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ABSTRACT 

The complex phenomena of mixing in a flow system are studied 

by assuming the "system" to be composed of a number of independent 

components or zones of flow connected in series or parallel with 

each other. Flow zones such as plug flow, perfect mixing, short 

circuit and recirculation are assumed and a method for determining 

them in proportion to the total volume is presented. Control 

theory is used in developing six different mathematical models 

described in this work. 

The mathematical models are verified by direct simulation, 

using turbulent flow in a tube to simulate plug flow and a diffused 

aeration tank to simulate perfect mixing. The mathematical models 

are found to agree with experiment fairly well. In a second series 

of experiments, flow curves obtained from a small rectangular tank 

are analysed by the proposed models. 	It is shown that these models 

can deal with multipeaked flow curves, when these peaks are due to 

a combination of main flow, short circuit and/or recirculation. 

Two methods of determining the optimum values of the parameters 

which give the best fit of the models to the experimental curves are 

presented. The first is a direct application of linear programming 

technique to the experimental data. The second method is indirect, 

involving the "Pulse Technique". Both these methods have been 

found to be satisfactory and useful for this type of problem. 
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NOTATIONS 

C = Concentration of tracer 

C
a 

= Average concentration of tracer 

= Total weight of the tracer added divided by system volume 

= Area of the input pulse/nominal detention time. 

C. = Concentration of the input pulse = height of the input pulse 

f, f1  = Fraction of short circuiting flow 

f2  = Fraction of recirculating flow 

FT = Fourier Transform of 

m = Perfect mixing fraction 

p = Plug flow fraction 

Q = Flow rate 

r = Recirculation fraction, also perfect mixing fraction in the 

short circuit path of the 5 parameter model 

s = Short circuiting fraction of the total volume 

S = Laplace complex variable 

t = Time 

T = Nominal detention time = volume of the system/flow rate 

9 = Dimensionless time = t/T  

= Input pulse width in time units = duration of input 

= Dimensionless input pulse width = T1  /T  

TF = Transfer Function 

0 = Least square error 

is used as a multiplication sign from Chapter 2 onward and does 

not stand for convolution. 

All other symbols used are described in the text whenever they 

appear. 
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1.1 The analysis of flow systems  

An analysis of the flow behaviour in a flow through system is of 

the utmost importance in giving a physical insight into the operation 

of the system. Many attempts at such analysis have been made by 

research scientists in Chemical Engineering. Much work has been done 

(1)(2)(3) on chemical reactors and different theories have been put 

forward which attempt to relate the flow system to changes in tempera-

ture, or concentration of the reacting components, with time. 

One of the commonest procedures adopted is the stimulus-response 

technique. The stimulus may be a pulse, an impulse, a ramp or a 

step change in some property of the flow into the system at the input. 

Generally, a tracer or a dye is used. The response to such a stimulus 

is measured and plotted against time. Such a response curve, known 

as a "Flow curve" (4), or "Detention time distribution curve" (4), 

or "Dispersion curve" (5) is assumed to reflect the various components 

of the system, since each component contributes towards its formation. 

Hence an analysis of this flow curve can reveal valuable information 

on the behaviour of the components of the system. 

A flow through system (which will be referred to henceforth as 

a reactor) may be subdivided into a number of idealised zones of flow 

in which plug flow (piston flow), perfect mixing, dead space (stagnant 

zone), short circuiting or recirculation are combined. Different 

combinations of these zones give rise to different flow patterns in 

the reactor which are reflected in the shape of the flow curve. 

Mixing, the most important unit operation in chemical engineering 

and perhaps the most intractable problem, has been the subject of 

intense study in recent years. Since no real system can produce 

ideal mixing or ideal plug flow research has been largely concentrated 

on the deviations from these ideal conditions (1)(2)(3)(4)(5). 
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These deviations have been represented more in qualitative than in 

quantitative terms. Recently attempts have been made to supplement 

the qualitative approach with quantitative information and thereby 

give meaning to the previous analysis in more specific terms. 

Work done on this topic may be divided into two broad categories, 

that based on a statistical approach or that based on a quantitative 

or deterministic approach. 

The forerunners in analysing the flow curve were MacMullin and 

Weber (1). However Danckwerts (2) was the first to represent it 

in terms of a number of distribution functions. Since these functions 

form the basis of a large number of works using the statistical 

approach, they will be described in some detail in the following 

section. 

1.2 Definitions of Age-Distribution Functions  

The "Residence Time" of a fluid element is the time that elapses 

from the instant the element enters the vessel to the instant it leaves 

it. The "Age" of an element at a particular instant is the time that 

elapses after the entry of the element into the system up to that 

instant. In what follows, the existence of a system of volume V 

through which fluid flows at a steady rate Q is assumed. 

From the above definition of "Age", it is clear that the vessel 

contains fluid of varying ages. The internal age distribution fre-

quency is denoted by the functional notation I(t); I(t) has the 

units of fraction of ages per unit time. In accordance with 

probability theory in statistics, the fraction of the fluid elements 

between ages "t" and "t + At" is given by I(t)./It. Since the 

internal age distribution function I(t) is a continuous function it 

is normalised by making the sum of all the fractions equal to unity:- 



Fraction younger than Itt II 

'acti=on older than "t" 

t —4 

Fig.1.2.1. 

.00 

I(t)dt = 1 

 

1.2.1 
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The time t = 0 is an arbitrary initial point and not the starting 

time of the fluid flow. Physically equation (1.2.1) means that all 

the fluid in the vessel has an age between 0 and OD. 

The fraction of the vessel contents younger than a certain age "t" 

is :- 

 

t  
I(t')dt' 

0 

  

  

1.2.2 

  

   

while the fraction older than "t" is 

  

OD 
I(t')dt' = 1 - 	I(t')dt' 	•• 	1.2.3 

The "Residence time distribution" or "Age Distribution Function" 

is defined as the exit age frequency distribution function E(t), which 

has the units of fraction of ages per unit time. As in the previous 

case E(t). At denotes the fraction of material leaving the system 

between ages t and t+Lt. On normalisation 

co 
E(t).dt = 1 

'Jo 

 

1.2.4 

 



The fraction of the fluid in the exit stream younger than "t" is 

equal to :- 

t E(t')dt' 

 

1.2.5 

  

and the fraction older than t is equal to :- 
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OD 
E(t')dt'  = 1 	E(t')dt' • • 

	 1.2.6 
t 	 0 

These are illustrated in figure 1.2.2 

younger than "t" 

1' 
E(t) 	/ N 

Fraction 

Fraction older than tit?! 

/7////7 //1" '  

-4 t 
Fig. 1.2.2 

Naor and Shinnar (7) introduced the "Intensity Function" A(t) and 

defined it as the fraction of the fluid in the vessel of age "t" that 

will leave at a time between "t" and "t+At". This function gives 

the escape probability during the time interval Lt and will be discussed 

more fully at a later stage. 

Himmelblau and Bischoff (8) related the above defined distribution 

functions to one another in the following way. 

A vessel of constant volume "V" with a constant flow rate "Q" is 

considered. Let all the fluid entering the vessel at time t > 0 be 

called the "new" fluid. The existing content at time t = 0 is then 

the old fluid. At a time t equation 1.2.2 gives the fraction of new 

fluid in the vessel. 

Therefore (
Amount of "new" fluid 
in vessel at time t 

t 
= V 	I(t' )dtf  

•o 



Equation 1.2.6 gives the fraction of the outgoing fluid at any 

instant of time, that has an age greater than t. 

Therefore (
Amount of "old" fluid 
gone from vessel at time t = 	

co 
Qdtt 	E(t")dt" 

Since the old fluid must be replaced by the new fluid it follows 

that :- 

13 

t 	,t 	coo 
V i I(tt )dtt  = 	Qdt' 	E(t")dt" • • • 1.2.7 

Differentiating both sides with respect to t' 

:00 
V.I(t) = Q.1. 	E(t')dt' 

jt 
or 

,00 
17„I(t) = 4 	E(t`)dt' = 1 - 	E(tt)dt' 

	1.2.8 
it 

where t = V = average detention time. 

Differentiating again 

E(t) = - t 	 I(t) 	 • • • 
	1.2,9 

dt 

The Intensity Function A(t) may be related to the E(t) and I(t) 

functions in the following manner :- 

(Amount of fluid(Amount of fluid \ 
leaving be 	1 = present at 
times t and trAt/ 	j time t 

/ Fraction of Age t 
X 
 (

that will leave 
between times tt  

\ and t+At 

or 

Q.E(t)dt 	- V.I(t)t 	x 	A(t).dt 	1.2.10 

or 

A(t) = 2--  . ELI = - a (121 17.i(t)) 	• • • 

t I(t) 	dt 

•• •4, E(t) 	- t.a  1(t) 
dt 
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All of the above functions convey the same basic information 

i.e. the "age" of the fluid elements, and they are useful in studying 

deviations from ideal flow. 

Again these distribution functions are generally written in 

dimensionless form, time being represented by 9 in most literature (2), 

where 

= 
tt 

 

1.2.12 

 

thus E(g).dg = E(t).dt, I(8).d9 = I(t).dt and so on, so that :_ 

E(g) = 11(t) 	 1.2,13 

1(9) = Ti(t) 	 1.2.14  

A(g) = T 	 1,2,15 AM 

E(9) = - 	I(9) 	 1.2.16  
dg 

A(g) = a91  = - 	Ln I(0) 	 1.2,17 
I(g) 	dg 

1.3 The Experimental Measurement of Age Distribution Functions  

The stimulus response technique referred to in section 1.1 is 

used to measure the age distribution functions defined above. An 

injection of tracer is used as the stimulus to the flow system, and 

the response is the tracer concentration measured in the outlet stream. 

The tracer may be a coloured dye, a photosensitive material, an 

electrolyte or a radioactive compound, depending on the type of 

situation. The tracer should preferably have the same density, and 

viscosity and be hydrodynamically indistinguishable from the process 

stream in order to represent accurately the flow conditions. 

The tracer may be injected in the form of a step change or in 

the form of an impulse and Danckwerts (2) defined "F" and "C" diagrams 

in relation to these two methods as follows. 



/Input _F-curve (output) 
1. 

F = 
c 
/C 

0 

Suppose some property of the inflowing fluid undergoes a sudden 

change from one steady value to another (i.e. step change). For 

example, let the colour change from white to red. Then let the 

fraction of the red material in the outflow at time "t" later be F(t). 

Then the dimensionless plot of F(A) versus G is called the "F" diagram. 

In F(G), the concentration C of the outflowing tracer is made dimension-

less by dividing by Co, the concentration of the entering stream. 

The "F" curve rises from 0 to 1. 

Danckwerts (2) defined the "C" curve as the concentration-time 

function of the tracer in the exit stream of a vessel in response to 

an idealised instantaneous or impulse tracer injection. Concentration 

and time are made dimensionless as above with the result that the area 

under the "C" curve is always equal to unity. 

co C 
dg 1  o o 

 

1.3.1. 

 

The "F" and "C" diagrams are illustrated in Fig. 1.3.1. and 1.3.2 

respectively. 

Q -4 

Fig. 1.3.1 

C = /C 

*. 	Impulse Input 

N 
C-curve (output) 

9 -4 
Fi 1.3.2 



1.3.4 

Fraction of fluid in the exit [  
stream younger than g 

Relationships between F, C, E and I functions are deduced by 

Danckwerts (2), Levenspiel (9), Himmelblau et al. (8), considering 

the reactor as a closed vessel. A closed vessel is defined as one 

in which the material flows in and out of the vessel by bulk flow 

only. Thus diffusion and dispersion are absent at entrance and 

exit so that, for example, we do not have materials moving upstream 

and out of the vessel entrance by swirling or eddying. 

Considering the steady state flow of fluid through such a vessel 

and assuming that the tracer is introduced as a second fluid into 

the flow at time t = 0, in place of the original flowing fluid thus 

giving a step change in the input to the vessel. Then at time t 

and dimensionless time g (g > 0), a material balance for the vessel 

gives :- 

[Rate of tracer input] = [Rate of tracer output] 

[Rate of tracer accumulation within the vessel] 

Q=QxF+— v x Fraction of second fluid within vessel 
dt 

— or 	=QxF +IV x 	Idgl 
dt 

rg  or 1 = F d 
	

IdP 
dt 	o 

.9 
or 1 = F 

d 	Idg 
t d 
t 

But — = g. 
t 

	

.°.1= F+   
d 
— 	Idg 
dg 0 

lto 

or 	F + I = 1 

or 	F = 1 - I 

Again at any time 9 

rThe fraction of the second fluid 
in the exit stream 

9 
By definition F = 	Ede 

o 

1,3.2 

1.3.3 
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This may la+moNbe obtained by comparing equations 1.48 and 1.35. 

Now consider an input to the vessel in the form of an impulse 

of tracer. At the instant of tracer injection (t = 0) all elements 

of the tracer fluid have the same starting time for the measurement 

of their ages. Thus the outlet concentration curve or the "C" 

curve is a record of the fraction of the tracer elements that entered 

the vessel at time t = 0 and left at time t = t. This is obviously 

the same as the exit age distribution function "E". 

Therefore C = E = t x E(0 	1.3.5 

From equations 1.3.4 and 1.3.5 :- 
9 

F = 	Cdg 	 1.3.6 

Also 	
C
=  dF = di 	

1.3.7 
dA 	dA 

In all the above equations F, I, E and C are considered as 

functions of O. 

Equations 1.3.6 and 1.3.7 are special cases of the general 

theorem for linear systems. They show that an impulse is the 

derivative of a step function. 

Denbigh (10) defined a function f(t) called the "Residence Time 

Frequency Function" in the same way as the function E(t) is defined 

above. The importance of this function will be discussed later on. 

1.4 Idealised Flow Regimes 

As mentioned in section 1.1 different flow patterns in the body 

of fluid in a reactor contribute to the formation of its characteristic 

flow curve. The frequency distribution functions defined above are 

used to analyse the flow curve and indicate the dominating regimes 

present in the reactor in a qualitative fashion. The different 

idealised regimes or zones and the ways in which they are defined and 
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determined by different authors are briefly outlined below. 

The perfect mixing regime  

Perfect mixing assumes that the vessel contents are perfectly 

homogeneous and have the same composition as the exit stream. 

MacMullin and Weber (1) determined the F(t) and I(t) functions 

for a perfectly mixed vessel using a statistical probability approach. 

Consider a vessel of constant volume V with constant overflow rate Q. 

Assume that an increment or lump of fluid AV enters the vessel at a 

time t = 0. Since the volume of the tank is constant, in a time 

interval At a lump of fluid AV will go out of the tank. The probability 

Pn of the "new" lump AV not going out of the vessel in a length of 

time t is 

t 
P = ( V ) At 
n 

V-FAV 

where 	is the number of increments or lumps AV passing through the 

vessel in that time t. 
t 

or 	1 (1 4.  AV )At 

Pn 	V 

AV or 	Ln P
n = — In (1 V 

) 
At 

Since AV and At are very minute increments 

Ln (1 Ay, 
V 

- Ln P 
t 	AV 	t AV 

.• . 	n= Lt 	V - Tr'At 

But 
AV

= the overflow rate Q 

• Ln P = n V/Q  

-t 	) or 	Pn = e 	/Q 

 

1.4.1. 

 

Pn represents the fraction of the fluid that is held in the 

tank longer than time t. This in fact represents the Internal age 

distribution function I(t) of Danckwerts (2) for a perfectly mixed 

vessel. 



F(8) = 1-e 

= 
t 

Fig .1. 4.1 

—3 A = 
t 

Fig, 1.4.2 
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t/(V) 

Hence 	F(t) =.1 - e 	Q   1.4.2. 

	

On normalisation 1(9) = e-g    1.4.3. 

	

F(9) = 1 -   1.4.4. 

The F and I diagrams for perfectly mixed vessels are illustrated 

in Figs. 1.4.1 and 1.4.2 respectively, I falls exponentially from 

1 to 0 while F rises from 0 to 1 and becomes asymptotic at F(Q) = 1. 

Chollette and Cloutier (11) obtained equation 1.4.1 using a 

materials balance approach. Consider a vessel of volume V containing 

a fluid of initial concentration Co, fed at a flow rate Q. At a time 

t = 0, a new fluid of feed composition CF  = 0 is introduced at the 

same flow rate Q into the vessel thus introducing a negative step input. 

At any given time t, with perfect mixing, the tank contents are of 

uniform composition C throughout equal to that of the effluent stream. 

A material balance over a time element dt gives 

Q.CF.dt = Q.C.dt + dt (v.c)40   1.4.5.. 
Since C = 0 and V = constant, equation 1.4.5 can be written := 

dC 	C =0 
dt V 

Integrating between limits 0 and t and considering that when 

t =0 C=C and whent=t C=C o 

C 	^,""" 

-6- = e 
0 

	 1.4.6. 



' 
0 

N 

When C — is plotted against — on semilog paper as shown in 
o 

Fig.1.4.3 a straight line is obtained 

20 

Log. scale 

C(8) - C
o 

G 

Normal scale 

Fig, 1.4.3. 

From equations 1.3.7 and 1.4.3 

C(A) 	dA 1(e) = e-9    1.4.7 

Wolf and Resnick (12) considered the function E(t) as the first 

derivative of F(t) so that from equations 1.4.2 

	

E(t) = 4-44    1.4.8 
t 

Therefore, for the particular case of perfect mixing, normalised 

plots of E, I and C give the same curve as shown in Figs. (1.4.1). 

The Plug Flow regime  

In plug flow, all materials pass through the vessel without any 

mixing whatsoever; each fluid element stays in the vessel for the 

same length of time. In the case of a step input, the interface 

between the tracer and the fluid moves through the vessel like a piston. 

For this reason plug flow is sometimes referred to as piston flow. 

Under such conditions each element of the fluid remains in the vessel 

for a time equal to the mean residence time 

In this case the F(A) curve is a step function as shown in 

Fig.1.4.4. 



	 1.4,13 

+ OD 
I \ 

E(9) 	6t(x) =C(0)1 

--- 0 

Fig.1.4.6 

Area = 1 

Fig.1.4.7 Fig.1.4.5 

F(Q) = v(t - T)   1,4.9 
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where 

u(t - T) =  
0, t < 

1, t > 

I(t) = 

E(t) 

1  El - F(0] . 2{1 - u(t - TA 
t" 

dF d = 7TU(t - t) = 6(t 1) 

1(9) = 1 - u(e - 1) 

E(Q) = 6(0 - 1) 

where 6(x) is the Dirac Delta function or the Impulse Function 

defined as 

[0, 	X < t 

6t(x) =i+ OD, x = t 

t
0, 	x > t 

Fig.1.4.5 shows the I diagram, Fig.1.4.6 the E and C curves 

for plug flow and Fig.1.4.7 is an illustration of the Dirac Delta 

Function, The properties of the unit step and Dirac Delta functions 

will be described in detail later on. 

Danckwerts (2) defined plug flow as the condition when elements 

of fluid which enter the vessel at the same moment, move through it 

with constant and equal velocity on parallel paths and leave at the 

same moment. 
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Short circuiting or Bypassing  

MacMullin and Weber (1), Denbigh (13) and Weber (14) used the 

term "short circuiting" or "mathematical by-passing" (13) to describe 

conditions for which the F diagram differs from that of Fig.1.4.4. 

for example Figs.1.3.1 and 1.4.2. However Denbigh (13) defined 

"mathematical by-passing" for well agitated tanks in which the contents 

are substantially homogeneous, as the condition in which reactants are 

lost within a time shorter than is required to complete the reaction. 

Thus Denbigh's short circuiting was with respect to reaction time 

rather than theoretical detention time. MacMullin and Weber (1) 

considered the perfect mixing regime as an extreme case of short 

circuiting and argued that the occurrence of any short circuiting 

indicates a departure from "streamline" flow. They suggested that 

by dividing the system into a number of well agitated tanks in series, 

this problem could be solved. Since an infinite number of perfectly 

mixed tanks in series gives a plug flow output, the greater the number 

in the series the greater will be the reduction in short circuiting. 

Weber (14) comments that the extent of short circuiting can be quan-

titatively evaluated in terms of the number of reactors in the series, 

the vessel recirculation rate, and the volumetric overflow rate for 

the system. Colburn (15) defined short circuiting as the situation 

in a tank in which some of the feed is channelled to the outlet without 

being completely mixed, and later MacMullin (16) agreed that short 

circuiting could be interpreted as channellized flow between inlet and 

outlet. 

Wolf and Resnick (12) regarded short circuiting as the situation 

in which part of the entering feed passes to the outlet with infinite 

velocity. Although this definition departs from reality it is 

commonly accepted for its ease of mathematical modelling. 
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A more rational definition of short circuiting can be taken from 

Danckwerts' (2) segregation model, although Danckwerts did not define 

it as such. When the contents of a vessel flow in parallel paths 

without being mixed with one another, the flow is said to be segregated. 

If the time of travel along one path is shorter than another, the flow 

can be considered to have shortcircuiting in a relative sense. 

However this model gives only a qualitative approach to the detection 

of short circuiting or deviations from the perfect mixing regime and 

therefore has limited usefulness. The method most commonly used in 

the literature for the detection of bypassing is the "I" curve. An 

initial sudden drop in the "I" curve as shown in Fig.1.4.8 indicates 

short-circuiting. The "E" and "C" curve also shows up short circuiting 

Tig.1.4.9)but the I curve is the better indicator. 

\ Short circuiting 
\ Fraction 

Fig, 1.4.8. 

Peak indicator 
of short circuiting 

I/  

4 

Fig. 1.4.9. 

The Stagnant or Dead Water zone  

A region.  of a vessel may retain fluid elements for a time greater 

than the mean residence time of the total fluid. Such a region is 



called a stagnant tone. However there is a direct relationship 

between by-passing as defined in the last paragraph and dead water. 

By-passing or shortcircuiting is considered as that part of the 

flow which is relatively fast. Dead water was considered by 

Levenspiel (9), Wolf and Resnick (12), Himmelblau et al. (8) and 

others (3),(4) in their models as an inert region or a region of fluid 

at rest. Since this is physically inconceivable, it may be better 

defined as the flow region with relatively the slowest flow in the 

vessel. Thus as pointed out by Himmelblau et al, (8) from the some-

what arbitrary definitions of short circuiting and dead space, 40% 

short circuiting may also be called 60% dead space. Both these effects 

can be termed "stagnancy" (8). However in the literature "stagnancy" 

is generally taken to mean dead space (7). 

Stagnancy may be determined qualitatively from the "E" or 

diagram (8),(9)  and the A function (7).  Quantitative determinations 

were attempted by others (4),(12). Stagnancy will be discussed in 

some detail when dealing with combined models. 

Recirculation  

Recirculation is defined by Levenspiel as the pattern of flow 

where a portion of the fluid leaving the vessel or leaving a flow 

region is recirculated and returned to mix with fresh fluid. Internal 

recirculation is one of the most complex phenomena and is difficult to 

evaluate. Some statistical methods involving the use of convolution 

integrals have been advanced by Sinclair and McNaughton (17). 

24 
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15.Combined Models (Qualitative Approach)  

Plug flow and perfect mixing are ideal regimes which are never 

attained in practice. Flow patterns in a flow through system are 

a combination of (i) Plug flow (ii) perfect mixing (iii) by-passing 

(iv) stagnant zones and (v) recirculation such that the resulting 

outflow curve depends on the relative proportions of one or more of 

the above patterns of flow. The various attempts to identify these 

flow patterns are described below. 

MacMullin and Weber were the first to investigate the "I" 

curve for a number of perfectly mixed vessels in series. As shown 

earlier they obtained the equations for F(Q) and 1(0 for a single 

perfectly mixed tank from the laws of probability. In the same way 

they deduced that for "n" number of equal capacity perfectly mixed 

vessels in series, the fraction of the total flow which has remained 

in the system for a time "t" or longer is equal to the probability 

of that event for any particle in the flow :- 

g 	92  03 	9n-1 
I(0) = e El g E- -11 + 	]   1.5.1 

V where (4 = - and TI  = nQ 

They also deduced the equation for the "C" curve by differentiating 

I(Q) w.r.t A and plotted a family of "I" and "C" curves for different 

values of n as shown in Figs. 1.5.1 and 1.5.2 respectively. 

McMullin and Weber did not try to interpret these curves as Denbigh (13) 

did but simply stated that in the "C" curve, the mode approaches the 

mean as the value of "n" increases, which was to be expected. 



n = oo 1.0 

1(G) 
A 
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1.0 
Q 

Fig. 1.5.1 

1.0 

Fig, 1.5.2 
	Q 

Denbigh (13), considering the problem of mathematical by-passing, 

obtained the equation of the F function for a system of n equal 

volume completely mixed tanks in series from a mass balance approach 

n-1 Q3 	@ 
F(Q) = 1 - e 9[1 + Q 	

Q2  4. 	+(11-771.-1   1.5.2 

where 0 is defined as in equation 1.5.1. 

As n --> 	F(G) remains zero for all values of 0 smaller than 1 

• 
as the term in the brackets converges to e

8 	
For > 1, e

-9  x [term in 

the brackets] = 0 and F(0) = 1. 

Fig. 1.5.3 illustrates the 111F11 diagram obtained by Denbigh (13). 

It should be noted that as n increases, the curves shift towards the 



vertical line at 9 = 1. As shown in Fig. 1.4,4 a vertical line at 

Q = 1 relates to a plug flow condition. Hence the higher the number 

of perfectly mixed tanks in series, the more the flow through the 

system approaches the plug flow condition. This criterion is often 

used for design purposes. 

n=oo 
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F(Q) 
.7" 7 
n2// 

/n=3 

Fig. 1.5.3 

Denbigh (3) explained the "C" and "F" dia'crams in qualitative 

terms, suggesting that the more slender the peak of the "C" diagram, 

the more the flow approaches the plug flow conditions and that a 

flat peak indicates deviation from the plug flow condition. This 

tendency may be measured by the kurtosis of the distribution or the 

4th moment of the diagram area about the mean. A low value indicates 

a condition approaching plug flow and a high value indicates deviation 

from it. Similarly the "F" diagram becomes less and less sharp at 

the edges an the flow deviates more and more from the plug flow 

condition as shown in Fig. 1.5.3. 

Danckwerts (2) used the terms "hold back" and "segregation" 

as measures of deviation from ideal conditions. He defined "hold 

back" as the quantity "H" defined as the area under the F diagram 

between Q = 0 and G = 1. This is the dotted area in Fig, 1.5.4. 

H = 	F(Q)d0   1.5.3. 

H = 0 for plug flow and H = i (1 - e- 	1 g) d9 = — for perfect mixing. e 
o 

H = 1 when the entire space is completely stagnant. 



1A0 	Q 

Fig.1.5.4. 

F 

Actual F curve 

F  =1 -e 

F(Q 

T 1.0--- 

Fig. 1.5.5 

1.0. 

F(e) 
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Danckwerts' (2) use of the term "segregation" as a measure of the 

efficiency of mixing can be explained with reference to Fig. 1.5.5. 

If the actual diagram for a particular system is superimposed on the 

diagram for perfect mixing, it cuts the latter in one or more points. 

Areas Al  and A2  in Fig. 1.5.5 indicate the degree of variation from 

perfect mixing. Since the area between each curve and F(Q) = 1 e-Q 

is the same, (Ai  = A2 ) segregatiaa"Ele  is quantitatively defined as the 

area Al  between the "F" diagram of the system and the curve F(Q) = 1 - e-Q  

up to the point Q = T where the curves cross. When there is dead 

water, the diagram is like that of Fig. 1.5.6. The segregation is 

then S = -Ai . When the curves cross in two or more points as shown 

in Fig. 1.5.7, Ai  + Al  = A2  and segregation = -A2  

Q 
Fig. 1.5.7 

1.0 

Fig. 1.5.8 
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1 
Segregation for plug flow is the area AI  in Fig.(1.5.8) = +Ai  = — e 

When most of the tank volume is dead space S -4 -1, being the area 
between the curve F(A) 1 - e-g  and F(Q) = 1 taken over the limits 

0 -4 OD. 

One of the most useful qualitative methods of identifying dead 

space is that put forward by Naar and Shinnar (7). They pointed 

out that the statistical parameter approach could give rise to confusion 

and advocated the use of the Intensity Function. They cited as an 

example the case of a tubular vessel filled with porous packing, 

through which fluid flows with near plug flow, but in which the out 

flow curve is affected by diffusion of the fluid into and out of the 

packing. In this case the porous packing modifies the plug flow 

curve to a J function (18). The coefficient of variation in such 

cases is equal to 1.0 as in the case of a completely mixed vessel, 

although there may be very little back mixing. Skewness or the 3rd 

moment of the C diagram about the mean has been considered as a measure 

of the amount of stagnancy. However, it is found that a system con-

sisting of a number of ideally mixed vessels in series exhibits 

considerable skewness, although in the physical sense there is no 

stagnancy. Even recent authors (8) have indicated that skewness or 

the deviation from the mean is a strong indication of dead space, 

However Van Deemter (19) also compared the skewness of different 

distribution functions and concluded that it is not representative of 

the physical properties of the system. 

The Residence Time Frequency function f(t) sometimes referred 

to as the Residence Time Density function (7) was mentioned in 

Section 1.3. It is defined as the function which gives the probability 

of a particle which has entered a system at time t = 0 leaving the 

system between times t and t + dt. 	Stated in another way; the 



—The probability of 
leaving the system 
between times t x 

probability of a particle remaining in a system for a length of time 

between t and t dt is equal to f(t)dt. Naor et al. (7) defined 

the Intensity Function A(t) as the measure of the probability of an 

escape of a particle which has remained in the system for a length of 

time t, such that the probability of the particle leaving the system 

in the next time interval dt is A(t).dt. From Section 1.2. the 

probability of a particle not leaving the system before time t is 
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I(t)dt. Therefore from the 

Probability of remaining 1 
in the system for a lengt'  
of time between t and  

laws of probability 

Probability of not 
leaving the system

II 	
' 

_I Land t+dt 
before time t 

	

f(t)dt = I(t)dt x A(t)dt   1.5.4 

or A(t) = f(t)= - 	Ln I(t)   1.5.5 
I(t) 	dt 

The function f(t) is similar to the function E(t) defined in 

Section 1.2. 	In that section the relationships between A(t), E(t) 

and I(t) were derived. Equation 1.5.5 differs from equation 1.2.11 

only in the fact that the Ln term contains t. This has arisen from 

material balance considerations. Equation 1.5.5 was obtained from 

a consideration of the probabilities with respect to one particle 

only, without taking into consideration the volume of the tank and 

the overflow rate. 

Naor et al. (7) showed that the relationship between f(t) and 

A(f) is given by:- 

t -I  A(tI)dt' 
f(t) = A(t).e 1.5.6 

From equation 1.5.4 f(t) = A(t) .x I(t)   1.5.7 
t 

But 	Ln I(t) = - 	A(t')dt'   1.2.11 
0 

or 

1(t) = e 
- ̀o A(t' 



Substituting in equation 1.5.7 gives 1.5,6. 

If we regard a stagnant zone as a region for which the escape 

probability decreases with time, then the Intensity function may be 

used to indicate stagnant conditions. For a perfectly mixed vessel 

A(g) = 1 and for ideal plug flow a plot of A(9) versus 9 yields 

a vertical line at A = 1. Naor et al. (7) showed that the intensity 

function A(A) does not decrease with time in the case of a number 

of perfectly mixed vessels in series. They also observed that 

a system of perfectly mixed and/or plug flow units in series does 

not show stagnancy. When stagnancy exists, after the main bulk of 

the fluid passes out of the vessel, the remaining fluid has a low 

probability of leaving the vessel until a time has elapsed equal to 

the residence time of the slow moving component. Then the A(G) 

curve will no longer increase continuously but decreases at some 

time t > t for the system, as shown in Fig. l.5.9. 

:eldeal plug flow 
Depd space 
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1.0 

A(9) 

--•- Perfectly mixed vessel 

Bypassing 

ti 

1.0 
Fig. 1.5.9. 

In the case of shortcircuiting or by-passing, for a time equal 

to the residence time of the by-passing component, the A(e) curve 

increases. After this fluid has left the system, the remaining 

fluid will have a low probability of leaving until the mean residence 

time t has elapsed, when the A(A) curve starts rising again, as shown 

on Fig. 1.5.9. When the deadspace and by-passing fractions are both 

large it is difficult to distinguish the one from the other from the 

A(G) curve. 



C tc 
t:10  

Basically the A(A) curve does not give any further information 

than the E(Q) curve or the I(9) curve. When the actual average 

detention time is known, the E(Q) curve can be used for quantitative 

determination of dead space, which the A(9) curve cannot be used for 

that purpose. However it is a fairly sensitive indicator of dead 

space which can be applied to experimental data under different flow 

conditions. 

Another approach to this problem of flow curve analysis has been 

published recently (20,21) based on the ratios of various dimensions 

of the curve. 
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tit! 	 tp   E 	
t
tt 

Fig. 1.5.10 

t = nominal deteption time = 

t = Peak time 
p 

C = Peak concentration 
C 	C 

tc 
and t

b are the widths of the flow curve at —2 and -2 2 	10 

respectively. 

Referring to Fig. 1.5.10 Villemonte et al. (21) proposed that :-
t. 

(I) 	T
i 
 = t i measures severe short circuiting. It has the values 

1 for plug flow and 0 for perfect mixing. 
t 

(ii) T
P 
 = -.2  measures dead space and has the values 1 for plug flow 

and 0 for perfect mixing. 

(iii) Tc  = 	measures the extent of eddy diffusion caused by t

Duration of injection  turbulence and has the value ( 	) for plug 
t 

flow and about 0,7 for perfect mixing. 
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t
b (iv) Tb  = — measures the extent of turbulent and large recirculation t 

2.3 for perfect mixing. 

(v) Te  = [(tt, 	tp) 	(tp  - ti)]ic measures the eccentricity of the 

curve and thus is a function of recirculation and has the value 0 

for plug flow and 2.3 for perfect mixing. 

Tekkipe et al. (20) changed the term in (v) to Te  = EN - tp) - 

(tp  - t1)]/E  suggesting that it represents Te  more accurately. 

It can be seen that these measures are purely qualitative and do 

not give any insight into the flow regimes in the system. 

1,6. Combined Models (Quantitative Approach)  

In this section a number of the more important attempts to analyse 

the flow curve quantitatively are described, 

Levenspiel (9) proposed an arbitrary cut off point on the tail of 

the flow curve and argued that the part of the tail thus removed could 

be considered as representing the dead or ineffective volume of the 

vessel. He took this point at twice the nominal detention time. 

The area of the I diagram thus obtained represents the fraction of the 

volume which is effective and from it the dead space can be found by 

difference. 

On the C diagram the mean can be found by computing 

2 
4 . 

	

	G.c(e),de   1.6.1 
-o 

If there is no dead water g = 1. If dead water regions are 

present g < 1, If Vd is the volume of dead water and V = Volume 

of the system then 

	 1.6.2 

eddies and equals (Injection time of tracer) for plug flow and 
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In considering short circuiting Levenspiel assumed that it was 

instantaneous as shown in Fig.1.6.1(a). In such a case the I diagram 

shows an instantaneous drop as shown in Fig.1.6.1(b), the drop being 

equal to 2- so that Q2  can be computed. 	Fig.1.6.1(c) represents the 

C diagram for such a condition. The area of the main portion of the 

diagram = 	and the mean = 	From measurement of the area or the 

mean, the main flow can be found and hence the shortcircuiting can be 

determined. Levenspiel (22) gave the I and C curves for different 

combinations of plug flow, perfect mixing and shortcircuiting, 

 

Q1 ! 

Q2 

Vessel 

(a)  

 

! Fraction of fluid bypassing = 

1(9) 

(b)  

2 
Fig. 1.6.1 

Q. = Flow rate through the main path 

Q2  = Flow rate through the by-pass 

Q = Total flow = Q1  

Although Levenspiel's (22) analysis throws new light on the 

formulation of mixed models, the idea of instantaneous short 

circuiting cannot be reconciled with reality. The determination 

of dead space from the I or C curve in the above manner only holds 
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good when the experimental data are very accurate and tracer recovery 

is 100%. Also although the use of the I diagram in the above 

manner for determining by-passing is upheld by Himmelblau et al. (8), 

a rough I curve or a smoothed I curve with different slopes is of no 

use for computing small amounts of short circuiting. 

