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We study theoretically the light scattering from metal wires of arbitrary cross section, with emphasis on the
occurrence of plasmon resonances. We make use of the rigorous formulation of the Green’s theorem surface
integral equations of the electromagnetic wave scattering, written for an arbitrary number of scatterers de-
scribed in parametric form. We have investigated the scattering cross sections for nanowires of various shapes
(circle, triangles, rectangles, and stars), either isolated or interacting. The relationship between the cross sec-
tional shape and the spectral dependence of the plasmon resonances is studied, including the impact of nano-
particle coupling in the case of interacting scatterers. Near-field intensity maps are also shown that shed light
on the plasmon resonance features and the occurrence of local field enhancements. © 2007 Optical Society of

America
OCIS codes: 290.5850, 240.6680.

1. INTRODUCTION

Recently, the development of nanofabrication techniques,
together with modern nanocharacterization techniques
such as dark-field and near-field optical microscopies, has
led to a new interest in processes concerning localization
and guiding of electromagnetic (EM) waves in metal
nanostructures [1-7]. Such techniques hold promise of po-
tential applications in imaging, surface-enhanced Raman
spectroscopy (SERS), lithography, optoelectronic devices,
and biosensing. In recent years, the increasing research
effort in the field of plasmonics—the study of EM field
confinement and enhancement via surface plasmons
(SPs)—has prompted advances in the theoretical studies
of light scattering from nanostructures [8-17]. One of the
most important applications of localized plasmons in
nanoparticles is SERS [9,18-20]; a very high sensitivity
has been achieved with this spectroscopic technique,
making possible, in fact, single-molecule detection
[21,22].

Light scattering from small particles has been studied
since long ago (see [23] and references therein). Analytical
solutions for the EM fields are known only for particles of
a very simple shape, such as cylinders, spheres, or ellip-
soids [23]. When we are interested in interacting particles
of arbitrary shape, numerical calculations are required.
Different formulations exist that rigorously describe the
response of metallic nanoparticles of arbitrary shape:
finite-difference time domain [24], dyadic Green’s func-
tion technique [9,25], and various implementations of the
boundary integral methods [8,26—28] based on Green’s
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second theorem (when the dielectric function is constant
within the nanoparticle volume) are the most widely em-
ployed.

In this work we calculate the light scattering by two-
dimensional particles of arbitrary shape. The particles
studied might exhibit corners and tips, and can be inter-
acting; in some cases, extremely large local enhancements
might take place. Calculations are based on the Green’s
theorem surface integral equation formulation
[26,27,29,30], herein modified to deal with surface profiles
in parametric form. With this method, we show that
metal nanowires with a nonregular cross section exhibit a
complex resonance spectrum; in turn we study the near-
field and charge distributions at resonant frequencies,
where a large scattering cross section is found.

The work is organized as follows. In Section 2 we
present the scattering equations obtained by means of the
Green’s theorem surface integral equation formulation in
parametric form. Next we show the high versatility of this
formulation, including results for triangular, cylindrical,
rectangular, and star-shape nanoparticles, either isolated
(Section 3) or interacting (Section 4). We draw conclusions
from the results in Section 5.

2. THEORETICAL FORMULATION

A. Surface Integral Equations in Parametric Form

We study the light scattered by two-dimensional par-
ticles, i.e., particles having a translational symmetry
along one direction, such as wires or infinitely long cylin

© 2007 Optical Society of America
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Fig. 1. (Color online) Schematic diagram of the scattering
geometry.

ders. The physical system we consider is shown in Fig. 1.
The particles are illuminated in the plane of the figures
with a linearly polarized, monochromatic plane electro-
magnetic wave of frequency » at an angle 6, with the z
axis. The polarization is defined as follows: the magnetic
(electric) field is perpendicular to the xz plane for p (s) po-
larization, also known as transverse magnetic (transverse
electric). The restriction to two-dimensional systems has
the advantage that it notably simplifies the formulation;
in fact, we can reduce the initial three-dimensional vecto-
rial problem to a two-dimensional scalar one, where the
EM field is entirely described by the y component of,
respectively, the electric field for s polarization E(s)(r)
=E(r) and the magnetic field for p polarization Hy )(r)
=H(r).

Recall that for s polarization, surface plasmons (which
are transverse magnetic) cannot be excited. It should be
emphasized that this simplification stems only from the
scattering geometry, so that the full vector EM character
of the problem is preserved. The scattering configuration
consists of NV objects (metal or dielectric) with arbitrary
shapes described by an isotropic, homogeneous,
frequency-dependent dielectric function sj(‘")(a)) in a di-
electric background characterized by a homogeneous, iso-
tropic, frequency-dependent dielectric function &*)(w).
(The dielectric functions are taken from [31].) The surface
profile I'; of the jth scatterer is represented by the con-
tinuous vector-valued function R;=(§;,7;), where (¢, )
are the coordinates of a point of the profile in the xz plane.
We describe surface profiles as parametric curves: R;(¢)

=[&(®), 5®)].

