
PRODUCTION PROCESSES 

IN 

STRONG INTERACTIONS  

A thesis presented for the 

Degree of Doctor of Philosophy 

in the University of London 

by 

HENRY DAVID DEWAR WATSON, B.A. (Cantab.) 

Department of Physics, 

Imperial College, London. 

November, 1965. 



-1- 

ABSTRACT 

The work presented falls into three Parts. 

PART I. The production of IT pairs in pp collisions is 

shown to be consistent with a peripheral model based om. 

K exchange. The result is not sensitive to the form of 

the meson-baryon vertices for comparable values of the 

coupling constants, and is in accord with the SU(3) symmetry 

scheme for 11-type coupling of the vector mesons and baryons*  

Certain unsatisfactory features of the model are discussed. 

PART II.  A critical review of various treatments of 

absorptive effects in the peripheral model is given. The 

different approximations made, and the inter-relation of 

the various results, are examined. 

A treatment based on the K-matrix is proposed which 

has several advantages, amongst which are relativistic 

validity and the absence of any restriction on the ranges 

of the forces involved. 

PART III. An improved model for pp 	AA is developed. 

The U(12) symmetry scheme is used to write down Born ampli- 

tudes, on which the requirements of unitarity are then 

approximately enforced, following the procedure proposed 

in Part II. 

Results are presented for various choices of masses 

in U(12). In all cases the angular distribution is well 
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reproduced in form, and in four out of six cases is 

given in magnitide from the pion-nucleon coupling constant 

to within 10 - 20 per cent of the experimental value. 

This represents an essentially no-parameter fit to the 

data. 
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the Department of Physics, Imperial College, University of 

London, between October 1961 and September 1965, under the 

supervision of Professor P.T. Matthews, The material pre-

sented in the text is original, except in so far as explicit 
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This work was made possible by the tenure of a 

Research Studentship of the Ministry of Education for 
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PART I 

POLE CALCULATION OF z-5 -4- "Y7,, 



(i) Introduction 

In the study of the interactions of elementary 

particles the primary quantity of physical interest is 

the differential cross section for scattering. This is 

given(1) by 

I<PIMii>12  
da 

where p is a density of states factor, F the relative 

flux, and4.!r1M(i-'> the matrix element for the process 

under consideration. The problem, from a theoretical 

viewpoint, is to develop a theory which will permit the 

calculation of the matrix element. 

The formalism relevant to this problem is that of 

quantum field theory - the so called second quantisation. 

Historically, the first question to be treated involved 

the electromagnetic interactions of electrons. It proved 

possible to develop an iteration procedure to solve the 

equations of the interacting fields, in which the pro-

cesses could be adequately described by a second order 

approximation to the matrix element, the Born approxi-

mation. This approximation represents the scattering as 

arising from the emission by one particle of a virtual 

exchangetf particle or quantum, which is subsequently 
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absorbed by the second pai,ticle, we may represent this 

process pictorially:- 

An elegant procedure developed by Feynman permits one to 

write down the corresponding amplitude in a convenient way. 

In this work we shall make much use of these methods, and 

for further details the reader is referred to any standard 

text-book on field theory. 

Early attempts to apply the Born approximation to 

the calculation of amplitudes involving strongly inter-

acting particles met with little success. In quantum 

electrodynamics the coupling constant, G2/47c, in powers 

of which one develops the iteration series, is 	1/137,  

while for strong interactions G
2
/1122c r\-1 15. 	The Born 

term is simply the leading term in this series, and while 

the series converges rapidly for electromagnetic interactions, 

this is not the case for strong interactions. Interest has 

therefore centred on more sophisticated methods of cal-

culating the amplitudes. 



However, in 1958 there was a revival of interest in 

the Born term approximation. This was associated with the 

work of many physicists, but especially with Drell
(2) 

Salzman & Salzman(3), and Ferrari & Selleri()  . The 

motivation for this new interest was the observation that 

in a great many interactions at intermediate or high 

energies the experimentally observed events exhibited a 

striking concentration in the forward direction. Now any 

Born term will include, from the propagator, a factor of 

1/(q
2 
- m2), where q is the four-momentum transfer 

(q24:. 0 for physical scattering), and m is the mass of 

the exchanged particle. This term will produce an enhance-

ment of the amplitude in the forward direction, and the 

suggestion was that this might be the mechanism of the 

observed forward peaking. 

This suggestion is extremely attractive. Events in 

the forward direction correspond to small momentum trans-

fer, and we would expect these to be events in which one 

quantum of the lightest available particle is exchanged. 

The interacting particles just snick one another in pass-

ing, as it were, and the reaction products are concentrated 

in the forward direction:- 
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These glancing collisions involve the long range 

part of the force, and since the range ' 1/m, where 

m is the mass of the exchanged particle, we see again 

that the lightest quanta are involved. We would similar—

ly expect the wide angle events to be associated with more 

violet collisions where the particles collide "head on", 

which we would expect to correspond to higher order 

diagrams with multiple particle exchange etc. 

Simple geometrical considerations suggest that 

glancing (long range) interactions are more likely. For 

example, a target particle will present an area between 

impact parameters r and 2r three times greater than 

that presented for impact parameter less than r:- 

-r r2  

:5 Tr r' 

If the Born term is used in this way as an approxi—

mation to that part of the amplitude arising from glancing 

and long range interaction's, the resulting model is 

referred to as the peripheral model, In this work we shall 

refer to this approximation as the Born term model, or 
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one particle exchange model, or pole approximation, in 

order to avoid confusion between this approximation and 

developments of the peripheral model which will also be 

presented. It must be emphasized again that the Born 

term is not used as a first term approximation to an 

iteration solution of the field equations, but simply to 

represent the long range part of the amplitude. 

An equivalent point of view is to consider the 

analytic properties of the scattering amplitude in the 

t (= -q
2
) 	plane, The poles and cuts are concentrated 

on the negative real axis, simple poles arising at 

ti 	mil,   where mi  is the mass of any particle with 

the appropriate quantum numbers for exchange. The 

physical region has t > 0, and it is clear that the 

nearest singularity is a pole corresponding to the lowest 

value of mi. 

physical 

	

ID 	 
-11V- region 

We would expect this pole, or such poles, to dominate 

the scattering amplitude in the near-by region, which for 

physical scattering corresponds to low values of t, i.e. 

forward scattering. The pole term will fall to half its 
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value at t = 0, when t 

where 

2 = m 9  i.e. at an angle 40  

, 
4p
2  sin2  40/2 = m

2 

If the pole term is to induce a forward peak we require 

the value of 4o to be small. Therefore 

sin 19-0/2 	9/2 

and 	ao 	m/p 

so that for a forwardly peaked amplitude we require 

p > m . 	 (1) 

This condition is just a statement that the colliding 

particles must be travelling sufficiently fast to be not 

much deflected by the exchange process, otherwise no 

forward peak will result and the amplitude will be as much 

due to short range interactions as peripheral ones. 

Condition (1) specifies the energy range for the model, 

which coincides with the so called "optical region", 

Yet a third, and still equivalent, statement of the 

peripheral assumption is to say that we are using the Born 

term to represent the behaviour of the high partial waves. 

Under the energy conditions specified, we expect many of 

these to be involved, and to dominate the interaction. 

High partial waves correspond to events with large impact 
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parameter, i.e. long range interactions, and other things 

being equal, are relatively more important in the ampli-

tude due to the weighting factor of (2-6 + 1). (This is 

an alternative statement of the geometrical preference for 

glancing collisions given above). 

It does not lie within the scope of the present work 

to give a review of the early work on the peripheral model. 

The reader is referred to appendix IV of reference (4) for 

a comprehensive bibliography, :1,re recent developments of, 

and modifications to, the simple pole model presented 

here will be dealt with in Part II of this work. 

However, we must mention briefly the more direct 

tests of the one particle exchange hypothesis, which come 

from an examination of angular correlations between the 

reaction products(5). Thus, for example, the exchange of 

a scalar particle implies that the diStribution with res-

pect to an angle ,6 defined by Trieman and Yang(6) should 

be constant. This distribution is hard to determine ex-

perimentally, but in many cases the data is consistent with 

an isotropic distribution. Again, the Stodolsky-Sakurai(7)  

model for reactions of the form 

+ N 	+ 

and K + N -4 K + N* 

involving p exchange, leads to a decay distribution for 



the 14.1  of 1 + 3cos
2 G. with respect to the production 

normal, and this is found to be quite well observed(795). 

In this work, we shall be concerned with two particle 

—2.> two particle reactions. This is not the serious 

limitation it might appear at first sight. A general 

feature of multiparticle reactions is the observation of 

kinematic correlations in the reaction products, which show 

up clearly in the Dalitz plot. This indicates that the 

reactions proceed via the formation of resonant states, 

which subsequently decay. For example, in le-  p inter—

actions 

r\J 	7.6 mb. 

\.) 	8.2 Mb. 

However, detailed analysis(5) shows that all but a 

small fraction of the three body events occur through 

K
+ p P 

or K
+ p 	

+. 
Kc*..  1\1'  

We include such three body processes as quasi two body 

reactions. 

It is precisely two body processes which we would 

expect to be amenable to peripheral treatment; more 

K+  p 

K
O 

7C p 

K
+ 	p 

K+ n 
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complex many-body-final-state interactions we would 

expect to be initiated by more violent "head on" 

collisions. 

(ii) The Reaction pp -4  

The reaction pp 	YY has been studied recently 

both at CERN(8)  and at Brookhaven(9)9  at energies in the 

range 3 - 4 Gev/c incident antiproton momentum. 
The most striking feature of the observations is the 

extremely forwardly peaked nature of the differential 

cross sections for AA , 	0  , 20 140 	1-4- )--+ - - O   

production. The antihyperons are emitted in a predominant-

ly forward direction with respect to the incident anti-

proton beam. This is suggestive of a peripheral production 

mechanism. 

An examination of the variation of cross section 

from channel to channel gives additional evidence in 

favour of such a mechanism. The experimental values are 

given in Table I, p. 16. It is seen that the cross- 

sections for E r_ and 
••••••••••••• 

oft 
	 are appreciably 

smaller than the others, and these configurations are 

precisely those that cannot be reached from the initial 

state by the peripheral exchange of a single quantum. In 



Z7 
9.5 

_ 	2 

87 77 82 

28 33.5 35 

36 23 44 
< 22 

2 11 8 

4 <1 2 

39 
23 

18.5 

<17 

8 

< 1 
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F momentum 	3.0 
in Gev/c 	CERN Brookhaven CERN Brookhaven CERN 

Cross section in µb 

(Quoted limits on errors are f'‘,..) 20 per cent). 

2 TO\ i-,:) 
1.7 	1.0 	1.6 	1.2 	1.7 

40(A7i)Cr0...i) 
(Errors from quoted limits are typically t .6) 

4-1+C-1-(A'q 	
1.14 	1.01 	1.11 	.95 	.98 

This parameter 	1 for F coupling 

1 
3 

I I 
	

D 
	

II  

TABLE 1. 
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both cases the exchange of two units of charge would 

necessarily be involved, and for 	two units of 

hypercharge also, 

On the other hand, the other five channels are accessible 

with the exchange of an I = 	S = 1 meson, and there 

exist two such mesons, K and K' . The fact that these 

channels have much larger cross sections is very suggestive 

that a one particle exchange process is playing a dominant 
••••••to. 

role, The small values of the T-_5111- and 	_ cross 

sections we ascribe to the fact that these reactions are 

forced to take place through more unlikely complex inter—

actions, 

A more detailed analysis of the angular distribution 

data supports this view. It is precisely in the case of the 

five reactions permitted via a peripheral process that the 

strong forward peaking is observed -- most of the events 

are concentrated in 0 4 0 < 60°  -- while the 

distribution is almost isotropic. (Data on 	- 	is 

inconclusive.) 

The energy is sufficiently high for a pole term to 

produce a forward peak. The centre of mass momentum, p, 

is '\ 1,100 Mev/c at 3 Gev/c, while mK  e-,) 500 Mev, 
goo Mev, so that condition (1) is satisfied. We 

therefore proceed to investigate in more detail a periphiaral 

model for YT production involving K and K inter—

mediary particles, It need hardly be said that in the 
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present state of our understanding of strong interaction 

dynamics it would be extremely satisfactory if it were 

possible to develop a model which would reproduce the 

observed results to within the 10 - 20 per cent accuracy 

represented by the neglect of quantities of the order of 
••••141. 

0-( 	) and 0- 
 

44foore• woormr. • 

(iii) K-exchange  

The lighter of the two possible intermediary particles 

is the K-meson (mK r--,  500 Mev, mK* 	900 Mev), and we 

therefore proceed to evaluate the pp 	YY amplitude 

for K-exchange, i.e. the contribution to the amplitude from 

the nearest singularity, or the longest range part of the 

force. The appropriate Feynman diagram is 

and the corresponding amplitude 
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.1,>((,)-(ccvoY,(43_; 
_ 
	---cCr (6.z.) •i,  

where a and 13 are spin labels, m is the K-meson mass 

and q ( = k1 - pl  = p2  - k2) is the momentum transfer. 

The cross section is related to the square of this amplitude, 

summed over the pis and averaged over the ats:- 

mav 1 
K.--  M \ a, a \1 KP1 1321 	2/ 

MY)2  
(q2 	m2)g 

2 

(2) 

where M is the nucleon and Y the hyperon mass. 

In Fig. 1 we have plotted this quantity in the CM 

frame for NN production, as a function of cos G where G 

is the angle between the antiproton and antihyperon 
,m (cos G = 1 for forward scattering). It is seen that the 

distribution obtained, far from displaying a sharp forward 

.peak„ is in fact vanishingly small in the forward direction 

and rises to a maximum in the backward direction. 

The only variation in the form of (2) for different 

final state combinations of /1 and Z arises from the 

mass differences:- 

N For detailed calculation we confine our attention to the 
CERN results at 3,0 Gev/c (Ref. (8)). 