The original theoretical work of Cholette and Cloutier (11) 

will be illustrated by considering one of their combined models in 

detail. The particular model combines partial mixing and short 

circuiting and is illustrated in Fig.1.6.2. 

fQ,CF 
 Q,CF 	-- __ _ -1.-. 

	

i \4' 	
i 	

::-- 

C*-1 	
Q,c 

1  (1-f)Q,CF  

C
o 

Fig. 1.6.2 

A fraction m of the total volume V is assumed to be agitated 

(partial mixing). A fraction f is assumed to short circuit to the 

outlet and (1 - f) of the flow Q enters the perfect mixing zone. 

The initial concentration of the fluid in the vessel (which is fed 

continuously at the rate Q) is assumed to be uniform and equal to Co. 

At a particular time t = 0, the feed composition Cr  is suddenly 

changed from Co  to 0 (negative step change). Let the concentration in 

the perfect mixing zone at time t = t' be equal to c'. The material 

coming out of this zone mixes with the short circuiting fraction so 

that the combined concentration of the fluid at the outlet is C. 

Writing a materials balance equation for the perfect mixing zone 

(1 - f)Q.CF.dt =. (1 - f)Q.di t .dt + mVdc' 

or 	
dt  
dc' 	(1 	')Q  cf . 0  

C

F 

0 
mV 
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Integrating between limits Co  and ct  

-(1-f)Qt = e mV 
Co 	 1.6.3 

Considering the outlet zone 

f.Q.Cp.dt 	(1-f)Qc'dt = Q.C.dt 

As CF = 0 C = (1-f)c 

and equation 1.6.3 becomes 
(1«f)Q 

 

C , (1-f)e mV  o  

Taking logarithms on both sides 

 

	 1.6.4 

Ln C — = Ln (1-f) 
o 

(1 -1)Qt  
••• 

mV 
	 1.6.3 

C 	t Thus plotting — against — on semi log paper which gives a Co  

straight line, (1-f) can be obtained as the intereept on the ordinate 

and the slope gives (1-f)  from which "mil the mixing fraction of the 

volume can be obtained. 

Note that the fraction (1-m)V in the above model is considered 

as completely dead, so that the concentration of the fluid remains 

at C
o 

throughout. 

In a similar manner Cholette et al. (11) obtained C — functions o  

for a number of other models. 

(1) Plug flow and partial mixing in series 

C 	m - 4 
t  - (1.-m) - 7  e t 	 1.6.6 

where m = the perfect mixing fraction 

(1-m)= the plug flow fraction 

V/Q  

(ii) Partial mixing and piston flow in parallel with a short circuit 

from inlet to outlet as illustrated in Fig.1.6.3. 



mV 

Q 

      

3? 

       

   

fQ 

   

       

      

   

(1 -p -f) 

   

       

     

pQ 

 

Corresponding Block Diagram 

Fig. 1.6.3 

C 	(1 -f)(1...m)/ 	-(1 -f)t 
Co = [(1-f-p) + pe 	mP]e 	 1.6.7 

where p = Fraction of the feed into the plug flow zone 

m = Perfect mixing fraction 

(1-m)= Plug flow fraction 

f = Fraction of feed short circuiting 

(1-p-f)= Fraction of feed going into the perfect mixing zone. 

Equation 1.6.7 holds for t > (17.2)I 

-(1-f)t 
For 0<t< (1-m);C/C

p 	o 
= p + (1-f-p)e im  	1.6.8 

(iii) Plug flow and perfect mixing in parallel with a short circuit 

as shown in the block diagram. Fig. 1.6.4. 

pQ i (1-m)V 

fQ 	Fig. 1.6.4, 

Q 
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-(1-p-f)t  
C/C = p (1-p-f)e tm   1.6.9 

for 0 <t < (1-m);  
p 

-(1-p-f) t  
C/C = (1-p-f)e 	Tm 

o 
 

for t > (1-m)T/p  

	 1.6.10 

Cholette et al. (11) produced these models with a view to deter-

mining the m fraction, or effective volume of mixing in partially 

mixed reactors and later (23) incorporated reaction rates into their 

equations for reactor design but again on a theoretical basis only. 

No method of fitting experimental data to these equations was reported. 

Wolf and Resnick (12) made use of transfer functions (which will 

be discussed fully in Chapter 2) in the derivation of F(t) functions for 

g number of combined models, Their F(t) functions are the response 

curves to a unit step function input. One such model is shown in 

Fig.1.6.5 where plug flow, perfect mixing, and a measurement lag are 

combined in series, while a fraction short circuits the perfect mixing 

zone. The short circuit is again instantaneous. 

fQ 

Perfectl 

Flow 	
l 	mixing I 	!Time lag • 

Fig. 1.6.5 

The F(t) function for this model is:- 

(1-f)  	P(1 -d)rT  F(t) = 1 - Exp.[- 	 mar(1-d)T 
ar(1-d)T 	(1-f) 

for F(t) > 0 

,....1.6.11 

Q 
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where f m Fraction of the feed short circuiting 

rE = True residence time 

E = V/
Q 

d = Fraction of the volume considered to be dead 

p = Plug flow fraction 

a = Perfect mixing fraction 

L = Lag in measurement 

m = Lag factor. 

They concluded that the F(t) function for any system can be 

represented in the general form 

-11(t-e 
F(t) = 1 - e 	for F(t) > 0 

 

	 1.6.12 

and F(t) = 0 for 0 < t <E 

For the combined model above 

- (1-f)  

ar(1-d) 
	 1.6.13 

( [L 	mar(1-d);] 	1.6.14 

They concluded that i was a measure of the efficiency of mixing. 

For perfect mixing 1 = 1 and for pure plug flow 1 	op. When dead 

space is present 11 > 1 and for shortcircuiting < 1. Thus TI is a 

measure of deviation from perfect mixing. E is a measure of the 

time lag in the system. It may be the result of plug flow in the 

system or a lag in measurement. For shortcircuiting as defined by 

Wolf and Resnick E is negative. The authors did not explain or refer 

to the method by which they obtained the transfer functions or the 

technique by which they are combined algebraically. The idea of 

obtaining a negative E due to an "anticipatory response" cannot be 

accepted. Their method of obtaining the parameters was entirely 

graphical, and the errors in so doing are reflected in obtaining 100% 
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plug flow for turbulent oil in a pipe, and 100% perfect mixing in 

gas fluidized beds. 

Rebhun and Argaman (4) applied Wolf and Resnick's (12) technique 

to a model sedimentation tank in order to determine the proportions 

of the different flow regimes present. They assumed that the tank 

contained a combination of perfect mixing, plug flow and dead space. 

The formula they derived for F(t) is as follows. 

F(t) = 1 - Exp[- 	1 	t(1_0 (1-m) 1 13(1.0)] 	 1.6.15 

where m = the dead space fraction 

'1-m = the effective fraction of the tank volume 

p = the plug flow fraction 

1-p = the perfect mixing fraction 

= Average detention time 

-11(t-0/ 

	

or F(t) = 1 - e   1.6.16 

where 

Tj = 	1  
(1-p)(1-m) 

E = p(1-m)t 

Re-arranging equation 1.6.15 and taking natural logs 

Ln [1 - F(t)] =.:047 (11)(1...my 
t 
 p(1-m)) 

f 	1   1.6.17 

A plot of [1 - F(t)] versus 7.7 on semi log paper gives a straight line 

t  
of slope 

(log e)/(1-m)(1-p). 
t If F(t) = 0 then p(1-m) 
T 

Therefore given the slope of the straight line and the value of 
t
/- 

for [1 - F(t)] = 1, the values of m and p can be computed. 

The experiments were conducted on a model tank, with varying 

flow rate, depth and inlet arrangements and the results obtained 

by the method were correlated with the statistical parameters of the 
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distribution curves. The conclusions put forward by Rebhun and 

Argaman were that in most sedimentation basins 60% of the total 

volume was occupied by perfect mixing and that only 40% of the volume 

was occupied by the plug flow of the classical settling tank theory. 

This work was strongly criticised by Wallace (24) who insisted 

that perfect mixing in a sedimentation tank was unrealistic, and that 

the fraction (1-p) should be regarded as a deviation from plug flow 

rather than perfect mixing. However no indication was given as to 

the form which this deviation might take. In analysing some of the 

experimental results Rebhun et al, (4) obtained some negative dead 
space fractions which they disregarded and attributed to experimental 

error. 

A more constructive contribution to this discussion was that 

of El-Baroudi (25), who considers that plug flow is non-existent in 

sedimentation tanks, and estimates that such basins consist of 

approximately 10% complete mixing and 90% measurable turbulent mixing. 

Again these estimates are not backed up by any experimental verifi- 

cation. However turbulent shear flow approximates more closely to 

ideal piston flow (because of its velocity profile) than any other 

real flow except that of flow through porous media, El Baroudi also 

pointed out that ideal dead space does not exist in real systems and 

that in the above experiments the negative values of dead space 

obtained corresponded to values of to/- greater than 1. El Baroudi (25) 

again suggested that the response function resulting from an impulse 

input is more amenable to graphical solution. Accordingly differenti- 

ating equation 1.6.17 we obtain 

F(ip 
t d 	1 	1 	 t 

f() = 	Exp E 	p(1-0,] 	 1,6.18 
-p(-m a(70 	(1)1) 	(1-p)(1-m1-1 

Thus on semilog paper a plot of f(—) versus — yields a straight line 
logo  t 	t 

with slope ------ 	The advantage of this method is that the 
(1 -p)(1 -m) 
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values of r  can be directly plotted without the need to determine 

the fractions F(9). Here El Baroudi (25) proposed two approximations :- 

(1) The rising limb of the plot is converted to a vertical straight 

line at a point midway between Ai  and Am  as shown in Fig.1.6.6. 

(ii) The falling limb is considered to be a straight line, thus 

representing equation 1.6.18 for A > p(1-m). Thus the real 

curve is transformed into a right angled triangle ABC in which 

AB_ 	1  

 

and G at B = p(1-m). From these two dimensions 

 

C 

(1-p)(1-m) 
p and m can be computed. 

1  
(1-p) (1-m') 

A 

Fig. 1.6.6 — 

El-Baroudi (25) showed that by applying this method to Rebhun et al, 

data, the negative dead spaces found by them could be eliminated in 

favour of increased values for the plug flow fractions. 

He pointed out that the vertical straight line approximation to 

the rising limb of the curve is satisfactory when there is a relatively 

small amount of longitudinal mixing. For a broad rising limb, which 

he attributed to high longitudinal mixing he advocates Rebhun's et al's (4) 

original method with the modification that only the points on the falling 

limb or tail of the curve are used when determining the line of best 

fit, thus ignoring the rising limb. However as will be shown later, 

the rising limb of the curve is just as important as the tail and should 

not be ignored or approximated by a vertical straight line. Its shape 
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is a function, not only of longitudinal mixing, but also of short-

circuiting and recirculation. Also the breadth of the curve 

(P. -4. 0m Fig.1.6.6) will be shown to be directly proportional to 

the injection time of the tracer. 

The use of convolution for the determination of the response 

of a system to any type of input is recommended by many authors (8)(17). 

However this can only be done when the response of the system to an 

impulse is known (8). An interesting account of the way in which 

convolution integrals may be used to determine the residence time 

probability density function f(t) (defined as in Levenspiel (22)) 

of a complex flow system is given by Sinclair and McNaughton (17). 

This method is described in the following paragraphs. 

The rules for the addition and multiplication of continuous 

probability functions (26) are used. They are as follows :- 

Given two continuous random variables Z1  and Z2  with probability 

density functions ti (j) and f2(j) respectively, (i.e, the probability 

that j < Z1  < j dj = f1(j).01. then, the probability density 

function of the variable Z is given by 

+00 

f(j) 	(a).f2(j-a)da 

-oo 

	 1.6.19 

when Z = Zi  +Z2  

and when Z = Zi  or Z2  

	

f(j) = Kfi (j) + (1 -K)f2(j)   1.6.20 

where K is the probability that Z = Z and (1-K) is the probability that 

Z = Z2. The integral in equation 1.6.19 is called the Convolution 

integral, Falting integral, or a form of Duhamel's integral. 

Equation 1.6.19 is written for convenience in the following notation 

f = f1 	f2   1.6.21 

and Eqn.1.6.20 f = Kf1 	(1-K)f2    1.6.22 
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These rules are used in the case of two subsystems of R.T.P. 

(Residence Time Probability) fl(t) and f2(t) as follows. 	If the 

two subsystems are in series then the R.T.P. of the whole system 
t 

f(t) = f1  € f2  = 	f1(a).f2(t-a)da   1.6.23 
0 

When the two subsystems are in parallel :- 

f(t) = Kf1  + (1-K)f2    1.6.24 

This is because a particle passing through the system has the 

probability of passing through either of the two subsystems, K being 

the probability of its passing through the first. 

These two basic combinations are used in any system with a number 

of independent subsystems occurring in series, parallel or combination. 

Ah important contribution of Sinclair and MoNaughton (17) is the 

equation for a system with recirculation. The block diagram of this 

case is shown in Fig.l.6.7 together with an analytical diagram which 

shows how the contributions are made to the point B by the successive 

recirculation fractions. 
	00 

             

   

f2(t)  

       

      

q 

   

2

1-q B 

            

A 
	1'1(0 

      

         

         

          

Fig.1.6.7 
	

00 

q = the fraction of the total flow entering at A which is recirculated 

as shown. A part of the flow of materials that enters the system at A 

makes 1,213,... n 	 .':c passes through the forward path with R.T.P. f1  (t) 
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and 0,1,2,3 	(n-1) 	cc passes through the recycle path with 

R.T.P. f2(t). For unit quantity of material entering at the point A, 

a part (1-q) goes to the point B after the first pass. The fraction 

q is recycled of which q(l-q) reaches the point B after the 2nd pass 

etc. Then the R.T.P. for the overall system is the summation of 

the R.T.P.'s for each of the infinite number of fractions. The 

amount subscribed to the point B :- 

From the 1st pass = (1-q)f1  

From the 2nd pass = 	 €f2€f1  

From the 3rd pass = q2(1-q)f1 m(f2mf1 )m(f2mf1 ) 

From the nth pass = qn-1(1-a)f1  m(fold'i  )€(f2  €f1  )€(f2  €f„ )....(n-1) times 

the R.T.P. for the whole system fA-B  

f 	= (1-q)f1  + q(1-q)f,m(f2 mA ) + q2(1-q)fl m(f23f1  )m(f2mf.1 ) + 

Using the notation fnm  = fmfmfm 	n times 
OD 

fAB  = (1-q) 5qn  fl m(El mf2)nlE  

n=o 

It need not be pointed out that equation 1.6.25 can only be 

solved on a computer and that it takes a considerable amount of time to 

solve the convolution integrals, even if, as suggested by Sinclair et 

al. (17), one of the two paths is considered to have zero residence 

time. Furthermore the characteristics of each subsystem that contribute 

to f, (t), f2(t) etc must be known in order to determine f(t) for the 

system. Once f(t) is known the response to any input can be determined 

by the convolution 
t 

Co(t) = S Ci(a). f(t-a)da 	1.6.26 
0 

or 
,t 

Co(t) = \ C.
1
(t-a) f(t)da   1.6.27 

Jo 

Equation 1.6.27 can be obtained from material balance consideration 

as follows :m 

	 1.6.25 
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Q SYSTEM 
C. 1 

System characteristic 

Response of the 
system to an Impulse 
:/- applied at 

// 
	time t=0 

 

 

a a 

 

t1 	 t 
Fig.1.6.8 

Suppose an arbitrary input Ci(t) is fed into the system which 

produces a response Co(t). The steady volumetric flow rate is equal 

to Q. The form of the output signal will depend on the form of the 

input signal and the characteristics of the system. 

At a time t1 , the mass rate of the tracer leaving the system is 

Q.0
o
(t1 ). Some of the tracer at the outlet entered the system at 

a time interval a before t1 , when the rate of tracer entering the 

system was QCi(t1 -a). The fraction of this inlet mass contributing 

to the exit mass rate after a time interval a is therefore:- 

Wi(t1 -a). f(a)da. 

This can be viewed in another way. The input can be considered to 

be made up of a number of impulses of width Pa. 	Then the quantity 

of tracer put into the system in a time interval pa after time (t1  -a) 

is equal to QCi(ti -a)Aa. Now suppose that the response characteristic 

to a unit impulse of this particular system after a time a is equal 

to f(a). Therefore it follows that the output concentration due to 

this particular impulse (of width .a) is equal to Q.Ci(ti -a),La.f(a), 

assuming linearity. Now considering all the elementary impulses 

summed to produce the input pulse, then the output concentration Co(ti ) 

is given by the summation 
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ti  

Co(ti  ) = 	QCi(ti -a).f(a).La 
a=o 

As La 	0 Co(t1  ) = Q 	Ci(t1 -a).f(a).da. 

tl °  

For Q = 1 	Co(t1 ) = A C.(ti -a).f(a).da o 	 1.6.28 

Equation 1,6.28 is similar to equations 1.6.27 and 1.6.19. 

Thus knowing any two of the three functions Ci(t), 00(t) and f(t), 

the 3rd can be determined. Generally Ci(t) and Co(t) are known 

and f(t) is determined. 	In some cases C
o
(t) can be predicted for 

any input when the system characteristics are known, 

1.7 Summary and purpose of present study  

From the above review and discussion it is clear that theories and 

methods do exist on the interpretation of flow curves and on the des-

cription of flow systems in terms of combinations of idealised flow 

regimes. However they are in general lacking in a number of respects. 

Most of the theoretical equations are concerned with the system 

response to an ideal impulse input, or a unit step input. No 

information appears to exist on the response equations of systems 

to thick pulses. In a practical case, when the residence time in 

a system is short, or when it is not desirable to force a quantity 

of tracer into the system inlet in a short time, thus causing an 

undesirable disturbance to the flow, a thick pulse is a better alter-

native. 

The graphical methods of solution which are generally used suffer 

from the serious drawback that they tend to ignore the points con-

tributed by the frontal interface of the output pulse as is evident 

in the case of Rebhun and Argaman (4). 
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• The delay time implicit in any practical case of short activity, 

which causes a considerable amount of mathematical complexity is 

generally omitted on this account. 

Few of the theories advanced by authors are supported by actual 

experimental work. Convolutions and transfer functions are readily 

derived but their practical use is limited because of the shortage 

of appropriate computer programmes, 

The objects of this study are to formulate response equations 

corresponding to thick pulses and thus establish a technique for the 

determination of the different flow regimes, which add up to a flow 

system characteristic, on a quantitative basis. Particular attention 

is paid to such considerations as recirculation and shortcircuiting 

with delay time, as these are of particular interest to designers of 

large flow systems containing density gradients; A number of workable 

computer programmes are presented and the theory is supported by 

experimental data. 



CHAPTER II 
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TIEORY PART A 



2,1. Analysis of flow systems  

The analysis considered relates to a "flow through system". 

The word "flow" implies a continuous flow of any fluid through the 

system. 

Dooge(27) defined a "system" as a structure, a device, or a 

procedure, real or abstract, that interrelates with reference to time 

an input with its corresponding output. The input or stimulus may 

be in the form of energy, matter or information. SchematiOally the 

situation is as shown in Fig.2.1.1. 

X(t) 
	

Y(t) 

Fig.2.1.1 

where X(t) = Input as a function of time 

G(t) = System characteristics 

Y(t) = Output as a function of time. 

The relationship between Y(t) and X(t) depends on G(t) and may be 

linear or nonlinear. The reaction of the system to an input depends 

on the state of the system. This "state" may be known from past 

history or known features or may be a subject for determination. 

A system may be time dependent or time invariant depending on whether 

the response is related to the time of input or not. 

Three different problems may arise and are shown in tabular form 

below. 

9 
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( ) 

Analysis (2) 

(3) 

Type of Problem Input System Output 

Prediction 

Identification 

Identification 

Known 

Known 

Unknown 

Known 

To be determined 

Known 

To be determined 
or predicted 
Known 

Known 

The present analysis is concerned wholly with problems of the second 

type. 

A basic assumption in the deduction of the following theory is 

that the system concerned is linear. Linearity means that the system 

has the property of superposition, expressed mathematically as follows. 

If Xi  (t)---4Y1(t), then for a linear system 

aX.,(t) ---4 aY, (t) where "a" is a constant of proportionality. 

Also aX, (t) + bX2(t) 	aYi(t) + bY2(t) 

If the input X(t) is the synthesis of a number of simultaneous inputs 

XI 	X2(t) 	Xn,(t) or 

ni . 

X(t) =Xn(t) where "C" is a constant of proportionality, 
rw.1 n  

then from the principles of superposition 

Y(t) = 	CnYn(t) 

n=1 

The following additional assumptions are also made. 

(1) 	The system is assumed to be a combination of independent flow 

zones. 

(ii) The zones are interconnected in such a way that no flow changes 

its course from its designated forward path. 

(iii) The properties of the flowing fluid do not change with time and 

distance. 	In other words their is no reaction taking place in 

the reactor. 
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2.2 Transfer functions and Block Diagrams 

Bearing in mind the above assumptions the system under considera- 

tion can be compared with a servomechanism in the broader field of 

Automatic Control Systems, and the theory of such systems may be applied 

in this case. 

The input and output shown in Fig.2.1.1 can be related algebraically 

to the system characteristic G(t) in the form of a transfer function. 

The latter is defined as the ratio between the Laplace transform of 

the output and the Laplace transform of the input. 

Let 

LY(t) = Y(Z) 

LX(t) = X(S) 

L.G(t) = G(S) 

where L stands for Laplace Transform of and 

Then G(S) = 
X(S) 

11311 is the Laplace 

	 2.2.1 

or 	Y(S) = G(S).X(S)   2.2.2 

Inverting Y(S) to time domain 

Y(t) = L-11G(S).X(S)   2.2.3 

Therefore, knowing the input function X(t) and formulating the 

Transfer function G(S) with assumed Transfer Elements, Y(t) can be 

predicted. Conversely, the assumed transfer elements can be corrected 

by comparing the predicted values of Y(t) with the known values of Y(t). 

A Transfer Element is an element with a defined Transfer Function 

which possesses the characteristic of unilateral transfer of signals. 

An element which consists of several transfer elements connected one 

after the other is also a transfer element(28) 

The next important step is the construction of Block Diagrams. 

A block diagram is not a circuit diagram as in electrical engineering. 



b 

Fig.2.2.1 
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It indicates only the signal transfer, whereas a circuit diagram 

represents also the state of energy transfer. The three elements 

necessary to construct a block diagram are 

(i) a transfer element to indicate received signals and their 

transformation into other signals, 

(ii) a summing point to produce the algebraic sum of two signals, and 

(iii) a pick off point to separate a signal into two paths. 

The elements (ii) and (iii) are only necessary when there is more 

than one signal. The transfer element is indicated by a block in 

which the transfer function of the element is usually written. The 

components of a block diagram are shown in Fig.2.2.1. 

a /(;\ a 	a+ b 

\ 
a i v- 	a+b 

b 
( or 

Summing point  

a 	a 1 G(S) 

i 	I 

I-- --j 
I 

a 

Pick-off point 	Transfer  
Element 

A system with a number of transfer elements arranged in different 

combinations is difficult to analyse by ordinary means, The 

Equivalent Transformation technique of assimilating the transfer 

elements into one Block Diagram makes the analysis very much easier. 

The following algebraic rules should be observed : 

(1) 
	

The product of the transfer functions in the forward path 

(the signal path from input to output) is invariant, i.e. cannot 

be altered or replaced. 

(ii) The product of the transfer functions in each loop is invariant. 

(iii) Two neighbouring summing (or pick up) points can be interchanged. 



(iv) A summing point cannot be interchanged for a pick off point 

and vice versa. 

Using these rules, any combination of transfer elements can be 

transformed into one block diagram. Three of the most useful combina-

tions and transformations that will be used in the construction of 

models are given below: 

(i) Series Connection: 
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G1  a 1 GG2 

Before transformation 	After transformation 

Fig.2.2.2 

Referring to Fig.2.2.2, two transfer elements with transfer ' 

functions G1  and G2  are connected in series; where "a" is the input 

signal, "b" is the output from G4  and "c" is the output from the whole 

system. Then from the properties of transfer functions (see equation 

2.2.2) 

b = aGi  

As b is the input to element G2  

C = bG2  

Substituting the value of b 

c = aG1  G2  

Thus, the transfer function of the system is Gi  x G2  and the equivalent 

transformation block diagram is shown in Fig.2.2.2. In general if 

there are n transfer elements n = 11 2,....op, with transfer functions 

G1021...Gn  in series then the equivalent transfer function of the 

system is 
op 

G = II Gn n=1 
	 2.2.4 
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(ii) Parallel Connection: 

When the two elements G1  and G2  are combined in parallel as shown 

in Fig.2.2.3 and "a" is the input and "d" is the output signal of the 

system, the equivalent transfer function is obtained as follows: 

G1  +G2  

Before Transformation 	After Transformation 

Fig.2.2.3 

Let b = the output signal from the element Gi  

and c = the output signal from the element G2  

Then b = 

c = a.G2  

Since d = b + c 

by substitution d = a(G1  + G2) 

Thus if a system contains n = 1,213,...cp transfer elements in parallel, 

with transfer functions GI ,G2,...Gn, then the equivalent transfer 

function of the system 00  

G = LGn  
n=1 

	 2.2.5 

(iii) Feed back system: 

"Feed back" is a most important aspect of Automatic Control. 

The problem considered here is the case of a positive feed back in 

which the signal from the feed back element is added to the primary 

input so that the input to the main element is an addition, rather 

than a difference which is so often the case with automatic regulator. 
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a 
l-G1  G2  

   

    

     

     

Before Transformation 	After Transformation 

Fig„2.2.4 

The transfer elements are arranged as shown in Fi7.2.2.4. 

Let a = The iimut signal into the system 

c = The output signal of the system 

• b = 	ut into the element G.1  

d = Output of the element 02  

Then, 

b = a + d 

c = bG1  

But c acts as an input in G2  

. 
• • d 	c,G2  = bal  G2  

.*. b = a + bGi  G2  

or b(1-G1  G2 ) = a 

orb= a 

 

1-01 G2  

on substitution 	aG1  

l-G1  G2  

Therefore the equivalent transfer function of the system is equal to 

IIG 
•••••••••••••m• 

1-G1  G2  
	 2,2.6 

If the summing point in Fig.2.2.4 were an error sensing device, 

such that b = a-d, the equivalent transfer function in that case 

would be G1 . It is necessary that the system be a closed loop in 
1+G1  G2 

order to obtain the above formula. 



2.3 Transfer functions for perfect mixing and plug flow 

56 

Q  
C 
0 

c . 1 
V 

Fig.2.3.1 

Let the element be perfectly mixed, of volume V with flow rate Q. 

IfatracerinputofconcentrationC.be  introduced into the element 

at a time t = 0, and if C
o(t) is the concentration of the tracer at 

the output end of the element at any time t, then from materials 

balance considerations 

Amount of tracer 	Amount going out 	Amount accumulated 
entering at the 	= of the element at + within the element 
instant of time t 	the instant t 

or 

or 

dC 
Q.c(t) v 0 	° 

dt 

u  dC_(t) 
Co(t) + 	. dt 

Taking the Laplace Transform of both sides 

Ci(S) 	V Co(S) + 	. s.co(s) 

and assuming that Co(t) = 0 at t = 0 

Co(S)(1 + V s) = ci(s) 
or 

Co(S) 	1 

= 1+—V  s 
1 

Therefore by definition the transfer function G(S) = V 1+—S 

Let V — = T Then G(S) = 1   2.3.2 
1+TS 

Equation 2.3.2 is analogous to that of a 1st order system in 

control theory. The term T is known as the Time Constant of the 
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system which, in this case, is the nominal detention time. Ceaglske
(28) 

stresses the importance of this time constant and points out that it 

is the only factor that determines the position of the transient 

response curves of 1st order systems. The time constant in general 

is a combination of several physical properties of the system, or in 

other words no single physical property is responsible for the type of 

response obtained. If the properties of the systems are known, the 

Time Constant can be calculated and the response curves drawn. 

As plug flow is equivalent to a time lag, the transfer function 

for a plug flow element is simply a translation function. If Q 

is the inflow rate into a plug flow element of volume V, then the 

V 
lag time is -cT = T and the corresponding transfer function of the 

element is 

Cols) 

ci(s) 
= e -TS 	 2.3.3 

  

. 

q r--94 + aq 

Consider a plug flow element of volume V. At any time t a thin 

block of material of volume OV between the planes (1) and 
	

is assumed 

to be homogeneous and of the same concentration as that of the fluid 

entering at the plane face 	. Assume that the concentration of the 

ingoing tracer at the plane (1) is q and that the concentration at the 

plane C is (q + aq). This change in concentration oq is purely 

imaginary and may be positive or negative. Then for a flow rate Q 

a mass balance for the block between planes C and (2) yields : 

C. 
1 
Q 

Q 
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q(r) x Q .(q(t) 6q(t) x 	malt)  
dt 

or OV dq(t) - 
Q dt 

Taking the Laplace Transform of both sides 

O.:1(S) = OV S q(S) , assuming q(t) = 0 at t = 0 

oq(S) 	OV 
or 	. S   2.3.4 

q(S) 

As the plug flow element is made up of an infinite number of 

such blocks, equation 2.3.4 can be written for the whole element as: 

co • E  oq(S) 	V S c--7(7) 	Q 
n=1 

	 2.3.5 

	

In the limiting case when bq 	0, equation 2.3.5 becomes 

	

fCo(S) dq(S) 	V 

iCi(S) q(S)  

or 	= V = - TS Ln 777  
Co(S) 

Co 77  = e(S) 	-TS or 	Co which is the derivation of equation 2.3.3. -7  

Consider a system composed of two elements in series as shown in 

the block diagram Fig.2.3.3. The first element is a perfect mixing 

element of time constant K1  and the second element is a plug flow 

element of lag constant K2. 

Q 

C. 1 

	it 1 	 
1+KI S  

Fig.2.3.3 

If the total volume of the system is V and the flow rate is Q, 

then let m be the fraction of the total volume occupied by the 

perfect mixing block and let p be the fraction occupied by the 

e -K2S 

C 
0 
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plug flow block, so that m + p = 1, Therefore in equation 2.3.2 

V 	V T = m 	mT, where T = 7  the nominal detention time of the system. 

Let K1  = mT representing the time constant of the perfect mixing 

element. Similarly T in equation 2.3.3 = EY- = pT = K2  for the plug 

flow element. 

Then the equivalent transfer function of the system from equation 

2,2,4 is 

or 

or 

e -K2  S 
G(S) 

-K2S e 

• • • • 2.3.6 

	

 	2.3.7 

	 2.3.8 

1+K., S 

C
o
(S) 	e-K2S 

Gi(S) 	1 + 

Co(S) = C.(S) 
1  

Co(t) = 

S 

1 + 	S 

e-K2S 

(1+K1  S) ' 

Thus the parameters that control the output function Co(t) 

are K1  and K2, Depending on the form of the input function Ci(t) 

equation 2,3,8 may be used to give the direct solution of a two 

parameter model, 

2,4. Solution of two parameter model using a thick input pulse  

By a thick input pulse is meant a pulse of rectangular shape. 

This has all the prbperties of a Gate Function, a brief description 

of which is given below 

Gilt) 

1.0 	 

-4 t 

Fig.2.4.1 
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A rectangular pulse as shown in Fig.2.4.1 is called a Gate 

Function and may be regarded as the difference of two unit step 

functions given by 

Gi(t) = U(t) - U(t 1;)   2.4.1 

where T1  is the pulse width. 

An interesting property of the Gate Function is that if any 

function which has non-zero values in the duration of the gate is 

multiplied by the gate function, the value of that function within 

the gate is unaffected
(29) 	

This property can be used to invert the 

Laplace Transform of complex input functions. 

However the gate function only is used in this study because of 

its simplicity of application both in analysis and experimentation 

compared with the unit step function, or the impulse function, or more 

complex functions, 

Ci(t) = U(t) U(t-T1 ) is used in the two parameter 

model, Taking Laplace Transforms 

1 e-ST1  
= S 

Putting this value of Ct(S) in equation 2.3.8 gives 

-ST1 	S Co(t) = L-1 	 e
0 	) x e K2  /(1+Ki  S)   2.4,3 

The right hand side of equation 2.3.11 is simplified and transformed 

as follows : 

,s(Ti i-K2) 

	

-K2 	e L 1 0  

S(1.+KiS) IS(1+KI S) 

-KS 
L
1 e

_s (T?  +K2  ) 
. L-1 e 2 -  

S S(1+K1S) 	(1+K1 S)  

-(t-K2) 	_( (t-T1 -K2 ) 

	

co  (t)= (1-e 	
/v1) 	

/K1 ' - 	€ U(t-K2)-(1-e 

t.k.3 
Thus equation (mil) becomes 

U(t-T1 -K2  ) 

ci(s) 	 2.4.2 
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Co(:) =0 	 o < t < K2  
-(t-K2)/ 

Co(t) =1-e 	 K2  <t < 	+K2 	2.4.4 
-(t-T1 -K2) 	-( t-K2  )/i 

Co(t) = e 	- e   t > T1  + K2  

This equation is illustrated graphically in Fig.2.4.2 

Colt) 

T1  +K2  

 

t 

 

Fig. 2.4.2 

Thus in the absence of any other parameters, the length of time 

between the first injection of tracer at the inlet and the first 

appearance of tracer at the outlet is equal to the lag constant K2. 

Knowing K2, the plug flow fraction p can be determined. Once p 

is known, the perfect mixing fraction can be obtained since m = 

_ e-(t-K2)/Ki  The rising limb in Fig.2.4.2 represents Co(t) = 1 

which continues up to the time (T1  + K2). This means that the rise 

continues for a time equal to the input pulse width, If T1  is small, 

the peak becomes more sharp. For T1 	0, the rising limb becomes 

a vertical line at t = K2. 

The falling limb represents the exponential decay 

Co(t) = e
-(t-Ti -K2)/Ki 	e-(t-K2)/KI  As T1  decreases, the drop 

after the peak becomes steeper. For a ,particular T1 , the rate of 

decay depends on the time constant 	which in turn is proportional 

to the degree of mixing. 

A family of curves is drawn in Fig.2.4.3 for which m = 0.6, 

p = 	T the theoretical detention time = 5 minutes and four values 

of the pulse width T1  are taken. The curves are presented as plots 
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of C/Co versus 
t
/T (or (g) where C

o is equal to the amount of tracer 

added divided by the tank volume. 

It can be seen clearly that the slope of the rising limb, 

obtained by connecting the point of first appearance of tracer to 

the apex of the curve, is inversely proportional to the width of 

the input pulse T1  and tends to flatten out as T1  increases. Also 

as the width of the input pulse increases, the tail of the curve 

gets longer, a fact which has been noted by a number of investigators. 

Therefore it is important to know the form of the input pulse, as 

a non-idealised input may result in a flattened peak and a long tail 

which may be mistaken for dead space or increased mixing. 

2.5. Four parameter model with short circuiting  

Real cases of perfect mixing in series with plug flow are rare, 

and in most practical cases there is a fraction of the flow which is 

comparatively slow moving or fast moving with respect to the main 

bulk of the flow. In this model it is assumed that such a flow 

occurs in parallel with the main flow. This flow is referred to 

henceforth as the short circuit flow. 

In the first instance, it is assumed that the short circuit flow 

is wholly represented by a plug flow element. 