1. p Polarization

Let us focus first on the calculation of the scattered EM
field in the case of p polarization. The method of calcula-
tion is based on the integral equations resulting from the
application of Green’s second integral theorem (with Som-
merfeld radiation condition) [26,27,30,32,33]. Employing
Green’s integral theorem outside the scatterers, the mag-
netic field for p polarization can be written in parametric
coordinates as

IGr,R,(1)]
ON:

J

H<”<r>+—2 f HU[R,(1)]

ﬁH(Out)(Rj)

G“[r,R;(t)] dt =H"(r),

J

r outside, (la)
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=0, r inside, (1b)

where H®(r) is the incident magnetic field.
If the Green’s theorem is applied inside the scatterers,
one obtains the following two integral equations for each

one (j=1,...N):

IG"[r,R;(1)]
-— f <L">[R(t>]—

N
' JH™(R))
_ G;Ln)[r,Rj(t)]T dt=0, routsidel;, (2a)
J
=H")(r), r inside r;.
(2b)

The superscripts (out,in) denote the magnetic fields
Houtin)(y) evaluated, respectively, outside and inside the
scatterers. In the above equations, the normal derivative
(not normalized) is defined as

14

J
N { W)— +g (t)—] 3)

and the Green’s functions G“*")(r R) can be expressed
in terms of the Hankel function of the first kind:

_(1)

G (r,R) = inH" —\’S(OM)|I‘—R|:|, (4a)
Cc

G"(r,R) = inH{" —\/s“" = R|} (4b)

We now define 7;(¢) and L;(¢) as the source functions
(unknown) according to the continuity conditions across
the interface of the jth scatterer:

H(t) = H(O”t)(r)|HR;<t) = H(m)(r)|HRJf(t), (5a)
(9H(out)(r) s(out) ﬂH(i")(I‘)
co=|——| =l

INj TR () SJ(‘ : IN; TR (t)
(5b)

where the superscripts +(—) indicate that the limit is
taken with r from outside (inside) the scatterers. By
evaluating Eqgs. (1a) and (2a) at the interfaces and invok-
ing the continuity conditions (5) across them, we obtain a
set of coupled integral equations:

IG IR, R;(1)]
IN:

J

<”(Rl)+—2 f H,(t)

- GU[R,R(]IL,(t) (dt = Hy(2),

l=1,...,N; (6a)



2824 J. Opt. Soc. Am. A/Vol. 24, No. 9/September 2007

1 IGRLR(D] e (w)
— f (t) N, T (e

G[R,R,(1)1L,(t) [dt =0,

l,j=1,...,N. (6b)

These coupled integral equations are converted into
matrix equations using a simple quadrature approxima-
tion to evaluate the integral over small intervals. The
coupled system of matrix equations can then be solved
numerically to determine the source functions #;(¢) and
L(t) from Egs. (6a) and (6b). Using these source func-
tions, the near- and the far-field amplitudes can easily be
determined. Note that the scattering problem scales with
the surface of the particle and not with its volume, which
is a decisive advantage in numerical simulations.

2. s Polarization

Likewise, the following integral equations are obtained by
using the Green’s integral theorem for the only nonzero
component of the electric field in the case of s polariza-
tion:

IG“r,R;(t)]
N

J

E(”<r)+—2 f {E“"”[R( t)]

JEC")(R;
~ G, Ry(¢)] dt =EC*(x),
J
r outside, (7a)
=0, r inside, (7b)
IG"[r,R;()]
-— f B[R ()] ——
N,
(9E(m)(Rj)

G}i")[r,Rj(t)]T dt=0, routsideT;, (8a)

J
=E'"(r), rinsideT).
(8b)

We define the (unknown) source functions &;(¢) and F(¢)
as

&)= E(out)(r)|HR; = E(i")(l‘)|Hij(:), (92)

: laEw“(r)} |:(7E(i")(r)] o)
F)=| ——— = ——— , (9b
IN; r—RI(0) IN; roR3 (1)

J

where the continuity conditions have been explicitly ac-
counted for. To solve for the source functions, we evaluate
Eqgs. (7a) and (8a) at the interfaces, thus obtaining the fol-
lowing system of coupled integral equations:
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G(Out)[Rl, J(t)]

E(‘)(RZ)+—EJ {5 (t) N

J

- GOR, RO ) }dt = &),

l=1,...,N, (10a)

aG(ln)[Rl’ J( )] .
— f - G"[R, R;())]F;(t) (de
N

=0, lj=1,...,N. (10b)

B. Near Field

In the case of p polarization, once the source functions are
known from the set of integral Eqgs. (6), the magnetic com-
ponent of the near field is thus calculated from Egs. (1a)
and (2b). To obtain the electric field components from the
y component of the magnetic field, we make use of Max-
well’s equation:

w
VxH=-i—¢E. (11)
C

Therefore, the electric field has only nonzero components
in the xz plane, given outside the scatterers [from Eq.

(1a)] by
PGIr,Ri(1)]
E(p I(r) = E(" (r) - (Out)zf {H( T
aG(out)
e (v, R;(2))L;(¢) [dt, (12a)

EP(r)=0, (12b)

ic PG r,R;(¢)]
EPout) ) = Fe ey - — | { ) —
z ) ) 47weoMD) r J( ) dx IN;

J
G, R,(1)] }
S ) e (12¢)

ax

Similar expressions are obtained for the near-electric-
field components inside the scatterers from Eq. (2b).

