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ABSTRACT

The work presented falls into three Partse.
PART I, The production of YY pairs in pp collisions is
shown to be consistent with a peripheral model based om
K*t exchange. The result is not sensitive to the form of
the meson-baryon vertices for comparable values of the
coupling constants, and is in accord with the SU(3) symmetry
scheme for F-type coupling of the vector mesons and baryonsé
Certalin unsatisfactory features of the model are discussed. |
PART IT. A critical review of various treatments of
absorptive effects in the peripheral model is given. The
different approximations made, and the inter—relation of
the various results, are examined.

A treatment based on the K-matrix is proposed which
has several advantages, amongst which are relativistic
validity and the absence of any restriction on the ranges
of the forces involved.
PART ITT. An improved model for p5-4> AN is developeds
The 3112) symmetry scheme is used to write down Born ampli-
tudes, on which the requirements of unitarity are then
approximately enforced, following the procedure proposed
in Part IT.

Results are presented for various choices of masses

(2]
in U(12)s 1In all cases the angular distribution is well
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reproduced in form, and in four out of six cases is
given in magnitide from the pion—nﬁcleon coupling constant
to within 10 - 20 per cent of the experimental value.

This represents an essentially no-parameter fit to the

deta.
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PREFACE

The work presented in this thesis was carried out in
the Department of Physics, Imperial College, University of
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supervision of Professor P.T. Matthews, The material pre-
sented in the text is original, except in so far as explicit
reference is made to the work of others, and has not been
submitted for a degree in this or any other university.

The work is based on three papers
I) HeDeD, Watson; Nuovo Cimento 29, 1338 (1963).

II) HeDeD, Watsonj; Phys, Lett. 17, 72 (1965).

ITII) HeDeDo Watson and J.H.Re Migneron} "6112) Abgsorption
Model for pp -> AA " +to be published in Phys. Letts

and has been presented in three corresponding Parts. The
author is very indebted to Mr. Je¢HeR. Migneron for his kind
permission to include some of the material of Part IIT in
this work,

In each Part, equations and sub-sections have been
numbered starting from one. On the rare occasion when refer~
ence is made to an equation or section of another Part, thisr
is shown explicitly, otherwise such references refer to the
current Part. Figures are bound in the text as near as
possible to the material to which they refer,

The author is sincerely grateful to Professor Matthews

for his constant encouragement and guidance, and in particular
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for several extremely helpful observations. He is also
indebted to Professor A, Salam and Drs. J. Charap,
TeWe Kibble and R.F. Streater for assistance. Indeed, he
has benefitted greatly from discussions with very many
members of the Theoretical Physics Group at Imperial
College.

This work was made possible by the tenure of a
Research Studentship of the Ministry of Education for

Northern Ireland, for which the author is very grateful.
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POLE CALCULATION OF DD —> YV




(i) Introduction

In the study of the interactions of elementary
particles the primary quantity of physical interest is

the differential cross section for scattering, This 1s

given(l) by
oA L 41 A E v b
aq. F

where p 1s a density of states factor, F the relative
flux, and <f|M(i> the matrix element for the process
under consideration. The problem, from a theoretical
viewpoint, 1s to develop a theory which will permit the
calculation of the matrix element,

The formalism relevant to this problem is that of
quantum field theory -~ the so called second quantisation,
Historically, the first question to be treated involved
the electromagnetic interactions of electrons. It proved
possible to develop an lteration procedure to solve the
equations of the interaeting fields, in which the pro-
cesses could be adequately described by a second order
approximation to the matrix element, the Born approxi-
mation. This approximation represents the scattering as
arising from the emission by one particle of a virtual

"exchange" particle or guantum, which is subseguently
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absorbed by the second particle. We may represent this

process pictorially:-

An elegant procedure developed by Feynman permits one to
write down the corresponding amplitude in a convenient way.
In this work we shall make much use of these methods, and
for further details the reader is referred to any standard
text-book on field theory,

EBarly attempts to apply the Born approximation to
the calculation of amplitudes involving strongly inter-
acting particles met with little success. In gquantum
electrodynamics the coupling constant, GQ/Mw, in powers
of which one develops the iteration series, is %/137,
while for strong interactions Gz/uﬂ ~v 15, The Born
term is simply the leading term in this series, and while
the series converges rapldly for electromagnetic interactions,
this is not the case for sitrong interactions., Interest has:
therefore centred on more sophisticated methods of cal-

culating the amplitudes.
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However, in 1958 there was a revival of interest in
the Born term approximation., This was assoclated with the
work of many physicists, but especially with Drell(z),
Salzman & Salzman(B), and Ferrari & Selleri(u). The
motivation for this new interest was the observation that
in a great many interactions at intermediate or high
energies tﬁe experimentally observed events exhibited a
striking concentration in the forward direction. Now any
Born term will include, from the propagator, a factor of
1/(q2 - m2), where q 1s the four-momentum transfer

24: 0 for physical scattering), and m is the mass of

(q
the exchanged particle, This term will produce an enhance-
ment of the amplitude in the forward direction, and the
suggestion was that this might be the mechanism of the
observed forward peaking.

This suggestion is extremely attractive. DBIvents in
the forward direction correspond to small momentum trans-—
fer, and we would expect these to be events in which one
quantum of the lightest available particle is exchanged.
The interacting particles just snick one another in pass-

ing, as it were, and the reaction products are concentrated

in the forward direction:-—
STT—
e

>, oy
4 \

AN
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These glancing collisions involve the long range
part of the force, and since the range "o 1/m, where
m 1s the mass of the exchanged particle, we see again
that the lightest quanta are involved. We would similar-
1y expect the wide angle events to be assocliated with more
violet collisions where the particles collide "head on",
which we would expect to correspond to higher order-
diagrams with multiple particle exchange etc.

Simple geometrical considerations suggest that
glancing (long range) interactions are more likely. For
example, a target particle will present an area between
impact parameters r and 2r three times greater than

that presented for impact parameter less than r:-

G
N

If the Born term is used in this way as an approxi-

mation to that part of the amplitude arising from glancing
and long range interactions, the resulting model is
referred to as the peripheral model, In this work we shall

refer to this approximation as the Born term model, or
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one particle exchange model, or pole approximation, in
order to avoid confusion between this approximation and
developments of the peripheral model which will also be
presented. It must be emphasized again that the Born
term is not used as a first term approximation to an
iteration solution of the field equations, but simply to
represent the long range part of the amplitude.

An equivalent point of view is to consider the
analytic properties of the scattering amplitude in the
t (= —q2) ~ plane, The poles and cuts are concentrated
on the negative real axis, simple poles arising at
t; = - miQ,
the appropriate quantum numbers for exchange., The

where mi is the mass of any particle with

physical region has t > 0, and it is clear that the
nearest singularity is a pole corresponding to the lowest

value of mi.

| physical 2y
| ~
>

=W region

We would expect this pole, or such poles, to dominate
the scattering amplitude in the near-by region, which for
physical scattering corresponds to low values of t, 1i.e,

forward scattering, The pole term will fall to half its
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value at t = 0,

where

hpg sin® 90/2 =

when t+ =m,

2 i.e. at an angle ©

m?

If the pole term is to induce a forward peak we require

the value of 90
sin 90/2

and eo

to be small,

Therefore

/2

m/p

so that for a frrwardly pesked amplitude we require

P > m .

(1)

This condition is just a statement that the colliding

particles must be travelling sufficiently fast to be not

mach deflected by the exchange process, otherwise no

forward peak will result and the amplitude will be as much

due to short range interactions as peripheral ones.

Condition (1) specifies the

which coincides with the so

energy range for the model,

called "optical region",

Yet a third, and still equivalent, statement of the

peripheral assumption is to

say that we are using the Born

term to represent the behaviour of the high partia1¢ waves,

Under the energy conditions specified, we expect many of

these to be involved, and to dominate the interaction,

High partiel waves correspond to events with large impact
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parameter, l.e. long range interactions, and other things
being equal, are relatively more important in the ampli-
tude due to the weighting factor of (2¢ + 1). (This is
an alternative statement of the geometrical preference for
glancing collisions given above).

It does not 1lie within the scope of the present work
to give a review of the early work on the peripheral model,
The reader is referred to appendix IV of reference (L) for
a comprehensive bibliography. II»re recent developments of,
and nodifications to, the simple pcle model presented
here will be dealt with in Part II of this work,

However, we must mention briefly the more direct
tests of the one particle exchange hypothesis, which come
from an examination of angular correlations between the
reaction products(5). Thus, for example, the exchange of
a scalar particle implies that the distribution with res~
pect to an angle 4 defined by Trieman and Yang(6) should
be constant. This distribution is hard to determine ex-
perimentally, but in many cases the data is consistent with
an isotropic distribution. Again, the Stodolsky-Sakurai(7)

model for reactions of the form

T + N - ® + N)(

and K + N - X + N

involving p exchange, leads to a decay distribution for
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the N¥ of 1 + 300s2 e with respect to the production
normal, and this is found to be quite well observed(7’5).

In this work, we shall be concerned with two particle
-2 two particle reactions. This is not the serious
limitation it might appear at first sight. A general
feature of multiparticle reactions is the observation of
kinematic correlations in the reaction products, which show
up clearly in the Dalitz plot. This indicates that the

reactions proceed via the formation of resonant states,

which subsequently decay. Ter example, in kt p inter-

actions
K¥p ~ 7.6 mb,
k° xtp
xt x° p ~ 8.2 mb,
kT a* n

However, detailed analysis(5) shows that all but a

small fraction of the three body events oceur through

k" p - XK' p
or x* — k¢ g*r .

We include such three body processes as quasi two body
reactions,
It is precisely two body processes which we would

expect to be amenable to peripheral treatment; more
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complex many—body—fina1~state interactions we would
expect to be initiated by more violent "head on"

collisions,

(ii) The Reaction pp -3 Y¥.

The reaction pE — YY has been studied recently
both at CERN(B) and at Brookhaven(9), at energies in the
range 3 - I Gev/c incident antiproton momentum,

The most striking feature of the observations is the

extremely forwardly peaked nature of the differential

cross sections for AA , /\"-}T:O ’ Z;;; sLiLy - Lolae
production, The antihyperons are emitted in a predominant-
ly forward direction with respect to the incident anti-
proton beam. This is suggestive of a peripheral production
mechanism,

An exmmination of the variation of cross section
from chinnel to channel gives additional evidence in
favour of such a mechanism, The experimental values are

given in Table I, p. 16. It is seen that the cross-

————

sections for L .T._ and = . = _ are appreciably
smaller than the others, and these configurations are
precisely those that cannot be reached from the initfal

state by the peripheral exchange of a single quantum, In
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P momentum 340
in Gev/c CERN Brookhaven CERN Brookhaven  CERN
Cross section in ub
AN 117 87 77 82 39
AL (=E1) 51 28 3345 35 23
SN IR 31 36 23 L 18.5
e o < 18 < 22 < 17
.. 9.5 2 11 8 8
= =- 2 I <1 2 <1
(Quoted limits on errors are ~o 20 per cent).
PR IND ; .
1.0 1. 1.2 1.
\/O’(/\/\)O‘(E\» z-)
(Errors from quoted limits are typically ) *6)
4 [ 4 T(AR)
X . - 1011-‘- 1001 1.11 '95 098
FC(2ED |

This parameter =

1 for F coupling
L w
3

D "o

—
=

TABLE 1.
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both cases the exchange of two units of charge would

D

necessafily be involved, and for = . = - two units of
hypercharge also.

On the other hand, the other five channels are accessible
with the exchange of an I =%, S =1 meson, and there
exist two such mesons, X and X , ‘'he fact that these
channels have much larger cross sections is very suggestive
that a one particle exchange process is playing a dominant
role. The small values of the T _T. and =. = . cross
sections we ascribe to the fact that these feactions are
forced to take place through more unlikely complex inter-—
actionse.

A more detailed analysis of the angular distribution
data supports this view. It is precilsely in the case of the
Tive reactions permitted via a peripheral process that the

strong forward peaking is observed -- most of the events

are concentrated in 0 < 0 £ 60° —- while the

——
5 N
ki

distribution is almost isotropic. (Data on = .5 _ is
inconclusives )

The energy is sufficiently high for a pole term to
produce a forward peak. The centre of ﬁass momentum, D,

is ™u 1,100 Mev/c at 3 Gev/e, while m, ~> 500 Mev,

K
Mex ™ 900 Mev, so that condition (1) is satisfied. We
therefore proceed to investigate in more detail a periphbral
model for YY production involving K and K? inter-

mediary particles, It need hardly be said that in the
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rresent state of our understanding of strong interaction
dynamics it would be extremely satisfactory if it were
vossible to develop a model which would reproduce the
observed results to within the 10 - 20 per cent accuracy

represented by the neglect of quantities of the order of

O(T.5.) ma O ( =_Z ).

