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Calculations of light scattering from isolated and
interacting metallic nanowires of arbitrary

cross section by means of Green’s theorem surface
integral equations in parametric form
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We study theoretically the light scattering from metal wires of arbitrary cross section, with emphasis on the
occurrence of plasmon resonances. We make use of the rigorous formulation of the Green’s theorem surface
integral equations of the electromagnetic wave scattering, written for an arbitrary number of scatterers de-
scribed in parametric form. We have investigated the scattering cross sections for nanowires of various shapes
(circle, triangles, rectangles, and stars), either isolated or interacting. The relationship between the cross sec-
tional shape and the spectral dependence of the plasmon resonances is studied, including the impact of nano-
particle coupling in the case of interacting scatterers. Near-field intensity maps are also shown that shed light

on the plasmon resonance features and the occurrence of local field enhancements. © 2007 Optical Society of
America

OCIS codes: 290.5850, 240.6680.
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. INTRODUCTION
ecently, the development of nanofabrication techniques,

ogether with modern nanocharacterization techniques
uch as dark-field and near-field optical microscopies, has
ed to a new interest in processes concerning localization
nd guiding of electromagnetic (EM) waves in metal
anostructures [1–7]. Such techniques hold promise of po-
ential applications in imaging, surface-enhanced Raman
pectroscopy (SERS), lithography, optoelectronic devices,
nd biosensing. In recent years, the increasing research
ffort in the field of plasmonics—the study of EM field
onfinement and enhancement via surface plasmons
SPs)—has prompted advances in the theoretical studies
f light scattering from nanostructures [8–17]. One of the
ost important applications of localized plasmons in

anoparticles is SERS [9,18–20]; a very high sensitivity
as been achieved with this spectroscopic technique,
aking possible, in fact, single-molecule detection

21,22].
Light scattering from small particles has been studied

ince long ago (see [23] and references therein). Analytical
olutions for the EM fields are known only for particles of
very simple shape, such as cylinders, spheres, or ellip-

oids [23]. When we are interested in interacting particles
f arbitrary shape, numerical calculations are required.
ifferent formulations exist that rigorously describe the

esponse of metallic nanoparticles of arbitrary shape:
nite-difference time domain [24], dyadic Green’s func-
ion technique [9,25], and various implementations of the
oundary integral methods [8,26–28] based on Green’s
1084-7529/07/092822-9/$15.00 © 2
econd theorem (when the dielectric function is constant
ithin the nanoparticle volume) are the most widely em-
loyed.
In this work we calculate the light scattering by two-

imensional particles of arbitrary shape. The particles
tudied might exhibit corners and tips, and can be inter-
cting; in some cases, extremely large local enhancements
ight take place. Calculations are based on the Green’s

heorem surface integral equation formulation
26,27,29,30], herein modified to deal with surface profiles
n parametric form. With this method, we show that

etal nanowires with a nonregular cross section exhibit a
omplex resonance spectrum; in turn we study the near-
eld and charge distributions at resonant frequencies,
here a large scattering cross section is found.
The work is organized as follows. In Section 2 we

resent the scattering equations obtained by means of the
reen’s theorem surface integral equation formulation in
arametric form. Next we show the high versatility of this
ormulation, including results for triangular, cylindrical,
ectangular, and star-shape nanoparticles, either isolated
Section 3) or interacting (Section 4). We draw conclusions
rom the results in Section 5.

. THEORETICAL FORMULATION
. Surface Integral Equations in Parametric Form
e study the light scattered by two-dimensional par-

icles, i.e., particles having a translational symmetry
long one direction, such as wires or infinitely long cylin
007 Optical Society of America
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ers. The physical system we consider is shown in Fig. 1.
he particles are illuminated in the plane of the figures
ith a linearly polarized, monochromatic plane electro-
agnetic wave of frequency � at an angle �0 with the z

xis. The polarization is defined as follows: the magnetic
electric) field is perpendicular to the xz plane for p �s� po-
arization, also known as transverse magnetic (transverse
lectric). The restriction to two-dimensional systems has
he advantage that it notably simplifies the formulation;
n fact, we can reduce the initial three-dimensional vecto-
ial problem to a two-dimensional scalar one, where the
M field is entirely described by the y component of,
espectively, the electric field for s polarization Ey

