde in PBS for 20 min at 4°C. After a blocking step with 3% BSA in Tris-HCl 50 mM, NaCl 155 mM, pH 7.6 and 0.02% saponine (TBSS) for 30 min at room temperature (RT), cells were incubated with the primary antibody (Table B.3.)
for 2 hours at RT. Cells were rinsed five times in TBSS and then incubated with the secondary anti-rabbit Alexa Fluor 594 antibody at a dilution of 1/500 in TBSS. Cells were washed five times in TBSS and incubated 30 minutes in DAPI (2 µg/ml, Invitrogen, UK) at RT, before being mounted in polyvinyl alcohol mounting medium with DABCO (Sigma). Cells were examined with confocal laser-scanning microscope (Leica) with a 63x objective and analysed with LAS AF software.

Plasmid vectors conjugated with fluorescent protein used are: mitoCFP, mitoGFP or mitoYFP are all fluorescent proteins conjugated at the N-terminus with a mitochondria localization signal from the precursor protein of human cytochrome c oxidase subunit VIII. Those plasmids were a kind gift of Remy Sadoul (Inserm U836, Grenoble, France). S/D-GFP and MEET-GFP were fused and cloned and verified by immunofluorescence (see above).

Table B.3. Primary antibodies used for Immunofluorescence

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Source</th>
<th>Clonality</th>
<th>Dilution</th>
<th>Company</th>
<th>Cat. no</th>
</tr>
</thead>
<tbody>
<tr>
<td>IκBα</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:50</td>
<td>Santa-Cruz</td>
<td>sc-371</td>
</tr>
<tr>
<td>Cyt.-C</td>
<td>mouse</td>
<td>monoclonal</td>
<td>1:50</td>
<td>Santa-Cruz</td>
<td>sc-13560</td>
</tr>
<tr>
<td>FLAG</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:50</td>
<td>Sigma-Aldrich</td>
<td>F7425</td>
</tr>
<tr>
<td>p65</td>
<td>Rabbit</td>
<td>polyclonal</td>
<td>1:50</td>
<td>Santa-Cruz</td>
<td>sc-372</td>
</tr>
</tbody>
</table>
C.14.2. Mitochondrial staining

Mito Tracker® Red CM-H2XRos (MitoTracker) and tetramethylrhodamine ethyl ester (TMRE) were used at a concentration of 50nM (Molecular Probes) for the visualization of mitochondria. Both probes were diluted in a culture medium and added to the cells for 15-20 minutes at 37ºC. When specific mitochondrial staining was visible, dyes were removed, washed three times with DMEM and fresh medium (minimum quantity, ~250µl per a well of 24-well plate) was added.

C.15. Production of lentiviral particles

Virulent media was produced in HEK293FT cells (Invitrogen, UK) using the following optimised protocol for lentiviral production: Plasmids encoding Vesicular Stomatitis Virus Glycoprotein (pVSV-G), group antigen and reverse transcriptase (pGag.Pol) and mRNA export helper protein (pRev) were isolated from ViraPower™ lentiviral packaging mix (Invitrogen). Expression vector for the pAdVantage was from Promega. The cell line used was 293FT cells from Invitrogen.

The day before the transfection, 293FT cells were plated onto 10cm² dishes so that the plate would be approximately 50-60% confluent on the day of transfection. Two hours prior to transfection, the medium was replaced with fresh DMEM. 5.4µg of the pVSV-G, 3.8µg of the pRev, 7.8µg of the pGag.Pol, 9µg of the pAdVantage and 20µg of the lentiviral transgene plasmid were mixed in a 2ml eppendorff tube and made up to 437.5µl with H₂O. Then 62.5µl of 2M CaCl₂ was
added, mixed thoroughly and incubated for 5 minutes. Meanwhile, 500µl of 2xHBS (50mM HEPES, 281mM NaCl, 1.5mM Na2HPO4 pH 7.08-7.1, filter sterilized) was prepared in a 15ml conical tube. After 5 minutes incubation, the DNA/CaCl₂ mixture was added drop by drop into 15ml conical tube while vigorously shaking the tube on a vortex machine. The mix was immediately added to the dish drop by drop.

The culture medium was replaced with fresh warm medium containing sodium butyrate (10mM, Sigma-Aldrich), dissolved in PBS, on the following morning (16 hours post transfection). Note that sodium butyrate was freshly prepared every time. After 2 to 3 days post transfection, the supernatant was harvested and centrifuged (500g, 10 minutes, RT) to remove cells and large debris, then passed through a 0.45µm sterile filter. Note that 0.2µm filter should not be used as it can damage viral outer glycoproteins. 3T3-IkBα/-/- cells were transduced for 6 h in the presence of polybrene (6 µg/ml, Sigma) for the reconstitution with IkBα variants (pLenti7.3-G.O1). After infection, cells were sorted through a BD FACSAriaIIu fluorescent activated cell sorter for eGFP since the pLenti7.3 vector allows the expression of a fluorescent marker along with the gene of interest through a bi-cistronic vector system.
C.15.1. Calculation of viral titre

In order to measure the viral titre, the cells of interest (HEK293T or HeLa cells) were seeded on the 12-well plate to make a plate ~30% confluent on the day of transduction. On the day of the transduction the viral stock was diluted (three different dilution to achieve accurate measurements) in 400µl of DMEM containing polybrene® (hexadimethrine bromide, 6µg/ml, Sigma-Aldrich). The diluted viruses were added to the cells and incubated for 48 hours to allow integration of genome and the expression. The number of cells present in a well was counted. The cells were then selected with puromycin (2-6µg/ml) for 24 hours and the number of surviving cells was recorded.

The viral titre was calculated using the following equation:

\[
TU/ml = \frac{F \times N \times D}{V}
\]

Where TU is the transforming unit (=number of virions), F is the percentage of surviving cells, N is the number of cells at the time of transduction, D is the dilution factor, and V is the volume of diluted viral sample added into each well in ml. TU can also be referred as CFU which is the Colony Forming Unit (number of virions) and is calculated on the same way. In order to avoid under-estimation of the virus titre, only the dilution that was showing less than 20% transduced cells was used. In the case of pLenti7.3 based virions puromycin and selection was not used since the backbone contains a GFP variant for an easy estimation of viral titer.
C.15.2. Production of stable cell lines

The cell line of interest was seeded on a well of 6-well plate 15 hours prior to the transduction. On the following day, cells were transduced with the viral supernatant supplemented with 1µg/ml of Polybrene® (Sigma-Aldrich) for 6 hours or overnight. The viral supernatant was then removed; fresh medium added and incubated for a further two to three days. The medium was replaced with DMEM containing puromycin (varying concentration, 5µg/ml for HeLa cells) after 72-96 post-infection and further cultivated for three days for the selection. Upon completion of the selection, cells were maintained in DMEM containing 1µg/ml of puromycin to retain the resistance.

C.16. IκBα, VDAC and hexokinase II down-regulation by shRNA

Commercial shRNA constructs for IκBα, VDAC1 and Hexokinase II from Sigma-Aldrich were tested with western blots for sufficient down-regulation of IκBα and two constructs were validated. The appropriate controls were also purchased from Sigma. The vectors were packaged into lentiviruses using the same approach as described above. Transductions of cells with constitutively active NFκB activity (MDA-231, PC3) and non-constitutively active (Hela, 293T), were performed with the help of polybrene and stable cell lines were established.
The sequences of the synthetic oligonucleotides (Invitrogen, UK) used for IκBα shRNA constructs and VDAC1 were the following:

Table B.4. Sequences of short hairpin DNA used to knock-down the proteins of the indicated genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Targeting</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>IκBα (sh42) 3'UTR targeting</td>
<td>5'→3'</td>
<td>CCGGGACGAGAAAGATCATTGAAATCTCGAGATTTCATGATCTTTCTCGTCTTTTTTT</td>
</tr>
<tr>
<td>IκBα (sh88) CDS targeting</td>
<td>5'→3'</td>
<td>CCGGAGAGTCAGAGTTCACCGAGTTCTCGAGAATCCGTGAATC TGACTCTTTTTTT</td>
</tr>
<tr>
<td>VDAC1 CDS targeting</td>
<td>5'→3'</td>
<td>CCGGGCTTTGGTCTAGGAATTCCTCGAGAATTCCAGTCCTAGACCAAGCTTTTTTT</td>
</tr>
<tr>
<td>mVDAC1 CDS targeting</td>
<td>5'→3'</td>
<td>CCGGACCAGGTATCAAATCGACGTTCCTCGAGAACCAGTCAGTTTGTAGACCTGGTTTTTT</td>
</tr>
<tr>
<td>Hexokinase2 CDS targeting</td>
<td>5'→3'</td>
<td>CCGGCCAAGACATCTCGACATTTGCTCGAGCAATGTCTGAGATGTCTTTGGTTTTTT</td>
</tr>
<tr>
<td>Scramble Non-targeting</td>
<td>5'→3'</td>
<td>CCGGCCTAAAGTTAAGTCGCCCTCGCTCGAGCGAGGCGAAGTAA CCTAGGTCTTTTTT</td>
</tr>
</tbody>
</table>
C.17. NF-κB activity assay in 293T and 3T3

IκBα re-constituted cells

293T cells were transfected with the reporter plasmid pNFkB-hrGFP along with expression constructs for ANT-1, Bax and Tax (Munoz & Israel, 1995). The pan-caspase inhibitor zVAD (MPBio, UK) was applied at 20µM to avoid late degradation of proteins through apoptosis by Bax and ANT-1. 24 hours post-transfection, 293T cells were collected for FACS analysis. For the rest of the cell lines a non-radioactive biotinylated-oligo-pull-down assay was used to quantify the level of NFκB activity. In short, sense and antisense oligonucleotides encoding tandem κB sites (sense, AGCTTACAAGGGACTTTCCGCTGGGGACTTTCCAGGG) were annealed after denaturing and slow cooling in a buffered solution. The sense strand was biotinylated at the 5’ position, while a non-biotinylated oligonucleotide was used as control. Nuclear extracts were prepared as described above and incubated with annealed oligonucleotides for 60 minutes at 4°C. The oligonucleotides were subsequently precipitated by streptavidin agarose beads (Invitrogen, UK) and rinsed 3 times before proceeding to Western blot analysis.

C.18. *In vivo* experiments

MDA-MB-231 cells were obtained from ATCC and were transduced using previously prepared lentivirus for scramble of shIκBα(42) at M.O.I. of 100. Stable clone pools were generated and cells were expanded 2 weeks post infection.
Down-regulation of IκBα was checked with western blots. Cells were maintained in puromycin at concentration 1µg/ml.

Eight 4 week old, female, Balb/c nu/nu athymic mice were purchased under license 70/7173. Animals were always treated under the rules and conditions of the Animals Act 1986.

A 20µl 1:1 mixture of matrigel and cells containing 2x10^6 cells were injected using an insulin needle into the mammary fat pad. Both MDA-231/sc and MDA-231/shIκBα were injected in each mouse on different sides. Preparation of cells for injection was done as following:

- Cells in T175 flasks were washed 3 times with PBS
- After final wash, 5mL trypsin was added
- When the majority of cells were detached 20mL of media (RPMI + 10% FCS) was added
- Cells were thoroughly mixed, transferred to 50mL conical tube and subsequently centrifuged.
- The supernatant was discarded, pellet re-suspended with 5mL fresh media
- Re-suspended cells from multiple conical tubes were combined into one conical tube where the cells were counted
- Cells were centrifuged and supernatant was removed
- Cells were re-suspended in a volume of PBS to give 4x10^6 cells in 20µL
Equal volumes of Matrigel and cell suspension were gently but thoroughly mixed together which provided 2×10^6 cells in 20µl (50% PBS/50% Matrigel).

Mice were observed on daily basis for tumour formation. This type of cells was shown before to produce xenografts in nude mice but since they have been in culture for longer they were tested for tumour formation potential. Positively engrafted mice were separated in groups and treated in weekly intervals with PBS or Doxorubicin (6mg/kg). Administration of drug or vehicle was done through the intravenous (i.v.) route. An electronic calliper was used to measure the three dimensions of tumour and the following formula was used to calculate the volume:

$$V = \frac{\pi}{6 \times \text{length} \times \text{width} \times \text{height}}.$$

C.19. Densitometry analysis

A scanned image of a western blot was uploaded onto ImageJ programme and converted to 8-bit image (image → type → 8-bit). The image was then inverted (Edit → invert) and appropriate fields selected using “rectangular selection” tool. The plot profile (analyse → plot profile) was created and the background intensities were removed by drawing a straight line using “straight line selection.” Then distinctive peaks were separated with “straight line selection” and the intensities of bands were analysed upon selection of the appropriate area with “wand tool” followed by the measurement (analyse → measure). Note that
pressing the “Shift” key during line drawing allowed me to draw a straight line and “Ctrl+D” allowed me to approve my line draw.

