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ADAPTIVE DIGITAL FUNCTION GENERATORS AND THEIR APPLICATION 

TO CONTROL SYSTEMS 

ABSTRACT 

The need for adaptive digital function generators is illustrated. 

Continuous and discrete functional expansions are discussed and a new 

set of discrete polynomials used later in the thesis are developed along 

with their orthogonal properties, recurrence relations etc. Digital 

functions are defined leading into a general study of boolean functions. 

Networks for realizing boolean functions using nor gates with a 'fan-out' 

of one are developed as well as a method for minimizing these nets. 

How continuity of the original function affects the quantization 

and nature of the digital function approximating it, is then explained, 

and ways of realizing these functions using boolean networks illustrated. 

The difficulty of adaptation is discussed in more detail and a specific 

control systems problem is solved by the application of an adaptive 

digital network. 

The identification of on-line processes using continuous and 

discrete polynomial expansions of the input and output is discussed and 

a set of computer results, verifying the method for the discrete case 

included. How the various spectra may be up-dated continuously, along 

with the effect of noise on the identification efficiency is demonstra-

ted. Finally, the identification method employing the discrete poly-

nomials is extended to multi-dimensional systems. 
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CHAPTER I 

Introduction 

At first sight the title may appear to be rather imposing and, 

like all titles of its kind, rather misleading. 	It is the object of 

this Chapter to explain the title and to give a general outline of the 

thesis, along with a partial justification for exploring this particular 

aspect of control theory. 

The thesis is divided into two main sections, roughly correspon- 

ding to 'Adaptive Digital Function Generators' and 

Control Systems'. 	By far the greatest portion is 

first part, the second being discussed here and in 

is good reason for this, as the control literature 

12137,49 
reference to the second . 

'Their Application to 

concerned with the 

Chapter VI. 	There 

already abounds with 

It is only necessary to read 'Digital 

Computers' for the first phrase and this is immediately evident. 

In recent years the greatest effort has been applied in making 

control systems compatible with digital computers; that is, in trying 

to evolve mathematical models and expressions to represent the system, 

that can be easily handled by the computer. 	This has led to such so- 

46 
phistidated and powerful methods as dynamic programming and the 

47 
Pontryagin maximum principle for solving control systems problems. 

Now, however, the methods have started to outpace even the largest and 

fasted machines on the market, due to the complexity of the mathematical 

analysis necessary. To circumvent this difficulty the trend has been to 

48 
design learning systems , that have built into them variable structures 
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and self analyzing equipment. 	Thus, instead of trying to do a complete 

mathematical analysis of the system under study, the necessary adaptive 

hardware is stored as an intrinsic part of the machine, along with in-

formation telling the system what it is trying to optimize, or, to use 

50 
the learning terminology, setting a goal for the system. 

This leads to the block diagram shown in figure (1.1a). 	The 

block labelled 'goal evaluation' could be redesignated as 'system per-

formance evaluator', 'cost function calculators , or many other things. 

The decision block determines which way to change the adjustable param-

eters and may contain such things as gradient estimators, system identi- 

fication procedures, model references etc. 	Its output is an order to 

change the variable configurations in the system to some other setting. 

In what follows it is assumed that, for the system under consideration, 

some method has already been evolved for designing these two blocks. 

Neither of these is a simple procedure and have absorbed most of the 

effort in the control field for the past few years. Our concern is 

only with the manner in which the system is changed having the two sub-

systems at our disposal. 

The obvious variable structures to include in a system are variable 

12 
gains or time constants 	in order to compensate for changes in the 

system parameters. For these cases the advantages of going to digital 

circuitry is not immediately evident as there are severe limitations on 

the kind of adaptive operations that may be performed. The variable 

component for the systems below is assumed to be a zero-memory function. 

Here, if the function is obtained by a variable continuous network, the 

search problem becomes enormous due to the large number of possible 
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functions available. Using digital systems it is an easy matter to 

limit the size of this class and hence to reduce the search to reason-

able proportions. Why variable functions are chosen is illustrated 

below where the use of function generators in different configurations 

is discussed. 