�s��r�
E�r� and the magnetic field for p polarization Hy

�p��r�
H�r�.
Recall that for s polarization, surface plasmons (which

re transverse magnetic) cannot be excited. It should be
mphasized that this simplification stems only from the
cattering geometry, so that the full vector EM character
f the problem is preserved. The scattering configuration
onsists of N objects (metal or dielectric) with arbitrary
hapes described by an isotropic, homogeneous,
requency-dependent dielectric function �j

�in���� in a di-
lectric background characterized by a homogeneous, iso-
ropic, frequency-dependent dielectric function ��out����.
The dielectric functions are taken from [31].) The surface
rofile �j of the jth scatterer is represented by the con-
inuous vector-valued function Rj���j ,�j�, where ��j ,�j�
re the coordinates of a point of the profile in the xz plane.
e describe surface profiles as parametric curves: Rj�t�
��j�t� ,�j�t��.

. p Polarization
et us focus first on the calculation of the scattered EM
eld in the case of p polarization. The method of calcula-
ion is based on the integral equations resulting from the
pplication of Green’s second integral theorem (with Som-
erfeld radiation condition) [26,27,30,32,33]. Employing
reen’s integral theorem outside the scatterers, the mag-
etic field for p polarization can be written in parametric
oordinates as

�i��r� +
1

4��
j
�

�j

�H�out��Rj�t��
�G�out��r,Rj�t��

�Nj

− G�out��r,Rj�t��
�H�out��Rj�

�Nj
	dt = H�out��r�,

ig. 1. (Color online) Schematic diagram of the scattering
eometry.
r outside, �1a�
=0, r inside, �1b�

here H�i��r� is the incident magnetic field.
If the Green’s theorem is applied inside the scatterers,

ne obtains the following two integral equations for each
ne �j=1, . . .N�:

1

4�
�

�j

�H�in��Rj�t��
�Gj

�in��r,Rj�t��

�Nj

− Gj
�in��r,Rj�t��

�H�in��Rj�

�Nj
	dt = 0, r outside �j, �2a�

=H�in��r�, r inside �j.

�2b�

he superscripts �out , in� denote the magnetic fields
�out,in��r� evaluated, respectively, outside and inside the

catterers. In the above equations, the normal derivative
not normalized) is defined as

�

�Nj
= 
− �j��t�

�

�x
+ �j��t�

�

�z� , �3�

nd the Green’s functions G�out,in��r ,R� can be expressed
n terms of the Hankel function of the first kind:

G�out��r,R� = i�H0
�1�
�

c
���out�
r − R
� , �4a�

Gj
�in��r,R� = i�H0

�1�
�

c
��j

�in�
r − R
� . �4b�

We now define Hj�t� and Lj�t� as the source functions
unknown) according to the continuity conditions across
he interface of the jth scatterer:

Hj�t� = 
H�out��r�
r→Rj
+�t� = 
H�in��r�
r→Rj

−�t�, �5a�

Lj�t� = 
 �H�out��r�

�Nj
�

r→Rj
+�t�

=
��out�

�j
�in� 
 �H�in��r�

�Nj
�

r→Rj
−�t�

,

�5b�

here the superscripts +�−� indicate that the limit is
aken with r from outside (inside) the scatterers. By
valuating Eqs. (1a) and (2a) at the interfaces and invok-
ng the continuity conditions (5) across them, we obtain a
et of coupled integral equations:

H�i��Rl� +
1

4��
j
�

�j

�Hj�t�
�G�out��Rl,Rj�t��

�Nj

− G�out��Rl,Rj�t��Lj�t�	dt = Hl�t�,

l = 1, . . . ,N; �6a�
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1

4�
�

�j

�Hj�t�
�G�in��Rl,Rj�t��

�Nj
−

�j
�in����

��out����

G�in��Rl,Rj�t��Lj�t�	dt = 0,

l, j = 1, . . . ,N. �6b�

These coupled integral equations are converted into
atrix equations using a simple quadrature approxima-

ion to evaluate the integral over small intervals. The
oupled system of matrix equations can then be solved
umerically to determine the source functions Hj�t� and
j�t� from Eqs. (6a) and (6b). Using these source func-

ions, the near- and the far-field amplitudes can easily be
etermined. Note that the scattering problem scales with
he surface of the particle and not with its volume, which
s a decisive advantage in numerical simulations.