C.20. Statistical analysis

Statistical analysis was performed using unpaired student’s t-test. Two samples were regarded to have an equal variance when the f-test between two sample sets gave $p>0.05$. Data were regarded as statistically significant if $p<0.05$ based on the t-test.
C.21. Common buffers used

<table>
<thead>
<tr>
<th>Solution/Media</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2M CaCl₂</td>
<td>11.1 gr in 50ml and sterilize by filtering</td>
</tr>
<tr>
<td>2X HBS</td>
<td>50mM HEPES (Sigma, UK), 280 mM NaCl, 1.5mM Na₂HPO₄ Bring pH to 7.06-7.08 and sterilize</td>
</tr>
<tr>
<td>Blocking Buffer</td>
<td>Wash Buffer + 3% BSA (Sigma, UK) or Wash buffer + 5% FCS</td>
</tr>
<tr>
<td>Lactacystin</td>
<td>40ng/ml in DMSO (Cayman Europe, Estonia)</td>
</tr>
<tr>
<td>Loading Buffer 3X</td>
<td>4% SDS, 10% 2-Mercaptoethanol, 20% Glycerol, 0.125M Tris-HCl pH 6.8 (Fermentas, UK)</td>
</tr>
<tr>
<td>Luria-Bertani (LB) Broth</td>
<td>1% Bacto tryptone, 0.5% Bacto-yeast extract, 1% NaCl Bring pH 7.5 by adding NaOH</td>
</tr>
</tbody>
</table>
| Mitochondria Lysis Buffer | **Buffer A:** 20mM HEPES pH 7.5, 1.5mM MgCl₂ (6H₂O), 10mM KCl, 1mM EDTA, 1mM EGTA, H₂O up to 1L, pH to 7.4
<pre><code> | **Lysis Buffer:** 12ml Buffer A + 3ml Sucrose 1.25M |
</code></pre>
<p>| Paraformaldehyde 4% (60ml) | 4g of paraformaldehyde dissolved in 50 ml of ddH₂O, add 100µl of NaOH, allow to dissolve completely, add 10ml of PBS and cool down to RT. pH: 7.4 via HCl |
| Phosphate Buffered Saline (PBS) | 8g/L NaCl, 0.2g/L KCl, 0.2g/LKH₂PO₄, 1.15g/L Na₂HPO₄, pH 7.4 (Invitrogen, UK) |
| Polyacrylamide | 40% (Bio-Rad, UK) |
| Propidium Iodide staining lysis buffer | 0.1% sodium citrate, 0.1% Triton X-100 in PBS + propidium iodide 20µg/ml (final) |
| Resolving gel | 10-15% polyacrylamide, 375mM Tris-HCl pH 8.8, 0.1% SDS, 0.1% APS and 0.05% TEMED |
| RIPA Lysis Buffer | 150 mM Sodium Chloride (NaCl), 1% NP-40 or Triton X- |</p>
<table>
<thead>
<tr>
<th>Buffer Type</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Buffer 1X</td>
<td>25mM Tris base, 190mM Glycine, 0.1% SDS (Bio-Rad, UK)</td>
</tr>
<tr>
<td>S.O.C. media</td>
<td>2% tryptone, 0.5% yeast extract, 10mM NaCl, 10mM MgSO4, 2.5mM KCl and 20mM glucose</td>
</tr>
<tr>
<td>TBS 20X (2L)</td>
<td>400ml 1M Tris pH 7.4, 175.22gr NaCl, 100ml 0.5M EDTA, pH 8.0, 40ml Tween-20, Water up to 2 litres</td>
</tr>
<tr>
<td>Stacking gel</td>
<td>4.8% polyacrylamide, 125mM Tris-HCl pH 6.8, 0.1% SDS, 0.1% APS and 0.1%TEMED</td>
</tr>
<tr>
<td>TAE buffer</td>
<td>40 mM Tris-acetate and 1 mM EDTA at pH 8.3</td>
</tr>
<tr>
<td>TE buffer</td>
<td>100 mM Tris-HCl (pH 7.5) and 10 mM EDTA (pH 8.0)</td>
</tr>
<tr>
<td>Transfer Buffer before use</td>
<td>400 ml Methanol, 200 ml Running Buffer (10X), 1.4 L Water</td>
</tr>
<tr>
<td>Wash Buffer (TBS-T)</td>
<td>TBS + 0.1% Tween 20 (Sigma, UK)</td>
</tr>
</tbody>
</table>
D. Results
D.1. Localisation of IκBα

For more than a quarter of a century IκBα has been thought to only shuttle between the cytosol and the nucleus of every mammalian cell type in order to regulate NF-κB. While its function as a NF-κB inhibitor in these different locales has been extensively investigated, it was recently found by two groups to also reside in mitochondria of cells with an unknown function in this organelle. Since this study set out to give further insight into the function of IκBα associated with mitochondria we attempted to reproduce the finding of the IκBα localisation at mitochondria and subsequently explore its biochemical function in terms of apoptosis regulation.

Here I show that IκBα resides both in the cytosol and the mitochondria. The mitochondrial IκBα undergoes normal degradation upon TNF treatment following similar kinetics than its cytosolic counterpart but in contrast to the cytosolic IκBα, its degradation is proteasome independent. Furthermore, IκBα resides not only at the IMS as the previous studies reported but also at the OMM of all the cell lines that we tested and we are the first to show that in tumour cell lines with constitutive NF-κB activity, the majority of IκBα protein is actually found associated with the OMM of these cell types.
D.1.1. Defining the correct experimental setting

In order to confirm previous findings of Cogswell et al (2002) that IκBα resides at mitochondria of some cell types I initiated the study by determining a suitable experimental setting. Mitochondria were isolated from HeLa cells (cervical carcinoma) and separated from the cytosol. Proteinase K, which has the ability to cleave any protein was utilised to assess the localisation of proteins.

To determine the correct setting, several conditions were investigated to identify the buffer, the temperature and the concentration needed to be able to cleave non-specifically all the OMM proteins without destroying the OMM and being able to access the IMS. The suitable concentration was identified to be 25ng/ml in PBS on ice for 30 minutes. As figure D.1 shows, 25ng/ml of PK was able to cleave most of VDAC1, but it did not alter the level of Cyt-c in samples that were free from any cytosolic contaminants as the GAPDH probe shows.

Figure D.1 25ng/ml of Proteinase K (PK) is sufficient to distinguish proteins within mitochondria from those at OMM and in the cytosol. Several concentrations of PK were used on isolated mitochondria. Samples were treated for 30 min on ice, mitochondria were washed again in mitochondria buffer and lysed with RIPA buffer. A 12% SDS-gel was used to separate the proteins and suitable antibodies to detect for the specific antigens.
D.1.2. The kinetics of IκBα degradation by TNF in mitochondria are similar to those in the cytosol

It is known that upon binding of TNF, IκBα gets phosphorylated, ubiquitinated with K48 ubiquitin chains and then targeted to the proteasome for its degradation. Since IκBα was found in the mitochondria we wanted to investigate its degradation kinetics since the proteasome is unlikely to have access to the mitochondria. We hypothesized that IκBα would be protected from proteasomal degradation and show no or slower degradation since it resides in the IMS where it is protected. We first showed by immunofluorescence that the TNF concentration used was sufficient to induce the translocation of RelA (p65) subunit into the nucleus (Figure D.2A) confirming the activation of the NF-κB pathway. We show in figure D.2C that mitochondrial IκBα follows the same kinetics as the cytosolic IκBα.
Figure D.2. Upon TNF treatment, IκBα is degraded with the same kinetics in the mitochondria as in the cytosol. (A) Hela cells were treated with 20ng/ml TNF to activate NF-κB. The activation is confirmed by the translocation of p65 and p50 from the cytosol into the nucleus. (B) Hela cells were treated with TNF and the IκBα and subsequently the p-IκBα antibody were used to probe for activated IκBα. (C) WB of cytosolic and mitochondrial HeLa lysates indicate that upon TNF application IκBα is degraded with the same kinetics in both cell fractions. Mitochondria were treated with Proteinase K to ensure mitochondria purity. (WCL: Whole Cell Lysate)

D.1.3. IκBα degradation in mitochondria is proteasome-independent

The results of the degradation kinetics of mitochondrial IκBα upon TNF treatment served as a reference for an experiment in which we checked the IκBα degradation when the proteasome was inhibited. We used the cell permeable and irreversible proteasome inhibitor lactacystin, which specifically inhibits the 26s proteasome (MCP; multicatalytic proteinase complex). It blocks the proteasome activity by targeting its catalytic β-subunit and has no effect on other serine or cysteine proteases. Blocking the proteasome inhibited IκBα degradation in the...
cytosol upon TNF treatment but had no effect on mitochondrial IκBα degradation. This result suggests that TNF also activates a separate protease that degrades the mitochondrial IκBα (Figure D.3).

Figure D.3. Mitochondrial IκBα degradation upon TNF treatment is proteasome independent. HeLa cells were treated with DMSO or lactacystin (40ng/ml) for one hour and subsequently with TNF (20ng/ml) for the indicated times. Mitochondrial and cytosolic fractions were separated with standard methods and loaded on a 12% SDS gel, which was probed with the indicated antibodies.

D.1.4. IκBα associates with the OMM of several cell lines

Following our hypothesis that IκBα at mitochondria plays a role on apoptosis, we wanted to examine the level of its protein at the mitochondria and also the sub-cellular residence of IκBα within the organelle. We used immunofluorescence and determined that in Hela, MCF7, and 3T3 cells IκBα partly co-localised with mitochondria. In MDA-231, PC3, and HCT-116 cells that display constitutive NF-κB activity (Dejardin et al., 1999; Nakshatri et al., 1997b; Sakamoto et al., 2009; Suh et al., 2002), the co-localisation of IκBα with mitochondria was
even more pronounced (Figure D.4A). This distribution was substantiated in cell fractionation experiments which revealed that MDA-MB-231 cells show high expression levels of IκBα at mitochondria whereas its cytosolic levels were diminished. In contrast MCF7 cells, which are also a carcinoma cell line from the breast tissue, revealed only partial localisation of IκBα to mitochondria and the cytosolic levels were much higher (Figure D.4B). These results implied that there is a preference for IκBα localisation to mitochondria in cell lines with constitutive NF-κB activity. In order to test the exact localisation of IκBα in several cell lines we utilized the conditions that we optimised earlier for the proteolytic cleavage of proteins at the OMM. Treatment of intact mitochondria with proteinase K isolated from Hela cells revealed that the enzyme gained access to IκBα as it could substantially reduce the IκBα signal in a protein blot and likewise that of the OMM protein Tom20 as a control. In contrast, the inner mitochondrial protein cytochrome c was protected (Figure D.4C). With mitochondria from the remaining cell lines we likewise found that IκBα could be cleaved by proteinase K suggesting that it was also associated with the OMM (Figure D.4D).
A

<table>
<thead>
<tr>
<th></th>
<th>DAPI</th>
<th>MitoGFP</th>
<th>IkBα</th>
<th>Overlay</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCF7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3T3 WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-231</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCT-116</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure D.4. IκBα is found at the outer mitochondrial membrane. (A) Confocal photomicrographs of IκBα distribution in normal cells (upper panels) and cells with constitutively active NF-κB (lower panels) (B) Mitochondrial and cytosolic fractions from HeLa, MCF7 and MDA-231 cells were loaded on a 12% SDS gel. Cytosolic fractions were 10X more concentrated than the mitochondrial fraction since mitochondrial proteins represent ~10% of the total protein content. (C) Mitochondrial and cytosolic fractions were isolated from HeLa cells and treated with proteinase K to identify the localisation of IκBα. IκBα was found to associate with the OMM. (D) Mitochondrial fractions of the indicated cell lines were treated with proteinase K to validate the localisation of IκBα within the organelle. The same conditions and mitochondria purity were used as in (C). (* indicates an unspecific band).
D.2. \textit{IκBα} is an apoptosis inhibitor

Having identified that IκBα resides at mitochondria of several cell lines and with some of them its expression level being high, we employed transient expression of IκBα to check its effect on apoptosis. Various genes, implicated in apoptosis induction or inhibition, have the dominant capacity to exert their effect upon overexpression. This feature is even conserved across species (McCarthy \& Dixit, 1998). Several constructs directing IκBα to mitochondria (OMM and IMS) or sequestering it in the cytosol were employed to address its apoptosis regulation from different subcellular locales.

Using specific N-terminal fusions of IκBα to the mitochondrial localisation sequences of mitoNEET (Wiley \textit{et al.}, 2007a) and Smac/DIABLO (S/D) (Ozawa \textit{et al.}, 2007a), we aimed to target IκBα to the OMM and to the mitochondrial intermembrane space, respectively. Immunofluorescence confirmed the localisation of the fusion constructs to mitochondria and proteinase K digest on isolated mitochondria in combination with Western blotting supported their residence in the expected compartments. We then tested the activity of the fusion constructs in an apoptosis assay. MitoNEET-IκBα (MEET-IκBα) completely abolished apoptosis induced by ANT1 transfection. WT IκBα led to an intermediate apoptosis reduction, while the S/D-IκBα fusion had no effect on apoptosis. IκBβ was likewise ineffective for cell death inhibition. A fusion of IκBα to the mitochondria localisation sequence of yeast mcr1, which among other membranes
also associated with the OMM (Hahne et al., 1994b), led to inhibition of ANT1-induced apoptosis in 293T, MCF7, and Hela cells (Figure D.6B). To determine how general the inhibitory effects on apoptosis were, we tested additional apoptosis-inducing genes and observed a strong apoptosis reduction when the pro-apoptotic genes Bax, VDAC1, and tBid were co-transfected with MEET-IκBα, while apoptosis induced by caspase-8 was only weakly affected.