(iii) K-exchange

The lighter of the two possible intermediary particles
is the K-meson (mK'*o 500 Mev, mp» ~ 900 Mev), and we
therefore proceed to evaluate the pp —> ¥Y¥ amplitude.
for K-exchange, i.e. the contribution to the amplitude from
the nearest singularity, or the longest range part of the

force. The appropriate Feynman diagram is

and the corresponding amplitude
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ﬂ-( # !\'5’11")\1\_) = Ui(é)‘?"’gl(‘é’b_.i_n a;,}cé23 K(L‘-g‘_(#)

Ci"-"'\v\.

where o and $ are spin labels, m is the K-meson mass
and q ( = ky =Dy = Py - k2) is the momentum transfer.
The cross section is related to the square of this amplitude,

summed over the B's and averaged over the ao'si-~

do N 1% 2
cmfxi<f{Mav‘l>1 = I[\/\KBI’BZlM\al 0.2\/\
T
{E:s(i; ,
b(pqekq = MY)
- (4© - n2 )2 (2)

where M 1is the nucleqn and Y the hyperon mass.

In Fige 1 we have plotted this quamtity in the CH
frame for NN production, as a function of cos 6 where ©
is the angle between the antiproton and antihyperon
(cos ® = 1 for forward scatteringyf It is seen that the

distribution obtained, far from displaying a sharp forward

.beak, is in fact vanishingly small in the forward direction

and rises to a maximum in the backward direction.
The only variation in the form of (2) for different
final state combinations of /| and 3 arises from the

mass differencess-

% For detailed calculation we confine our attention to the
CERN results at 3,0 Gev/c (Ref. (8)).
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A mass (Y) o 1115 Mev

Z " (¥) o 1190 Mev
of nucleon mass (M) ~u 940 Mev.

It is quite clear from these values that the angular
distributions for the different processes will be entirely
similar to Fige 1, and this is borne out by detailed cal-~
culation,

Indeed, we can go further and derive an approximation tq
the amplitude by setting the hyperon and nucleon masses v

equal, Y = M, Equation (2) then simplifies

2 2., _ 2
| €, | D= aEGocgse)

i

Setting t -q "y

|

2. 4 2
\’\/Ef §Mav%- i>t= [ & +tm . (3)
It is now well known that for pseudoscalar meson
exchange batween equal mass particles, the amplitude, T ,
is of the form indicated - T ~, t/(t + m®)s It is also
ciear that this represents a smell backward psaking., This
is to be contrasted with the situation for scalar meson
exchange, T o (t + hM?)/(t + mz), which does give a

forward peak,

We conclude that a simple model of K-exchange is not
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in accord with experiment, and we must reject the model,
The inclusion of the necessary Y5 factors introduces
additional t-dependent terms in the amplitude which mask
the effect of the pole term. Nor is it possible to modify
tie angular distribution by the assumption of alternative
coupling schemes for the K N Y interactiony all such
alternative interactions reduce to the original form when
the current is written hetween Dirac spinors -- in other
words we have not got enough invariants to construct a
genuine alternative interaction. There remains the possi-
bility of assuming the existence of strongly varying form
factors at the K N Y vertex, but it seems rather unsatis-
factory to invoke on ad hoc grounds the existence of a
factor which would have as its sole purpose the conversion
of a backward into a forward peak, and we reject this -
possibility.

Our conclusion that K-exchange is unimportant in the
reaction implies a quantitative limit on the coupling
constantsy we deduce for example, that
@2 /bx & 0o .5, This value is smaller than that

KN
given by previous estimates(lo).
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(iv) K#iexchange

We now investigate a K?e—exchange models For
definiteness we consider first the channel DD —> AN  ~-
as before, the other cases will follow with only small

changes in the masses. We take the effective interaction

L sas

L = G ll!p 'Yu \I!"l ,6.‘_“ + heCs (L,')

where ﬁ+u is the positive K> (1) field, The diagram

is similar to the previouse-
v k
a, (1)

GYu

V (p;)/ D
aq 1

the corresponding amplitude is

<pByBo | M [aqay>

2
g,)"9,4, ©

_ 2 =p A
- G Va'l (pl)YIJ. VB]_ (k

) e
1 2

Q- -m
where m 1is now the Kaé mass.

T, (e )Y, Vg, (2p)(5)

Bessis, Itzykson and Jacdb(ll) have independently

carried out the same calculation and have given an amplitude
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corresponding to (4) which is in disagreement with (5) by a
factor of twoe It is therefore necessary to expand a little

on the derivation of (5).

We have
Lx) = 6T, 1, ¥, B, + Gy, v £5) .
The second order amplitude corresponding to the diagram is
of the form
o -
%:jdu x4 x5 T {L(xl) L(XQ)J .
- oo

BIJ observed that there are two terms in the time

ordered product corresponding to pp —> A A, nam ly

1st term in L(xl) x 2nd term in L(xz)
and 2nd term in L(xl) x 1lst term in L(x,) ,

with, in both cases, contractions over the boson fields.

Apart from Xq By X5 the terms are the same, and they give
rise to identical amplitudes, and BIJ include an extra factor
of two in their amplitude on this ground, arguing that one
term corresponds to XK * exchange and the second to K ex-
change, This is incorrect. The factor of 2 is cancelled by
the 1/2! ~ +this is the well known Feynman prescription that
one neglects topologically identical diagrams which arise from
permuting the X; »
The differential cross-section corresponding to (5) may

be evaluated using standard techniquess In Fig. 2 we have

plotted the result for;a;; production against the experimental
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histogram., It is seen that the main feature of the reaction,
the forward peak, is well reproduced, In Figs. 3 and L we give
the results for /\;:o and Z.\,i e (Zo N . is identical
to A L., by charge conjugation.)

The calculation of the differential cross-section from
(5) is a fairly lengthy process, especially when hyperons of
different mass are involved, The numerical computation was
therefore carried out on a Ferranti Mercury computer. How—
ever, if we again set the hyperon and nucleon masses equal,
the calculation is much simplified —-- in particular the

qv/m2 terms makes no contribution -~ but the results are

I
substantially unaltered. It is doubtful if either the
accuracy of the experiments or the state of the theory really
warrant carrying the calculations to the accuracy of mass dif-
ferences, In further work we shall neglect these mass
differences.
In the above calcuiations we have assumed even /\ and

Y 'parities. Whern this work was carried out (1962) the

7. parity was not well established. The calculation was re-
peated for odd L A relative parity, By including extra factors
of Y3 at the vertices. In Fig. 5 we have plotted the inte-
grated differential cross-section for Z:*‘if;v production for
the two cases of odd and even <% A parity, against the ex-
Perimental results. The case of even parity is clearly

favoured,

This conclusion, however, is dependent on the model,

and apart from considerations of the angular distributions
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there remain questions of the magnitudes of the cross-sections,
and the sensitivity of the model to alternative coupling

schemes, to which we now turn.

(v) Cross—Sections

2 >€
The KAN and X £ N coupling constants, Gu

and Gy , are properly defined in terms of I-space invariant -

interactions, For the A case this is
G/‘\ wN Yu \IIA ﬁK'*p.
of which the term

6, T, v, ¥ B, (6)

is relevant here,
For the ZZ cagse the interaction is written
Gp Uy 7, X B Wt
which contains
26,0, v, % By * G VT, Y By, e (7)

The coupling constants appropriate to different vertices

are therefore as follows

p A k¥ G,
p I K : Gy
1Y Z__,_ K> . d2 Gy »

To the excellent approximation of negleecting the
mass difference we can therefore predict the following

ratios between the cross—sectionsi-
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O (W% o GF
G

TT) (RO(ETY) o ch o
O(T+T4) = 4G4
— A
O(Toto A G,
From this it follows that
20(nESD _ (9)

\/QT(K7§7(7(E+§i§)

In Table 1 we have given the value of this gquantity
evaluabed for the different sets of experimental data.
The error in its value is large, and the limits given are
probably little more than a guide. (The experiments are
difficult to perform, involving the detection and
differentiation of neutral A  and [ particles. There
apprears to be a considerable measure of disagreement between
the CERN and Brookhaven results.) It is therefore diffi~
cult to draw any firm conclusions from a comparison of (9)
with experiment, but we can perhaps say that the results
indicate that the model will serve as a basisg for develop-
ment,

The cross section is given in terms of {<<? o, i:>\2

by
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, 2
a4 JEUE |
al} || (67 B)°

in units of (energy)—z, where for G-"L the appropriate
factor from (8) is inserted. We have three results, the
/\7{ 9 /\E?; and Ii+'§f* crogs—~sections, from which to
determine the two coupling constants, G, + Gy o At
3.0 Gev/c the best f£it has

@2 / 4x ~ .20
(10)

Gi / Lz ~ .06

With these values, the three observed cross-—sections
are reproduced with 10 - 20 per cent accuracy. (Very much
better fits would be obtained from the Brookhaven data. )

Ghan(lz) has estimated G% 'ffom a study of ® p —>

N K°. If this calculation is repeated using a more
recent value of the K& width, we find G4 / Lx =9I 0.22,
in good agreement with our result. (The range of momentum
transfer involved at the K%V\ N vertex is similar in this
case, )

We can compare the results (10) with the predictions
of SU(3) symmetry(13). As is well known, there are two
possible coupling'schemes between baryons and mesons, F
and D types. (A general linear combination of these
couplings is of course possible.) On a simple view, one

might expect the vector mesons to be coupled in an F-type
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manner %o the baryons, since in this case p s W, and X
are coupled to the isospin, hypercharge and strangeness
changing currents, which are conserved in the limit of zero
mass splitting. Such a (pure P) coupling implies
Cog* 5 Ghex = 3% 1,
in good agreement with out results (10).
In Table 1 we give values of 4:/0‘(»’\7\) l (7‘(7;4,.-3’:_ ,,.)

from the experimental data. This parameter is related to

the ratio of the coupling constants as they appear in the
interaction Lagrangians, and is normalised to have the
value 1 for F-type, and 1/3 for D-type. F-type coupling
is clearly preferred in the model; at very least, the
proportion of D~coupling must be low,.

It is perhaps worthwhile giving explicitly the cross-~
section ratios predicted on the basis of F-coupling. These

are

P

' /\7’\ . /\20 . -2:_\.‘):.5. o -2:0)-'0

k]

= 9 o 3 : L . 1 .

On the other hand, there is evidence that interactions
of scalar mesons involve D-type couplings(lu). I we
assume a peripheral mechanism of K~exchange with D~coupling,
we find, €.ge, 0'(1\7\7 : G’(Z*E:{-v = 1313, a
result in disagreement with experiment by two orders of

magmitude, We see that a K-exchange mechanism would be
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difficult to reconcile with unitary symmetry ideas, while

a K7 mechanism fits well into the SU(3) scheme.

(vi) Alternative Couplings

We now investigate how our conclusions are modified by
the inclusion of different possible types of interactions at
the Kéibaryon—baryon vertex, Time reversal symmetry does not
forbid a term of the qu (momentum transfer) form in the
case of differding baryon masses, such as N and Y, To
make the calculation tractable at this and other points, we
work in the unitary symmetric approximation, which imposes
a gauge invariance requirement under which a term of this
form is inadmissible, In terms of "electric" and "magnetic"
form factors(15) the vertex function must then be of the

form
: L (2mG (q2)P + ikG (q2)r )
Lm? - q§ E 7 M w'?
where P is the sum of ingoing and outgoing momenta at the

73
vertex and

= X -5
I.U' - 2(Yulpfq, Iq; Yu) e

GE(O) and GM(O) are normalized to one, and k is a
dimensionless parameter which gives a measure of the relative
strengths of the two types of interaction.

Neglecting the q2 dependence of GE and GM’ the
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interaction is of the form

1
lmz—-q
In Fig. 6 we have plotted the differential pp -> YY cross-

(emP

u+1kru) °

section for different values of the parameter k. It is

sesn that the forward peaking is not sensitive to the nature
of the interaction for comparable values of the coupling
constants, 1,es k ™~ 1, This conclusion would be strength—
ened by the inclusion of the q2 dependence of GE and GM’
since one would certainly expect this to favour the low q2
values, as in the case of electromagnetic form factors of the
nucleona.

Hand, Miller and Wilson(16) have analysed electron
scattering data in terms of electric and magnetic form
factors, and fitted these with () and o interactions and
a soft core of mass 30 fermi—z, finding k = 3.5,
kw = 1,3, Unitary symmetry predicts ng= k:P = kw’

If k¢ is as large as 3.5 (Figs 6) the strong forward
peaking will no longer be present. (This disappearance of
the forward peak with increasing value of Xk corresponds to
the well~known fact that in electromagnetic interactions,
the magnetic interaction dominates the wide-~angle scatter—

ing.) However kP and k, are sensitive to the choice

of soft core mass, and must be regarded as poorly determined.
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(vii) Discussion

The pole term model which we have presented seems able
to give a fairly good descriprion of the processes, We have
seen that the branching ratios and angular distributions
predicted are reasonable representations of the observed
quantities, and that the model, which is not unduly sensi-
tive to the form assumed for the baryon~baryon-~-meson
vertices, is in accord with the octet model of unitary
symmetry with F-type couplings. However, we must emphasize
that the pole model, of which the greatest merit is sim-
plicity, cemnnot be taken too seriously. We prefer to regard
it as a basis on which to build a more satisfactory treat-
ment, for there are serious objections to such a pole term
model,

Pirstly, Durand end Chiu'l?) have pointed out that
our argument rejecting K—-exchange on the basis of the
angular distribution results is unconvincing. The reader
will recall that the amplitude for X-exchange was of the
approximate form t/(t + m2), representing a backward con-
centration of events, while the observed distribution is
very much forward peaked., We now observe that this ampli-

tude may be put in the form

t = 1 - & (11)
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It is clear that the second term here has the correct
(forwardly concentrated) forme The unit term interferes
with this term to produce a total backward concentrations
Thus we see that the unit term, representing an S-wave
contribution, is dominating the form of the amplitude; if
the S wave is omitted, the correect forward form results,

This dominant role of the S—-wave is quite in contra-
diction with the entire gpirit and justification of the
peripheral model as given in Section (i). We set out with the
intention of using the one particle exchange amplitude
as an approximation to the long range part of the force,
with which we hoped to represent the behaviour of the high
partial waves. We now find that (for K) the one particle
exchange amplitude is dominated by the S-wave contribution,
which in any case we d4id not expeet to be accurately given.