Let m = Fraction of the total volume of the system which is 

perfectly mixed. 

p = Fraction of the total volume which is plug flow in 

series with m. 

s = Fraction of the total volume occupied by the short 

circuiting flow. 

m +p+s= 1 

V = Total volume of the system 

f = Fraction of the total inflow Q that short circuits. 
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Then the time constant of the perfectly mixed element m equals 

mT 
K1 =07:71-  the lag constant of the plug flow element in the main 

flow equals K2-(1.4)  
p.T 	and the lag constant in the short circuiting 

element equals K3 = 
T.s 

 

The block diagram of this model is shown in Fig.2.5.1. 

e -K3  S 

1 	 
	 1+K1  S 
(1-f) 11   

e-K2  S 
	

B 

Fig.2.5.1 

From equations 2.3.2 and 2.3.3 the Transfer function of the perfect 

mixing element is equal to , 1 S ' the transfer function of the plug KI   

flow element is equal to e
-K2S and the transfer function of the short 

circuiting element is equal to e- K3S  . Referring to Fig.2.5.1 the 

transfer function between points C and D is equal to f e -K3S  and 

between points A and B is equal to (1-f)e K23/(1-1-K1 S). 	The diagram 

of Fig.2.5.1 can be reduced as shown in Fig.2.5.2 

Therefore the combined transfer function of the system is as 

follows: 

G(S) = f e-K3S+ (1-f)e-K2S/(14-K1S)   2.5.1 

Considering a rectangular input of width T1  and height unity:- 



	

Ci(t) = U(t) 	U(t - T1 ) and 

1 e
-ST1 

 Ci(S) = S - —7

co(b) = Ci(S).G(S) 
-ST 

or 	Co(S) = 	e 	e-K3S + (1-0e-K2S/(1+KI S)] 

(Irf)e-S (Ti  +K2  ) 
o  

-K, S 	-S (T. +K, ) 	(1-f)e-K2S  

	

f e 	t e 	2  
or 	C(S) 

S(1+K1 S) 	S(1+KI S) 	2.5.2 

Inverting the Laplace Transform, 

-1
-K3S  

Co(t)  = Lfe 
- L

-1 fe-S(T1+K3) + L
_1 (1 -f)e -K2S  L-1 (1 -f)e -S(Ti+K 

S(1+KI S) 	S(1+K1S) 

or 

Co(t) = fiEU(t-K3  ) - facU(t-T1 -K3  ) + (1-f)(1-e
-(t-K2)/K1 )34U(t-K2  ) 

-(t-Ti -K2 )/K1 ) U(t-Ti  -K2  ) -(1-f)(1 - e   2.5.3 

Equation 2.5.3 may be written in terms of G where G = 
t/T in 

which case the values of Ki  K2  and K3  become 

K2  = -11- and K3  = — and 81  = T1  /T 
(1-f) 	(1-f) 

Four conditions may arise :- 

( 1)  K3 	< K2 < (A1 	+ K3 ) < ( 	+ K2  ) 
See Equation 2.5.4 

( 2)  K3  < ( + K3 ) < K2  < ( 	+ K2  ) 

(3) K2  < K3  < (Ai 	+ K2 ) < (Ai 	+ K3  ) 
See Equation 2.5.5 

( 4) K2  < ( + K2 ) < K3  < (A1 + K3  ) 

Conditions (1) and (2) arise when K3  < K2  and in this case 

equation 2.5.3 has the following form. 
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See equation 2.4.2 



66 

(i) co(e) = 0 

(ii) Co(A) = f 

0 <9  < K3  

(on whether K2  <(9„ +K3 ) or K2>(90-K3) 
(K3  <Q<K2  or K3 <8<.(91 +K3 ) depending 

(iii) Co(9) = f + (1 -f)(1 -e -(Q-K2)/Ki) 

	

	K2  <e<(ei  +K3  ) 	
2.5.4 

(9/  + K3  ) <<K2 (iiib) Co(Q) 	0 

(iv) Co(9) = (1-f)(1-e-(8--K
2  )/I1 ) 	(1,!1+2<%):!,(414.11.j.:2)) or  

(v) co(e) = (1-f) (8-(9-Q1 -K2  )/K1 -e-(8-K2)/K1)9 > (91  + K2  ) 

When K2  < K3 , the function takes the following form (conditions 

(3) and (4)) 

(i) co(9) = 0 0 < 9 < K2  

(ii) Co(9) = (1-0(1-e-(9-K2)/Kl) K2< A  <K3  or KI  < 0 < (91 +K2) 

(ilia) 0(9) = f + (1-f)(1-e-(g-K2)/K1) K.3 	< 9 < 	+ K2) 
 2.5.5 

= (iiib) co(e) 3  (1-f) ( e
- ( 	-•K2  )/}Ci ) (Q +K2  1,,,n,,,ar  

(iv) Co ( 9) = f + (1-f) (e-(9-A1 -K2  " -e-(e-K2)/K1) 

	

	(91 +K2  ) <44<(g1 +1(3  ) (or K3  < 9 < (Q. +K3  ) 

(v) 00(9) = (1-f) (e-(9-91  -K2  )4(4. - e-(9-K2  )/K„ 	
9 > (9, + K3  ) 

Fig.2.5.3 shows the form of equation 2.5.4 with the various 

functions labelled accordingly, except part (iiib) which is excluded. 

((Peak 3 

00(0) 

f  

Peak 2.11  ' / 

(v) Peak(ii 

(iii 

(1) 
Goa3 

Q„ +K2  
K3 	K2 

Fig. 2.5.3 
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Part (i) shows the time lag required for the short circuiting 

flow to reach. the outlet. This situation indicates that the short-

circuiting part of the flow traverses the system in a shorter time 

then the main flow. Part (ii) shows the tracer concentration 

corresponding to this short circuiting flow. Part (iii) of the 

curve is generated when the main bulk of the flow mixes with the 

short circuiting flow at the outlet. Part (iv) starts when the 

input of tracer is stopped and the rise is entirely due to the main 

flow. 	This rise continues up to a peak at time (G, + K2). Part (v) 

is the exponential decay part of the curve. The above curve has 

three peaks. The sharpness of the first peak depends on the relative 

velocity of the short circuit, and it merges with part (iii) of the 

curve when the relative velocity is small. The second peak corresponds 

to the end of tracer output through the bypassing channel. The third 

peak indicates that the end of the tracer pulse has reached the outlet 

by way of the mainflow. The second peak will be higher than the third 

peak if the tracer injection is continued for a comparatively long time 

depending on the amount of short circuiting. Curve No.6 in Fig.2.5.4 

is an example of such a case. 

Equation 2.5.4 including part (iiib) and excluding part (ilia) 

represents an extreme case of short circuiting when a shooting flow 

across the system occurs. The flow diagram for such a case is shown 

in Fig.2.5.5. 	If the injection time Q is short, the result is a 

discontinuous two part outflow curve as shown. The first part 

corresponds to the short circuit and the second part to the main 

flow. The time of occurrence of each change is labelled on the 

abscissa. Such a curve is easier to analyse than any other type as 

the shortcircuiting fraction is readily deduced. This will become 

clear in the analysis of experimental curves in Chapter 4. 



K2 	K3 91  +K2  
Qi +K3 

Fig.2.5.6 

'(iv) 

(v) 

K2 	Q./  +K2  K3  Qi  +K3_ 	 

Fig.2.5.7 
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K3  91  +K3  Kg 9+K2 

Fig.2.5.5 

Equation 2.5.5 applies to the case of shortcircuiting in which the 

shortclrcuiting fraction is slow moving compared to the main flow. 

This nay be regarded as a stagnant zone. Two types of curves result 

corresponding to conditions (3) and (4). 

When K2  < K3  < (9i  + K2) < ( + K3 ) a curve of the type shown 

in Fig.2.5.6 is generated. This curve has only one peak which occurs 

at time (Pi  + K2) and is disproportionately tall. This happens when 

the negative step of the rectangular input pulse arrives at the 

outlet by way of the main flow, during the time when the shortcircuited 

pulse is passing through. The various parts of the curve are labelled 

and correspond to equation 2.5.5 excluding (iiib). Curve No.4 in 
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Fig.2.5.4 is a computer generated curve of this type with K2  = 0.375, 

K3  = 0,5, Q. = 0,2 and K1 = 0,75, 	It should be noted that for a very 

narrow input pulse, the peak becomes tall and slender, a result which 

might be misinterpreted as a high plug flow condition. 

When K2  < (Q1  + K2) < K3  < (Q1  + K3 ), the outflow curve takes 

the form of Fig.2.5.7. This curve has a second peak on the tail 

part of the main curve. If the stagnant region releases its contents 

after a long delay and is itself a plug flow region then a sudden rise 

it the tail occurs as illustrated in Fig.2.5.7 at 9 = K3. The height 

of this second peak depends on f and K3 . The greater the value of f 

and the nearer the value of K3  to (91  + K2), the higher will be the 

peak. Computer generated curve No.2 in Fig.2.5.4 with f = 10%, 

= 0.66, K2  = 0.33 and 91  = 0.2 shows the second peak to be only 

slightly lower than the main peak. Curve No.3 in the same figure 

with f = 15%, K3  = 0.667, 	= 0.7, 	+ K2  = 0.55 and 91  = 0.2 is 

an example of a large peak generated by the shortcircuiting flow, 

at the expense of the main peak due to the major flow. The distinguish-

ing feature between the two peaks is that the one due to the main flow 

has a smooth rise and slow decay, while the one resulting from the short 

circuiting flow has a sharp rise and a sharp fall. The two peaks 

become indistinguishable when the difference between K3  and (91 	K2) 

becomes very small or smaller than the sampling interval. This is 

illustrated by curves No.4 and 5 in Fig.2.5.4. It is important to 

be able to distinguish the position of the second peak in order to 

select an initial value of K3  in the optimisation analysis which will 

be described later. 
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14-K4S) 
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2,6. Five parameter short circuiting model  

In the previous model, the assumption of plug flow in the short-

circuiting element has given rise to sharp peaks or humps caused by 

such shortcircuiting. However, in practice the sudden increases and 

decreases in the output curve may not be as sharp and abrupt as the 

above model indicates. A better approximation to reality would be 

to assume a shortcircuiting path with plug flow and perfect mixing 

in series. The block diagram for such a model is shown in Fig.2.6.1. 

The equivalent block diagram is shown in Fig.2,6.2. 

Fig.2„6„2 

e
-K3S 

+(l-f)e-K2S 
l+K4S 	1+K1  S 

The transfer function for the short circuiting path is 

-K2S 

	

G2(S) - f'e-K3S 	and for the main path is Gl(S) 	(1-f)e  

	

1 + K4S 	 14-KI S 

where K1  and K2  are the time constant and the lag constant respectively 

for the main zone. K4  and K3  are respectively the time constant and 

the lag constant for the short circuiting zone, f is the fraction 

of the total flow that passes through the short circuiting path as 

before. The combined transfer function for the system is 



G(S) = G1  (S)+ G2(S) 

	

or S 	e-K2S 
G(S) = fe 	+ (1-f) 

	

1+K4S 	1+KI S 
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	 2.6.1 

For a rectangular input of unit height and width T1 , the Laplace 

transformed input to the system is 

Ci(S) - 1 e-ST 

If Co(t) is the output function, 

Then 	Co(S) = Ci(S).G(S) 

or 

Co(S) 
e
-STS  -K3S 

e
-K2S 

)[1.e1+K40 + (1-f) 7777] 	 2.6.2 

or 
- f e  K3S  

Co(S) 771777) 
-(T1  +K3)  

f e 	1  	(1-f)e- K2S  (1-f) o-S(tI -1-K2 ) 
S(1 + KO) 	S(1+KI S) 	S(1 + KI S) 

Inversing the transform 

m  Co(t) = f x (1 -e -(t -K3)/K4) € U(t -K3) ..f(i_e-(t-Ti-K3)/K4)  

U(t 	T1  - K3 ) + (1 -f)(1 - e -(t -K2)/K1 ) H U(t -K2) 

-(1-f) (1 - e-(t-T1  -K2 )/II)  m U(t-T1  -K2  ) 	 2.6.3 

Equation 2.6.3 is made dimensionless by replacing t by 9 

and T1  by QI  where 9 = T. and GI  = T1/T. As in the four parameter 

model described in section 2.5 two conditions may arise 

(1) 	K2  > K.3  

( 2) 	K3  > K2  

(1) Equation 2.6.3 may be written as follows 

(i) co(9) = o 

(ii) co(g)  = f(1 	e-(Q-K3)/K4) 

-(Q-K3 )/K4)  Co(G) = f(1 - e 

when 0 < 9 < K3  

when ( K3  < 9 < K2  or 
( K3  < 9 < (QI +K3) 

(1-f) (1-e-(0-K2 )/K1  ) 

when K2  < G < (Qi  + K3) 
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(iiib) Co(9) = f(e-(9-91-K3)/K4.e-(9-K3)/K4) when (01 +K3 ) < 9 < K2 

(iv) Co(G) = f(e (- Q-91  -K3  )/K4  e-(Q-K3  )/K, 
4) + (1-f)(1-e-(2))...2.6.4 

when (91 +K3) < 9 <(Qi  +K2  ) 

or K2  < 9  < (91+K2) 
1_4) 	e-(9-K2  )/K1  (v) Co(G) = f(e--(Q-(;1 	)/Kit 

KI# 	 114 
when 9 > (91  + K2) 

(2) Similarly when K3  > K2  equation 2.6.3 can be written as follows: 

(i) Co(9) = 0 	 when 0 < 9 < K2  

(ii) Co(9) = (1-f)(1-e-(Q-K2)/K1) when K2  < 9 < K3  

or K2  < 9 < (91  + K2) 

(ilia) Co(9) = (1-f)(1-e-(Q-K2)/K1 ) + f(1-e-(Q-K3)/K4) 

when K3  < 9 < (91 +K2) 
-(9-91 -K2)/K1 _ -(9-K&M,I)  (iiib) Co(9) = (1-f)(e 

when (91  +K2) < 9 < K3  

(iv) Co(A) (i_i.)(e-(9-91 -K2) 8-('4(2)) 	 )/K4  
Ki 

when (A/  +K2 ) < A <(A1  +K3  ) 

or K3  < 9 < (Ai  +K3  ) 

(v) Co(A) = (1-f ) 	"'K2  e-(2:ja.) 	f(e-(8-91 -K3  )/1(4_e-(Q-K3  )/K4  

when 9 > (91  + K2) 

Equation 2.6.4 excluding part (iiib) produces a curve as shown 

in Fig.2.6.3. Different parts of the curve are labelled according to 

equation 2.64. 
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(iii 
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N (V) 
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(v) 

(1) 

Curve No.4 in Fig.2.6.4 is a computer generated curve where the 

shortcircuiting fraction is 20% of the total flow and occupies 10% of 

the total volume. Of this shortcircuiting volume, 70% is plug flow 

and 30% is perfect mixing. In the main path of the flow 60% of the 

volume is occupied by perfect mixing and 30% by plug flow. The 

overall constants are K1  = 0.75, K2  = 0.375, K3  = 0.35, K4  = 0.15, 

f = 0.20 and gi  = 0,1. 

Equation 2.6.4 excluding part (ilia) gives rise to a curve as 

shown in Fig.2.6.5. The curve is correspondingly labelled and has 

two peaks, the first peak being due to the short circuit. 
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K3 	ai  +K3 
	

K2  81 +K2 	 9 

Fig,2.6.5. 

Figure 2.6.3 may be compared with Fig,2,5,3 and it will be 

seen that the present model produces a gradual rather than a step 

change from phase (i) through phase (ii) and from phase (iiia) 

through phase (iv). Fig.2.6.3 might be confused with Fig.2.5.6 

because of similarity of shape, but closer examination reveals the 

fundamental difference. 	In Fig.2.6.3 the curves of part (ii) and 

(iiia) are different, whereas in Fig.2.5.6 part (iiia) is a continua-

tion of the initial exponential rise of part (ii) with a step addition 

equal to f. 	In the limiting case, in which the perfect mixing 

constant K4  vanishes, this model becomes identical with the previous 

four parameter model of Fig.2.5.6. The selection of either model is 
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a matter of judgment and either will lead to results which are equal 

within tolerahle limits. 

The conditions which give rise to the curve of Fig.2.6.5 are 

easy to distinguish. It has two peaks of gradual rise and gradual 

fall. The rise and fall of the shortcircuiting peak is illustrated 

by the family of computer generated curves presented in Fig.2.6.6. 

The steepness of the rise and fall depends on the time constant K4  

of the short circuiting flow. Also if the short circuit volume is 

held constant and K4  is increased, the tracer arrives at the system 

outlet in a shorter time. These points are illustrated by curves 

1 	4 of Fig.2.6.6. 

Equation 2.6.5 is valid when there is a stagnant zone (i.e. when 

K3  > K2). 	When K2  < (101  + K2) < K3  < (Q1 	K3), a curve of the 

type shown by curve No.1 in Fig.2.6.4 is obtained, which is characterised 

by a late rise or peak in the tail of the main flow curve. Again the 

steepness of the rise and fall depends on the time constant K4  of the 

short circuiting part of the model. As K4  decreases, the curve 

approaches the pattern of Fig.2.5.7. 	Curve No.1 in Fig.2.6.4 is 

a typical case often seen in experimental results. As K3  decreases, 

the second peak approaches the first one as illustrated by curve No.2 

in the same figure. Curve No.3 results when K2 < K3  < 	K2) < (Q + K3  

in which case the second peak follows closely on the first. Fig.2.6.3 

and No.3 of Fig.2.6.4 are very difficult to distinguish from Fig.2.5.6 

in cases where K3  is very nearly equal in value to (Q1  + K2). The 

decision as to whether to use a four parameter model or a five parameter 

model should be based on the way in which the peak falls off. If this 

is gradual or the peak seems to be flat, a five parameter model is more 

appropriate. 
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2.7 Recirculation models  

The mathematical solution of models containing a recirculation 

element is difficult and only those cases in which the transfer 

function of the recirculation element is taken as unity appear in 

the literature. Takamatsu et al.(30) attempted to fit a model 

consisting of a plug flow main path combined with a plug flow recircu- 

lation path, to experimental results obtained on a model sedimentation 

tank with induced surface recirculation. They were successful in 

matching the peaks, but omitted all other parts of the flow curve, 

so that it is clear that such a model is not completely satisfactory. 

The model presented here consists of a main flow path consisting 

of perfect mixing and plug flow in series, combined with a plug flow 

recirculation path. The block diagram of this model is shown in Fig.2.7.1. 
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Let Q be the inflow rate, and Q' the quantity recirculated as 

shown in Fig.2,7.2. Then (Q + Q') is the quantity flowing through 

Q'  the main path. Let f 	Then the flow through the main path 
Q 
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= Q(1 + f) and the recirculated flow = Qf. Therefore 
(l+  
--5-7 of the 

flow which comes to the point B is recirculated. 

Let the fraction of the total volume occupied by the perfect 

mixing*  plug flow, and recirculation elements be m,p, and r respectively, 

such that m + p + r = 1. It should be noted that the volume occupied 

by the main flow is less than unity and that the flow rate through 

this smaller volume is greater than Q. Thus the residence time of 

the main flow fraction decreases with increasing recirculation. 

Let K1  = 1714 K2  = l+f
-1- and K3  = 7  be the time constants of the 

perfect mixing, plug flow and recirculation elements respectively. 

Then the transfer function of the forward path 
-K2S f G1  (S) = 2-- and that of the recirculation path G2(S) 1+KiS 	

l+f e-K3S 

Then the equivalent transfer function from points A to B from 

equation 2.2.4 is 

e-K2S/(1+KS)  
G
AB
(S) =

f 	e
-S(K2+K3)   2.7.1. ( 

1  1.+f" 1+K1 S 

But 	G
AC
(S) = 

1+f G(S)AB   2.7.2. 

1 Therefore GAC(S) = (.5777) 

 

e 
-K2S/(1,_'Kis) 

-S(K,
4 
 +K3) 

f 
l+f 	1,+KI  S 	/ 

	 2,7.3. 

 

Equation 2.7.3 cannot be easily inverted to the time domain. 

One method of solution makes use of convolution integrals but this 

is too complex when a rectangular input is used. 

Equation 2.7.3 may be simplified by expanding the denominator 

using MacLaurin's series as follows: 

1 	e S 	 e
-S (K2  +K3 ) -1 

G(S) = ( 
-1+f"*(1+KI S)• 11 l+f • (1 + KI S) I 

or 
G(S ) = 

-K2S 
(1 4. f   „ 

e-S(K2+K3)\ 

1.+f • ‘1+KI S I 	l+f • (1 + KI S) / 	 2.7.4. 



f 	e (  K2  +K3  
assuming 114.f 	(1 + K1  S) 

< 1 and truncating the series after 
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the first two terms considering all other terms to be negligibly 

small. 

Let C1(A) and 00(Q) be the concentration of the input and 

output pulse with respect to the normalised time G. Then for a 

rectangular input of unit height and width 91  

1 e
-SQP1 

Ci(S) - 

Therefore Co(S) = Ci(S) x G(S) 

or Co(S) = 
-SG e 	1  1(2....)le-K2S 	f

e-S(2K2 +K3 )  
S 	• I  \ l+f \1+Ki  S 	l+f • (1 + Ki  S)2  / 

or Co(S) 
(l+f) S (1+K, S) 	S(1+K„ S) 

1 e-K2S  e
-S (Qi  +K2  ) 	f 	e-S (2K2  

l+f 	S (1+Ki  S )2  

+K3  ) 	f e-S (GI +2K2 +K3 ) 

l+f S (1+Ki  S)2  

	 2.7.5 
Inverting the Laplace transform, 

Co(t) = 1 [ (1_e-(9-K2  )/K1  )m  u(Q_K2) - (1_e-(A-01  -K2  )/Ki  ) U(9-Q1  -K2) 

l+f 

1_ ( f ) 	_ (14_ 9-2K -K3)  e-(9-2K2 -K3,-, I'm U(A-24-K3) 
l+f 	1 	4 	1 

1 

f 	1Q  -"g 2K2  -K3  , -  (9-G„ -K1
2K2  -K3   )1 (l+f.....^.) il 	(11 i-  "' 	) e 	( 3( u(e-9-2K2 -K3 ) 1 

K1  
J 
	 2.7.6 

Two situations may arise in solving equation 2.7.6. 

(1) K2  < (A1  + K2  ) < ( 2K2  + K3) < 	+ 2K2  + K3  ) 

(2) K2  < ( 2K2  + K3 ) < ( 	+ K2  ) < (41  + 2K2  + K3  ) 

When condition (1) applies equation 2.7.6. becomes 

S 	S 

(i) Co(9) = 0 	 when 0 < 9 < K2  

(ii) Co(A) = (-1-.)(1 - e-(Q-.K2)/KI ) 
l+f 

1 	-(8-91  -K2  )/K, -e-(9-K2 	. (iii) Co(9) = 	 (77)(e 	2 M ) when (91+K2) <p<A2K2 

when K2 < G < 	+ K2) 

+ K3  ) 



9-21c-K3\ -0-20e1(3)/Kil] )e _ 2K -K 3.  
1 

ttf -(e-161 -K2) -(p-K2) 
(iv) co(e) (lit)ce Ki 	-e 

when ( 2K2  +K3 ) <0‹ (Ai  +2K2  +K3  ) 

(v) 	Co(Q) = 1  ( 
'1+f" 

-(Q-g1 -K2) 	-(19-K2  ) 
[e 	K 	-e 	 2.7.7 

{ (1+8-8-2K2-K3  ) e-(9-A1  - 2K2  -K3   ) (  8-2K-K3   );(8+2X2'-IC 
l+f 	Ki 

when A > (Qi  +21C2+K3) 

For condition (2), the equation is identical to equation 2.7.8 except 

for the following variations. 

(ii) The limits of part (ii) are K2  < G 

-(g-K2" 

< (24 

- (1 

+ K3) 
v 	4A-2K2-K3) 

I 2.11= 3)e + (iii) 00(0) = 4711 [1 	e + El  

when (2K2+K3) <0< (01 +K2 ) 

(iv) The limits of part (iv) are (Qi+K2) < 9 < (01 +2K2 4-K 3 ) 	 2.7.8 

Equation 2.7.7 gives rise to curves such as that of Fig.2.7.3. 

This particular curve was generated by assuming K1  = 0.545, K2  = 0.309, 

K3 = 0.6, f = 0.1 and Al  = 0.1. AB in the figure represents part (ii) 

of the equation. The peak B is reached after a time (GI  + K2), K2 

being the time of first appearance of the tracer at the outlet. BC 

represents part (III) of the equation which is in the form of an 

exponential decay. C is the point when the recirculated tracer 

begins to appear at the outlet after a time (2K2  + K3). From C 

for a time equal to Gi, the curve takes the form of part (iv) and 

thereafter is represented by a further exponential decay, part (v). 

It can be seen that when the value of K3  is small, the point C 

will be difficult to locate. One method of determining this point 

is to draw an exponential decay curve from the point B using constants 

Ki, K2  and f determined from a best fit of the rising limb AB. The 

value of K2 is given by the position of the point A, and it remains 
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to select values of K1  and f in equation 2.7.8 part (ii) such that 

it fits the curve AB. As shown by the dotted line on Fig.2.7.3, 

the point C is located where the exponential from B deviates from 

the actual flow curve, and thus an estimate of the value of K3 is 

obtained. Using these initial estimates of Kt , K2, K3 and f, the 

flow curve can be fitted to equation 2.7.8 by a suitable optimisation 

technique, provided that this model is appropriate. 

Fig.2.7.4 shows three computer generated curves with different 

recirculation times K3  and constant recirculation rate f = 0.10. 

Since f is a constant, an increasing Value of K3  corresponds to an 

increase in the volume occupied by recirculation and a consequent 

decrease in the main path volume. This gives lower values of K, 

and K2. Another effect of recirculation on the flow curve which 

is evident in Fig.2.7.4 is that as K3  increases the tail of the 

curve becomes longer. 

Cases in which 191  > (K2  K3) are rare and hence equation 2.7.8 

can be neglected. 

The effect of increased recirculating flow with constant recircu- 

lation time constant (i.e. f increases but K3  remains constant) is 

illustrated in Fig.2.7.5. With increased recirculation, the second 

peak of the flow curve becomes more and more prominent until the 

effect becomes similar to that of shortcircuiting. 

The question arises as to how to distinguish a recirculation peak 

from a shortcircuiting peak. This problem may be tackled by examining 

the curve closely bearing in mind the following points. 

(a) If the distance between the first and second peaks of the curve 

is less than the value of K2, then the second peak is invariably 

due to short circuiting. 

(b) If the second peak of the curve has a sharp rise and fall as 
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shown in Fig.2.5.4 then it can only be caused by a short circuit. 

(c) A gradual rise and gradual fall in the second peak as illustrated 

by curve No.1 in Fig.2.6.4 may be due to shortcircuiting or 

recirculation. 

In order to determine which model is the more appropriate it is 

necessary first of all to determine the values of f, K1  and K2, by 

fitting the model equation to the rising limb of the first peak of 

the experimental curve. For the short circuiting model the equation 

of the rising limb is:- 

C0) = 0 	(17) 
-(g-K2 

(le e 	). 

The value of 1{2  in either case is fixed by the first arrival time 

of the tracer, and since for small values of f, (1}f) 	(1-f), the 

values of f, Ki and K2  obtained from a best fit of the rising limb 

will not differ by very much. The value of K3 is fixed by the time 

at which the second peak starts to rise in either case, but the 

secondary peaks are different. The shortcircuiting model produces 

higher secondary peaks than the recirculation model and the more 

appropriate choice should be made accordingly. 

From the above analysis, it can be concluded that systems with 

either short circuiting or recirculation can be quantitatively examined. 

When both shortcircuiting and recirculation are present, the analysis 

is more difficult particularly when the shortcircuit is of the slow 

flow type analogous to stagnancy. In the next section a model 

combining fast shortcircuiting with plug flow recirculation is 

dpveloped which may prove useful in more complex situations. 
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2,8 Combined shortcircuit and recirculation model  

A flow diagram showing the assumed arrangement of the flow 

zones is given in Fig.2.8.1. 

Fig.2.8.2. 

where Q is the flow rate into the system 

Q.1  = Flow which is shortcircuited 

Q2  = Flow which is recirculated 

T = nominal detention time for the whole system 

Let m, p, s and r be the fractions of the total volume occupied 

by the perfect mixing, plug flow, short circuiting and recirculation 

zones respectively. 

Let f1  = (21  and 	- 
Q. 

Then if Kt , K2, K3  and K4  be the time constants of the four 

elements, assuming as before that the main flow consists of perfect 



mixing and plug flow in series, then 

mT -  

(1 - f1  + f2  ) 

K2  - pT 

 

(1 - 	f2) 

K3  = rT 
f2  

Kit  = sT 

If normalised with respect to time, then T becomes unity in the 

above constants as before. 

The transfer functions for the main path, shortcircuit, and 

recirculation transfer elements are as follows: 

G1  (S) 

 

e
-K2  S 

 

 

1 + K1  S 

G2  (S) 

G3  (S) 

e
-KLS =  

= e-K3S  

 

A block diagram of the system is shown in Fig.2.82. For simplicity 

in the first case it is assumed that the shortcircuit takes place at 

a point A before the summing point of the recirculation element, so 

that a fraction f1  of what comes to the point A passes through the 

shortcircuiting path. Also it is assumed that the summing point C of 

the shortcircuiting element coincides with the pick off point of the 

recirculation element. Therefore the fraction of material that is 

recirculated from the point C is equal to 7- = 1-4L and the 
%7-62 

fraction that reaches the point B or the outlet of the system is 

equal to 1 - 	= 1 
l+fi 	11-4 

G(S)1  the equivalent transfer function for the system is derived 

from equations 2.2.5 and 2.2.6 as follows. 

89 



1 e form, so that Ci.(S ) = — S 

Again taking a rectangular input of width PI , in dimensionless 
--SQ„ 

90 

G(S) = fa  .G2  (S) + G1  (S)/[1 	•-• 2*-• .G1  (S ) .G3  (S)]   2.8.1 
1+f2  

Substituting the values of GI (S), G2(S) and G3(S) in equation 

2.8.1 and expanding the denominator of the second term as in 

equation 2.7.4 

G(S) = 	
v 	2 S/(1+Ki  el 	f2  e —S(2K2A-K3 )/(14/2)(1-1-K1S)21 

	 2.8.2 

Co(S) = 	.iG•0(S)14Ci(S).1 where Cc refers 
to the transfer 

1+f2  
function at' the point ip Fig.2.8.2. and. = G(S). 

0 	

Kl

(i±f2  x 	) x[ 	e 	+ 	/ 	S) 

e
-591 	-K4S 

1 e-K^S C (S) = 	1 
) 	S 	S 

+ f2 e_s(2K2-14(3)/{(1+f2 ) x (14-K., S )2  ji 

)//is 	e-K2S/s 
(1-4-K1S) 	

e-S(K24-9.. A or Co(s) = [ft  e'..K4S/S 	1 e.-S(K4+91 	 ),O(1+Kit,S) 

f2 0-6 2K2 +K3 )/S-1(1+f2  )(1+Ki  S)2/ 

- f2 e
-S(gi  +2K2  +K3 )/S'., (l+f2  ) (1+K1  S )2}]/(1+f2  )   2.8.3 

Inverting the Laplace Transform, 

Co(A) = fi /(1-1-f2 )NU(Q-K4 ) 	f1 /(14-f2)*U(8-01 -K4) 

+ (1-e-(8-K2 )/K1  )/(1+f2  )3EU(Q-K2  ) 

- (1-e-(8-81 	)/(1+12  )NU(A-A., —K2  ) 

• f2/(1-1-f2 )2  [1—(3-1-g-2K2 	-4C3  ) e—(9-2K2—K3 )/KiliEU(8-2K2 	) 
K1 

-  f2/(1+f2 )2  [1—(1- 	 e—(8 -441 —2K2—K3 )/K1 ]3iU(8-81 —2K2 	) 

	 2.8.4 
Four situations may arise 

(1) K4 < K2  < (81  + K4 ) < (81 + K2 ) < ( 2K2 + K3 ) < (81 + 2K2 + K3  ) 

(2) K4  < (81  + K4 ) < K2 < (91  + K2 ) < ( 2K2 + K3) < (81 	2K2  ÷ K3  ) 
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(3)  K2  < K4  < (91  + K2 ) < (al  + K4 ) < ( 2K2  + K3 ) < (GI  + 2K2  + K3  ) 

(4)  K2  < (01  + K2 ) < K4  < (01  + K4 ) < (2K2  + K3 ) < (01  + 2K2  + K3  ) 

has the following form:- 

(i) 	Co(8). 0 

Situations, when 0 > (K2  + K3 ) are not considered. When 

conditions (1) and (2) are applied to equation 2,8.4 the output curve 

0 ( < 0 < K:  

< 0 < K2 

( ii) 	Co  (0) = f1  /(1+f2) 	 K4  < A < 

(ilia) Co  (8)= f i  (11-f2  )+1/(1+f2  )(1-e-(Q-K2 "1  ) 

K2  or K4  < 0 < 01  +K4 ) 

1  + }(4  

K2 < 0 < (01  +K4  ) 

(iiib) Co(e) = 0 	

g 

 

(iv) 	Co(0) = 11(1+22 )(1-e"(Q-K2 )/K1 ) 	(01 +K4 ) < 0 < NI  +K2 ) or 

K2  < g < (g, +K2  ) 

Co(G) 	 e-(8-K2  )/Ki ) 	(gi +K2 ) < 0 <( 2K2 ÷K3  ) 

Co(g)  

2K2 +K3 ) <8<(91  +2K2  +K3  ) 

l+
f
f (vii) Co(g) = 1/(1+f2 )  [e-(®-A„ -K2  )/Ki -e-(Q-K2  VKI 	2   ( (8-g, -2K2  -K3   ) ) 

'1+f2 (1+(A-A, 

-K3 )/K1  - 2K -  (1 +g 	; K3  ) e-(g-2K2  •••K3  )/Ki I] 

Applying conditions 

following form 

(i) 	co(g) = 0 

(3) 

A > (g, +2K2  +K3  ) 

and (4) results in a curve of the 

0 <0 <K2  

	 2.8.5 

= 1/(1+22 )(e.,(Q-91  -K2  MI  

= 1i(1+£2 ) [e-(Q-81  

e-(8-21C2 -K3  )/Ki  

e- ( A.K2  )/Ki i  fp 	( 	2K2 --K3  ) 

(ii) co(9)  1/(1.4.f2)(1..e-(G-K2 )/K1)  

( iiia) Co(G) =077122 [(1-e-(Q-K2 )/KI )+fi]  
) 

(iiib) Co(G) = 1 	(e-(Q-91 -K2 )/K) _e-(8-K2 	) 
(1+22  ) 

Co(Q) = 	[(e,-(g-G, -K2  )/Ki -e-( 44-K2 	) 0.4.22  )  1 

(gi +K2 )<G<  (441 +K4 ) or 

K4  < < 	+ K4  ) 

K2  < g < 4  or K2  < 

K4  < 0 < (01  +K2  ) 

+K2 ) < e < K4 

(iv) 

< (01 +K2 ) 
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(v) C(0) 	[(e-(g-Q1  -K2 )/K1 -e-(a-K2  )/h, )] (81 4-K4  )< G <(2K2+K3) o 	
(1+; ) 

(vi) Same as (vi) of equation 2.8.5. 
	 2.8.6. 

(vii) Same as (vii) of equation 2.8.5. 

It can be seen that equation 2.8.5. is valid when K4  <K2  and 

equation 2.8.6, is valid when K2  < K4. 

Four curves plotted from computer data are shown in Fig.2.8.3. 

Curves (1) and (2) are cases in which K2  <K4, Curve (1) is the case 

in which (G,1 	K2) < K4  and has two peaks. The second peak is 

produced by the short circuiting flow and has a sharp rise and fall. 

As the recirculation time is low (= 0.333), the expected third hump 

is not visible and the effect of recirculation can be ascertained only 

by the technique mentioned in connection with the curve shown on 

Fig.2.7.3. Curve (2) of Fig.2.8.3 illustrates the case when K4  < 

Curve (3) is the case when K4  < K2  and the recirculation time has the 

value 0,733. It is characterised by two peaks (which cannot be 

detected unless the sampling interval is sufficiently small) and 

a hump on the tail produced by recirculation. Curve (4) arises when 

K2  and K4  are almost equal, Such a case gives rise to a disproportionately 

high peak followed by a sharp fall. 