1.1 	Use of Function Generators  

The first application is in realizing compensating networks either 

in the forward, or the feedback path of a system. 	The behaviour of the 
51. 

compensating system may be defined by a set of equations of the form 

x 	f(x, u, t) 
	

(1.1) 

where x is an n vector, suitably chosen to represent the state of the 

system; u, an r vector, is the input, and t is the time. 	The output 

Zissmelinearmrbinaticmofthestatevariablesx..This is equiv-

alent to the analogue computer set up in figure (1.1b) where the single 

integrator represents a set of n interconnected integrators, and the 

block A yields the required linear combination of the state. All com- 

pensating networks may be put in this form. 	If the required compensa-

ting system is time invariant then the variable t does not appear 

explicitely as shown in the diagram. The functions f are zero memory 

functions of n-i-r+1 variables. 	For adaptation purposes these could be 

realized by function generators giving a set of non-linear compensating 

elements, and allowing much more scope in design than the linear net- 

works now in use. 
47 

Merriam has shown that for linear systems with quadratic cost 
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functions, the optimal control scheme involves inserting a number of 

time varying gains in the forward and feedback paths.. The variable 

gains k(t) can be realized by a function generator driven by a clock. 

An example of such a control system, with a variable gain in the feed- 

back path, is shown in figure (1.2a). 	This is ideally suited to the 

incremental function generators illustrated in Chapter V. The multi-

plier may either be an analogue multiplier, in which case a single D-A 

(digital to analogue) converter would be required on the output of the 

generator, or a digital multiplier, with the necessary A-D and D-A 

converters. A time varying gain using analogue components only is a 

difficult and complex device to design, whereas using digital circuitry, 

it becomes a straightforward procedure. 

Perhaps the most obvious application for adaptive digital function 

generators is in obtaining switching boundaries for relay control 

systems. 	If the criterion function for the design of a system is to 

bring it to a specified final state in minimum time, and the allowed 

control effort is bounded, then a maximum effort or Ibang-bang' control 

system results. 	The control alternately moves from one bound to the 

other until the final state is reached when it drops to zero. 	The con- 

trolling element can be a relay, or set of relays, positioned as shown 

in figure (1.2b). 	The relay (relays) position is uniquely defined by 

the input and the state of the system. 	The different possible positions 

of the relay correspond to different portions of the state space separa-

ted by a switching boundary. 

This switching boundary can be represented by an equation of the 

form 
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g(x, u) - 0 

defining an n-1 dimensional surface in the n space. 	If this function 

is realized by a generator, then as a particular trajectory passes 

through an x, u state on the boundary, g must change sign. 	Thus this 

function could be used to drive the relay, provided the sign of ,7 is 

chosen correctly on either side of the boundary. 

For single input single output systems, where it is desired that 

the input follow the output, the system may be driven by the error 

signal plus some function of the remaining states. 	These remaining 

states, in effect, allow one to calculate the stored energy, and hence 

find how much sooner the relay must be switched to ensure that, when 

the system has zero error, it also has zero stored energy, implying that 

it must stay at rest. 	Figure (1.2t) gives the block diagram of this 

system. 	The simplest and most natural state set to choose for most n
th 

order systems, consists of the output and its first n-1 derivatives. 

An auxiliary device for estimating these derivatives is therefore necess- 

ary. 	A dead band relay is used to prevent the system from going into 

limit cycle operation for small errors. 	The amplifier A serves to give 

enough drive to the relay coil for small signal levels. 	This is dis- 

cussed in greater detail following the general description of adaptive 

function generators. 

1.2 	Outline of Thesis  

Having demonstrated the need for function generators it is not 

really necessary to argue for adaptation. The value of the epithet 

'digital' is amply illustrated in the following pages, where it is shown 
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that 'digital' does not necessarily imply the use of a full-fledged 

computer. 