. s Polarization
ikewise, the following integral equations are obtained by
sing the Green’s integral theorem for the only nonzero
omponent of the electric field in the case of s polariza-
ion:

�i��r� +
1

4��
j
�

�j

�E�out��Rj�t��
�G�out��r,Rj�t��

�Nj

− G�out��r,Rj�t��
�E�out��Rj�

�Nj
	dt = E�out��r�,

r outside, �7a�

=0, r inside, �7b�

1

4�
�

�j

�E�in��Rj�t��
�Gj

�in��r,Rj�t��

�Nj

− Gj
�in��r,Rj�t��

�E�in��Rj�

�Nj
	dt = 0, r outside �j, �8a�

=E�in��r�, r inside �j.

�8b�

e define the (unknown) source functions Ej�t� and Fj�t�
s

Ej�t� = 
E�out��r�
r→Rj
+�t� = 
E�in��r�
r→Rj

−�t�, �9a�

Fj�t� = 
 �E�out��r�

�Nj
�

r→Rj
+�t�

= 
 �E�in��r�

�Nj
�

r→Rj
−�t�

, �9b�

here the continuity conditions have been explicitly ac-
ounted for. To solve for the source functions, we evaluate
qs. (7a) and (8a) at the interfaces, thus obtaining the fol-

owing system of coupled integral equations:
E�i��Rl� +
1

4��
j
�

�j

�Ej�t�
�G�out��Rl,Rj�t��

�Nj

− G�out��Rl,Rj�t��Fj�t�	dt = El�t�,

l = 1, . . . ,N, �10a�

1

4�
�

�j

�Ej�t�
�G�in��Rl,Rj�t��

�Nj
− G�in��Rl,Rj�t��Fj�t�	dt

= 0, l,j = 1, . . . ,N. �10b�

. Near Field
n the case of p polarization, once the source functions are
nown from the set of integral Eqs. (6), the magnetic com-
onent of the near field is thus calculated from Eqs. (1a)
nd (2b). To obtain the electric field components from the
component of the magnetic field, we make use of Max-
ell’s equation:

� � H = − i
�

c
�E. �11�

herefore, the electric field has only nonzero components
n the xz plane, given outside the scatterers [from Eq.
1a)] by

Ex
�p,out��r� = Ex

�p,i��r� −
ic

4����out��
j
�

�

�H�t�
�2G�out��r,Rj�t��

�z � Nj

−
�G�out�

�z
�r,Rj�t��Lj�t�	dt, �12a�

Ey
�p,out��r� = 0, �12b�

Ez
�p,out��r� = Ez

�p,i��r� −
ic

4����out��
�

�Hj�t�
�2G�out��r,Rj�t��

�x � Nj

−
�G�out��r,Rj�t��

�x
Lj�t�	dt. �12c�

imilar expressions are obtained for the near-electric-
eld components inside the scatterers from Eq. (2b).
When r is very close to the surface, nonintegrable sin-

ularities appear associated with Green’s functions de-
ivatives. A simple way to avoid this problem has been
ointed out in [30]. The surface electric field is obtained
rom the surface magnetic field as follows:

En
�p,out��Rj�t�� =

ic

	���out�

dHj�t�

dt
, �13a�

Et
�p,out��Rj�t�� = −

ic

	���out�
Lj�t�, �13b�

here En�Rj� and Et�Rj� are, respectively, the normal and
angential components of the electric field at the jth sur-
ace, and 	= ��� �2+ �� �2�1/2.
� �
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In the case of s polarization, the only nonzero compo-
ent of the near electric field is directly obtained from
qs. (7a) and (8b) once the source functions (9) are known

rom Eqs. (10). If the near/surface magnetic fields were
eeded, their components could be easily calculated as in
qs. (12) and (13), but exploiting ��E Maxwell’s equa-

ion instead.
Incidentally, when calculating the near fields close to

arious scatterers with arbitrary shapes, we incur the nu-
erical problem of determining whether a generic point

0 is located either inside or outside the scatterers. We
olve this problem by assuming that a unitary charge is
ocated at the generic point r0. By means of the Gauss–
reen theorem, we calculate the EM flux across the sur-

ace of the scatterer: When the charge is inside the scat-
erer the flux is unity; otherwise it is zero. Operatively, we
alculate the flux of the vector r̂ / 
r−r0
2 across the sur-
aces: we obtain nonzero values of the flux only for the in-
er points.