Ut 

	

ry• 	
71. 	i 1  tlE 

	

r 	 ,tri 	414- 4r-4 -.rtr-- 

FIG. 1. pp AA at 3.0 Gev/c. 
The results for K-exchange are shown 
against the experimental histogram 
of ref. 8. Arbitrary normalisation (See p. 19). 

trtr.c=t11.7 

r. 

Li= 

1.0 

F!i4 	alf 11. • 

WM-10'MP 

-1.0 

. 	a 	 1 r4 
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A mass (Y) 	1115 Mev 

	

(Y) 	ti 	1190 Mev 

of nucleon mass (M) r\-) 	940 Mev. 
It is quite clear from these values that the angular 

dIstrfbutions for the different processes will be entirely 

similar to Fig. 1, and this is borne out by detailed cal-

culation. 

Indeed, we can go further and derive an approximation to 

the amplitude by setting the hyperon and nucleon masses 

equal, Y = M. Equation (2) then simplifies 

1.02(1 — cos 9))2  
— m2)2 

2 
q 	- 

 

  

   

2 
q2 - n1  

  

• 

       

Setting t = -q $ 

    

      

  

t 

 

(3) v 

 

t + m2 

 

       

It is now well known that for pseudoscalar meson 

exchange between equal mass particles, the amplitude, T: 

is of the form indicated - T "j t/(t + m2). 	It is also 

olear tha this repres0nts a small baokward peaking. This 

is to be contrasted with the situation for scalar meson 
. exchange, T 	(t 4M2)/(t + 
2
), which does give a 

forward peak. 

We conclude that a simple model of K-exchange is not 
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in accord with experiment, and we must reject the model. 

The inclusion of the necessary y5  factors introduces 

additional t-dependent terms in the amplitude which mask 

the effect of the pole term. Nor is it possible to modify 

tie angular distribution by the assumption of alternative 

coupling schemes for the K N Y interaction; all such 

alternative interactions reduce to the original form when 

the current is written between Dirac spinors -- in other 

words we have not got enough invariants to construct a 

genuine alternative interaction. There remains the possi-

bility of assuming the existence of strongly varying form 

factors at the K N Y vertex, but it seems rather unsatis-

factory to invoke on ad hoc grounds the existence of a 

factor which would have as its sole purpose the conversion 

of a backward into a forward peak, and we reject this 

possibility. 

Our conclusion that K-exchange is unimportant in the 

reaction implies a quantitative limit on the coupling 

constants; we deduce for example, that 

G 	/41t 	ru .5. This value is smaller than that 

given by previous estimates(10). 



-23-- 
(iv) K -exchange  

We now investigate a e-exchange model. For 

definiteness we consider first the channel pp 	AA lelbmillk 

as before, the other cases will follow with only small 

changes in the masses. We take the effective interaction 

L as 

L= 	G p  yt1  IrA  36+4  + h. c. 	(4) 

where IS 	is the positive ef  (I-) field. The diagram 

is similar to the previous:- 

the corresponding amplitude is 

<Pg2 M alcr2> 

= G2  V'Tt  (pi)y VA  (k1) 
1 	(31  

where m is now the K 

g 	 q q  
µv µ v 

q
2 
- m

2 

mass. 

m 2 
17
(32 
(k
2 
)Y

v(3 
UP

1 
 (p2)(5) 

  

Bessis, Itzykson and Jacob(11) have independently 

carried out the same calculation and have given an amplitude 
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corresponding to (4) which is in disagreement with (5) by a 

factor of two. It is therefore necessary to expand a little 

on the derivation of (5). 

We have 

	

L(x) = GO")  yo,  *A 	+ 	qfp  fe+eil) 

The second order amplitude corresponding to the diagram is 

of the form 

	

x1  d4  x2  T 	L(x2).1 • 

BIJ observed that there are two terms in the time 
MOW. 

ordered product corresponding to pp 	 nam ly 

1st term in 1/(xl) x 2nd term in L(x2) 

and 2nd term in L(x1) x 1st term in L(x2) , 

with, in both cases, contractions over the boson fields. 

Apart from x1 	x2  the terms are the same, and they give 

rise to identical amplitudes, and BIT include an extra factor 

of two in their amplitude on this ground, arguing that one 

term corresponds to TC*exchange and the second to r4ex-

change. This is incorrect. The factor of 2 is cancelled by 

the 1/21 - this is the well known Feynman prescription that 

one neglects topologically identical diagrams which arise from 

permuting the xi  , 

The differential cross-section corresponding to (5) may 

be evaluated using standard techniques. In Fig. 2 we have 
.M(..••••• 

plotted the result for AA production against the experimental 
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histogram. It is seen that the main feature of the reaction, 

the forward peak, is well reproduced. In Pigs, 3 and 4 we give 

the results for A% and 	( 17c, i\ is identical 

to A7_0 	by charge conjugation.) 

The calculation of the differential cross—section from 

(5) is a fairly lengthy process, especially when hyperons of 
different mass are involved, The numerical computation was 

therefore carried out on a Ferranti Mercury computer. How—

ever, if we again set the hyperon and nucleon masses equal, 

the calculation is much simplified -- in particular the 

q q
v
/m2 terms makes no contribution -- but the results are 

substantially unaltered, It is doubtful if either the 

accuracy of the experiments or the state of the theory really 

warrant carrying the calculations to the accuracy of mass dif—

ferences, In further work we shall neglect these mass 

differences. 

In the above calculations we have assumed even A and 

parities. WheL this work was carried out (1962) the 

parity was not well established. The calculation was re— 

peated for odd EA relative parity, by including extra factors 

of- at the vertices. In Fig. 5 we have plotted the y3  inte— 
v- 3=-  grated differential cross—section for L.". 4.-4. production for 

the two cases of odd and even EA 	parity, against the ex— 

perimental results. The case of even parity is clearly 

favoured. 

This conclusion, however, is dependent on the model, 

and apart from considerations of the angular distributions 



FIG. 3. 	1)13-4'Ato  at 3.0 Gel/A. 
The results for let- exchange are 
shown against the experimental 
histogram of ref. 8. Arbitrary 
normalisation (See p. 26). 
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there remain questions of the magnitudes of the cross-sections, 

and the sensitivity of the model to alternative coupling 

schemes, to which we now turn. 

(v) Cross-Sections 

4E 
The 1,i;k N 	and K L N 	coupling constants, GA  

and G 	are properly defined in terms of I-space invariant 

interactions. For the A case this is 

GA I& Yp, *A Seep 

of which the term 

GA 
,lip 

Y4  * 	 (6) 

is relevant here. 

For the /1 	case the interaction is written 

GE 1111\T Yµ1  

which contains 

2 G z  Tfp  YpA,,,Sop,  + G Tip Yp, 	 de÷p, 0 	 (7) 

The coupling constants appropriate to different vertices 

are therefore as follows 

p A e 	GA  

P  Eo e°. 	 Gr• 

p 	1,01̀.  Gr • 

To the excellent approximation of neglecting the 

mass difference we can therefore predict the following 

ratios between the cross-sections:- 
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2 	el. 

ts) 
0- 	 G 
0-( fc;,1 	 G 

From this it follows that 

   

(  

 

1 	(9) 

     

la (A 

   

In Table 1 we have given the value of this quantity 

evaluated for the different sets of experimental data. 

The error in its value is large, and the limits given are 

probably little more than a guide. (The experiments are 

difficult to perform, involving the detection and 

differentiation of neutral A  and 7-  particles. There 
appears to be a considerable measure of disagreement between 

the CERN and Brookhaven results.) It is therefore diffi-

cult to draw any firm conclusions from a comparison of (9) 

with experiment, but we can perhaps say that the results 

indicate that the model will serve as a basis for develop-

ment. 

The cross section is given in terms of 
	

uavi i>12 
by 



With these values, the three observed cross-sections 

are reproduced with 10 - 20 per cent accuracy. (Very much 

better fits would be obtained from the Brookhaven data.) 
(12) 	2 Chan 	has estimated GA from a study of it p -4 

K°. 	If this calculation is repeated using a more 

recent value of the K*  width, we find GA
2  

/ t 	'NJ 0.22, 
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dC- 	- G4 	1 hl 1 t 41  Mav I is>1 2  
a a 	- 	pal (16 17 E)2  

In units of (energy)-2, where for G4  the appropriate 

factor from (8) is inserted. We have three results, the 

Al\ , /01 1)  and 7-1. 114  cross-sections, from which to 

determine the two coupling constants, GA  + Gr o At 

3.0 Gev/c the best fit has 

G,2 	 .20 

Gz2 	 .06 
	 (10) 

in good agreement with our result. (The range of momentum 

transfer involved at the K A N vertex is similar in this 

case.) 

We can compare the results (10) with the predictions 

of SU(3) symmetry(13). As is well known, there are two 

possible coupling schemes between baryons and mesons, F 

and D types. (A general linear combination of these 

couplings is of course possible.) On a simple view, one 

might expect the vector mesons to be coupled in an F-type 
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manner to the baryons, since in this case p w and K 

are coupled to the isospin, hypercharge and strangeness 

changing currents, which are conserved in the limit of zero 

mass splitting. Such a (pure p) coupling implies 

G2AK Jx- ; 	G 2 E K t< 	3 0 1 

in good agreement with out results (10). 

In Table 1 we give values of ticr(A71)( 	(t+3.4.) 
from the experimental data. This parameter is related to 

the ratio of the coupling constants as they appear in the 

interaction Lagrangians, and is normalised to have the 

value 1 for F-type, and 1/3  for D-type. F-type coupling 

is clearly preferred in the model; at very least, the 

proportion of D-coupling must be low, 

It is perhaps worthwhile giving explicitly the cross-

section ratios predicted on the basis of F-coupling. These 

are 

AI\ 	Aso + 
9 3 

 

• 

On the other hand, there is evidence that interactions 

of scalar mesons involve D-type couplings(14) If we 

assume a peripheral mechanism of K-exchange with D-coupling, 

we find, e.g., Cr(i\ A.) Cr CE T 	1j36, a 

result in disagreement with experiment by two orders of 

magnitude. We see that a K-exchange mechanism would be 
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difficult to reconcile with unitary symmetry ideas, while 

a K mechanism fits well into the SU(3) scheme, 

(vi) Alternative Couplings  

We now investigate how our conclusions are modified by 

the inclusion of different possible types of interactions at 

the K 
46- 
-baryon-baryon vertex, Time reversal symmetry does not 

forbid a term of the qp,  (momentum transfer) form in the 

case of differing baryon masses, such as N and Y, To 

make the calculation tractable at this and other points, we 

work in the unitary symmetric approximation, which imposes 

a gauge invariance requirement under which a term of this 

form is inadmissible, In terms of "electric" and "magnetic" 

form factors(15) the vertex function must then be of the 

form 

'm2 q2 	
. 	 (2mGE( q
2  )P + ikGM(q2)rµ) -  

where P is the sum of ingoing and outgoing momenta at the 

vertex and 

r = 1(Y 	go15(  ) • 11 	2 11 

GE(0) and GM(0) are normalized to one, and k is a 

dimensionless parameter which gives a measure of the relative 

strengths of the two types of interaction. 

Neglecting the q2 dependence of GE  and GM, the 
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interaction is of the form 

21w  (1.2 (2mP + ikr ) 
4m 

In Fig. 6 we have plotted the differential pi:7-4 YY cross-

section for different values of the parameter k. It is 

seen that the forward peaking is not se:isitive to the nature 

of the interaction for comparable values of the coupling 

constants, i.e. k r'so 1. This conclusion would be strength-

ened by the inclusion of the q2 dependence of GE  and GM, 

since one would certainly expect this to favour the low q2 

values, as in the case of electromagnetic form factors of the 

nucleon. 

Hand, Miller and Wilson(16) have analysed electron 

scattering data in terms of electric and magnetic form 

factors, and fitted these with p and w interactions and 
a soft core of mass 30 fermi-2 finding k = 3.5, 

kw  = 1.3. Unitary symmetry predicts Icie = kp  = kw. 

If ke is as large as 3.5 (Fig. 6) the strong forward 

peaking will no longer be present. (This disappearance of 

the forward peak with increasing value of k corresponds to 

the well-known fact that in electromagnetic interactions, 

the magnetic interaction dominates the wide-angle scatter-

ing.) However kfy and kw  are sensitive to the choice 

of soft core mass, and must be regarded as poorly determined. 
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FIG. 6 	pp 	Y7 differential 
cross-section calculated for different 
values of the parameter k, and nor-
malised to be equal in the forward 
direction* (See pa 35). 
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(vii) Discussion 

The pole term model which we have presented seems able 

to give a fairly good descriprion of the processes. We have 

seen that the branching ratios and angular distributions 

predicted are reasonable representations of the observed 

quantities, and that the model, which is not unduly sensi-

tive to the form assumed for the baryon-baryon-meson 

vertices, is in accord with the octet model of unitary 

symmetry with F-type couplings. However, we must emphasize 

that the pole model, of which the greatest merit is sim-

plicity, cannot be taken too seriously* We prefer to regard 

it as a basis on which to build a more satisfactory treat-

ment, for there are serious objections to such a pole term 

model. 

Firstly, Durand and Chfu(17) have pointed out that 

our argument rejecting K-exchange on the basis of the 

angular distribution results is unconvincing. The reader 

will recall that the amplitude for Kexchange was of the 

approximate form t/(t + m2), representing a backward con-

centration of events, while the observed distribution is 

very much forward peaked, We now observe that this ampli-

tude may be put in the form 

2 

t  m2 
t 	1 
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It is clear that the second term here has the correct 

(forwardly concentrated) form. The unit term interferes 

with this term to produce a total backward concentration. 

Thus we see that the unit term, representing an S-wave 

contribution, is dominating the form of the amplitude; if 

the S wave is omitted, the correct forward form results. 

This dominant role of the S-wave is quite in contra-

diction with the entire spirit and justification of the 

peripheral model as given in Section (i). We Bet out with the 

intention of using the one particle exchange amplitude 

as an approximation to the long range part of the force, 

with which we hoped to represent the behaviour of the high 

partial waves, We now find that (for K) the one particle 

exchange amplitude is dominated by the 8-wave contribution, 

which in any case we did not expect to be accurately given. 