When r is very close to the surface, nonintegrable sin-
gularities appear associated with Green’s functions de-
rivatives. A simple way to avoid this problem has been
pointed out in [30]. The surface electric field is obtained
from the surface magnetic field as follows:

ic  dH;t)

(p,out) X _ ——J
En [Rj(t)] - 'ng(out) dt 5 (133)
E,Ep’out)[Rj(t)] == (out>£ (), (13b)

where E,(R;) and E,(R;) are, respectively, the normal and
tangential components of the electric field at the jth sur-
face, and y=[(&")%+(n')*]"2.
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In the case of s polarization, the only nonzero compo-
nent of the near electric field is directly obtained from
Eqgs. (7a) and (8b) once the source functions (9) are known
from Eqs. (10). If the near/surface magnetic fields were
needed, their components could be easily calculated as in
Egs. (12) and (13), but exploiting VXE Maxwell’s equa-
tion instead.

Incidentally, when calculating the near fields close to
various scatterers with arbitrary shapes, we incur the nu-
merical problem of determining whether a generic point
r, is located either inside or outside the scatterers. We
solve this problem by assuming that a unitary charge is
located at the generic point ry. By means of the Gauss—
Green theorem, we calculate the EM flux across the sur-
face of the scatterer: When the charge is inside the scat-
terer the flux is unity; otherwise it is zero. Operatively, we
calculate the flux of the vector #/|r—r|? across the sur-
faces: we obtain nonzero values of the flux only for the in-
ner points.

C. Far-Field Amplitude and Scattering Cross Section

To calculate the far-field amplitude, we take the
asymptotic expression of the Hankel functions for large
arguments: [r—R;(¢)| =r—[£&(¢)sin 6+ 7;(¢)cos 6]. In this
manner, according to Eqgs. (1a) and (7a), we define the
S®:5)(9) magnitudes proportional to the scattering ampli-
tudes:

1

c 2 o0 —

S(p)(a) =l ——— X E f l_\,'s(aut)
8wy idn e

X[ 7 (¢)sin 6 - & (t)cos OH(¢) — L;(t)

w —_—
X expy — L—\J’s("”t)[fj(t)sin 0+ 7;(t)cos 6] dt,
c

(14a)
(out) 3
cye ou 2 w
S(s)(0)=l< ) X > f 1— /gl
Tw j Fj C

X[} (e)sin 6~ & ()cos G1E;() - F(¢)

w
X exp{— L—\/s<°“”[§j(t)sin 6+ n;(t)cos 9]}dt.
c

(14b)

The scattering cross sections (SCS) of the particles can
be expressed as

27 |SP(6]w)|?
QL (w) = f —— 46, (15)
o |Eg

and by means of the optical theorem [23], we obtain the
extinction @,,; and absorption @, cross sections:

8me
QY (w) = \| —Re[SP)(0= Opprpara)],  (16)
w
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D. Numerical Calculations

We now apply the preceding formulation to calculate SCS
and near-field maps associated with metal nanowires of
different cross section, either isolated or interacting. In
the numerical calculations, the integral equations [see.
Eqgs. (6) for p and Egs. (10) for s polarization] are con-
verted into matrix equations by discretizing them
through a simple quadrature scheme. The convergence of
the resulting surface EM fields [source functions (5) and
(9)] with increasing number of sampling points is verified
in all cases. The advantage of developing the surface in-
tegral scattering equations in parametric form manifests
itself for any given cross section profile in that a proper
choice of the parametric curves optimizes the minimum
number and density of sampling points that ensure nu-
merical convergence.

3. LIGHT SCATTERING BY SINGLE
NANOWIRES

With the purpose of comparing this method with previous
ones, we have calculated the light scattering from a trian-
gular particle as in Kottman et al. [34], where they have
solved the problem with a scattering formalism based on
the volume integral equation. In Fig. 2, we show the SCS
for an isosceles right triangular particle 20 nm on a side;
the amplitude of the incident plane wave is unity, imping-
ing on the top (6;=0). We have rounded off the system cor-
ners by 0.25 nm to provide a more realistic model and to
remove numerical instabilities. We observe a complex
spectrum with various resonances, very similar to that in
Kottman et al. [34], except for the main resonance being
slightly higher and blueshifted, probably due to the differ-
ent numerical approach. The SCS for s polarization is also
included for the sake of completeness, revealing as ex-
pected no relevant features. As a comment in passing [34],
note that a weak peak at 329 nm is observed in the spec-
tra of the p-polarized SCS; this corresponds to a longitu-
dinal mode, stemming from the bulk plasmon resonance
when R(e) =0, its characteristic being fairly constant re-
gardless of the nanowire shape/sizes.