The above model represents the case in which the inflow to the 

system is divided into two distinct parts. One of the parts bypasses 

the system directly to the outlet and consequently does not contain 

any recirculated flow. The case in which a fraction of the recirculated 

flow is also bypassed is more general and is considered below. 
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Again Q = the flow rate into the system 

Q4  = the flow which is shortcircuited 

Q2  = the flow which is recirculated 

T = the nominal detention time for the whole system. 

Lett =ft  ands =f2  

The total flow into the point 'A' in Fig.2.8.4 is equal to Q + Q2.  

Of this total flow the fraction that short circuits is equal to 

QT 	= -IL- and the fraction that goes along the main path = 
Q+Q2 	l+f2  

Q - Q1 + Q2 	1 	f2  

Q + Q2 	1 + f2  
As in the case of the previous treatment the fraction that re- 

circulates from the point 'C' is equal to -22— 	In order 
Q,1.+Q2  l+f2  

to simplify the algebra the following notation is introduced at this 

point. 

94 



95 

-
1 - ft  

Ai  
1 f2  

A2  - --- 
1+ f2  

A3  = 
1 + f2  

Let the Transfer Functions of the main path, short circuit and 

recirculation elements be G1 , G2  and G3  respectively as shown in the 

Block Diagram of Fig.2.8.5, where 

ez 
-KnS 

1+K1  S 

e
-K,,S 

and G3 	A3  e " S 

The constants Kit  K2 , K3  and K4  have the same meaning as before. 

The equivalent Transfer Function of the system from the point A to 

the point C 	G(S) 	G1  + G2  

1-G3 ( G1 +G2 ) 

Again expanding the denominator: 

G(S) 	(G1  + G2 	+ G3  (GI  +G2  )Y1.÷.±.7) 

or G(S) = (G1 1  A- G2 	G3G1  2 	G3G22 	2G3G1 G2)(1777) 

Putting in the values of G1 , G2  and G3  in Equation 2.8.7 

G(S) 	
LAI .e-K2S 	A2  e-K4S+  A3 Ai 2 e-S(2K2  +K3  ) 	 

• 
1+K1  S 	 (1.+Ki  S )2  

	 2.8.7 

	 2.8.8 
n + A3  A2  2  e-.6(  2K4 41C3  )+ 211.1 A2  A3  e- S(K4  +K3  +K,,) 

1 

(1+K1  S) 	l+f2  

With a rectangular input of width Al , 

1 e
-SA

I 
Ci(S)  = - 

-SG 
1 e I Then Co  (S) = (.7  - 	).G(s) 	 2.8.9 

Inverting the Laplace Transform in equation 2.8.9 term by term. 

G1  = Al 

G2 	A2 
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co(t) = CA, (1-9-°-1(2°.1  ) MU(Q/(2 ) - 	
-K2  )/Ki  ) 	u(p-e1  -K2  )- 

+ A2  111 U(C"-K4  ) - A2  3f U(Q 	- K4) 

+ A3  Ai  2 .1, 1 ••• (1 + P"-2K2-71(3 	 ) 
-(
0-2K K 

e 	L',1 	U (Q-2K2 -K3 ) 

(8-81 .-2K2 -1(3 ) 

e 	 3 3f u(p_gi  -2K2 -K3  ) A3  Ai  211 - (1  + 	-2K2  	) 

+ A3  A2  2  3s U (8.-2K4  -K3 ) 	A3  A2  2  3f U (14-.81  ....2K4  -4(3  ) 

(Q-K2-K3 -KL)/ 
+2.1‘i  A2  A3  {1 	e 	U -K2  -K3  -K4  ) 

- 	A2A3 	e
.(cLK.2.4(3.".K4)/7,.-Th 	 1 1\1 	U (Q-Qi  -,K2  -K3  -K4  )]x 172- 2A  

	 2.8.10 

Assuming that the pulse width GI  is less than 2K2, (K2  + K3) and 

(K3  + K4  ) , equation 2.8.10 produces eight different composite curves 

each comprisin3 eleven parts, for the conditions K2  < K4  and K2  > K 

If K2  < K4  the limits of the four curves are as follows :- 

(1) K2  

( 2) K2 

< (A1 +K,) < K4 < (8i  +K4) < (2K2  +K3 ) < (441 +2K2+K3) 

< (01 +K2+K3+K4) < (2K4+K3) < (Q1 +2K4+K3) 

< K4 .< (81 -4-K2 ) < (91 +K4) <(2K2+K3 ) <(K2+K3+K4) < 

< (2K4  +K3 ) < (9i +K2+K3+K4) < (81 +2K4+K3) 

< ( 8.1  +K2) < ( 2K2  +K3) < ( +2K2  +K3) < K4  < (GI  4-K4  ) 

< (Q1 -I-K2  +K3  +K4  ) < ( 2K4  +K3  ) < (Q1  +2K4  +K3  ) 

(3) K2  

< (K2 +K3 +K4 ) 

( 	+ 2K2  +K3  ) 

< (K2  +K3  +K4  ) 

< (K2+K3+K4) (4) K2  < (e, +K2 ) < (2K2 +1(3  ) < K4  < (91  +2K2 +1c3  ) < 	-Fic4  ) 

< +K2  +K3  +1(4  ) < ( 2K4  +K3  ) < ( +21(4 -1{3  ) 

If K2  > K4  the limits of the four curves are as follows 

K4  < (01  +K4 ) < ( 2:K4 -1(3  ) < (el  +21(4 -1-K3  ) < K2  

< (K2  +K3  +K4 ) < (Qi  +K2  +K3  +K4 ) < ( 2K2  +K3  ) 

K4 <(Al  +K4 ) < 2K4 +13 ) < K2 < (Q1 +a!, 4-13 ) 

< as for (5) 

< (go-K2 ) 

< (91 +2K2+K3) 

< (8, +K2  ) 
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( 7) K4  < (A1  +K4  ) < K2  < ( 2K4  +K3  ) < ( +K2 ) < (Q + 2K4 +K3 ) 

< as for (5) 

(8) K4 < KI < (9i  +K4  ) < ( +K2) < ( 2K4  +K3  ) < (91  + 2K4  +K3  ) 

< (K2  +K3 +K4 ) < (2K2 +K3) < ( +K2 +K3 +K4 ) < 	+Z-K2 +1C3 ) 

Equation 2.8.10 has been computed and presented on Fig.2,8.k 

as curves 1, 2, and 3 for conditions (1), (2) and (8) respectively. 

These may be compared with the curves on Fig.2.8.3. On comparison 

it can be seen that the most obvious effects of shortcircuiting part 

of the recirculated flow are to reduce the magnitude of the peaks of 

the curves. Also it is clear that peaks in the immediate vicinity 

of the major peak of a curve cannot be caused by recirculation unless 

the flow in the main path is predominantly plug flow. 

2.9. Conclusion  

In this chapter a number of models are suggested which might be 

used to study complex flow situations. In a practical case a flow 

test should be performed and the flow curve obtained for a known 

rectangular input. The output curve is then studied and a model is 

selected. The corresponding theoretical curve is fitted to the practi- 

cal curve within acceptable limits of accuracy by varying the values of 

the parameters. The best model is that which gives the best fit for 

the minimum number of parameters. This approach is referred to 

hereinafter as "the direct method". 

In the next chapter, another technique of analysis, known in 

Control Systems theory as the "Pulse Response Technique", is considered. 

Although "Pulse Response" or "Frequency Responses techniques are standard 

methods of analysis in control systems, they are seldom used in systems 

with long residence times. However, it has been found that this technique 

produces valuable information regarding the nature of such a system and 

may be used as a guide in selection of the initial values of the parameters, 

in analysis of a flow curve by the direct method, 
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CHAPTER III 

THEORY PART B 
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3.1. Frequency Response  

A well known technique used for testing the dynamic properties 

of a system in Electrical Engineering is that of frequency response. 

It involves the application of a sinusoidal pulse at the input end of 

a system under steady state conditions and the measurement of the 

steady state variation of the output response. The frequency of the 

applied input is varied over a wide range and the corresponding 

responses are recorded. From these frequency response data, it is 

possible to determine time constants, undamped natural frequencies, 

and damping ratios in the circuits under test. 

Enough information is stored in the frequency response data to 

determine the output from the circuit due to any input within the 

limits of linear operation. However according to Clements et 
(32) 

this technique is not as widely used in chemical engineering as one 

would expect considering its many advantages. 

The basic mathematical background associated with pulse spectra 

and frequency response information is given here. According to the 

well known theory of Fourier, it is possible to represent almost 

any periodic function as the summation of a series of sinusoidal waves 

of different frequencies and amplitudes(33) 	A pulse form may be 

analysed as being composed of a d.c. component (zero frequency), a 

fundamental frequency, and an infinite number of harmonics, the ampli-

tude and phase of each component depending upon the shape and 

characteristics of the pulse form(34) 
	

Any repeating function of 

time having an angular period of 2n may be represented by the Fourier 

series:- 



a 

	

Sn = 2 4. al  cos 9 + a2  cos29 + 	 an 
cos nQ 

	

+ bi  sin 9 + b2  sin29 + 	 bn 
sin nQ 

where 

9 = 2n f t = wt 
p 

f = 1/Time Period = Pulse repetition rate 

w = Angular frequency in radians/sec. 
+n 

an 	
n1 = 	f(G).cos nQ d(i) n  
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	 3.1.1. 

71 \+11 f(Q) sin ng dQ 

1 a0  = it -TE 
f(Q) dQ 

The term lao represents the d.c, component, the (a1  cos 9 + b1  sin 9) 

represents the fundamental frequency harmonic, the (a2  cos 29 + b2  sin 29) 

represents the second harmonic and so on up to the nth harmonic. 

Equation 3.1.1. can be written as:- 

Sn = o + c1  sin (19+01) 	c2 sin (2Q-42) 

	 + cn sin (nQ+(fi n) 	 3.1.2. 

where the c's are the coefficients of the Fourier series, 

-1 
a
n cn = (an

2 
 + bn

2  
) 2  and (In = tan -- b

n 

If these coefficients cn are plotted for n = 1,2,3 	etc a curve 

is obtained. The ordinates of this curve at n = 1,2,3, etc are 

known as the Pulse Frequency Spectrum, 

If the shape of a particular pulse remains the same, but the 

pulse repetition rate is decreased (see Fig,3,1.1) then more lines 

are added to the spectrum. The magnitudes of these lines compared 



with those of the previous spectrum are reduced, but the ratios of 

these magnitudes to one another remain the same. Part (i) of 

Fig.3.1.1 shows a periodic rectangular pulse of time period T, 

part (ii) shows the same rectangular pulse with a time period 2T. 

Part (iii) shows the plot of cn  versus S yr' associated with part (i), 

and part (iv) shows the increased number of spectral lines and 

reduced magnitude associated with part (ii). 
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Fig.3.1.1 

The sinusoidal nature of the cn  plot is due to the fact that 

b
n 0 for a rectangular pulse and c

n 
= an. As the pulse occurs 

less and less often, the spectrum contains more and more lines, until 

in the limiting case, the pulse occurs only once and the spectral lines 

merge with each other to form a continuous envelope curve. Any 

individual amplitude is infinitesimal, but the envelope still retains 
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the same shape as before(34) 
	

The expression which describes this 

envelope is the Fourier integral of the time function which represents 

the pulse form. This operation is known as taking the Fourier 

transform. 

The Fourier Integral is the integral of the Fourier series 

described by equation 3.1.1. 

If the pulse form is described by a function f(t), then the 

Fourier transform (hereinafter referred to as the FT) of f(t) is 

given by: 
+oo 

FT (f(t)) = J f(t)e-jwtdt = F(jw) 
`-co 

	 3.1.3 

For a single pulse, the limits of the integral are from 0 to t 

where t p  = pulse width. Therefore equation 3.1.3 becomes 

FT (f(t)) = S f(t)e-jwtdt   3.1.4 

where w = frequency in radians per second 

and j = /-1 

The Frequency Response of a system is defined as the ratio of the 

Fourier transform (FT) of the output pulse to the FT of the input pulse: 

Frequency Response -
FT outpu

t 	G(jw)   3.1.5 
FT input 

It is also known as the "Performance Function" and it should be 

noted that it is defined in a manner similar to the "Transfer Function?' 

of Chapter 2. The transfer function is expressed in terms of the 

Laplace tts11 and is in the time domain, whereas the frequency response 

is in the frequency domain and may be obtained by simply writing S = jw. 

From equation 3.1.5 it follows that:- 

FT output = FT input x G(jw) 	..... 3.1.6 

Thus if the system characteristics are known, the FT of the output 
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pulse can be predicted for any input pulse. If on the other hand 

the output pulse is known corresponding to a known input pulse, 

then the Frequency Response for the system can be determined. 

For any particular value of w, G(jw) 

(35) 
G(jw) = IGI 	L 4G 	 

can be represented as 

	 3.1.7 

The part 	refers to the magnitude or amplitude and the / 

is the angle or phase. These values of magnitude and phase angle 

are the ratios of the magnitudes and phase angles of corresponding 

input and output pulses, obtained in accordance with the rules of 

vector algebra. The magnitude of the quotient of two vectors is 

equal to the quotient of their magnitudes and the phase angle of the 

quotient of two vectors is equal to the phase angle of the vector in 

the numerator minus the phase angle of the vector in the denominator(36) 

For this reason IGI in equation 3.1.7 is known as the magnitude 

ratio or "gain" between the output and the input amplitudes:- 

G - 
Output amplitude 

Input amplitude 

Referring to Fig.3.1.2 if Gi  represents the amplitude of the input 

pulse and G
o 

that of the output pulse, then the magnitude ratio of 
G 

the frequency response of the system is given by hi 1  /u.
' 
 and 

the phase angle 4 in radians by which the output lags behind the 

input is given by 4G = OG.  OG  where 4G_ 
 represents the phase 

angle described by the input pulse from the origin and t that of 

the output pulse. In fig.3.1.2 t = O. Therefore OG  = 

which is negative because it lags behind the input. Thus if a pure 

sinusoidal input is introduced into a linear system, the magnitude 

ratio can be easily obtained from the amplitudes of the input and 

output pulses. The feasibility of this technique in cases of pure 

plug flow is illustrated by Denbigh(3)  and Krenkel(37). 
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Amplitude 

Input 

Output 

Fig.3.1.2 

3,2. System characteristics from Frequency Response Functions  

The problem is that of determinin the system characteristics 

embodied in the Frequency Response Function G(jw). 	If the output 

corresponding to a particular input is known, from these data, the 

magnitude ratio and phase angle can be determined by a data reduction 

technique which will be discussed later, In Chapter 2 transfer 

functions corresponding to various theoretical models were derived 

and from each of these transfer functions the magnitude ratio and 

phase angle can be determined directly for the particular theoretical 

model. By comparing the magnitude ratio or the phase angle obtained 

from the mathematical model which includes the various parameters 

representing the system characteristics, with the magnitude ratio 

or phase angle obtained from the experimental data, optimum values 

of the parameters can be determined. 

The manner in which the M.R. (magnitude ratio) is obtained from 

the system transfer function is illustrated by_the following simple example. 

Let the transfer function of a system be 

T.F. = 1  

1 + ST 

Writing S = jw, G(jw) - 
1 

 

 

	 3.2.1. 

 

1 jwT 

 



In this aase the numerator is simply 1. In the complex plane 

this is represented by a vector A as shown in Fig.3.2.1, having a 

magnitude of 1 and a phase angle 0 with the +ve real axis. The 

denominator is a complex number of which the real part is equal to 

1 and the imaginary part is equal to wT. It can be represented by 

the vector B the magnitude of which is (1 + w2T2)2  which makes an 

angle q with the positive real axis. From Fig.3.2.1 it can be seen 

that tan 0 = wT, so that 4 = tan-1wT. From the last section it 

follows that for this'system 

M.R. = 1/(1 	w2T2)2 

= -- 1  
tan wT 

Imaginary 
axis 
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wT 

  

Real Axis 

Fig.3.2.1 

Considering experimental results, it is comparatively easy to 

determine the M.R. from a purely sinusoidal input and sinusoidal 

output. However in practice, a purely sinusoidal input is difficult 

to generate, and is not always desirable for other reasons. Such 

a series of pulses may interfere with the steady flow condition of 

a system, and from a practical viewpoint cannot be continued for a 

long time because of possible interruptions in the normal running of 

a plant. For flow systems in which changes occur very rapidly 

a sinusoidal input cannot be used. The use of a single pulse for 

these studies is more common, as it can produce the same amount of 



information as a series of pulses and an iniout of any known pulse 

shape can be used. The time taken is shorter and the equipment 

required is less costly in the case of a single pulse. Law and 

Bailey(38) distinguish the use of a single pulse from the use of 

a train of pulses by calling the former the "Pulse Technique" and 

the latter the "Frequency Response Technique". 

If Ci(t) and C0(t) are the input and output pulse functions 

respectively and Ti and T0 are the corresponding pulse widths then 

the Frequency Response of the system from equations 3.1.4 and 3.1.5 

is:- 

108 

1 T° C (t)e-jwtdt 
J 0 	0 FT(Output pulse 

G(jw) = FT (Input pulse) = Ti 
1 C.(t)e-iwtdt 

Using the Euler relationship, 

e-ix = cos x - j sin x 

Equation 3.2.2 becomes 

	

T
o 
	To 
C0(t) cos wt dt - j ! Co(t) sin wt dt 

G(jw) = 	  

	

~T1 
	 T. 

1 o Ci(t) cos wt dt 	j )0 Ci(t) sin wt dt 

	 3.2.2 

	 3.2.3 

	

Let A = 	
Co

T 	

(t) cos wt dt 

T 

	

B = 	o  
Colt) sin wt dt 

'o  

T. 

	

C = 	S
1 
C.(t) cos wt dt and 

o 

T. 

	

D = 	Ci(t) sin wt dt 0  
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Equation 3.2.3 may be written 

A - jB 
G(jw) =   3.2.4 

C - jD 

It follows therefore from section 3.1 that the magnitude ratio and 

phase angle are given by:_ 

+ B2  1 2  
M.P. 4 02  + D2  

-1 
A.D - B.0  1 

= tan 	[ c2 	D2 j 	 3.2..5 

and 

For a particular frequency, the values of A, B, C and D can 

be obtained with the aid of a digital computer, using a technique 

known as a data reduction technique. The key to the successful use 

of this technique is the accurate evaluation of the integrals 

represented by A, B, C and D, and this in turn depends upon the 

accuracy with. which the input and output pulses are recorded. Various 

methods have been proposed in the literature (32)(38)(39)for evaluating 

these integrals. The trapezoidal approximation technique of Dreifke 

et al.() 
 which is a modification of earlier techniques has been used 

in this study and is described below. 

If the pulse to be integrated is as shown in Fig.3.2.2 

Approximation 

f(t) 

t1 	i 1+1 t
n+1 
i = n+1 
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Let f. be the ordinates of the pulse i = 1,2,3,,,,n+1 and 

considertwosuchordinatesf.andfi+1* 
 The tops of the ordinates 1  

are joined by a straight line which approximates the curve connecting 

them as shown. The interval between the two ordinates is taken as At. 

Therefore the equation of the straight line which approximates 

the curve is given by 

f(t) = fi  + [(f1i1fi)/60(t ti)   3.2.6 

where t.1  is the time at the ith ordinate. Re-arranging equation 

3.2.6 
t. 	 t. I f(t) = fi(1 	+ 	+ At 	Al-) fi+1(it - At) 	 3.2.7 

The Fourier Transform of the function f(t) considered at the ith 

interval can be evaluated from its definition as 

(f(t)) = 

Therefore from equation 3.2.7 

t. f  1+1 

	

F.T.. 	f(t) 	= 	1 

	

1 	
''ti 	i 

It can be shown (see Appendix) 

t. 
1+1 
f(t)e-jw dt 

t. 
1 

ti 	t 	
t 	,t

i f.,(1+-- - —) + 	— - --) 
"L 	At 	At 

	f. 	(t 
At 

that equation 3.2.9 	on 

e-jwtdt 

	 3.2.8 

	 3.2.9 

integration 

F.T. 

yields 

f. 
/f(t)1 	= 

wwAt
e  

f. 
1+1 

w 

-jwt 
1+1  + 1)e-iwti] 

	 3.2.10 

- 
wit 

-jwt. 
1+1 I 	e  

wAt 

ij 

wAt 

The integrals for the trapezoidal intervals can now be summed over the 

whole pulse width from t. to t
n+1 
i=n 

.°. F Tti-t 	f(t)i = 	FT.   3.2.11 
n+1 

i=1 
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For convenience equation 3.2.11 can be written as 

FT 	f ( t - i  [-i- e-iwt2  - (1 + 	iwt1  ti -t
n+1L 	j 

w wAt 	wAt 

i=n 
e-iwt. 	 iwAt 

' 	1  [ 	e 	- ( 	+ 1)+(1--11-)+-iejwAt] 

i=2 w 	wAt 	wAt 	wAt wAt 

+ f 	- iwt 
n+1* 	

n+1 [(1--1_) 	JwAt] 

wAt 
	 3.2.12 

Note that the first and last segments under the curve are 

integrated separately by Dreifke et al.(4°). Separating the real and 

imaginary parts of equation 3.2.12 it can be written as follows (see 

Appendix) 

At 

( 	
5 sin w-1. r FT ti 

-tn+1 
f(9f. = [ Atfi  112 	ilt̀ ")` cos wt/  

w 

1 	sin wAt  - 	) sin wti!, 
wAt 	wAt 

2  sin h'2 
WAt 	

\1-r 2 2 
+ At ( 7  ) x 	fi  cos wt. ---- 

2 	1=2 

4 	At 2 	1 
+ At.f {1. /84'n w-2-1 cos wtn+1+---(1 sin wAt) sin wt n+1 2k 	 n+4 At / 	wAt wAt 

w-- 2 
sin wit , r 	sin w--5 1 1  sin wAt, 	--) -1-j [Atfi  4( —7-t)sin wti  --( 	) cos wt.o. 

1... 	voLi.... 	wAt 	wAt 2 
At n sine--5. 2 7-r 

+ At( At  `) xi..." fi  (- sin wt1.) 
7 	i=2 

At sin w-- 1 /n  sin wAt)cos + Llt.f 	j 111 	x 	2
)
2 
. in urtn+1 ..... 	+--- (l -sin  

'\ At 	/ s  /.. 1,,i_ , 	wAt wAt 2 

wt n+1L 

	 3.2.13 

Equation 3.2.13 is used in the data reduction technique in this 

study and a computer programme has been written by the author in which 
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two different interval values Atl and At2  are used for the steep 

and the flat portions of the curves respectively. 

If the function f(t) above represents the output function, 

then the real part of equation 3.2.13 gives the term A of equations 

3.2.4 and 3,2,5 and the imaginary part of equation 3.2.13 gives the 

term B. 	If the function f(t) represents the input pulse, then the 

real and imaginary parts of equation 3.2.13 give the terms C and D 

respectively in equations 3.2.4 and 3.2.5. 

Using equation 3.2.5 it is now possible to compute the magnitude 

ratio M.P. and the phase angle 11) for various values of the frequency w. 

This computation is made from experimental data. From the transfer 

function of the proposed theoretical model, the magnitude ratios and 

phase angles are also computed for the same values of frequency. 

The parameters that control the theoretical transfer function are 

optimised so that the magnitude ratio and phase angle obtained from 

the theory fit those obtained from the experimental data. 

The optimisation method known also as the regression technique(38)  

consists of matching magnitude ratios and phase angles in Bode form. 

The plots of M.R. versus w and q versus w on log.log paper are 

known as Bode plots. This is a standard method of analysis(35'38140)  

and typical Bode plots are shown in Fig.3.2.3. 

(GI in 
Decibels 

4 in 
degrees 

0.1 900 

0.1 	 1.0 	10.0 

Fig.3.2.3 
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The magnitude ratio at zero frequency is known as the system 

gain. In the Bode representation, the magnitude ratio data are 

normalised before plotting by dividing all values by the system gain. 

Also in the data reduction technique, the time lag (known also as 

dead time) for the first arrival of tracer at the output should be 

removed from the output pulse test data by shifting the time origin 

to the first arrival point. 

The optimisation of model parameters can be achieved by matching 

either magnitude ratios or phase angles for the appropriate frequency 

range. Either is sufficient and in this study magnitude ratio has 

been used, because of the difficulty of determining in which quadrant 

4 lies when using a digital computer. 

3.3. Magnitude ratios and Phase angles for the Transfer functions  

of theoretical models  

A. The transfer function of the two parameter model of section 2,3 

is given by equation 2.3.6. 

G(S) 
	e-K2s 

Converting to frequency domain by writing S = jw 

G(jw) = e
-jw1(2  

1+ jwKi 

or 
G(jw) 
	cos 	j sin wK2  

1 - 	) 

Using equation 3.2.5 

M.R. — 	1  

1 + K1
2
w
212 

and 

	 3.3.1 

= 	tan 1K1    3.3.2 
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B. The transfer function of the four parameter short circuiting 

model of section 2.5 is given by equation 2.5.1. 

G(S) = fe
K3S 

+ (1-f)e
-K2S

/(1+KI S) 

or 	
G(S) = fe-K3 S  (1+KI  S) + (1-f) e-K2 S  J  /(1+KI  S) 

Converting to frequency domain 

G(jw) = [Cf(cos K3 w - j sin K3 w)(1+jK1 w)+(1-f)(cos K2w - j sin K214.1 
(1+jKI  w)] 

or 

G(jw) = Etf cos K3 w + jfKi w cos K3 w - jf sin K3w 

+ fKiwsin K3 w + (1-f) cos K2w - j(1-f) sin K2w3 /(1.1.jK1w)]  

or 

G(jw) = [[f(cos K3 w + Kl w sin K30+(l-f) cos Ke w; 

-j(f(sin K3 w - K1  w cos K3 w)+(l-f) sin K2wil /51_g_K1  01 

Using equation 3.2.5 

M.R. ={[If(cos K3 w + Kl w sin K3 w)+(1-f) cos K2wr 

+ f(sin K3w Ki w cos K3w + (1-f) ] sin K2 W112 	2 W2  ) 2  	 3.3.3 

tan-1  fqf(cos K3 w + Ki w sin K3 w)+(l-f) cos K2Wi w 

-[f(sin K3w K1 w cos K3 w)+(1-f) sin K2w)] /(1±Ei 2w2)} 

	 3.3.4 

Note that the system gain in this model is 1, which is obtained 

by putting w = 0 in equation 3.3,3. 

C. The transfer function for the five parameter short circuiting 

model of section 2.6 is given by equation 2.6.1. 

e-K3  S 	 -1c2  S 
G(S) = f. 	+ (1-f) 

1 + K,,S 	l+K1 S 

Converting to Frequency domain, 

4= 
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G( jw) 	f e- WK3 	(1-f) e- wK2  
1 + jwK4 	1 + jwK1  

or 

G( jw) - -L(Acos wK3  

 

j sin wK3 )(1+jwKI  )+(1-f)(cos K2 w-j sin K2w)(1+jwK4 )/ 

( 1+ jwK4  ) ( 1+ jwK1  ) 

 

or 

G(jw) = if(cos wK3  -j sin wK3+jwK1  cos wK3  + wK1  sin wK3 ) 

+ (1-f)(cos wK2  - j sin wK2  + jwKi. cos K2 w + wK4  sin K2 w).  
(1+ jwK1  + jwK4  - 	Kit  w2  ) 

or 

G( jw) = [-(f( cos wK3 +wK1  sin wK3  )+(1-f) ( cos wK2+wKi, sin K2  14):_‘; 

- j{f(sin wK3 -wK1  sin wK2 )+(1-f)(sin wK2 	wK4  cos K210.1] 
[(1-I1 K4 w2  ) - jt-w(Ki  +Kk  

	 3.3.5 
Defining A = f( cos wK3  + wK1  sin wK3 )+(1-1.)(cos wK2  + wKi+  sin K2w) 

B = f(sin wK3  - wK1  sin wK3 )+(1-f)(sin wK2 	wK4  cos K2  w) 

C = (1 - 	K4  W2  ) 

D = -w(Ki  +K4 ) 

Equation 3.3.5 becomes 

G( jw) 
	A - jB 

C - jD 

Using equation 3,2,5 

[A2  + B2 12  M.R. 
C2  + D2j  

= tan-1  [AD - BC12  
L C2  + D2J 

	 3.3.6 

	 3.3.7 

D. 	The transfer function for the recirculation model of section 2.7 

is given by equation 2.7.1. 

G(S) = -1  
(1+f) 

e
-K2S 

(1+Ki  S)  

{ 
-S (K2+K3  )1 

1 - (1+ff  ) e 	 1 + I1 S 

Converting to frequency domain. 



4 = tan-4 	K 

	

cos K214-K1 	K sin (K2+K 1A )w'- sin K2wil-K cos (K2+K3)] 

t1-K cos (K2+K3 )w'. 2 - K sin (K2+K3 )w 2  2 

G(jw) 
1 	(cos Ke w j sin Kew)  

= 	. - 
(1+f) 	(1+jK1 w - K cos (K2+K3 )w 	j sin (K2+K3  )w3) 

1 	r 	cos K2w j sin K2w  

(l+f) L 	K cos (K2+K3  )wli, 	j- K1 	K sin (K2+K3  )wj 

	 3.3.8 

where K - 

Therefore the Magnitude Ratio 

N.R. = 
1 c /R1 - K cos (K2+KOwl2+[-Kiw - K sin (K2+K3)142]]1   
l+f 

  

3.3.9 and 
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	 3.3.10 

Note that the gain of all the system models given above at 

zero frequency is unity. This can be used as a check on the experi- 

mental transfer function gain at zero frequency. 

3.4. System Sensitivity  

By increasing the number of parameters in a mathematical model, 

the model can be made to fit experimental data better and better. 

However a large number of parameters will cause overloading in optimisa-

tion and also the significance of important parameters in the model 

will tend to become reduced. Sensitivity analysis or the determination 

of the effect on the overall transfer function of the system by a small 

change in only one of the parameters, is useful in deciding on the 

number of parameters that should be included. 

Himmelblau et al.(8)  have defined system sensitivity as the 

change in the output variable due to a change in any one of 

the system, coefficients or in some cases system inputs. 

It enables an engineer to predict possible changes in 
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a system output quantitatively based on proposed or actual changes 

in the system parameters. 

Horowitz(41) has defined sensitivity in Laplace Transform space 

in what he terms "Conventional Form" as S
x T 
 where 

ST 
x 

= 
ZT(s) 
OWYWIM4.1, 

T(S) ///bx 
x 

	 3.4.1 

where T(S) = the transfer function of the system of which x is a 

parameter the sensitivity of which is to be determined. This is 

the inverse of Bode's original definition. 	Horowitz
(41) 

specifies 

two conditions for the use of equation 3,4.1. 

(i) The change "ax" in the parameter should be infinitesimally small. 

(ii) The parameter "x" should be independent of the other parameters 

in the system transfer function T(S). 

The usual way of writing equation 3.4.1 is as follows: 

ST = x 	IT(S) 

T(S) 	bx 

If the parameter change is finite but small then 

S
T AT(S) 
x 
= 	—• 

T(S) 	Lx 

	 3.4.2 

	 3.4.3 

Then in a given system if there is a small change in a parameter 

x from xo to xf2 and the system transfer function changes from 

To
(S) to Tf(S), by using equation 3.4.3 

 and an Argand diagram S
T 

can be determined. 

In the following paragraphs sensitivity analysis is applied to 

three of the models of Chapter 2. 

(i) Consider the four parameter short circuiting model of section 2,5 

in which G1  (S) = 1 	G2(S) = e-K23  and G3(S) = e-K35  and the 
1+K1 S 

transfer function T = fG3  + (1-f)G.I .G2. The S within parenthesis 



where 
L° )Gi °G2  

fG3  

To 	fG3  + (1-f)G1  °.G2  

Tf 	fG3  + (1-f)G1  f  .G2  

fG3  	+ 1 
(I-f)G1.G, 

- 	 f 	fG3  
(1.4)G1  002  ' G1 0 

is omitted for simplicity. 

Consider a small change in the parameter 

Let the subscripts (or superscripts) o and f denote the 

values before and after the change. For example G1°  changes to G„ f 

when K1  changes by a small increment to K1 
f, and. the initial and. 

final values of the transfer function are To and Tf respectively, 

Then To 
= f03  + (1 -f)G1

oG2  

Tf = fG3 -I- (1-f )G1 fG2 

= (G, f 	0) 

AT 	= T
f 
- T

o = (1-f) (G1  f  - G1  °)G2  

	

= 	(1 -f)iai  •G2 

From equation 3.4.3 

ST  

	

T or SG1 = AG 	° 

AT 
/ 
/Gi  
T o 	(1-f)GGI .G2.G4 	(1-1)Gi°02  

To„ Lai 	To 

0 
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(1- f)G1  °.G2  
fG3  + (1-f )C71  °G2  

1 	 3.4.1+ 
1 + 	fG3  

(1-f )G1  °G2  

The ratio To/T is obtained as follows : 
f 

	 3.4.5 

Note that Lo 01  and G1  are all functions of S(jw). Hence 

S
T and To/Tf 

are also functions of S(jw). By plotting the locus 
GI 	f 
of Lo(jw) and 

G  --1--- (jw) for different values of w on an Argand o 
01 
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diagram, SG  and To/Tf can be determined. 

The method is illustratedl?y an example. 

Let the values of K1 , K2, K3  and f in the above system be 

0.778, 0.278, 0,5 and 0,1 respectively and let the time constant ICI  

be changed from 0,778 to 0,90. Then the values of the parameters 

GI , G2  and G3  are 

o Gi  

G 2 

- 

= 

1 f and GI  1 

1+0.7785 

e-0.278S 

1+0.90S 

G3  = e °*5S 
 

Then Lo 
= 

= 29: [cos (0.222w) + 0,778w sin (0.2224 

	

+ j x0D.778 w cos (0.222w) - sin (0.222w)3   3.4.6 

and 

= 1 + 0.778 wj 	1 + 0,7002w2  - 0,122 wj    3.4.7 
GI° 
	

1 + 0.9 wj 	1 + 0.81 mr2  

f 
The loci of Lo(jw) and p73-] are plotted in Fig.3.4.1 from 

iw 
equations 3.4.6 and 3.4.7. 

Considering the sensitivity of the system at w = 1 and referring 

to the figure, OM = Lo 
where M is the point on the locus of Lo(jw) 

at w = 1 and 0 is the origin of the complex plane. The point N 

corresponds to 1,0 on the real axis, If P is the point on the locus 

G 
f/ of I G1 0  corresponding to a frequency w = 1 then the vector MN 

= OM + ON = Lo + 1 and the vector MP = OM + OP = Lo + o  -1-- • From 
G1 	T 

the equations 3.4.4 and 3.4.5 and Fig.3.4.1 SG = 1.175 and T2- = 1.06. 
l 	f 

These two values show that the system is sensitive to changes in K1  

When a system is completely insensitive the values obtained for SG 

tend towards 0. 



(1 -f)G G L = 	= 
0 

0,9 e 
-S(•  278-0•  5) 

fG3 	0.1 1 + 0.778S 
	 3.4.9. 
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It can be seen from Fig.3.4.1 that the locus of Lo(jw) droops 

downwards for values of w greater than 3 approx., S
T 

< 1 and 

the sensitivity to change in G1  decreases rapidly. 

The effective frequency bandwidth should be determined by 

a stability analysis before a test for sensitivity is made, but 

since stability is not a problem in this type of model, this aspect 

of the problem is ignored in this analysis. 

For comparison the sensitivity obtained from equation 3.4.2 is 

T _ 9.1..  6T 	G,G2(1-f) 	1  
SGT - To 

x 
 6Gi  - fG3+( 1-f )G1  G2  - 	fG 1 + -1--- 

(1-f)G1  G2  

The result is the same as that obtained from equation 3.4.4. 

However the value given for ST by the above when w = 0 is (1-f) = 0,9 

whereas the result obtained from Fig.3.4.1 is SG w=o = 1.12 and T 
= 1. This discrepancy is due to the fact that the change in Tf  

the value of G1  is not infinitesimal. 