It is a general feature of pole term models that the 

amplitude obtained is dominated by the low partial waves, 

It is therefore just not possible to claim that the Born 

term is an approximation to the long range (i.e. high partial 

waves) interaction,. 

This difficulty arises from the fact that the Born term 

model pays no attention to the requirements of unitarity, 

For a strong interaction process the Born term model leads 

to amplitudes which badly violate unitarity for the lower 

partial waves -- for the S-wave by as much as one or two 

orders of magnitude in a typical process(18) Yet not only 
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must the partial wave amplitudes keep below the unitarity 

limit, but at high energies (corresponding to the peripheral 

or optical region defined by (1)) when very many competing 

channels are open, we would expect the lower partial waves 

to keep well below the unitarity limit - indeed to be very 

small in just the region where the Born term model gives therl 

as very large. 

A related difficulty of the one partille exchange 

model is evident upon a closer examination of the angular 

distributions given in Pigs. 2, 3 and 4. There is a systemat-

ic tendency for the reaction to be more forwardly peaked than 

predicted - the peripheral amplitude is not sufficiently 

peripheral. This is a common fault of the Born term model, 

and to remedy the situation form factors have been invoked 

at the interaction vertices, with a q2 dependence chosen to 

suitably correct the amplitudes. Prom the present point of 

view, we remark that the wide angle scattering arises from 

the low partial waves. We have seen that the low partial 

waves are incorrectly given by the Born term model and we can 

only hope that the need for form-factors will disappear when 

the requirements of unitarity are forced on the model. 

At this point we only touch on the question of unitarity. 

The second Pact of this work is devoted to this failing of 

the Born term model, and we develop a method for attempting 

to overcome the difficulty by the inclusion of so-called 

"absorptive effects". 



Apart from the fundamental problem of unitarity, there 

remains in the Born term model considerable arbitriness, of 

which our present pole calculations provide an example. 

This arises from several sources. First, there is often 

more than one quantum available to act as the exchanged 

particle. Secondly, having made a choice of intermediary 

particle, on mass or other grounds, we are often faced with 

a choice of possible forms for the interaction, e.g. "Yti" 

or t1y qv  ". There is normally some indication of the form, 

but usually also considerable freedom of manoeuvre. Finally, 

in considering branching ratios, or processes involving more 

than one exchange quantum, we are free to assign ad hoc 

values to the relevant coupling constants. 

When these three sets of choices are put together, 

there results a very considerable freedom of manoeuvre. 

One could speculate that it might be possible, with a suit 

able choice of parameters, to obtain an adequate fit to any 

set of data. It would be much preferable to start from a 

higher symmetry scheme in which there was no freedom in these 

parameters, and to compare the resulting amplitudes against 

experiment. In Part III of the present work we repeat the 

calculation of pp -- , 11/1 within the U(12) theory of 

Salam, Delbourgo and Strathdee(19) 



PART II 

ABSORPTIVE EFFECTS  
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(i) Form Factors  

In their early peripheral, or pole term, calculations, 

first of NN 	N1\74"" and later of ir.N 	pN, Ferrari & 

Selleri found that the model did not give predictions 

which agreed with experiment. The disagreement was of the 

type we saw in Part I of this work in the case of 

pp * Y7 ; the peripheral amplitudes gave too much wide 

angle scattering. To remedy this discrepancy form factors 

were introduced into the one particle exchange model. It 

was argued that the existence of possible structure at the 

reaction vertices (c.f. EM form factors) and possible un-

known renormalisation effects on the propagator permitted 

the inclusion of theoretically undetermined functions of 

the squared momentum transfer in the peripheral amplitudes. 

f 	x Such a function we denote by Fog.2  ) where we have absorbed 

the three separate effects arising from the two vertices 

and the propagator into one term, which is normalised by 

choice of coupling constant so that F(0) = 1. F(q2) 

is referred to as the form factor, though it clearly re-

presents more than the structure at one vertex, as in the 

EM case. In general the form factor will be different for 

different reactions. In practice the form factor was chosen 

so as to bring the peripheral amplitude into agreement with 

the data. 

We reproduce in Fig. 7 three form factors which have 
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been determined in this manner. The functions shown are as 

follows` 

(i) The Ferrari—Selleri type form factor, for one pion 

exchange 1-1:1. NN 	NN'(  and 	tN 	pN 

F(q2) — 	
•72 	•28 

1 + (—q4-µ2)4,73 µ
2 	1 411(—q2+µ )/32µ212  

where µ is the pion mass. The first of these terms is 

chosen to give a rapid decrease at small momentum transfer, 

and the second to reproduce the data at large momentum 

transfers, 

(ii) The pion exchange form factor of Goldhaber et ai.(21)  

for 
KFI: 

F(q2) 

where a2 

K4c. N;,4 

m2  
"7-2- a - 

0.132 ((re7/c)2  

(iii) The vector meson form factor of Jackson & Pilkuhn(22)  

for p or co in 

KN 	K
40E 
 N 

KN 	K 

1{(q2) = exp042) 

where 	2.5 (Gev/cr2  

n Taken from J.D. Jackson & H. Pilkuhn; Nuovo Cimento 
906 (1964). 
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It would at best be unfortunate to have to invoke 

such ad hoc form factors in order to obtain satisfactory 

results. However, since the necessary form factors are 

such rapidly varying functions of q2 the situation is 

extremely unsatisfactory. It is not clear that one is 

doing anything more than curve fitting. 

There are also weighty theoretical arguments against 

the existence of such strong form factors. If the pion 

form factors are to be ascribed to pole interactions at 

the vertices of the form 

as in EM tnteractions, then we require the existence of 

a three pion state at a mass squared ra.., 5m
2
. 	However, 

there is no evidence for such a state up to e•-•) 504 . 

Again, if the same assumption is made as to the origin 

of the vector meson form factors, then we are forced to 

assume the existence of states with the same quantum 

numbers as 	y 	etc., but with lighter masses, even 

though we start (in the peripheral model) with the 

supposition that we are exchanging the lightest quanta 
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available, 

Altogether, the use of such form factors seems un-

reasonable. In the pion case, the purpose of the form 

factor is largely to remove the large S-wave term. As 

this term is inconsistent with the assumptions underlying 

the model, and as it badly violates unitarity, this pro-

cedure is very questionable. It would be more preferable 

to find a method of unitarising the model. 

The similarity of the form factors which have been 

introduced by various authors is very striking (c.f. 

Fig. 7). It is remarkable that such similar forms are 

found for different exchange particles and different re-

actions. This circumstance suggests that the mechanism, 

if such exists, responsible for the sharpening of the 

forward peak in the peripheral model is independent of the 

detailed dynamics of the particular reaction under con-

sideration, and is a more general feature of high energy 

scattering. 

This situation is reminiscent of elastic scattering 

at high energies, of which in all cases the main feature 

is a sharp forward peak, representing the shadow of the 

many open inelastic channels, and independent to a large 

extent of the detailed nature of the particular interaction. 

This suggests a possible line of development for the 

peripheral model, namely to find some way of including 
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in the model the effects of the many open channels by 

taking into account in some manner the strong elastic 

interactions between the incident and final particles. 

This is the absorption model. 

(ii) Elastic Scattering at High Energies  

As the absorption model is based on the character-

istics of elastic scattering at high energies, we now give 

a brief review of these. 

We define the high energy region to be that for which 

P 
	

V 
-1 	 ( 1) 

where V is the range of the elastic interaction. 	1) is 

typically f•-) 1 f, so (1) implies the Gev range or higher. 

(This condition should be compared to that of 1.1 defining 

the peripheral region, 	> 1
1-1

). 

Under these energy conditions the incident particle 

may be considered localised in a wave packet of smaller 

dimensions than the target which it "sees". The particle 

can therefore be thought of as having a definite position; 

this is just a statement that at high energies quantum 

mechanics becomes similar in some ways to the classical 

mechanics of billiard balls - the so-called correspondence 

principle. Again, under this high energy limit we 



_4g_ 

anticipate that very many inelastic channels are open. 

If a collision does take place, it will be likely to result 

in a transition to one of these other channels. From the 

point of view of the elastic interaction, such a collision 

results in the loss or absorption of a particle. Collisions 

which proceed by a direct elastic interaction, e.g. by 

exchange of quanta leading to the original state, are 

expected to be relatively few. 

The situation is very similar to the passage of a 

beam of light through an opaque screen, and we therefore 

speak of this energy region (defined by (1)) as the 

optical region. The fact that there is no ll direct" 

elastic scattering does not mean that no elastic scattering 

is observed; on the contrary, the absorption of particles 

from the beam shows up by diffraction in the formation of 

an elastic scattering distribution. We therefore also refer 

to this type of model of elastic scattering at high 

energies as the optical model - the elastic scattering 

arises from absorption. 

In potential theory the absorption of particles into 

other channels can be simulated by adding an imaginary 

part to the potential V. If Im V 40, plane wave 

solutions display a decreasing amplitude representing 

absorption. (Equivalent use of a complex impedance 

to represent absorption is widely known in optics, 
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classical EM theory and wave theory.) In general if 

is the particle current 

V. j = 	2 Im V 1 t2  

showing that the probability of absorption is a — Im V 

(Im V 	0). The amplitude is given by 

f(a) = 	 (2 + 1) (S;i; 1) P1( cos G) 	(2) 

where St 
= e2161 
	

and Es  is the phase shift. 

If V is complex, then so also is 6, and for Im V < 0 

we must have Im 6> 0. Setting 

= a/  + iS 
	

(  > ) 

the optical model assumption is that (3>> ImA 	i.e.  

diffraction effects predominate. Neglecting a, we have 

— t 
Si 	 (3) 

i.e. o 	Si 	1 • 

The elastic scattering cross section is given by 

(2t + 1) st - fl2  

so that we see explicitly from (3) that asborption implies 

elastic scattering. Further, since the inelastic cross—

section is 

IC 
el 	2 

min 
7C 

— 2 
p 

(21 + 1)(1 - Isti2) 
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we see that in general the larger 0- n 
 , the smaller is 

Si, and consequently the greater the elastic scattering. 

(The two are normally of the same order of magnitude). 

This process, in which elastic scattering is induced 

by the absorption of particles into the other channels 

is just the working of unitarity. Note that since Si  is 

real, the amplitude fl is imaginary (Si  = 1 + 2ipft). 

f2  is therefore given by the unitarity relation. In terms 

of the more familiar covariant amplitude T(0, related 

to f(s) by 

T(4) 	= 	8gc Ec f(4) 

this is(23) 

2 Im T 
t 

LME IT 
MG 	 oTt 

where a, Y, 	label the channels, p is the momentum 

in the Y-channel and E the total centre of mass energy. 

It is seen that each open inelastic channel contributes 

to the imaginary part of Taa, and these contributions are 

additive. 	The optical model assumes that Taxi,  arises 

entirely in this way, and therefore Taa  is entirely 

imaginary. 

The unitarity requirement gives for forward scattering 

1m Tma 
 (0) 
	

2p 
Ec  tot 

where cr 	or Z 	in 
+ cr. 	is the total cross section. tot 	e  

2 
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In general 

= J(eT)2  + (ImT)2 
	

ImT 

6°.ITaa  (0)1 	2p Ec  aiot 
	 (10 

the equality holding if, and only if, Taa(0) is 

imaginary. This provides the most direct check on the 

optical model assumptions. Though there has recently been 

some indication of a real part of the forward elastic 

scattering amplitude(24)„ the equality in (4) is found to 

be quite well satisfied for most cases of high energy 

scattering, and over a wide range of energies (high). 

This is generally taken as a justification of assuming 

T(49) to be imaginary for all 8, though there is no 

direct check on this, (It must be stressed, however, that 

the model which we shall develop does not rely on the 

assumption of a pure imaginary elastic amplitude - it is 

only necessary that this amplitude should have a large 

imaginary part, and this certainly seems well established). 

The model we shall develop gives a result (for 

inelastic processes) which contains elastic scattering 

matrix elements, e.g. 	S
Ma 
 5, and these must be replaced 

by appropriate expressions in the light of theoretical and 

experimental understanding of elastic scattering. For the 

present work we assume a form for high energy elastic 

scattering which is widely used and appears to be quite 

T  
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accurate and of fairly general application. This is the 

Gaussian Model(23)8 

 

/(t+1)  

= f(49) = 2p 'T(2/+1) Ce 	v2102 	 (cos 49)(5) 

81cEc 

where C and v are parameters, C determining the 

strength of the interaction and v giving the range - 

referred to as the optical model range, sometimes also taken 

as v/j2 	From (2) and (5) we have 

t(t+1)  
iC 	vID2 	

S - 1 

2p 	2 ip 

so 	St  = 1 - oe-t(f+1)A2p2 
	

( 6 ) 

C must be chosen to make the amplitude go through the 

optical point, and we find 

tot
2 	 (7) 

27cv  

Experimentally, 	C 	.7 - 100(5)• 
This parameterization leads to a variation of Cr with 

t (= -,c1.2) for small t as follows:- 

gsr///11 	-Y2v2t 

- 
e dt dt t=0  

This is of the same form as given by the Regge pole theory 

of elastic scattering at high energies. 
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(iii) Absorptive Effects 

Having a clear idea of the nature of elastic scatter-

ing at high energies, we are now in a position to see how 

we might expect the main characteristics of elastic 

scattering to have a pronounced effect on a typical 

inelastic process, say a transition a 	p, where 

a, (3, etc. label the channels. We suppose that the ranges 

of the elastic interactions in the initial (p) and final 

(0) states are 	v , while the inelastic interaction 

is of range µ 	We will suppose for definiteness that the 

inelastic process proceeds via the peripheral exchange of 
. quanta of m, so that µ 	m-1  „ however, there is in 

principle no need to make any assumptions concerning the 

production mechanism. Again, for definiteness, let us 

suppose µ 	v. The colliding particles therefore appear 

to one another as having opaque, black centres, only out-

side of which the inelastic interaction is "seen":- 



If the particles interact with impact parameter less than 

v, the chances are that they will be absorbed into an 

alternative channel - from the point of view of the 

transition a 	0, that part of the interaction which 

would proceed through impact parameters less than v is 

effectively lost. On physical grounds we can see that the 

result would be a marked sharpening of the angular dis-

tribution in the forward direction, since we would expect 

to see the diffraction shadow of the absorptive region even 

in the inelastic process. 