We have studied the near-field amplitude (magnetic
and electric fields) at the two significant resonance fre-
quencies of 403 and 358 nm. In Figs. 3(a) and 3(b), we

300 350 400 450 500
A (nm)

Fig. 2. (Color online) Scattering cross sections for a 20 nm isos-
celes right triangle of Ag for p polarization (blue curve) and for s
polarization (red curve).
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s (nm)

Fig. 3. (Color online) Near-electric-field amplitude distribution
in logarithmic scale of light scattering from a 20 nm isosceles
right triangle of Ag for two plasmon resonances (p polarization).
The amplitude of the incident plane wave is unity and impinges
on the top at (a) A=403nm, (b) A=358 nm. (c) Surface electric
field amplitude at the base corner of the triangle shown in (a) for
different number of sampling points (of the entire triangle perim-
eter) N,=100 (dashed curve), 200 (dotted—dashed curve), 600
(dark solid curve), and 1200 (light solid curve).

show the electric field amplitude distribution inside and
outside the nanoparticle in a logarithmic color scale. In
both cases, there exists a large field variation between the
base corners and the upper corner. While the field ampli-
tude at the two base corners reaches 200 times the inci-
dent field amplitude (at the main resonance), it vanishes
at the upper corner where a minimum exists.
Incidentally, the surface electric field amplitude at one
base corner is explicitly plotted in Fig. 3(c) for increasing
number of sampling points, thus revealing the large local
field enhancement at the main resonance and also the
good convergence of the numerical calculations. The reso-
nances at 403 and 358 nm present different field distribu-
tions at the two base corners. At 403 nm, we obtain a ho-

(a) | (b) I
180 180

270 . 90 270. 9

(c) 0 (d) 0

Fig. 4. (Color online) Charge distribution for two plasmon reso-
nances (p polarization) at (a) A\=403 nm, and at (b) A=358 nm (b).
These charge distributions correspond to a specific time when the
electric field amplitude is maximum at the corners. Far field in-
tensity at (¢) A=403 nm, (d) A\=358 nm.
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mogeneous, strong field enhancement at the corners. The
electric field is mostly normal to the surface in the vicinity
of the corners.

The corresponding charge distribution is shown in Fig.
4(a): there is a large charge concentration with opposite
sign on each base corner. The normal component has a
minimum at the center of the base, where the electric
field has only a small tangential component. This reso-
nance is thus a typical dipolar mode, as is confirmed in
turn by the angular distribution of scattered intensity in
Fig. 4(c).

However, we observe at 358 nm a nonhomogeneous
(~dipolar) behavior near the base corners, with a mini-
mum exactly at the corner and a distance dependence of
the near-field amplitude different from that of the reso-
nance at 403 nm [see Fig. 3(b)]. There is also a large nor-
mal electric field component near the base corners at
358 nm, but it nearly vanishes at a point in vacuum very
close to the base corners (unlike at 403 nm). This is be-
cause induced charges of opposite sign [see Fig. 4(b)] are
accumulated. The electric field maps shown in Fig. 3 have
overall a good agreement with the Kottman et al. [34] re-
sults, with the advantages mentioned above that our cal-
culations: (i) scale with the surface; (ii) admit simple,
straightforward discretization schemes; and (iii) yield di-
rectly the surface fields and charges.

In Fig. 5 we can see that the magnetic field amplitude
is smaller than the electric field amplitude with a smooth
structure slightly different at each resonance consistent
in either case with the charge and electric field distribu-
tions mentioned above. For the sake of completeness, the
electric near-field intensity maps for s polarization are
also included at the wavelengths corresponding to the po-
larization resonances in Figs. 5(c) and 5(d), showing a
fairly structureless pattern with a penetration consistent
with the skin depth, as expected.

We have studied in Fig. 6 the SCS and the surface mag-
netic field intensity for a 20X 100 nm rectangle of silver.
To be more realistic, different rounded corners have been
taken into account, with circumference of radii of 4, 1, and
0.25 nm. For the sake of comparison, the case of perfect
corners is also considered by avoiding the corner points in
the numerical implementation, where the position vector
derivatives are not defined. It has been demonstrated [32]
that the contribution to the far field that is due to the sin-
gular points is zero, and the source functions at regular

(@ " (b) -
N IAY
(d

*
(c)

) 0.1
Fig. 5. (Color online) Near-field amplitude distributions in loga-
rithmic scale for a 20 nm isosceles right triangle of Ag. The am-
plitude of the incident plane wave is unity and impinges on the
top: (a), (b) Magnetic field in p polarization, (c), (d) electric field in
s polarization; (a), (c) A=403 nm; (b), (d) A=358 nm.

»
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Fig. 6. (Color online) (a) SCS for a Ag rectangular particle with
100 nm base and 20 nm height, illuminated on the top in p polar-
ization (blue curve) or in s polarization (red curve). (b) Surface
magnetic field intensity for different radius r of the rounded cor-
ners: perfect corners (dashed black curve); r=0.25nm (green
curve); r=1nm (red curve); r=4 nm (blue curve). The s variable is
the arc length, with origin at the down half-base, in a clockwise
direction.

points are not affected. In fact, our results reveal that the
SCS [see Fig. 6(a)] does not vary for all corner radii, ex-
hibiting in this case only one resonance at A\=454 nm. In
Fig. 6(b), we show the surface magnetic field intensity for
different roundings at the main resonance as a function of
the arc length with origin at the half base in a clockwise
direction. It is seen that the magnetic field is barely af-
fected by the corner radius, remaining indeed unchanged
for radii smaller than 1 nm.