Chapter II contains a thorough summary of various functional 

representations along with a theorem, which, although it is probably 

already extent in some work, has not come to my knowledge before, at 

least not in this particular form. Both continuous and discrete func-

tions are analyzed and a new set of discrete polynomials, developed with 

all their ramifications in Appendix I, is introduced. Following this, 

known methods of generating continuous functions, along with a new 

application of the Walsh functions, are discussed in order to demonstrate 

the need for introducing digital functions. 

In analyzing digital functions it was found necessary to delve 

quite deeply into the boolean algebra and the various methods of repre-

senting boolean functions. Chapter IV develops the necessary tools and 

then goes on to discuss 'universal nets', and shows how these may be used 

to obtain arbitrary boolean functions. How the number of elements in 

these nets may be minimized, along with a number of examples, is also 

presented. 	In the next chapter the actual realization of digital 

functions using boolean functions is discussed in detail, and the concept 

of a 'continuous' digital function is mentioned. 	This last involved 

some quantization theory, and it was thought worthwhile to present a few 

results concerning the best methods of choosing quantization levels. 

In Chapter VI the application of digital function generators to 

control systems is developed onward from the short introduction of the 

previous section. Here it is demonstrated how digital functions can be 

used to reduce the search problem for adaptive control systems, and can 
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even result in some simplifications of the two auxiliary blocks of 

figure (1.1a). 	A detailed example, using a relay controlled servo-

motor, is performed to show exactly what difficulties are encountered 

and how these may be solved by using a digital generator. 

Moving slightly away from the main flow of the thesis, Chapter VII 

shows how discrete functional expansions may be used to identify linear 

system parameters. 	It is demonstrated how a finite number of input and 

output spectral coefficients can determine the system parameters exactly. 

The determination procedure uses the discrete polynomials developed in 

the Appendix and an example, using a third order variable system, is 

worked out on the computer. How the overall system behaves in the 

presence of noise and with variations of the polynomial characteristics 

is illustrated. 	The method is then extended to multi-dimensional 

systems. Hopefully, the conclusions will speak for themselves. 
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CHAPTER II 

Functional Representation 

2.1 	Definitions  

Formally a function is defined as a mapping from a set of ele- 

ments lx1  (the domain) to a set of elements 	(the range), the whole 

process to be viewed as a look-up table. When the domain is finite 

there is no difficulty; when the domain is infinite, to quote a well-

known phrase, 'conceptually there is no difficulty', although the mind 

baulks at the thought of an infinite look-up table. Practically, one 

is forced to the notion of algorithm or rule to get from the input 

space to the output space. An algorithm amounts to a set of opera-

tions which, applied in a specified order to the domain element 'x',  

will yield the range element 'y'. This leads to the more familiar 

looking definition: 

y = f(x) 

where f is the algorithm in question. 

Further restricting ourselves to considering the input space as 

the set of real n-tuples and the output space as the set of real num-

bers the notation becomes: 

y = f(xi ,x2 	 xn) 

where all the elements x. and y are real numbers. Finally a dicotomy 

of the input elements into two classes, one called 'variables' and the 

other 'constants' or 'parameters' (variables with a difference) is 

performed, yielding: 



y f(a ,a2 

 

ar, xl,x2 	 xs) 
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the ai. 	 ar are fixed numbers while the xi 	 xs vary over the 

set of all real s-tuples. 	The domain has been reduced to the set of 

s-tuples and the function is contained in the operator f and the con- 

stants ai 	 ar. The constants can be absorbed in the algorithm f 

to give 

g(xi. fx2 

The algorithm can take many different forms and the search for a 

'simplest' form, due to its obvious application in computer program- 
6,7 

ing, has received a great deal of attention in the literature lately . 

The two most common forms are the polynomial and the differential equa- 

tion form. 	It is hard to think of a representation that in the end 

does not reduce to one, or the other, or a combination of both of these. 

As an example the function y a  Aeccx  (variable x, parameters A and 

a) may be represented as 

Y 	( 77  
ao  . A 

a 
a. . i  -- a. 1-1 

or equivalently as the solution to 

Liz - ay --0 dx y(0) = A . 