Consider now the sensitivity of T for the same model to a small 

change in G3. Let the value of K3  change from 0.5 to 0.6. Then 

To = fG3
o 
+ (1 -f)G4G6 

Tf 	3- 	+ (1-f)G1  G2 

AT = Tf - To = f(G3
f 
- G3°) = fti.G3  

From equation 3.4.3 

TfG 	fG3°  	1  S = = G3 	To 	fG3° 	 31-f)Gi  G2  + (1-f )ai 	+ 	-art 0 JA73  

	 3.4.8 
1 + L  

where Lo in this case is equal to 

1 



and T
o 	1 + Lo 

T
f 	Lo+  633;: 

e-K3  fS 

G3 
f
/G3° = 

e-K3 S 
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3.4.10 

e -S(K3f  -K3°) 	-0.1wj = e   3.4.11 

	

The loci of 	Lo(N)  and [21--] 	are plotted in Fig.3.4.2. 
G3°  (jw) 

The sensitivity in this case is found to vary widely with the 

frequency w. At low values of w the sensitivity is quite small, 

e.g. 

	

w = 1 	SG3 = 0,16 

	

= 0 	SG3 = 0.11 

But at high frequencies the system becomes more sensitive to 

variations in K3, e.g. 

T 

	

w = 3 	S
G3 _0.37 

w = 5 G3 =0,77 

However the value of To/Tf does not vary very much, its value being 

approximately 1.0. 

(ii) Sensitivity analysis is now applied to the five parameter short 

circuiting model of Chapter 2, section 2.6, 	and the method is 

illustrated with an example in which the value of Ki  and K2  and f 

are numerically equal to those in the four parameter model above. 

The values of the parameters in this case are:- 

= 0.778, K2  = 0.278, K3  = 0.278, K4  = 0.222 and f = 0.1. 

At first this model will be analysed to see if a change inKI , 

(again from 0.778 to 0.9) changes the system sensitivity differently 

from the four parameter model. In this case, G1  

G3  = e-K3S and G4  = 1 
14-K4S 

The initial value of the transfer function 

-K2S G2 

To = fG3G4  + (1-f)G1  °.G2  
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where G1 ° is the value of the parameter G1  for K1  = 0.778 and G1  

is the new parameter value f)r K1  = 0.90. 

Therefore Tf = fG3G 	(1 -f)Gi f.G2. 

Using equation 3.4.3 and procedures similar to those used in the 

previous model 

1 = 	where L 	- 

+ Lo 

fG34  G 	fe -6(K3mg2)(1+KIIDS) 

	 3.4.12 

	 3.4.13 

	 3.4.14 

	 3.4.15 

SG, 
°  1+Lo 

and 

To 	1 

(1 -f)G1
o
G2 	(1 -f)(1-1-K4S) 

K3, K,, and f in equation 3.4.12 

1 1 	0.556 w 

Tf G4 +L ''""" 
0 	0 

Gi  

	

Putting the values of K1 	K2, 

_ 1 	1+0.173 w2  Lo 

	

2 	
+ 3. 

	1+0.049284 w
2 - 	1+0.049284 w2  

and 
G 	1+j(0.778w) - 
G1 o 
	

1+3(0.9 

By plotting Lo(jw) and 

ST 	= 1.14 and To 
	= 1,06 
T
f w=1 

[211] 

w) 

as shown in Fig.3.4.3 the values 
(jw) 

obtained. 	When these are compared 

T 

are 
Gl°  

with the values 	SG, w=1 = 1,175 and 7-o 	= 1.06, of the four 
f w=1 

parameter model it is seen that the inclusion of an additional 

parameter does not affect the sensitivity of the model to changes of 

the parameter Gl . 

Now considering the effect on the sensitivity of the model caused 

by the change in G3  made by increasing K3  from 0.278 to 0.30. The 

sensitivity of the system is given by 

1 	where L 	(1-f)G4 
S
G3 
T  = 

1+Lo 	
o = fG3 o.G4 

To 	Lo + 1 

Tf f G3/G3o + 1 

and 
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Substituting the values for K1 , K2, K30, K4  and f in the 

expressions for Lo and -L- ' G3 0   

and 

L o 

G3
0  

(
1+0 2225 = 9 911+0.173 w21 

) 910.556 j  
1+0.7788 

e-j(0.022 

- 
'1+0.605 w2  

= cos (0.022 w) 

1+0.605w2  

- j sin (0.022 w) 

f 
PlottingtheT lociofLOQOarla."" w) as shown in Fig.3.4.4 values o. 

G3  (j 
of SG and —

o  for various values of w are determined. As in the 3 Tf 
four parameter system, this model is found to be less sensitive at 

low frequencies:- 

w = 1 	SG3 = 0.158 

w = 5 	SG3 = 0.403 

whereas at w = 10 	SG = 0.575 3  

On comparison with the four parameter model it can be seen 

that the sensitivity of this system to changes in K3  is appreciably 

decreased by the introduction of the parameter K4, e.g. 

w = 5 	S, = 0.77 	4 parameter case 

w = 5 	SO  = 0.403 5 parameter case 
3 

However at low frequencies, the results are very similar 

(iii) 	In the case of recirculation models which are analogous 

to electrical systems with feedback, the effect of all such feedbacks 

is to reduce the sensitivity of the system to changes in its parameters(.8 /41) 

Applying this analysis to the recirculation model of Chapter 2.7 

in which the initial values of 1cl  , K2, K3  and f are 0.778, 0.278, 0.5, 

and 0.1 respectively 

T 	2._  = 	1 	
°G  

o 
 

(l+f) 	1 - (1.7?).G,°G2G33 
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where Gi = 1 , 02  = 	G3  = e-K3 S and  o G1  is the initial 
1+Ki  S 

value corresponding to K1  = Ki  = 0.778. If G1 f  is the value of 

when K1  = K1  = 0.90 then 

T 	1 
f = (l+f) 

f 

 

fl- 	f.G2.G31 
(l+f) 

AT = Aa2  AG, /, 
t (1-BG1  f  .G2 ,G3 )(3-'43Gi  0.02  .03  )'} 

where AT = (Tf  - T0), AG1  = G., f  - G1  °I  A = —1 and B = 
(1+1) 

Then using equation 3.4.3 
 

° T 	I  /G., f 	= GI  °/a, f  SG., - 

	

G  
 3.4.16 

Gi  o/GI  f - BGio  G2  G$ 	G1  o/al  f +Lo  

f 	e-S(K2+K3) where Lo = - 13G1  o„G2 .03  = - 	. 3.4.17 
(1+f) 	(1 + K, °S) 

	 3.4.18 

Putting the values of the constants in equations (3.4.17) and (3.4.18) 

1 L°(jw) - 11 coos (0.778w) - 0.778 w sin (0.778w)1 
(1 + 0,605 w2  

1 0.778w cos (0.778w) + sin (0.77801 + 11 . r 1 + 0.603 w2  

and 	r a_ (1 + 0.7002 W2 ) 	j(  0,222 w  ) 
I 

 
G1 f 

j(jw) 	1 + 0.605 w2 	1 + 0.603 w2  

Plotting the loci of Lo(jw) andtq 	as shown in Fig.3.4.5, 
(jw) 

the sensitivity of the system can be determined vectorially using 

equation 3.4.16, when 

w = 0,5 	
S
C = 0.947 
71 

w = 1 	S = 1.0 

and 	_i__G ° 	1+K1 fS  
1 + 	°S 



w = 2 	SG1  = 1.035 

On comparison with the values obtained for the four parameter 

short circuiting model it can be seen that the sensitivity of the 

system to changes in Ki  has been decreased, as it to be expected 

for a system with recirculation. In a similar way the model 

sensitivity to changes in other parameters can be examined. 

3.5. Conclusion 
In this chapter various aspects of the pulse technique have 

been presented. It is a good method and can produce good results 

provided that the input and output pulses are accurately measured. 

Sensitivity analysis gives a guide to the range of frequencies in 

which the magnitude ratios and phase angles should be calculated 

and matched. This range of frequencies is primarily dependent on 

the input pulse. Hougen and Walsh
(42) and Clements et a1.(32) have 

discussed the merits of various pulse shapes. They found that an 

impulse can excite the highest range of frequencies and a rectangular 

pulse the lowest. However an impulse is difficult to measure and 

rarely used in practice. A narrow pulse with a sharp peak is most 

suitable for dynamic system analysis from experimental data. 
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EXPERIMENTAL VERIFICATION OF THEORETICAL 

MODELS 
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4.1. Object of Experiments  

In this chapter the experiments carried out are described. 

The object of these experiments was twofold, firstly to verify by 

direct simulation the mathematical models outlined in Chapter 2, 

and secondly to analyse the flow in a continuous flow rectangular 

model tank with the help of such mathematical techniques. In the 

direct simulation part of the work, 79 experiments were performed 

under different conditions, each one being repeated as a check on 

reproducibility. In the analysis of tank flow, 40 sets of experi-

ments were performed at different flow rates, and using different 

input pulse shapes. Again each individual experiment was repeated 

once as a check on reproducibility. 

4.2. Input pulse  

In all these experiments an input pulse of rectangular shape was 

used. Various values of Qi  in the range 0.09 —4 4.0 were used 

(where 9. = the dimensionless pulse width). The pulse height can 

also be varied and should be selected so that the pulse and its 

corresponding output can be measured with an accuracy which is 

acceptable. 

In these experiments the input pulse was produced by injecting 

a tracer, aqueous sodium chloride, into the inflow to the system at 

a point sufficiently far upstream for the tracer to be completely 

mixed with the inflow on arrival at the input measuring point. 

The tracer concentration was measured in situ in the flow in terms 

of conductivity. Sodium chloride was used for its high solubility 

in water and high ionic dissociation which make it detectable in low 

concentrations using a sensitive bridge. 
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The Universal Bridge used for measuring conductivity . 

7LATE L.2.2. 
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Conductivity was measured by means of a platinum electrode cell 

(No.C521, Wayne Kerr) shown diagrammatically in Fig.4.2.1 and illus-

trated in Plate 4.2.1. The electrodes are platinized and the cell 

constant is 1,0 t 1% so that when used in conjunction with a bridge, 

values of specific conductivity in absolute units are given directly 

in Mhos. The bridge used in this case was an "Autobalance Universal 

Bridge" (No.B641 Wayne Kerr) illustrated in Plate No.4.2.2 and the 

overall accuracy of the cell and bridge is 2%. 

At low concentrations, the relationship between concentration 

and conductivity is linear for sodium chloride in solution (see 

Fig.4.2.2) so that for these experiments, the concentrations were 

kept within the linear range and pulse shapes could therefore be 

plotted directly from bridge readings, It is also sufficient that 

results be precise rather than accurate, as for these experiments 

relative values of conductivity are adequate. Absolute values of 

conductivity are not necessary. 

In order to facilitate the measurement of pulse ordinates at 

short time intervals, the bridge was coupled to a digital voltmeter 

(Dynamco DM 2006) which gave an accuracy of 0.01% of full scale 

deflection. With these instruments values of conductivity could be 

recorded to three decimal places of a limho. However considering 

that a change in temperature of 1°C results in a change in conductivity 

of approximately 10 ilmhos or more it was decided to record values to 

the nearest ilmho. 

Two conductivity cells were used, at the inlet and outlet end 

of the system, each immersed in the flow, for the purpose of recording 

the input and output pulses. An electro-mechanical switch was wed 

to connect the probes alternately to the bridge. The time between 

consecutive readings was approximately 3 seconds. The circuit 
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diagram of this switch is shown in Fig.4.2.3. 

The principal objection to the use of sodium chloride is its 

high density in solution (43, 44, 45). However it is still widely 

used (4, 9, 46) and in this particular case, considering the lowest 

throughput of the rectangular tank (4.0 litres per minute) and the 

maximum flow of tracer (0.1 litres per minute) of concentration not 

greater than 10 gr/A, the specific gravity of the fully mixed tracer 

reaching the tank inlet was found to be 0.9990 (at 20°C) compared 

with the specific gravity of the tapwater in the tank which was 

found to be 0.9989. All the experimental runs were carried out at 

a temperature of 7 - 8I and the temperature was found not to vary 

during any experiment by more than one degree. This is important 

because of the non-linear relation between temperature and conductivity 

shown in Fig.4.2.4. 

4.3. Experimental Set-up for direct simulation 

Plug flow and perfect mixing are theoretical concepts which 

cannot be achieved in the laboratory. However plug flow can be 

approximated by turbulent flow in pipes(9,12) and perfect mixing 

can be simulated by intense agitation of the liquid in a suitable 

vessel using diffused air. Using appropriate combinations of 

these two, experimental models were built up corresponding to the 

theoretical models of Chapter 2, 

General views of the apparatus used are illustrated in Plates 

4.3.1, 4.3.2 and 4.3.3. A flow diagram is given in Fig.4.3.1. 

Steady flow through the system was maintained from a constant head 

tank of capacity 0.33 m3, controlled by a needle valve VI, and 

measured by means of a rotameter which was calibrated volumetrically 

a number of times. 



LAYOUT OF THE DIRECT VERIFICATION APPARATUS. 
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General view of the "Direct verification" set-up . 

PLATE 4.3.1. 
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The "Perfect mixing" tank . 

PLATE 4.3.2. 
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die 	 II It. 

The "Plug flow" tubing . 

PLATE 4.3.3. 
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The tracer solution was stored in a graduated vessel of 

capacity 1 litre fixed at a height of approximately 1 metre above 

the injection point. The rate of tracer flow was controlled by 

a valve at the base of this vessel, the vessel being connected to 

the tracer injection point by a 3mm bore polythene tube. At the 

injection point an on - off instrument toggle valve V2, which opens 

and closes instantaneously gave the effect of a step rise or step 

fall as required in the tracer flow. To ensure good mixing the 

tracer was introduced into the centre of the flow through a piece 

of stainless steel 1 mm bore tubing inserted in the outlet of the 

toggle valve, and this valve was screwed into the body of the flow 

control valve V1  just downstream of the valve gate. 

The conductivity probes P1  and P2  were mounted centrally in 

2.54 cm diameter perspex tubing in such a way that the electrodes were 

parallel to the direction of flow and equidistant from the pipe centre 

line. 

The inflow from the tube containing P1  discharged freely into 

the perfect mixing chamber, which consisted of a polythene vessel 

29 cm x 30 cm x 37 cm of capacity 30 litres. Mixing was accomplished 

by blowing compressed air at a pressure of 0.07 Kgf/cm2  approximately 

through a diffuser dome 8.75 cm diameter placed centrally at the 

bottom of the vessel. Mixing with compressed air was found to give 

better results than mechanical mixing with a stirrer. The volume 

of water in the perfect mixing vessel was determined directly by 

weighing the vessel during operation on a semi-automatic self 

indicating balance (Avery). 

The plug flow volume consisted of 45,7 metres of 2.54 cm diameter 

rubber tubing wound around a 31 cm diameter drum. The tubing was 

subdivided into five lengths, so that a variable length could be 
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used, thus varying the ratio of the plug flow volume to the perfect 

mixing volume. 

The flow from the perfect mixing chamber through the plug flow 

tube was maintained by a variable speed pump (No.1 of Fig.4.3.1, 

Stuart Turner Ltd. No.12). Steady conditions were maintained by 

regulating the speed of the pump in order to keep the weight of the 

perfect mixing chamber constant at the desired value. In this way 

the volume of perfect mixing was controlled to within + 0.25 litres 

of the desired value. The outlet of the plug flow tube was 

connected to a 30 cm length of 2.54 cm dia. perspex pipe containing 

probe P2  from which the flow discharged freely to the volumetric tank 

and hence to waste. 

In order to incorporate a shortcircuiting element in the system 

a 7' long 1,25 cm dia. tube was connected between the downstream 

side of probe 	and the upstream side of probe P2. The flow 

through this path was maintained by a variable speed pump, No.2 in 

Fig.4.3.1 (Charles Austen Co. type C-15) and was measured by a flow 

meter. This same length of tube could be used to represent recircu-

lation by simply reversing the direction of pumping. 

4.4. Objects of direct simulation experiments  

The apparatus described in 4.3 was used to test the following 

mathematical models. 

(i) 
	

The two parameter model containing perfect mixing and plug 

flow in series, in which the ratio of the perfect mixing to 

plug flow volumes could be varied. 

The four parameter short circuiting model, in which the 

fraction of the flow which shortcircuits is varied, thus 

varying the shortcircuiting time and altering all the other 

time constants. 



(iii) 	The recirculation model, in which the recirculation rate 

of flow is varied, and also the perfect mixing and plug flow 

fractions. 

4.5. Experimental procedure for direct simulation experiments  

Before conducting a flow test, the water was turned, on for a 

considerable time at the approximate flow rate, in order to ensure 

that conditions reached equilibrium and temperatures and conductivity 

readings became steady at inlet and outlet. Then the flow was 

adjusted to the appropriate value by adjusting the valve 	and 

steady conditions were established throughout the system by adjusting 

the speed of pump Noel. If shortaircuiting or recirculation was 

incorporated in the model, this flow was regulated by adjusting the 

speed of pump No.2. Otherwise this flow path was isolated from the 

system. 

The tracer used in these tests was prepared by dissolving 

sodium chloride (99.9% AnalaR) in distilled water in the desired 

concentration. For these tests the concentration used was 5 gr// 

This was thoroughly mixed in the tracer reservoir by bubbling air 

through before injection. 

The tracer was introduced by opening valve V2  for a predetermined 

length of time, and the conductivity of the flow stream was recorded 

at inlet and outlet at intervals of 15 seconds. It was found that 

the input pulse was approximately rectangular and the transition from 

background concentration to platform concentration required approxi-

mately 2 seconds. Recording of conductivity at Pi  and P2  continued 

until the values at P2  returned to within 1 .L-ty of the value at PI  , 

A record of temperature changes was also kept and any changes in 

background conductivity or conductivity response due to temperature 

changes were noted and corrections applied to the output pulse ordinates 

where appropriate. 
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4.6. Determination of mixing efficiency for the Perfect Mixing Chamber  

and the Plug Flow Tubing  

Various experiments were conducted in order to determine the 

degree of mixing that could be achieved in the perfect mixing vessel 

at three system flow rates 5, 10 and 15 litres/minute using diffused 

air, and at a system flow rate of 5 2/m using mechanical mixing by 

means of a 10 cm dia. propeller. These experiments were carried out 

with three different volumes of water in the mixing vessel. The 

outlet end of pump No.1 was directly connected to the perspex tubing 

housing the probe P2. 

The curves were analysed using the two parameter model and the 

results are tabulated in Table 4.6.1. Eaeh result in this table is 

the mean of the results of three experiments, as each test was 

repeated three times to ensure reproducibility. It was found, 

other conditions being equal, that better mixing was achieved using 

diffused air. In the case of set 8 the diffuser was inverted. The 

volume of the tubing between the perfect mixing chamber and P2  was 

0.076 litres. 

The volume of the plug flow in the plug flofit tubing was determined 

by doing similar tests and again applying the two parameter model. 

The data are presented in Table 4.6.2. 

To demonstrate the types of input and output curves obtained 

from these tests, the results of set Nos. 7 and 20 are plotted in 

Fig. 4.6.1. and 4.6.2 respectively. On these plots C refers to the 

concentration recorded in terms of conductivity. 

From these tests it was found that approximately 90% perfect 

mixing could be obtained under the best conditions in the perfect 

mixing chamber. The higher the throughput the better the mixing 

obtained. It was also found that the smaller the volume of water 

in the vessel, the lower the value of m the perfect mixing fraction 
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and this was because of the fact that smaller volumes resulted in 

shallower depths and the diffuser dome was mounted 3.5 cm above 

the bottom of the vessel. The plug flow tube gave values of p, 

the plug flow fraction,' of approximately 95% and it was found that 

the shorter the tube the better the result, as was to be expected. 

The above information was used below in assigning real rather than 

theoretical values to the parameters p and m in direct simulation. 

Table 4 6.2 

Set 
No. 

Conc. of 
tracer 
gr/L 

Quantity 
of tracer 
in pulse 

2 

Tracer 
recovery 

% 

Vol.in 
system 

2 ,,,, 

Flow 
rate 

//mia 

Model 
Parameters 

m p 

14 5 0.14 2.23 99 4.488 10 0.03 0,97 

15 5 0.28 4.46 100 4.488 10 0,04 0.96 

16 5 0.14 1.11 100 4.488 5 0.05 0,95 

17 5 0.28 2,22 99 4.488 5 0.05 0.95 

18 5 0.14 1.11 100 8.977 10 0.05 0.95 

19 5 0.27 2.23 100 8.977 10 0,06 0,94 

20 5 0.14 0.448 105 22.W10 10 0.C5 0.95 

21 5 0.28 0.896 101 22./1/t0 10 0.05 0.95 
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Table 4.6.1  

Set 	!Conc. of 
Test tracer 
No. 	! gr/2 

Quantity 
of tracer 
in pulse 

2 

A1  
Tracer 	Vol. in 
recovery 	system 
% 

2 

Flow 
rate 
2/min. 

Stirrer 
speed 
r.p.m. 

Vol. of 
air diffused 
A/m at 2 0.07 Kgf/cm  

Model 
Parameters 

m p 

1 	5 0.04 0.125 96 	10 5 350 0.79 0.21 

2 	5 0.04 0.083 95 	15 5 280 0.83 0.17 

3 	i 	5 0.14 0.330 105 	15 5 35o 0.86 0.14 

4 	5 0.04 0,063 106 	20 5 560 0.87 0.13 

5 	I 	5 0.04 0,125 104 	10 5 35 c,88 0,12 

6 	j 	5 0.04 0.083 97 15 5 35 0.90 0.10 

7 1 	5 0.04 0.125 98 20 10 35 0.89 0,11 

8 	5 0.04 0,125 107 20 10 35 0.85 0.15 

9 	5 0.04 0,167 90 15 10 35 0.86 0.14 

10 	5 0.04 0.250 95 10 10 35 0,83 0,17 

11 i 	5 0.04 0.375 97 10 15 35 0.82 0.18 

12 	5 0.04 0,250 95 15 15 35 0.86 0,14 

13 	5 0.04 0,187 102 20 15 35 0.90 0,10 
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4.7. Verification of the two parameter model  

The perfect mixing chamber and plug flow tube were connected 

in series and operated under a variety of conditions with the total 

system volume varying from 15 litres to 45 litres approximately. 

Two values of flow through were used, 10 and 15 litres per minute. 

Lower values of flow were not used as it was clear that good simula- 

tion of plug flow required highly turbulent flow in the tubing. 

Good mixing in the perfect mixing chamber was achieved by supplying 

35 litres/minute of air through the diffuser at a pressure of 

0.07 Kgf/cm2. A total of 46 experiments was performed (each 

experiment was repeated once, making a total of 92 runs in all) 

and the ratith of perfect mixing to plug flow was varied from 0.3:0.7 

to 0.8:0.2 approximately, The data are shown in table 4.7,1. 

Each result shown in this table is obtained from the mean of a pair 

of experimental output curves. Typical pairs of such curves are shown 

in Fig. 4.7,1 and 4.7.2. 

The purpose of these tests was to determine whether the values 

for perfect mixing and plug flow, obtained by matching the two para- 

meter model to the output curves obtained in these experiments, 

agreed with the known values. The "known" values were measured and 

corrected by applying the information obtained from the experiments 

of section 4.6 which process in itself assumes the validity of the 

model. However this was felt to be a logical approach. 

The experimental values of 'm' were plotted against the optimised 

values in Fig.4.7.3. It has been found that the plotted points 

were slightly below the optimum 45°  line through the origin. This 

can be accounted for by the approximation in calculating the corrected 

values of 'm' . 

From these experiments it can be seen that a system such as the 

above can be represented by the two parameter model and that this 
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Table 4.7.1 

	1 
Seth 
No. 

Q 
litres 
per 
minlite 

V 
Total 
volume 
of 
system 
Litres 

T 
Mean de- 
tention 
time 

mins. 

AI  
Pulse 
width 

Input 
pulse 
step 
change 

11  J1 

Actual 

mP 

Actual} Corr, 

m 

Corr. 

P 

Optimised 

m 

Optimised 

P 

% 
Tracer 
recov, 

Stand, 
Error 

30 10 33.24 3.32 0.30 84 0.30 0.70 0.284 0,716 0.288 0.712 99 0.021 

31 10 33.24 3,32 0.60 86 0,30 0.70 0.284 0.716 0.300 0.700 101 0.009 

32 15 33.24 2,22 0.45 54 0,30 0.70 0.284 0,716 0.294 0,706 100 0,029 

33 15 33.24 2,22 0,91 55 0,30 0,70 0.284 0.716 0,300 0.700 106 0,008 

42 10 28.70 2,87 0.35 5o 0.34 0.66 0.315 0.685 0.324 0,676 104 0,018 

43 10 28.70 2.87 0,70 59 0,34 0.66 0.315 0.685 0.305 0.695 106 0.030 

44 15 28.70 1,91 0.52 37 0,34 0.66 0,315 0.685 0.313 0.687 106 0,011 

45 15 28.7o 1.91 1.05 33 0,34 0,66 0.315 0.685 0.314 0,686 104 0,024 

26 10 38.24 3.82 0.26 85 0.392 0,60; 0.370 0.630 0.396 0,604 104 0,009 

27 10 38424 3.82 0.53 85 0.392 0,60; 0,370 0.630 0.393 0,607 106 0.005 

28 15 38.24 2,55 0,39 55 0.392 0.60 0,370  0.630 0.378 0.622 104 0.005 

29 15 38,24 2,55 0.78 55 0.392 0,60' 0,370 0,630 0.391 0.609 98 0.01 

46 10 23,89 2,39 0.42 46 0,41 0,59 0.370 0.630 0,409 0.591 99 0,013 

47 10 23.89 2.39 0.84 45 0.41 0.59 0.370 0,630 0.407 0.593 102 0,017 

48 15 23,89 1.59 0.63 28 0.41 0.59 0.370 0.630 0.401 0.599 105 0,018 

49 15 23.89 1.59 1.26 43 0,41 0,59 0,370 0,630 0,400 0,600 98 0,019 

38 10 33.70 3.37 0.296 56 0.40 0.60 0.374 0,626 0.391 0.609 98 0,030 

39 10 33.70 3.37 0.59 57 0.40 0,60 0.374 0,626 0.393 0.607 101 0,016 



V 
Total 

of 
system 
Litres 

volume'tention 

T 
Mean de- 

time 

mins. 

al  
Pulse 
width 

Input 
pulse 
step 
change 

T1SX 

Actual 

m 

Actual 

p 

Corr. 

m 

Corr. 

p 

Optimised,Optimised 

m p 

% 
Tracer 
recov. 

Stand. 
Error 

33.70  2,24 0,44 40 0.40 0.60 0,374 0,626 0.407 0,593 102 0,022 

33.70 2,24 0.89 41 0.40 0.60 0,374 0,626 0,410 0.590 107 0.021 

43,24 4,32 0,23 92 0.462 0.558 0.443 0.567 0.500 0,500 102 0.029 

43.24 4,32 0,46 92 0,462 0,538 0,443 0.567 0.505 0.495 101 0,042 

43.24 2.88 0.35 56 0,462 0.538 0.443 0.567 0.505 0.495 96 0.024 

43.24 2.88 0.70 54 0,462 0,538 0,443 0.567 0,502 0,497 108 0.017 

19,35 1.94 0,51 53 0.51 0.49 0.448 0,552 0.483 0.517 102 0,010 

19.35 
28.89 

1.29 
2.89 

0.77 

0.35 
34 
50 

0.51 
0.52 

0,49 
0.48 

0,448 
0,471 

0,552 
0,529 

0.509 
0.475 

0,491 

I 	0.525 
103 

93 CO:114  

28.89 2,89 0,69 69 0,52 0.48 0,471 0.529 0,491 0,509 96 0,015 

28,89 1.93 0.52 43 0,52 0,48 0.471 0.529 0.503 0.497 97 
00:7 28,89 1,93 1,04 42 0,52 0.48 0.471 0,529 0,502 0,498 100 

38.70 3.87 0,26 86 0.51 0.49 0,484 0,516 0.496 0,504 99 0,013 

38,70 3.87 0.52 85 0.51 0.49 0,484 0,516 0,499 0.501 100 0,009 

0 

38.70 2.58 0.39 55 0.51 0,49 0.484 0.516 0.500 0,500 109 

i 30 015  012  0 

38.70 2,58 0,77 43 0.51 0.49 0.484 0.516 0.480 0.520 98 0,023 

24.35 2.44 0,41 56 0.61 0,39 0.544 0.456 0.598 0.402 97 

24.35 1,62 0,62 4o 0.61 0.39 0.544 0.456 0.493 0.507 105 0.019 

Q 
Set litres 
No , per 

minute 

40 	15 
41 	15 

22 10 
23 	10 

24 15 

25 15 

58 10 

59 15 
50 	10 

51 10 
52 15 

52 15 

34 10 

35 10 
36 15 

37 15 

60 10 

61 15 



Set 
No.litres 

Q 

per 
inute 

V 
Total 
volume 
of 
system 
Litres 

T 
Mean de- 
tention 
time 

mins, 

91  
Pulse 
Width 

Input 
pulse 
step 
change 

IL CI 

Actual 

m 

Actual 

p 

Corr.' 
m 

Corr, 

p Tracer  recov.  

Optimised 
m 

Optimised 

p 

% Stand. 
Error 

54 10 33,89 3.39 0.59 55 0.59 0.41 0,546 0.454 0.600 0.400 103 0.065 
55 10 33.89 3.39 0.59 56 0.59 0.41 0,546 0.454 0.600 0.400 98 0.016 

56 15 33.89 2.26 0,44 41 0,59 0.41 0.551 0.449 0,597 0.403 105 0.066 

57 15 33.89 2.26 0.88 42 0.59 0.41 0.551 0.449 0,601 0.399 99 0.095 

64 10 14.54 1.45 0.69 46 0.68 0.32 0.58 0,42 0.636 0.364 105 0.011 

65 15 14.54 0.97 1.03 3o 0.68 0.32 0,58 0.42 0.655 0.345 106 0.045 

66 10 19.54 1,95 0.51 46 0.76 0.24 0,666 0,334 0.765 0.235 107 0,016 

67 15 19.54 1.30 0.77 24 0,76 0,24 0,666 0.334 0.716 0,284 105 0.053 

68 10 24,54 2,45 0.41 47 0,81 0.19 0,731 0,269 0,720 0.280 105 0.024 

69 15 24.54 1.63 0,61 27 0.81 0.19 0,739 0.261 0.708 0.292 101 0.014 
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model could be used for simulation or prediction in this case with 

reasonable accuracy. 

4.8. Verification of the 4 parameter shortcircuiting model  

In order to verify this model, five experiments were performed 

each of which was repeated three times making a total of fifteen 

tests in all. A typical set (71) of three output curves is plotted 

in Fig.4.8.1. Shortcircuiting was achieved by the bypass pipe 

shown in Fig.4.3.1, controlled by Pump No.2 and measured by means 

of a flow meter. The experimental conditions are tabulated in 

Table 4.8.1, from which it can be seen that the perfect mixing, 

plug flow and shortcircuiting volumes are kept constant, and that 

the flow through the system is constant, but the fraction of this 

flow that shortcircuits to the outlet is varied. Thus the emphasis 

was put on the fraction of the flow being shortcircuited rather than 

on the shortcircuiting volume as this was easier from the practical 

point of view. The same range of shortcircuiting time constant could 

have been examined by keeping the shortcircuiting flow rate constant 

and varying the shortcircuiting volume. The shortcircuit volume 

was deliberately kept small to ensure good plug flow and to determine 

the ability of the optimisation techniques to identify small "dead 

space". 

The experimental results were verified in three different ways. 

(i) To the known values of m, p, s and f corrections were made in 

accordance with section 4.6. These values were then used in the 

mathematical model to predict the output curve from the known input 

pulse. The output curve obtained in this way was compared with the 

actual experimental output curve. These curves are plotted in 

dimensionless form in Fig.4.8.2 for set 71. 
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(ii) The values of the parameters in the model were optimised to give 

a Least Squares fit of the experimental curve. The output curve 

obtained in this way was also plotted on Fig.4.8.2. for set 71. 

(iii) The indirect pulse response technique was applied as described 

in Chapter 3 using the data regression method, The Bode plot 

obtained for Experiment 71 is shown in Fig.4.8.3 and the curve 

obtained by this method is plotted in Fig.4.8.2. 

4.9. Verification of the Recirculation Model  

Five sets of experiments were performed on the system re-arranged 

so as to contain an element of recirculation. The data for these 

tests are shown in Table 4.9.1. It can be seen that the recirculation 

volume was kept constant and the recirculation rate was varied from 

one tenth to one quarter of the main flow. Again each experiment was 

repeated three times and a typical set of tests is shown in Fig.4.9.1. 

The recirculation model was tested and the optimised values of 

the four parameters are shown in Table 4.9.2 together with the 

standard errors of estimate. The curve obtained in this way from 

set 77 is shown in Fig.4.9.2 for comparison with the experimental curve. 

As a check on the combined short circuiting and recirculation 

model of Chapter 2 Fig.2.8.1 p. values of the six parameters were 

inserted in the transfer function and the output curves computed from 

the known inputs. These were then compered with the experimental 

output curves. Nominal values for S and f., were adopted as the 

experimental set up did not contain any element of shortcircuiting. 

An example of such a "predicted" output curve is given in Fig.4.9.2 

again from set 77. This model appears to be satisfactory and produces 

a good fit. 



Table 4.8.1. 

Set 
No. 

Flow 
Q 

litres/ 
min. 

System 
vol. V 

litres  

Mean 
deten-iwidth 
tion 
time T 

Pulse 

gl 

Conc. 
of 

tracer 
grie 

Tracer 
I recov, 

5 

Input 
step 
change 
it _a 

Perfect 
mix 
vol. 
A 

Plug 
flow 
vol. 
2 

Short- 
circuiting 
volume 
2 

Short 
circuit 
flow rate 
//m 

70 12.0 19.80 1.66 0.613 5 110 40 15.0 4.54 0,26 3,0 
71 12,0 19,80 1,65 0.613 5 105 44 .15.0 4.54 0,26 2,25 
72 12.0 19,80 1.65 0.615 5 102 44 15.0 4.54 0.26 1.75 

73 12,0 19.80 1.65 0.613 5 104 46 15.0 4.54 0.26 1.25 
74 12.0 19.54 1,628 	0.615 5 104 49 15.0 4.54 - - 

Table 4.8.2. 

Initial values of Parameters assumed Values obtained by direct 
optimisation 

Values obtained from 
pulse technique 

m p s f stand. 
m p s f error error error 

stand. m p s stand. f 

70 0.73 0.23 0.04 0,25 0,09 0,68 0.31 0,01 0,22 0,02 0,5 0.44 0.06 0.31 0,017 

71 0.66 0.30 0.04 0.188 0.08 0.68 0.31 0,01 0.17 0.02 0,647 0,337 0,016 0.19 0,014 
72 0,68 0,28 0.04 0.145 0,05 0.678 0.31 0,012 0.13 0.04 0.724 0.265 0,01 0,12 0.014 

73 0.66 0.30 0,04 0,104 0,04 0.64 0.34 0,02 0,12 0,03 0,742 0.248 0,01 0,08 0.006 
74 0.66 0,30 0.04 0.01 0,04 0,65 0.34 0.01 0.02 0.02 0.675 0.315 0.01 0.02 0.01 
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Table 4.9.1  

Set 
No. 

Flow 
Q 

litres/ 
min, 

System 
vol. V 

litres 

Mean 
deten- 
tion 
time 
mins. 