We now explore the surface EM field distribution for
the 20X 100 rectangular cross section at the main reso-
nance [A=454 nm; see Figs. 7(a) and 7(b)] plotted in the
same manner as the surface magnetic field in Fig. 6(b).
The normal component of the electric field shows peaks on
the corners, with the same sign and local minimum along
each short side [Fig. 7(a)l. The tangential component of
the electric field is overall smaller than the normal com-
ponent [Fig. 7(b)]. Unlike E,, E, has maxima at the cen-
ters of the long sides of opposite sign. E; has a jump (ac-

20
10
uf o
-10
20
50 100 150 200 0 50 100 150 200
() s (nm) (b) s (nm)
180

u >
’ 270 S0

() (d) 0

Fig. 7. (Color online) Surface normal (a) and tangential (b) elec-
tric field amplitude for Ag rectangular particle with 100 nm base
and 20 nm height, illuminated on the top, s variable is the arc
length (see Fig. 6). (¢) Charge distribution: These field and
charge distributions correspond to a specific time when the elec-
tric field amplitude is maximum at the corners. (d) Far-field in-
tensity with 6=0° the forward direction, A\=454nm (main
resonance).
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Fig. 8. (Color online) Near-electric-field intensity in log;, scale,
normalized to the incident field, for a Ag rectangular particle
with 100 nm base and 20 nm height. The plane wave impinges on

the top (6;,=0°): (a) A\=454 nm (main resonance, p polarization);
(b) A=900 nm (p polarization); (c) A\=454 nm (s polarization).

tually a local maximum of the amplitude with a change of
sign) on the corners, and at the center of the short sides it
is zero.

The surface charge (determined basically by E,,) is con-
centrated on the corners with the same sign on each short
side, being opposite to that on the adjacent long side [see
Fig. 7(c)]. This explains as well the jump of the tangential
electric component in Fig. 7(b). Such charge distribution
can be seen as resembling two parallel horizontal dipoles
close to each other, and in turn as a single dipole from the
far field, in agreement with the dipolar pattern of the an-
gular distribution of scattered intensity shown in Fig.
7(d).

We show in Fig. 8 the electric near-field intensity maps
for p polarization corresponding to the main resonance
[Fig. 8(a)] and to A\=900 nm [off resonance, Fig. 8(b)],
along with the electric near-field intensity map for s po-
larization for A=454 nm for comparison [Fig. 8(c)]. At the

400 500 600 700

]
4
2

400 500 600 700 900 0
A (nm)

Fig. 9. (Color online) Normalized SCS in p polarization for a Ag
rectangular particle with 20 nm height as a function of the base
length L: (a) top incidence (#,=0°); (b) oblique incidence (6;
=45°); (c) lateral incidence (6,=90°).
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main resonance, we have a nonzero electric field inside
the silver rectangle, mostly parallel to the long side. The
electric field intensity is larger at the corners, in agree-
ment with the charge distribution shown in Fig. 7(c). At
A=900 nm, the electric field intensity is larger in a small
zone near the corners. In this case, the electromagnetic
field does not penetrate into the rectangle (this is not due
to the skin depth, which is in fact greater than the height
~22 nm); the resulting charge pattern (not shown in Fig.
7) is indeed similar to a dipole. As in the case of the tri-
angle, the near-field pattern in s polarization [Fig. 8(c)] is
fairly structureless.

The wavelength of the main resonance in p polarization
exhibits a linear dependence on rectangle length in the
form \,.,,*L/2, as revealed in the contour plot of the SCS
as a function of length in Fig. 9(a) for light impinging per-
pendicular to the long side of the rectangle. This is in
agreement with a dipolar oscillation of a given charge
with dipolar moment directly proportional to the charge
separation, as also argued in [11] for rods (for which the
linear dependence is slightly different—as L/3—due to
the impact of hemispherical ends). In contrast, no quali-
tative dependence on rectangle length is observed for il-
lumination on the rectangular (fixed) short side [see Fig.
9(c)], which essentially yields, as expected, the main reso-
nance for the dipolar mode across the 20 nm side, with
only a quantitative increase with larger L. For oblique in-
cidence, see Fig. 9(b), both resonances are actually ex-
cited, the one depending on the long side L being much
stronger. A higher-order resonance is also observed for
rectangles with L =150 nm. The corresponding near-field
pattern is shown in Fig. 10 for a 20 X 250 nm, along with
the resulting charge distribution. It should be remarked
that this resonance is not excited at perpendicular inci-
dence, since the charge symmetry of the corresponding
mode is not matched by the electric field oscillation for
19i=0°.