The polynomial representation is that used for all digital computation 

while the differential equation form is normally used for analogue 

computation. Note that in going from the first to the second equation 

one of the parameters (in this case A) is transferred from the equation 

to the initial condition. 	In general, if we have a function contain- 
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ing r parameters, it can be replaced by an rth order differential 

equation independent of the parameters and a set of r initial condi-

tions containing them. 

For the above example, if the parameter a were to be eliminated 

also, the differential equation would become 

2 
d y  _ 

y 
(11)2 	0 2 	dx ax 

y(0) = A 
y 1(0) = Aa 

where y1(x) = dy/dx. We shall be concerning ourselves almost entirely 

with representations of the first type. 
5 

Following Sansone a real 'Hilbert' space, defined over a meas- 

ureable subset Igl  of the space of n-tuples, is the space of all 
2 

functions f such that 	f (x) dx exists (x is an n-dimensional real 
ug _ 

vector and dx is the volume element in n-dimensional space). 

Confining ourselves to a Hilbert Space is certainly no practical 

constriction and is necessary to ensure convergence for the approxima-

ting series which are discussed in the following. 

2.2 	Spectral Analysis  

Unless otherwise indicated we will use the notation 

f(x) =f 

g
f(L) 442.  =Sfax . 

The next problem to consider is how 'best' to approximate a given 

function, f, of a Hilbert space by a finite set of known functions 

ho   hn of the space. The form of the approximating function 

will be assumed as 
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n 
h a.h. a. 1 

(2.1 ) 

where the a. are constants to be determined. 1 

As in most control situations the definition of 'best' has to be 

somewhatarbitraryandistakentobethatsetofconstantsa.that 

minimize the functional 

E(ao 	 an) = Yp(f-h')2dx 	
(2.2) 

where p is a non-negative weighting function p(x) which enables us to 

weight errors in one portion of the space more heavily than in other 

portions. 	This error function yields the best 'approximation in the 
5 

mean' . 

For a minimum in E 

	

0 	i = 0,1 "ee l, n 

Differentiating equation (2.2) gives 

6E ri 
—
Oa. 
_-ri3(f - 	a .h . ) h. dx =0 	i = 0,1 	 n (2.3) 

1 	j=0 

implying that 

'1)fhi  dx 	7 a.h.h. p dx 	i = 0,1 	 n . 	(2.4) 
j-JO J J 1  

Defining an (n+1) vector c such that 

ci  . pfhi  dx (2.5) 

and an (n+1) x (n+1) matrix H 

h. .
1 
 p dx 	 (2.6) 1,3  

then the set of equations (2.4) for the coefficients in matrix form 

OE 
Oa. 1 



21 

become 

o 	 H a . 	 (2 . 7 ) 

Provided the determinant of H (1111) is not zero the solution is 

a = H-i c 	 (2.8) 

IH1 is the Gram determinant for the set of functions 47410, 

ip-Ihn  (see Sansone) and provided these functions are linearly indepen- 

dent then, by a well known theorem 

IHI > 0 

and H is positive definite implying that 	 j 
d.d.h

1  
. 	is greater 

a=0 j=0 	,  
than zero for all non-zero vectors d. 

Evidently the set{-VilDf are linearly independent if, and only if, 

are linearly independent. Therefore the condition that a 

unique solution for a exists is that the base functions hi  be linearly 

independent. Note that H is a function only of the base polynomials 

and p. 	ci  may be thought of as the projection of f on to h.. 

Deriving E a second time results in 

2 
6 E  = .. 6a. Oa. 	h

1 j dx 
	

hi/3 j 

Hence the positive definiteness of H ensures that we have a minimum at 

the solution point. 