Pulse 
width 

Q.1  

Conc, 
of 
tracer 
gr/t 

Input 
step 
change 
u..2 

Tracer 
recov, 

% 

Perfect 
mixing 
volume 

2 

Plug 
flow 
vol, 

2 

Recircu- 
lation 
volume 

0 

Recircu-
lation 
rate 

2/m 

75 12.0 19.80 1.65 0.606 5 43 98 15.0 4.54 0,26 3.0 

76 12,0 19,80 1.65 0.606 5 40 98 15.0 4.54 0.26 2.10 

77 .12.0 19.80 1.65 0.606 5 37 102 15.0 4.54 0.26 1.74 

78 12.0 19.80 1.65 0,606 5 37 103 15.0 4.54 0.26 1.28 

79 12,0 19,80 1.65 0.606 5 49 102 15.0 4.54 0.26 - 

Table 4.9.2  

Set 
No, 

Assumed initial values of parameters used in short- 
circuiting and recirculation model 

Optimised values obtained from 
recirculation model 

m p s r f1  f2 stand, 
error m P r f stand, 

error 

75 0.610 0.380 0,002 0,01 0.01 0,250 0.05, 0.650 0.344 0.010 0.181 0,020 

76 0,619 0.366 0,005 0,01 0,01 0,175 0.05 0,667 0,321 0.011 0,180 0.015 

77 0,635 0,350 0,005 0.01 0,01 0.145 0.05 0.640 0.350 0,010 0,150 0.020 

78 0.651 0.334 0,005 0,01 0.01 0,100 0,04 0,648 0,349 0.003 0,08 0,015 

79 0,65 0.350 0 0 0 0 - 0.646 0,353 0,001 0,010 0,004 



The simple recirculation model also fits the experimental curve 

well and the optimised values of the four parameters agree reasonably 

well with the actual values except in the case of Set No.75 in which 

the value of f is low. This is probably because of the approxi-

mations involved in the derivation of the model formula, in which 

only two terms of MacLaurin's series were included. This approxi-

mation is valid only if the recirculation rate is low. 

One difficulty observed in the analysis of flow curves from 

these recirculation experiments by the optimisation technique is that 

with a very short recirculation time, the optimised values of r and 

f tend to diminish and merge with the perfect mixing fraction. 

This is logical since perfect mixing is in effect micro and macro 

recirculation. If a strong optimisation technique were available, 

the values of r and f in each of the above cases would have 

approached zero. However in cases where plug flow is dominant, 

a plug flow recirculation will probably not have this tendency to 

diminish. 

4.10 Analysis of Flow curves obtained from a model tank  

Having established the usefulness of the models of Chapter 2 

in the interpretation of flow curves, a series of these curves was 

obtained from a continuous flow model tank and analysed by using 

these methods. 

The model tank is shown in Fig.4.10.1. The dimensions of this 

model were 138 x 46 x 23 cm. The inlet was a single 2.54 cm dia. 

pipe mounted in the centre of one end and fitted with a baffle of 

diameter 7.6 cm fixed at a distance of 5 cm from the inlet end for 

the purpose of distributing the inflow. The outlet consisted of a 

single weir directly opposite the inlet fixed at a height of 15 cm 

166 
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General view of the model tank set-up . 

PLATE 4.10.1. 
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from the tank bottom thus determining the depth of flow. Downstream 

of this weir a collecting chamber passed the flow to a 2.54 cm diameter 

outlet pipe and hence through a measuring tank to waste. The probes 

Pi  and P2  were mounted 15 cm upstream of the inlet and 1 5 cm down-

stream of the collecting chamber respectively. The tube downstream 

of P2  could be throttled in order to ensure sufficient depth in 

the collecting chamber to maintain full pipe flow past the probe P2 

and prevent air entrainment. 

The flow rate was varied from 5 litres/minute to 14 litres/minute 

(average tank velocity 0.12 cm/sec. to 0.338 cm/sec.) and responses 

were recorded for input pulses of 2, 3, 4 and 5 minutes duration. 

Each experiment was repeated once as a check on reproducibility and 

typical pairs of response curves are shown in Fig.4.10.2 - 5. 

The tracer technique used was similar to that used in the 

direct verification experiments. Readings were taken at intervals 

of 15 secs for at least one nominal tank detention time. After this, 

readings were taken at 1 minute intervals as the rate of change of 

concentration was low. The temperature of the flowing water was 

recorded by a thermometer placed upstream of the tank outlet weir. 

Temperature corrections were made to the observations where necessary 

as before. 

Tracer recovery was checked in each case and was found to lie 

between 95% and 105%, except in a few cases at low velocity where 

values less than 95% were obtained. It is thought that this was 

due to density currents and the consequent long tail to the output 

curve. 

The two parameter, four parameter, and five parameter models 

were fitted to the curves using the optimisation techniques described 

in Chapter 5. The details of the experiments and the results of 
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the analysis are given in Tables 4.10.1 

From the two parameter model data it can be seen that the flow 

regime consisted of approximately 71% perfect mixing and 29% plug 

flow. Also it can be seen that as the flow through the system was 

increased the perfect mixing volume tended to decrease and the plug 

flow volume tended to increase which is logical. However with this 

model the standard error of estimate was of average value 0.24 

indicating a poor fit of the experimental curves. 

By introducing the four parameter shortcircuiting model which 

includes a plug flow shortcircuit in parallel with the above, a better 

fit was obtained as indicated by standard errors of estimate of the 

order of 0.1. The average perfect mixing fraction was found to be 

0.75, plug flow 0,20 and shortcircuiting 0.05. 

The next step was to introduce a fifth parameter in the form 

of a perfect mixing element in the shortcircuit branch of the last 

model. This model can now be regarded as two two parameter models in 

parallel. As can be seen from Table 4.10.3 the standard errorsof 

estimate were further reduced particularly for the higher flow rates. 

This model is more flexible than the previous model as can be seen 

when it is applied to set No.81 as shown in Fig.4.10.6. The outflow 

curve in this case has two distinct peaks, the first of which is 

sharp and narrow indicating a shortcircuit. The second peak has 

a gradual rise and a gradual fall, representing the mainflow. In 

this case the time constants for the shortcircuiting flow and the 

mainflow are widely different. Where this is not the case as in 

sets Nos. 90, 91, 92, 93 the two peaks merge to form a single tall 

peak (see Figs. 4.10.7, 8, 9 and 10). With the five parameter 

model, when there are two peaks it is possible to consider either 

peak as the shortcircuiting peak, For instance referring to Fig.4.10.6 
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Table 4.10.1  

Two Parameter Model 

Set 
No, 

Q 
//min, 

gi ?", 
tracer 

recovery 

m p Standard 
Error 

80 4 0.084 85 0.75 0,25 0.43 
81 4 0.21 90 0.76 0.24 0,33 

82 5 0,105 92 0,71 0,29 0.36 
83 5 0.158 100 0,75 0,25 0.34 
84 5 0,210 98 0.73 0.27 0.35 
85 5 0,263 99 0.82 0.18 0,18 

86 6 0,126 92 0,68 0.32 0.38 
87 6 0,189 96 0.70 0.30 0,36 
88 6 0,252 90 0.73 0.27 0.30 
89 6 0.315 95 0.73 0.27 0.27 

90 7 0.147 95 0.69 0.31 0.24 
91 7 0,221 96 0,71 0.29 0,28 
92 7 0,294 97 0.71 0.29 0.24 

93 7 6.368 95 0,71 0,29 0,19 

94 8 0.168 103 0.66 0.34 0,20 
95 8 0.252 96 0,64 0.36 0.22 
96 8 0.336 95 0,68 0,32 0,17 
97 8 0.420 94 0.68 0.32 0,15 

98 9 0.189 95 0,67 0.33 0.08 
99 9 0.284 97 0.67 0,33 0.10 
100 9 0.378 105 0.69 0,31 0,09 
101 9 0.473 99 0.69 0.31 0.08 

102 10 0.210 102 0.63 0,37 0.10.  
103 10 0.315 96 0.66 0.34 0.07 
104 lo 0.421 97 0,66 0.34 0.06 
105 10 0,525 96 0.68 0.32 0.06 

106 11 0,231 102 0,62 0.38 0.11 
107 11 0.347 98 0,65 0.35 0,07 
108 11 0.462 98 0.65 0.35 0.04 
109 11 0.578 98 0.68 0,32 0.04 

110 12 0.252 98 0.62 0.38 0.09 
111 12 0.378 96 0.65 0.35 0.07 
112 12 0.504 98 0,62 0.38 0.07 
113 12 0.630 95 0.65 0.35 0.04 
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Table 4.10,1  (cont inued) 

Set 
No. 

Q 
A/min 

91 
tracer 

recovery 

m p Standard 
Error 

114 13 0.273 98 0.59 0,41 0.12 
115 13 0.410 97 0.66 0.34 0,10 
116 13 0.546 95 0.66 0,34 0.08 
117 13 0.673 99 0.66 0.34 0.06 

118 14 0,294 95 0,67 0,33 0,12 
119 14 0.441 99 0.67 0.33 0.13 
120 14 0.588 95 0,63 0.37 0.08 
121 14 0,735 95 0.67 0.33 0.08 

Table 4.10.2, 

Four Parameter S.C. 
Model 

Set 
No, 

Q 
2/min 

81  % 
tracer 

recovery 

m p s f Stand-
and 
Error 

80 4 0.084 85 0.536 0,456 0.008 0.03 0,37 
81 4 0.21 90 

82 5 0,105 92 0.759 0,220 0,021 0.015 0.25 
83 5 0,158 100 0.727 0.233 0.04o 0.170 0,19 
84 5 0,210 98 0.843 0.126 0.031 0,130 0,19 
85 5 0.263 99 0.779 0.193 0.028 Q1140 0.12 

86 6 0.126 92 0.751 0.222 0,027 0,09 0.13 
87 6 0.189 96 0.785 0.174 0.041 0.14 0.15 
88 6 0.282 go 0.788 0,152 0.060 0.20 0.14 
89 6 0.315 95 0.777 0.192 0,031 0.18 0.15 

90 7 0.147 95 0.679 0.284 0.037 0.12 0.10 
91 7 0,221 96 0.749 0.200 0.051 0,16 0.12 
92 7 0.294 97 0.756 0.191 0.053 0.16 0.10 
93 7 0.368 95 0.748 0.206 0.046 0.14 0.08 

94 8 0,168 103 0,692 0.280 0.028 0,080 0,07 
95 8 0,252 96 0.716 0,271 0,013 0.033 0.10 
96 8 0.336 95 0.714 0,218 0.068 0.170 0.09 
97 8 0,420 94 0.727 0.215 0.058 0.140 0,08 
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Table 4.10.2 (continued) 

Set 
No, 

Q 
i/min 

Q1 
tracer 

recovery 

m p s f Stand- 
and 
Error 

98 9 0.181 95 0.589 0.311 0.10 0,080 0.08 
99 9 0,284 97 0.675 0.291 0.034 0,074 0.07 
100 9 0.378 105 0,702 0.250 0,048 0.100 0,07 
101 9 0.473 99 0.704 0,259 0.037 0.090 0,05 

102 10 0,210 102 0.631 0.360 0.009 0.010 0,05 
103 10 0.315 96 0.648 0,333 0,019 0.038 0.04 
104 10 0,421 97 0,657 0.311 0,031 0.074 0,04 
105 10 0,525 96 0.676 0.286 0.038 0.073 0.05 

106 11 0,231 102 0,542 0,349 0,109 0.096 0.10 
107 11 0,347 98 0.579 0.332 0,089 0,079 0,06 
108 11 0,462 98 0,576 0,331 0.093 0.078 0.04 
109 11 0.578 98 0,662 0,280 0.058 0.094 0.05 

110 12 0,252 98 0.541 0,367 0.092 0.076 0.07 
111 12 0.37$ 96 0.617 0.328 0.055 0,056 0.04 
112 12 0.504 98 0.589 0,350 0.061 0,055 0.03 
113 12 0,630 95 0,636 0,306 0.058 0,076 0,04 

114 13 0.273 98 0.548 0,407 0.045 0,05 0.07 
115 13 0.410 97 0.588 0.395 0,017 0,02 0,03 
116 13 0.546 95 0,596 0,352 0,052 0,05 0,03 
117 13 0,673 99 0,600 0.360 0,040 0.05 0.05 

118 14 0.294 95 0.552 0.391 0.057 0,06 0,06 
119 14 0,441 99 0.558 0,367 0,074 0,075 0,06 
120 14 0.588 95 0.539 0.378 0.083 0,075 0,03 
121 14 0.735 95 0,576 0,352 0,072 0,078 0,04 
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Table 4.10.3  

Five Parameter - S.C. Model 

Set 
No, 

Q 
2/min 

Al  
tracer 	m 

recovery 
p a r f 

Stand, 
Error 

80 4 0.084 85 0,42268 0.3945 0,00002 0,18281 0,2174 0.16 
81 4 0.21 90 0.52403 0.38978 0.05288 0.03331 0,30536 0.16 

82 5 0,105 92 0.730 0.245 0,00001 0.025 0.150 0.18 
83 5 0,158 100 0,778 0.190 0,025 0,007 0.140 0,18 
84 5 0.210 98 0,760 0,200 0,020 0,020 0,150 0.17 
85 5 0.263 99 0.800 0.170 0,017 0,008 0.140 0,11 

86 6 0.126 92 0,721 0,243 0,034 0.002 0,120 0.15 
87 6 0.189 96 0.768 0.176 0,053 0,003 0,180 0.16 
88 6 0,252 90 0,778 0,150 0,065 0.007 0,230 0,11 
89 6 0,315 95 0,745 0.232 0,022 0,001 0,200 0,16 

90 7 0,147 95 0,695 0.246 0,044 0.015 0.160 0.134 
91 7 0,221 96 0,750 0,188 0,055 0,007 0,178 0,160 
92 7 0.294 97 0.750 0.188 0.057 0.004 0.178 0.100 
93 7 0.368 95 0.743 0.196 0,052 0.008 0,173 0,066 

94 8 0.168 103 0.667 0.290 0.010 0,032 0.140 0.090 
95 8 0.252 96 0,680 0,260 0.050 0.010 0,147 0,060 
96 8 0.336 95 0,705 0.207 0.076 0,012 0,217 0,060 
97 8 0,420 94 0.696 0,190 0.083 0.031 0.256 0.070 

98 9 0.189 95 0.581 0,303 0,062 0,054 0,092 0,030 
99 9 0,284 97 0,652  0.264 0,059 0,025 0,168 0,060 

100 9 0,378 105 0,702 0,256 0,035 0,007 0,090 0,070 
101 9 0.473 99 0.694 0,260 0,041 0,005 0,110 0,050 

102 10 0,210 102 0,550 0.332 0,062 0,056 0.085 0,040 
103 10 0,315 96 0.613 0,325 0.033 0,029 0.113 0,040 
104 10 0,421 97 0,649 0.312 0,028 0,011 0.085 0,040 
105 10 0,525 96 0,672 0,281 0.042 0.005 0,090 0.040 

106 11 0,231 102 0,491 0,330 0,124 0,054 0,137 0,080 
107 11 0.347 98 0,531 0,323 0,095 0.051 0.110 0.040 
108 11 0,462 98 0.406 0,299 0.170 0,125 0.180 0.030 
109 11 0.578 98 0,592 0.291 0,048 0,069 0,110 0,030 

110 12 0.252 98 0,544 0.364 0,077 0.014 0.080 0.050 
111 12 0.378 96 0.582 0,322 0,069 0.027 0.080 0,030 
112 12 0.504 98 0,491 0,321 0,122 0.066 0,130 0.00 
113 12 0,630 95 0,605 0,333 0,031 0,031 0,050 0,030 
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it is possible for the second peak to represent bypassing of a slow 

nature through a relatively stagnant zone. 

Closer observation of the curves in Fig. 90 - 93 reveals a gradual 

rise and fall in the tail of each curve which can be attributable only 

to the presence of a recirculation element. 	The curve of Fig.4.10.7 

and 4.10.8 are fitted with the recirculation model of Fig.2.8.5. 

A better fit was obtained as a result of introducing an extra parameter. 

However the result was not as good as expected, due to the fact that 

the shortcircuiting element contained plug flow only. 

In view of the complications involved when extra parameters are 

introduced it would appear that four parameter model describes these 

curves reasonably well. Where the actual system contains macro-

recirculation it will be necessary to use a more complex model. 

In general in any given case the best model is that which fits the 

curve adequately and contains the least number of parameters. 
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Table 4.19,3 (continued) 

Set 	Q 
No, .P/min 

.Q1! 
tracer 

recovery 
p s r f 

Standard 
Error 

114 13 0.273 98 0,273 0.326 0.175 0.108 0,230 0.040 
115 13 0,410 97 0.546 0.384 0.042 0.027 0.050 0.030 
116 13 0.546 95 0.582 0.345 0.066 0.007 0.070 0.030 
117 13 0.673 99 0.556 0.373 0.063 0.008 0.050 0,030 

118 14 0,294 95 0,422 0,300 0,154 0,124 0,236 0.030 
119 14 0.441 99 0.418 0.309 0.168 0.105 0.212 0.040 
120 14 0,588 95 0.527 0.376  0,082 0,015 0.080 0.020 
121 14 0.735 95 0.539 0.387 0.073 0.001 0.060 0.030 

4.11 Statistical Analysis  

In the literature on longitudinal mixing various conclusions have 

been inferred from the statistical parameters of dispersion curves, 

and for comparison a statistical analysis of the above experimental 

data was carried out. The mean, median and modal times of flow and 

the standard deviation of the input and output pulses for each set 

of experiments were determined using the following formulae, 

(i) The mean time of flow is given by the centroid of the pulse shape 

and was calculated as follows: 

'1 

c, 
0 -4 t 

Fig.4.11.1„ 



Figure 4.11.1 shows a typical pulse as a plot of C against t. 

Readings are assumed to be taken at a uniform time intergal at. 

The distance of the centroid of the area under the pulse curve from 

the origin 0 is given by 

n 

E At (r 	N at (2C. +C.)  
— ‘‘,..4.,..,. 	) {.- 	1+1 1  
2 1 2+1 	3 - .1. . i=1 c.1  4-c. 2. 

+ (i-1)AtI 
+1  

n 
2 
i 6t(c

i 
 ÷ a.

1+1
) 

'  
1=1 

(ii) The modal time is the time from the origin at which the maximum 

value of C occurs. 

(iii) The median time is the time from the origin to that ordinate 

which bisects the area under the curve. 

(iv) The standard deviation is the square root of the second moment 

about the mean value and is given from Fig.4.11.1 by 
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At 
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)  2  i=1 

	 4.11.2 

In analysing the experimental results, equations 4.11.1 and 4.11.2 

were modified to include two different time intervals Ati  in the 

vicinity of the peak and Ott  for the remainder of the curve. 

There is much controversy in the literature with regard to the 

calculation of average detention time. Theoretically the average 

detention time is equal to the mean time t. obtained from equation 

4.11.1 which is also equal to the volume of the system divided by 

the flow rate. In the case of a thick input pulse the average de-

tention time is theoretically equal to the distance between the mean 

of input pulse and the mean of the output pulse. 

In flow systems which contain any element or region in which the 

flow is very slow in comparison with the main flow, often referred to 



ac 

at 
- C 

at 

diffusion equation 

a 
= D 2c , L ale  	 4,11.3 

1 
ix 

where P = peclet number = D and 
Ii x 

 t = average detention time = 	where 

in the literature as "dead space", tracer which enters these regions 

is released very slowly, and at low concentrations which are difficult 

to measure accurately. Consequently the flow curve may have a long 

tail, which makes the determination of the first moment about the 

origin inaccurate. This difficulty has been referred to by 

Thackston et al.(47), Krenkel
(48) 

and Spalding(49). 

Thackston et al.(47) introduced a mathematical model to describe 

the flow curve in terms of the longitudinal diffusion coefficient D
L' 

average velocity and time of flow. This model is based on the 
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where C = the average concentration of the tracer over the cross-

section of the flow 

u = the mean velocity of the flow. 

If the tracer is initially uniformly distributed across a plane 

perpendicular to the flow x = 0 at time t = 0, then the solution of 

equation 4.11.3 is given by Thackston et a1.(47) as 

C= 

 

-(x-rit)/4D t 	 4,11.4 

  

A/4TOt 

where M = total mass of the tracer 

x = distance from the origin in the direction of the flow 

A = cross-sectional area of flow normal to x 

In dimensionless form equation 4.11.4 is written as 

-P(1-t/i) 

	 e 4t/E 
m 	4nt.T /Au 

	 4.11.5 

x = the distance from the injection point to the measuring point 

at the outlet. 
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M/Au = the total concentration and is given by the area 

under the flow curve. 

Thackston et a1.(47)  recommend that this equation should be fitted 

to the flow curve by least squares taking P and t as variable parameters. 

From the optimum values of P and t thus obtained, the actual diffusion 

coefficient D
L 
and the average detention time t are computed. 

As initial values t is taken as the nominal detention time and 

- x 
u = 	DL  is calculated using Levenspiels(9) formula given below. 

If ori  and 62  are the ctandard deviations of the input and output 

pulses respectively, then the change in variance between the input 

and output points in given by Ice = a22 	oi 2. 	In dimensionless 

form this difference is related to the Peclet number P as follows 

-2P 
— 	+ 4e + 4Pe P- 5)   4.11.6 

E

Ac2 
=
2
/P  +

1 	
(e

2 	 p2 

Calculating L02  and taking t as the nominal detention time P is 

computed and DL  is obtained. The value of P obtained from equation 

4.11.6 is directly introduced into equation 4.12.5 as a first approxi-

mation in the optimisation procedure. 

From the optimised average detention time, the fraction of 

stagnant volume, referred to here as dead space is given by 

Nominal Detention time - Optimised Detention time 

Nominal Detention Time 

In Table 4.11.1 Peclet numbers, diffusion coefficients and dead 

space values are calculated using the time from the centroid of the 

input pulse to the centroid of the output pulse as the mean time 

and applying equation 4.11.6. In many cases the results indicate 

negative dead space which is impossible. 



Table 4.11.1  

Set 
No. 

Q 
.l/min 

91  % 
tracer 

recovery 

T 
P 

mins. 

Mean 
of 
input 
pulse 

Mean 	76 of 
output mins, 
pulse 

% 
dead 
space 

a.1 	ao 
in 	in 

mins. mins. 

DL 
cm2/min, 

Peclet 
No, 

8o 
81 

4 
4 

0.084 
0.21 

85 
90 

82 5 0.105 92 2 1.00 17.01 16.01 16 0,644 8.560 235 3.22 
83 5 0.158 100 3 1,49 18,79 17.30 9 0.934 9.206 307 2.99 
84 5 0.210 98 4 1.99 18,00 16.01 16 1.223 9.892 322 3.13 
85 5 0.263 99 5 2.48 17.91 15,43 19 1.511 7.940 298 4,10 

86 6 0.126 92 2 0.99 15.20 14,21 10 0,645 7.16 296 3.90 
87 6 0.189 96 3 1.49 16.84 15.35 3 0.934 8.633 376 3.07 
83 6 0,252 90 4 1.99 15.60 13.61 14 1.223 7.812 394 2.93 
89 6 0.315 95 5 2.48 16.58 14.10 11 1.513 8.370 400 2,78 

90 7 0.147 95 2 0,99 13.24 12,25 9 0.644 5.753 296 4.55 
91 7 0.221 96 3 1,49 14.12 12,62 7 0.934 6.465 367 3.67 
92 7 0.294 97 4 1,99 14.90 12,91 5 1.223 7,094 42o 3,21 
93 7 0.368 95 5 2,48 15.13 12.65 7 1.512 7.032 423 3.19 

94 8 0,168 103 2 0,998 11.97 10.97 7 0,645 5.126 332 4,64 
95 8 0,252 96 3 1.490 12.26 10.77 9 0.934 5.165 346 4,45 
96 8 0.336 95 4 1,990 12,19 10,20 14 1,223 5.075 373 4.13 
97 8 0,420 94 5 2,480 12,62 10.14 15 1,512 4,922 330 4,67 

98 9 0,189 95 2 0,998 11,01 10,01 5 0,645 4,299 291 5.94 
99 9 0.284 97 3 1,490 10.87 9,37 11 0.934 4,180 315 5.50 
100 9 0,378 105 4 1.990 11,43 9.44 lo 1,223 4,468 361 4.79 
101 9 0.473 99 5 2.480 13.50 11.02 -4 1.512 5.886 485 3.57 



Table 4.11.1  (continued) 

Set 
No. 

Q 
Vmin 

Ai  $ 
tracer 

recovery 

T 
P 

mins, 

Mean 
of 
input 
pulse 

Mean 
of 
output 
pulse 

E 

mins.  

dead 
space 

a.
1  

in 
mins, 

ao 
in 

mins. 

DL 
cm2/min.  

Peclet 
No. 

102 10 0,210 102 2 0,997 10.06 9.06 5 0.645 3.646 266 7.24 
103 10 0.315 96 3 1.490 10.32 8,82 7 0,934 3.821 315 6.11 
104 10 0.421 97 4 1.990 11.56 9.57 -0.5 1.223 4.707 438 4.39 
105 10 0,525 96 5 2.480 11.48 8.999 5 2.512 4,411 417 4.62 

106 11 0,231 102 2 0.996 10,57 9.57 -10 0,645 4.107 355 5.97 
107 11 0.347 98 3 1.490 10,77 9.28 -7 0.935 4.296 419 5.05 
108 11 0.462 98 4 1.980 10.92 8.94 -3 1.224 4.110 384 5.52 
109 11 0.578 98 5 2,480 11,61 9.13 -5 1,512 4.676 517 4.10 

110 12 0,252 98 2 0,995 8.885 7.89 0.5 0.545 3.053 268 8.60 
111 12 0.378 96 3 1.492  9.553 8.06 -1 0.935 3.503 364 6.34 
112 12 0.504 98 4 1.986 10,232 8.245 -4 1.224 3.780 412 5.61 
113 12 0.630 95 5 2.476 10,409 7.932  0.03 1.513 3.676 380 6.08 

114 13 0,273 98 2 0.998 8,416 7.418 -1 0.645 2.787 254 9.84 
115 13 0,410 97 3 1.491 8.491 7.000 4 0.935 2.776 274 9.12 
116 13 0.546 95 4 1.990 9.355 7.365 -0,5 1.224 3.220 362 6.91 
117 13 0.673 99 5 2.481 10,329 7,847 -7 1.513 3.784 479 5.23 

118 14 0,294 95 2 0.997 7.719 6.721 1 0.645 2.634 284 9,48 
119 14 0.441 99 3 1.493 8.534 7.040 -3 0.935 2.852 316 8.53 
120 14 0.588 95 4 1.988 8.699 6.711 1 1.224 2.835 320 8.43 
121 14 0.735 95 5 2.482 9,209 6.727 1 1.512 3.021 361 7.47 



Set Q 
No. 2/min tracer 

recovery 

T
P 
 D 

mins. cm/  min. 
Peclet 

No. 

Dead 
Space 

Mean 	Mean 
Dead 	DL Space cm2  /sec 

man Mean 

min. 

QI t 

Table 4.11.2 

80 
81 

4 
4 

0.084 
0,21 

85 
90 

82 5 0.105 92 2 551 2.17 15.945 21 
83 5 0.158 100 3 477 2.51 13.538 37 35 476 2.53 13.97 
84 5 0.210 98 445 2.68 12,699 43 
85 5 0.263 99 5 433 2.75 13.693 41 

86 6 0.126 92 2 512 2.80 12.411 27 
87 6 0.189 96 3 484 2.96 11.756 35 37 439 3.35 11,7 
88 6 0.252 90 4 412 3.48 11.288 42 
89 6 0.315 95 5 347 4.14 11.344 44 

90 
91 

7 
7 

0.147 
0.221 

95 
96 

2 
3 

489 
508 

3.42 
3,29 

10.794 
10.216 

27 
35 36 415 4.23 10.39 

92 7 0.294 97 4 372 4.50 10.195 40 
93 7 0.368 95 5 293 5.72  10.369 41 

94 8 0.168 103 2 443 4.31 9.481 27 
95 8 0.252 96 3 350 5.45 9.504 33 34 356 5.48 9.57 
96 8 0.336 95 4 325 5.88 9.445 37 
97 8 0,420 94 5 305 6.26 9.833 38 

98 9 0.189 95 2 361 5.96 8.953 24 
99 9 0.284 97 3 356 6.05 9.013 26 29 330 6.57 9.13 
100 9 0.378 105 4 314 6.84 9.061 33 
101 9 0.473 99 5 289 7.42 9.477 33 



Table 4,11.2 (continued) 

Set 
No. 

Q 	81  
2/min 

% 
tracer 

recovery 

T 	DL p 

mins.min. 

P 
Peclet 
No,  

T 

min. cm  2/ 

Dead 
Space 
% 

% 
Mead 
Dead 
Space 

Mean 
DL 
cm2  /sec 

Mean 

P 

Mean 

T 
min. 

102 10 0.210 102 2 392 6,10 8.573 20 
103 10 0.315 96 3 346 6.90 8.596 26 26 335 7.24 8.82 
104 lo o.421 97 4 313 7.63 8.833 28 
105 10 0,525 96 5 289 8.27 9.274 29 

106 11 0.231 102 2 390 6.73 8.129 18 
107 11 0,347 98 3 358 7.35 8,250 22 22 341 7.78 8,46 
108 11 0.462 98 4 326 8,06 8.539 24 
109 11 0,578 98 5 292 8,98 8.908 23 

no 12 0,252 98 2 387 7,41 7.388 19 
111 12 0,378 96 3 395 7.26 7.679 22 21 364 7,90 8,0o 
112 12 0.504 98 4 353 8.12 8.387 20 
113 12 0.630 95 5 324 8.84 8.559 23 

114 13 0:273 98 2 346 8.98 7.101 17 
115 13 0,410 97 3 398 7.80 7.443 19 19 351 8.91 7,72 
116 13 0.546 95 4 361 8.60 7.941 19 
117 13 0,673 99 5 302 10.27 8.381 20 

118 14 0,294 95 2 431 7.76 6.532 18 
119 14 0,441 99 3 365 9.17 7.106 18 18 342 9.28 7,31 
120 14 0.588 95 4 335 9.97 7.549 17 
1;7* 14 0,735 95 5 326 10.25 8.07 19 



T T /T p4T  
Set Q Q1 	% Nominal 
No. 2/min 	tracer detention T 

recovery time "T" P  
mins. min. 

Table 4,11,3 

Corr, Corr, Mean 

1 	
Dead 	Dead 

/T  Space Space  

Mean 

from 5 
ar,model  

Mean of 
S.C. Vol. 
model 
5 	. 

8o 4 0.084 85 
81 4 0.21 90 

82 5 0.105 92 2 0,84 0,026 0,81 19 
83 5 0.158 100 19.04 3 0.71 0,039 0.67 33 35 0.15 3 
84 5 0,210 98 4 0.67 0,052 0,62 38 
85 5 0.263 99 5 0,72 0,065 0,66 34 

86 6 0.126 92 2 0.79 0,031 0,76 24 
87 6 0.189 96 15.87 3 0.74 0.046 0.69 31 34 0.18 6 
88 6 0,252 go 4 0,71 0.063 0,65 35 
89 6 0,315 95 5 0,72 0,078 0,64 36 

90 7 0.147 95 2 0,80 0.037 0.76 24 
91 7 0,221 96 13.60 3 0.76 0,055 0.71 29 29 0,17 6 
92 7 0,294 97 4 0.75 0,074 0,68 32 
93 7 0.368 95 5 0,77 0,091 0,68 32 

94 8 0,168 103 2 0,80 0,042 0,76 24 
95 8 0,252 96 11.90 3 0,80 0,063 0,74 26 26 0,19 9 
96 8 0,336 95 4 0,80 0.084 0.72 28 
97 8 0.420 94 5 0,83 0,105 0.72 28 

98 9 0.189 95 2 0.85 0.047 0.80 20 
99 9 0,284 97 10.58 3 0.88 0,070 0.81 19 21 0,12 7 
00 9 0.378 105 4 0.86 0.094 0,77 23 
01 9 0.473 99 5 0.90 0,118 0,78 22 



Table 4.11.3  (continued) 

Set 
No. 

Q 	Ciki 
2/min 

% 
tracer 

recovery 

Nominal 
detention 	T 
time "T" 	P  min.  mins. 

/T TCorr. 
P//  4T 

Corr, 
Tie 	Dead 
. 	T 	Space 

Mean 
Dead 
&pace 

-6/ 

Mean 	Mean of 
f 	S.G,Vol. 

from 5 	Model5 
par,model par. 

102 10 0.210 102 2 0.90 0.053 0.85 15 
103 10 0.315 96 9.52 3 0.90 0.079 0.82 18 16 0.09 8 
104 lo 0.421 97 4 0.93 0.105 0.83 17 
105 10 0.525 96 5 0.97 0.131 0.84 16 

106 11 0.231 102 2 0.94 0.058 0,88 12 
107 11 0.347 98 8.65 3 0,95 0.086 0,86 14 12 0.13 18 
108 11 0.462 98 4 0.99 0,115 0,87 13 
109 11 0.578 98 5 1.03 0.144 0.89 11 

110 12 0.252 98 2 0.93 0,063 0.87 13 
111 12 0.378 96 7.93 3 0.97 0,094 0.88 12 10 0.08 11 
112 12 0.504 93 4 1.05 0.126 0.92 8 
113 12 0,630 95 5 1.08 0,157 0,92 8 

114 13 0.273 98 2 0,97 0.068 0,90 lo 
115 13 0.410 97 7.32 3 1,01 0.102 0,91 9 7 0.06 7 
116 13 0.546 95 4 1.08 0.136 0,94 6 
117 13 0.673 99 5 1.14 0.170 0.97 3 

118 14 0,294 95 2 0,96 0.074 0.89 11 
119 14 0.441 99 6.8o 3 1,04 0,110 0,93 7 5 0,07 8 
120 14 0.588 95 4 1.11 0.148 0.96 4 
121 14 0,735 95 5 1.18 0.184 1,00 o.4 
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Table 4.11.4 

Set 	Q 	81 	Nominal 
No. A/min 	tracer 	hor, 

recovery veladty 
cm/ 8 

T 
P 

tai  
/T 

tmi  
/T 

"t r 
T 

ti 0  / 
/T 

tto/ 

t40 

8o 
81 

4 
4 

0.084 
0,21 

85 
go 

82 5 0,105 92 0.1207 2 0.84 0,31 0,79 1.63 0,21 
83 5 0.158 100 0.1207 3 0,90 0.31 0.94 1,78 0.18 
84 5 0,210 98 0,1207 4 0.84 0,37 0.89 1,68 0_19 
85 5 0.263 99 0.1207 5 0.81 0,41 0.89 1.63 0.21 

86 6 0,126 92 0,1449 2 0,89 0,36 0.82 1,70 0.21 
87 6 0.189 96 0.1449 3 0.96 0.38 0.88 2.02 0.18 
88 6 0.252 90 0,1449 4 0.86 0,44 0.76 1,95 0.19 
89 6 0.315 95 0.1449 5 0.88 0.49 0.82 2.02 0,20 

90 7 0,147 95 0,1691 2 0,90 0,42 0,81 1.69 0,24 
91 7 0,221 96 0,1691 3 0.93 0.44 0,86 1.91 0.21 
92 7 0.294 97 0.1691 4 0.95 0.51 0,88 1.98 0,21 
93 7 0,368 95 0,1691 5 0.93 0.59 0.88 2.06 0.22 

94 8 0,168 103 0,1932 2 0.92 0.46 0.84 1.85 0.24 
95 8 0,252 96 0,1932 3 0.90 0,53 0.84 1.85 0,25 
96 8 0.336 95 0.1932 4 0,86 0,59 0,82 1.85 0,25 
97 8 0,420 94 0,1932 5 0.86 0,65 0.88 1.85 0,27 

98 9 0.184 95 0,2174 2 0,95 0.57 0.89 1.79 0.28 
99 9 0,284 97 0,2174 3 0,89 0.57 0.87 1.70 0.29 
100 9 0.378 105 0,2174 4 0,90 0,64 0,92 1.89 0.28 
101 9 0,473 99 0,2174 5 1.04 0.73 1.02 2.36 0.24 

102 10 0.210 102 0,2415 2 0.95 0.60 0.92 1.79 0.29 
103 10 0,315 96 0,2415 3 0.93 0,64 0,92 1,70 0,31 
104 10 0,421 97 0.2415 4 1.00 0,72 1,02 1,89 0,28 
105 10 0,525 96 0,2415 5 0.95 0.80 1,05 2.36 0,30 

106 11 0.231 102 0,2657 2 1.10 0,61 1.04 1.79 0.28 
107 11 0.347 98 0.2657 3 1.07 0.69 1,04 1,79 0,26 
108 11 0.462 98 0.2657 4 1,03 0,80 1.07 2.10 0.28 
109 11 6.578 98 0.2657 5 1.05 0,87 1,13 2.00 0.28 

110 12 0.252 98 0,2898 2 1.00 0.66 1.01 2.08 0,32 
111 12 0.378 96 0,2898 3 1.02 0.72 1.04 2,19 0,30 
112 12 0,504 98 0.2898 4 1,04 0.87 1.10 2,19 0,29 
113 12 0,630 95 0,2898 5 1.00 0,96 1.13 2,31 0.31 

1l4 13 0,273 98 0.3140 2 1.01 0.75 1,02 1,76 0,35 
115 13 0,410 97 0.3140 3 0.96 0.78 1,02 2.01 0.35 
116 13 0.546 95 0.3140 4 1,00 0.85 1.13 2.14 0,32 
117 13 0.673 99 0.3140 5 1,07 1,04 1,23 2,14 0.31 
118 14 0,294 95 0.3381 2 0,99 0.77 0.99 1.77 0.36 
119 14 0,444 99 0.3381 3 1.04 0,84 1,10 1.77 0.37 
120 14 0.588 95 0.3381 4 0,99 0,97 1,14 2,05 0,32 
121 14 0,735 95 0.3381 5 0.99 1.03 1,25 2,32 0,33 



In Table 4.11.2 the experimental results are fitted to the 

model equation 4.11.5 using the values of P and t in Table 4.11.1 

as initial values. Optimum values of P and t were thus obtained, 

and dead space values recalculated. In this analysis the ordinates 

of the flow curve are made dimensionless by dividing them by the 

area of the curve, The tide scale is not dimensionless. The dead 

space volumes in this case were computed by subtracting the mean 

time of the input pulse from the optimised mean time t of the output 

pulse and dividing it by the nominal detention time. Although 

the results shown in Table 4.11.2 now show no negative values for 

dead space, the values obtained are rather high. It must be 

remembered that the model is based on an impulse input at time t = 0 

at a flow cross-section x = 0 whereas for these experiments the 

input was a pulse of considerable width such that the model is not 

strictly applicable. The fact that lower values of 84 (or T ) 

give rise to lower values of dead space tends to support this 

argument. Also if dead space does exist then the longer the input 

pulse, or the greater the mass of tracer injected, the longer will 

be the tail of the dispersion curve. It appears from these 

experiments that if the input pulse width is increased by a length 

x so also is the tail of the output curve. This in itself should 

not give rise to any inaccuracy in estimation of t from the distance 

between the centroids, but when dead space exists then excessively 

long tails are produced which tend to give large values of T. 