. Far-Field Amplitude and Scattering Cross Section
o calculate the far-field amplitude, we take the
symptotic expression of the Hankel functions for large
rguments: 
r−Rj�t� 
 �r− ��j�t�sin �+�j�t�cos ��. In this
anner, according to Eqs. (1a) and (7a), we define the

�p,s���� magnitudes proportional to the scattering ampli-
udes:

S�p���� = ı� c

8�����out��
1
2

� �
j
�

�j

�ı
�

c
���out�

���j��t�sin � − �j��t�cos ��Hj�t� − Lj�t�	
� exp�− ı

�

c
���out���j�t�sin � + �j�t�cos ��	dt,

�14a�

S�s���� = ı� c���out�

8��
� 1

2

� �
j
�

�j

�ı
�

c
���out�

���j��t�sin � − �j��t�cos ��Ej�t� − Fj�t�	
� exp�− ı

�

c
���out���j�t�sin � + �j�t�cos ��	dt.

�14b�

The scattering cross sections (SCS) of the particles can
e expressed as

Qsca
�p,s���� =�

0

2� 
S�p,s���
��
2


E0
i 
2

d�, �15�

nd by means of the optical theorem [23], we obtain the
xtinction Qext and absorption Qabs cross sections:

Q�p,s���� =�8�c
Re�S�p,s��� = � ��, �16�
ext

�
forward
Qabs
�p,s���� = Qext

�p,s���� − Qsca
�p,s����. �17�

. Numerical Calculations
e now apply the preceding formulation to calculate SCS

nd near-field maps associated with metal nanowires of
ifferent cross section, either isolated or interacting. In
he numerical calculations, the integral equations [see.
qs. (6) for p and Eqs. (10) for s polarization] are con-
erted into matrix equations by discretizing them
hrough a simple quadrature scheme. The convergence of
he resulting surface EM fields [source functions (5) and
9)] with increasing number of sampling points is verified
n all cases. The advantage of developing the surface in-
egral scattering equations in parametric form manifests
tself for any given cross section profile in that a proper
hoice of the parametric curves optimizes the minimum
umber and density of sampling points that ensure nu-
erical convergence.

. LIGHT SCATTERING BY SINGLE
ANOWIRES
ith the purpose of comparing this method with previous

nes, we have calculated the light scattering from a trian-
ular particle as in Kottman et al. [34], where they have
olved the problem with a scattering formalism based on
he volume integral equation. In Fig. 2, we show the SCS
or an isosceles right triangular particle 20 nm on a side;
he amplitude of the incident plane wave is unity, imping-
ng on the top ��i=0�. We have rounded off the system cor-
ers by 0.25 nm to provide a more realistic model and to
emove numerical instabilities. We observe a complex
pectrum with various resonances, very similar to that in
ottman et al. [34], except for the main resonance being

lightly higher and blueshifted, probably due to the differ-
nt numerical approach. The SCS for s polarization is also
ncluded for the sake of completeness, revealing as ex-
ected no relevant features. As a comment in passing [34],
ote that a weak peak at 329 nm is observed in the spec-
ra of the p-polarized SCS; this corresponds to a longitu-
inal mode, stemming from the bulk plasmon resonance
hen R����0, its characteristic being fairly constant re-
ardless of the nanowire shape/sizes.

We have studied the near-field amplitude (magnetic
nd electric fields) at the two significant resonance fre-
uencies of 403 and 358 nm. In Figs. 3(a) and 3(b), we

ig. 2. (Color online) Scattering cross sections for a 20 nm isos-
eles right triangle of Ag for p polarization (blue curve) and for s
olarization (red curve).
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how the electric field amplitude distribution inside and
utside the nanoparticle in a logarithmic color scale. In
oth cases, there exists a large field variation between the
ase corners and the upper corner. While the field ampli-
ude at the two base corners reaches 200 times the inci-
ent field amplitude (at the main resonance), it vanishes
t the upper corner where a minimum exists.
Incidentally, the surface electric field amplitude at one

ase corner is explicitly plotted in Fig. 3(c) for increasing
umber of sampling points, thus revealing the large local
eld enhancement at the main resonance and also the
ood convergence of the numerical calculations. The reso-
ances at 403 and 358 nm present different field distribu-
ions at the two base corners. At 403 nm, we obtain a ho-

ig. 4. (Color online) Charge distribution for two plasmon reso-
ances (p polarization) at (a) 
=403 nm, and at (b) 
=358 nm (b).
hese charge distributions correspond to a specific time when the
lectric field amplitude is maximum at the corners. Far field in-
ensity at (c) 
=403 nm, (d) 
=358 nm.

ig. 3. (Color online) Near-electric-field amplitude distribution
n logarithmic scale of light scattering from a 20 nm isosceles
ight triangle of Ag for two plasmon resonances (p polarization).
he amplitude of the incident plane wave is unity and impinges
n the top at (a) 
=403 nm, (b) 
=358 nm. (c) Surface electric
eld amplitude at the base corner of the triangle shown in (a) for
ifferent number of sampling points (of the entire triangle perim-
ter) Np=100 (dashed curve), 200 (dotted–dashed curve), 600
dark solid curve), and 1200 (light solid curve).
ogeneous, strong field enhancement at the corners. The
lectric field is mostly normal to the surface in the vicinity
f the corners.