D.2.1. Generation and validation of constructs allowing targeting of IκBα to the mitochondria

For the yeast mcr1 gene we used the first 141 bp in order to direct IκBα to the mitochondria. According to the model that Haucke et al. (1997) have published, the first 12 amino acids of MCR1 are inserted into the inner mitochondrial membrane and amino acids 13 to 47 reside in the intermembrane space where they are cleaved in order to release the fused protein. The constructs for IκBα, mcr1-IκBα and mcr1-IκBα-FLAG were inserted into a mammalian expression vector and were verified by sequencing and western blotting. To confirm the localization of the MCR1-IκBα protein, HeLa cells were transfected with the fusion gene mcr1-IκBα and cell fractionation for mitochondria and cytosol was performed. The results show the correct localization of mcr1-IκBα at mitochondria with minimal or no contamination of overexpressed protein in the cytosol (Figure D.5).
Figure D.5. Mcr1-IκBα is targeted to mitochondria. (A) Cartoon representation of IκBα fused with the localization signal of yeast mcr1. (B) Confocal photomicrographs of Hela cells transfected with mcr1-IκBα-FLAG, mitoGFP and ER-DsRed. (C) Hela cells were transfected with the indicated constructs and mitochondrial extracts were separated from cytosol with standard procedures.
D.2.2. **IκBα is a strong apoptosis inhibitor**

The investigation of IκBα at the mitochondrial level required the establishment of an experimental setting relevant for the localisation of the endogenous protein. Our lab has identified that the Adenine Nucleotide Translocase 1 (ANTU1) which resides at the IMM is a strong apoptosis inducer when overexpressed (Bauer et al., 1999). We initially applied this finding to induce apoptosis in 293T, HeLa and MCF7 cells and investigated if IκBα can have any effect on this apoptosis. IκBα could indeed completely abrogate the strong apoptosis inducer ANT-1 and this effect was even more pronounced when it was targeted to mitochondria (Figure D.6A). A titration experiment revealed that even wt-IκBα could completely inhibit ANT-1 apoptosis. The effect was not cell-specific since similar results were obtained in HeLa and MCF7 cells (Figure D.6B). IκBα and mcr1-IκBα could also inhibit the apoptosis observed in Hela cells after administration of ionomycin. This drug initiates an influx of calcium to mitochondria, which leads to mitochondrial membrane potential dissipation and collapse of the OMM integrity. IκBα targeted to mitochondria could potently inhibit this apoptosis signal (Figure D.6C).
Figure D.6. IκBα is a strong apoptosis inhibitor at mitochondria. (A) IκBα wt and mcr1-IκBα inhibit ANT-1 apoptosis in a dose-dependent manner. 293T cells were transfected using Superfect with the indicated constructs and after 24h, apoptosis was quantified by PI staining with cell lysis. (B) MCF7 and HeLa cells were transfected using Effectene and 24h post transfection cell death was quantified by PI staining with lysis. (C) IκBα can inhibit the loss of ΔΨm. HeLa cells were transfected with Effectene and 24 post transfection Ionomycin was used at 20µM. 2 hours later the mitochondria membrane potential was quantified using DioC staining. (****p<0.0001)
D.2.3. Generation and validation of constructs allowing targeting of IκBα to specific sub-mitochondrial localisation

The mitochondrial NADH-cytochrome b5 reductase gene (mcr1) is an example of a gene encoding a protein that is directed to two sub-mitochondrial compartments (Haucke et al., 1997). The N-terminal 47aa of the yeast mcr1 gene are able to target the same protein to the OMM and IMS. Likewise, any protein fused to the first 47 amino acids of the mcr1 gene would be targeted both to the OMM and the IMS. On the contrary it has been shown in the past that alanine substitution for glutamine at positions 23 and 24 can direct any protein almost exclusively to the IMS (Haucke et al., 1997).

In order to identify the locale of IκBα that is required for its anti-apoptotic effect, mcr1AAQQ-IκBα was generated in order to determine if the IMS localisation is responsible. Moreover, the constructs S/D-IκBα and MitoNEET-IκBα were generated that can potently and exclusively direct IκBα to the IMS and OMM, respectively. Figure D.7 shows that the constructs were validated by immunofluorescence and western-blotting for their expected sub-organelle localisation.
Figure D.7. MEET-\(\text{IκB}\alpha\) and S/D-\(\text{IκB}\alpha\) are targeted to the OMM and IMS respectively. **(A)** Cartoon representation of MEET-\(\text{IκB}\alpha\) and S/D-\(\text{IκB}\alpha\). **(B)** Confocal photomicrographs showing co-localization of the indicated constructs at mitochondria. HeLa cells were transfected with mito-GFP and the indicated fusions of \(\text{IκB}\alpha\) and 24h post transfection immunofluorescence was performed. **(C)** Fusion constructs reside in the correct sub-mitochondrial fractions. Proteinase at 25ng/ml was utilized to cleave OMM proteins leaving the IMS unaffected.
D.2.4. \(\text{iKB} \alpha \) inhibits apoptosis at the OMM

After the validation of the constructs we proceeded with the same experimental setting as previously to assess the locale at which \(\text{iKB} \alpha \) exerts its anti-apoptotic effect. It was found that \(\text{iKB} \alpha \) inhibits apoptosis at the outer mitochondrial membrane and is ineffective when targeted to the IMS (Figure D.8A-B). ANT-1 was not the only apoptosis inducer that \(\text{iKB} \alpha \) could inhibit. Transfection of other pro-apoptotic genes such as Bax, VDAC1, or tBid led to apoptosis initiation and \(\text{iKB} \alpha \) could inhibit this effect as well. When it was targeted to the OMM the effect was even more pronounced (Figure D.8C).
Figure D.8. IκBα is a strong apoptosis inhibitor at the OMM. (A) 293T cells were co-transfected with ANT-1 and the indicated constructs at a ratio 1:2 using calcium phosphate. 24 hours post-transfection cells were collected and DioC/PI staining was used to quantify apoptosis. Data represent six independent experiments with triplicates. (B) Expression pattern of IκBα-fusions for the indicated experiment. Numbers represent the sequence of the upper panel (1:β-gal, 2:IκBαwt, 3:mcr1-IκBα, 4:MEET-IκBα, 5:S/D-IκBα, 6:AA23/24QQmcr1-IκBα (C) tBid, Bax-β, VDAC1, and Caspase 8 were co-transfected with the IκBα-wt and MEET-IκBα to assess the inhibition profile of IκBα. Four independent experiments with triplicates were combined in the graph. (**p<0.0001, **p<0.001)
D.2.4.1. IκBα but not IκBβ can inhibit apoptosis and its effect is specific at mitochondria

After the discovery that IκBα can inhibit apoptosis especially when targeted to mitochondria, the investigation of its specificity was the next step. IκBα shares extensive sequence similarity with IκBβ and its effect on apoptosis was tested in a similar assay. As figure D.9C shows, IκBβ was completely incapable to inhibit apoptosis compared to IκBα-wt. Furthermore, the specificity of apoptosis inhibition at mitochondria was tested in order to assess if the locale was specifically required or if the inhibitory ability was due to non-specific effects of over-expression. In order to investigate that possibility we generated a fusion of IκBα with the β-actin gene (Figure D.9A) to sequester IκBα in the cytosol and avoid its mitochondrial localisation. Figure D.9B shows that the actin fusion of IκBα was not co-localised at mitochondria in contrast to MEET-IκBα and was unable to inhibit apoptosis induced by ANT-1 (Figure D.9C).
Figure D.9. IκBα but not IκBβ inhibits apoptosis exclusively at the OMM.

(A) Cartoon representation of IκBα/βActin in pcDNA3 expression vector.

(B) Confocal images of HeLa cells transfected with mito-YFP, MEET-IκBα or IκBα/βActin. Cells were stained for IκBα antibody.

(C) 293T cells were transfected using Xfect with ANT-1 and the indicated plasmids and apoptosis was quantified 24h post transfection using PI staining. IκBα sequestered in the cytosol is unable to inhibit apoptosis in contrast to IκBα targeted to mitochondrial OMM (left panel). ***p<0.001, **p<0.01

***p<0.001, **p<0.01
D.2.5. Reconstitution of IκBα in 3T3 IκBα−/− cells renders them resistant to apoptosis

Genetic knockouts have provided an experimental tool for the identification of possible consequences of the absence of the respective protein under investigation. IκBα−/− mice show constitutive NF-κB activation, and neonatal lethality. We tried to investigate the effect on apoptosis using a reconstitution model for IκBα at different subcellular compartments and in parallel to confirm the results from the ectopic expression experiments described earlier. We utilized a lentiviral expression strategy in order to reconstitute IκBα only at the outer mitochondrial membrane or only in the cytosol. MEET-IκBα and IκBα/βActin proved to be the suitable fusions for this purpose. We used a lentiviral vector which contains a CMV promoter for the transgene expression, followed by a SV40 promoter expressing a GFP mutant so that the positive colonies would be visually identified.

We reconstituted IκBα at the OMM at a level similar or lower than the one observed in wild type fibroblasts (Figure D.10B) by modifying the multiplicity of infection of the virus. Reconstitution of IκBα at mitochondria of IκBα−/− fibroblasts significantly reduced the sensitivity of these cells to several apoptotic stimuli whereas IκBα sequestered in the cytosol had the opposite effect (Figure D.10C). We checked the level of active NF-κB in order to have a baseline for comparison and interpretation of the results. A non-radioactive assay with a biotinylated-
tandem-κB-oligo-pulldown, showed that both MEET-IκBα and IκBα/βActin inhibited the NF-κB activation to the same extent, which made the experimental setting more accurate since the comparison could be made (Figure D.10E).

NF-κB activity and especially constitutive NF-κB activation has been observed in several aggressive tumours as discussed in the introduction chapter. Since NF-κB has an anti-apoptotic activity in these tumours we investigated if NF-κB has an anti-apoptotic activity on these cells so we can take that under consideration when interpreting the reconstitution results. Using a specific NF-κB inhibitor (N-Oleoyldopamine) and two signals for apoptosis we inhibited the NF-κB system in IκBα +/- cells (reconstituted with an empty vector) and we found that these cells are more sensitive when NF-κB is inhibited showing that in those cells constitutive NF-κB activation confers an anti-apoptotic signal (Figure D.10D).
Figure D

Bar graph showing % Apoptosis (DiOC/PI) for DMSO and OLDA in different conditions:
- NT
- As$_2$O$_3$
- H$_2$O$_2$

Figure E

Western blot analysis with IP: Biotin:
- p50(NFκB)
- Biotin
- PARP
Figure D.10. Effect of IκBα reconstitution at the OMM and the cytosol in IκBα −/− cells. (A) Cartoon representation of the lentiviral constructs used for the reconstitution of the indicated genes in 3T3 IκBα−/− cells. A GFP variant was also expressed in a bi-cistronic format for easier sorting of the cells. (B) Two weeks post-transduction, cells were selected in a FACS sorter for GFP and WB from total lysates (left panel) was used to identify the level of expression after reconstitution. Both IκBα/βActin and MEET-IκBα are expressed at a lower level than 3T3-WT cells. Mitochondrial IκBα after reconstitution was examined after fractionation and separation from the cytosol. (EV: Empty Vector, WT: Wild type) (C) Effect on apoptosis of mitochondria-specific IκBα reconstitution in IκBα−/− (constitutive NF-κB positive) cells. IκBα−/− cells were reconstituted and treated with the indicated signals for apoptosis. Apoptosis was assessed by FACS analysis. (D) 3T3 IκBα−/− reconstituted cells with an empty vector were assessed for their dependence on constitutive NF-κB activation. N-Oleyoldopamine (OLDA) was used to inhibit NF-κB and cells were subsequently treated with the indicated drugs. Apoptosis was quantified 24h post treatment. (NT: Non-treated) (E) Reconstitution of mitochondrial or cytosolic IκBα equally inhibits the constitutive NF-κB activation observed in IκBα−/− cells. Biotin conjugated κB tandem repeats was immunoprecipitated from nuclear extracts of the indicated reconstituted cells and SDS-PAGE was used to assess the level of active NF-κB.
D.2.6. Knock down of IκBα in cancer cell lines with constitutive NF-κB activity sensitises them for apoptosis

Having established that IκBα can potently inhibit apoptosis at the OMM and possibly contributes to the apoptosis resistance observed in many cancers, we progressed to investigate its function in those cancer cells. We established the experimental setting in a way so that the cells we used had IκBα at mitochondria, had constitutively active NF-κB, and were very resistant to apoptosis. PC3 and MDA-MB-231 cells were found to fulfil these criteria. It was shown earlier that MDA-231 cells accumulate IκBα at mitochondria with minimal expression in the cytosol (Figure D.4B). These cells have constitutively active NF-κB that is not dependent on IκBα degradation and are extremely resistant to several chemotherapeutics.