In order to obtain a more realistic average time of flow an 

empirical correction factor is proposed here. It is assumed that 

the width of the output pulse is equal to 4T where T is the nominal 

detention time. The remainder of the tail if any is ignored. 

Then the shift in the mean time of flow of the output curve due to 
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a duradtion of injection time T = T. On this empirical assumption, 
p 	p/4 

the corrected average time of flow 7b.  = the optimised 7E for the output 

pulse --
T
p/4,,- 

The corrected 76 and the dead space values computed from these 

corrected mean times are shown in Table 4.11.3. The dead space values 

thus obtained are more realistic. For comparison the short circuit 

volumes and fractions of flow bypassing through these volumes 

obtained from the five parameter model are also given. It can be 

seen that for high flows the agreement between dead space and short-

circuiting volume is reasonable. The differences between the values 

at the low flows might be attributable to the fact that the five 

parameter model includes only one element of shortcircuiting, whereas 

at low flows it is probable that the system contains bypassing of 

both the fast and slow types. The model parameter values obtained 

suggest that a fast shortcircuiting flow through a small volume is 

prominent, and consequently the possible presence of a stagnant zone 

has been indicated. 

In Table 4.11.4 the results of the tank tests are analysed quali-

tatively in the manner described in Chapter 1. The mean time "ta"1 

modal time "tm", 50 percentile "t50", 10 percentile utio n, and Morril 

Index i.e. 90 percentile/10 percentile, are all computed for each set. 

It can be seen the normalised values of mean,median and mode approach 

1.0 as the flow through increases which is to be expected since higher 

velocities and increased turbulence tend to produce plug flow. It 

appears that no further information can be gained from such analysis. 
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5.1. Curve Fitting  

Having obtained experimental input and output data for a flow 

system and having proposed a mathematical model for the system, it 

is necessary to find the values of the parameters in the model such 

that it gives as nearly as possible the same relationship between 

input and output as does the real system. These values of the 

parameters are known as the optimum values, and the technique for 

evaluating them used in this study is curve fitting. 

When the experimental data are accurate or of equal reliability, 

it is frequently considered that the best approximation of the para-

meters is that for which the sum of the squares of the differences 

between the fitted curve and the data over the whole domain is the 

least. This is known as Legendre's principle of Least SquareV). 

Mathematically, let the model to be fitted to the data be 

E(Y) = f(x,P)   5.1.1 

where x and p are in Matrix Notation, x donating the independent 

variables xi  , x2, x3  • • • X 
 m and fal  , f3.2  , [33 

	plc  are the values of 

k parameters. E(Y) is the expected value of the dependent variable Y. 

Let the data points be denoted by yi; i = 1,215...n corresponding 

to xi  i, x2 i, x3i 	xmi  whe re n is the number of data points. Then 

the least squares error is given by 

n 
4  = Tr, (y. Y')

2 

i=1 " 
	 5.1.2 

where Y. are the values of Y predicted by equation 5.1.1. The 

problem now is to compute those values of the parameters that will 

minimise 4. 

The function f(x,p) given by equation 5.1.1 can be linear or 

non-linear depending on whether the p's are linearly ar non-linearly 



related to the independent variables x. Also the function 4 
14m 

given by equation 5.1.2 will be linear or non-linear depending on 

whether the function E(Y) is linear or non-linear. No completely 

satisfactory solution exists for this problem if these functions 

are non-linear. 

5.2, Types of Error Profile  

In all non-linear curve fitting it is essential to know the 

variations of 0 with respect to changes in the values of the rs. 

This may be visualised by plotting the values of (I) corresponding 

to a particular parameter, say N I  as shown in Fig.5.2.1 keeping the 

other parameters constant, 

Pi 

 

13, 

 

If is linearly related to N I  the error profile will be 

elliptical. If it is non linearly related, the profile will be 

distorted according to the severity of the non linearity. It is 

found however, that even in the most severe case of non-linearity, 

the error profile is nearly elliptical in the immediate vicinity 

of the minimum 4. As observed by many numerical analysts, the 

contour surface of 4) is generally attenuated in some directions 

(left portion of the profile in Fig.5.2.1) and elongated in other 

directions so that the minimum lies at the bottom of a trough. 

If there is more than one trough, then it is essential that the 
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initial values of the [3's be chosen on the inside slopes of the 

trough containing the minimum. 

5,3. Available methods of solution 
In this section various available methods and their respective 

merits and demerits will be discussed. 

(i) The Newton-Raphson Method This method involves the expansion 

of the function q given by equation 5,1.2 in the Taylor's series 

through the linear terms. For simplicity let equation 5.1.2 be 

written in a different form as follows 

= ,77  [f.
1
(x,b)]

2 

where 	fi(x,b) = yi  - f(x,(3) 

,1 	..... For a minimum 	.§. = 0 or 	= 0 
6p 	ND 

 

5.3.1 

 

Therefore 
rs 
L fi(x,b) = 0 
i=1 

00004 50392  

Now a change in a parameter Hp will cause a change in "b" in 

equation 5.5.2. Suppose"b" changes by ob. Then, expanding 

f(xl b+ob) by Taylor's series in the linear terms, 

k 
f(x"b+615) = f(x. 	+ 7; 

	
bbd  

a 
J=1 b  

= 1,21 3,...n 

 

5.3.3 

 

In equation 5,3.2 p is replaced notationally by "b", values 

of "b" being the least squares estimates of [3. It is assumed that 

the vector oh is a small correction to "b". When ultimate conver-

gence of the series of small corrections or steps is achieved, 

f(xil b+Ob) = 0 
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k 	Of. 
• 7 --a x 	= - fi(xe) • • L 

j=1 ob . 

i = 1,2,31...n 

In matrix form equation 5.3.4. can be written as 

B.6B = f 
Ofi  

where the matrix B = — 
ob. 

	 5.3.4 

	 5.3.5 

Since B is not generally symmetric, multiplying both sides of 

equation 5.3.5, by BT, the transpose of B 

	

B
T
.B.6B = B

T
.f   5.3.6 

Writing B
T
.B = A and B

T
.f = G equation 5,3.6  becomes 

	

A.6B = G   5.3.7 
Then 
	

oB = A-1.G   5.3.8 
The corrected values of the B's are given by B + 6B and the 

process of correction is repeated until a minimum value of 4  is 

obtained. This method is also known as the Gauss method or the 

Gauss-Newton method. If the initial values of the parameters 

assumed are very near to the optimum values, this method can give 

a rapid convergence, but in non-linear cases sometimes divergence 

occurs after successive iterations and no minimum value of 4 can be 
obtained, 

(ii) The Method of Steepest Descent This method makes corrections 

to the trial vectors "b" by moving in the direction of the negative 

n of,(x,b) 
6b = - 	= - a • 2 E 	ob 	. fi(x,b)   5.3.9 

8b 	i=1 

where "a" is a suitably selected constant. In matrix notation, the 

correction vector 6b in the rth iteration can be written as 

I)6br  = Gr 	 5.3.10 

gradient of (I) given by 
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where G has the same meaning as before and I is a unit matrix. The 

values of the b's in the (r+l)th  iteration are given by 

b
r+1 

= b
r 
 8b

r 
   5.3.11 

610r  is obtained by solving equation 5.3.10 and the process is 

repeated until a minimum is obtained for the value of c. The 

method of steepest descent always converges if the initial values 

of the parameters are close to the optimum values but has the disadvan- 

tage of very slow progress after the first few iterations. 

(iii) Marquardt's Method 	Marquardt(51) modified the above methods 

and proposed a new method which he described as the "Maximum Neighbour-

hood method". This method again is based on the assumption that the 

truncated Taylor series can adequately represent a non linear function. 

Marquardt rewrote equation 5.3,7. as 

(A 	kI)45b = G   5.3.12 

comparing equations 5.3.7 and 5.3.10 it is evident that methods 

(i) and (ii) are incorporated in this formula where '- 	1 replaces — 
a 

in equation 5.3.10. Equation 5.3.12 can be described more clearly 

as follows. Let "f" denote the function f(x7b). Then the matrix 

A will represent. 

 

n Of.  

1-71 ob1 
n 6f. r 
4- 
i=1 6102 

• 
n of i 

6b
k 

  

   

A = 
n ef. 	n Of. 	n Of. 

x r* 	r. L. 	.•. 
i=1 eb

1 	
i=1 Ob2 	1=1 ebk 

   

    

.'. A is a symmetric k x k matrix, 



If the elements of the matrix "A" are written as 
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A = 

all 812 ai3 

a21 a22 a23  

• • • at k  

• • • a2 k  

• • 	• 	• 

	

•• 	• 	• 
• • 	• • • 

aki ak2 ak3 	akk 

Then (A 41) is obtained by adding X to the diagonal of the matrix A. 

8b is a vector of k elements and G is obtained as follows:- 

n Of. 

E 
i=1 ob1 

G • . 
• • 

•  n Of. 

Ob
k  

n 
x L fi  
1=1 

Thus G is a column vector of k elements. For convenience 

MarquarA51)  proposed that "A" and "Gil should be scaled as follows:- 

AK  = (a;!. 
JJ)  

= (4) 

a 
JJ  

x a 
JJ 	J3 

  

JJ 

On solution the corrections 8 are obtained by dividing 8 bi 	 bj  

by iajj. The asterisks denote the scaled quantities. The g's are 

the elements of the G vector, 

Therefore after scaling equation 5.3.12 becomes 

(A
m 	

XI) x 8b = G
M 

	 5.3.13 

	

and 8bm  =   5.3.14 

Having obtained the corrections to the b vectors in the r
th 

iteration by solving equation 5,3,14, the zero trial vectors for 
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the (r+1)th  iteration are obtained as b(r+1) = tr 6tr. After 

each iteration the Least Squares value 0 is computed. The constant 

A is selected by trial and error such that 0r+1  < 4r. Convergence 

of the step lengths is said to have been achieved if 1813(jr)1/(T + ihrl< 

for all j, (j = 1 —> k) for some suitable value of 6, say 10 5 and 

some appropriate value of T, say 10-3 	Marquardt(51) proposed a 

procedure by which X is varied after each iteration. In this procedure 

equation 5.3.14 is solved for two different values of k in each 

iteration. 

Marquardt's method has been used successfully by a number of 

authors. Krenkel(37) found it to be the most appropriate method 

of curve fitting in his application of a diffusion model. 

In this study it has been used for obtaining mean detention 

values "t" and Peclet numbers in Chapter 4. If the correct values 

of X can be chosen, convergence is obtained rapidly. Rapid conver-

gence is the best feature of the technique. 

The major drawback of the method is that for each iteration 

equation 5.3.14 has to be solved twice for two different values of 

X, unless the values of X become the same in the course of the itera-

tions. FUrthermore for more than three parameters the process of 

calculation of the partial derivatives and inversion of the (A + XI) 

matrix becomes lengthy. Also this process cannot be used to handle 

constraints satisfactorily. If some of the parameters are very 

small when compared with others, overflowing in computer analysis 

becomes frequent. 

(iv) The Method of Law and Bailey Law and Bailey(38) proposed 

a regression technique which is claimed by them to converge rapidly 

if a unique solution exists. Using the same notation, equation 

5,3.7 of the Newton Raphson method is modified as follows:ft 



206 

Let D. = 6b. x g. 	j = 1,213...k   5.3.15 
3 	k 3  

	

and D = 7 D   5.3.16 T jti  j 

In equation 5.3.8 the values of the 6B are unrestricted. 

In this method they are restricted, by multiplying the 6b by a 

	

(6b .)R  = a x Ob   5.3.17 

where (6b.) 
R
are the restricted corrections in the parameters and a 

is the fraction by which the corrections are restricted. 	
LR' 

the cange in 4 for a linear function over the restricted range, can 

be shown to be equal to 

	

= (2a - a2) x DT    5.3.18 

	

= Oar) Or+1)   5.3.19 

AliaR = 4(ar) 	
4(1.4-1)   5,3,20 

where "r" refers to the rth iteration and (r+1), the (r+l)th  

iteration, 40a  is equal to the actual change in the 4 function 

4

over the unrestricted range, 0a = calculated from equation 5.3.1. 

aR is equal to the actual change in 0 over the restricted range and 

	is equal to calculated from equation 5.3,1 using restricted aR 

changes in the parameters "be',  Using the terms defined above, if 

the following criteria are adhered to, convergence is assumed, 

(a) 	DT obtained from equation 5.3.16 must be positive if the 

direction is towards a minimum. If a minimum is required and DT  

isfoundtobe-vel thesignofallthe6b.
3 
 must be changed. 

(b) 	If 40a is +vet  the unrestricted calculation is converging 

and if negative it is diverging and the present values of the 

corrections must be restricted by multiplying them by a factor a. 

(c) If 0a is positive, the calculation is converging but the con-

vergence may be slow, The criterion 60aR  - P44LR  0 ensures 

rapid convergence. A value of p between 0.1 and 0.25 is found 

Let 

and 
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suitable for a maximum rate of convergence. 

Law and Bailey's method is very useful when dealing with 

unrestricted parameters. 	In the author's experience this method is 

better than Marquardt's method in terms of ease of operation. The 

trial and error involved in obtaining the initial values of X, and 

the need to make computations twice are avoided in this method. 

(v) Rosenbrock's Method When the parameters are constrained, or 

more so if they interact, it is virtually impossible to obtain a 

convergence using the methods outlined above. Rosenbrock's(52)  

method eliminates the necessity of finding derivatives and gives an 

easier method of optimisation. However this method requires a large 

number of computations and iterations, for which a computer is essen-

tial. Rosenbrock's program is used extensively at present and is 

readily available in computer libraries. The only task required of 

the user is that of estimating the initial values of the parameters. 

Without going into the complexities of the technique, it 

may be visualised in the following simple manner. It is essentially 

a modification of the method of Steepest Descent, in which the incre-

ments in the parameters "b" are of arbitrary length while their 

direction is fixed by the negative gradient of 11. 
•r-  

The components of a unit vector ; in the required direction 

are given by equation 5.3.21. 

LT, (14 2]12  
6b j 	3=1 6b. 

	 5.3.21 

To illustrate, consider a case in which there are two 

parameters hi  and b2. If the value of the function tin is plotted 

for various values of b1  and b2, contours of are obtained as shown 

in Fig.5.3.1. 



T 
b2  4 contours 
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bi 

Fig. 5.3.1. 

The direction of ',() is given by the initial estimates of bl  and b2. 

A correction is then made to b1  or b2  by an amount ae along a 

direction parallel to 
0 

 where e is a suitable step size. It is 

customary to make e very small to begin with. If it is found that 

e causes practically no change in the value of 0 it is multiplied by 

a factor a where a > 1. On the other hand if "e" causes divergence, 

the value of 4 is set between 0 and 1. The process of correction 

in this direction is continued until the least value of q is obtained 

for both the parameters bi  and b2. Then the second unit vector Z;I  

is calculated from equation 5.3.21. Theare computed from the 
ob  

two adjacent points at the end of the ° vector. Note that the 

vector s 0 
 is perpendicular to the contour passing through the 

: 
starting points and that when a minimum is reached along 

;.o
it 

becomes parallel to the local contour at that minimum point. 

is therefore perpendicular to the local contour and hence perpendicular 

r to 	. The next vector (2  is perpendicular to s and parallel to 

Thus the procedure is continued until a minimum is reached. 

When there are K parameters, 1 is computed along all directions 

of C at each point and the direction along which 4 is a minimum is 

chosen at each point in the process. Essentially one parameter is 
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varied at a time, keeping all other parameters constant. The 

process is continued until no further improvement is obtained in 4, 

after which a new trial vector ?" is calculated by a method given 

in Rosenbrock
(52) which however is omitted from this outline. In 

this way all the parameters are dealt with until an absolute minimum 

is obtained. 

(vi) Powell's Method 	A further technique available for optimisa- 

tion is that of Powell(53) 
	

It is essentially an improvement on 

Rosenbrock's method in the calculation of L However the author 

has experienced difficulty with this method in situations where 

the contours of 4 are flat, or form a plateau, such as that shown 

in Fig.5.2.1 (two dimensional case) when the value of b1  is equal 

to pr for instance. This condition arises frequently with the 

models used in this study so that Powell's method is not considered 

suitable, 

5.4. ORtimisation of the proposed model parameters  

The parameters to be optimised in the models proposed in 

Chapter 2 are m, p, s, r, f1 , f2  etc depending upon the complexity 

of the particular model. However they do not occur explicitly in 

the model, but appear in the time constants Kit  K2, K3 etc and in 

conjunction with f. and f2. They are also subject to the following 

constraints. 

(1) The value of each parameter lies between the limits of 0 and 1, 

(ii) The sum of all the parameters which represent fractions of 

tank volume is equal to 1. 
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(iii) Any change in the flow fractions f causes a change in all 

the constants K1  , K2, K3  etc, al' .ough the values m, p, s, etc 

remain constant. 

(iv) If the value of one of the tank volume parameters is fixed, 

the range of operation of the other parameters is reduced by that 

amount. For example if the optimised value of mu is found  

0 be equal to ma" say then the range of values available to the 

next parameter "p" is 0 < p < (1-a). For the next parameter the 

range is still smaller and so on. 

In the case of the more complex models such as the shortcircuiting 

and recirculation model of Fig.2,8.5, the model curve consists of 

eleven segments, for each of eight possible conditions, the different 

conditions being given by the relative values of the time constants 

and Ql . During the course of optimisation, a small change in one 

of the parameters may change these relative values, and thus change 

the model from one condition where one set of eleven equations 

applies to another condition where a different set of equations applies. 

It has been found that with most of the above mentioned methods of 

optimisation, such a change results in divergence rather than conver- 

gence. 

In the author's experience Rosenbrock's method
(52) 

was found to 

be the most suited to the conditions and restraints described above. 

The manner in which the restraints were handled is explained here, 

using the four parameter model as an example. 

m, p and f are replaced by m', p' and f' where 

ml  7. Arc sin (%/m) 

p' = Arc sin -(1/0/(1-m))- 

f' = Arc sin (if) 

The values of m', p' and f' were optimised and the optimum values of 

m, p, s and f were calculated after each iteration as 
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p = (1-m) si:". 

s = 1 - m - p 

f = 

In this wa: all the constraints are satisfied although the value 

of s is rot ortised directly, An alternative method is to optimise 

all four parameters and then calculate m, p and s values by dividing 

the optimised velues by (!im p a  s). However it was found that 

this makes the op',;imisation more difficult as there are four parameters 

to be optimised instead of three, 	Indirect optimis..tion of s is 

more satisfactory. 

5.5 A typical  flow diagram 

In order to illustrate the process of optimisation, a flew chart 

of the four parameter r ,̂7!c,1 sm,pute72 program is given below, showing 

only the main 121eclIs. 

,Stagy 

Sri  

ICCEPUTE AT-EA OF 61.T.'1HOVI 
;Curve and Ave. ono, C 

- t/T 

m;p1s and ..... 
• 

	

,-------- . 	_ - 	- . , 
1 CUIPUTE m. -o ,,nd - 1 

(0. *.al R08' NBP-0 (..t op TrAtS Aififoff SUB! 

	

iPROGRA OPTMKI 	1 

CALL  FUffeTTON S'ULPROGRA11 CALCFX 

1WRITE m,p,sf, 0 WED; C (9) 
' 

- ...44.D JF e-."  -. 	-,..... 
.....:...A1A SETri?- 

	

,,,,,,, 	_ ---- 

; STOP 



K3  < K2  

Q > K2 > 
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> K3 
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K > (A +K 2 	1  3 
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0  

.,,8>(81  +K2 	A> K3  Q>( -1-K3> 	 > K2  
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!COMPUTE C (-G) 

..)COMPUTE C 	(g)1 
J-1  

(Gi  +IC3  ) 	I 
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F-C-0fraTE-m t  p ansa fi 
i from m' p' and VI 

= 1-m7p 

1P 2-K2  K3] 

.rdro 

21:2 

RETURN 

Fig.5.5.2 
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C (A) in subroutine CALCFX is computed from the equations given 

in the deduction of the four parameter short circuiting model. 

Initial values of the parameters m, p, s and f are estimated by close 

observation of the output curve as discussed in Chapter 2. It is 

very important that realistic initial values of the parameters are 

selected as values chosen at random may result in a false convergence. 

Except in the case of the five parameter model, the RbsoiVte minimum 

of q is unique for a particular set of values of the parameters. 

5.6. Regression method for the pulse technique  
An account of the method by which the Bode plot obtained from 

a mathematical model is matched to the Bode data obtained by experi-

ment, thus finding optimum values of the paramdters- in another way. 

Experimental data obtained from the Pulse Technique may take the 

form of a continuous record of the input and output pulses, or discrete 

values taken at time intervals which may be uniform or random. In 

the case of the direct simulation experiments in this Study the time 

interval was a constant, but in the case of the model tank values 

at two different time intervals were recorded as mentioned earlier 

and the computer program was written accordingly. 

Again the success of this technique depends on the accuracy 

with which the input and output data are recorded. Tracer recovery 

should be as close as possible to 100%. In these experiments this 

was difficult to achieve and in most cases the output curve was taken 

to represent 100% recovery and the input pulse ordinates were adjusted 

accordingly. This deviates from reality but was considered to be the 

best way of dealing with the results under the circumstances. The 

remaining steps in the analysis were as follows: 
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(1) The input and output data were normalised by dividing them 

by the average concentration Ca where Ca•T is equal to the area of 

the output curve. The time t was also normalised to Q. These 

normalisation were not necessary but were made for the sake of 

consistency. 

(ii) As recommended by Law and Bailey(38) the origin for the time 

scale of the output curve was shifted to the point when the tracer 

first appeared at the outlet. 

(iii) Magnitude ratios for the data were then obtained for values 

of "w" from 0 to "wi lt where "w1  P1  was a value such that the corresponding 

M.R. was less than 0.1 or increased again for further increase in w. 

The w values used were as follows:- 

Steps of 0.01 from w = 0 to w = 0.1 

Steps of 0.1 from w = 0.1 to w = 1.0 

and Steps of 0.5 from w = 1.0 to w = 

This procedure was adopted because it was considered that at low 

frequencies, the system dynamics were not adequately reflected by 

the magnitude ratio. 

(iv) The magnitude ratios thus obtained were then normalised by 

dividing them by the value of the magnitude ratio at w = 0. 

(v) For the particular mathematical model being fitted, the values 

of the magnitude ratios corresponding to the same values of w were 

computed. The parameters of the model were then optimised to give 

the best fit of the magnitude ratios thus obtained to those of step (iv) 

using the techniques of section 5.4. 

5.7 Analysis by means of Analogue Computation  

So far, analysis of flow curves by digital computer has been 

presented. Curve fitting is also possible using an analogue computer, 
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in which the mathematical models are simulated by appropriate analogue 

programming. This method is generally quicker and easier, although 

it can be said that the results obtained are not as accurate as those 

obtained from digital computation. 

(1) Analogue programming of the two parameter model. 

For ease'of reference, the basic equations of the two parameter 

model are reproduced below. It may be recalled that these equations 

correspond to a unit input of duration fit. 

(i) Ce(G) = 0  	0 < 9 < K2  

-(9  -K2 )/Ki  
(ii) Ce(Q) = 1 	e 	K2  < 0 < ( Qi 4..K2  ) 

9  > (91  -1-4C2 ) (iii) C0(9) = e 	-e 	/i  
-(A-91  -K2  )/Ki  -(9-K2 ) 

Equation 5.6.1(ii) above on differentiation yields :- 

dY 1 -(9-K2)A  
= 	e 	"1  where Y = C0(9) 

dO K. 
Adopting the notation dY = Y it may be written 

dg 

i=-1b (1 - e-(9-K2)/K1) 	
1 

= - 
K1 	KI 

5.6.1(iii) on differentiation yields :- 

-(Q-Kt)/ 	-(18-0) -K2  )/v.  dY = 1 (e  ' 	e 	) 

d49 

or 	Y ,1 y  

K1  

The Flow diagrams corresponding to equations 5.6.1(i), 5.6.2 and 

5.6.3 in analogue notation are given in Fig.5.6.1. 

pr 

Equation 

5.6.2  

5.6.3 
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5.8 Verification of the two parameter model with the analogue computer  

The two parameter model was verified using data obtained in the 

direct simulation experiments, (Set Nos, 22, 33, 47, 55 and 69) and 

the analogue program given in section 5.7. The mathematical model 

was simulated on an Electronic Differential Analyser (P.A.C.E. TR 48 

computer) and the resulting fit was plotted in the X-Y plane by a 

P.A.C.E, Variplotter (Type 1100E). 

Theexperimentaldatawereplottedas ) against Q where 

C.(Q) was the average input concentration. This method of reducing 

the output concentrations gave the advantage of having the output 

ordinates in terms of a unit step input. 

Since the maximum value of Y in equations 5.6.2 and 5,6.3 never 

exceeded 1, no amplitude scaling was necessary. A factor of 100 was 

used to reduce the speed of integration. The potentiometers represen-

ting Ey and K2  were adjusted by trial and error until the Plotter pen 

traced out a curve as close to the experimental curve as was possible, 

thus obtaining a visual best fit. The fits to data sets 22, 33 and 

47 are plotted in Fig.5.6.2 and those obtained for data sets 55 and 

69 are shown in Fig,5,6.3. The potentiometer settings and the Pen 

and Arm sealing are given in these figures and the results are tabu-

lated together with the uncorrected "m" and "p" values fbn Table 5.6.1, 

Set 
No. 

Fraction of P.M. 	Fraction of Plug 
(tank vol.) 	Flow (pipe vol.) 

(m) 	(p) 

Analogue 
value 
(m) 

Analogue 
value 
(p) 

22 0.462 	0.538 0.371 0.629 

33 0.300 	0.700 0.256 0.744 

47 0.410 	0.590 0,310 0.690 

55 0.590 0.410 0,520 0.480 

69 	0.810 0,190 0,711 0,289 

Table 5.6.1. 
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This method of analysis presents one difficulty in that it is 

difficult to satisfy the constraint mi-p = 1. Also losses in 

potentiometers, ammeters, integrators and other contacts such as 

relays, require the time scaling of the plot to be adjusted. The 

values of K1  and K2  are normalised by dividing each one by their sum, 

The results obtained ultimately on comparison with the actual values 

are found to be reasonably satisfactory. 

5.8 Analogue modelling of the four parameter short circuiting model 

In this particular case the positive type of shortcircuiting, 

i.e, the type of short circuit which precedes the main flow was 

considered. The basic equations are given below:- 

(1) 	. 0 	0 < 9 < K3  

	

Co(Q) = f 	K3  < A < K2 

(iii) Co  (A) = f + (1-f ) (1-e
-(Q-K2  )/KI 

) 	K2  < 9 < (91  +K3  ) 

-(Q-K2  )/KI  ) 	 +K3 ) < < 	+K2 ) (iv) Co(Q) = (1-f)(1-e 

(v) C0(9) = (1-f ) ( e
-(Q-Qt  -K2  )/Ki 

	

	 ) 	9  > 
(8

1 ÷K2  ) 

As the analogue machine available for this study had only two com-

parators, the following modifications were made. Part (1) was omitted 

altogether, The origin was shifted to the time K3 so that part (ii  

of the equation remains valid for a time (K2-K3 ), part (iii) remains 

valid for a time 91  and part (iv) for a time (9I +K2-K3 ). Even with 

this arrangement a minimum of three comparators are necessary. 

During the analysis the work of the third comparator was done manually. 

The flow diagram of the model in analogue notation is given in 

Fig.5.7.1. 
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5.9. Verification of the four parameter model using the analogue  

computer  

As a third comparator was not available on the computer the parts 

of the diagram surrounded by dotted lines in Fig.5.7.1 were omitted. 

The procedure for plotting the output curve and fitting it to the 

experimental data by setting the potentiometers was the same as in 

the previous case. The connection between the amplifiers A30  and Al9  

was kept open until a time equal to (K2-1(3 ) had elapsed, when they 

were manually connected using the "holding" facility, thus doing the 

work of the third comparator. The time (K2-K3 ) was measured by the 

movement of the plotter pen on the graph rather than by stopwatch. 

The results of the fit are shown in Fig,5.8,2 together with the pot 

settings, calculated scaling and arm and pen scales. For comparison 

the results of sets Nos. 70, 71 and 72 are tabulated in Table 5.8.1 

along with the actual values. Considering the approximations 

inherent in an analogue circuit, the results obtained are satisfactory. 

It should be noted from the transformation of the equation for the 

analogue program that it is necessary to know the correct value of 

K3  in this case before commencing the analysis. 	If a third comparator 

had been available the results would have been better, and again various 

electrical losses contributed to errors in the results. 

Set 
No, m 

Actual 
p 	s f m p 

Analogue 
s 	f 

70 0.66 0,326 0,014 0,25 0.555 0.315 0.05 0.25 
71 0.66 0,326 0.014 0,20 0.618 0.343 0.04 0.20 

72 0.66 0.326 0,014 0,15 0.618 0.350 0,032 0.14 

Table 5.8.1. 
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5.10 Analogue program for the recirculation model 

An analogue program for the recirculation model is given below. 

The relevant equations are restated here for convenience. 

(1) 	co(e) = 0 	 0 < 8 < K2  

( ii) 	Coco = 	1 	(1-e-(Q-K2 	) 	K2  < @ < (8.2  +K2  
(i+f) 

(iv) Co(G) 

-(8-2K2 -K3  )/Ki  .... (aC2+K3 ) <g< (Q.1 +K2 ) 

1 	[e-(A-A1 	)/Ki  _e-(9-K2  )/K1 
(l+f) 	 14-f 

(1 + 4?-2K2 -1  e-(g-2K9 -K3 )/K1 I -  

	 (el  +K2 ) < e < ( +a, +K, ) 

or (2K2  +K3  ) < 9 < (Q1  + 2K2  + K3  ) 

-(g-K2 	
f , (v) C0(9) - 	[e 	 -e 	+ 	(1+ 	-2K2-K3  ) 

1+f 	 l+f 

e-(8-8i  -.2-K2  -K3  )/K1 	+ 9-.2K2 	-K3  )e-(8-2K2 -K3 )/K11 

	 9 > 	+ 2K2  + K3  

Again for convenience the origin is shifted by an amount K2 . 

In differential form parts (ii) and (iii) can be written as follows 

Kq  
( 1) 	 y  + 	 0 < < 

(l+f)Ki  

(iiia) Y = - -2; Y 	 < Q < ( K2  + K3  ) 

Equation (iiib) can be transformed as follows. 
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Let Y = C
o
(Q) in (iiib) above. 

Then- 
Y= 	e
11 -(Q-K2 )/Ki 	f 	1 	9-2K2-K3)e-(9-2K2-K3)/Kql  

	

E-- 	(1 
1+f 	 l+f 

- — 
 

.e_(9_2K2  -K3  )/Ki ] 
FCC  

or y 1  [1 e-  (Q-K2  )Aci11 - (1 + 9-2K2-K  )e-(8-2K2 -K3  )/K1  

	

Ki (1+f) 	 (1+f) 	K.1  

+ 1 5 	f  1 - 	(1 + e-(9-2K2 -1(3 )4(1  )1. , 
(l+f) 	l+f 

or Y - + 	a+e 1 	-(8-2K2  -K3  )/Ki )1 =  
(l+f) 	1+f 

Differentiating again 

Y = - Y/Ki 

or 	Y = - Y/Ki 

1 	f 	0-(8-2K2-K3)/K
11 

Ki  (1+f) 	Ki (1+f) 

1 	[1 	f (1 + e-(9-2K2-K3 )/Ki  )] + 1 
K.? (l+f) Ki  2  (1+f) 	1-775--f 

-(1 - f  ) 
1+f 

or 	Y = Y Y Y 4.  1 

Ki 	K 2 	K. (l+f)2  
	 (K2  + K3) <9 < 

Part (iv) can be transformed in a similar way to 

y = 	2Y Y 	f  
Kq 	Ki2 	Kit (1+f)2  

< 	< (Ai  + K2  + K3  ) 

or (K2  + K3  ) < < (8. +K2  + K3  ) 

Similarly part (v) yields 

Y = - = 2Y Y 
 	> (Qi +K2  + K3) 

Ki  2  
The flow diagram for the model transformed as above is given in 

Fig .5. 9.1 for K2  < (Q1 +K2) < ( 2K2  +K3) < (91  +2K2  +K3) . 

It can be seen from the flow diagram that for operation of this 

program, at least four comparators are necessary. Moreover the analogue 
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machine should have two Y plotters with a change over at time (K2+K3) 

from one to the other. The use of two Y plotters can be eliminated 

by holding at time (K2-I-K3 ) and manually connecting the amplifier 1413  

to the Y socket directly. The available equipment was found to be 

unsatisfactory in that the four comparators could not be made to 

work simultaneously at any one time. Consequently this model could 

not be simulated satisfactorily in the time available, but it is felt 

that reasonable results could be obtained on properly functioning 

equipment. 

5.11 Conclusions  

Two methods of computer analysis have been illustrated in this 

chapter, digital and analogue. Although the results obtained from 

the analogue are approximate, it is a much quicker procedure. For 

complex cases it is difficult to apply and considerable errors may 

result. With the digital method using Rosenbrock's optimisation 

program, generally more accurate results can be obtained without much 

effort on the part of the analyst. However no account is taken here 

of the economics involved. It must also be remembered that in either 

case good optimisation depends on the accuracy with which the initial 

values of the parameters can be estimated. 
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6.1. Summary and discussion of work done  

In any study of the behaviour of a flow through system, some 

insight into its hydraulic characteristics is most helpful. Such 

knowledge is useful in comparing flow-through systems, and also in 

designing systems to meet particular needs. In many cases the 

mechanisms that goven the hydraulic behaviour of a flow system are 

difficult to measure in a physical way. For example it is difficult 

to measure velocity distributions, or pressure distributions, or 

density gradients in a sedimentation tank or an oxidation pond 

containing sewage. 