The corresponding charge distribution is shown in Fig.
(a): there is a large charge concentration with opposite
ign on each base corner. The normal component has a
inimum at the center of the base, where the electric
eld has only a small tangential component. This reso-
ance is thus a typical dipolar mode, as is confirmed in
urn by the angular distribution of scattered intensity in
ig. 4(c).
However, we observe at 358 nm a nonhomogeneous

�dipolar� behavior near the base corners, with a mini-
um exactly at the corner and a distance dependence of

he near-field amplitude different from that of the reso-
ance at 403 nm [see Fig. 3(b)]. There is also a large nor-
al electric field component near the base corners at

58 nm, but it nearly vanishes at a point in vacuum very
lose to the base corners (unlike at 403 nm). This is be-
ause induced charges of opposite sign [see Fig. 4(b)] are
ccumulated. The electric field maps shown in Fig. 3 have
verall a good agreement with the Kottman et al. [34] re-
ults, with the advantages mentioned above that our cal-
ulations: (i) scale with the surface; (ii) admit simple,
traightforward discretization schemes; and (iii) yield di-
ectly the surface fields and charges.

In Fig. 5 we can see that the magnetic field amplitude
s smaller than the electric field amplitude with a smooth
tructure slightly different at each resonance consistent
n either case with the charge and electric field distribu-
ions mentioned above. For the sake of completeness, the
lectric near-field intensity maps for s polarization are
lso included at the wavelengths corresponding to the po-
arization resonances in Figs. 5(c) and 5(d), showing a
airly structureless pattern with a penetration consistent
ith the skin depth, as expected.
We have studied in Fig. 6 the SCS and the surface mag-

etic field intensity for a 20�100 nm rectangle of silver.
o be more realistic, different rounded corners have been
aken into account, with circumference of radii of 4, 1, and
.25 nm. For the sake of comparison, the case of perfect
orners is also considered by avoiding the corner points in
he numerical implementation, where the position vector
erivatives are not defined. It has been demonstrated [32]
hat the contribution to the far field that is due to the sin-
ular points is zero, and the source functions at regular

ig. 5. (Color online) Near-field amplitude distributions in loga-
ithmic scale for a 20 nm isosceles right triangle of Ag. The am-
litude of the incident plane wave is unity and impinges on the
op: (a), (b) Magnetic field in p polarization, (c), (d) electric field in
polarization; (a), (c) 
=403 nm; (b), (d) 
=358 nm.
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oints are not affected. In fact, our results reveal that the
CS [see Fig. 6(a)] does not vary for all corner radii, ex-
ibiting in this case only one resonance at 
=454 nm. In
ig. 6(b), we show the surface magnetic field intensity for
ifferent roundings at the main resonance as a function of
he arc length with origin at the half base in a clockwise
irection. It is seen that the magnetic field is barely af-
ected by the corner radius, remaining indeed unchanged
or radii smaller than 1 nm.

We now explore the surface EM field distribution for
he 20�100 rectangular cross section at the main reso-
ance [
=454 nm; see Figs. 7(a) and 7(b)] plotted in the
ame manner as the surface magnetic field in Fig. 6(b).
he normal component of the electric field shows peaks on
he corners, with the same sign and local minimum along
ach short side [Fig. 7(a)]. The tangential component of
he electric field is overall smaller than the normal com-
onent [Fig. 7(b)]. Unlike En, Et has maxima at the cen-
ers of the long sides of opposite sign. Et has a jump (ac-

ig. 6. (Color online) (a) SCS for a Ag rectangular particle with
00 nm base and 20 nm height, illuminated on the top in p polar-
zation (blue curve) or in s polarization (red curve). (b) Surface

agnetic field intensity for different radius r of the rounded cor-
ers: perfect corners (dashed black curve); r=0.25 nm (green
urve); r=1 nm (red curve); r=4 nm (blue curve). The s variable is
he arc length, with origin at the down half-base, in a clockwise
irection.