It is therefore expected that any mathematical treat-

ment of this effect will result in decreasing the low partial 

wave amplitudes. This is precisely the result which we saw 

in Part I, Section (vii) would be desirable in the peri-

pheral model on very general grounds. It is just these low 

partial waves which violate unitarity, and lead to the 

unwanted Tide angle scattering. The present idea, that of 

including the initial and final state elastic amplitudes 

in the calculation of inelastic processes, would be nothing 

less than a unitarity correction, since, as we have seen, 

the elastic amplotudes themselves are due to the large 

number of open inelastic channels. The reduction of the 

low partial waves would be just a unitarity damping effect. 

If µ is not '43> v, the situation is not as easily 

visualised; however, we would expect similar effects., 

There have been several independent treatments of the 
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situation discussed here. These treatments start with 

differing assumptions, proceed by different methods and 

lead to results (valid under various conditions) which are 

sometimes inconsistent. It is our intention here to give a 

critical review of the results to date, which we shall 

sometimes derive by new methods, and to give a consistent 

review of the field, inter-relating the various results as 

much as possible. Finally, in Section (vii) we propose a 

treatment based on the K-matrix which seems to the author 

to be the most satisfactory. 

However, in order to familiarise the reader with the 

general nature of the results, and to illustrate their 

application, we give here a (widely known) formula first 

written down by Sopkovich(25)  and re-derived by Durand and 

Chiu(26'27), using the distorted wave Born approximation. 

This relates the modified or corrected partial wave matrix 

element Tt
Pa 
 to the Born element Via  and the S-matrix 

elements for elastic scattering in the initial and final 
P 

states, Sam  and S4 . The formula is valid under the 

conditions 

P-1  <4% L <44.,  v 	 (8) 

(Note that this implies we are in both the "peripheral" 

and "optical" regions - c.f. I(i) and I'M). 

The relation is 

(9) 
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To illustrate the use of (9) let us suppose 

Ma 	P = 	St P' and take for these matrix elements a form 

appropriate to Gaussian scattering with complete absorption 

of the lower partial waves (i.e. Eq. (6) with C = 1): 

1 - e-t(t1-1)11)2132  S
aa 

= S
t 

PP 

(9) becomes 

T 	= I - -t(t+1)/v2p2i  V Pa 	Pm 

We show in Figs. 8, 9, and 10, the effects of this 

correction on a peripheral amplitude corresponding to the 

exchange of a vector meson (mass = 890 Mev = mK ) between 
, 

two particles of nucleonic mass (Ni, /NA ) at 3.0 Gev/c. 

(Apart from retaining q dependent terms from the vertices, 

we have entirely neglecthd spin.) Fig. 8 shows the cor- 

rection factor, i e_2(24.1)b2p2against t. 	pig. 9 

shows the weighted amplitudes (i) (2t+1) Via, and 

(ii) (2t+1) 	against t. Fig. 10 shows the correspond-

ing angular distributions (i) Born term (ii) corrected 

amplitude. The features discussed above are illustrated 

in the graphs in a quantitative manner, and it will be 

seen that the corrected results display a striking 

modification. 
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(iv) The High Energy WKB Approximation. 

We briefly outline here derivations of equation (9) 

and a similar result holding for •L 	v which are 

based on a method due to Gottfried & JacksonWO We 

use the WKB approximation in the Schrodinger equation, so 

the treatment is non-relativistic. We take the incident 

beam parallel to OZ (unit vector) and 1? to be a 

vector perpendicular to OZ, so that 	b( = 112‘) is 

the impact parameter, The three-momentum transfer we 

denote by d . Glauber(29)  has shown that the scattering 

amplitude is given by 

f(G) = 	Jo b) (ei X(b) 	1)1pd 	(11) 

where 

(b) = - 	 V(b +1z)dz 	(12) 

-Go 

The Born approximation consists in setting 

ei X(b) 	1 4,\, IX(b) = 2ip 13(b) 	say 
	

(13) 

so that (11) becomes 
Gob 

f(8) = 2p2 
	

Jo b)B(b) tpdb 

Under the usual identification 

pb 	+ % 

jo(ab) 	PQ  (cos 8) 
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we recover the usual partial wave expansion 

f(49) 	= 	) (2t+1) Bt  p1  (cos e) 

Clearly X(b) is the phase shift suffered by a particle 

in traversing the potential V at impact parameter b. 

To take into account the effects of absorption we 

must also include the extra phase shifts suffered by the 

particle in traversing the absorptive regions, in which 

we represent the absorption by complex potentials Uact  

(initial channel) and u (exit channel). We make use PP 
of the condition p >> v, so that the wave function in 

the potential U can be taken of the form 

eikz (z) 

where p(z) is a slowly varying function of z. Inserting 

this form into the Schrodinger equation, and neglecting the 
14 

term (small) we find for p 
P 

-im 	2  (U(b + kZ1  )dZt  
f) (b + kZ ) = e P 	 (15) 

(This is the MB approximation). The exponent: in (15) 

represents an additional phase shift which we must include 

in (14), There are two cases:- 

Case (i) 	p 1.<< 4 1)• 

In this case the incident particles first traverse 

the potential U aa  , then the potential VPm 
 (corresponding 



f
Oa
(4) = 2p2 

i6„ 
jo(tr b)e  

1.6 
B
Pa 

(b) e bdb 	(18) 

result 

C) 

This is the impact parameter representation of the 
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to Boa  in (14);„ and finally the potential U00. We 

use the condition µ 4?, v to approximate the first phase 

shift, say (5 m2  by setting z = 0 in the limits of a 
integration of (15), i.e. we consider the particle to 

have traversed the entire U potential up to z = 0 

before it encounters the production potential. (15) 

gives 
0 

p U 	+ kzt)dzt 6,1a(b) = mm 
(16 ) 

Now re note that the total phase shift at impact parameter 

b for a particle traversing the potential from - co 

to + co is 
,1-140 

-m 	ti
Cta 

(b Itz )dzt 

2 ct,a, (b ) 
	

(17) 

so we see that 6
ma  (b) is just the elastic scattering 

phase shift in the  channel  a . The same is true for 

6
13 . 

Including these extra phase shifts in (14) we have 

(9)0 

Now the production potential is supposed to be of 
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the greater range. There are two possibilities. The 

transition a -4- p might take place before the particle 

traverses the absorptive central region, in which case it 

no longer "sees" the potential V
Pa 

 while leaving the 

interaction region. The production amplitude is then 

given by (11), (12) and (13), where the limits of inte- 

gration in (12) now run from - cY 	0, so that B(b) 

is replaced by % B(b). The additional phase shift is 

now that arising from traversing the entire region of the 

potential U
PP 
 (from (16), with limits ± tO ), i.e. 

2 S
P P• 

The total contribution from these transitions is 

c°  

2i San  
foct(Q) = 16 2p2 	Jo(Llb)e " Bpm(b) bdb 	(19) 

There is a similar contl-fbution for transitions made 

after traversing the central absorptive region 

fPa (9) 	% 2p2 Jo(Ab)BPa  (b) e as  bdb 	(20) 

The total result is the sum of (19) and (20). Writing this 

in the conventional partial wave form 

Rafe) = 	(20-1)1 [s' v4  + t s' 	P ( 
2 	013 Pm 	

\r 
Pa aal 	

co a e) (21) 

where we have replaced B
Pa 

 CO 
 

with Via  rather than 

BPa to conform with an earlier notation. Denoting the 

corrected partial wave amplitudes by T
Pa 
 the two results 

may be stated 



-64- 

t p-1 v 	= 	
PP 2' 

µ 	T, 	S„,, 
P  
V„

M 	P 
+ V,

M  SG  Pm ' 	al, 

P-14 1-1. 	Te 	= 	Vi  Pa 	PP Pm '4.- ma 

(22)  

(23)  

Of these results (23) is of longer standing. It 

was '',aken as a plausible ansatz by Sopkovich in 1962(25),  

and derived under the stated conditions by Durand and 

Chiu(26, 27) (1964), using involved arguments about the 

form of the radial wave function in the Schrodinger equation, 

which also led to (22). Gottfried and Jackson(18) derived 

(23) by a method similar to ours, which we have extended to 

deduce (22) also. A derivation of (23) has also been 

attempted by Ball and Frazer(32) on the basis of S-matrix 

theory, which work was, however, of an exploratory nature. 

Due to the conditions 	p 	11-1, II-1v  (22) and 

(23) are "high-energy non-relativistic results". In 

practice (since the conditions imply the Gev range) a 

relativistic theory is used to calculate V 	Clearly, 

the generalisation of results based on the Schrodinger 

equation to a highly relativistic situation is an unsatis-

factory procedure. 

There are more serious limitations on the applic-

ability of these formulae. The elastic scattering radius v 

is typically (%) if in most cases at high energies. 

Typical ranges for Born production forces are also of this 

order of magnitude, e.g. m - 1 1/- -1"4 2f, mK 	81 • 
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Therefore, in practice, the physical processes of interest 

do not fall within the domain of validity of either (22) 

or (23). This point is often passed over in applications 

and (23) is taken as a basis for calculation 	the form 

(22) is not at all widely known. 

At first sight (22) and (23) are very different 

results. However, a closer inspection shows they are in 

many ways similar. There is in both cases the symmetry 

between a and 0 ; if we set StQM  = Spy  = 1 in 
either we recover the Born amplitude; and if we put 

V.tPa = 1 in either with Saa = Spp we retrieve an S 

matrix for elastic scattering, as we might intuitively 

expect. 

Further, we note that both (22) and (23) give ex— 

pressions for T2
Pm 	P 

in terms of VI
m 
 multiplied by a 

"correction factor". In the case of (22) this correction 

factor is 

S 	SPO 	0,04 

2 
and for (23) it is 

see 30.  s as 

(24)  

(25)  

We see that (24) is the arithmetic mean of the 

elastic scattering matrix elements, while (25) is their 

geometric mean, so all in all (22) and (23) are really 

rather similar. 
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We can set 

S 	= 1 - 2i T2t 
	

(26) 

where for the higher partial waves T2  will be small. 

For these 

- 21 T“ \s„ am 	ma 
)14 t.s., 1 iT2  as 

and similarly treat ‘/S00  so that (23) becomes 

 

Tea 
	Om 

= VIZ  p 	am 1(Tt i + T2  ) PP 

  

 

(27) 

  

In the notation of (26), (22) is identical to (27), so 

that for the higher partial waves (22) and (23) are 

equivalent. 

This equivalence of (22) and (23) is true even for 

the low partial waves if the initial and final state 

elastic scatterings are similar, Sao,'*N-P Soo p in which 

case we can set 

  

S
aa 

S
f3j3 

am S(30 

 

 

2 

which approximation is valid to the second order. 

These considerations strongly suggest that the restric-

tions on the ranges in (22) and (23) are somewhat artificial, 

and that it might be possible to derive a formula independent 

of the relative magnitudes of 11 and v, and for practical 

use this would be an extension of considerable importance. 
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As we have seen, (22) and (23) differ (at most) only 

for the low partial waves, and it is precisely for these 

waves that the derivations of the results is weakest, 

For v 5> µ the situation is as indicated:- 

We have supposed (in our choice of limits in the integrals 

above) that the particle traverses the absorptive region 

from z = -oo to z = 0 before it encounters the peri-

pheral force, For low impact parameters, this assumption 

is not strictly tenable, since the large absorption of 

partial waves with low b values arises from traversing 

the extremely absorptive central region, which necessarily 

coincides with the peripheral region, b < µ, 	(In other 

words what we are saying is that the behaviour of the 

2-th partial wave depends on the details of the details 

of the potential at distances r\D i/p ; for .8,/p ( µ 

we can no longer consider the particle as traversing first 

the absorptive region and secondly the production region). 
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Similar objections hold for the treatment of low partial 

waves for µ 	v, though here the approximations are more 

reasonable. Altogether, it seem quite plausible that 

a result might be found independent of the ranges. 

In addition to the points we have made above 

((i) non-relativistic treatment, (ii) the range restrictions, 

(iii) the approximations for low partial waves), there are 

additional strong reasons for seeking an alternative treat-

ment of the effect. We have claimed that the inclusion of 

absorptive effects is a unitarity correction to the Born 

approximation, yet in the present treatment any relation 

with unitarity (e.g. through K-matrix formalism) is far 

from obvious. Again we are essentially including the 

effects of interactions in the initial and final states on 

our Born term, yet there is no apparent point of contact with 

the theory of final state interactions (as developed, e.g. 

by Watson(3o) or Delbourgo(31)).  It would be reassuring 

if we could make contact with K-matrix formalism and/or 

the theory of interactions in the final state, which steps 

would bring the work within the framework of conventional 

scattering theory. We turn, in the following sections to 

these questions. 

A final remark might be added here: the form of (23), 

involving as it does square roots of matrix elements, seems 

to the present author quite unusual, and does not lead to 
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simple visualisation. On the other hand we can easily see 

in an intuitive way how (22) might arise from successive 

elastic and inelastic interactions. 

(v) Initial and Final State Interactions 

therefore now investigate the 

effects of absorption using the formalism developed by 

Watson(30) to treat interactions in the final state. 

(Using the very similar work of Delbourgo, and making 

parallel assumptions we reach the same results). We 

confine our attention to the case v 	, so that the 

elastic interactions are in the initial and final states. 