Such systems have been studied by obtaining Flow Curves or 

Residence Time Distribution curves from tracer tests, and analysing 

these distributions statistically. However, as was evidenced in 

Chapter 4, it is difficult to infer anything about the physical 

behaviour of a system from the statistical parameters of such a 

distribution curve. 	In this thesis mathematical models are 

proposed which have a closer connection with the physical behaviour 

of the flow in a system and consequently give a more useful inter-

pretation of the flow curves obtained from tracer studies. 

In this study the system is considered to be composed of elements 

such as the perfect mixing element (or zone), the plug flow element, 

the short circuiting element etc. In the actual system it is clear 

that such zones cannot be distinguished and do not exist independently. 

However this compartmentalisation approach is considered to be the 

best available, and there are precedents for it, for instance in the 

elementary theory of sedimentation, in which a tank is regarded as 

consisting of an inlet zone, an outlet zone, a settling zone etc. 
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In the present study therefore the s:stem is regarded as a number 

of idealised flow zones combined in series and parallel. Attempts 

at such modelling which have been made in the past are described and 

discussed in Chapter 1. Systems were analysed in terms of "C" and 

"F" diagrams which are the response curves corresponding to an 

instantaneous input (a Dirac Delta function) or an ideal unit step 

input. 

In most of these analyses the importance of the frontal inter-

face of the tracer, which produces the rising limb of the flow curve 

has been minimised or neglected. Other omissions in general have 

been the quantity of tracer injected and the duration of injection. 

In this analysis care is taken to measure the tracer input as it is 

considered of prime importance. 

Since it is not practicable to produce a pure impulse, a 

rectangular input pulse of suitable width and height was used. 

Mathematical treatment of a rectangular input is not too difficult 

as has been shown in Chapter 2. In that chapter six different 

mathematical models were proposed. Control theory was applied in 

the derivation of these, involving a number of approximations and 

simplifying assumptions. Such approximations are inherent in all 

mathematical modelling mad in the author's opinion do not render the 

models invalid in this study. 

The first of these models, in which plug flow and perfect mixing 

are combined in series, is useful in analysing simple flow curves with . 

a smooth rise and a smooth fall. In these cases, the time from the 

first arrival of tracer at the outlet to the peak of the curve, is 

equal to the duration of the tracer input pulse. The time of first 

arrival of tracer at the outlet depends on the extent of plug flow 

and perfellit mixing only and is not related to "dead space" volume. 
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The length of the tail of the curve depends entirely on perfect 

mixing. 

Since short circuiting or differential flow occurs in most 

systems a four parameter short circuit model was developed which 

differs from earlier work in that the short circuit is not regarded 

as instantaneous. A more realistic short circuiting volume is 

introduced, which is assumed to be a plug flow volume, thus intro-

ducing a time constant for the bypassing flow. Thus short circuiting 

is redefined as a bypassing flow in parallel with the main flow, 

Depending on whether the short circuiting fraction of the flow reaches 

the outlet earlier or later than the main flow, it is referred to as 

"actual" (positive) shortcircuiting or negative shortcircuiting. 	In 

this connection "dead space" is redefined after the manner of Levenspiel(9)  

as the volume occupied by the relatively slow moving fraction of the 

flow. 	Thus the volume corresponding to a negative short circuit or 

"long circuit" can be considered as effective "dead" space. In any 

case the introduction of a short circuiting volume has made the 

analysis more flexible. The relative positions and heights of the 

two peaks of the flow curve, give a guide to making an initial estimate 

of short circuiting volume and flow. 

Since the introduction of a plug flow short circuit results in 

a sharp rise and sharp fall in the flow curve, a series combination 

of plug flow and perfect mixing was introduced in the short circuit 

path, as being more realistic. This model is referred to in the text 

as the five parameter short circuiting model. The introduction of 

this type of short circuit smoothes the rises and falls in the flow 

curve and again makes the model more flexible. It is clear that with 

this model, either of the parallel flow paths of the model can be 

considered as the main path. The effect of shortcircuiting time on 
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the relative positions of the peaks has been discussed in detail in 

Chapter 2 with the aid of computer generated curves. 

The next model considered consists of plug flow and perfect mixing 

in series as the main flow path, with a plug flow recirculation path 

in parallel. The resulting transfer function contains exponentials 

in the denominator and therefore gives a multipole solution. However 

for simplicity, the denominator is expanded by MacLaurin's series and 

all terms except the first two are regarded as negligibly small and 

are omitted. This assumption is true in the case of a small recir-

culating fraction. For example considering the data of curve 1, 

Fig.2.7.4, in which K = 0.546, K2  = 0.254, K3  = 1.2, f = 0.1, when 

w = 2 the value of the magnitude of the term 

f 	-s(K2+K3  )/(1+Ki s)  

(l+f) 

is 0.05 and hence the powers of this term greater than 1 can be neglected. 

With this truncation, the inversion of the Laplace Transform is not 

difficult. As a result of retaining only two terms, only one recir- 

culation peak is obtained from the model. This model could be 

improved by retaining further terms in the series, but this would 

result in complex mathematics. In any case when the main flow 

consists of plug flow and perfect mixing in series, it is considered 

that unless the recirculation flow is large, secondary peaks due to 

recirculation will not be distinguishable in the tail of the flow 

curves. Therefore the model is useful for practical applications. 

However in systems with predominant plug flow the subsequent peaks 

caused by recirculation will be prominent and distinguishable. For 

such cases it is necessary to retain further terms in the MacLaurin's 

series, without much difficulty in inversion. 

Two models with three branches in parallel were next examined. 

The main flow path consists of perfect mixing and plug flow in series, 

. e 
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This main path is combined with a shortcircuiting path and a recircu- 

lation path, each of which is plug flow. 	In the first model none of 

the recirculated flow passes through the shortcircuiting path, whereas 

in the second case shortcircuiting of the recirculated flow is possible. 

With these two models, especially the latter, most flow systems can 

be simulated. However estimation of the initial values of the para-

meters is difficult and requires much experience. In all recirculation 

models it is assumed that macro recirculation takes place from outlet 

to inlet. Since macro and micro recirculation contribute to perfect 

mixing, it may be difficult to isolate the recirculation element from 

the perfect mixing element of the main flow especially when the recir-

culation time is short compared with the main flow time. It has been 

found that recirculation lowers the peak produced by the main flow and 

produces a hump or bulge on the falling part of the flow curve if 

shortcircuiting is also present. In these models plug flow recircu-

lationonly was considered, whereas a combination of plug flow and 

perfect mixing recirculation would have given better results. However 

this would greatly increase the complexity of the mathematics, apart 

from increasing the number of parameters. 

In Chapter 3 a description of the Pulse Technique is given and 

its application to the models of Chapter 2 is illustrated. 	The use 

of a single pulse input instead of a sinusoidal forcing function is 

necessary for practical reasons. This part of the work is capable 

of further extension in view of the fact that the Pulse Technique has 

several advantages over the direct method of Chapter 2. The advantages 

of the pulse technique are enumerated below:- 

(i) 
	

Inversion of the Transfer Function is not necessary. 

Therefore in cases such as the recirculation model, curtailment 

of the series is not required. 
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(ii) It is specially useful in the case of complex and high 

order systems. 

(iii) Any arbitrary input pulse shape can be used without extra 

mathematical complexity. 

(iv) If the frequency response of individual elements of a system 

is known, these can be synthesized on a Bode Diagram to 

determine the response of the whole system. 

(v) Stability and sensitivity analysis can be considered if the 

frequency response of the system is known, 

A single pulse is especially advantageous, apart from its 

practical advantages, in that it can contain a large number of 

harmonics so that the response of the system over a wide range of 

frequencies can be determined. This is especially useful for 

stability and sensitivity analysis. 

In the latter part of Chapter 3, sensitivity analysis was applied 

for a number of models, and the deductions made were found by experi-

mental verification to be valid. For example, it was found by 

sensitivity analysis that the introduction of a 5th parameter into the 

4 parameter model did not change the sensitivity of the model transfer 

function very much. This was supported in the analysis of experi-

ments in Chapter 4, In fact sensitivity and stability analysis are 

more useful in the case of complex high order systems. This part 

of the work is capable of further extension, 

In Chapter 4 verification of the proposed models was undertaken 

in two stages. Various combinations of idealised flow regimes, 

or as ideal as it was possible to obtain in the laboratory, were 

connected together to provide a direct physical analogue to the 

mathematical model under consideration. Perfect mixing was simulated 

by intense agitation of water in a vessel using diffused air. Plug 



flow was simulated by turbulent flow in a tube. Shortcircuiting and 

recirculation were simulated again by turbulent flow in tubes, 

controlled by means of a pump. It was found that the mathematical 

models could be used to analyse the flow curves produced by various 

combinations of these elements, and identify the different components, 

in spite of the fact that the components were by no means ideal. 

The fractions of perfect mixing and plug flow in the perfect 

mixing vessel and plug flow tubing were computed using the two parameter 

model, which pre-supposes the validity of this model. However in the 

absence of any alternative approach this was unavoidable. 

In the second part of the experimental work, a series of tests 

were carried out on a model rectangular tank, The outflow curves 

obtained were analysed by means of the models proposed. The flow 

rate through the model tank and the height and width of the input 

pulse were varied in these experiments. The results obtained showed 

the expected trends. For example an increase in flow velocity 

through the tank results in an increase in the plug flow fractions and 

a decrease in the perfect mixing fraction. Short circuiting flows 

also show a similar trend, decreasing with increasing flow rate and 

vice versa. This tends to support the new definition of short circuit 

and effective "dead" space. 

In these experiments the input pulses were measured. The time 

of injection, the quantity of tracer injected and its concentration 

were measured so that the percentage of tracer recovery could be computed. 

It was observed that an input pulse of suitably long duration smoothes 

the outflow curve and 	the effects of different flow conditions 

such as short circuiting and recirculation. The use of a long pulse 

means that tracer can be injected at low concentrations and the rate 

of flow of injection can be kept at a low level. These measures 
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ensure that the normal steady flow conditions of the system are not 

upset during injection. 

In spite of the precision with which electrical conductivity was 

measured during the experiments, errors have given rise to inaccurate 

tracer recovery values. The most important variable which gave rise 

to such errors is considered to be temperature. It has been found that 

at the higher concentrations of salt, the change in conductivity per 

degree centigrade change in temperature may be as high as 20 Ills and 

furthermore the relationship between concentration change per degree 

temperature change and concentration is non linear. Small temperature 

variations did occur during the course of experiments which were not 

recorded. However in general it was found that when the experiments 

were conducted one after the other under identical temperature 

conditions insofar as was possible, reproducible results were obtained. 

The importance of temperature control in obtaining reproducible results 

has also been reported by Tekkipe et al.
(20) 

because of its effect 

on the flow patterns within the system, particularly when the flow 

is slow. Other errors which may occur in the measurement of 

residence time distribution using the conductivity tracer technique, 

such as stratification within the conductivity cell, incomplete 

mixing of the flow, method of sampling etc. as reported by White(54) 

were not found to influence the results of these experiments, 

In Chapter 5 the computer techniques used in analysing the flow 

curves and fitting the proposed models have been presented. It was 

found that Rosenbrockts(52)  optimisation technique was the most 

useful one for optimising the values of the parameters, but that 

a great deal depended upon the accuracy with which the initial values 

were estimated at the beginning of the optimisation process. It was 

found that the best approach was to study the shape of the output 



curve, and assume some initial values for the parameters which govern 

the shape and position of the peak. Using these initial values some 

intermediate ordinates on the rising and falling limbs of the curve 

are computed by hand and the initial estimates are changed accordingly 

by trial and error. This is a cumbersome procedure but there appears 

to be no alternative. In the latter part of Chapter 5 the use of an 

analogue computer for curve fitting was illustrated. For a simple 

flow curve a simple analogue can be conveniently used as shown, but 

with more complex:: models a hybrid computer would have been more useful. 

There is scope for further work in this direction. 

6.2. Comparison with earlier work  

In this section a comparison is made between the models proposed 

in this thesis and a number of models or techniques which have been 

proposed in the literature on the subject. 

Statistical methods illustrated in the latter part of Chapter 4 

suffer from the disadvantage that the parameters used, generally 

calculated by moments, are greatly affected by truncation errors. 

In this connection the importance of the tail has been studied by the 

author by generating curves with the two parameter model and determining 

the mean time by taking first moments about the origin. It has been 

found that for predominantly plug flow conditions, the mean value so 

determined is reasonably accurate, but with a high perfect mixing 

fraction the error in calculation of the mean is great if the tail is 

prematurely truncated. It has been found that with 90% perfect 

mixing the error in mean time is l4% even if the area omitted by 

truncating the tail of the curve is only 4%. Even with 0.002% of 

the tail area omitted by truncation the error in the calculation of 

mean time was found to be 1.2%. In this exercise the moments were 
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computed using the trapezoidal rule with a step size of 0,001. It 

can be seen that such an error could easily be attributed mistakenly 

to the existence of "dead" space or a stagnant zone in the system. 

Apart from possible inaccuracies in the computation of these statistical 

parameters, they give no great insight into the physical behaviour 

of the system. 

Rebhun and Argaman(4)  proposed a method for determining 

and stagnant volume which in described in Chapter 1, In order 

to compare the results obtained by their method with the methods 

proposed here, a number of experiments were performed on the model 

tank at flows of 5, 10, 12 and 14 litres per minute. The input pulse 

was reduced in duration of injection to a value of 15 seconds in order 

to simulate an impulse input, and the concentration consequently was 

high in order to obtain an accurate result. The flow curves were 

analysed and log[1-F(9)] versus 9 was plotted for each curve, in 

order to obtain values of m, p, and the "dead" space. The results 

show that the plug flow fraction remained constant around 40% through- 

out the flow range from 5 litres per minute to 14 litres per minute. 

These plots also gave unrealistic "negative" dead space volumes. 

A typical plot of log[1-F(9)] against 9 for a flow of 14 litres per 

minute is given in Fig.6.2.1. For comparison the results obtained 

from the two parameter model fit are plotted in Fig.6.2,2 along with 

the "p" values obtained by Rebhun et al.'s method. The discrepancies 

between the two methods of analysis are very great. From a realistic 

standpoint the values obtained from the two parameter model fit are 

more satisfactory. The more complex models give still better results. 

Rebhun and Argaman's analysis also gives negative dead spaces in the 

case of their experiments which they attribute to inaccuracies in 

experimental technique. This explanation seems unlikely and it is 
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suggested here that the analysis in invalid. 

Various diffusion models have been put forward in the literature 

for determining the degree of mixing in flow systems. The basic 

equation from which the diffusion models are derived is given in 

Chapter 4 and is reproduced here 

oC 	 62c 	60 = D 	- u 
ox-2 	ax 

Murphy et al. (56)  
S; 

Thomas et al.(57)  

used the solution of the above equation given by 

as follows:- 

odo 	n 	(U sin un 	
.1 
n 
 cos u

n
) 	(U2  4- n  )e , cr — = 	 Exp. [U 

Co 	n-1 	
(U2  ÷ 2U + 'µn2 ) 	 2U 

whereG=7,U=1 T3S- 	and v,
n 
are constants 

/uL 

	 n 
and are given by the roots of the equation 

-1 li  U = cot n  [(— - —1/2  J 
U n 

uL is referred to by Murphy et al. as the Diffusion number and 

was determined from the peak of the flow curve by making d(C/Co
) 
= 0  

d9 
in the concentration equation given above. 

As the level of mixing is an important factor in the design of 

an aeration tank in an Activated Sludge unit, Murphy et al. have 

suggested a as an important parameter for design purposes. 

For comparison purposes a flow curve obtained experimentally by 

Murphy et al.(55) is reproduced in Fig.6.2.3. 	Because of lack of 

information regarding duration of the tracer injection, Al  was deter-

mined by the author by trial and error. It can be seen that in spite 

of this the four parameter and five parameter models show a reasonably 

good fit to the experimental points. It can be seen that the diffusion 

model of Murphy et al. gives the best fit of the three, but it is 
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suggested by the author that it gives the least information about the 

flow system. The five parameter model on the other hand indicates 

that about 15% of the total volume of the tank was relatively 

stagnant although 98% of the total volume was perfectly mixed. Out 

of this, about 13% perfect mixing takes place in the stagnant zone. 

It is suggested that this type of analysis gives a better insight 

into the hydraulic behaviour of the tank than the one parameter 

diffusion model above. 

A second diffusion moael is that used by Krenkel et al.(48) 

explained in Chapter 4. This model is currently used for the deter-

mination of longitudinal mixing. This is a two parameter model in 

which T is the mean time of flow and P is the Peclet number = D 

For comparison purposes experimental set No.120 is plotted in Fig.6. .4 
and fitted with Krenkel et al.'s diffusion model, and the author's 

four parameter model. The latter gives a better overall fit of the 

data and can take account of the drop in the output curve at A = 

caused by short circuiting in the system. The diffusion gives a 

good fit up to the peak, but thereafter deviates from the curve 

considerably. The four parameter model also gives more information 

about the flow conditions. A marked disadvantage of the diffusion 

model is that it cannot be used in the analysis of flow curves with 

more than one peak. 

6.3 Possible uses for the proposed models  

Apart from their probable use in the field of Chemical Engineering, 

the proposed models could be used in the analysis of the flow curves 

obtained from some of the flow systems and treatment units used in 

Public Health Engineering, particularly in water and sewage treatment. 

In cases in which retention of the liquid within the unit for a particular 
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length of time is the primary function, as in the case of a chlorine 

contact tank, the merits of different designs can be assessed by 

carrying out flow tests on existing systems and analysing the results. 

The type of design which produces the maximum plug flow fraction in 

this case is the most desirable. 

Tests of this type have been performed in the past on sedimenta-

tiontanks with somewhat inconclusive results. In many cases the 

actual experiments performed have not been completely satisfactory. 

It is essential that in the case of either an impulse input or a 

thick pulse input that the tracer be fully mixed with the flow before 

reaching the inlet of the unit. In many cases the tracer slug has 

been dumped into the flow indiscriminately just upstream of the tank 

inlet, tending to lead to meaningless results. 	In a sedimentation 

tank the extent of plug flow is said to determine the settling 

efficiency of the tank, greater plug flow being associated with better 

efficiency. However in the author's opinion more research is necessary 

to correlate settling efficiency with plug flow or perfect mixing. 

The immediate value of such analysis is possibly the determination 

of shortcircuiting or recirculation caused by the existence of 

density layers. 

In studies on the kinetics of bioxidation and nitrification in 

waste treatment units analysis of this type may be found helpful. 

Most practical units have flow regimes intermediate between that of 

an ideal tubular reactor and a perfectly mixed reactor. Information 

on the degree of longitudinal mixing can be obtained by the use of 

these models. Similar information could be obtained from studies 

on oxidation ponds, lakes and river reaches, particularly with regard 

to short circuiting and recirculation. 
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These techniques have possible uses in the study of Physiological 

flow, to which control theory is frequently applied. As early as 1954 

Meier et a1.(57)  introduced the dilution technique to the study of flow 

and the measurement of volume of blood in arteries and veins. By 

injecting an indicator dye into the venous system at a suitable point 

and taking samples at some suitable point downstream, the flow of 

blood or the volume of the system may be determined. In such measure-

ments it is assumed that the dye is completely mixed on injection. 

Again the heart may be regarded as a reactor in which mixing is obtained 

by turbulence. It is considered by many investigators that the 

ventricles are perfectly mixed compartments and the auricles are plug 

flow compartments. There is some controversy over these points but 

Macdonald(58) suggests that in greatly distended hearts approaching 

failure, the ventricles cease to function as perfectly mixed vessels 

and large volumes of blood accumulate at the end of the systoles 

creating stagnant zones in the heart. 	In such cases the extent of 

mixing, plug flow, shortcircuit or stagnancy could be conveniently 

determined by the models proposed in this work. Again according to 

Macdonald(58) in such studies a prolonged injection of tracer gives 

better results than jet injection (or an impulse input). 

The stimulus response technique has also been used in studies 

on the kidney(59) 	It is considered that a long tail or a secondary 

peak on the response curve is a symptom of malfunction of the kidney 

and indicates blockage. The use of the models developed in this 

study would certainly give more insight into the behaviour of the 

kidney. In general the response of any part of the body to cardiac 

output could be analysed by these methods. 
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5.4 Suggestions for future research  

In this thesis a method of analysing the flow into a number 

of assumed flow zones has been presented. No attempt has been made 

to take account of any changes which might be taking place in the 

constituents of the flow or to apply reaction equations to the models 

in order to determine the overall kinetics of a reactor or unit process 

such as a sedimentation or chlorination tank. Since in practice 

most flow systems exhibit changes in fluid composition with time and 

these are of major interest, it is suggested that future work should 

concentrate on this aspect. 	It is felt by the author that the 

application of reaction equations to these mathematical models of 

flow may lead to useful results in the prediction of outlet concen-

trations of the flow constituents. 

In addition the following suggestions are made for the use of 

future investigators: 

1, For reproducibility and reliability of experimental data it is 

essential that the temperature of the fluid flowing through the system 

should remain approximately constant.. This can be attained by thermo-

static control of feed water temperature. A system as used by Tekkipe 

et al.
(20) can meet this requirement, 

2, It has been observed that as the duration of the input pulse 

increases, better and better fit of the experimental data with the 

proposed models is attained. It is felt that there is an optimum 

height and width of the input pulse for getting the best fit. More 

research is necessary to determine this optimum. 



3. Thc, analysis of the flow curves obtained from field units such 

as the aeration tank is not yet well defined . It is hoped that 

analysis of flow curves obtained from models of different scales by 

the lAodels described in this work will enable future investigators 

to 1c0.1c more th•roughly intc the behaviour of such units as mentioned 

above . 

It is felt that the Pulse lt,chniclue should be more thoroughly 

investigated . For accurate measurement of the input and output 

pulses , a radio active or photo sensitive tracer and an automatic 

continuous recording device can be used . 

a51 
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APPENDIX 

1. Special Functions  

A number of special functions used in Chapters 1 and 2 are 

described here, 

(a) The Unit Step  Function U(t-a) is defined as follows : 

U(t-a) = 0 for t < a 

= 1 for t > a 

If used as a multiplier of a function, it has the effect of 

wiping out all values of the other function before t = a, It is 

useful in representing pulses and in the step by step reproduction 

of complicated functions. These properties of the Unit Step Function 

have been extensively used in Chapter 2, 

e
-as 

The Laplace Transform of U(t-a) = 	and L U(t) = 1/s. 

(b) The Dirac Delta Function 5(t-a) is defined as follows : 

6(t-a) = 0 for t a 

= mfor t = a 

ra+e 
Also 	5(t-a)dt = 1 

a-e 

It denotes an Instantaneous Unit Impulse and represents a pulse 

of infinitesimal duration, infinite intensity and unit magnitude 

occurring at time t = a. If used as a multiplier of a function f(t) 

as shown below, it "picks out" the value of f(t) at any instant t = a, 
ic 

(i) 	
v 

f(t).6(t-a) dt = f(a) when b < a < c 
b 

(ii) Laplace Transform of 6(t-a) = e 

(iii) 51- (U(t-a)) = 6(t-a), 

-as 

and o(t) = 1 

dt 

(c) Convolution : It is an operation which gives the inverse transform 

of the product of two transforms directly in terms of the original 

functions. 
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Let F(t) and G(t) denote any two functions that are sectionally 

continuous in each finite interval 0 < t < T, and let F(s) = L[F(t)], 

G(s) = L[G(s)]. 	Then 

-st 
,03 

F(s). G(s) = 	e 	J0F(T).G(t 	T) dT dt and 
J o  

1  L 	[F(s) 	G(s)] = 	F(T) 	G(t - T) dT 

The integration operation as given above to get the inverse of 

the Laplace transform is known as convolution and is usually denoted 

as F(t) * G(t). 

The various properties of convolution are 

(i) It is commutative i.e. F(t) * G(t) = G(t) 	F(t). 

(ii) It is distributive with respect to addition : 

F(t) * [G(t) + H(t)] = F(t) * G(t) + F(t) 	H(t). 

Also 	F t (KG) = K(F 0) where K is a constant. 

(iii) It is also associative : 

F(t) * [G(t) * H(t)] = [F(t) * 0(t)] * H(t) 

As mentioned in Chapter 11  these properties of convolution can 

be conveniently used for determining the response of a system to any 

input pulse function F(t), if the response of the system to a Dirac 

Delta input function is known. 

Let G(t) be the response function of the system for a Dirac 

Delta input. Then the output function C(t) for the input F(t) is 

obtained by convolution 

t 
C(t) = 	F(t-'r) 	G(T) dT. 
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2, Inversion of a number of Laplace Transforms :- 

Details of the inversion of a number of the Laplace Transform 

described in Chapter 2 are given below, 

(a)L-1 -- 1 	 .1 - , 	It has a single pole at s = 
1 + Kis 

-1  1 . • 	L 	 Lim 
1+K1 s 	s - 

= e
-t/Ki 

[ el:L] 
1.+Ki  s 

(b) 	.• It has two poles, one at s = 0 and the L-1  1  
s(l+Ki  s) 

1 other at s = - 

-, 	 est -1  1 .. L 	Residues of 	 
s(l+Ki  s) 	 s(l+Ki  s) 

at the poles. 

at 
= Lim 	e 	lim 

s(l+Ki  s) 	- 

= 1 - e-t/K  

 

st , e 	A' )9:) 

L 	(1.+I1 5) 

L
-1 e 	 - 

-K2s 
(c) {1 - e -(t-K2  )/KI  i . U(t-K2  ) . 	This is 

s(l+Ki  s) 

obtained from tie Translation Theorem of Laplace Transforms and 

the deduction obtained from section (b) above, 

(d) L 1[1 / s(l+Ki  s)2]. This can be solved from the fundamentals 

of Laplace Transforms as follows, 

L 1 [1 / s(1 + s)2] 
= L 1 [(1/K1 2)  / s(s  1. 1)2) 

e+ioo 
1 

st 712  e ds 

s (s+ 1/K1  )2  

  

7 Residues of [est/K.1  2  S (s 1/K1  )2 ] at poles s = 0 and 

1 s = - 



The residue Ri  at s = 0 is 

s e  st  = lim 	1 Et-,0 s 	2  (S+—  )2  

= 1 

And the residue at s = - 1 
K1  

R2  = 11M 

S' 

1 d 	1 	st/Ki 2 

1 	-d--.-s  [(s + 	)2  e 
1 

]  s (s + 	)2  
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1 
K4 

K 2  d Les • ds  	J 

s•t.est e
st 

1/K1 2 

tE .6. L Residues = Pi  + R2  = 1 — (1 + ) e /1  

-1 	e -(2K2 + K3)8 

s (1 + K1  s)2  

t — 2K2  — K3 	—( t — 2K2 	K3  )/K1  

= [1 	(i+ 	) e 	U(t-2K2  - K3) 
K1 

This is obtained from the Translation Theorem and the deductions 

of section (d). 

3. Dreifke's Trapezoidal Approximation : 

(a) In Chapter 5 the Fourier Transform of the function 
t. 	t. t 	i) 	f.

2. 	
6.0  f(t) 	(1 - 

At 	At 	+1 \At 

has been presented. Here the details of the solution are given. 

t. 1+1 t. t 	1.1-1
t - 	-jwt FT[f(t)] = 	f

ti 	
i(1  + 	- — ) e-jwt  dt f 	

t. At pt 
dt 

At At 

1 
= 
Ki  2  

1 
ofc- 2  

. limC 1 	s2 s— - 
t 	 -▪ t/ic.i - e-t/Ki 
Ki  e -t 

=- (1 + 	) e 

(e) 
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t. t 	
t ) — j dtwt  fi(1 	

at — Tt, e
t. 

t. 3.+1 	t. 
f i(1 + it) 

f. 
e-iwtdt At 

t. 3.+1. jwtdt 1 	t. 
1 

= 	f.  04 t1)(-  _1_ _.)r e— j wti t1 +1_ f  3 rt(.  2,.... )e-jwt_ 
3 	A 	jw 	 t. 	A 	jW 

 

1 

ti+1 
)e-iwtdt] 

Jur 	t. 1 

f. t- 	-jwt j2  -jwt,3.+1 1-N(e 	_ e-vw 1) - —1* Et(- 	- 	e = f. (1+ 	k 	 At 	Ow 	 t. Jw 

	

.
e 
	 -jwt ti+1_ e  1+1 wti+1- e

-jwt 	Lf 	-jwt.  = f 
	

[(2.-Frit-)(e-j 
	

A-tL 

-jwt. . -jwt. 
-t .e 	1+ 	e 	1 

1 

f j 	 t. t. 	-jwt, ti 	t. 	 j 

	

1. 	re  -jwt.+1, 	1 1+ 1 

	

w 	k 1  + 	 + ;V) — e At ., + —.27r
w -c

)] 

t1  o 	t. 1' 	-jwt. 1 	 -jwt.
1 
	 1+1 , 

	

a. 1 + 	= Lt  [e 	- (1 + -) 	] wat 	wat e  • 

Again, ti+1 
ti -jwt - re e dt 

 

t. 	1 -jwt. 

- f.1+1 	At 	jw (- 	_)(
e 	

1+1_ -jwt. 
e 	1) + 

fi+1 
At 

-jwti+1 t1+1 e 

-jwti+1 1 . 	-iwt. - lAT 
-iwt. 
e 	I) 

ti -jwt. 	t. -cwt.  1 	-jwt. 1... 	 _1. e 	1+1 	3. 	ti 1 , 	1+1_ 1 e 	1+1 = r3.+1'wL  t 	+ 	e 	+ ---k.t. 	e 

	

At 	At 3.+1 	w 
-jwt. -jwt. * jlArt . 

'... t 	 1  + 'II e 	1)] w 

	

t. 	 jwt t. t. 
fi±i•wEe 	

. 	. -jwt, 	t. 1 + 
	wa 	e 	1(At 	 1 At w + +)] = `  



- cos wt1  + w1t — sin wt1  . cos wAt j sin wti. WAt sin wAt1 t 
*.a• 	 sin wt1  wA 

- jwt 3. f 	re 	+10.  
1+1' w 

-jwt. 
j  wAt)   + wAt   e 	1]  
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f..j 	-jwt. 	 -jwt. 
FTi[f(t)] = w [ vAt 	1+1- (1 + wAt  e 	1] 

f. 1+1:-1  e 	
wAt 

1+1 	-iwt. 
E(1  wAt 	 e 	1, 

(b) 	The regrouping of the terms in equation (3.2.12) by separating the 

real and imaginary parts is done as follows: 

As an example only the first term in the above equation is 

considered here. The term is 

D_a_ e 	(1  + -iwt2_ 	, 
w wAt 	 wAt' e-iwtt ] 

=e-Jurti. e-JwAt- (1 w wAt 	 wit)  ] 

= fre ilgt1 
'w (vaLlt e-jwLt  wAt  1)]. Prom Euler's Relationship/  

= Li  ..-i  [(cos wt1  - j sin wt.!  )1;i14- (cos wAt - j sin wAt) - -ftw  - 1 ] 

= f1 .•51w  [ ( COS wt1 -' j sin wt1  ) I w,4 	wAt + -t cos 	
sit,,,,,,,ta _ ii-_,, _ 13  ] 

sin wAt  cos wt1 . cos wAt + cos wt.", 	 . cos wt.'  
= fl  "ti [ wAt wAt 	w t 

+ j sin wt1  ] 

=
c- .1r  • cos wt1  cos wAt 	cos wt1 sin wAt  

'wAt 	wAt 

cos wt1  - j cos wt1  + -1- sin wt1  wAt 
sin we 

wAt w0 s in _1_ sin wti  - sin wti ] 

f 	 1 	cos wAt, w. 	sin 	wAt  = w [cos wt1  ( 1-71-ET 	wAt 	) 	sin wt1 (1 	) 
wAt 	' 

( 1 	cos wAt , 	 sin wAt • + j - sin 141 	 ) 	cos wt1  (1 	);] wAt wAt 	 wAt ) 
f 	wAt 1(1 - cos 2 1A-r-14 wAt 	sin wt1  (1 	wAt 

sin wAt  
w  = -J 	/. -7- [cos wt 	. 2 	- wAt ' 	 ) 

(w4)2  

s 	wAt 1(1 - cos 2 11 	wAt41) 	(1  sin wAt  + i -- sin  wt1 	 ))1 
I • 2 	( ,) 

• 2 	- 	cos wt1 wAt 15 -I 

	

2 	wAt   

• cos wAt + sin wt1 
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sin  wAt 2 
f = --I [cos wtt  wAt  (- 	2  , 	wAt sin wti  (1 sin wAt 

	

' 	wAt ' 	wAt i  
2 2 wAt 

wAt  sin , 5,- 	 \ 	wilt 	sin wAt  + i 

	

Sin Wti . 2  ( wAt  / 	wAt • cos wt.;  (1 	wAt 	) f 

2 

n 	 1 = 	.At Li (si  welt/2wAt/2  ) cos wt. 	;Fa  sin wt1  (1 sin wAt)  
wAt 

+ j 	I sin 	( sin wAt/2 ) 2 	1 cos wt.'  (1 	
sin wAt)  wAt/2 	wAt 	wAt j ] 

In this way the other terms also of Equation ( 3.2.13 ) can be 

obtained, 

4. Deduction of Analogue model for recirculation: 
The deductions of the analogue form of the Recirculation Model 

up to part (iii-b) are given in Chapter 5. The deductions for parts 

(iv) and (v) are given below: 

Part (iv) is written in the form 

Y = 1 [e ---- -(Q-91  -K2)/K1  _ e-(8-K2 )/K1 4. 	f  1/1_ (1+8-2K2-K3.) 
(l+f) 	 , (1+f)` 	Ki  

- ( A- 2K2  -K;  
Ki 	1 - 

e 	I( 1  

1 	-(Q-41 -K2 )/i 	1 -(9-K2 )./Ki 	f ( 1 	9-2K  
Ki 	

+ 1.47  e 
... 

	
(1+ 471( e 3) 

(l+f)
-"   

1 _(.Q.2K2-K3)4. 
e 	+ 17- e 	nii] 

or, 

	 [e 
K1  (1+1) 

f ( 1-(1+ 
(l+f) 

Q-2K2-K3)  
K1 

• e 	 [- (1- e  
—t8-2K2  —K3)/K1 	1 	f 	--(9-2K2—K3  )/ic.,  )] 

(l+f) (l+f) 

-(9-2K2-K3 )/ i  ) or, 
- + 777512  (1 e 

Then 	1 
( 1+ f) 



or, 

[e-(8-01-2K2-K3)/K1 - e-(8-2K2 -K3  )/K1  = - 
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Differentiating again, 
= • 	 e-(0-2K2 -K3 )/K1  

Fig 	(l+f)2 KT 

or, 1 	  - f 

(1+f)lq (l+f) 

(1 - e 
-(A-2K2 -K3  )/Ki  

I 

  

 

(l+f)2 K? 

or,, 2y-/K1  -Y + f/u+fr 

Al  + K2  <A < 	2K2 K3  or 

2K2  + K3  < A < 	+ 2K 2  + K3  

Part (v) can be written as 

y = 	1 	Ce.'48.'.91 -K2 5(1 + a-91 -2K2-K3  ) 
(l+f) 	 (1+f) 

e
-( 	-2K2  -K3 )/Ki - (1  9-2K2  -K5   \ 0- (0-2K2  -K3  )/Ki 

KT 	1  
Then on differentiation 

Y = - 	1 	[e-(e-e1 -K2 )/K1 e- (A-K2 	f 	-2K2 "*K3  ) 
K1  (1+f) 	 (l+f) 

-2K2 -K3 	  ) + e-(Q-A1  -2K2  -K3  MI 	(Q-2K2 -K3  ) 

• e-(0-2K2-K3)/K1_ e  -(8 -2K2  -K3)/KI 1]  

Differentiating again, 

	

- 	f 	(e-(A-Ai  -2K2  -K3 )/K1 	e-( 0-2K2  -K3  )/K.1  ) 
( l+f )2  

or 

	

Y = 	y/K? 	 A > 	2K2  + K3 
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