In recent works [35], the light scattering properties of
nanoparticles of star shape have been experimentally
studied. Actually, a star-shaped particle is a paradigmatic
example for which parametric coordinates are especially
useful. We have carried out calculations for a six-pointed
star, the profile of which is simulated as the sum of a
circle equation (radius 100 nm) and a cosine function with
six periods (amplitude 10 nm). In Fig. 11(a) the corre-
sponding SCS is shown for an incident field impinging
along the upper tip direction. The nanostar spectrum pre-
sents three different resonances at 393 nm (main),
342 nm, and 329 nm (bulk plasmon). Incidentally, it is
worth mentioning that the SCS [Fig. 11(a)] is quite inde-
pendent of the illumination direction, whereas the surface

BT

—1 5 -05

Fig. 10. (Color onhne) (a) Near-electric-field intensity (logy,
scale) in p polarization, normalized to the incident field, for a Ag
rectangular particle with 250 nm base and 20 nm height. The
plane wave impinges on the top (6;=45°) at the second-order
resonance A\=459 nm. (b) Charge distribution obtained as in Fig.
7(c).
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Fig. 11. (Color online) (a) SCS for a Ag six-pointed star with av-
erage radius of 100 nm and oscillation amplitude (see text) of
10 nm (blue curve). (b), (¢) Electric-near-field intensity distribu-
tion in log;, scale at A\=393 nm (main resonance) for two incident
directions as denoted by arrows: (b) 6;=0°, (¢) 6,=90°.

EM field might be slightly different. The nanostar main
resonance is redshifted with respect to the main reso-
nance of the cylinder of equal radius (not shown here),
with a larger SCS. Figures 11(b) and 11(c) show the elec-
tric near-field intensity distribution at the main reso-
nance (A=393 nm) for two incident plane waves imping-
ing on the top (#=0°) and on the left (6;,=90°),
respectively. We can see that the field intensity is sym-
metric with respect to the incident direction. For 6,=0,
the electric field intensity has minima at the upper and
lower tips. This behavior is due to tangential charge
variations being forbidden on those tips, as imposed by
the incident polarization; it corresponds to a nonfavorable
charge distribution, as shown in [36] for Gaussian ridges
on a flat metal surface.

The same argument applies to the electric field minima
on the upper corner in the triangle above. In contrast, the
tangential electric intensity presents maxima on all val-
leys for both incident directions, along with large normal
electric field intensity at the adjacent walls, where charge
with opposite sign is accumulated, as seen in Fig. 11(c)
[and also in Fig. 11(b) albeit weaker at the walls of the
upper and lower tips]. Basically, the near-field pattern in
the valleys has dipolelike behavior [Fig. 11(c)] due to such
opposite charge concentration on either dip wall [36]. Re-
call that field enhancements of more than two orders of
magnitude are found between star tips; nanostar dips
could thus play the role of hot spots for SERS applications
and related ones. Overall, there exists a complex multipo-
lar charge distribution at the main resonance, related to
the star-shape symmetry, that leads to a complex far-field
pattern; this will be investigated in detail elsewhere.

4. LIGHT SCATTERING BY INTERACTING
NANOWIRES

We now show that the surface integral equation formula-
tion can also be exploited to investigate the light scatter-
ing from strongly interacting nanowires in various cases
exhibiting coupled plasmon resonances. First, for the sake
of comparison, we present in Fig. 12 a study of the plas-
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Fig. 12. (Color online) (a), (b) SCS for two Ag cylinders (p polar-
ization) with 25 nm radius for different separation, illuminated
on the top (a) or on the left (b). (¢), (d) Near-electric-field intensity
at the main resonances for a separation of 5 nm (log;, scale nor-
malized to the incident field, p polarization): (c) A=380 nm; (d)
A=372nm (p polarization), illumination direction as indicated.
(e) SCS for a separation of 5 nm, with illumination (see inset) on
the top (black solid curve), on the left (red dashed curve), and
SCS for only one cylinder (blue dotted—dashed curve).
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monic resonances for two Ag cylinders of 25 nm radius as
the distance A between them is reduced, as in [14]. For
large enough A, we retrieve the SCS of two separated,
noninteracting cylinders, as expected. We can see that a
strong coupling effect exists for small distances, where a
splitting of the plasmon resonance takes place. This effect
is more obvious for incidence normal to the dimer axis;
see Fig. 12(a). The stronger plasmon resonance (at
~380 nm for A=5 nm) corresponds to a large charge con-
centration of opposite sign between the cylinders. This
resonance is redshifted with respect to the isolated cylin-
der mode, because the interaction energy between oppo-
site charges is smaller for small distances.

The resulting near-field intensity map is shown in Fig.
12(c), which indeed reveals the strong field enhancement
and localization within the dimer gap directed along the
dimer axis. The second, symmetric, weaker resonance (at
~340 nm for A=5 nm) is present only for small distances;
it corresponds to the dipolar mode of an isolated cylinder
with the same charge across the dimer gap (thus not
shown in Fig. 12). On the other hand, when the direction
of the incident field is parallel to the dimer axis (see Fig.
12(e)), two resonances are also found, but with substan-
tially smaller SCS. In this case, the SCS splitting for
smaller distances is accompanied by a decrease in
strength, because the charge distribution of each cylinder
oscillates with opposite phase with respect to the other
cylinder [10,14,37]. The near-field pattern [see Fig. 12(d)]
shows also a large field enhancement between both cylin-
ders, though weaker and broader than that of the reso-
nance in Fig. 12(c) and indeed directed perpendicular to
the dimer axis (with a minimum at the center).