Watson's work is based on the Lippmann-Schwinger 

treatment of scattering(33)  Incoming and outgoing 

eigenstates of the system are formally related to the 

corresponding free solutions by equations of the form 

I
E o/ = ÷ tE0)  

If we decompose the total Hamiltonian H into 

H 	= 	Ho + ^V`

where Ho is the free Hamiltonian and 7r the inter- 

action, then 
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_ 	= 1 + 	1 	-ir 
+ .  Eo — H — lc 

and ̀ E%4. satisfy 

1 Eo>1. 
E H ia o o 

where formally 

1 	=p 1T 
Bo — Ho — is 	E 	Hoo  

in 6(E0 H0) 	(28) 

so that we have 

4E 
CEk E0>+ =E IEo~ P 	

 (29) 
, 	Eo — E 

in 5(Eo E)e4 hrlE0›.± 

The T matrix is given by 

T = err )+ 	n _+-v- 	(3o) - 

and for the Born approximation we set 	or 	= 1 

in (30)0 

At present we deal with only the initial state 

elastic interaction, We assume this to arise from a 

potential v ; in fact v is defined to accurately 

reproduce the elastic scattering. Then writing 

= V + v 

we can identify V with the potential V
Pm 

provided that 

o>+ 
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VRa. does not make a large (indirect) contribution to 

elastic scattering, which we assume to be a valid 

assumption, since we are as usual at high energies and 

are supposing that very many channels are contributing to 

elastic scattering. Watson gives (Eq. 15, ref. 30) for 

the (toi;a1) T matrix: 

T = V C° -L. 4. 	 (31) 

where w+ are the "in" and "out" operators for a 

Hamiltonian H = Ho + v. We can further simplify 

(31) by setting 

n.+  = 0+ 

where jao + are "in" and "out" operators for a 

Hamiltonian H = Ho + V 	so that (31) becomes 

V 0+  w+ 	(32) 

This equation admits of a ready physical interpretation; 

due to the condition v >> µ the term .11+  in (30) 

has factored inton_o+ w+ 	so that first v acts and 

then V . 

Equation (32) gives 

i.e. we drop the second term of Watson's equation (22). 
This is usual, and is certainly justified in our case 
since v >> 	and we can assume that once an inter—
action through V takes place, no further interaction 
through v occurs. 
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E01 T 1 Em> = IdEl<!ptp 	75 IIT2e) +  1 Ea>/e3(Em 
 )4( 

m  
t 1 0  E> + 

(33) 

where we have merely inserted a complete set of states 

(not showing explicitly the implied angular integrations), 

and. where 

E 	= 
44 Ecr,> 9 

ise.a>+ is an "in" state of H = Ho + v 

The essential nature of the WEB approximation is that 

it is an energy shell treatment. The wave suffers shifts 

in magnitude and in phase, but to the approximation used 

its energy is unaltered - hence the high energy condition, 

so that a potential encountered is small in magnitude 

compared to the particle energy, It is this fact which 

makes the absorption tractable, since otherwise we would 

need information (which we do not possess) on the off shell 

behaviour of the elastic amplitudes. The result obtained 

contains only physical (energy-shell) values - hence, 

amongst other consequences, its form as a relation between 

partial rave amplitudes. 

We want to use this energy shell approximation, which 

we expect to be valid at high energies, to get a useful 

form for (33)6  We shall therefore approximate 

Ea,), + by neglecting the principal value integral 

in (29), so that we set 
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NEt a, 	at,  + 	tztt Etc> 	in '(Ea  - Eat) <&tt  v Ea,>,.1. 	(34) 

The neglect of the principal value integral, which is 

of the form 

f(E) <E T Ea> 
dE 

So  E
a E 

is argued on the grounds that the range of energies 

	

Ea 	E = LE in which 41 T kEc› is non-vanishing is 

much less than the range, r\i Ea, permitted by the form 

of the integral. The range of permitted momentum transfer 

L, p, is L.p ^0 v-1, so that &p N p/mv while 

	

Ea 	p2/m. If p "5> v-1, we have &E 	Ea 0 

Using (30), and replacing <Eat Ea> by the 

appropriate 'i:-function, (34) becomes 

S(Ea  E) 
Et,  Ea) = 

P (Ea) 	k• 

I -i icp<Ea  T Ea>) 

Inserting this into (33) the energy integration is now 

trivial, and we have 

(0 1 T I Ea>= <E01 Ar_nbi.  I Ea) (11 - 	KEJ 	Ea‘f,>) 

Setting for v_nb+  the Born approximation, V, and 

including the angular integration which is implied in 

this equation we find 
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= Voct  (1 — 	
as

) T
Pm - 

or 
TZ 	

, 
Pm 	

v-
m 
 (1  i 

O 
	Taa)  

Clearly, including also the final state elastic 

interaction we have 

T 	= (1 - 	'r e) 4  
Pm 	PR 

1T
Pa 

which, written in terms of S am 
our earlier habit becomes: 

— i Tlz) mm 

and S 
PR 

to conform with 

, 
m 	
1 	Si  

) 1T6P  ( 	2  aa) (35) 

This is our final result. It is the form assumed and 

used by Ross and Shaw(34), As is seen, it differs again 

from our earlier results (22) and (23)0 

However, for small TLit, 	 all three forms become 

identical: under these conditions we can neglect .the term 

Tg VRaTait  in (35) which then becomes identical to the 

limit of (23) (i.e,(27)), which is also the form (22). 

On the other hand, for large TT` am 	TT , (low Z pp 

values) this latest form differs appreciably from both 

(22) and (23). We have plotted out this third result in 

Figs. 8, 9 and 10 (p.57-9) for the typical process dis-

cussed in section (iii), again assuming 

Sa
Z 
m = 

sOP 
= 1 - exP(gt+1)//v2P2). 

It will be seen that the form (35) does not lead to such 
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big changes in the peripheral amplitude. Because of the 

extra term in (35), which is not present in (22), Tkc  

does not go to zero as e 	0, but to a limit 

cf (1/4) VRa , and the low partial waves give rise to 
the marked difference between (35) and (27) or (23). 

This behaviour of (35) does not seem physically 

reasonable. E.g. if (to take an extreme case) the 
elastic interactions were completely absorptive (black) 

for all 2 $ then according to (35), and contrary to 

our expectations the peripheral production amplitude is 

not completely masked out. It is therefore necessary 

to examine more closely our "energy shell" approximation 

of this present section, which leads us into K-matrix 

formalism. 

(vi) K-matrix Models  

Our approximation of the previous section consisted 

in neglecting the principal value integral in (33). This 

implies that for consistency we must also neglect the 

principal value term in (28); that is to say, we are 

essentially approximating the free causal propagator 
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A = 1 , 
Eo - Ho + is 

1  
Eo - Ho 

- ivt '(E40  - H0) 

by 	= 	-iw 44:(E0  - Ho) 	(36) 

Now the Schrodinger equation gives 

V+ V LT 
	

(37) 

so that with (36) we are taking 

T 
	

V - iic V 45T 
	 (38) 

where 6-  = 	0 Ho) , 

Now the T-matrix is related to the K-matrix by 

T 	= 	K 	iw K T 	a 
	 (39) 

Comparing (38) and (39) we see that the approximation 

involved is equivalent to taking the K-matrix to be equal 

to V, the potential, 	(V is necessarily Hermitian.) 

This approximation is well known and widely used 

in weak coupling theories. It necessarily gives a unitary 

T-matrix, and the resultant corrections to the Born 

approximation, T = V, give rise to damping effects, 

e,g, in the theory of the damping of EM transitions, In 
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fact, a systematic development of perturbation theory(35/36) 

shows that this (K = V) is the correct procedure - it 

was indeed from these considerations that the K-matrix was 

discovered, 

However the approximation K = V cannot be made for 

a strong coupling theory. We can illustrate the type of 

difficulties to which this would lead by considering a 

simple model with many open channels in which we suppose 

that the potentials VaP are all equal 

V 	V 
Pa 	

K
Pa 

Now from (39) 

(40) 

K (1 + in g Kra  

It is possible to show that if (1 + in g K) is of the 

form in which all diagonal elements are equal, and all 

off diagonal elements are equal (which follows from (40)), 

then (1 in K)-1  is also of that form, say 

(1 + in g K)-1  - 	a,  R aP - 

= t 	a = p 

Then T is of the form 

T= 	V 	V 	Vi CA d 	d . ( 

	

V V 	d ,. d 

	

V . 	d d L 
• • 	• 	. 
• . 	k . 	. 

• 
• 
• 
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It follows that 

T 	= T
aa 	all a, 	p 

i.e. that the elastic and inelastic amplitudes are the 

same. 	This is a totally incorrect result. We would 

expect that as the number of channels, N, 7 	 the 

elastic amplitude would become large and imaginary, 

(i.e. display the shadow of the inelastic processes) 

while the inelastic amplitudes would become small and 

largely real. 

we now show how the result (35) can be derived 

directly from the K-matrix in the limit of weak coupling. 

(39) can be written in partial wave form 

<--EZ T1EZ> = <E41( ‘EZ> - i9t d El  <EZ1K Et  Z> p( E )6( E-E ) 4>< 

<E7-6 1 T 	EZ} 

= <EZt EZ> - i't p( E) <EZ1 K tEZ> < 	T EZ> 

i•e. 	T KZ TZ  (42) 

Following Dalitz 37) we define for a matrix A a 

corresponding A' such that 

€ (41) can be solved explicitly, in this case, and the 
result given, atd also the unitarity condition verified 
explicitly. E.J. Squires (private communication) has 
independently obtained the same result. 
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<E l 11L 	= J7zp(E) \E  1 A Et> jitp(ET  ) 

so that (42) becomes 

	

T' 	= 	K1  - i K' T' 
	

(43) 

and 	
= 10-6  (i + i Kr6)-1 	(44) 

In this notation 

6 	1 - 2i Ti 
	

(45) 

(c.f. equation (26)). We consider a two channel process, 

explicitly inverting (1 + i K' Z) in (44). We find 

T
Ra. 	

10 t6 =  pa  / es. 

	

xa. = 	i(1. + i KI  where 

	

	.6) g 

Now from (43) 

K1.6 6  

	

= 	Tt (1 - i Tr6) 

• 

(46)  

(Determinant) 

(47)  

so that from (44) and (47) we have 

where 	= 	(1 - iTt.6) 
Therefore (46) becomes 

Ti 
Rad 

= Kre 
Pa 
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or, in full 

,2-- 
TTZ = Kry

p 
 ( (1 - iT''6)(1 	iTt4) 	T'' Pa 	pm 	as 	PP (48)  

For weak coupling, i.e. small Pa, , we neglect the term 
2 -6 in (48), and set K''e  = 	so that 

Pa 	 Pa 

—6 
G 

TrPm = (1 - iT
PP 	P
1  ) v -  (l 	iTI ) 

which is the result (38). 

(49)  

This result, apart from being that used by Ross and 

Shaw, has also been given by various authors, e.g. Arnold
.08) 

and Yonezawa(39) We emphasize that it is only valid for 

small Tma 1-6 y  Tpp'  in which case all results derived by 

different methods reduce to the same form. 

Dietz and Pilkuhn have also proposed setting K = 1, 

and, observing that this would not give the elastic scatter-

ing (as we saw for a simple model above) have used the 

many particle reactions to give (via their shadow) the 

desired form for the elastic scattering. This seems to the 

present author to be unsatisfactory - in an acceptable 

theory the presence of very many two-particle channels ought 

to show up in elastic shadow scattering. Indeed we have 

seen (I, section ii)) that a very large part of the many 

body processes can be ascribed to quasi two particle 

processes. 
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Yonezawa (loc. cit.) has also suggested solving 

equation (48) as a quadratic equation for Tg . This 

approach raises new difficulties and does not appear to 

be applicable to the many channel situations of physical 

interest. We want to formulate a K--matrix treatment in 

which we set KOa = V
Pa 
 but assume no knowledge of 

other K-matrix elements, and to this problem we now turn. 

(vii) K-matrix: Alternative Treatment 

We wish to propose here an alternative relativistic 

treatment of the effect which is free from the defects 

discussed above. Since we are essentially concerned with 

finding a first order energy shell correction for unitarity 

to the Born amplitude, one would certaibly expect the 

K-matrix to be the appropriate formalism, and we shall use 

this. In the spirit of the absorptive peripheral model, we 

shall retain only those terms which correspond to a reflec-

tion of the characteristics of the elastic amplitudes Tact , 

TRH 
 
into the transition amplitude T. . 

From before we have 

T' = K' 	KI T?  

N Amongst which are an ambiguity of sign and the fact that 
we do not recover the Born term as absorption --;0- 	0. 
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and 

Tt  = K' (l+ Kt )-1  

so that 

TT  = Kt  - 102/(1 + 	Kt)-1  . 

Inserting indices to label the states, 

(50) 

Tte  = T 	 1  10'6  - 	

YYt  K

t 	) 
YY 

 Kt  pa 	PG 	py 1 + i Kt 	Yt a 

The first term on the right hand side is to be approximated 

by the Bora term, the second repreLents the unitarity cor-

rection. The structure of this correction term is complex, 

as one would expect. Our approach will be to approximate 

it by two contributions. We envisage (at high energies) 

the situation where very many channels are open. We there-

fore expect a typical inelastic amplitude to be small, 

whereas the elastic amplitudes, induced by absorption into 

the many open inelastic channels, will be large. We observe 

therefore that of all terms of the form 

1  1-& K 
y 	py ( + i 10 

) 

ry pYt = Tt&  

the largest will be given when Y' = p, and we approxi- 

mate the summation over Y' by setting Yt  = p. 

gives a correction 

i Tt
(4  K

t  
3 Pm • 

This 
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In a similar manner we can include many terms in the summa- 

tion over y by setting y' = p. This gives a correction 

i K' T' Pa ma 0 

In this way we represent the unitarity correction by 

what we would expect to be the two largest contributions, 

so that 

It 

However, 

that it 

T'l  = Kt/  - i(T" K" + K" T") 
Pa 	Pa 	PP Pm Pa ma 

is clear of course that we have neglected many terms. 

it might be argued following various authors(41242)  

is reasonable to expect the sum 

27-  Tttt  
4P PY Y a  

to be small, since it is composed of many small terms, the 

phases of which might be supposed to vary in a random manner. 