It is a general feature of pole term models that the
amplitude obtained is dominated by the low partial waves,

It is therefore just not possible to claim that the Born
term is an approximation to the long range (i.e. high partial
waves) interaction.

This difficulty arises from the fact that the Born term
model pays no attention to the requirements of unitarity,

For a strong interaction process the Born term model leads

to amplitudes whiech badly violate unitarity for the lower
partial waves -- for the S-wave by as much as one or two

(18)

orders of magnitude in a typiecal process Yet not only
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must the partial wave amplitudes keep below the unitarity
limit, but at high energies (corresponding to the peripheral
or optical region defined by (1)) when very many competing
channels are open, we would expect the lower partial waves
to keep well below the unitarity limit - indeed to be very
small in just the region where the Born term model gives then
as very large,

A related difficulty of the one partille exchange
model is evident upon a closer examination of the angular
distributions given in Figse. 2, 3 and Y. There is a systemat-
ic tendency for the reaction to be more forwardly peaked than
predicted -~ the peripheral amplitude is not sufficiently
peripheral. This is a common fault of the Born term model,
and to remedy the situation form factors have been invoked
at the interaction vertices, with a q2 dependence chosen to
suitably correct the amplitudes. From the present point of
view, we remark that the wide angle scattering arises from
the low partial waves, We have seen that the low partial
waves are incorrectly given by the Born term model and we can
énly hope that the need for form-factors will disappear when
the reqguirements of unitarity are forced on the model,

At this point we only touch on the question of unitarity.
The second Part of this work is devoted to this failing of
the Born term model, and we develop a method for attempting
to overcome the difficulty by the inclusion of so-called

"absorptive effects",
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Apart from the fundamental problem of unitarity, there
remains ih the Born term model considerable arbitriness, of
which our present pole calculations provide an example.
This arises from several sources, First, there is often
more than one quantum available to act as the exchanged
particle, Secondly, having made a choice of intermediary
prarticle, on mass or other grounds, we are often faced with
a choice of possible forms for the interaction, e.ge "y "

7

or "o e There is normally some indication of the form,

TRV qv"
but usually also considerable freedom of manoeuvre. Finally,
in considering branching ratios, or processes involving more
than one exchange quantum, we are free to assign ad hoc
values to the relevant coupling constants.

When these three sets of choices are put together,
there results a very considerable freedom of manoceuvre,
One could speculate that it might be possible, with a suit-
able choice of parameters, to obtain an adequate £it to any
set of data. It would be much preferable to start from a
higher symmetry scheme in which there was no freedom in these
parameters, and to compare the resulting amplitudes against
experiment, In Part III of the present work we repeat the

calculation of PP —> An within the U(12) theory of

Salam, Delbourgo and Strathdee(19).
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PART _II

ABSORPTIVE EFFECTS
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(1) Form Factors

In their early peripheral, or pole term, calculations,
first of NN —> NN and later of N —-» pN, Ferrarl &
Selleri found that the model did not give predictions
which agreed with experiment, The disagreement was of the
type we saw in Part I of this work in the case of
psnl > YY ; the peripheral amplifudes gave too mueh wide
angle scattering, To remedy this discrepancy form factors
were introduced into the one particle exchange model, It
was argued that the existence of possible structure at the
reaction vertices (c.f. EM form factors) and pessible un-
known renormalisation effects on the propagator permitted
the inclusion of theoretically undetermined functions of
the squared momentum transfer in the peripheral amplitudes.
Such a function we denote by F(qz) where we have absorbed
the three separate effects arising from the two vertices
and the propagator into one term, which is normalised by
choice of coupling constant so that F(0) = 1. F(q?)
is referred to as the form factor, though it clearly re-
presents more than the structure at one vertex, as in the
EM case, In genersal the form factor will be different for
different reactions., In practice the form factor was chosen
so as to bring the peripheral amplitude into agreement with
the data,

We reproduce in Fig, 7 three form factors which have
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heen determined in this manner. The functions shown are as

folliows

(i) The Pérrari-Selleri type form factor, for one pion

exchange Iy 5. ¥ ana 0 -— eN
2 °72 28
F(g®) = = = 5+ I )
1+ (~g" 45 73 u 1 -{(-q ) /321 _ﬂ

where (. is the pion mass, The first of these terms is
chogen to give a rapid decrease at small momentum transfer,

and the second to reproduce the data at large momentum

transfers,
(ii) The pion exchange form factor of Goldhaber et al.(21)
for :
KN - K¢n*
2
2
F(qg") = ;;r%%:;;-

where @° = 06132 (Gev/c)2

(1ii) The vector meson form factor of Jackson & Pilkuhn(zz)
Tor o or o in
N — K¥w

KN — KN

7(q%) exp(rg?)

i}

where A 2.5 (G«ev/c)m2 .

% Taken from J,D., Jackson & H, Pilkuhn; Nuovo Cimento 33,
906 {1964).
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It would at best be unfortunate to have to invoke
such ad hoc form factors in order to obtain satisfactory
results. However, since the necessary form factors are
such rgpidly varying functions of q2, the situation is
extremely unsatisfactory. It is not clear that one is
doing anything more than curve fitting.

There are also weighty theoretical arguments against
the existence of such strong form factors, If the pion
form factors are to be ascribed to pole interactions at

the vertices of the form

as in EM interactions, then we require the existence of
. 2
a three pion state at a mass squared ~ug SmW. However,

there is no evidence for such a state up to ~v 5Om2 .

o
Again, if the same assumption is made as to the origin
of the vector meson form factors, then we are forced to
assume the existence of states with the same quantum
nunbers as p, w etc,, but with lighter masses, even

though we start (in the peripheral model) with the
supposition that we are exchanging the lightest quanta
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available,

Altogether, the use of such form factors seems un-
reasonable, In the pion case, the purpose of the form
factor is largely to remove the large S-wave term. As
this term is inconsgistent with the assumptions underlying
the mcdel, and as 1t badly violates unitarity, this pro-
cedure is very guestionable, It would be more preferable
to find a method of unitarising the model.

The similarity of the form factors which have been
introduced by various authors is very striking (c.f.

Fig. 7). It is remarkable that such similar forms are
found for different exchange particles and different re-
actions. This circumstance suggests that the mechanism,
if such exists, responsible for the sharpening of the

forward peak in the peripheral model is independent of the

detailed dynamics of the particular reaction under con-
sideration, and is a more general feature of high energy
scattering,

This situation is reminiscent of elastic scattering
at high encrgies, of which in all cases the main feature
is & sharp forward peak, representing the shadow of the
many open inelastic channels, and independent to a large
extent of the detailed nature of the particular interaction.
This suggests a possible line of development for the

peripheral model, namely to find some way of including
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in the model the effects of the many open channels by
taking into account in some manner the strong elastic
interactions between the incident and final particles.

This is the absorption model.

(ii) ZElastic Scattering at High Energies

As the absorption model is based on the character-
istics of elastic scattering at high energies, we now give
a brief review of these,

We define the high energy region to be that for which
-1
o> Y (1)

where VY 1is the range of the elastic interaction. v is
typically ~ 1 £, so (1) implies the Gev range or higher,
(This condition should be compared to that of I.l defining
the peripheral region, p > uhl).‘

Under these energy conditions the incident particle
may be considered localised in a wave packet of smaller
dimensions than the target which it "sees", The particle
can therefore be thought of as having a definite positidn;
this is just a statement that at high energies quantum
mechanics becomes similar in some ways to the classical
mechanics of bllliard balls - the so-called correspondence

principle, Again, under this high energy limit we
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anticipate that very many inelastic channels are open.
If a collision does take place, it will be likely to result
in a transition to one of these other channels. From the
point of view of the elastic interaction, such a collision
results in the loss or absorption of a particle, Collisions
which proceed by a direct elastic interaction, e.g. by
exchange of quanta leading to the original state, are
expected to be relatively few.

The situation is very similar to the passnoge of a
beam of light through an opaque screen, and we therefore
speak of this energy region (defined by (1)) as the

optical region., The fact that there is no "direct"

elastic scattering does not mean that no elastic scattering
is cobserved; on the contrary, the absorption of particles
from the beam shows up by diffraction in the formation of
an elastic scattering distribution. We therefore also refer
to this type of model of elastic scattering at high
energies as the optical model - ‘the elastic scattering
arises from absorption.

In potential theory the absorption of partiecles into
other channels can be simulated by adding an imaginary
part to the potential V, If ImV £0, plane wave
solutions display a decreasing amplitude representing

absorption. (Equivalent use of a complex impedance

to represent absorption is widely known in optics,
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classical EM theory and wave theory.,) In general if £ 1}

is the particle current

Vi = 2mmvi{yl® ,

showing that the probability of absorption is o - ImV

(Im v < 0). The amplitude is given by

'S
fe) = \Z(_z 2+ 1) (ﬁ) P (cos ©) (2)
where S, = 82152 and 52 is the phase shift,

If V is complex, then so also is &, and for ImV < 0O
we must have Im 6> 0. Setting

§, = a,+ iB, (8,> 0)

the optical model assumption is that (3£>> lo,_,\ , i.e.
diffraction effects predominate. Neglecting a, we have

~Be
€ ’ (3)

[ 48]
o
i

ioeo o é SE i\ 1 .

The elastic scattering cross section is given by
T 2
0, = ?Ze(ze+1)[sg—1‘

so that we see explicitly from (3) that asborption implies
elastie scattering. Further, since the inelastic cross-

section is

0l, = j‘-z- Z(zz + 1)(1 - 183\2)
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we see that in gemeral the larger Ozn , the smaller is

S and consequently the greater the elastic scattering.

K

(The two are normally of the same order of magnitude).
This process, in which elastic scattering is induced

by the absorption of particles into the other channels

is juet the working of unitarity. Note that since S, 1s

real, the amplitude fy 1s imaginary (Sz =1+ 2ipf2).

fz is therefore given by the unitarity relation. In terms

of the more familiar covariant amplitude T(6), related

to f(8) by
™e) = 8= B f(e)
this is(23)
2wty = L omr td
where o, Y, label the channels, pY is the momentum

in the Y-channel and E, the total centre of mass energy.
It is seen that each open inelastic channel contributes
to the imaginary part of Taa’ and these contributions are.
additive. The optical model assumes that Toa arises
entirely in this way, and therefore T, 18 entirely
imaginary.

The unitarity requirement gives for forward scattering

ImT _ (0)

a0, 2p Ec o

tot

I

where 0%0t = 0;6 + G&n is the total cross section.
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In genersl

tT‘ = _/(Rs'.’[‘)é + (m?)2 = InT
. ,'T (o)l 2p B, O 4 (1)

the equality holding if, and only if, T  (0) is
imaginary. This provides the most direct check on the
optical model assumptions. Though there has recently been
some indication of a real part of the forward elastic
scattering amplitude(zu), the equality in (4) is found to
be quite well satisfied for @ost cases of high energy
scattering, and over a wide range of energiles (high).
Thls is generally taken as a justification of assuming
T(®) to be imaginary for all o, though there is no
direct check on this, (It must be stressed, however, that
the model which we shall develop does not rely on the
assumption of a pure imaginary elastic amplitude - it is
only necessary that this amplitude should have a large
imaginary part, and this certainly seems well established),
The model we shall develop gives a result (for

inelastic processes) which contains elastic scattering

2
aa ?

by appropriate expressions in the light of theoretical and

matrix elements, €eg. S and these must be replaced
experimental understanding of elastic scatterings For the
present work we assume a form for high energy elastic

scattering which is widely used and appears to be quite
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accurate and of fairly general gpplication, This is the
Gaussian Mode1(23)z

£(e+1) :
ze) . £l8) = o §:52£+1) Ce™ VD P,(cos 8)(5)
¢

2p
BnEc
where C and v are parameters,C determining the
strength of the interaction and v giving the range -

referred to as the optical model range, sometimes also taken

as v/J2 . TProm (2) and (5) we have

2(4+1
—ézgzl Sﬂ 1

iC
7p © = —72 ip
2 2
so §, = 1 - Ce"z(z+l)/w p - (6)

C must be chosen to make the amplitude go through the
optical point, and we find
oy
tot |
27y _ :
Experimencally, C rv o7 - 1-0(5).
This parameterization leads to a variation of O with

t (= —qz) for small t as followse~

i /ad] L B
at /S qE e ’

Thig is of the same form as given by the Regge pole theory

of elastic scattering at high energies,
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(i1i) Absorptive Effects

Having a clear idea of the nature of elastic scatter-
ing at high energies, we are now in a position to see how
we might expecet the main characteristies of elastie
scattering to have a pronounced effect on a typical
inelastic process, say a transition o -~ B, where
ay By etecs label the channels. We suppose that the ranges
of the elastic interactions in the initial (B) and final
(B) states are ~» v , while the inelastic interaction
is of range u . We will suppose for definiteness that the
inelastic process proceeds via the peripheral exchange of
quanta of m, 80 that u ~v mt s however, there is in
prrinciple no need to make any assumptions concerning the
production mechanism., Again, for definiteness, let us
suppose UL > Vo The colliding particles therefore eppear
to one another as having opaque, black centres, only out-

gide of which the inelastic interaction is "seen's-
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If the particles interact with impact parameter less than
v, the chances are that they will be absorbed into an
alternative channel - from the point of view of the
transition o «» B, that part of the interaction which
would proceed through impact parameters less than v is
effectively lost, On physical grounds we can see that the
result would be a marked sharpening of the angular dis-
tribution in the forward direction, since we would expect
to see the diffraction shadow of the absorptive region even
in the inelastic process.