ig. 7. (Color online) Surface normal (a) and tangential (b) elec-
ric field amplitude for Ag rectangular particle with 100 nm base
nd 20 nm height, illuminated on the top, s variable is the arc
ength (see Fig. 6). (c) Charge distribution: These field and
harge distributions correspond to a specific time when the elec-
ric field amplitude is maximum at the corners. (d) Far-field in-
ensity with �=0° the forward direction, 
=454 nm (main
esonance).
ually a local maximum of the amplitude with a change of
ign) on the corners, and at the center of the short sides it
s zero.

The surface charge (determined basically by En) is con-
entrated on the corners with the same sign on each short
ide, being opposite to that on the adjacent long side [see
ig. 7(c)]. This explains as well the jump of the tangential
lectric component in Fig. 7(b). Such charge distribution
an be seen as resembling two parallel horizontal dipoles
lose to each other, and in turn as a single dipole from the
ar field, in agreement with the dipolar pattern of the an-
ular distribution of scattered intensity shown in Fig.
(d).
We show in Fig. 8 the electric near-field intensity maps

or p polarization corresponding to the main resonance
Fig. 8(a)] and to 
=900 nm [off resonance, Fig. 8(b)],
long with the electric near-field intensity map for s po-
arization for 
=454 nm for comparison [Fig. 8(c)]. At the

ig. 8. (Color online) Near-electric-field intensity in log10 scale,
ormalized to the incident field, for a Ag rectangular particle
ith 100 nm base and 20 nm height. The plane wave impinges on

he top ��i=0° �: (a) 
=454 nm (main resonance, p polarization);
b) 
=900 nm (p polarization); (c) 
=454 nm (s polarization).

ig. 9. (Color online) Normalized SCS in p polarization for a Ag
ectangular particle with 20 nm height as a function of the base
ength L: (a) top incidence ��i=0° �; (b) oblique incidence ��i
45° �; (c) lateral incidence �� =90° �.
i
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ain resonance, we have a nonzero electric field inside
he silver rectangle, mostly parallel to the long side. The
lectric field intensity is larger at the corners, in agree-
ent with the charge distribution shown in Fig. 7(c). At
=900 nm, the electric field intensity is larger in a small
one near the corners. In this case, the electromagnetic
eld does not penetrate into the rectangle (this is not due
o the skin depth, which is in fact greater than the height
22 nm); the resulting charge pattern (not shown in Fig.

) is indeed similar to a dipole. As in the case of the tri-
ngle, the near-field pattern in s polarization [Fig. 8(c)] is
airly structureless.

The wavelength of the main resonance in p polarization
xhibits a linear dependence on rectangle length in the
orm 
reso�L /2, as revealed in the contour plot of the SCS
s a function of length in Fig. 9(a) for light impinging per-
endicular to the long side of the rectangle. This is in
greement with a dipolar oscillation of a given charge
ith dipolar moment directly proportional to the charge

eparation, as also argued in [11] for rods (for which the
inear dependence is slightly different—as L /3—due to
he impact of hemispherical ends). In contrast, no quali-
ative dependence on rectangle length is observed for il-
umination on the rectangular (fixed) short side [see Fig.
(c)], which essentially yields, as expected, the main reso-
ance for the dipolar mode across the 20 nm side, with
nly a quantitative increase with larger L. For oblique in-
idence, see Fig. 9(b), both resonances are actually ex-
ited, the one depending on the long side L being much
tronger. A higher-order resonance is also observed for
ectangles with L�150 nm. The corresponding near-field
attern is shown in Fig. 10 for a 20�250 nm, along with
he resulting charge distribution. It should be remarked
hat this resonance is not excited at perpendicular inci-
ence, since the charge symmetry of the corresponding
ode is not matched by the electric field oscillation for

i=0°.
In recent works [35], the light scattering properties of

anoparticles of star shape have been experimentally
tudied. Actually, a star-shaped particle is a paradigmatic
xample for which parametric coordinates are especially
seful. We have carried out calculations for a six-pointed
tar, the profile of which is simulated as the sum of a
ircle equation (radius 100 nm) and a cosine function with
ix periods (amplitude 10 nm). In Fig. 11(a) the corre-
ponding SCS is shown for an incident field impinging
long the upper tip direction. The nanostar spectrum pre-
ents three different resonances at 393 nm (main),
42 nm, and 329 nm (bulk plasmon). Incidentally, it is
orth mentioning that the SCS [Fig. 11(a)] is quite inde-
endent of the illumination direction, whereas the surface