At any rate, such an approximation is inherent in the idea of 

absorptive corrections and it should be regarded as an advan-

tage rather than a defect of the present procedure that the 

nature of the approximation is thus displayed. 

Finally, we set 

so that 

Kt - vt 
Pa 	Pa' 

the peripheral assumption, 

T' 
Pa,  

	

V" 	i( 	+ V" T") 

	

Pa 	
T"
PP 
V"  
Pa 	Pa aa (51) 

Since T' is related to S by 

S 	= l-21 T1  



this result may be put in the form 

T 	= i + V:6  SZ  
L.. PO Om 	pm ma 

and is thus identical to (22). 

The expression (51) has considerable intuitive 

appeal. To the Born term are added two other terms corres- 

ponding to the additional effect of the initial and final 

atate interactions, which we can represent diagrammatically:- 

The reader will ask why we did not take equation (39) 

(52) 

and directly approximate this by setting Y = a, obtaining 

T'Z m = VI
Pm  
4  (1 - Tad ) 	 (53) 

This form is clearly not correct, as it lacks the necessary 

symmetry betwaen a and P. Again, we could have written 

(52) (since K and T commute) as 

T1 	= K' 	C.- i / 	-6 K -6 ' 
Pm 	Pm 	--y- f3Y Ya 

(54) 

T'
-6 
 = Pa f3a, 

-i 	K— T 
Ya 

Y 
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Setting Y = p here gives 

T1Pm 	O = Vi
m 
 (1 	

P 
i TAR ) 	 (55) 

Now we 2annot argue that (53) and (54) ire identical 

since in general T
PP 	

T 
aa
. One might suppose that 

the correct form was a syrmnetrised form of (53) and (55), 

i.e. 

Tr 	= V
t.6 (1 - ii(T' +)) 

Pm Pm 	as pp 
(56) 

but this cannot be correct since it is a purely optional 

procedure. In addition (56) is wrong, since for complete 

initial and final state absorption Tt
Pa( 

does not go to 

zero. 

We have therefore to be more careful, and accordingly 

we have worked in a fashion such that the symmetry 

between a + 0 is displayed at all stages. we see in this 

way that both the extra terms of (53) and (55) should 

properly be included. Nor is it the case that we are 

counting terms twice in (51). We can schematically 

indicate the origin of our two extra terms, denoting 

TI V
Pct
.e by full lines, and VI T'

c() 	by broken :- 
PO 	. 	 a 



-86- 

The main features of the present treatment are its complete 

relativistic validity, and the absence of any restrictions 

on the ranges of the interactions,involved. In addition, 

our derivation of (51) does not imply any unreasonable form 

for the elastic amplitudes, and is clearly valid for the 

case of physical interest, i.e. many channels open. 

We summarise our conclusions on the various approaches 

in the next section. 

(viii) Discussion & Conclusions 

We briefly summarise in Table 2 (p. 83) the various 

results which we have discussed in the previous seven 
secticns. 

We noted that all the results give the same result for 



-87- 

Smap 
St 

p ("•) 1, i.e, weak absorption or high partial 

waves. However, the contribution of low partial waves 

(high absorption) is of crucial importance to the peri-

pheral model, these are so very large in the Born term 

that it matters greatly whether they are completely damped 

out or merely reduced by a factor of, say, one quarter. 

It is therefore important to assess the relative merits 

of the various results. 

We saw that the form (35) involved approximations 

that were only valid for weak couplings, and that this 

particular result seemed unreasonable in that a substantial 

inelastic amplitude still remained even if both the elastic 

interactions were completely "black" for all Z. We also 

anticipated (in view of the similarity of (22) and (23)) 

that it would be possible to find a result independent of 

the ranges µ and v. The derivation of (22) which we 

have given in the preceding section is indeed independent 

of these. This treatment is in addition fully relativistic, 

and, depending as it does on K-matrix formalism, is within 

the conventional framework of high energy physics, unlike 

either the distorted wave Born approximation or the WEB 

approximation. In addition, the form (22) admits of a 

ready "intuitive" interpretation. 

For all these reasons it seems to the present author 

that (22) provides the most satisfactory basis for 

calculation. 



Author Form for 
Tt 
Pm 

Numbered Relativistic 
in text 	or not 

Conditions 	Method 

23 

Gottfried & Jackson 

non-rel. 
at  p-14 1.14y 

Ic 

f-s7t  vZ  iSt  ,.. OP Pm 	as Sopkovic h 
Durand & Chiu Distorted wave 

Born approx. 
WEI 

D1NBA 
WKB 

K-matrix 

P...14,V411  

high E 

p initial & 
final state 
interactions 

high E 	K-matrix 
4.0 It 

•••••••■••••••In ••••••••••••11110.•••••• 	 
Al.•10.11.1.3.1.0i11•110.11111aultiMUW.  

3i3..44m+ V mSLta 22 

1+S'e  ) a me 35 

non-rel. 
11 

relativistic 

non-rel. 

relativistic 
st 

Durand & Chiu 
Watson (following 

Gottfried & Jackson) 
Watson 

Ross & Shaw 

Arnold 
Yonezawa 

4. 

TABLE 2  
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An important ommission in all our previous discussion 

is that of spin considerations. In the K.—matrix formalism, 

however, this may readily be included. It merely involves 

having extra labels for our matrix elements. Denoting, in 

a symbolic manner, the various helicities involved in the 

helicity representation of Jacob and Wick(43)  by X, (22) 

becomes 
••••••,. 

<X0 Tgak 	= 

•••••11. 

< xp \vii3c1,17q\> (52) 

  

Gottfried & Jackson(18)  have stressed the importance of 

the proper inclusion of spin, even where the angular 

distribution is concerned. Different helicity amplitudes 

will be modified in a way which depends on their exact 

form (i.e. composition in terms of partial wave amplitudes) 

and it is not satisfactory to take some "mean" amplitude, 

neglecting spin -- amongst other things, spurious 

diffraction zeros may be introduced. 
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PART III  

V(121 ABSORPTION MODEL FOR --?-A A  
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(i) Introduction  

In this final part of the work we present a calculation 

of pp-*AA 	using a much improved model, in the light of 

the discussion of Section (vii) of Part I. The treatment is 

still based on the Born amplitude, i.e. the "peripheral" 

idea, but we make use of the U(12) symmetry scheme(19)  

to write down completely unambiguous and realistic vertices, 

sad we fully incorporate the effects of absorption which we 

have discussed at length in Part II. 

In choosing to apply the absorption model to \DT 

A 	we have borne in mind the most serious practical 

difficulty in the use of the model, namely, that one requires 

information on the nature of the elastic interactions in 

both the entrance and exit channels. In general (as in the 

present case) one knows nothing about the elastic scattering 

characteristics of the final state channel. However, p 

and A both being spin one-half baryons with approximately 

equal mass, it seems plausible to take A A elastic scatter-

ing as identical to pp - one would certainly be surprised 

if the two interactions were very dissimilar. 

Our pole approximations of Part I were carried out in 

1963, and it is necessary briefly to summarise developments 

in the theoretical study of pii-o.N\ 	between that time 

and the present (1965). Several authors have investigated 

the process:- 
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(i) Chan(44)  confirmed our result of Part I in a study 

which established that (at least at present energies) 

the Reggeisation of K would not affect the model. 

(ii) Durand and Chis(17)  applied their absorption formula, 

and confirmed the dominant role of K*  - exchange 

against K-exchange, finding the latter to be too 

forward]y peaked. (See Part II of the present work. 

It was indeed this work of Durand and Chiu which 

established the importance of absorptive effects (1964)). 

(iii) Cohen-Tannaud,Ai and Navelet,(45)repeated the calcula-

tion of Durand and Chin taking spin fully into accounts 

K was again found to play the dominant role, though 

the conclusion in this case was on the grounds that 

K-exchange was not sufficiently forwardely peaked. 

(iv) All the works mentioned above assumed a y
4 

type 

coupling at the K*  NA vertex (c.f. I, Section (vi)). 

In fact, since 1963 the evidence for a large magnetic 

type interaction of vector mesons has somewhat 

hardened -- for example, see the "p -photon analogy" 

(7) of Stodolsky and Sakurai 0 H8gassen and H8ggesen(46)  

generalised the Kam-exchange absorption model to 

include mixed couplings, and concluded that if the 

"magnetic" term was more than approximately the same 

size as the "electric" one, the model would no longer 

fit (this is roughly in accord with our findings in 
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Section (vi) Part I). However, it seems possible that the 

ratio "magnetic":"electric" may be as much as 3 - 4 : 
All of these authors admit the possibility of a 

mixture of K and Kl*  terms, and it might be possible to 

fit the data this way even with a large K "magnetic" 

coupling. This is an example of the considerable freedom 

of manoeuvre one has in the choice of parameters for 

peripheral calculations in the absence of any restricting 

principle. It would seem much preferable to start with 

the V(12) symmetry in which the vertices are fixed and 

to compare the results against experiment. 

In the U(12) scheme the baryons are degenerate and 

all of mass m, as also are the mesons (mass µ), The ratio 

"magnetic" 4' "electric" is (see Section (iii)) 

1, ga . 1  , i.e. r\-2.  3 : 1, and this is realistic. 
From the point of view of the 1(12) theory the 

reaction pp -4-AA 	must be considered as, on the face of 

it, fairly promising for treatment in a peripheral approxi-

mation. The mass difference between p (938 Mev) and 

A (1115 Mev) is small, while the difference between the 

K mass (494 Mev) and that of K (891 Mev) is at least 
much less than the full variation of the meson masses, 

e.g. from the pion (135 Mev) to f6 (1019 Mev). In addition, 

the experimental results are as peripheral as one could 

hope, The U(12) S -matrix is known to violate unitarity, 
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but with the absorptive correction we are approximately 

enforcing unitarity on our peripheral amplitude. Altogether, 

it would seem that if the U(12) absorption model is 

inadequate for pp-4-Ails 	it might not be adequate for 

any reaction. 

To help the reader follow the line of the following 

somewhat algebraically involved work, we give an outline 

of the various steps of the calculation. 

To include spin, we must know the sixteen amplitudes 

involved„‹ 	RS ± 4›. In the next section 

(Section (ii)) we show that because of C and P in-

variance only six of these are independent, saY$  RS1  , 
tN, 

= 1,0000, 6. 	In Section (iii) we give the U(12) pre- 

scriptions for the currents involved, and the corresponding 

amplitudes written in terms of Dirac spinors. From these 

we then find explicitly the various helicity amplitudes, 

.1.(8), which involves tedious algebra (Section Iv)). In 

Section (v) we show how to project out from the gii(G) 

the partial wave helicity amplitudes, 4 . Our absorption 

formalism then gives us (Section (vi)) a set of "unitarised" 

partial wave amplitudes, 	in terms of the /j.  • In 

the same section we see how to arrive at the corrected 

cross-section*  Finally, our results are presented and 

discussed in Section (vii). 
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(ii) The Requirements of C and P Invariance. 

In what follows, we make much use of widely known and 

elegant helicity formalism developed by Jacob and Wick for 

the treatment of particles with spin(43). We label the 

helicities of the particles involved as follows:— 

particle 	. 

helicity 	A3 	x4 	Al 	A2 

The Xts give the spin projections along the direction of 

motion. The amplitude for scattering through an angle 

may be expanded in terms of the amplitudes for scattering 

in states of specified total angular momentum j 

.4:?.3x41fige)ixix2)>= f (2j-1-1)/5‘.
3 
 X SJ\AiX > j dx11(8) 	(1) 

N 4 	2 

where 	A 	Al — X2 
and 	4 = 3 

— A
4 

and where we have taken the azimuthal angle 16 to be zero 

without loss of generality. 

The states j Al  A;), transform under the parity 

operator as 

P  j Al A•2 - = 

The assumption of P invariance (this is a strong interaction 

process) therefore gives from (1), 
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<'&14.1 (49) \ x1X2> 	(2 j41) <:7x3-X41 	 dL(g) 
j 

Using the symmetry property of the d functions 

di (e) = (-1)x-  di 	(e) X4 

we have 

(-1)x-11  4-.A.3-%14.  ige)t 

C-invariance gives us 

<3x4  14j f xix2> = <x4x3ksi 1 x2x3.> 

i.e. a particle of belicity X is transformed into an 

antiparticle of helicity X . Making use again of the 
property of the d functions quoted above, we find in a 
similar way that C-invariance gives 

43x41,4.(e)kx3,27 = (-1)x-11 Kx x  10(e) x2x3.> 4 3 (4) 

In the present case we cannot make use of T-invariance, 
since this would relate the amplitudes for PT-MK 

	to 
those for the inverse reaction, 	A71-'0195 

Using (2) and (4) we find that the sixteen amplitudes 
have the following form, in an obvious notation. 

(2)  

(3)  
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PP 

Trc ,  , -1-4. 1— _., -- 

++ /1 s5  5  /2 

+- $3  

a  
s4 956  

-+ _ /64 $3  —4 

-- $5 45 sq 

There are thus six independent amplitudes. This situation 

should be compared with the case of nucleon nucleon scatter-

ing, where T-invariance gives one extra restriction and the 

number of amplitudes is reduced to five. The table above 

is also that given in reference 11. 

(iii) 	The lf)(12) Interaction 

The U(12) predictions for those parts of the pseudo-

scalar and vector currents relevant to the interactions of 

the eightfold baryons with the mesons are 



/ 	2 N P2  pm  J
5 

= 0. + -4711) .---ff VI y5  N)D 4.  4 
4.m 	3 

2 P 
J 	= (1+ irm) -en  (17 N)p  + (1 + k..-11)( 	) + - 2p P. 	 4m  3 

q 	and Pia  are defined in terms of the incoming and 

• outgoing baryon momenta, p • and p 

n  _ p t qµ 
= 

'11 	P. 