It is therefore expected that any mathematical treaté
ment of this effect will result in decreasing the low partial
wave amplitudes, This is precisely the result which we saw
in Part I, Section (vii) would be desirable in the peri-
rheral model on very general grounds. It is just these low
partial waves which violate unitarity, and lead to the
unwanted wide angle scattering. The present idea, that of
including the initial and final state elastic amplitudes
in the caleulation of inelastic processes, would be nothing
less than a unitarity correction, since, as we have seen,
the elastic amplotudes themselves are due to the large
number of open inelastic channels. The reduction of the
low partial waves would be just a unitarity damping effect,

If u is not B5» v, the sltuation is not as easily
visualisedy; however, we would expect similar effects,

There have been several independent treatments of the
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situation discussed here. These treatments start with
differing assumptions, proceed by different methods and
lead to results (valid under various conditions) which are
sometimes inconsistent. It 1s our intention here to give a
critical review of the results to date, which we shall
sometimes derive by new methods, and to give a consistent
review of the field, inter-relating the various results as
much as possible., Finally, in Section (vii) we propose a
treatment based on the K-matrix which seems to the author
to be the most satisfactory.

However, in order to familiarise the reader with the
general nature of the results, and to illustrate their
application, we give here a (widely known) formula first
written down by Sopkovich(25) and re-derived by Durand and
Chiu(26’27), using the distorted.wave Born approximation.
This relates the modified or corrected partial wave matrix
element Téa to the Born element Véa and the S-matrix
elements for elastic scattering in the initial and final

2
states, Saa

I
L

and SBB o The formula is valid under the
conditions

R CANTRNP 7 (8)
(Note that this implies we are in both the "peripheral"
and "optical regions - ce.fe I(i) and II(i)),

The relation is

¢ 7 2 7
Toa = fsBB Vg ,/sm (9)
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To illustrate the use of (9) let us suppose

Sz = Séﬁ’ and take for these matrix elements a form

aa
appropriate to Gaussian scattering with complete absorption

(]

of the lower partial waves (i.ee. BEge (6) with C = 1)

2.2

= 1 - o t(e+1)/vop
(9) becomes

A he e-z(£+1)/v2p2)%v£

Ba : Ba
We show in Pigs. 8, 9, and 10, the effects of this
correction on a peripheral amplitude corresponding to the
exchange of a vector meson (mass = 890 Mev = My ) between
two particles of nucleonic mass (NN, AA ) at 3.0 Gev/c.
(Apart from retaining q dependent terms from the vertices,

we have entirely neglect@d spin,) Fig, 8 shows the cor=-
2.2
e-z(z+1)/y P against ¢, Fig. 9

rection factor, 1 -
shows the weighted amplitudes (1) (2¢+1) V5 , and

(11) (22+1) Téa against £, Fig. 10 shows the correspond-
ing angular distributions (i) Born term (ii) corrected
amplitude. The features discussed above are illustrated
in the graphs in a quantitative manner, and it will be

seen that the corrected results display a striking

modification.
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(iv) The High Energy WKB Approximation.

We briefly outline here derivations of equation (9)
and a similar result holding for # » v which are
based on a method due to Gottfried & Jackson(18), we
use the WKB approximation in the Schrodinger equation, so
the treatment is non-relativistic. We take the incident
beam parallel to 07 (unit vector X) and b to be a
vector perpendicular to O0OZ, so that b( = |{p\) is
the impact parameter., The three-momentum transfer we

denote by & . glauber(@9) has shown that the scattering

amplitude 1is given by

S
£(8) = gg 7 (40) (ei xX(®) 1) bdb (11)
©
where .
X(b) = - %Xv(p_ + kz)az . (12)

The Born approximgtion consists in setting

e’ X(v) 1~ iX(®) = 2ip B(b) say (13)
so that (11) becomes

£(8) = 2p2§ 3. (& b)B(b) bdb . (1)

(@}
Under the usual identification

pb  —>» ¢+ %
Jo(ab) — Pz(cos o)
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we recover the usual partial wave expansion

£(8)

Il

5— (2£+1)'Bz P, (cos o)

—————

Clearly )((b) is the phase shift suffered by a particle
in traversing the potential V at impact parameter b.

o take into account the effects of absorption we
must also ineclude the extra phase Phifts sufferéd by the
particle in traversing the absorptive regions, in which
we represent the absorption by complex potentials Uda
(initial channel) and Usp (exit channel), We make use
of the condition p »» v, so that the wave function in
the potential U can be taken of the form

\lff\)el

kz P (Z)
where 6)(2) is a slowly varying function of z. Inserting
this form into the Schrodinger equation, and neglecting the

1t

P term (small) we find for p

~im g 2 (U(p_ + EZ! )dZ'

-~

,0(‘9_+g_z) = ¢ P Jd-eo (15)
(This is the WKB approximation), The exponent: in (15)
represents an additional phase shift which we must include
in (14), There are two casesS-

Case (i) <p-1<& n & v,

In this case the incident particles first traverse

the potential U, , then the potential Vﬁa (corresponding
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to B in (14))}, and finally the potential UBB. We

Ba
use the condition p & v to approximate the first phase
shift, say 5;@, by setting =z = 0O in the limits of
integration of (15), i.e. we consider the particle to
have traversed the entire U@a potential up to z = 0O
before it encounters the production potential. (15)

gives o
- Toor t
5 = -X U (b + kz')dz (16)
aa(é) D . aa
Now we note that the total phase shift at impact parameter
b for a particle traversing the potential from - oD

to + oo is

€0
PJ U, (B + kz')dz
-0

= 25 () (17)

so we see that 5aa(2) is just the elastic scattering

phase shift in the channel a o The same is true for

5
B .
Including these extra phase shifts in (14) we have
o [ 1% 1800
fﬁa(e) = 2p I (&b)e BBQ(Q) e bdb (18)
o

This is the impact parameter representation of the result

(9)e

Case (ii1) p -t v 4 p.

Now the production potential is supprosed to be of
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the greater range. There are two possibilities, The
transition o -—> B might take place before the particle
traverses the absorptive central region, in which case it
no longer "sees" the potential VBm while leaving the
interaction region. The production amplitude is then
given by (11), (12) and (13), where the limits of inte-
gration in (12) now run from - od —> O, so that B(b)
is replaced by % B(k). The additional phase shift is
now that arising from traversing the entire region of the

potential U (from (16), with limits ¥ o0 ), i.e.

BB

2 ] ° The total contribution from these transitions is

BB |
2 (% 2184
fea(e) = Y% 2p on(Zlb)e BBG(Q) bdb . (19)

There is a similar contribution for transitions made

after traversing the central absorptive region

o 2id
= %op® | 3 (AD)B, (b) e %% bdb (20)
fBCL(e) - p Fo) BCL — L

o
The total result is the sum of (19) and (20). Writing this

in the conventional partial wave form

£54(0) = zz:2g+1)% [ééﬁ Véa + véa sﬁé} P,(con 6) (21)

where we have replaced BBG(E) with Véa rather than

éa to conform with an earlier notatione. Denoting the
corrected partial wave amplitudes by Té

B

a the two results

may be stated
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-1, 21 [l oL 4 z!

P &v4&yp Tﬁa o5 tfﬁﬁ Véa + Vﬁa Sna (22)
=1, ¢ _ P A B

P A& p Ly Tﬁa = M/Sﬁﬁ Véa 84 (23)

Of these results (23) is of longer standing. It
was “aken as a plausible ansatz by Sopkovieh in 1962(25),
and derived under the stated conditions by Durand and
Chiu(26’ 27) (1954), using involved arguments about the
form of the radial wave function in the Schrodinger equation,

(18) derived

which also led to (22), Gottfried and Jackson
(23) by a method similar to ours, which we have extended to
deduce (22) also. A derivation of (23) has also been
attempted by Ball and Frazer(Bz) on the basis of S-matrix
theory, which work was, however, of an exploratory nature,

Due to the conditions p > u"l, v-l, (22) and
(23) are '"high-energy non-relativistic results". In
practice (since the conditions imply the Gev range) a
relativigtic theory is used to calculate V , Clearly,
the generalisation of results based on the Schrodinger
equation to a highly relativistic situation is an unsatis-
factory procedure.

There are more serious limitations on the applic—
ability of these formulae, The elastic scattering radius v
i1s typiecally ~v 1f in most cases at high energies,
Typical ranges for Born production forces are also of this

-1

order of magnitude, e.g. L R melrv e .
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Therefore, in Practice, the physical processes of interest
do not fall within the domain of validity of either (22)
or (23). This point is often passed over in applications
and (23) is taken as a basis for calculation - the form
(22) is not at all widely known.

At first sight (22) and (23) are very different
results. However, a closer inspection shows they are in
many ways similar, There is in both cases the symmetry
between o and B ; 1if we set Séa = Séﬁ = 1 in
either we recover the Born amplitude; and if we put
Véa = 1 in either with Sam = SBB we retrieve an S
matrix for elastic scattering, as we might intuitively
expecte.

Further, we note that both (22) and (23) give ex~-
pressions for Téa in terms of Véa multiplied by a

"ecorrection factor'. In the case of (22) this correction

factor is
L g ,
Sﬁﬁ + Saa (2&)
2
and for (23) it is
[ )
VEAS (25)

We see that (24) is the arithmetic mean of the
elagtic scattering matrix elements, while (25) is their
geometric mean, so all in all (22) and (23) are really

rather similar.
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We can set

st = 1 .01t (26)

where for the higher partial waves ¢ will be small,

For these
. Cos mf A Ny
\/g;a, = (1-21 Taa e~ 1Toa

and similarly treat J%éﬁ gso that (23) becomes

Be = Vi [1 - i(The + THS) (27)

In the notation of (26), (22) is identical to (27), so
that for the higher partial waves (22) and (23) are
equivalent.

This equivalence of (22) and (23) is true even for
the low partial waves if the initial and final state
elastic scatterings are similar, Séa'\é Séﬁ s 1in which

case we can set

[T \
S(ICL SBB N

which approximation is vallid to the second order,

These conslderations strongly suggest that the restric-
tions on the ranges in (22) and (23) are somewhat artificial,
and that it might be possible to derive a formula independsnt
of the relative magnitudes of | and v, and for practical

use this would be an extension of considerable importance.
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As we have seen, (22) and (23) differ (at most) only
for the low partial waves, and it 1s precisely for these
waves that the derivations of the results is weakest.

For v 3> p the situation is as indicateds-

Q\='¥db

We have supposed (in our choice of limits in the integrals
above ) that the particle traverses the absorptive region
from 2z = -0 to 3 = 0 before it encounters the peri-
pheral force, For low impact parameters, this assumption
is not strictly tenable, since the large absorption of
partial waves with low b +values arises from traversing
the extremely absorptive central region, which necessarily
coindides with the peripheral region, b < pu. (In other
words what we are saying is that the behaviour of the

é-th partial wave depends on the details of the details

of the potential at distances 3 ¢/p 3 for 4/p < u

we can no longer consider the particle as traversing first

the absorptive region and secondly the production region).
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Similar objections hold for the treatment of low partial
waves for uw % v, though here the approximations are more
reasonable. Altogether, it seemeé quite plausible that
a result might be found independent of the ranges.