ig. 10. (Color online) (a) Near-electric-field intensity (log10
cale) in p polarization, normalized to the incident field, for a Ag
ectangular particle with 250 nm base and 20 nm height. The
lane wave impinges on the top ��i=45° � at the second-order
esonance 
=459 nm. (b) Charge distribution obtained as in Fig.
(c).
M field might be slightly different. The nanostar main
esonance is redshifted with respect to the main reso-
ance of the cylinder of equal radius (not shown here),
ith a larger SCS. Figures 11(b) and 11(c) show the elec-

ric near-field intensity distribution at the main reso-
ance �
=393 nm� for two incident plane waves imping-

ng on the top ��i=0° � and on the left ��i=90° �,
espectively. We can see that the field intensity is sym-
etric with respect to the incident direction. For �i=0,

he electric field intensity has minima at the upper and
ower tips. This behavior is due to tangential charge
ariations being forbidden on those tips, as imposed by
he incident polarization; it corresponds to a nonfavorable
harge distribution, as shown in [36] for Gaussian ridges
n a flat metal surface.

The same argument applies to the electric field minima
n the upper corner in the triangle above. In contrast, the
angential electric intensity presents maxima on all val-
eys for both incident directions, along with large normal
lectric field intensity at the adjacent walls, where charge
ith opposite sign is accumulated, as seen in Fig. 11(c)

and also in Fig. 11(b) albeit weaker at the walls of the
pper and lower tips]. Basically, the near-field pattern in
he valleys has dipolelike behavior [Fig. 11(c)] due to such
pposite charge concentration on either dip wall [36]. Re-
all that field enhancements of more than two orders of
agnitude are found between star tips; nanostar dips

ould thus play the role of hot spots for SERS applications
nd related ones. Overall, there exists a complex multipo-
ar charge distribution at the main resonance, related to
he star-shape symmetry, that leads to a complex far-field
attern; this will be investigated in detail elsewhere.

. LIGHT SCATTERING BY INTERACTING
ANOWIRES
e now show that the surface integral equation formula-

ion can also be exploited to investigate the light scatter-
ng from strongly interacting nanowires in various cases
xhibiting coupled plasmon resonances. First, for the sake
f comparison, we present in Fig. 12 a study of the plas-

ig. 11. (Color online) (a) SCS for a Ag six-pointed star with av-
rage radius of 100 nm and oscillation amplitude (see text) of
0 nm (blue curve). (b), (c) Electric-near-field intensity distribu-
ion in log10 scale at 
=393 nm (main resonance) for two incident
irections as denoted by arrows: (b) �i=0°, (c) �i=90°.
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onic resonances for two Ag cylinders of 25 nm radius as
he distance 
 between them is reduced, as in [14]. For
arge enough 
, we retrieve the SCS of two separated,
oninteracting cylinders, as expected. We can see that a
trong coupling effect exists for small distances, where a
plitting of the plasmon resonance takes place. This effect
s more obvious for incidence normal to the dimer axis;
ee Fig. 12(a). The stronger plasmon resonance (at
380 nm for 
�5 nm) corresponds to a large charge con-

entration of opposite sign between the cylinders. This
esonance is redshifted with respect to the isolated cylin-
er mode, because the interaction energy between oppo-
ite charges is smaller for small distances.

The resulting near-field intensity map is shown in Fig.
2(c), which indeed reveals the strong field enhancement
nd localization within the dimer gap directed along the
imer axis. The second, symmetric, weaker resonance (at
340 nm for 
�5 nm) is present only for small distances;

t corresponds to the dipolar mode of an isolated cylinder
ith the same charge across the dimer gap (thus not

hown in Fig. 12). On the other hand, when the direction
f the incident field is parallel to the dimer axis (see Fig.
2(e)), two resonances are also found, but with substan-
ially smaller SCS. In this case, the SCS splitting for
maller distances is accompanied by a decrease in
trength, because the charge distribution of each cylinder
scillates with opposite phase with respect to the other
ylinder [10,14,37]. The near-field pattern [see Fig. 12(d)]
hows also a large field enhancement between both cylin-
ers, though weaker and broader than that of the reso-
ance in Fig. 12(c) and indeed directed perpendicular to
he dimer axis (with a minimum at the center).