	

The original set of functions 110 	 hn will be called an n- 

basis for the space, and will be represented by a single (n+1) dimen-

sional vector h(x); therefore, in vector notation the approximating 

function h' is 

11 1 	7  a 1  hi  = a
t
h . 
	(2.9) 
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Substituting the solution for a found in equation (2.8) this can be 

expressed as 

hl 	( 	) t  h 

)t h  

and using the fact that H is symmetric and that the transpose and in-

verse commute we arrive at 

hi  = otH-1  h 
	

(2.10) 

Equation (2.5) may be put in the form 

	

J
lpf \ 

ax 	 (2.11) 

and (2.6) in the matrix form 

H = [p(h ht) dx 	 (2.12) 
1.1 

where in the first case the integration operator 
Jr 
 pf • dx operates on 

every element of the vector h; in the second case the operator 

JP • dx operates on every element of the matrix h ht. 
An interesting theorem, which seems to have escaped the litera-

ture, will now be proved. Although it is, perhaps, trivial when 

viewed from a certain angle, it does illustrate a significant invariant 

property of the approximating function h'. 

Theorem 2.1 	If h is an n-basis and E is another n-basis such that g 

is a non singular linear combination of h (g = Ah, IA! , 0) then the 

two derived approximating functions g' and h' are identical. 

Proof:- Let the projection of some arbitrary f on h be c and on Ebe 

d, i.e., 

C = 	
,

dx 

d = rpf(E) dx • 
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Define matrices H and G as 

H = p(h ht) dx 

P(rS: 	) dx  

the best approximating function for the two bases are from equation 

(2.10) 

= ctirt h 	 (2.13) 

g t = dt
G
-i  

N  
Now a

t 
= Ah ./tLh) t  

(2.14) 

and 2pdx 
jrAh htAtpdx 

- tN 
h h pdx)A

t 
 

or 	G = AHA
t 	 (2.15) 

d = Spfgpx = fpfAhdx 

Alpfhcbc = Ac. 

Substituting these in equation (2.14) yields 

gl  = (Ac t  (AHAt)1 Ah 

ctAt  (At)-i  H-1 A-1 Ah 	ctll-jh 

i.e. hl= 6.1  as required. Q.E.D.  

  

The significance of this theorem is, that regardless of which 

particular linear combination of base functions is chosen at the beg-

inning, the approximating function is the same. In the particular 

case of polynomials it makes no difference which polynomial set you 

start with, the kind of approximation you get being dependent only on 
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the weighting function p(x). 	All that need be considered is the ease 

with which the base functions can be generated. 

Thus, for example, if we wanted a Tchebychev approximation of 

order n on the inter161 (-1, 1), the weight function 1A/1-x2  would be 

used. The base functions could be chosen as 1,x 	 x
n 

and the 

matrix 

2 
1 - )( 

calculated and inverted beforehand. Then using equations (2.5) and 

(2.8) the best approximation may be calculated easily, the most diffi-

cult computation arising through equation (2.5), although this will 

still be considerably easier than if the hi  had been the Tchebychev 

polynomials. 

In fact the matrix H has the form 

ho h2 

y

ha 

h2  

 

hn 

hn 

 

h
n hn+1 	h2 	h2n 

	

where hk 
 1-1 	N/1 -X2  

	

1 	
xk 

which is a 'Hankell  matrix of order (n+1) (see Gantmacher 'Matrix 

Theory, Vol. 2, pp 207, and reference 9) and has a particularly easy 

inversion formula. 

h. 
1/3 

dx 
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2.3 Orthonormal Functions  

 

A set of functions 0-11} 

function p(x) if 

is orthonormal with respect to the weight 

ir 
g 
 p h.h. 	

1 
. 6. . 

,j 

where 6. is the Kronecker delta. 	This, according td what has gone 
1,J 

before, implies that H=I and equations (2.7) and (2.8) reduce to 

c Q  a, making the multiplication by H unnecessary. The great advan-

tage of orthonormal functions, however, is to be found in equation 

(2.3), which reduces to 

aE 
()a. 	11)11" clx 	

O. 

This implies that, if some method for evaluating E and an 'on-line' 

method of varying ai  were available, we could find the correct coeffi- 

cient OE  value by finding where -67).  . 0 independently of all the other 
‘gi 

coefficients. 	This is a great advantage when the coefficients are to 

be found by some analogue method or are tracking a slowly varying 

function. 