In Fig. 13(a) we show the SCS of a Ag rectangular
dimer as a function of the gap width A. The dimensions of
each rectangle are 20X 100nm? Similar rectangular
dimers have been termed nanoantennas [4,5] for their
ability to enhance light coupling and emission. When the
two rectangles are well apart, the SCS resembles that of a
single rectangle (nearly twice as intense), with the main
resonance located at the same frequency [see Fig. 9(a)].
On reducing the gap width, the two rectangles begin to
couple, so that the main resonance is redshifted as a con-
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Fig. 13. (Color online) (a) SCS for a Ag rectangular dimer
(100 nm base and 20 nm height) as a function of the gap width A,
for p-polarized incidence at 6,=0° (perpendicular to the dimer
axis). (b) Near-electric-field intensity (log;, scale) normalized to
the incident field, for a p-polarized plane wave impinging on the
top at A=573 nm (main resonance). (c) Charge distribution on the
surface of the rectangle dimer as in (b). (d) SCS for a Ag rectan-
gular dimer with 100 nm base, 20 nm height, and 5 nm gap, illu-
minated on the top in p polarization (blue solid curve) and in s
polarization (red curve). The SCS for a single rectangle (p polar-
ization) is also shown (blue dashed curve).

sequence of the charge accumulation across the gap [11].
In the limit of touching rectangles, the SCS should coin-
cide with that of a single rectangle with length 2L
=200 nm, with a main resonance at =620 nm [see Fig.
9(a)l; this wavelength is in turn the upper limit for the
coupling-induced redshift of the main resonance in Fig.
13(a). The near-field distribution for A=5nm at reso-
nance (\=573 nm) in Fig. 13(b) illustrates the strong cou-
pling regime; the corresponding SCS is explicitly plotted
in Fig. 13(d), along with that for a single rectangle. In Fig.
13(b) it is shown that, as a consequence of such strong
coupling, differences arise in Fig. 13 at each rectangle
with regard to the electric near-field intensity for the
single rectangle resonance [see Fig. 8(a)] in the form of
asymmetry of the charge distribution inside each Ag rect-
angle of the dimer. The dimer charge is clearly concen-
trated in the gap (short side), with opposite signs, being
weaker at the two extremes of the dimer. The charge node
in the middle of the long sides is shifted toward the gap
when the latter is decreased. The electric field is larger
between the nanowires and predominantly directed along
the dimer axis; very large field enhancements, of nearly
three orders of magnitude, are found. Similar field en-
hancements have been exploited to strongly drive other
emission processes (two-photon photoluminescence, fluo-
rescence, white-light continuum, etc.), both quantitative
and qualitatively, playing the role of optical nanoanten-
nas [4,5].

5. CONCLUSIONS

In this work we have developed an implementation in
parametric coordinates of the light scattering formulation
based on Green’s theorem surface integral equations, thus
far used only for single-valued interfaces and/or simple
close contours, in order to account for an arbitrary num-
ber of wires (or 2D particles) of arbitrary shape and di-
electric function. This formulation is formally exact and
has the decisive advantage that the numerical implemen-
tation scales with the particle surface rather than with its
volume.
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A variety of metallic nanowires were investigated ex-
ploring the rich phenomenology associated with plasmon
resonances. Two configurations (triangles and two cylin-
ders) already investigated in the literature were repro-
duced and extended to asses the validity and versatility of
the formulation. Then complex geometries of interest in
surface-plasmon- and nano-optics were studied, either for
isolated or interacting nanowires, for which the impact of
either shape or coupling on the plasmon particle reso-
nances is crucial, including spectra of scattering cross sec-
tions and near-field intensity maps on/off resonance. Such
shapes as circles, triangles, stars, and thin rectangles,
forming dimers (nanoantennas) were studied.

ACKNOWLEDGMENTS

This work was supported in part by the Ministerio de
Educacion y Ciencia of Spain (Grants FIS2006-07894 and
FIS2004-0108) and the Comunidad de Madrid (Grant MI-
CROSERES S-0505/TIC-0191 and V.G.’s scholarship).

REFERENCES

1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization
and guiding of electromagnetic energy in metal/dielectric
structures,” J. Appl. Phys. 98, 011101 (2005).

2. E. Ozbay, “Plasmonics: Merging photonics and electronics
at nanoscale dimensions,” Science 311, 189-193 (2006).

3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-
limited optical imaging with a silver superlens,” Science
308, 534-537 (2005).

4. P Miihlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and
D. W. Pohl, “Resonant optical antennas,” Science 308,
1607-1609 (2005).

5. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht,
“Single quantum dot coupled to a scanning optical antenna:
A tunable superemitter,” Phys. Rev. Lett. 95, 017402
(2005).

6. T. Kalkbrenner, U. Hakanson, A. Schédle, S. Burger, C.
Hankel, and V. Sandoghdar, “Optical microscopy via
spectral modifications of a nanoantenna,” Phys. Rev. Lett.
95, 200801 (2005).

7. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical
imaging through a metallic nanorod array,” Phys. Rewv.
Lett. 95, 267407 (2005).

8. A. Madrazo and M. Nieto-Vesperinas, “Scattering of
electromagnetic waves from a cylinder in front of a
conducting plane,” J. Opt. Soc. Am. A 12, 1268-1309 (1995).

9. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S.
Schultz, “Plasmon resonances of silver nanowires with a
nonregular cross section,” Phys. Rev. B 64, 235402 (2001).