Since IκBα has an anti-apoptotic role when expressed at mitochondria and since in MDA-231 cells IκBα is found mainly at mitochondria, we reduced the expression of IκBα by lentiviral shRNA so that the mitochondrial IκBα is significantly down-regulated. We observed, that when IκBα was knocked-down, MDA-231 cells were sensitized to several apoptotic signals, which were ineffective previously (Figure D.11C-E). Likewise, PC3 cells in which immunofluorescence likewise showed enhanced localization of IκBα at mitochondria and proteinase K treatment revealed that IκBα is located at their OMM, were sensitized to apoptotic signals (Figures D.4A, D.4D). HCT-116 cells show the same trend for apoptosis.
sensitization after IκBα knock-down (Figure D.11F). In order to exclude off-target effects of the shRNA sequence that we used (sh IκBα-42) we generated an additional stable cell line with an alternative targeting sequence for IκBα knock-down. Figure D.11C shows that the effects were specific and shIκBα(88) likewise sensitized MDA-231 cells for apoptosis induction. A cell viability assay (MTT) revealed that MDA-231 cells with reduced IκBα expression showed reduced viability compared to normal cells (scramble) (Figure D.11D) confirming the sensitisation to apoptosis observed previously (Figure D.11B)

Since NF-κB activation is conferring an anti-apoptotic signal to several cancers we investigated the effect of IκBα knock-down to MDA-231 and PC3 cells. If the NF-κB system was affected the results would have been interpreted accordingly. We show in figure D.11A that shRNA-mediated knock-down of IκBα in MDA-231 and PC3 cells did not affect the level of endogenous constitutively active NF-κB.
C

MDA-231 cells

\[\% \text{ Apoptosis (DioC/PI)}\]

<table>
<thead>
<tr>
<th></th>
<th>SC</th>
<th>shkB(\alpha) (88)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Clotrimazole</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>

D

\[\% \text{ Cell Viability (MTT)}\]

<table>
<thead>
<tr>
<th></th>
<th>Scramble</th>
<th>shkB(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 hrs</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>24 hrs</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>
E PC3 cells

![Graph showing % Apoptosis (DioC/PI) for PC3 cells treated with different drugs and shIkBα.](image)

F HCT-116 cells

![Graph showing % Apoptosis (DioC/PI) for HCT-116 cells treated with different drugs and shIkBα.](image)
Figure D.11. Knock-down of IκBα in cells with constitutively active NF-κB sensitizes them to apoptosis. (A) Lentiviral-based knock-down of IκBα by shRNA diminished the expression of its protein in MDA-MB-231 cells (upper panel) and in PC3 cells (lower panel). NF-κB was not affected by the down-regulation as indicated by a biotinylated-oligo-pull-down assay. (SC*: Non-labelled oligo in 1000X excess) (B) MDA-231 cells were treated with the indicated drugs (arsenic 10µM, clotrimazole 40µM-4 hours- and doxorubicin 1µM for 24h) and apoptosis was assessed by FACS and PARP cleavage. (C) An alternative shRNA construct for IκBα was also used to exclude possible off-target effects, showed similar results with (B) after treatment under the same conditions. (D) MDA-231 cells were treated with 1µM doxorubicin and subjected to an MTT assay for cell viability. (E) Identical approach with (B) was used for PC3 cells which were treated with 1,4 µM actinomycin D, 1µM Staurosporine (STS) and 5nM Docetaxel for 24h. Apoptosis was assessed with FACS and PARP cleavage. (F) Knock-down of IκBα in HCT-116 cells was confirmed by semi-quantitative RT-PCR. Ionomycin 10µM and STS 1µM were used to induce apoptosis in those cells. ***p<0.001, **p<0.01
D.2.7. *In vivo* MDA-231 tumour shrinkage with doxorubicin after knock-down of IκBα

Following the above observations *in vitro* for the role of IκBα on the resistance to chemotherapeutics that is observed in cells lines with increased levels of IκBα at mitochondria, we sought to examine the role of IκBα *in vivo*. MDA-231 as the *in vitro* study shows are extremely resistant to chemotherapeutics such as doxorubicin. We transduced MDA-231 cells with lentiviruses encoding for scramble or for shRNA targeting IκBα. We used these cells to generate xenografts by injecting 2×10^6 cells of each cell line in the mammary fat pad of 8 Balb/c nu/nu mice. After four weeks the mice were examined for tumour formation. Tumour growth was observed only in the MDA-231/shIκBα cells but we decided to proceed to the treatment in order to determine relevant concentrations of doxorubicin.

Two out of eight mice did not develop palpable tumours. We randomly split the 6 mice into two groups for PBS or doxorubicin treatment. Mice were weighted and PBS or doxorubicin (6mg/kg) was administered intravenously (i.v.). Figure D.12A shows the days when the tumours were measured and the drug was administered. 14 days after the initiation of the treatment PBS treated mice showed tumour formation in both sides which grew substantially to the same level. 21 days post treatment initiation MDA-231/scramble also started growing and eventually continued growing even when they were under doxorubicin
treatment. MDA-231/shIκBα tumours despite being substantially bigger and the only ones growing at the initial treatment stages, were re-sensitized and shrank even stronger than the MDA-231/scramble cells. Figure D.12B shows the average tumour size on the various days of measurement for PBS- and doxorubicin-treated mice. However, statistical significance was not achieved due to the small mouse number. Results shown were derived from a small pilot study to determine the ability of MDA-231 cells to develop tumours and determine an effective doxorubicin dose for a later, large scale study. All in vivo experiments were conducted following the 1986 Act for Animals (Scientific Procedures) and under PPL: 70/7173.
Figure D.12. Mouse xenografts from chemotherapy-resistant MDA-231 cells are re-sensitized after IκBα knockdown. Random grouping of previously engrafted mice in the mammary fat pad (mfp) with MDA-231/scramble and MDA-231/shIκBα cells were injected i.v. with PBS (upper graph and upper panel) or doxorubicin (6mg/kg)(lower graph and lower panel) for the days indicated in the graphs. Calliper measurements were taken on the same days as treatment. Graphs are showing average tumour sizes from 3 Balb/c nu/nu mice in each group. Tumour size was calculated following the formula:

\[V (\text{mm}^3) = \frac{\pi}{6} \times \text{length} \times \text{width} \times \text{height} \].

PBS mice were sacrificed at D30 to comply with the conditions of the Act since tumour sizes reached the limit of the project licence.
D.3. \(\text{I} \kappa \text{B} \alpha \) is a PT-pore modulator

In an effort to explore the function of \(\text{I} \kappa \text{B} \alpha \) at the OMM we tried to identify the interaction partners of \(\text{I} \kappa \text{B} \alpha \) at this locale. Using immunoprecipitations we discovered a strong signal with the OMM protein VDAC1 and Hexokinase II, but not with cytochrome-c. \(\text{I} \kappa \text{B} \alpha \) was also able to co-immunoprecipitate with CK1 and ANT1, which are localised in the intermembrane space and the inner mitochondrial membrane, respectively (Figure D.13). This suggested that \(\text{I} \kappa \text{B} \alpha \) can associate with molecules that are part of the permeability transition (PT) pore. Accordingly, deletion of cyclophilin D, which inhibits the PT pore (Baines et al., 2005; Basso et al., 2005; Nakagawa et al., 2005; Schinzel et al., 2005), also completely inhibited the activity of MEET-\(\text{I} \kappa \text{B} \alpha \) to reduce apoptosis (Figure D.14). In addition, ANT1-induced apoptosis was efficiently inhibited by \(\text{I} \kappa \text{B} \alpha \) and is mediated by the PT pore as it is dependent on cyclophilin D (Figure D.14). Moreover, the shRNA-mediated knockdown of VDAC1 or Hexokinase II also reduced the potential of MEET-\(\text{I} \kappa \text{B} \alpha \) to inhibit apoptosis (Figure D.15). These experiments suggested that \(\text{I} \kappa \text{B} \alpha \) targets VDAC1 and/or HKII to inhibit apoptosis. In an effort to determine the behaviour of \(\text{I} \kappa \text{B} \alpha \) under apoptotic conditions, it was found that \(\text{I} \kappa \text{B} \alpha \) loses its interaction with VDAC1 while maintaining its interaction with hexokinase II (Figure D.15).
D.3.1. Endogenous interaction of IκBα and components of the PT-pore

Having identified the locale of IκBα that is required for apoptosis inhibition, I sought to identify those molecules that are necessary for IκBα to interact and exert its anti-apoptotic effect. I used isolated mitochondria from HeLa cells and immunoprecipitated IκBα. I found that IκBα can interact with VDAC1, ANT-1, CK1 and Hexokinase II but was unable to interact with cytochrome-c (Figure D.13A-B), establishing a physical interaction with members of the PT-pore.

In the previous section IκBα was found to exert its anti-apoptotic effect at the OMM. One prominent molecule that resides at the OMM is VDAC1 and IκBβ was not found able to interact with VDAC1 as IκBα (Figure D.13C). The latter was performed after the finding that IκBα, but not IκBβ, can inhibit apoptosis (see chapter D.2.4.1).
Figure D.13. IκBα interacts with subunits of the PT-pore. (A) Hela cells were lysed with RIPA buffer and 5% n-dodecyl-D-maltoside added and the lysates incubated on ice for 30 min. After high speed centrifugation the supernatant was recovered and IκBα was immunoprecipitated using a monoclonal antibody. The pulled-down proteins were separated by SDS-PAGE (IP: ImmunoPrecipitation, C: Control). The blot was probed with several antibodies against subunits of the PT pore or proteins of the IMS. (B) MCF7 cells, which express high levels of HXKII, were used to pull-down IκBα and identify the IκBα-HXKII interaction (C) Whole cell lysates were used to pull down IκBα or IκBβ and a sequential staining for IκBα and IκBβ was performed for the pull-down/input while a monoclonal VDAC1 antibody was used to identify interaction.
D.3.2. IκBα requires the PT-pore to exert its anti-apoptotic effect

The PT-pore is acknowledged to play an important role in apoptosis as a protein complex, but individual members such as ANT-1, VDAC1 and cyclophilin D have also independently been implicated in apoptosis regulation. We sought to identify the importance of the PT-pore for IκBα to exert its anti-apoptotic effect. We used cells in which cyclophilin-D is absent (ppif/O/O) and which, as a consequence, show increased resistance to apoptotic stimuli since the PT-pore cannot be activated.

As described in previous sections we used ANT-1 to induce apoptosis and IκBα as an apoptosis inhibitor. Previous findings from our lab show that ANT-1 apoptosis can be inhibited by bongkrekic acid (Bauer et al., 1999), a specific inhibitor of the PT-pore. We initially tested ANT-1 and found that its apoptosis induction is mediated by the PT-pore since transfection of ANT-1 in ppif/O/O cells rendered ANT-1 incapable of inducing apoptosis (Figure D.14A). Likewise, we tested the ability of IκBα to inhibit apoptosis when the PT-pore cannot be activated (using ppif/O/O cells). We found that IκBα could inhibit apoptosis induced by several drugs in normal mouse embryonic fibroblasts but was not able to further inhibit apoptosis in cells with a defective PT-pore (Figure D.14B).
Figure D.14. IκBα exerts an anti-apoptotic effect through the PT-pore. (A) MEF-WT and MEF-ppiF−/− were tested with a WB for the validation of the gene knock-out (right panel). MEF-WT and MEF-ppiF−/− were transfected with X-fect with ANT-1 and 24h post transfection DiOC/PI was measured to quantify apoptosis. (B) MEF-WT and MEF-ppiF−/− were transfected with an empty vector and with MEET-IκBα. 24 hours post-transfection cells were treated with ionomycin (10µM, 3h), menadione (15µM, 20h), and H₂O₂ (500µM, 24h). Apoptosis was quantified by DioC/PI staining and FACS. (**: p<0.0001, N.S.: Non-significant)
D.3.3. IκBα targets VDAC1 to exert its anti-apoptotic effect

An important modulator of the PT-pore that induces apoptosis when overexpressed is VDAC1 as mentioned in the introduction. We established that IκBα has a very strong anti-apoptotic effect when targeted to the outer mitochondrial membrane and that the PT-pore is necessary for this inhibitory effect. Bearing in mind the above we attempted to identify the interaction partner that IκBα is targeting to exert its effect. At the OMM two important proteins that form an essential anti-apoptotic complex were tested for this purpose. VDAC1 and Hexokinase II (HXKII) were found to be required for IκBα’s anti-apoptotic effect.

Using knock-downs of VDAC1 and HXKII in 293T cells and in 3T3 IκBα-/- reconstituted cells we determined that both VDAC1 and HXKII are necessary for apoptosis inhibition via IκBα. Knock-down of VDAC1 completely abolished the ability of IκBα to inhibit apoptosis (Figure D.15A, D.15C) and the effect was observed both with overexpressed IκBα and reconstituted IκBα. Likewise, HXKII reduction abrogated the inhibitory effect of IκBα (Figure D.15B). Immunoprecipitation of IκBα from cells with stably reduced VDAC1 left the IκBα-HXKII interaction unaffected as similar to when HXKII was knocked-down and the interaction between VDAC1 and IκBα was examined (Figure D.15D).
A

ANT-1 Apoptosis

![Graph showing % Apoptosis (DiOC/P) for SC and shVDAC1 conditions.](image)

B

ANT-1 apoptosis

![Graph showing % Apoptosis (DiOC/P) for SC and shHXKII conditions.](image)
Figure D.15. IκBα targets VDAC1 to exert its anti-apoptotic effect. (A) VDAC1 was stably knocked-down in 293T cells using lentiviral particles. Its expression was checked in a WB after 7 days of puromycin selection. ANT-1 and 20µM ionomycin were used for apoptosis induction and transfection of empty vector or MEET-IκBα. Apoptosis was quantified by FACS. (B) The same procedure as (A) was used to knock-down HXKII and likewise the ability of IκBα to inhibit apoptosis was examined. (C) 3T3 IκBα U/U cells reconstituted with an empty vector or with MEET-IκBα were transduced with lentiviral particles to reduce VDAC1. Apoptosis was induced with Ionomycin (20µM) or clotrimazole (40µM). (D) Stable knock-down 293T cells for the indicated proteins were used to immunoprecipitate IκBα and its HXKII interaction or VDAC1 interaction was assessed.
D.3.4. IκBα dissociates from VDAC1 upon apoptosis

IκBα was found to interact endogenously with members of the PT-pore under physiological conditions. Since IκBα is able to inhibit apoptosis via its interaction with VDAC1 and HXKII, we anticipated that upon apoptosis these interactions might change. We used HeLa and HCT-116 cells and identified the conditions, which induce apoptosis after 24h but without any morphological or biochemical sign of cell death after 10 hours of induction. We chose 2 different cell lines to avoid cell type-specific effects and used the 10h time point to avoid degradation of proteins due to apoptosis initiation.