P1.1. = PP. + P111 

Note that P2  + q2  

rP. is defined by 

(momentum transfer) 

(m is the baryon mass.) 

r = P a YY 
cilvkX v AK -7k. -5 

and 	P /2m and r 
P.
Am2 are the conventional forms for 

"electric" and "magnetic" interactions(15). D and F 

refer to the SU(3) invariant symmetric and antisymmetric 

combinations. 

In the ik12) theory S = V = 4, the "meson mass". 

However, we wish to admit the possibility of setting S and 

V to be different, and of thus splitting the scalar and 

vector octets "by hand". 

The pAK and p A04  interaction Lagrangians are 

of the form 

	

LS r.s., P i5 	11  A /K+ 	(+ hoc.) 
*+ 

LV 
 (--.., is* i A /K  

	

il 	11 	
(+ h.c.) 

From (6) we have 
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,„ n2 

• (1 ▪ 2lc\ 
5 	s 	5 

F 	+ F 
E 2m 	M 4m

2 

where 
2 

FE • (1 + 

FM 	(1 ▪ 	) 

As is well known(47), the SU(3) combinations give rise 

to the following Lagrangians 

jIC÷  P 5 n P5 

Fnr-5P j5  A 4+ 
2 D + -F 	( 1  - ?-) i A 4 • • 	3 	73  /3 	5   

A 0(K+  =-J3   13 5  

2 so that in this case F and D + 3-F give rise to the 

same factor of -J3 	(We have taken the scalar case 

here; for K , the argument is identical). We there-

fore have 

Ls  = j3 P /k 

Lv  = - ./3 P R  A "sr 

j 
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For subsequent algebraic work it is convenient to 

re-write j in terms of y and P rather than rµ  

and 	
11 	11 	11  

and P. (This conversion is normal before explicit 

calculation is carried out(48)  ) The appropriate ex-

pression may be derived fairly readily(48), and is 

2 
j µ 	= (1 - 

4
a-7) FE yµ 	(Fm  FE) g-  

Explicitly, 

FM - FE = (1 + al) - (1 + V 	.emV 
2 = ) 2m I, 	q 

77 
4M 

Finally, including a factor of -13 from SU(3) con- 

siderations we have 

=i3 (1 /n 	2MN 	1 	I 

	

4.  " V) µ + V 	 (7) 

For j5  we have 

j
5  = 
	j3 (1 4111  )(I + 41) Y5 	(8) 

where we have replaced P2  by (1 - q2/4m2)0 

We make some observations on the form of these 

currents. They both contain an extra "kinematical" form 

factor, (1 q2Am2), which is a special feature of 

U(12), in addition to the types of term one would expect, 

on general grounds, to be present. Since for physical 
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processes q2 4: 0, this factor will tend to emphasize 

. . backward scattering. Setting 42 	.2p2(1 - cos 49), we 

may estimate the importance of this term by putting 

p m, which implies an energy ry 3 GeV. We find 

(1 - 
n2 
.1-7) 	IN.) 	MO - cos (3) 
4m 

and therefore the term varies between 1 (8 = 0) and 

2 (E) = ic). The cross-section will contain (1 - q2  /4m2)4, 

and therefore the backward events are 16 times more 

favoured than the forward. We will see later that the 
ro„ 
U(12) amplitude with no absorptive corrections rises 

steadily with 8, in contrast to the experimental results, 

This feature arises from the term (1 q2Am2). On the 

other hand, we can see that this term will be almost 

completely removed by the absorptive corrections since it 

will contribute mainly to the very low partial waves which 

are destroyed in the absorption model. We merely comment 

on these features here to give the reader a qualitative 

understanding of the results which we present later. 
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(iv) The Helicity Amplitudes 4q(9). 

We label our particles as shown below 

The indices 1, 2, 3, 4 correspond to X,, X2, X3, X.4' 
where the %Is take the values It  corresponding to 

helicities ± 1/2  * For brevity, we refer to % as the 

helicity. By 11(-9) etc. we mean a particle travelling 

in the direction physically opposite to that specified 

by 8, ftS = 0. 	(This notation will not lead to any 

confusion). Note that we have chosen the incoming anti-
proton to correspond to 9 = 0, while 0 gives the angle 

between incoming antiproton and outgoing anti-lambda. This 

corresponds to the experimental arrangement. 

We now construct explicitly the helicity states 

involved. We use the metric 



= (8  
O 
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g4, = 	(1 , -1 , -1 , 	1) 

and take for our y matrices the Dirac representation:- 

(1 	0) 
Yo 0 -1 

Yi 0 1 
(-1 	0 

with 

Cxj 1 

= 1 0 
= 	-1') 

2 	0 Co —1°) 

A four momentum is specified, in the centre of mass, by 

p 	(E, R) 

and we set 

57 + m 

In this notation solutions of the Dirac equation for 

particles moving in the direction p with spins parallel 

or antiparallel to the z-axis are 



12)e-Yaio2 u (-9) 
e 

If 2 is parallel to the z-axis (9 = 0), then these 

states are clearly helicity states, with 2,,o'= ±p. 

Denoting 

by X 
+1 

and 
CO) 
1 	by 

-1 
we have 

u  (0) 

The states with helicity X moving in the opposite 

direction are clearly given by 

u (-0) (9) 

since or.2 is unaltered, but the absolute direction of 

spin is reversed, 

A state moving in direction 9 may be obtained by 

applying a rotation through 9 around the y-axis 

U (9) 	(e)eiki°29  X 
IR 

Explicitly 
e-Mio249 = 

where 	cos 9/2 

sin 9/2 

Similarly 

(C -S 



A -/-47  
V3 (a) 
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-1- 	2 s  — LE) .. u (-e) 	= 	e-4iaG (e  (10) 

The antiparticle states are related to the particle states 

by 

v+ 	i 7.5 U 
	• 

This gives 
t 

Vx(0)
= 

while 

VV(0) 

and 

Equations (9)0  

= )(._x  xs) (11)  

(—!e) 
—1/21a29  (12)  

(10)9  (11) and (12) give the explicit 

forms of the four states in which we are interested. 

We consider first the contribution to the helicity 

amplitudes from the K exchange process. The diagram is 
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The corresponding amplitude is 

43x0.05(e)N.x2 ^ Vl(o) jµ  v3(e) 
q 
	21

V 2 
 174(-e)iµ u2(-0) 

(13) 

iT(e)x q2.42 4.3 4 	x 2,> say (14)  

The q4  qv  /V2  term which occurs in the 1-  propagator 

vanishes in the present case, because of the assumed 

equality of the p and A masses. j is given by (7). 

Substituting into (13) we find that T(e) is composed of 

four terms: 

/q,3 4(T(47i)X3.7k2> ----. 	, 
3(1 - q2/4m2)2 

+ 41)2  [171(0)Y11  lye) 74(-G)yµ  U2(-0) 

lff 	 v1(o)Pµ v3(e) 134(-0) P4  U2(-0).  
V 

-(1 + 414 -V
1 
(0) zfv3(e) U4(-e) u2(-o) 

+v1(o) v3(e) 	u2(-o) 

 

(is) 

  

Note that where the P term in J
P 

occurs at the anti-

particle vertex we have denoted it by Pt  • Since an anti-

particle of physical four momentum p is associated with 

a solution of the Dirac equation of four momentum -p, we 

must set 



= (E -m) + %17%.3(E 	m) 

= 
EC 	mS 

2Po -mS 	EC 
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F 
P ) 

P 
cf. P 	(p4  + Pt/) 

where on the right hand side we have all physical 

momenta. Since we are working in the CM frame it follows 

that 

Po 	Po 
(16) 

Pi 	Pi  

The four terms in (15) must be explicitly evaluated using 

equations (9) - (12) and setting for the y-matrices their 

appropriate forms (i.e. the Dirac representation). We 

shall illustrate this procedure in one case, and quote the 

other results. We consider the term 

V1(o),Erv3(e) 174(-e) u2(-o) . 

First take V1(0) P v3(49) = V1(0)(Poyo  - Piyi)V3(49). 

Consider first the contribution from yo  where 

( 
Yo = I -1)0 1  

• • • yo contribution 

= P

0\

R  ( 	X

1  O
N  (1  

C  ) 3e) -1/21(529  
1 



	

4 I Inc 	-ES 

	

ES 	mC 
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where the columns Table X1 and the rows X3 
Similarly the 	contribution is 

(P1S + P3C 	0 
-2p 

0 	P1S + P3C I) 

so that 

V1(0) ,,l°-V3(e)  PoEC 
p P1 S  

-P,pC 

-PomS  

Poms 

PoEC 
- p P1 S  
-P3pC  

	

(m0 	-ES 

	

ES 	mC 

In the same way we find 

u(-e) U2(-0) 	= 2 

(17)  

(18)  

Putting (17) and (18) together, we find that the contri-

bution of the term V,P/ V U U to the helicity ampli-

tudes, as defined in the matrix notation of Section (ii) 

is:- 
V U U 

PlP 	P mS 
PoEC  

S 
-P pC 

PoEC 
-PomS 	-P1pS 

-P3pC 

(19) 



-109- 

(We have omitted here various factors, e.g. the propagator 

term, the kinematical term in the current and the mass terms). 

If (19) is evaluated it will not give the correct 

symmetry properties, as derived in Section (ii). To check 

these, we must add (19) to the corresponding term 

v ,rt 

11•••••••••••••••••••••• 	••• •••• • ••••••■•••••••••••••••=4 

Pt mS 

L. PotEC 
Pi1  pS 
Pt3  pC 

-PotmS 

  

-ES\ 

ES 	-mC 
PotEC 
Pi pS if 
Pt3  pC 

(19) and (20) together satisfy all the symmetry require-

ments, if we bear in mind the result (16). We now list 

the results for the three terms which remain in (15) if 

(19) and (20) are taken together. We set 

A 	= 	(1 + 46.) 

X 

1 
V 	2 

3(1 - 	 5 

q2 - V2 

2 

(21) 

cos e 

2E 	= 	total CM energy 

and our normalisation is such that 
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d0- 	 1 = 2 1Nunpolarised) 	(167a) 
(22) 

with 
mP 	i 	Id i  = 	r h424 	V3 I2  + V1.02 + `IP5k 2 	-)1°6.‘

2 
 

(23) 

	

.17-• 	V TJ- 	U 

= A2Xr8(E2  m2 ) + 2m2(1 + 

152 	A2X [ -2m2  (1 - x)] 

	

3 	A2X[ 2(2E2 m2 )(1  + 

	

164 	-152 

	

9s5 	A2X [ 2Em sin Al 

/66 = 565 • 

V U u + V v 	U 

161 = -ABX [16 m02(E2  + p2 )_] 

162  = -ABX .18E2m (1 x) 
3 = 

164 	-f62 
fr55 	-ABX [8E3  sin 49 

= 45  



VP'VUPU 
1.1  

ii.i = B2X 12m2(4E2 1. 2p2(1 + x))(1 + x) 

AS2  = B2X F E2(4E2  + 2p2(1 + x))(1 - x),] 

43  = jo1 

$4 = 42 

45  = B2X 1-2Em(4E2  + 2p2(1 + x)) sin 6)] 

= 45 

For the scalar term we find, with 

C 	 (24 ) 

V y5  V U y5  U 

16'1  = 0 

,S2 	= C2X F12p2(1 - 

43  = 0 

64 = 

.17S5 	0 

0 

In the way in which we have set out these results, 

the terms in the square brackets correspond exactly to 
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the invariant couplings which are underlined at the head 

of each set of results. (The Dirac spinors are normalised 

so that IT U = 	1.7 V = 2m). 

The greatest possible care has been taken to ensure 

that the forms of the helicity amplitudes given here are 

correct. It is clear that the results are dimensionally 

correct. In each case, all 16 amplitudes have been derived 

in full, and the C and P symmetries (see Section (ii)) 

have been fully verified. In addition we note that all 

helictty changing amplitudes C62'  )64, 4 'SO vanish in 

the forward direction, x = 1, as is necessary. 

It has been further checked that the scalar inter- 

action and the 	vector interaction helicity 

amplitudes reproduce the results given in Part I of this 

work. Certain terms have also been checked against the 

special case considered in reference (44). The general 

vector te/m has also been compared numerically with the 

results given in Part I, and found to agree. Finally, 

the expressions given here have been independently derived 

by J.H.R. Migneron. 

The contributions to each fei(e)  from all terms 

(including vector and scalar) must be added to give the 

total U(12) helicity amplitudes, gi,.1(19), i.e. inter-

ference takes place. It is quite clear that it is well-

nigh impossible to proceed algebraically, as the next 
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step in the work must be to project out the partial wave 

amplitudes 4 by integration of expressions of the form 

dpv (cos e) p (cos 9). We have therefore programmed 

the results given here for an IBM 7090 computer. In any 

case, we see no virtue in attempting to deal with extremely 

lengthy algebraie expressions. Such a procedure would be 

of no assistance in understanding the underlying physics, 

while the possibility of error would be greatly increased, 

and we would certainly also be forced into rather drastic 

approximations in order to proceed. It should therefore 

be understood that from this point onwards we regard the 

functions 	 (0) as known. They are determined numerical- 

ly from the equations given here. 

(v) The Partial Wave Helicity Amplitudes 4. 

We now show how to project the partial wave amplitudes 

for 4 from the amplitudes lei(9). We first note that 

from the explicit expressions for the )1q(e) given in the 

last section we see 565(0) = )1‘6(G). 
	We have therefore 

only to deal with five independent amplitudes 

= l....5, For convenience, we give again here the 

notation we have adopted from Section (ii) onwards in 

labelling these amplitudes:- 



le2 

= 

= 
/53 = 

1-114.  = 

165 = 

(25) 

Inserting appropriate values for X and µ in equation 

(1) we have 

i61(x) = / 
V 
(2j+1) 4 dgo(x) 

. \ A p2 152(x) = 	/ 7 (2J+1) 	do
J 
o(x)  

5 3(x) 	7 	-, +1) (2ji  / 	3 d  11(x) 	(26) 

4(x) = 	7(2j+1) 4 dill(x) 

45(x) . 	>(2J+3.) 4 dlo(x) 

Using the orthogonality of the dx11  functions 

r 4-k  

dXµ  (x) d4µ(x)  dx 	
2 

= 	(2 777) °jj' 

we may invert the equations (26), finding 
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1 

1 

1 

1 

1 
. 