10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B.
Lamprecht, and F. R. Aussenegg, “Optical properties of two
interacting gold nanoparticles,” Opt. Commun. 220,
137-141 (2003).

11. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de
Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of
coupled metallic nanorods for field-enhanced spectroscopy,”
Phys. Rev. B 71, 235420 (2005).

12. K. L. Shuford, M. A. Ratner, and G. C. Schatz, “Multipolar
excitation in triangular nanoprisms,” J. Chem. Phys. 123,
114713 (2005).

13. U. Hohenester and J. Krenn, “Surface plasmon resonances
of a single and coupled metallic nanoparticles: A boundary
integral method approach,” Phys. Rev. B 72, 195429 (2005).

14. 1. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garcia de
Abajo, “Plasmons in nearly touching metallic
nanoparticles: singular response in the limit of touching
dimers,” Opt. Express 14, 9988-9999 (2006).

15. F. Moreno, F. Gonzilez, and J. M. Saiz, “Plasmon
spectroscopy of metallic nanoparticles above flat dielectric
substrates,” Opt. Lett. 31, 1902—-1904 (2006).

16. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas,

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

V. Giannini and J. A. Sanchez-Gil

“Plasmon excitation in sets of nanoscale cylinders and
spheres,” Phys. Rev. B 73, 035403 (2006).

V. Giannini, J. A. Sanchez-Gil, J. V. Garcia-Ramos, and E.
R. Méndez, “Collective model for the surface-plasmon-
mediated electromagnetic emission from molecular layers
on metallic nanostructures,” Phys. Rev. B 75, 235447
(2007).

E. J. Zeman and G. C. Schatz, “An accurate
electromagnetic theory study of surface enhancement
factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J.
Phys. C 91, 634-643 (1987).

J. A. Séanchez-Gil and J. V. Garcia-Ramos, “Local and
average electromagnetic enhancement in surface-enhanced
Raman scattering from self-affine fractal metal substrates
with nanoscale irregularities,” Chem. Phys. Lett. 367,
361-366 (2003).

H. Xu, J. Aizpurua, M. Kill, and P. Apell, “Electromagnetic
contributions to single-molecule sensitivity in surface-
enhanced Raman scattering,” Phys. Rev. E 62, 4318-4324
(2000).

S. Nie and S. R. Emory, “Probing single molecules and
single nanoparticles by surface-enhanced Raman
scattering,” Science 275, 1102-1106 (1997).

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R.
R. Dasari, and M. S. Feld, “Single molecule detection using
surface-enhanced Raman scattering (SERS),” Phys. Rev.
Lett. 78, 1667-1670 (1997).

C. F. Bohren and D. R. Huffman, Absorption and Scattering
of Light by Small Particles (Wiley, 1998).

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi,
S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal,
“Spectroscopy and nonlinear microscopy of Au nanoparticle
arrays: experiment and theory,” Phys. Rev. B 73, 155404
(2006).

C. Girard and A. Dereux, “Near-field optics theories,” Rep.
Prog. Phys. 59, 657-699 (1996).

A. A. Maradudin, T. Michel, A. R. McGurn, and E. R.
Mendéz, “Enhanced backscattering of light from a random
grating,” Ann. Phys. (N.Y.) 203, 255-307 (1990).

J. A. Sanchez-Gil and M. Nieto-Vesperinas, “Light
scattering from random rough dielectric surfaces,” J. Opt.
Soc. Am. A 8, 1270-1286 (1991).

F. J. Garcia de Abajo and J. Aizpurua, “Numerical
simulation of electron energy loss near inhomogeneous
dielectrics,” Phys. Rev. B 56, 15873-15884 (1997).

M. Nieto-Vesperinas, Scattering and Diffraction in Physical
Optics (Wiley, 1991).

J. A. Sanchez-Gil, J. V. Garcia-Ramos, and E. R. Méndez,
“Near-field electromagnetic wave scattering from random
self-affine fractal metal surfaces: Spectral dependence of
local field enhancement and their statistics in connection
with surface-enhanced Raman scattering,” Phys. Rev. B 62,
10515-10525 (2000).

P. B. Johnson and R. W. Christy, “Optical constants of the
noble metals,” Phys. Rev. B 6, 4370-4379 (1972).

A. Mendoza-Suarez and E. R. Méndez, “Light scattering by
a reentrant fractal surface,” Appl. Opt. 36, 3521-3531
(1997).

C. I. Valencia, E. R. Méndez, and B. Mendoza, “Second-
harmonic generation in the scattering of light by two-
dimensional particles,” J. Opt. Soc. Am. B 20, 2150-2161
(2003).

J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S.
Schultz, “Spectral resonances of plasmon resonant
nanoparticles with a non-regular shape,” Opt. Express 6,
213-219 (2001).

C. L. Nehl, H. Liao, and H. Hafner, “Optical properties of
star-shaped gold nanoparticles,” Nano Lett. 6, 683-688
(2006).

J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in
disordered nanostructured metal surfaces: Shape versus
Anderson-localized resonances,” Phys. Rev. B 68, 113410
(2003).

J. P. Kottmann and O. J. F. Martin, “Plasmon resonant
coupling in metallic nanowires,” Opt. Express 8, 665-663
(2001).