Using immunoprecipitations of IκBα we found that upon induction of apoptosis with arsenic trioxide IκBα lost its ability to interact with VDAC1 but maintained the HXKII interaction (Figure D.16B). In parallel the lack of overt apoptosis was assessed biochemically using DioC/PI staining 10 hours post treatment with As$_2$O$_3$ (Figure D.16A).
Figure D.16. IκBα dissociates from VDAC1 upon apoptosis. (A) HeLa and HCT-116 cells were treated with arsenic trioxide (As$_2$O$_3$) for 10 and 24 hours and apoptosis was assessed with DioC/PI double staining. (B) DMSO- and arsenic-treated HeLa and HCT-116 cells were collected 10 hours post-treatment and IκBα was immunoprecipitated from total cell lysates. Hexokinase II and VDAC1 protein levels were examined.
D.4. The anti-apoptotic effect of IκBα is structurally and functionally independent from its function on NF-κB inhibition

The discovery of IκBα as a mitochondrial apoptosis inhibitor prompted questions about this role and the exact mechanism of action. The well-established role of IκBα as the inhibitor of NF-κB gives it characteristics of an pro-apoptotic molecule but at the same time IκBα can very potently inhibit several forms of mitochondrial apoptosis signals. We took the initial step to determine if the NF-κB activity played any role in the anti-apoptotic activity of IκBα. Using functional NF-κB inhibitor mutants of IκBα we discovered that the anti-apoptotic activity was not altered. A non-degradable form of IκBα (IκBα-S) and an IκBα mutant impaired in NF-κB inhibition (IκBα-110A3) (Sachdev et al., 1998a) were as effective as WT-IκBα for inhibition of apoptosis by Bax and ANT1 (Figure D.17). A reporter assay confirmed that under these conditions the endogenous NF-κB system was not activated (Figure D.17). In order to explore whether the effect on apoptosis could structurally be separated from the known activity of IκBα to inhibit NF-κB, we generated MEET-IκBα deletion mutants including one of the IκBα N-terminus and one of its C-terminus that are dispensable and required for NF-κB inhibition, respectively (Hatada et al., 1993a). An inverse structural requirement was found for apoptosis inhibition: The N-terminus of IκBα was necessary for apoptosis
inhibition, while the C-terminus could be deleted without compromising apoptosis repression by IκBα (Figure D.18). The N-terminus of IκBα interacts with VDAC1, which is the required domain for apoptosis inhibition (Figure D.18B-C). Furthermore, The N-terminus and the first ankyrin repeat constitute a domain sufficient for apoptosis inhibition as identified by sequential deletions of the IκBα’s C-terminus (Figure D.19). All together these experiments strongly suggested that the effects on apoptosis exerted by IκBα were independent of NF-κB inhibition.
D.4.1. Functional mutants of IκBα can still inhibit apoptosis

Several IκBα mutants have been established, which alter its function on NF-κB inhibition. The IκBα super-repressor (IκBα-SR) is a mutant of IκBα with alterations of the amino acids 32 and 36, which render IκBα resistant to degradation by the proteasome. The protein product of this construct is able to permanently inhibit NF-κB. Mutations at the ankyrin repeat 2 of IκBα have been shown to neutralise the ability of IκBα of inhibiting NF-κB. The product of the construct IκBα-U110A3 is permanently incapable of NF-κB inhibition. We used these constructs along with IκBα-wt in order to determine if alteration of IκBα for NF-κB inhibition activity had also any effect on its ability to inhibit apoptosis. We tested if the NF-κB system was induced by ectopic expression of ANT-1 or Bax in order to establish a system that allows making comparisons. It was found that IκBα mutants maintained their ability to inhibit ANT-1 or Bax apoptosis (Figure D.17A). NF-κB activation initiates an anti-apoptotic signal so we sought to ensure that such conditions were not realised. Under our conditions the endogenous NF-κB system was not induced as confirmed by an assay using a reporter plasmid for NF-κB activation while the TAX gene expression potently activated the system (Figure D.17B). That further indicated that IκBα inhibits apoptosis independently of its function on NF-κB.
Figure D.17. Mutants of IκBα for NF-κB inhibition function can diminish apoptosis. (A) ANT-1 or BAX were co-transfected with β-gal, IκBα-wt, IκBα-SR, and IκBα-110A3 at a ratio 1:2 in 293T cells. X-fect was used to ensure a high transfection efficiency and apoptosis was quantified 24 hours post-transfection. Means from 4 independent experiments are shown. (B) 293T cells were transfected with pcis-hNF-κB and β-gal, TAX, BAX or ANT-1. EGFP was measured 24 hours post transfection to quantify the activation of NF-κB using FACS-FL1 channel. zVAD was used in all cases to inhibit apoptosis and potential degradation of proteins. (***p<0.0001)
D.4.2. The N-terminal domain of IkBα is necessary for apoptosis inhibition

Using site-directed mutagenesis and recombinant PCR we generated deletion mutants of IkBα to identify the domain necessary for apoptosis inhibition. We used the MEET-IkBα fusion in order to ensure validity of the effect since MEET-IkBα expression completely abrogates even strong apoptosis signals and allows to separate domains responsible for apoptosis inhibition from those responsible for mitochondrial targeting. We deleted the N-terminus, the ankyrin repeats 1-3, the ankyrin repeat 4-5 and the C-terminus. We examined the correct localisation and expression of these constructs (-FLAG-tagged) with immunofluorescence (Figure D.18A).

In order to identify the necessary domain for apoptosis inhibition we tested these deletions in an apoptosis assay and expressed them together with ANT-1. We found that the N-terminal domain of IkBα (1-70) was not able to inhibit apoptosis as the other deletions did (Figure D.18B). Having established VDAC1 as the primary target of IkBα at mitochondria we used immunoprecipitations to test the ability of mutants to interact with this protein. It was found that deletion of the N-terminus renders IkBα incapable to interact with VDAC1 (Figure D.18C) explaining why this construct cannot inhibit apoptosis.
A

IκBα

- **Δ1-70**
- **Δ71-178**
- **Δ179-258**
- **Δ259-317**

MEET-IκBα

- **Δ1-70**
- **Δ71-178**
- **Δ179-258**
- **Δ259-317**

Overlay
Figure D.18. The N-terminal domain of IκBα interacts with VDAC1 and is necessary for apoptosis inhibition. (A) Schematic representation of the deleted domains of IκBα (upper panel). Confocal microphotographs of HeLa cells transfected with the indicated deletion mutants of MEET-IκBα, which were co-transfected with mitoYFP and stained for FLAG (fused at the C-terminus of IκBα) 24h post transfection. (B) ANT-1 was co-transfected with the indicated deletion mutants of MEET-IκBα and 24h post-transfection apoptosis was assessed by FACS. (C) Deletions of MEET-IκBα were transfected into 293T cells and a FLAG antibody was used to pull-down. A VDAC1 antibody was used to determine interaction.
D.4.3. The IκBα domain sufficient for apoptosis inhibition consist of the N-terminus and the first ankyrin repeat

As it was found in the previous chapter that the N-terminus of IκBα is necessary for apoptosis inhibition, the next question we asked was if that N-terminus represents a functional moiety of IκBα, which is also sufficient to inhibit apoptosis. We used the MEET-IκBα fusion protein to generate deletion mutants by starting with the expression of only the first 31 amino acids (immediately before the phosphorylation site) of IκBα, the first 70 amino acids, the amino acids 1-109 (N-terminus and 1st ankyrin repeat) and amino acids 1-142 (N-terminus and ankyrin repeats 1 and 2). A schematic representation of all the deletions for determining the necessary and sufficient domain can be found in figure D.19C.

Expression of the above constructs was confirmed by western blotting and they were tested in an apoptosis assay using ANT-1 transfection. The N-terminus only, irrespective of its stability and expression level, was unable to inhibit apoptosis. When the first ankyrin repeat was expressed along with the N-terminus, ANT-1 apoptosis could completely be inhibited as figure D.19A shows. Immunoblotting of cells transfected with the above plasmids confirmed the expression of the genes and the results of the apoptotic assay evaluated with DioC/PI (Figure D19A).
ANT-1 APOPTOSIS

% Apoptosis (DioC/Pl)

- β-gal
- MEETIkBα (1-31)
- MEETIkBα (1-70)
- MEETIkBα (1-109)
- MEETIkBα (1-342)
- MEETIkBα (full)

A

B

β-actin 42 KDa

Deletion Mutants

FLAG (IkBα)

Evangelos Pazarentzos | PhD Thesis
Figure D.19. IκBα’s N-terminal domains with the first ankyrin repeat are sufficient to inhibit apoptosis. (A) Deletion mutants of MEET-IκBα were generated with recombinant PCR and tagged with FLAG® (in parentheses are the amino-acids of IκBα that are present in each construct). Their potency to inhibit apoptosis was tested in an ectopic expression assay with ANT-1 and quantification was done with FACS and DioC/PI staining. (B) Cells from (A) were lysed with RIPA buffer and lysates were blotted on a 15% SDS-PAGE for each deletion’s expression level. (C) Schematic representation of MEET-IκBα deletion mutants that were used for identification of the domains necessary and sufficient for apoptosis inhibition. On the right the characteristics of each construct are summarized. Ankyrin repeats are shown in red and N- or C-termini are represented by letters N or C.
D.5. Mechanism of apoptosis inhibition by IkBα

In this report we unravelled a novel pathway of apoptosis inhibition by IkBα at mitochondria. We observed a strong inhibitory effect on several signals for apoptosis and complete abrogation on apoptosis induced by ANT-1. The observation that OMM-targeted IkBα is a stronger inhibitor of apoptosis led us to its target at the outer mitochondria membrane which is VDAC1. Reconstitution, over-expression and knockdown studies, all reveal that IkBα acts on VDAC1 to inhibit apoptosis and this inhibition is mediated by a domain on IkBα, which is separable from domains affecting its ability to inhibit NF-κB. Although the effect was very clear, the mechanism by which IkBα exerts its effect was, till then, only based on observations and possible interaction partners of IkBα at the mitochondria level. Further analysis and experiments helped to identify the mechanism involved. IkBα inhibits apoptosis by inhibiting Bax integration by its association with VDAC1, thereby stabilizing the VDAC1-HXKII complex.
D.5.1. \(\text{IκBα inhibits Bax-induced cytochrome-C release} \)

VDAC1 was found to be the target of IκBα at the mitochondrial level as shown in the previous sections. As a member or effector of the PT-pore VDAC1 is a key molecule involved in apoptosis since upon apoptosis induction it allows the docking of Bax and eventually the permeabilisation and rapture of the OMM leading to cytochrome-C release. The release of apoptogenic factors is the “point of no return” for apoptosis execution and so far anti-apoptotic Bcl-2 family members were the sole guards of the OMM integrity acting directly on Bax (a mechanism that is extensively described in the introduction). We investigated if IκBα can have any effect on cytochrome-C release since VDAC1 is its target and is involved in this function. We used Bax-β to induce apoptosis in 293T cells and IκBα targeted to the OMM was able to nearly completely inhibit Bax-β apoptosis (Figure D.20B). Using in vitro-translated (IVT) IκBα and recombinant Bax we induced cytochrome-C release from isolated mitochondria. When IVT-IκBα was present cytochrome-C release was completely abrogated (Figure D.20A). We used the same setting but instead of IVT-IκBα we transfected these cells with MEET-IκBα. This had the same effect on cytochrome-C release (Figure D.20C). We showed previously that PC3 cells are resistant to apoptotic stimuli but when IκBα is reduced, these cells are re-sensitized to apoptosis. IκBα levels at mitochondria are found elevated in those cells, so knockdown would be a physiologically relevant system to explore its function on BAX and VDAC1. We used staurosporin
that induces Bax translocation to mitochondria and sought to investigate the effect of IκBα on cytochrome-C release. When IκBα (PC3/scramble) was present and after staurosporin administration, cytochrome-C was released after 6-12 hours and Bax was moderately integrated in the OMM. When PC3/shIκBα cells were used and IκBα was found absent in mitochondria fractions, cytochrome-C could be released after only 2 hours of STS administration. Bax was found to be strongly integrated in the OMM when compared with the PC3/scramble cells on the same membrane (Figure D.20D). All the above results indicated a clear effect of IκBα on Bax-induced cytochrome-C release.
A