In additlon to the points we have made above
((1) non-relativistic treatment, (ii) the range restrictions,
(iii) the approximations for low partial waves), there are
additional strong reasons for seeking an alternative treat—
ment of the effect, We have claimed that the inclusion of
absorptive effects 18 a unitarity correction to the Born
approximation, yet in the present treatment any relatlon
with unitarity (e.ge. through K-matrix formalism) is far
from obvious. Again we are essentially including the
effects of interactions in the initial and final states on
our Born term, yet there is no apparent point of coantact with
the theory of final state interactions (as developed, c.g.
by Wetson (30) or Delbourgo(Bl)). It would be reassuring
if we could make contact with K-matrix formalism and/or
the theory of interactions in the final state, which steps
would bring the work within the framework of conventional
scattering theory, We turn, in the following sections to
these questions,

A final remark might be added here: the form of (23),

Involving as it does square roots of matrix elements, seems

to the present author quite unusual, and does not lead to
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simple visualisation. On the other hand we can easily sece
in an intuitive way how (22) might arise from successive

elastic and inelastic interactions,

(v) Initial and Final State Interactions

Y'o therefore now investigate the
effects of absorption using the formalism developed by
Watson(3o) to treat interactions in the final state.
(Using the very similar work of Delbourgo, and making
parallel assumptions we reach the same results). We
confine our attention to the case v > u , so that the
elastic interactions are in the initial and final states,

Watsont's work is based on the Lippmann~Schwinger
treatment of scattering(33). Incoming and outgoing
eigenstates of the system are formally related to the

corresponding free solutions by eguations of the form

}E5>'i =-S\L¢ |2,

If we decompose the total Hamiltonian H into

11

H Ho + v

where Hb is the free Hamiltonian and V the inter-~

action, then



1 .
‘EO>+ = \\EO\A\( + + v \Eo>+
- L. ~H -=1ig -
o) o
where formally
b = P —de T g §(B, - H) (28)
E0 - HO - ie EO - Ho
so that we have
/ \ <E \-V-\Eo>+
3 ' = - -~
(E{Eo/i _\E\EO/. + P — (29)
: . o
T iz 8(n, - B) <8 V] B>+
The T matrix is given by
T o= v, = (117 (30)
and for the Born approximation we set J3_+ or £_ = 1

in (30).
At present we deal with only the initial state
elastic interaction., We assume this to arise from a
[]

potential v § in fact v 1is defined to accurately

reproduce the elastic scattering, Then writing
Vo=V + v

we can identify V with the potential VBa provided that
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' does not make a large (indirect) contribution to

Ba
elastic scattering, which we assume to be a valid
assumption, since we are as usual at high energies and
are supposing that very many channels are contributing to
elastic scattering. Watson gives (Eqe. 15, ref. 30) for

the (total) T matrix?

T o= ¥ _(1+w+ (31)
where o, are the "in" and "out" operators for a
Hamiltonian H = HO + Ve We can further simplify

(31) by setting

0O, =0 oy
where J],O . are M"in" and "out" operators for a
= E
Hamiltonian H = H, + V, so that (31) becomes
T = Vﬂo+ w, (32)

This equation admits of a ready physical interpretation}
due to the condition v 3> p the term D, in (30)

has factored into.(lo+ w gso that first v acts and

+ ?
then V .

Equation (32) gives

% i.e. we drop the second term of Watson's equation (22),
This is usual, and is certainly Jjustified in our case
since v >> u, and we can assume that once an inter-
action through V takes place, no further interaction
through v occurs,
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Cplmiry = fe oy | v s 12D

(33)

where we have merely inserted a complete set of states

(not showing explicitly the implied angular integrations),

and where
N _ |
\Ea,) + =0, \Ba.> ’
ieCe {ECL>+ is an “in" state of H = Hj + 7V ,

The essential nature of the WKB approximatidn is that

it is an energy shell treatment. The wave suffers,shifts

in magnitude and in phase, but to the approximation used
its energy is unaltered - hence the'highkenergy condition,
so that a potential encountered is small in magnitude
compared to the particle energy., It is this fact which
makes the absorption tractable, since otherwise we would
need information (which we do not possess) on the off shell
behaviour of the elagtic amplitudes, The result cbtained
contains only physical (energy-shell) values - hence,
amongst other consequences, its form as a relation between
vrartial vave amplitudes,

We want to use this energy shell approximation, which
we expect to be valid at high energies, to get a useful
form for (33), We shall therefore approximate
<T%“Ed7-+ by neglecting the principal value integral
in (29), so that we set
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' - t - S -t '
B \Bap s = Bl By - indlE, - 5) <5 v B, GW)
The neglect of the principal value integral, which is
of the form

ij £(E)KBAT\ B> o

o E ~-E
a

is argued on the grounds that the range of energiles
E, ~E = AE in vhich {B| T \B} is non-vanishing is
much less than the range, v Ea’ pernitted by the form

of the integral., The range of permitted momentum transfer

Ap, is Ap ~ v"l, so that Ap ~ p/mv while

B, ~ p°/m. If D > vl, we have AE &K E o

. N / 1 \
Using (30), and replacing B \Ea/‘ by the

tfunction, (34) becomes

appropriate C’,T

5KEa - E&)

B\ Ey 4 = 5 (5 (1 -t mp<E, \T\Ea>> ]

Inserting this into (33) the energy integration is now

trivial, and we have

<E6t T$E0>= (EB{ v_.r}b+(Ea>(1 - iw()<Ea\ T on\/)
Setting ior V_Ob+ the Born approximation, V, and

including the angular integration which is implied in

this equation we find
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A A . A
m = o
T30, vBa (1 inp T&a)
or
¢ _ ol s md
Tﬁa = vBCL (1 -1 Tua)

Clearly, including also the final state elastic

interaction we have

Téa = (1-1 Tég) vé, (1 -1 ¢)
which, written in terms of Saa and SBB to confaorm with
nur earlier habit becomes)

1+ st 1+ st

1, = (——8) vi (—55) (35)

This is our final result. It is the form assumed and

used by Ross and ShaW(BLL)e As is seen, it differs again
from our earlier results (22) and (23).

However, for small T&i ’ Téé all three forms become
identicals under these conditions we can neglect .the term
Téé véa T&é in (35) which then becomes identical to the
limit of (23) (i.c.(27)), which is also the form (22).

On the other hand, for large T!. , T%é , (low ¢
values ) this latest form differs appreciably from both
(22) and (23)sa We have plotted out this third result in
Pigss 8, 9 and 10 (p.57-%) for the typical process dis-

cussed in section (iii), again assuming
s¢ = gt = 1- exp(Z(£+l)//v2p2).

It will be seen that the form (35) does not lead to such
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big changes in the peripheral amplitude., Because of the
extra term in (35), which is not present in (22), Iﬁa
does not go to zero as £ -» 0, but to a limit
ef (1/4) Véa s and the low partial waves give rise to
the marked difference between (35) and (27) or (23).
This behaviour of (35) does not seem physically
reasonable. Eo.g. if (to take an extreme case) the
elastic interactions were completely absorptive (black)
for all £ , then according to (35), and contrary to
our expectations the peripheral production amplitude is
not completely masked out. It is therefore necessary
to examine more closely our "energy shell" approximation

of this present section, which leads us into K-matrix

formalism.

(vi) EK-matrix Models

Our approximation of the previous section consisted
in neglecting the principal value integral in (33). This
implies that for consistency we must glso neglect the
principal value term in (28); that is to say, we are

essentially approximating the free causal propagator
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N L

EO - Ho + ie
= P e - in (B, - H )
E, - H,
by A\ = -in (5, - H) (36)

Now the Schrodinger equation gives
T = V o+ VAT (37)
so that with (36) we are taking
T = V - igv 3w (38)
where 0§ = 5(EO - Hb) .

Now the T-matrix is related to the K-matrix by
T = K - ixK 0T . (39)

Comparing (38) and (39) we see that the approximation

involved is equivalent to taking the K~matrix to be equal

to V, the potential., (V is necessarily Hermitiana)
Thig approximation is well known and widely used

in weak coupling theories, It necessarily gives a unitary

T-matrix, and the resultant corrections to the Born

approximation, T = V, give rise to damping effects,

€e8o In the theory of the damping of EM transitions, In
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fact, a systematic development of perturbation theory(35’36)
shows that this (X = V) is the correct procedure - it
was indeed from these considerations that the K-matrix was
discovered,

However the gpproximation X = V cannot be made for
a strong coupling theory. We can illustrate the type of
difficulties to which this would lead by considering a
simple model with many open channels in which we suppose

that the potentials V@B

are all equal

v (4o)

Ba

1
<
il

KBa

Now from (39)
T = K (1+ix dx)T (1)

It is possible to show that if (1 + iz 8 K) is of the
form in which all diagonal elements are equal, and all
off diagonal elements are equal (which follows from (40)),
then (1 + im 8 k)™ 1s also of that form, say
(1+i'}c5K);é‘ = a o £ B
= & a=p a

Then T 1s of the form

<

»
Ao
ST Pl !
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It follows that

TaB = Taa all a, all B

i.e, that the elastic and inelastic amplitudes are the
same.™ This is a totally incorrect result, We would
expect that as the number of channels, N, — < , the
elastic amplitude would become large and imaginary,
(i.e. display the shadow of the inelastic processes)
while the inelastic amplitudes would become small and
largely real.

We now show how the result (35) can be derived
directly from the K-matrix in the 1limit of weak coupling,

(39) can be written in partial wave form

LEG\T\EC> = (BAK\EL> - i'xjdE' L BEL\K\E' 2> p(B' )3(E-E" )X
{e'¢|T|EE>
= {Be| K\ BE> ~ im p(E) <Be| k\B> (Fe\T\EL>

ive. T = x° - imp k¥ 1* (L2)

Tollowing Dalitz-SBZ? we define for a matrix A a

corresponding A' such that

% (ul) can be solved explicitly, in this case, and the
result given, and also the unitarity condition verified
explicitly. E.J. Squires (private communication) has
independently obtained the same result,
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LE|AED> = U[;;(ﬁ)<ﬁEt A \E':>V/Wp(E')

so that (42) becomes

mé - x¢_1g? et (43)
and A _
m* - g (14+1x97 (L)

In this notation
Sg = 1 -21 TV6 (45)
(c.f. equation (26)). We consider a two channel process,

explicitly inverting (1 + i K’a) in (44). We find

me o= K/ A (L6)

, .
where A [(1+1x 49\ . (Determinant )

Now Ffrom (43)
k¢ - m?(1-11m9 (47)
so that from (L4) and (47) we have

t

AN SVAVAN

H

where [5'

\(1 - iT"a’)\ .

Therefore (L6) becomes

- o N
T'aq = KBaZA
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or, in full
e _ gl | (1 - amf)(1 - 1118 . T'&zj (48)
o — TBa 1 aq BB Ba
For weak coupling, i.e. small Tég ;, we neglect the term
2
T‘e’ 1'6 — |'6 th
TB@ in (48), and set KBG = vBa so that
& £ sy £
o (1 - 1750) Vgc, (1 - i1 (49)

which is the result (38).

This result, apart from being that used by Ross and
A(38)

Shaw, has also been given by various authors, e.g. Arnol

and Yonezawa(sg). We emphasize that it is only valid for

iy
Bp’

different methods reduce to the same form.

small T&i, T in which case all results derived by
Diefz and Pilkuhn have also proposed setting K = V,
and, observing that this would not give the elastic scatter-
ing (as we saw for a simple model above) have used the
many particle reactions to give (via their shadow) the
desired form for the elastic scvattering., This seems to the
present author to be unsatisfactory -~ in an acceptable
theory the presence of very many two-particle channels ought
to show up in =lastic shadow scattering, Indeed we have
seen (I, section ii)) that a very large part of the many

body processes can be ascribed to gquasSi two particle

processes.,
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Yonezawa (loc. cit.) has also suggested solving
equation (48) as a guadratic equation for Téﬁ « This
approach raises new difficulties™ and does not appear to
be applicable to the many channel situations of physical
interest. We want to formulate a K-~matrix treatment in
which we set Kﬁa = VB@ but assume no knowledge of

other K-matrix elements, and to this problem we now turn,

(vii) K-matrix: Alternative Treatment

We wish to propose here an alternative relativistic
treatment of the effect which is free from the defects
discussed above, Since we are essentially concerned with
finding a first order energy shell correction for unitarity
to the Born amplitude, one would certaihly expect the
K-matrix to be the appropriate formalism, and we shall use
this, In the gpirit of the absorptive peripheral model, we
shall retain only those terms which correspond to a reflec-
tion of the characteristics of the elastic amplitudes Taa’

T into the transition amplitude T_ .

BB Ba

From before we have

" = K' - iK'T

7 Amongst which are an ambiguity of sign and the fact that
we do not recover the Born term as absorptiun —> 0.
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and
T o= (1 + 1K)
so that
. P . -\
T = K' -i1K'/(1+1K') . (50)

Inserting indices to label the states,

T RO I TR C e N A

“{Y' yy!
The first term on the right hand side is to be approximated
by the Bora term, the second reprevents the unitarity cor-
rection, The structure of this correction term is complex,
as one would expect., Our approach will be to approximate
it by two contributions. We envisage (at high energies)
the situation where very many channels are open. We there-
fore expect a typical inelastic umplitude to be small,
whereas the elastic amplitudes, induced by ahsarption into

the many open inelastic channels, will be large. We observe

therefore that of all terms of the form

X ' I S - ,%

&, By (T T80t = Thye
the largest will be given when ¥' = B, and we approxi-
mate the summation over Y' Dby setting ¥' = B. This

gives a correction

Téﬁ Kéﬁa )
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In a similar manner we can include many terms in the summa-

tion over ¥y by setting ¥' = B. This gives a correction

! t

In this way we represent the unitarity correction by

what we would expect to be the two largest contributions,

so that

1 re 1f g1l | gt
T = X i(TBB Ko + Kb Taa) o

It is clear of course that we have neglected many termse

(41,42)

However, it might be argued following various authors

that it is reasonable to expect the sum

L 5
W B

to be small, since it is composed of many small terms, the
phases of which might be supposed to vary in a random manner,
At any rate, such an approximation is inherent in the idea of
abgsorptive corrections and it should be regarded as an advan-
tage rather than a defect of the present procedure that the
nature of the approximation is thus displayed.