5 	-1 

These integrals are to be evaluated numerically for 

different j values. Since we are at high energies, 

large j values will contribute significantly. It is 

therefore necessary to find some way of computing readily 

the functions 4µ(x) 

We show how the diXµ  functions may be written quite 

generally in terms of Legendre polynomials. The resulting 

expressions contain no derivatives of Legendre polynomials, 

but the procedure does not appear to be well known. 

We first write the dxp  functions in terms of the 

Jacobi polynomial(49) 
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dJ (x) 	(J +701 	- x)!  
Xµ 	

(j + 11)1(i 	P,):

1A 

where, as previously 

0"/  SX  P -11'X441(x) 
0-X 

0 cos 0/2 	S = sin 2. 0 

	

For our particular values of X and 	this gives 

D0 
di - 0 
00

.j 

di11 - C2 Pot j-1 

di2 2o P. -11 = 
S2 P. 

dj 	= 11± C S Pll 	. 10 	j 	j-1 

We note first that(50) 

P . o o 
J = P1 

(28)  

(29)  

In general we can write any function PmYn as a linear 

sum of Legendre polynomials, This is possible because the 

plItn obey recurrence relations which permit one to write 

Pj  m n in tom 	js of Pm+112n  and Pia:I-1'n  , or alternatively 

to write P1121n  in terms of Pri'n 1  and. pm,n-1 
+1 

(Rainville, locus. cit. Equation (13), p, 265, and 

equation (11), p. 2614). This procedure can be repeated 

until we have m = 0, n = 0, in which case the Jacobi 

polynomiald are just Legendre polynomials. 

For the polynomials occurring in (28) we find in 

this way 



o. 
, 
1 
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Po2 j-1 

2o 
Pj-1 

P121 

21-3P0+1 +(2j +1)P/  + ( j + 1)P1:11 

(30) 

(2j + 1)(1 + x)2  

2P.1 	(2j + 1)Pj  + ( j +1)P1:/) 

(2j + 1)(1 - x)2  

2j f!-I-1 	P14.4171 
(2j +1)(1 — x2) 	• 

Inserting (28) and (30) into (27) we haves 

1  = 	1 	A.4.(x) P j (x) dx 

-1 
( 1 

= 	I. ', /42( x) Pi(x) dx 
J-1 

1  
..1 1 /3

3  	
P  .+1 ( X) I 	+ (2j+1)Pj  + 3 	( j+i)P;t71 

= 2 

--.1 	1+x 	" 	(2j + 1) 
1 

= /5( x)  	jP:1+1  2 	
- ( 2j1-1)P1  + ( j+1)13j...1  

1-X 	,_ 	( 2j 4" 1) 

= / 2 

J1-X2 	( 2j4-1) 	j"-1 	j 	
dx 

+1  

i65( x) 	,ij( j+11 r p 	- r , 
i• 1 

(30) 

m These equations correspond closely to t4, 
Goldberger, Grisaru, MacDowe7,1 and Wong 
pression corresponding to pia,  is given wi 
sign; this is because of a difference in 
di  (a), d..11  (4)-4  d.

All 	
A (-4) = (-1)x-11  td., µ  (4) kg  

affects only A's1  . However the expressions 
to IP and A it i this work are in error by 3 
2j+1) in one of the terms. 

et given by 
. The ex-
th opposite 

definition of 
which 

corresponding 
a factor of 

dx 

dx 

-1 
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These equations permit the determination of the Ai  i •  
The j(x) are available from our previous work, and the 

P (x) may be readily generated numerically. 

(vi) Absorptive Effects  

We now proceed to derive an expression for the 

corrected, or unitarised amplitudes )4 in terms of the 

Born amplitudes Al. The 	differ from the 4 in 

that the former include the absorptive unitarity cor-

rections discussed at length in Part II of this work. 

According to equation (52) of Part II the 4 are 

given by 

<31°2 	al';› 

7-4(/tI1 321 	q25 <1311  P2t i 1f3a, 	m;/>  
R '3  2 

°21 , al c‘2 	c12) S
i 	m m 
am 	1 2.0e' 

(32) 

where we have dropped the index i in the 
.... 4  

and /3 4  

and displayed the spin dependence explicitly, and 

labelled the channels m (pr) and p (/f in.) and the 
helicities a1 m2' p p2 etc. to conform with our earlier 

1 
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notation. 

We must insert into (32) appropriate values for 

the elastic scattering S-matrix elements. We therefore 

make several assumptions about the form of the elastic 

only involve non-helicity 

changing terms. This is the conventional assumption(5 926 /27) 

It is justified on the grounds that tha elastic scattering 

amplitude is (experimentally) largest in the forward 

direction, where the helicity changing amplitudes vanish, 

and therefore the helicity changing amplitudes are pre-

sumably fairly unimportant in general.*  (We are, of 

course, confining our attention once again to the high 

energy region). 

(ii) We take /\ /1 elastic scattering to be identical to 

pi elastic scattering, which assumption we foresaw in 

Section (1). As we noted there, it is a plausible 

approximation. 

(iii) We assume the elastic scattering diagonal S-matrix 

elements are all equal. 

In the view of the present author, it would seem more 
reasonable to assume that the spin-changing amplitudes 
vanished for elastic scattering at high energies. This 
is not the same assumption as (1) above, except in the 
forward direction. An investigation of this point is 
being undertaken, but it lies outside the scope of the 
present work. 

scattering amplitudes. 

(i) We assume S ma and S
RR 
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(iv) We take as a parameterization of the experimental 

results for pp scattering a Gaussian model with complete 

absorption of the low partial waves (see II, Section(ii)):- 

	

s 	= 	1 - e-6(4:+1)/ 
V 213 2  

with v -1 = 190 Mev/c at 3.7 Gev/c. 

(v) We set 

<11 a2 -att. k 	(12> = <i31 f32 \ S  RR P1  P2> 

	

= 1 	J4-1)/ v 2 p2 

for all al a2 p
l 
0
2 

(v) does not exactly follow from (iii) and (iv). We have 

assumed for Si  the same form as S 	and since in 

general -6 	j this assumption introduces possible errors. 

However a closer examination suggests that the identifica-

tion of -6 with j is quite well justified. In general 

the amplitude for total angular momentum j will be a 

weighted mean of the amplitudes with orbit4 angular 

	

momenta j 	1, j and j 	1, and S, will not be very 

different from SZ=j even for the low partial waves. 

(This is confirmed in reference (45)). 

	

With assumptions (i) 	(v), (32) now greatly 

simplifies, and we have 
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<- 31130 4mt mla2>= 	e-j(j+1)/ vil(P1P21/-la ala2> 

Reverting to our notation of labelling the different 

helicity amplitudes by 4 we have 

2 	j 
) 

(33) 

With (33), we have now all the equations necessary 

to evaluate the unitarised (or absorption model) differen- 

tial cross section. The 	i  are given by (31). (33) 

gives the A61 . The corresponding unitarised )6p) are 

given by equations identiaal to (26), where the summation 

over j is done numerically until it converges. The 

differential cross-section is then given by (22) and (23), 

where ,6i(0) is replaced by seSi(0). Before presenting 

the results, we give some details of the numerical 

methods used. 

Note on numerical methods. 

The integration in (31) was performed using a 40 

point Gaussian approximation, i.e. we set 

c 1 	40 
A. f(x) f(x) dx 	1 	i 

i=1 

(34) 

where the 40 points x. and the corresponding weighting 



-122- 

functions Ai are given in standard textbooks on 

numerical methods. (34) is exact if f(x) is a poly-

nomial of degree less than 80. 

We therefore require the values of /11(x) and 

P.(x) at the points x 	The ,di(x) are readily 

obtained from the equations of Section (iv). Pi(xi) 

may be readily generated from the recurrence relation 

jp j(x ) = (2j - 1)x. P. J-1 (xi  ) - (j - 1)P j-2(xi) 

with Po(xi) = 1 

P1(xi) = x. . 

It was found that the summations in (26) had 

largely converged with -max = 15, and we therefore 

set jmaz  = 30. 

The construction of the Legendre polynomials, the 

integration routine, and the convergence of the summation 

over j -- and indeed the consistency of our entire set 

of equations 	may be tasted by projecting out the 

4 from the ,di(x) using (31), and resuming in (26) 
to check that the /6(x) are accurately reproduced. We 

invariably found this check to work correctly to within 

a greater accuracy than one part in 104. The complete 
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calculation merely involves repeating the same procedure 

with at one point the inclusion of an extra factor 

(c.f. 33), and we therefore have the greatest confidence 

in the numerical work. 

(vi) Results and Discussion 

The most detailed experimental results to da4 

appear to be those of Baltay et al.(53) at an incident 

antiproton laboratory momentum of 3.7 Gev/c. We have 

therefore carried out our calculations at a corresponding 

energy. 

We are now faced with the problem of the choice of 

S and V, the scalar and vector meson masses. The mean 

mass of the 0 and 1-  mesons (the "U(12) mass") is 

610 MeV ; the mean masses of the 0-  and 1-  mesons 

are respectively 370 and 850 MeV (the "SU(3) masses"), 

while the physical masses involved are 494 MeV (K) and 

891 Mev (KN); clearly the variation involved in these 

values is far from negligible, and one is in some 

difficulty as to how best to proceed. 

We have therefore performed the necessary calculations 

m September, 1965. 



for the three choices of S and V which appear to be 

possible. 

(i) 	U(12) masses 	. . S — 610 MeV. 

V = 610 MeV. 

(ii) 	SU(3) masses .  . S = 370 MeV. 

V = 850 MeV. 

(iii) 	Physical masses 	0 
O S = 494 MeV. 

V = 891 MeV. 

We have plotted the results obtained for the above 

cases (1), (ii) and (iii) in Figs. 11 and 12, against the 

experimental histogram. Fig. 11 gives the results without 

the inclusion of absorptive effects, while Fig. 12 gives 

the absorption model results. The curves shown have been 

normalised to give the correct number of events in the 

first interval of the experimental histogram. 

It is seen that in the absence of absorptive corrections, 

the U(12) results display a totally unacceptable angular 

form, as we foresaw in Section (iii). In contrast, the 

absorption model results give an adequate description of the 

experimental results in all three cases. The fits to the 

data are not perfect, indeed there is evidence of still too 

much wide angle scattering, but the results are nevertheless 

substantially accurate and should be compared with those 

given in Part I. 

In principle, the absolute value of the differential 

cross—section is given fvoLl U(12) in terms of the 'it N N 



......... 

FIG. 11.  , The IA12) Born term 
predictions for 	AW at 300 Gev c 
against the experimental results of 
ref. (53).  (i) U(12) masses, 

p 
(ii) SU 3 masses, (iii) physical 
masses. (See . 12L1.). 
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coupling constant. For ease of comparison, we calculate 

the values of G2w N N/ 4% which would be necessary in 

cases (1), (ii) and (iii) to give the correct normalisation 

in the first experimental interval, i.e, that displayed in 

Fig. 12. 

We therefore determine first the appropriate values 

of the V(12) coupling constant G 	Gx N N is then 

given by 

G N N = (1+ µ)
3 G 

where µ is the U(12) meson mass. In practicepone is, 

as usual, in some doubt as to the choice of µ. The pion mass 

itself is anomalously low (135 MeV). We have therefore 

determined GA N N for each of our three results with two 

alternative choices of µ 	(i) for µ = 370 MeV, the 

mean 0 mass, (ii) for µ = So  the particular 0 mass 

used in eac.h. case, The results are given below. 
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S,V 
(Mev) 

G/h— ItNN G2  /4n ANN'"  
(Setting µ=370) 	(Setting µ = S) 

(i)  S = 610 14.1 6.3 
V = 610 

(ii)  S = 370 13.2 13.2 
V = 850 

(iii)  S = 494 23.6 14.8 
V = 891 

It is known that G2  /4n r\i15. Of our results, only ANN 
one value (6,3) is particularly bad, and this arises from 

setting µ = 610 MeV, a value which has little relation 

to the mean 0—  mass, and less to that of the pion. 

Though it would clearly be possible to select from our 

various results an optimum fit to the data, we do not think 

that this would be a justifiable procedure. Any such 

selection would have to be made on the basis of a 

"prescription" for dealing with the masses in U(12) which 

could only be reached after a comparison of results for 

many different reactions against experiment. Our present 

results would be only one set to be taken into account. 

Nevertheless, it is clear that the V(12) absorption 

model presented here gives a satisfactory result for the 
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angular distribution, and, at least in four out of the 

six cases discussed, gives correctly in terms of the 

N N coupling constant the absolute value of the differen-

tial cross-section to an accuracy of 10 - 20 per cent. If 

we consider that we are dealing with a reaction involving 

strange particles, and that there are no free parameters in 

the model at all, this must be considered a very satis-

factory result. 

We have come a long way since our simple pole calcula-

tions of Part I, and have seen how two of the most serious 

defects of the peripheral model which were discussed there, 

namely the arbitrariness in the choice of coupling schemes 

and constants and the tendency of the model to give too 

much wide angle scattering, may be overcome -- in the 

former case by invoking a higher symmetry scheme, and in the 

latter by taking account of absorptive effects. 

Nevertheless, our work raises many questions. There is 

the problem of mass splitting in riY(12). Again, the 

absorption model appears still to be too sensitive to the 

behaviour of low partial waves; the high energy behaviour 

of the model, and the possibility of making alternative 

assumptions as to the form of the spin dependence of the• 

elastic.spattering amplitudes require investigation. There 

is also the interesting possibility of a unified treatment of 
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elastic and inelastic processes along the lines suggested 

by Byers and Yang(54) However, these questions, and 

indeed the extension of the present calculation to 

other "Y.! final states, lie outside the scope of this 

work. 

	41.••••••=•••••••ormew. 	 

* This is being undertaken by J.E.R. Migneron. 
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