Sup

- Cyt-C (17KDa)
- VDAC1 (34KDa)
- IκBα (39KDa)

Pellet

- Cyt-C (17KDa)
- VDAC1 (34KDa)
- IκBα (39KDa)

B

293T mitochondria

- nM Bax
- Cyt-C
- VDAC1
- MEET-IκBα (FLAG)

C

Bax-β apoptosis

- % Apoptosis (DIOC/PI)
- EV
- MEET-IκBα

Figure D.20. IκBα inhibits Bax-induced cytochrome-C release. (A) Mitochondria from 293T cells were isolated and kept on ice. Reticulocyte lysate from IVT-β-gal and reticulocyte lysate from IVT-IκBα were incubated with mitochondria at 25°C for 30min. Increasing concentration of recombinant-Bax were added afterwards and cytochrome release assessed. (B) 293T cells were transfected with an empty vector (EV) and MEET-IκBα and 24h later they were transfected with Bax-β. Apoptosis was quantified by DioC/PI staining and FACS. (C) 293T transfected either with an empty vector or MEET-IκBα were used and their mitochondria were isolated. Increasing concentrations of recombinant Bax were added and cytochrome-C release was assessed. (D) PC3/scramble and PC3/shIκBα cells were treated with 1µM staurosporine (STS) for the indicated times. Subsequently, alkali wash was used on isolated mitochondria according to standard methods and cytochrome-C release or Bax integration was qualitatively measured by a 15% SDS-PAGE. IκBα levels were measured before the alkali wash. An unspecific band was observed showing equal loading. 16 hours after STS administration integrated Bax appears cleaved in both cell lines possibly due to general protein degradation from excessive STS apoptosis.
D.5.2. IκBα stabilizes the VDAC1-HXKII complex

The ability of IκBα to inhibit Bax-induced cytochrome-C gave further insight into the mechanism that IκBα uses to inhibit apoptosis. Since Bax integration was delayed and cytochrome-C was inhibited, VDAC1 was the most obvious molecule to be investigated for a postulated mechanism. VDAC1 forms a complex with Hexokinase II (HXKII) and this complex is anti-apoptotic since HXKII, which is found bound to VDAC1 especially in cancer cells, makes the VDAC1 docking sites for Bax inaccessible. I speculated that IκBα could act on this complex and possibly stabilise it so that apoptosis is inhibited. We described in the introduction that the enterobacterial E. coli protein FimA was found to stabilise this complex and to confer resistance to colon cancer cells. We followed the same strategy to explore if IκBα had similar characteristics comparable to the bacterial protein. We designed a peptide that resembles the initial 15 amino acids of HXKII and when applied to isolated mitochondria, dissociates HXKII from them. The antibiotic clotrimazole has the same properties as the peptide but its effects are more unspecific.

We obtained indications that IκBα is probably involved in this complex, initially when we knocked-down VDAC1 or HXKII (see figure D.15). The finding that IκBα was able to endogenously interact with HXKII (Figure D.13) was an additional step towards the characterization of the mechanism. IκBα was found to stabilise the VDAC1-HXKII complex in mitochondria from HeLa cells transfected with IκBα-wt since even maximal amounts of HXK2VBD peptide were unable to dissociate
HXKII when IκBα was present (Figure D.21A). Moreover, mitochondria from HeLa cells transfected with IκBα-wt became more resistant to dissociation caused by clotrimazole since greater amounts of the drug were required for the dissociation (Figure D.21C). Similar results were observed in a genetically more defined system when we used IκBα-/- and MEET-IκBα reconstituted cells (Figure D.21B).
Figure D.21. IκBα stabilizes the VDAC1-HXKII complex. (A) Mitochondria from control- or IκBα-transfected HeLa cells were treated with the HKII-release peptide HXK2VBD and the interaction between HKII and VDAC1 was monitored with immunoprecipitations. (B) Mitochondria isolated from IκBα^{−/−} or MEET-IκBα-reconstituted 3T3 cells were treated with clotrimazole (CTZ, 80µM, 30 min). Subsequently, mitochondria were washed extensively, pelleted and then the indicated proteins were detected associated with mitochondria. (Note that all lysates were loaded on the same gel and blotted onto the same membrane but between 0 and 80µM CTZ the lanes used for controls and the drug were not added. Only the necessary parts of the blots are shown. (C) Mitochondria from control- or IκBα-transfected HeLa cells were treated with increasing amounts of clotrimazole. The stability of the VDAC1-HXKII interaction was monitored with immunoprecipitations of VDAC1.
E. Discussion
E.1. Summary of the study

In most cell types the activation of the transcription factor NF-κB leads to an anti-apoptotic response through the transcriptional upregulation of cell death inhibitors. I have demonstrated here that, unexpectedly, the NF-κB target gene IκBα, besides its inhibitory effect on NF-κB and its pro-apoptotic consequence, also guards the integrity of the OMM and thereby represses the intrinsic pathway for apoptosis. IκBα can exert its anti-apoptotic effect due to its stable interaction with VDAC1 and HKII through its N-terminal domain as mapping experiments revealed. IκBα stabilises the VDAC1-HKII complex and inhibits Bax recruitment and cytochrome-C release. The PT-pore, which spans the mitochondrial membranes, is actively involved in this process since I could demonstrate that IκBα uses the PT-pore to exert its anti-apoptotic effect. Re-constitution and mapping studies reveal that the domains of IκBα involved in apoptosis inhibition and in NF-κB inhibition are separate. Overall, I show here that IκBα constitutes a target for cancer therapeutics since specific down-regulation sensitised previously non-sensitive tumour cells to chemotherapeutics: tumours in nude mice were considerably more sensitive to chemotherapy when IκBα was knocked-down in comparison with control tumours that showed no sensitivity to small doses of the drug. Further research will be required for the design of molecules specifically targeting the VDAC1/HKII-IκBα interaction.
E.2. Mitochondrial localisation of IkBα and apoptosis inhibition

Consistent with the identification of IkBα in mitochondria (Bottero et al., 2001; Cogswell et al., 2003) we confirm in this study that IkBα is indeed found associated with mitochondria of several cancer cell lines (Figure D.4). Of note is the fact that in cell lines with constitutive NF-κB activity the mitochondrial localisation of IkBα is almost complete (Figure D.4A). The kinetics of IkBα degradation within mitochondria upon TNFα treatment were almost identical with the cytosolic effect (Figure D.2). That was an interesting finding since the proteasome does not have access to the inner compartments of mitochondria (Cogswell et al., 2003) and a possible transport of IkBα out of mitochondria is unlikely unless it is very fast. We tested the kinetics of mitochondrial and cytosolic IkBα degradation upon specific blockage of the proteasome using the specific and irreversible inhibitor lactacystin. The results indicate that the mechanism of IkBα degradation in mitochondrial differs from the one in the cytosol (Figure D.3). Under these conditions IkBα in mitochondria is still degraded upon TNFα treatment but at the same time its degradation is blocked in the cytosol. Consequently, a different mechanism for IkBα degradation is suggested by these results. This could be another protease that is recruited into the mitochondria where it degrades IkBα. Calpain has been shown to cleave IkBα by interacting with residues 50-51 but the degradation effect was so far not tested on mitochondrial IkBα (Schaecher et al., 2004). Although the
finding that mitochondrial IκBα is possibly degraded by another mechanism is interesting, it is not providing additional information about the OMM-associated IκBα that we show here is anti-apoptotic. The lactacystin experiments were looking at the IκBα localised at the IMS.

As a predominantly cytosolic protein with a pro-apoptotic function (since it inhibits the anti-apoptotic NF-κB transcription factor) mutational changes in IκBα were so far mainly connected with constitutive NF-κB activity (Biswas et al., 2004; Gasparian et al., 2002a; Robe et al., 2004; Romieu-Mourez et al., 2001). Trying to identify possible differences between cells with normal NF-κB activity or cells with constitutively active NF-κB, we separated mitochondria and cytosol from HeLa, MCF and MDA-231 cells. There are so far no data showing the expression levels of the ΙκΒα protein in mitochondria and our results compared for the first time three different cell lines, one with constitutively active NF-κB (MDA-MB-231) and two with normal NF-κB activity (Hela, MCF7). When analysing the results shown in figure D.4B we observed that in the MDA-MB-231 cell line, IκBα levels in mitochondria are comparatively higher than in MCF7 cells (from the same tissue) or in HeLa cells (another carcinoma). On the other hand, the levels of the protein in the cytosol are diminished in MDA-MB-231 cells, probably because of the constitutive degradation by the proteasome as observed in other tumours (Biswas et al., 2004; Gasparian et al., 2002a; Robe et al., 2004; Romieu-Mourez et al., 2001).
Using a proteinase K assay, IκBα was found within the mitochondria and at the OMM of several cell lines including tumour or normal cell lines (Figure D.4D). Various genes implicated in apoptosis induction or inhibition have the dominant capacity to exert their effect upon overexpression. This feature is even conserved across species (McCarthy & Dixit, 1998). For this reason and since IκBα is found to accumulate at mitochondria in cells with constitutive NF-κB activity, it was interesting to investigate the effect of IκBα when over-expressed. We generated a fusion protein with the first 47 amino acids of the MCR1 yeast protein to target the IκBα to the mitochondria intermembrane space (IMS) and the outer mitochondrial membrane (Figure D.5). The localisation of this protein to mitochondria is of particular interest since they are pivotal organelles for apoptosis control that contain numerous cell death regulators. Ultimately, they govern the disruption of the outer mitochondrial membrane and the release of pro-apoptotic factors such as cytochrome c and AIF, which cause cell destruction. We show here that when IκBα is specifically targeted to mitochondria it can inhibit even strong apoptosis signals such as ANT-1 (Figure D.6). One recent report suggests that ANT-1 induces apoptosis by titrating out nuclear NF-κB. However, the Hela cells used in this study do not contain constitutively active NF-κB (Grimm et al., 1996; Zamora et al., 2004). Rather, we believe that ANT-1 is a specific inducer of the PT pore for apoptosis, which is supported by its dependence on Cyp-D (Figure D.14). Upon IκBα expression we have also observed a reduced break-down of the mitochondrial
membrane potential $\Delta \Psi_m$, an early sign of apoptosis induction, when cells were treated with an ionophore that increases the mitochondrial Ca^{2+} level (Figure D.6C). This, together with ANT-1 apoptosis inhibition, supports the notion of IκBα at mitochondria as an apoptosis inhibitor. A dose response was also tested by transfecting different amounts of IκBα or mcr1-IκBα plasmids while maintaining the ANT-1 levels. At a 2:1 ratio with an ANT-1 expression construct IκBα-wt and mitochondria-targeted IκBα (mcr1-IκBα) could completely abrogate the ANT-1 apoptosis signal (Figure D.6A). The effect was not cell-specific since MCF7 and HeLa cells responded in the same manner upon IκBα and ANT-1 co-transfection (Figure D.6B).

The localisation signal of the yeast MCR1 gene is not specific for any sub-organelle compartment, however specific mutagenesis on two amino acids targeted mcr1-IκBα almost completely to the IMS. (Hahne et al., 1994a; Haucke et al., 1997; Meineke et al., 2008). For this reason I generated fusion constructs for this specific targeting of IκBα. Localisation sequences from Smac/DIABLO for the IMS and mitoNEET for the OMM were fused with IκBα thereby generating S/D-IκBα and MEET-IκBα (Figure D.7). Upon ANT-1 transfection only MEET-IκBα and IκBα-wt were able to inhibit the apoptotic signal suggesting that only when IκBα associates with the OMM, it can inhibit apoptosis (Figure D.8). Other apoptosis inducers were likewise tested such as t-BID, VDAC1, Bax or Caspase-8. In all cases IκBα targeted to the OMM could inhibit apoptosis. For caspase-8 the effect of
IkBα-wt or of MEET-IkBα was only moderate suggesting a specificity of the signals that mitochondrial IkBα can inhibit. Caspase-8 activation can be the end result of apoptosis induced by the extrinsic pathway but a communication exists between the plasma membrane receptor and the mitochondria-mediated pathways through BID. Caspase-8 can cleave and activate BID and this is possibly underlying the effect on apoptosis inhibition that we observe (Figure D.8C).

IkBβ was not found at mitochondria in the study that discovered IkBα in this organelle (Cogswell et al., 2003). However, IkBβ shares extensive homology with IkBα, consequently our intention was to evaluate the capacity of IkBβ to inhibit apoptosis. Figure D.9C shows that IkBβ does not inhibit apoptosis. The specificity of the apoptosis inhibition was further highlighted by an experimental setting that had IkBα sequestered in the cytosol, which rendered it unable to inhibit apoptosis: the IkBα/β-actin fusion protein was generated in order to retain the IkBα protein in the cytosol (Figure D.9A-9B). ANT-1 apoptosis could not be inhibited by this fusion construct (Figure D.9C). Hence, the sole site for apoptosis inhibition by IkBα remained the outer membrane of mitochondria.