Finally, we set K! = V! the peripheral asssumption,

Ba Ba?’
so that

_ V'E—i(T'EV’Z+V'E £y (51)

Ba, aa
Since T!' is related to S by

S = 1 - 21 T¢
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this result may be put in the form

1T e ¢ & |
Toy = 2 L?BB Vi * Vg sa;t&_

and is thus identical to (22).

The expression (51) has considerable intuitive
appeal. To the Born term are added two other terms corres-
ponding to the additional effect of the initial and final

3tate interactions, which we can represent diagrammatically:-

— TN |
T % - 0 T Hr o

The reader will ask why we did not take equation (39)

e _ 1l 1S 1l
Téa - KBa 17 KéY T#a (52)
Y

and directly approximate this by setting ¥ = a, obtaining

e .t _ £
o0 = Vha (1 -1 Taa) (53)

This form is clearly not correct, as it lacks the necessary
symmetry betwsen a and . Again, we could have written

(52) (since K and T commute) as

£ _ 1 _ <7 £ € (54)
Téa = KBG i 4¥. TBY K;a
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Setting ¥ = B here gives

T'z

1 & -3 v &
BCL VBCL (1 1 TBB) . (55)

Now we zannot argue that (53) and (54) gre identical

since in general TBB ~ T oc ORe might suppose that
the correct form was a symmetrised form of (53) and (55),
i.e,
& £ 1. o £
t ? — 1 ]
The = Vi (1 - #(T 0 + Tpo)) (56)

but this cannot be correct since it is a purely optional

procedure, In addition (56) is wrong, since for complete

7
Ba

initial and final state absorption T does not go to
zero,

We have therefore to be more careful, and accordingly
we have worked in a fashion such that the symmetry
between a + B 1is displayed at all stages, We see in this
way that both the extra terms of (53) and (55) should
properly be included. Wor is it the case that we are

counting terms twice in (51), We can schematically

indicate the origin of our two extra terms, denoting

B8 'Ba by full lines, and VBg

1 .
Taw by broken
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The main features of the present treatment are its complete
relativistic validity, and the absence of any restrictions
on the ranges of the interactions,involved, In addition,
our derivation of'(51) does not imply any unreasonable form
for the elastic amplitudes, and is clearly wvalid for the
case of physical interest, i.e. many channels open,

‘We summarise our conclusions on the various approaches

in the next section.

(viii) Discussion & Conclusions

We briefly summarise in Table 2 (p. 83) the various
results which we have discussed in the previous se#en
secticns.

We noted that all the results give the same result for
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4 2
BB

waves, However, the contribution of low partial waves

~N 1, i.es weak absorption or high partial

(high absorption) is of crucial importance to the peri-
rheral model; these are so very large in the Born term
that it matters greatly whether they are completely damped
out or merely reduced by a factor of, say, one guarter.
It is therefore important to assess the relative merits
of the various results.

We saw that the form (35) involved approximations
that were only valid for weak couplings, and that this
particular result seemed unreasonable in that a substartial
inelastic amplitude still remained even if both the elastic
interactions were completely "black" for all I, We also
anticipated (in view of the similarity of (22) and (23))
that it would be possible to find a result independent of .
the ranges p and v. The derivation of (22) which we
have given in the preceding section is indeed independent
of these, This treatment is in addition fully relativistic,
and, depending as it does on K-matrix formalism, is within
the conventional framework of high energy physics, unlike
elther the distorted wave Born approximation or the WKB
approximation, In addition, the form (22) admits of a
ready "intuitive" interpretation.

For all these reasons it seems to the present author
that (22) provides the most satisfactory basis for

calculatione.



Form for Nunbered Relativistic Conditions Method - Author
TZ in text or not
‘Sﬁﬁ Ba\!saa 23 non~rel, - - Sopkovich
" Ifnguégv Distorted wave Durand & Chiu
' Born approx.
" n WKL Gottfried & Jackson
%{fép\’aa* vﬁasc‘fa 22 non-rel, AN DWRA Durand & Chiu
" " WKB Watson (following
Gottfried & Jackson)
relativistic high E K-matrix Watsan
L Z J2
(1+S53}YBG(1+SGG) 35 non-rel, - A uldv initial & Ross & Shaw
N final state '
interactions
relativistic high E K-matrix Arnold
" - " Yonezawa

TABLE 2
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An important ommission in all our previous discussion
is that of spin considerations. In the K-matrix formalism,
however, this may readily be included, It merely involves
having extra labels for our matrix elements, Denoting, in
a symbolic manner, the var;ous helicities involved in the

helicity representation of Jacob and Wick(h3) by A, (22)

becomes
- J ? : i
<K6\Tga\ha> - %<KB‘SBB{ "\[’3><7tf3 (Vg@\ 7\0‘> +
B .
|
= . ' 1y gv .
LT < aglvgg| > <A S5\ vy (52)
7\'(], ]

e

Gottfried & Jackson(la) have stressed the importance of

the proper inclusion of spin, even where the angular
distribution is concerned. Different helicity amplitudes .
will be modified in a way which depends on their exact

form (l.e. composition in terms of partial wave amplitudes),
and it is not satisfactory to take some "mean" amplitude,
neglecting spin -- amongst other thiﬁgs, spurious

diffraction zeros may be introduced,
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PART 111

U(12) ABSORPTION MODEL FOR 1D <»AA.




-91-

(1) Introduction

In this final part of the work we present a calculation
of PD->AA using a much improved model, in the light of
the discussion of Section (vii) of Part I. The treatment is
8till based on the Born amplitude, i.e. the "peripheral
idea, but we make use of the ﬁflE) symmetry scheme(19)
to write down completely unambiguous and realistic vertices,
and we fully incorporate the effects of absorption which we
have discussed at length in Part II.

In choosing to apply the absorption model to Pwé —

/\;; we have borne in mind the most serious practical
difficulty in the use of the model, namely, that one requires
information on the nature of the elastic interactions in
both the entrance and exit channels. In general (as in the
present case) one knows nothing about the elastic scattering
characteristics of the final state channel., However, p»p
and A both being spin one-half baryons with approximately
equal mass, it seems plausible to take f%7;e1astic scatter—
ing as identical to pp =~ one would certainly be surprised
if the two interactions were very dissimilar,

Our pole approximations of Part I were carried out in
1963, and it is necessary briefly to summarise developments
in the theoretical study of DB~ AN between that time

and the present (1965). Several authors have investigated

the processe—
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Chan(uu) confirmed our result of Part I in a study
which established that (at least at present energies)

the Reggeisation of K”¢ would not affect the model,

Durand and Chiu(17) applied their absorption formula,

and confirmed the dominant role of K96 —~ exchange
against K—exchange, finding the latter to be tog
forwardly peaked, (Sée Part II of the present worke
It was indeed this work of Durand and Chiu which

established the importance of absorptive effects (196L)).

(iii) Cohen—-Tannoudji and Navelet(u5)repeated the calculg-

(iv)

tion of Durand and Chiu taking spin fully into accounts
Kf: was again found to play the dominant role, though
the conclusion in this case was on the grounds that

K-exchange was not sufficiently forwardely peaked.

All the works mentioned above assumed a Y“ type
coupling at the K™ N/\ vertex (ce.fs I, Section (vi)).
In fact, since 1963 the evidence for a large magnetic
type interaction of vector mesons has somewhat
hardened -— for example, see the "(3 ~photon analogy!

of Stodolsky and Sakurai(7)o H8gassen and Hﬁgaesen(u6)

generalised the K#iexchange absorption model to
include mixed couplings, and concluded that if the
"magnetic!" term was more than approximately the same
size as the "electric" one, the model would no longer

fit (this is roughly in accord with our findings in
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Section (vi) Part I)s However, it seems possible that the
ratio "magnetic"s"electric" may be as much as 3 - L 2 1 .
All of these authors admit the possibility of a

mixture of K and K2©

terms, and it might be possible to
fit the data this way even with a large K" "magnetic"
couplings This is an example of the considerable freedom
of manoeuvre one has in the choice of parameters for
peripheral calculations in the absence of any restricting
principle. It would seem much preferable to start with
the %?12) symmetry in which the vertices are fixed and
to compare the results against experiment.

In the 3112) scheme the baryons are degenerate and

all of mass m, as also are the mesons (mass w). The ratio

"magnetic" & "electric" is (see Section (iii))
1+ %? s 1,
From the point of view of the U(12) theory the

is€e ™2 3 5 1, and this is realistic.

reaction pﬁ-&A}: rust be considered as, on the face of
it, fairly promising for treatment in a peripheral approxi-
mation. The mass difference between »p (938 Mev) and

/N (1115 Mev) is small, while the difference between the

K mass (4Ol Mev) and that of K>° (891 Mev) is at least
much less than the full variation of the meson masses,

e.g8e from the pion (135 Mev) to £ (1019 Mev), In addition,
the experimental results are as peripheral as one could

(a4
hope. The U(12) S-matrix is known to violate unitarity,
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but with the absorptive correction we are approximately
enforcing unitarity on our peripheral amplitude, Altogether,
it would seem that if the U(12) absorption model is
inadequate for DP->AA , 1t might not be adequate for
any reactione.

To help the reader follow the line of the following
somewhat algebraically involved work, we give an outline
of the various steps of the calculations

To include spin, we must know the sixteen amplitudes
involved,éi i \ﬁ } £ 2>, 1In the next section
(Section (ii)) we show that because of C and P in-
variance only six of these are independent, say, ﬁi ’
i = lye00ey 6o In Section (iii) we give the %QlZ) pre-
gseriptions for the currents involved, and the corresponding
amplitudes written in terms of Dirac spinorse. From these
we then find explicitly the various helicity amplitudes,
éi(e), which involves tedious algebra (Section 1v)). In
Section (v) we show how to project out from the ﬁi(e)
the partial wave helicity amplitudes, ﬁg « Our absorption
formalism then gives us (Section (vi)) a set of "unitarised"
partial wave amplitudes, B;j in terms of the éi s In
the same section we see how to arrive at the corrected
cross—-section, Finally, our results are presented and

discussed in Section (vii),
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(1ii) The Regquirements of C and P Invariance.

In what follows, we make much use of widely known and
elegant helicity formalism developed by Jacob and Wick for
the treatment of particles with spin‘®3), We label the

helicities of the particles involved as follows.-—

P A ’5

particle

helicity KS xu Xl Kz

The A's give the spin projections along the direction of
motion. The amplitude for scattering through an angle 8
may be expanded in terms of the amplitudes for scattering

in states of specified total angular momentum J &

sty | BN Aho>= z;;*(23+1)<53*u{¢j\hllé>> Ru®) @)

hl -~ he

and  po= Ay =Ny

1l

where A

and where we have taken the azimuthal angle 4 to be zero

without loss of generality.

The states |j Ay Ao transform under the parity

operator as

P] I N> = ' J= A - x23>
The assumption of P invariance (this is a strong interaction

process) therefore gives from (1),
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Azhy 1 B(O) NS = (25+1) A= \ g3 Ay = A3 d{ (o)
3 12, L5 3 H

Using the symmetry property of the 4 functions

d{u(e) = (-1)MH dix_u(e)

we have

QBMM(G)‘ 117\2\/ = 2(25+1)(—1)7““ 43’7‘1;\ #\ -xl-xbgi_&e)

(-1 Loag-ny, | #(0)) -xl-x>

C-invariance gives us
ngl;&jl 7‘1“} = <7\u7\31 49\ Ak (3)

i.es a particle of helicity A is transformed into an
antiparticle of helicity A . Making use again of the
property of the 4 functions gquoted above, we f£ind in a
similar way that C-invariance gives

<x3xu|;é(e)1?\lxg\/ = (-1)MH yh5|#(8) \7\27\1' (1)

In the present case we cannot make use of T-invariance,
since this would relate the amplitudes for TP-AA to
those for the inverse reaction, /\7\“7135 °

Using (2) and (4) we find that the sixteen amplitudes
have the following form, in an obvious notation.
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pD
A N ke +— -+ -
} ++ ' ﬁl ¢5 "'é5 éz
-+ "ﬁ§6 ﬁu ﬁ;3 "',66
- AQ ﬁB "565 ,61

There are thus six independent amplitudese. This situation
should be compared with the case of nucleon nucleon scatter-
ing, where T-invariance gives one extra restriction and the
nunmber of amplitudes is reduced to five., The table above

is also that given in reference ll.