For an arbitrary n-base h we can find a corresponding orthonormal 

base from equation (2.15). 	Using the fact that H is a real, symmetric 

positive definite matrix, a matrix A can always be found such that 

AHAt  I 

(see reference 10, pp 54-55). 	This implies that the n-basis 

Ah 

must be an orthonormal basis. 

It is interesting to note that the orthonormal basis is not 

necessarily unique for a given p(x) and range of integration. To do a 
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simple example, consider the two independent polynomials x+1, x-1, and 

orthonolmalize those over the range (-1, 1) with the weighting function 

of 1. 

hi ,i. (x+1)2  dx= 

111. ,2 

h2 2 

,1 

-1 

1 

1 

(x+1)(x -1) dx = 

8 (x-1)2  dx -
3 ' 

- -4- . 
3 h2 

The matrix H will be 

    

H „„ A. 
3 

2 

-1 	2 

 

   

    

a matrix A which will satisfy 

AHAt  = I 

A - 
2 

0 VT 
2 	1 

is 
1 

as can be checked by substitution. Therefore an orthonormal basis 

found from a = Ah would be 

gi 
1 

 

2V2' 

g2 

gi 

1 

 

2 

/-3- 

 

2 112- 

That these are orthonormal is easily checked by doing the integrations. 



27 

Note that these two functions are very different from the first two 

normalized Legendre polynomials defined over the same range, 

Po 

Pi.  

1 

obtained by starting with the polynomials 19x and normalizing in the 

same way. 

If the transformation matrix A had been chosen as 

    

1 

  

2/ 

 

 

 

then the Legendre polynomials would have resulted. 

As mentioned previously this method of orthogonalizing a set of 

functions is unsatisfactory due to the difficulty in finding the 

required transformation A. 	The normal method used is the classical 

'Gram-Schmidt' orthogonalization technique. This generates the func- 

tions sequentially. Assume a set of orthogonal functions f/0,A. 	 

orthogonal with respect to the weight function p and a function 

g linearly independent of the set /i. 	Then the function defined by 

kpg/;1  . dx 

g 2 
j=0 	

, 
dx 

isorthogonaltoalamerribersofthesetV—This is easily shown by 

forming 

Sak+1 	dx  = jpgCli dx  
k.r(fpg/. dx\  

P  
SP9(‘J dx/ 

 



jlodi dm\ 
2 

\Li Wi dx 
jrp rl..

2 
dx 
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= 0. 

This completes the discussion on generalized functions. We will 

now proceed to briefly mention some known expansions along with some of 

their most important properties. 

2.4 Polynomial Representations  

The following polynomial sets may all be generated from their 

weighting function and the set of linearly independent functions 

1,x 	 xn 	 by the orthogonalization procedure above. Fortuna- 

tely recurrence relationships for them all may be found. 	These, along 

with the first few members of the set, will constitute a complete 

9
definition of the polynomials for all orders. 	The normalizing factor 

, 2 
0n  dx) is also given. 

2.4.1 	Legendre Polynomials  

Defined on the interval (-1, 1) with a weighting factor of 1. 

Therefore, they give the best mean square estimate of any arbitrary 

function. 

o = 1 

Pi, = x 

(n+1) Pn+i = (2n+1) x P 	n 

The normalizing factor is A  /2n+1 
N 2 ' 
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2.4.2 Tchebychef Polynomials  

These are orthogonalized on the interval (-1, 1) with a weighting 

function of 1/ 0-X2. Due to the form of the weighting function 

these polynomials yield an approximating function which is the poly-

nomial whose maximum deviation from the actual function is smallest 

(see reference 11, page 58). 

To  = 1 

T
n 
 = 2 x T 	- T 

Normalizing factor is 

2.4.3 Laguerre Polynomials  

These are defined on the range (0,00) with a weighting function 

of e-x. They give a good approximation on the beginning of the range, 

a great many terms being necessary if a good approximation far from the 

origin is desired. 

Lo  = 1 

nLn = (2n -1 -x)Ln-1 
	(n-1 )Ln..2  

The normalizing factor is 1. 