Re-constitution studies have long served as an option to evaluate the function of a protein. We obtained IkBα−/− fibroblasts in order to examine the effects of IkBα on apoptosis since such an investigation was not performed when the IkBα−/− mice were generated (Beg et al., 1995a). These mice show constitutive NF-κB activation, which we confirmed confers apoptosis resistance to those cells
(Figure D.10D). In order to avoid overexpression of proteins we used a lentiviral system that allowed us to transduce the knock-out fibroblasts with different M.O.I.s so that the reconstitution of the proteins would be at the same or lower level than the 3T3 WT fibroblasts. We used IκBα/β-actin, and empty vector (EV) and MEET-IκBα to target IκBα only to the cytosol or to the OMM. Since these cells show constitutive NF-κB activity we used a non-radioactive-κB-oligo-pull-down assay using nuclear extracts to determine the status of NF-κB before and after reconstitution. Figure D.10E show that upon reconstitution of IκBα at physiological levels (Figure D.10B) NF-κB activity was diminished in both cases making our results comparable and independent of any apoptosis resistance conferred by NF-κB activation (Figure D.10E). After setting up our cellular system, I used apoptosis assays in order to evaluate the effect of IκBα variants in specific cellular compartments after apoptosis induction. OMM-targeted IκBα conferred resistance to all apoptotic stimuli used in re-constituted cells, despite the in-activation of the anti-apoptotic NF-κB (Figure D.10C). Cytosol-sequestered IκBα was unable to inhibit apoptosis and in most cases even sensitised the cells for apoptosis possibly due to the inhibition of NF-κB (Figure D.10E).
E.3. Evidence for resistance to apoptosis through mitochondrial IκBα: proof of concept

In order to investigate the role of IκBα at the OMM for apoptosis regulation and its function as a NF-κB target gene we made use of cells with constitutive NF-κB activity that express high level of IκBα at the OMM (Figure D.4A-B). The selection of this cell type was particularly important since I previously identified that these cells (MDA-MB-231), apart from the high levels of IκBα at mitochondria, have diminished levels of IκBα in the cytosol. Hence, RNAi against IκBα would primarily down-regulate the mitochondria-associated IκBα. Using lentiviruses we stably knocked down IκBα in MDA-MB-231 cells. NF-κB remained unaffected indicating that it is activated by a process other than IκBα degradation in these cells (Prasad et al., 2009) (Figure D.11A). The treatment with various apoptosis inducers revealed that IκBα reduction rendered these cells significantly more sensitive to apoptosis (Figure D.11). A similar effect was observed when IκBα was targeted in PC3 cells, which likewise display constitutively active NF-κB and a high amount of IκBα at mitochondria (Figure D.11).

Treatment-resistance of tumour cells with constitutively active NF-κB has been reported extensively (Lee et al., 1999; Nakshatri et al., 1997a; Sovak et al., 1997; Wang et al., 1996) emphasising the importance of our experimental findings. Indeed MDA-MB-231 cells are extremely resistant to apoptosis (Ciucci et al., 2006)
and several studies report that inhibition of NF-κB made these cells more sensitive to apoptosis signals. However, we have emphasised in the introductory sections of this thesis the importance of NF-κB in scenarios other than apoptosis. Targeting NF-κB would have detrimental effects on the immune response, something that needs to be avoided. MDA-MB-231 cells have constitutively active NF-κB and the knockdown of IκBα, which resides primarily at mitochondria, did not affect its activation and IκBα. Targeting IκBα proved to be an effective method to sensitise these cells to the well-established chemotherapeutic doxorubicin. A small in vivo pilot study using mice engrafted with MDA-MB-231 cells confirmed my in vitro results and doxorubicin-treated tumours with IκBα shrank substantially, whereas normal tumours were unresponsive to doxorubicin and continued to grow (Figure D.12).

PC3 cells display the same characteristics as the MDA-MB-231 cells in terms of resistance to apoptosis and chemotherapy agents due to constitutive NF-κB activation (Gasparian et al., 2002a; Gasparian et al., 2002b; Lu et al., 2004; Muenchen et al., 2000). The underlying mechanism for constitutive NF-κB activation is not known but IκBα was also found associating with the OMM in those cells (Figure D.4) and knock-down of IκBα had no effect on further activating NF-κB (Figure D.11A). Docetaxel has been identified as an efficient chemotherapeutic to target breast, lung and prostate cancer and has extensively been used in the clinic (Morse et al., 2005). However, PC3 cells display resistance to
this drug (Figure D.11E). IκBα knockdown sensitised these cells to docetaxel and efficiently induced apoptosis (Figure D.11E).

MDA-MB-231 and PC3 are two cell lines that exhibit the enhanced accumulation of IκBα at mitochondria and both of them were sensitised upon IκBα RNAi-mediated reduction. In order to explore how universal is the effect on apoptosis resistance we also tested the human colon cancer cell line (HCT-116) which likewise is extremely resistant to apoptosis and displays constitutive NF-κB activity. An effect on apoptosis sensitisation was also observed with those cells when IκBα was reduced. We used staurosporin and ionomycin, which initiate apoptosis through Bax translocation to mitochondria and activation of the PT-pore through calcium influx, respectively (Schubert & Grimm, 2004; Zhang et al., 2004). In both cases IκBα was found to be the gatekeeper of mitochondria protecting their integrity through a mechanism that we will discuss below in more detail. Our findings supported our initial concept that IκBα accumulates at mitochondria, is protected from constitutive degradation and protects cells from apoptosis. We demonstrated that IκBα is, possibly among others, a molecule that confers resistance to apoptosis and chemotherapeutics through its interaction with mitochondria.
E.4. Mechanism of apoptosis inhibition by IκBα

The outer mitochondria membrane is a very important site for apoptosis regulation since it is there where several protein-protein interactions take place to protect or permeabilise this organelle in order to induce apoptosis. The localisation of NF-κB subunits to mitochondria was revealed previously (Bottero et al., 2001; Cogswell et al., 2003), but this was limited to the matrix and the intermembrane space of this organelle and its role for apoptosis remained unknown. In those studies overexpressed ANT1 and IκBα were found to interact. We proved a more direct involvement of IκBα in apoptosis. The mechanism that underlies the inhibition effect of mitochondrial IκBα was the subject of this study. Testing a set of IκBα interactors (Figure D.13) indicated many potential mechanisms. As endogenous IκBα is able to physically interact with endogenous VDAC1, ANT-1, HKII and CK1, all of which are members of the classical PT-pore, this protein complex became the prime candidate for the target of IκBα (Figure D.13). Indeed, my work revealed that IκBα specifically associates with the OMM and inhibits apoptosis via its most prominent partners VDAC and HKII. IκBα stabilises the complex of HKII and VDAC1 since a peptide able to specifically dissociate HKII from VDAC1 was incapable to do so when IκBα was present (Figure D.21). Clotrimazole, which also has the ability of HKII dissociation from
mitochondria, was also diminished by the presence of IκBα since greater amounts of the drug were required for dissociation (Figure D.21C).

Hexokinase II was also found to be necessary for the inhibitory effect of IκBα. shRNA-mediated reduction of the protein levels rendered IκBα incapable of inhibiting apoptosis even when overexpressed (Figure D.15B). However, since HXKII is itself an apoptosis inhibitor (Pastorino et al., 2002), silencing could have contributed to the enhanced apoptosis that was observed. Therefore, HXKII might also be an important component of the mechanism of IκBα inhibition but with our data we cannot claim its necessity for apoptosis inhibition through IκBα.

HKII is known to bind to VDAC1, the most abundant VDAC isoform, via its N-terminus and its putative BH4 domain (Pastorino & Hoek, 2008a). This seems to favour the oligomeric association of VDAC proteins and keeps these proteins in a state, which renders them unable to interact with Bax for apoptosis induction. With this novel activity at the OMM, IκBα exerts the same effect as the enterobacterial fimA protein, which likewise stabilises the VDAC-HKII interaction and inhibits apoptosis (Sukumaran et al., 2010a). IκBα can therefore potentially represent the human equivalent of this bacterial protein and contribute to apoptosis inhibition observed in cancer cells, in particular since we have data showing increased levels of IκBα at mitochondria of several cancer cell lines (see chapter D.1.4 above). The importance of our findings is striking for cancer cells but one can extrapolate the same level of significance to normal cells. The overall expression of IκBα in a
cancer cell with constitutive NF-κB is either not altered or reduced (Nakshatri et al., 1997a). However, our results indicate that there is a preferential shift of the localisation of IκBα from the cytosol to the mitochondria altering the apoptosis sensitivity of the cell. The best binding partner of IκBα, p65 (relA), resides in the nucleus of cells with constitutive NF-κB activity and that disturbs the interaction of IκBα and p65. Newly synthesized IκBα or IκBα resistant to degradation would therefore complex with the VDAC1 as its alternative interactor. On the other hand, we have also observed IκBα at mitochondria of 3T3 WT cells. IκBα appears to be able to bind both p65 and VDAC1 simultaneously but since the affinity of p65 with IκBα is much greater the ability of VDAC1 binding, despite being present, appears reduced (Figure E.1).

Using recombinant and IVT proteins we were able to show that Bax-mediated cytochrome-C release was blocked by IκBα (Figure D.20A). Using PC3 cells, which have previously been shown to be resistant to apoptosis by chemotherapeutics but became sensitive upon IκBα knockdown, we observed that mitochondrial IκBα delays the release of cytochrome-C via its ability to inhibit enhanced Bax integration into the OMM (Figure D.20D). This effect is possibly due to the stabilisation of the VDAC1-HXKII complex since VDAC sites are occupied by HXKII and are not accessible for Bax.

Cyp-D knockout fibroblasts (ppif−/−) show increased resistance to cell death (Baines et al., 2005) and are unable to undergo permeability transition since they
cannot open the PT-pore. With the help of these cells ANT-1 was found to induce apoptosis through the PT-pore confirming the observation of Bauer et al (1999) with bongkrekic acid, a compound that specifically inhibits the PT-pore (Bauer et al., 1999). The requirement for cyp-D in the mitochondrial matrix to observe IkBα’s apoptosis repression (Figure D.14B) suggests that mitochondrial IkBα is a component or an effector of the PT pore. This protein complex connects the inner with the outer mitochondrial membrane and is converted into an unspecific channel for apoptosis induction (Zamzami et al., 2005). Its structure consists of cypD, ANT and VDAC proteins as the core constituents with probably many more associated regulatory factors (Verrier et al., 2004). The role of the latter two components has been questioned, though (Baines et al., 2007; Kokoszka et al., 2004) but an extensive collection of publications in the scientific literature exists arguing for their function in mitochondrial apoptosis (Shoshan-Barmatz et al., 2010; Tsujimoto & Shimizu, 2002).

One of the publications critical of the contribution of VDAC molecules to apoptosis induction via the PT pore observed no effect on cell death when VDAC1 and VDAC3 were genetically removed and VDAC2 was reduced by knock-down with RNAi (Baines et al., 2007). Our results could contribute to an explanation as IkBα’s apoptosis inhibition ability depends on VDAC1 (Figure D.15A). Firstly, above study used VDAC1/3(-/-/-) cells with only a knockdown of the VDAC2 isoform since VDAC2-null mice are not viable. One cannot exclude a compensatory effect of
VDAC2 for apoptosis since complete knockdown would have killed the cells.

Secondly, while VDAC silencing would make the cells more resistant for cell death it would also mask the anti-apoptotic activity of IκBα and – on balance - could thereby abrogate any net effect on cell death. Analysis of the IκBα-re-constituted MEF cells with shRNA against VDAC1 indicated similar effects as observed in human cell lines (Figure D.15C), which contributed to the identification of VDAC1 as a target of IκBα. The PT pore has been shown to mediate necrosis but a growing body of evidence also implicates it in apoptosis regulation (Kinnally et al., 2010) as extensively described in the introductory sections of this study. Possibly, the concentration of the cell death inducers in those studies claiming sole involvement in necrosis could have been too high to detect apoptosis via the PT pore (Baines et al., 2005; Nakagawa et al., 2005). As was previously analysed the intensity and the quality of the signal are the crucial modulators of apoptosis versus necrosis execution through the PT-pore.

We are now able to explain the effects that we see on apoptosis sensitisation upon down-regulation of IκBα. PC3 cells that are responding poorly to staurosporin became extremely sensitised to apoptosis when IκBα was not present to protect them from Bax integration and cytochrome-C release (Figure D.20D). IκBα guards the integrity of the OMM by stabilising the VDAC1-HXKII complex and thereby inhibiting Bax translocation to mitochondria and cytochrome-C release. Since IκBα is a gatekeeper of the PT-pore opening we
sought to investigate the initial stages of apoptosis when only biochemical changes upstream of effector pathways occur. We induced apoptosis with As$_2$O$_3$ which was previously shown to be executed through VDAC1 (Yu et al., 2007; Zheng et al., 2004) and observed the VDAC1-IκBα interaction ten hours after drug administration when no morphological changes to cells were observed and mitochondria and plasma membrane integrity were not affected (Figure D.16A). Upon apoptosis induction and early in the apoptotic phase, IκBα was released from VDAC1 (Figure D.16B). This result confirms our hypothesis that IκBα is a gatekeeper of the mitochondrial permeability transition. Cells exhibited extensive apoptosis after 24 hours when IκBα was absent and could not stabilise the VDAC1-HXKII complex to inhibit Bax translocation and binding to VDACs for subsequently cytochrome-C release.