(iii) The U(12) Interaction

The U(12) predictions for those parts of the pseudo-
scalar and vector currents relevant to the interactions of

the eightfold baryons with the mesons are



2m P2 =
Je = (1 + 55) ~p (T v N) 2.
5 ( u) Lm 5 D+ 3F
2 P - om
J“' = (1 + %ﬁ) E% (N N)F + (1 + ""V)(N “EE N)D + ..2..F

qu and Eh are defined in terms of the incoming and
outgoing baryon momenta, p, and pu' :

= - ! momentum transfer
q, D, = P, (mo )

P = + '

n Pu TPy

e 2 2 .
Note that P + q© = Lm“ . (m is the baryon mass.)
qi is defined by
Ty, = By By I T Yy s

and Pu/2m and ru/hm2 are the conventional forms for
"electric'" and "magnetic" interactions(15). D and F
refer to the SU(3) invariant symmetric and antisymmetric
combinationse

In the lﬁ(l2) theory S = V = u, the "meson mass".
However, we wish to admit the possibility of setting S and
V to be different, and of thus splitting the scalar and

vector oectets "by hand.

The p/\K and p /\ kK™ interaction Lagrangians are

of the form K+
Ls ~ P j5/\g§“ (+ hoCo)

- K*+
Ly ~ B A AL (+Dees)

From (6) we have



2
_ 2my P°_
P r
4 = d
I, = Fpog* Fy -
where
2
FE = (1+ %Hv)
_ 2n
Fy = (1 + 7 ) .

As is well k:novm(l'ﬂ), the SU(3) combinations give rise

to the following Lagrangians

+
D= —J§555A¢1§

+
F = %535A¢I§

2 102y = . Kt
., DHsE = (-jg-j'B-)P is N\ £

1l

- gt
"'JB j o) 35/\ Jz;rj

so that in this case F and D + -32-F ' give rise to the
same factor of -~ /3 + (We have taken the scalar case

here; for KX , the argument is identical)., We there—

fore have
- x*t
LS = "'\/3 Pj5/\ ;65
w4
- -, K
Iy = ~BBi,AL -
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For subsequent algebralc work it is convenient to
re-write t th
ju in terms of Yu and PM rather an ru
and Pu.' (This conversion is normal before explicit

calculation is carried out(u8).) The appropriate ex—

pression may be derived fairly readily(uB), and is
2 P
ju = (1 - i;ﬁ?) FE YU: - (FM - FE) om »
Explicitly,
2
2m
FM"'FE= (1+'~v')—(1+%ﬁ\7)

2
2m a
v (1o 7

Finally, including a factor of —./3 from SU(3) con-

siderations we have

2
. 2 1
R = )L EERE RSN (7)
For j5 we have

2
PN R e dCRE DR (8)

where we have replaced p? by (1 - qz/hmz).

We make some observations on the form of these
currents, They both contain an extra "kinematical" form
factor, (1 = qz/hmz), which is a special feature of
?ﬂlZ), in addition to the types of term one would expect,

on general grounds, to be present., Since for physical
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processes q2 < 0, this factor will tend to emphasize
backward scattering. Setting q2 = —2p2(1 - cos ©), we
may estimate the importance of this term by putting

P = m, which implies an energy ~s 3 GeV, We find

(1 - i;g) "~ (3 -~ cos 8)

and therefore the term varies between 1 (8 = 0) and
2 (6 = n)e The cross—section will contain (1 - qz/hm2)u,
and therefore the backward events are 16 times more
favoured than the forward. We will see later that the
‘5(12) amplitude with no absorptive corrections rises
steadily with 8, in contrast to the experimental results,
This feature arises from the term (1 - q2/hm2). On the
other hand, we can see that this term will be almost
completely removed by the absorptive corrections since it
will contribute mainly to the very low partial waves which
are destroyed in the absorption model, We merely comment

on these features here to give the reader a qualitative

understanding of the results which we present later.
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(iv) The Helicity Amplitudes £;(8).

We label our particles as shown below

(o (-9)

b
Li:L(TC;>

The indices 1, 2, 3, L correspond to Kl, 12, k3, hu,

v (o)

where the \'s take the values = 1, corresponding to
helicities = % , For brevity, we refer to A as the
helieity. By U(-8) etc. we mean a particle travelling
in the direction physically opposite to that specified
by O, 4 = 0s (This notation will not lead to any
confusion). Note that we have chosen the incoming anti-
proton to correspond to 6 = 0, while & gilves the angle
between incoming antiproton and outgoing anti-~lambda, This
corresponds to the experimental arrangement,

We now construct explicitly the helicity states

involved, We use the metric
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guv = (1 s =L 4 =1 , - 1)

and take for our 4 matrices the Dirac representationi—
1 0
| x) 1
0 ;i Do

0o 1
Yy = (__1 o)@dg_

with
o 1 0 -1 1 0
0, = o = ) o -.-( )
1 (1 o) 2 (i 0 3 o -1

A four momentum ils specified, in the centre of mass, by

i

Y

p = (Es E)
and we set

e = \/_Ft)_+m °

In this notation solutions of the Dirac eguation for
particles moving in the direction p with spins parallel

or antiparallel to the z-axis are

UplR) = &

i
0]
9,

Uy (p)
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If p 1s parallel to the z-axis (6 = 0), then these

states are clearly helicity states, with p.g = z DPe

Denoting
o) w X @) » X
v and ¥y
0 +1 1 -1
we have
e
UK(O) = (222)’)(5\
[

The states with helicity A moving in the opposite
direction are clearly given by

' e
U, (-0) = <.7.\P.) X-m (9)

€
since g.,p is unaltered, but the absolute direction of

spin is reversed,

A state moving in direction © may be obtained by

applying a rotation through © around the y-axis

eJ%iOZQ 7(

U. (Q) =
A AD A
€
Explicitly
64%1029 = C -5
S C
where C = cos &/2
S = sin &/2 .
Similarly
: e
~ hio, 0
U, (~8) = ap| & 2 -

€
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0% ﬁ)\_("e) = 7\/«{ e'%idze <8’ - lE)B) (10)

The antiparticle states are related to the particle states

by
v = '_; i ‘Y5 U._ .
+ +
This gives
/2y
V. (0) = &
A (_M) % -\
while +
O = X, & e (11)
and 2 .
ne = ( io) ooz X (12)

Equations (9), (10), (11) and (12) give the explicit
forms of the four states in which we are interested.
We consider first the contribution to the helieity

amplitudes from the K* exchange process. The diagram is

N
L 4.( - @3
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The corresponding amplitude is

Qshy BN = T(0) 3, Vs(8) E%F 5, (~8)3, Up(-0)
(13)

=z dnlreig> sy ()

The qH Q, /V2 term which occurs in the 1° propagator
vanishes in the present case, because of the assumed
equality of the p and /\ masses. 3y is given by (7).
Substituting into (13) we find that T(6) is composed of

four terme?

<7\37\ul'l‘(e)\7\17\2> _
3(1 - q°/m?)?

(1 + &Ly {Vl(o)Yu V5(8) T, (-8, U(-0) !
+ ‘-1;5 J;VI(O)PL V5(8) y(-8) B, Ug(-o):l
g [ vy (0) 2V, (e) Ty (~8) U,(-0)
V1(0) V5(8) Ty(~8) & Uy(-0) (15)
Note that where the Pu term in ju occurs at the anti-
particle vertex we have denoted it by P& ¢« Since an anti-~

particle of physical four momentum p 1s associated with

a8 solution of the Dirac equation of four momentum -p, we

must set
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t 5 A

P, = ~=(p, + Pu)

P r

ef. Pu = (pu + pu)

where on the right hand side we have all physical
momentas Since we are working in the CM frame it follows
that

P
(16)

t
0 0
t
Pi = P

The four terms in (15) must be explicitly evaluated using
equations (9) -~ (12) and setting for the y-matrices their
appropriate forms (i.e. the Dirac represéntation). We

ghall illustrate this procedure in one case, and quote the

other results. We consider the term
vl(O),?VB(G) ﬁu(“e) Ug("'o) .
First teke V,(0) P v3(e) = Vi(O)(POYO - PiYi)VB(G).
Consider first the contribution from Yo where

o (e

* Y contribution

2@ o) (2 __1)(7\ YT oo X
30

-8
= i(B -m) + A 3(E + m)i (S C\>
EC mS °
= 2P, ( —mS EC 3



~108~-

where the columns lable ll and the rows K3 .

Similarly the Yy contribution Is

P53 4+ P,C 0
0 PIS + P3C
so that
71(0)2'v3(e) = 2/ P_EC P mS (17)
—P3pC
—POmS POEC
—Plps
-P3pC

In the same way we find

i

0, (-8) Up(=0) ES nC

o (mC -;ES ) | (18)

Putting (17) and (18) together, we find that the contri-
bution of the term V.V T U +to the helicity ampli-

tudes, as defined in the matrix notation of Section (ii)

ige~-

VPVITU =

" .
mC ~ES () / p EC
0
-P,pC
__.L ( 19 )
POEC
ES mC -POmS -PlpS
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(We have omitted here various factors, e€.g. the propagator

term, the kinematical term in the current and the mass terms).
If (19) is evaluated it will not give the correct

symmetry properties, as derived in Section (ii). To check

these, we must add (19) to the corresponding term

Tvioe u =
L PO'EC ~P°’ms \\
P! ps C ) -mC B8
P} pC =
3 |
Pé mS PO'EC
Pi pS ES -mC
Pé pC

(19) and (20) together satisfy all the symmetry require-
ments, if we bear in mind the result (16). We now list
the results for the three terms which remain in (15) irf

(19) and (20) are taken together. We set

A = (1 + 2%)

I (21)
3(1- ) 2

x = 2 - VP

X = cos ©

2E = total CM energy

and our normalisation is such that



4o = i -_Ji_g_ (22)
d“r)(unpolar-i:sed.) © (16m)

with o 2
Moo=+ g+ 45|+ (’51;\2 + 28| + 2|gg\®

(23)

7 -
'YMVU‘Y“U

g, = A2X[8(E2 ~ n2%) + 2m2(1 4+ x):}

Azx[ ~2m? (1 - x)]

>
]

,53 = A2X[ 2(2E2 - m2)(l + x)—,
ﬁu = "ﬁgz

,65 = A2X[2Em s8in 9:’

ﬂ% = "'165 .

TEZVIU + Fvost u

4y = -ABX [16 nc? (8> + _p2)]
$, = -ABX -’—8E2m (1 - x)]
85 = 4

b, = -5,

£ ~ABX [8E3 sin e]

b = 4
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Lt LL
4, = 3B% [2m2(LLE2 +2p°(1 + x))(1 + x)]
gy = xf-arfue? v P14 x)C - x)]
by = B
b, = 5
g = B2X [gEm(uEQ + 2p2(1 + %)) sin e'\j
b = by -

For the scalar term we find, with

1+ 3 = ¢ (24)

1N
]
fl

o

g, = o F—sz(l - x)]

s = 0
g, = £
g = O
Bg = O

In the way in which we have set out these results,

the terms in the square brackets correspond exactly to
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the invariant couplings which are underlined at the head
of each set of results. (The Dirac spinors are normalised
so that TU = -VV = 2n),

The greatest possible care has been taken to ensure
that the forms of the helicity amplitudes given here are
correct, It 1iIs clear that the results are dimensionally
correct, In each case, all 16 amplitudes have bheen derived
in full, and the C and P symmetries (see Section (ii))
have been fully verified. In addition we note that all
helicity changing amplitudes (&, ﬁh, éB, $¢) vanish in
the forward direction, x = 1, as is necessary.

It has been further checked that the scalar inter-
action and the YM - Yu vector interaction helicity
amplitudes reproduce the results given in Part I of this
work, Certain terms have also been checked against the
special case considered in reference (44). The general
vector term has also been compared numerically with the
results given in Part I, and found to agree. Finally,
the expressions given here have been independently derived
by Je.HsR. Migneron.

The contributions to each ﬁi(e) from all terms
(including vector and scalar) must be added to give the
total U(12) helicity amplitudes, #£,(8), i.e. inter-
ference takes place. It is quite clear that 1t is well-

nigh impossible to proceed algebraically, as the next
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step in the work must be to project out the partial wave
amplitudes dg by integration of expressions of the form
dav (cos @) dg (cos ©)s We have therefore programmed

the results given here for an IBM 7090 computer. In any
case, we see no virtue in attempting to deal with extremely
lengthy algebraie expressions. Such a procedure would be
of no assistance in understanding the underlying physics,
while the possibility of error would be greatly inereased,
and we would certainly also be forced into rather drastic
approximations in order to proceeds It should therefore

be understood that from'this point onwards we regard the
functions ﬁi(e) as known. They are determined numerical=-

ly from the equations given here,

(v) The Partial Wave Helicity Amplitudes £3.