In Fig. 13(a) we show the SCS of a Ag rectangular
imer as a function of the gap width 
. The dimensions of
ach rectangle are 20�100 nm2. Similar rectangular
imers have been termed nanoantennas [4,5] for their
bility to enhance light coupling and emission. When the
wo rectangles are well apart, the SCS resembles that of a
ingle rectangle (nearly twice as intense), with the main
esonance located at the same frequency [see Fig. 9(a)].
n reducing the gap width, the two rectangles begin to

ouple, so that the main resonance is redshifted as a con-

ig. 12. (Color online) (a), (b) SCS for two Ag cylinders (p polar-
zation) with 25 nm radius for different separation, illuminated
n the top (a) or on the left (b). (c), (d) Near-electric-field intensity
t the main resonances for a separation of 5 nm (log10 scale nor-
alized to the incident field, p polarization): (c) 
=380 nm; (d)
=372 nm (p polarization), illumination direction as indicated.

e) SCS for a separation of 5 nm, with illumination (see inset) on
he top (black solid curve), on the left (red dashed curve), and
CS for only one cylinder (blue dotted–dashed curve).
equence of the charge accumulation across the gap [11].
n the limit of touching rectangles, the SCS should coin-
ide with that of a single rectangle with length 2L
200 nm, with a main resonance at �620 nm [see Fig.
(a)]; this wavelength is in turn the upper limit for the
oupling-induced redshift of the main resonance in Fig.
3(a). The near-field distribution for 
=5 nm at reso-
ance �
=573 nm� in Fig. 13(b) illustrates the strong cou-
ling regime; the corresponding SCS is explicitly plotted
n Fig. 13(d), along with that for a single rectangle. In Fig.
3(b) it is shown that, as a consequence of such strong
oupling, differences arise in Fig. 13 at each rectangle
ith regard to the electric near-field intensity for the

ingle rectangle resonance [see Fig. 8(a)] in the form of
symmetry of the charge distribution inside each Ag rect-
ngle of the dimer. The dimer charge is clearly concen-
rated in the gap (short side), with opposite signs, being
eaker at the two extremes of the dimer. The charge node

n the middle of the long sides is shifted toward the gap
hen the latter is decreased. The electric field is larger
etween the nanowires and predominantly directed along
he dimer axis; very large field enhancements, of nearly
hree orders of magnitude, are found. Similar field en-
ancements have been exploited to strongly drive other
mission processes (two-photon photoluminescence, fluo-
escence, white-light continuum, etc.), both quantitative
nd qualitatively, playing the role of optical nanoanten-
as [4,5].

. CONCLUSIONS
n this work we have developed an implementation in
arametric coordinates of the light scattering formulation
ased on Green’s theorem surface integral equations, thus
ar used only for single-valued interfaces and/or simple
lose contours, in order to account for an arbitrary num-
er of wires (or 2D particles) of arbitrary shape and di-
lectric function. This formulation is formally exact and
as the decisive advantage that the numerical implemen-
ation scales with the particle surface rather than with its
olume.

ig. 13. (Color online) (a) SCS for a Ag rectangular dimer
100 nm base and 20 nm height) as a function of the gap width 
,
or p-polarized incidence at �i=0° (perpendicular to the dimer
xis). (b) Near-electric-field intensity (log10 scale) normalized to
he incident field, for a p-polarized plane wave impinging on the
op at 
=573 nm (main resonance). (c) Charge distribution on the
urface of the rectangle dimer as in (b). (d) SCS for a Ag rectan-
ular dimer with 100 nm base, 20 nm height, and 5 nm gap, illu-
inated on the top in p polarization (blue solid curve) and in s

olarization (red curve). The SCS for a single rectangle (p polar-
zation) is also shown (blue dashed curve).
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A variety of metallic nanowires were investigated ex-
loring the rich phenomenology associated with plasmon
esonances. Two configurations (triangles and two cylin-
ers) already investigated in the literature were repro-
uced and extended to asses the validity and versatility of
he formulation. Then complex geometries of interest in
urface-plasmon- and nano-optics were studied, either for
solated or interacting nanowires, for which the impact of
ither shape or coupling on the plasmon particle reso-
ances is crucial, including spectra of scattering cross sec-
ions and near-field intensity maps on/off resonance. Such
hapes as circles, triangles, stars, and thin rectangles,
orming dimers (nanoantennas) were studied.
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