Whether VDAC1 contributes to apoptosis or not and whether it is a member of the PT-megapore, along with ANT-1, was not the main subject of this study. However, all our data indicate that VDAC1 constitutes the target of IκBα at the OMM and this transporter therefore does regulate apoptosis. Through this interaction IκBα is able to stabilise the anti-apoptotic VDAC1-HXKII complex and inhibit apoptosis. If $ppif^{-/-}$ cells are regarded as a suitable tool to show the role of the PT-pore in apoptosis, then IκBα is most probably a member of the PT-pore complex, since I could show the requirement of Cyp-D for apoptosis inhibition by IκBα (Figure D.14). Nevertheless, the mechanism that we propose in this study is
based on mitochondrial apoptosis effectors that are not part of the scientific
debate on the identity of the PT pore components. The VDAC1/HXKII complex has
been established as an anti-apoptotic complex at the OMM, which IκBα can
stabilise thereby inhibiting cytochrome-C release and Bax integration.

The current status of the debate on the composition of the PT-pore is that
no clear conclusions can be derived on the dispensability of any of its
components. The classical PT-pore seems to be the key complex for the
interpretation of our results since we can see in all cases the requirement of
cyclophilin-D, VDAC1 and hexokinase from IκBα to inhibit apoptosis. IκBα requires
all three and possibly other proteins in this complex to exert its anti-apoptotic
effect. Whether any of the three components is or is not at the same time a
member of the PT pore, is unresolved. Still, our data indicate that IκBα is most
likely an effector of a protein complex that includes all the aforementioned factors
and is possibly by the same token a component of the PT-pore since the
associations were detected in resting cells.
E.5. IκBα domain mapping and its dual activity

As the inhibitor of the anti-apoptotic transcription factor NF-κB, IκBα exerts a pro-apoptotic function, which is counteracted by its novel activity to repress apoptosis at the OMM as revealed in this work. Therefore, during its degradation in the activation cycle of NF-κB, while it is re-synthesised as a consequence of its being a target gene of the transcriptional activity of NF-κB, IκBα contributes to the balance of survival and cell death signals. This is especially important as many of the signals that activate NF-κB constitute cell stress.

Our mapping experiments indicated that, in contrast to the inhibition of NF-κB, which is exerted through the C-terminus and the ankyrin repeats, the N-terminus of IκBα is responsible for its repression of apoptosis (Figure D.18). The N-terminus is a regulatory domain for degradation of IκBα (Traenckner et al., 1995) in the canonical NF-κB signalling but it does not display domain interactions with p65/p50 heterodimers (Baeverle, 1998; Van Antwerp & Verma, 1996). Immunoprecipitations with MEET-IκBα lacking the N-terminus displayed a minimal ability to interact with VDAC1 explaining the inability of this deletion mutant to inhibit apoptosis (Figure D.18). Moreover, specific IκBα mutants with either reduced or constitutive NF-κB inhibition (Sachdev et al., 1998b; Traenckner et al., 1995) showed an identical ability to inhibit Bax- or ANT1-induced apoptosis.
(Figure D.17A). IκBα-SR, for example, is able to constitutively retain NF-κB in the cytosol making its canonical activation impossible. The IκBα 110-A3 mutant responds normally to degradation signals but is not able to dissociate NF-κB from the nucleus making the NF-κB inactivation impossible. This construct was likewise active for apoptosis inhibition. These experiments gave credence to the hypothesis that IκBα has a dual activity. The N-terminus is responsible for apoptosis inhibition at mitochondria and the rest of IκBα is able to respond and act on NF-κB signalling.

The N-terminus is the domain necessary for apoptosis inhibition but further mapping experiments showed that is not sufficient. IκBα requires the N-terminus and the first ankyrin repeat for apoptosis inhibition (Figure D.19). On the other hand, deletion of nearly the total IκBα domain, which is required for NF-κB retention and inhibition, did not have any effect on the ability of IκBα to inhibit apoptosis (Figure D.19).

Our assays, on which we based the discovery that IκBα inhibits apoptosis, involved overexpression of ANT-1 and Bax. In order to define if the experimental settings were clean in terms of other effects on apoptosis we tested the activation of NF-κB. NF-κB activation confers, for the majority of times, an anti-apoptotic signal, so a possible activation during overexpression of ANT-1 or Bax would have masked any net effect of apoptosis inhibition by IκBα. We used a fluorescence based NF-κB activation assay to see if ANT-1- or Bax-induced apoptosis involves
NF-κB activation. As a positive control we used the viral TAX gene which was previously reported to induce NF-κB activation (Arima et al., 1991; Sun et al., 1994). Under conditions of ectopic expression with several transfection reagents ANT-1 or Bax could not activate the NF-κB system in contrast to TAX (Figure D.17B). This result supported the mapping results and contributed to the hypothesis that there are distinct domains on IκBα which allow apoptosis inhibition irrespective of its ability to inhibit/retain NF-κB.

IκBα and IκBβ share extensive homology and some of their domains are identical. Analysis with the protein database Uniprot revealed this homology. However, the N-terminal part of IκBα seems to have the least homology with any other part of IκBβ. Only the regulatory domain responsible for IκBα degradation (DSGLDS-31/36) is identical with a domain on IκBβ. However, we have shown that mutations in this domain (IκBα-SR) did not affect the ability of IκBα to inhibit apoptosis. There is also a domain in the IκBα-N-terminus that is completely unique compared to IκBβ since it does not match with any sequence in IκBβ. Amino-acids 13-30 and 50-54 showed no similarity and since the N-terminus (1-70) is the necessary domain for apoptosis inhibition and since IκBβ cannot inhibit apoptosis we can hypothesize that those domains are possibly the domains relevant for the effect of IκBα on apoptosis. The sequence alignment of the two proteins can be found in the Appendix of this thesis and further experimentation will shed new light on this hypothesis.
Differences in the N-terminus of IkBα and IkBβ can potentially explain the functional differences of these two molecules on apoptosis. However, the two proteins share extensive functional similarity for NF-κB signalling. They are both degraded upon cytokine administration, they can both sequester NF-κB in the cytosol and inhibit NF-κB activation (Rao et al., 2010). Mice lacking IkBα and with the gene of IkBβ knocked-in under the IkBα promoter, show a normal phenotype compared to the severe effects of IkBα knock-out (Cheng et al., 1998). One would expect that since they share so many functions they should also have the same effect on apoptosis. Our experiments, however, show the opposite for apoptosis regulation. IkBβ cannot inhibit apoptosis and the reason might be that only IkBα is a target gene of NF-κB. Indeed, IkBα is rapidly degraded and re-synthesized within 30 minutes of cell stimulation. IkBβ shows much slower kinetics. IkBβ is claimed to be a stronger cytoplasmic inhibitor of NF-κB since it is able to mask both NLS on NF-κB in resting cells. On the contrary, IkBα is only masking one NLS and show a more dynamic localization pattern shifting between cytosol and the nucleus (Malek et al., 2001). The latter finding might explain the dual role of IkBα. A molecule with two activities should be able to preferentially function on both systems that can affect in order to maintain homeostasis. IkBβ would not have been able to do so since it is a very good sequestering molecule but with poor NF-κB dissociation ability. However, since IkBα has a dual function its degradation creates a window in which cells should appear more sensitive to apoptosis since
IκBα is not present in the cytosol but also not in the mitochondria. Since IκBα is a target gene, cells up-regulate it rapidly so the equilibrium between pro- and anti-apoptotic proteins is restored.

IκBα variants with differential localisations (Figure D.9) allowed the separation of the pro- and the anti-apoptotic activity of IκBα. Moreover, experiments under conditions with (Figures D.10-D.11) or without (Figure D.6-D.8) constitutive NF-κB activity, indicated that the novel activity of IκBα to repress apoptosis at the OMM is distinct from its known ability to inhibit NF-κB. Of note, the C-terminus of IκBα is mutated in Hodgkin’s lymphoma, while its N-terminus remains intact (Cabannes et al. 1999). This would disturb only its effect on retaining NF-κB and preserves its anti-apoptotic effect at the OMM.

If the equilibrium of NF-κB-activating and -inhibiting factors is disturbed this inducible transcription factor can contribute to various diseases. In a number of tumour models NF-κB is found to be constitutively active and this seems to be required for the survival of the malignant cells (Prasad et al., 2009). Permanently activated NF-κB also contributes to chronic inflammation in a variety of disease models (Gordon et al., 2011; Nichols et al., 2008; Rangan et al., 2009; Roman-Blas & Jimenez, 2008; Yao & Rahman, 2009). As a consequence, NF-κB is targeted by pharmacological interference in inflammatory and autoimmune diseases (Karin et al., 2004) and in cancer therapy (Baud & Karin, 2009). These efforts could benefit from our findings on the novel mitochondrial activity of IκBα as it reveals more
specific interference options. A successful compound could bind to IκBα and either degrade it or block the N-terminus in order to prevent association with VDAC1. Since NF-κB is the key modulator of the immune response, compounds that target its subunits would have a great effect on the inflammatory and immune responses. Targeting the IκBα-VDAC1 interaction could prove a more relevant option since one could achieve an apoptosis sensitising effect by the dissociation of IκBα from mitochondria without affecting the ability of IκBα to function properly on NF-κB. In the context of cancer therapy IκBα dissociation from mitochondria could be therapeutically relevant but in the physiological context of normal cells such a dissociation would have no or minimal effects on the normal functioning of NF-κB.
A

Normal Cell

Cancer cell with constitutive NF-κB

- p50/p65
- IκBα
- PT-pore
- Hexokinase
B

APOPTOSIS
Figure E.1. Model of IκBα localisation and function. (A) In normal cell IκBα is sequestering the NF-κB heterodimers in the cytosol. The N-terminus of IκBα allows the association with VDAC1 in parallel with the NF-κB association. IκBα contributes to NF-κB signalling and also inhibits apoptosis at mitochondria maintaining the equilibrium for homeostasis. When a cell shifts to a cancerous state NF-κB is constitutively active by mechanisms independent of IκBα degradation. This allows the translocation of the NF-κB dimer to enter the nucleus and transcribe target genes. Such translocation creates an imbalance for the association of IκBα with p65 and VDAC1. IκBα then preferentially shifts to a mitochondrial localisation. This, in turn, allows IκBα to exert its second function, namely to inhibit apoptosis through the PT-pore. NF-κB activation and IκBα-VDAC1 association occur concurrently with enhanced IκBα localisation at mitochondria. The overall net effect is apoptosis resistance. (B) In normal and tumour cells that lack constitutive active NF-κB some IκBα proteins are associated with VDAC1 and HXKII. Upon apoptosis induction, they dissociate from VDAC and Bax is recruited for apoptosis induction (Lower left hand panel). In those tumour cells that suffer mutations that render NF-κB constitutively active and in which IκBα accumulates at the OMM, the VDAC1-HXKII interaction is stabilized and inhibits Bax recruitment, PT-pore opening, cytochrome-c release and apoptosis induction (lower right hand panel).
F. Appendix
F.1. Plasmids

IκBα gene without ATG fused with the localization sequence for mitochondria from the Smac/Diablo gene. S/D first 171 bp were first inserted into pEGFP-N1 and IκBα followed into KpnI/BamHI sites. The whole fusion from HindIII/BamHI was then inserted into pcDNA3. The plasmid was tested for correct localization of the protein with immunofluorescence. Between Smac/Diablo and IκBα there is a linker sequence CTG CAG TCG ACG GTA CC in frame to produce the fusion. All the above apply for the generation of MEET-IκBα vector.
171bp from the Smac/Diablo gene of mouse origin and a Kozak consensus were into the HindIII and PstI sites of pEGFP-N1 vector to create a fusion protein with EGFP gene. The same strategy was followed for the generation of MEET-GFP plasmid. The plasmids can be used as fluorescent markers for the Intermembrane space of mitochondria (IMS) or the OMM respectively. The constructs were sequenced–verified and validated with Immunofluorescence. It can be used to visualize mitochondria.
IκBα gene human was inserted into pCMV4 plasmid and a FLAG tag was inserted with recombinant PCR technology in the N-terminal part of IκBα. The plasmid was sequence-verified and validated using transfections. Restrictions sites BglII, HindIII and Clal with XbaI, Xmal can be used to excise the IκBα TAGGED gene. pCEP forward and pBABE Reverse primers can be used with relevant safety to sequence the gene.
lacZ control gene in the commercial pLenti7.3 vector that also contains eGFP under the SV40 promoter. The lacZ is under a strong mammalian expression pCMV. The plasmid is to be used for production of control lentiviral particles with a 3rd generation lentiviral production system. MEET-IκBα and IκBα/βactin were also cloned into this vector.
Lentiviral transfer vector plasmid with Puromycin gene for selection in mammalian cells
pLKO.1 vector for the expression of shRNA. The vector contains a puromycin resistance cassette for mammalian selection in a bi-cistronic format with U6 promoter. PvulI restriction digest can be used for pattern checking.
pEYFP-mito encodes a fusion of EYFP and the mitochondrial targeting sequence from the subunit VIII of human cytochrome c oxidase which targets the EYFP gene to the mitochondrial matrix. Substitutions of the EYFP gene with the CFP or DsRed gene created alternatives for fluorescent labelling of mitochondria. The mitochondrial targeting sequence finishes at the 683th bp and before BamHI site.
F.2. IκBα and IκBβ
G. Bibliography