We now show how to project the partial wave amplitudes
for ﬁg from the amplitudes ﬁi(e). We first note that
from the explicit expressions for the £,(8) given in the
last section we see 55(9) = ¢6(€). We have therefore
only to deal with five independent amplitudes - -

1 = leseebs For convenience, we give again here the
‘notation we have adopted from Section (ii) onwards in

labelling these amplitudese-
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Inserting appropriate values for A and p in equation

(1) we have
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Using the orthogonality of the d%u functions

Nu

dgu(x) di&(x) dx =

~ -1

2

(25 + I) 33’

we may invert the equations (26), finding
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1
4 = iéj g (x) a3 (x) ox

1
3 _  yf? 3
gy = % Bo(x) ag (x) ax
=1
J . J
B - Y N #5(x) 4y, (x) ax
Y ogx) d
,dg_ = %S—l L x —ll(x) dx

B5(x) ad(x) ax

O
e,
1
[y
i
| aed H

These integrals are to be evaluated numerically for
different J values. Since we are at high energies,
large J wvalues will contribute significantly., It is
therefore necessary to find some way of computing readily
the functions dgu(x) .

We show how the d%u functions may be written quite
generally in terms of Legendre polynomials, The resulting
expressions contain no derivatives of Legendre polynomials,
but the procedure does not appear to be well known,

We first write the d%u functions in terms of the
Jacobi polynomial(ug)



-116-
%

r(s o ? - -
gg-»mz,g; h}.:l Cl+u Sl M P% u,x+u(x)

EEDITE =

where, as previously

d%u(x) =

C = cos &2 §=sin g .

For our particular values of A and u, this gives

dgo = Pgo
ad, = c? ngl (28)
aly; = &° P§31
al, = \jigl cs L, .
We note first that(50)
PJ° = Py (29)
m,n

In general we can write any funetion Pj as a linear

sum of Legendre polynomials., This is pogsible because the

P?’n obey recurrence relations which permit one to write

[

P?’n in terms of P?:i’n and P?“l’n s oOr altermatively

to write P?’n in terms of P?i?_l and P?’n‘l

(Rainville, locus. cit. Equation (13), p. 265, and

equation (11), pe. 264), This procedure can be repeated

until we have m = O, n = O, in which case the Jacobi

Polynomlials are Just Legendre polynomials, ‘
For the polynomials occurring in (28) we find in

this way
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202 _ _Q._E.jpn'ﬂ +(23 +1)P, + (3 + 1)133;\

-1 (23 + 1)(1 + x)°

0 2EPJ.+1 - (23 + 1)P, + (3 +1)Pj_;\

Py 5 (30)
J (23 + 1)(1 - x)

1,1 23‘1-?3'-1 - Pj+1i

Pj-l - (23 +1)(1 - x2)

Inserting (28) and (30) into (27) we have®

3 (L
sy = ?§ ﬂ;(x) Pj(x) ax
=1
43 = l(.‘l (%) P.x) ax
2 zj_l o j
P %j 1 ﬁ:(x) Fij+1 + (23+1)Pj + (j+1)pj_£h .
3 L Idex L (23 + 1) N
- i} -
A = %j ACE) 3y - (200202 + (r1)P, |
T L (23 + 1) N
(1 B(x)  fo T
PE I B L \a£a+1){P o 1
> j-l JE:;2 (23+1) -1 J+1
(30)

# These equations correspond closely to t?glfet given by
Goldberger, Grisaru, MacDowell and Wong « The ex~
pression corresponding to ﬁg is given with opposite

sign; th;s is because of a difference in definition of
j J (o) = (oq A Ad
8,8, 4 (&) = & (-8) = (-1)"™ & (8), which

affegts onl éj. However the expressions corresponding
to ﬁ% and gy 1R this work are in error by a factor of

¢2j+1) in one of the terms,
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These equations permit the determination of the ég .
The A(x) are available from our previous work, and the
9

Pj(x) may be readily generated numerically.

(vi) Absorptive Effects

We now proceed to derive an eipression for the
corrected, or unitarised amplitudes Ez in terms of the
Born amplitudes ﬁi. The Zi differ from the Ag in
that the former include the gbsorptive unitarity cor-
rections discussed at length in Part II of this work,

According to equation (52) of Part II the ;g are

given by

43132| ;ga'%“b

= <-<315 l Sj alB1' B> By 8y "53 s “2>
;L27 Bes
>\61 By | "5 tay> Lo ia | 2292 >
L* J}& -l

(32)

where we have dropped the index i in the ﬁj and 4Y
and displayed the spin dependence explicitly, and
labelled the channels o (pp) and B (AA) and the

helicities Gy Qs Bl ﬁ2 ete, to conform with our eaplier
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notation,

We must insert into (32) appropriate values for
the elastic scattering S-matrix elements. We therefore
make several assumptions about the form of the elastic
scattering amplitudes.,

(1) We assume Sga and Sgﬁ only involve non-~helicity
chenging terms, This is the conventional assumption(5’26’272
It is justified on the grounds that the elastic scattering
amplitude is (experimentally) largest in the forward
dlrection, where the helicity changing émplitudes vanish,

and therefore the helicity changing amplifudes are pre-
sumably fairly unimportant in general.JE (We are, of

course, confining our attention once again to the high

energy region).

(ii) We take A A elastic scattering to be identical to

pp elastic scattering, which assumption we foresaw in
Section (i). As we noted there, it is a plausible
approximation,

(iii) we assume the elastic scattering diagonal S-matrix

elements are all equal,

# In the view of the present author, it would seem more
reasonable to assume that the spin-changing amplitudes
vanished for elastic scattering at high energies, This
igs not the same assumption as (i) above, except in the
forward direction., An investigation of this point is
being undertaken, but it lies outside the scope of the
present work.,
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(iv) We take as a parameterization of the experimental
results for pE scattering a Gaussian model with eomplete

absorption of the low partial waves (see II, Section(ii)):-

_ me(e+1)/ v 3p?

g
at 3.7 Gem/c<;}§

s, = 1

1

with v~ 190 Mev/c

|

(v) We set

J _ J
Loy 9y |85 |y ap>= By By \Spal By B>
1 i)/ v p?

for all @y Cpy Bl 62 R

(v) does not exactly follow from (iii) and (iv). We have
assumed for Sj the same form as 86, and sinee in
general ¢ #£ j this assumption introduces possible errors.
However & closer examination suggests that the identifica-~
tion of ¢ with j 1is quite well justified., In general
the amplitude for total angular momentum J will be a
weighted mean of the amplitudes with orbital angular
momenta Jj + 1, jand Jj - 1, and Sj will not be very

different from 8§ even for the low partial waves.,

=3’
(This is confirmed in reference (L45)).
With assumptions (i) - (v), (32) now greatly

simplifies, and we have
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Reverting to our notation of labelling the different

helicity amglitudes by ﬁg we have

p NS C RV SR (33)
With (33), we have now all the equations necessary

to evaluate the unitarised (or absorption model) differen-

~tial cross section. The Ai are given by (31). (33)

gives the Ag . The corresponding unitarised 259) are

given by equations identiaal to (26), where the summation

over j 1s done numerically until it converges. The

differential cross-section is then given by (22) and (23),

where ﬁi(e) is replaced by‘ﬁi(e). Before presenting

the results, we give some details of the numerical

methods used,

Note on numerical methods.

The integration in (31) was performed using a 40O

point Gaussian approximation, i.e. we set

1 bo
j\ f(x) dx = > A, f(xi) (34)
-1 i=1

where the 4O points x; and the corresponding weighting
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functions Ai are given in standard textbooks on
numerical methods. (34) is exact if £(x) 1is a poly~-
nomial of degree less than 80,

We therefore require the values of ﬁi(x) and

pj(x) at the points x The ﬁi(x:) are readily

i -
obtained from the equations of Section (iv). Pj(xi)

may be readily generated from the recurrence relaticn

ij(xi) = (2j - 1)Xi Pj__l(xi) - (j - 1)Pj"2(xi)
with Po(xi) = 1
Pl(xi) = xi .

It was found that the summations in (26) had

largely converged with J = 15, and we therefore

max
set jmax = %0,

The construction of the Legendre polynomials, the
integration routine, and the convergence of the summation
over j ~~ and indeed the consistency of our entire set
of equations =~~ may be tested by projecting out the
Ag from the ﬁi(x) using (31), and resuming in (26)
to check that the ﬁi(x) are accurately reproduced, We

invariably found this check to work correctly to within

a greater accuracy than one part in 1ou. The complete
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calculation merely involves repeating the same procedure
with at one point the inclusion of an extra factor
(c.fe 33), and we therefore have the greatest confidence

in the numerical work.

(vi) Results and Discussion

The most detailed experimental results to dath
(53)

appear to be those of Baltay et al. » at an incident
antiproton laboratory momentum of 3.7 Gev/c. We have
therefore carried out our calculations at a corresponding
energy.

We are now faced with the problem of the choice of
S and V, the scalar and vector meson masses. The mean
mass of the O and 1~ mesons (the "3?12) mass") is
610 MeV ; the mean masses of the O and 1 mesons
are respectively 370 and 850 MeV ( the "sSU(3) masses™),
while the physical masses involved are 494 Mev (X) and
891 Mev (K*); clearly the variation involved in these
values im far from negligible, and one is in some
difficulty as to how best to proceed.

We have therefore performed the necessary calculations

# September, 1965,
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for the three choices of S8 and V which appear to be

possible,

(1) T(12) masses : § = 610 MeV.
V = 610 MeV,

(ii) SU(3) masses : S = 370 MeV.
V = 850 MeV,

(iii) Physical masses H S = LoL4 MeV.,
V = 891 MeV,

We have pldtted the results obtained for the above
cases (i), (ii) and (iii) in Pigs. 11 and 12, against the
experimental histogram. Fig. 11 gives the results without
the inclusion of absorptive effects, while Fig. 12 gives
the absorption model results. The curves shown have been
normalised to give the correct number of events in the
first Interval of the experimental histogram.

It is seen that in the absence of absorptive corrections,
thelﬁklz) results display a totally unacceptable angular
form, as we foresaw in Section (iii). In contrast, the
absorption model results give an adequate description of the
experimental results in all three cases, The fits to the
data are not perfect, indeed there is evidence of still too
much wide angle scattering, but the results are nevertheless
substantially accurate and should be compared with those
given in Part I.

In principle, the absolute value of the differential

cross-section is given froun 3?12) in terms of the # N N
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coupling constant. For ease of comparison, we calculate

2k N N/ Lz which would be necessary in

the values of @
cases (i), (ii1) and (iii) to give the correct normalisation
in the first experimental interval, i.ee that displayed in
FPig., 1l2.

We therefore determine first the appropriate values
of the 3112) coupling constant @ . G, 18 then

given by

Geyy = @+ 26,

where u is the %TIZ) meson mass. In practice,onc is,

as usual, in some doubt as to the choice of pe The pion mass
itself is anomalously low (135 MeV)e We have therefore
determined Gﬂ N N for each of our three results with two
alternative choices of un ¢ (i) for u = 370 MeV, the

mean O mnass, (ii) for p = S, the particular O mass

used in each case., The results are glven below,
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2 2
S,V G5, i G/ R
(Mév) TN TN
(Setting u=370) (Setting w = 8)

V = 610
(ii) s = 370 13,2 . 13.2

V = 850
(iii) s = Lok 23,6 14.8

V = 891

It is known that GiNN/hn ~s 15, Of our results, only
one value (6.3) is particularly bad, and this arises from
setting w = 610 MeV, a value which has little relation
to the mean O mass, and less to that of the pion.

Though it would clearly be possible to select from our
various results an optimum fit to the data, we do not think
that this would be a justiflable procedure. Any such
selection would have to be made on the basis of a
"prescription" for dealing with the masses in 3212) which
could only be reached after a comparison of results for
many different reactions against experiment. Our present
results would be only one set to be taken into account.

Nevertheless, it is clear that the 15(12) absorption

model presented here gives a satisfactory result for the
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angular distribution, and, at least in four out of the
8ix cases discussed, gives correctly in terms of the
® N N coupling constant the absolute wvalue of the differen-
tial cross-section to an accuracy of 10 ~ 20 per cent, If
we consgider that we are dealing with a reaction involving
strange particles, and that there are no free parameters in
the model at all, this must be considered a very satis-
factory result,

We have come a long way since our simple pole calcula-
tions of Part I, and have seen how two of the most serious
defects of the peripheral model which were discussed there,
namely the arbitrariness in the choice of coupling schemes
and constants and the tendency of the model to give too
much wide angle scattering, may be overcome -- in the
former case by invoking a higher symmetry scheme, and in the
latter by taking account of absorptive effects.

Nevertheless, our work raises many gquestions. There is
the problem of mass splitting in '3212). Again, the
absorption model appears still to be too sensitive to the
behaviour of low partial waves; +the high energy behaviour
of the model, and the possibility of making alternative
assumptions as to the form of the spin dependehce of the -
elasiic. scattering amplitudes require investigation. There

is also the interesting possibllity of a unified treatment of
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elastic and inelastic processes along the lines suggested
by Byers and Yang(5u). However, these questions, and
indeed the extension of the present calculation to

other 7YY final states”, lie outside the scope of this

work., !

# This 1s beling undertaken by J.He.R, Migneron.
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