2.44 Associated Laguerre Polynomials  

These are defined over the same interval as above only with the 

weighting function e-x  xe4  where a ; -1. 



Lo
a  

= 1 

Ta 
LI  = -x + (a+1) 

a 	\ 
L
a 

nLn = 	
_ (a-1+a) La (2n -1+a -x) 

n-1. 	n-2 

The normalizing factor is ,\440.! /r(n-a-F) where Na) = 

These reduce to the ordinary Laguerre functionsfor a - 0. 

2.4.5 Hermite Polynomials  

Defined over the range (-00, o) with a weighting function of 
2 

e
-x  

Ho  = 1 

Hy  = - 2x 

Hn 	= 	2XH n-i - 2(n-1) Hn..2  

The normalizing factor is 1/ V2n 	n!  viT 

2.5 	Non-Polynomial Bases  

The most common of these is the fourier series using the funct- 

ions sin ie and cos ie defined over the interval (-n, n). 	The 

1 

nor- 

malizing factor is 	except for the first one, i.e., the constant, 
Afic 

where it will be 
1 	These have been adequately covered in the 

literature and require no further elaboration here. 

The only other well-known non-polynomial basis is the so-called 

t orthogonalized exponentials t  (see 12, pp 311-315). 	These are genera- 

ted from the set e
-a 

 1 	wherethea.are distinct real or complex 

numbers. 	These find specific applications in system identification 

due to the ease with which they may be realized in the frequency domain. 

30 

dx. 
Lo 
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A last and rather interesting example of a non-polynomial basis 

may be found in the set of piecewise linear functions shown in figure 

2.1. 	These functions are defined on the interval (-1, +1) by straight 

line segments between the upper and lower bounds of +1 and -1. In 

going from order k to order k+1 one more line segment (or equivalently 

one more zero) is introduced. 	Such a function of order k is specified 

entirely by giving its k zeros along with the restriction that it must 

pass through the point (+1, +1). 	The zeros may be chosen to ensure 

orthogonality; for suppose an orthogonal set up to order k has been 

generated and a function of order k+1 is to be found. Without loss of 

generality k+1 can be assumed to be odd, and the function Lk41  will be 

an odd function. It is already orthogonal to all the even ordered 

functions. There will be 7 odd functions   Lk-i' of order 

less than k, to which the function in question must be made orthogonal 

by choice of the zeros. For both even and odd functions the zeros are 

symmetrical with respect to the origin, the odd functions having a zero 

at the origin. 	Lk4.1.  will have -f zeros, ai, to the left of the origin. 

These may be ordered 

0 < 	< a2  

 

/ a  
k \ 

/ ak  

 

2 

Lk4l  may be expressed as a function of these 2 — parameters. The 

integrations 

ak) Li(x) dx0 i =1,3 	k-1 

2 

may be performed and set equal to zero, giving us 7 equations in the 

unknownsa
i  .. 
	These can be solved giving us the roots of Lk+l 

 as 



-1 J 

0.5 

-1 

v 

a 	.435 .830 

Lo  

al  t. 1/ Nri ..707 

Lo 

a2 	.75 
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Linear Segment 'unotions 
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required. 	The first six of these functions are given in figure 2.1. 

The normalizing constant 

f 	Li 
2 

dx 

is 2 for 1=0 and 3 - for all other i. 

Assuming an expansion formula of the form 

cc 
f(x) - 	a.L. (x) i=o  

the coefficients a. become 

a  
1 
2 

r, 

J_i 
f(x) dx 

a. 	2 
	f(x) Li(x) dx 	1=1,2 	 

2 
Using these formulae the function f(x) = x is approximated in figure 

2.2. 	The approximation using three terms and eight terms is given. 

Only four of the coefficients are non-zero in the final expansion as 

all the odd coefficients are zero and a6  is also zero. 

The study of these functions was carried no further as they are 

not in the main-line of the thesis. Questions of convergence and 

completeness have been left as well as obtaining a general expression 

for the roots of the functions. They have been mentioned only in 

passing and as a guide for possible future work. 	The application of 

such functions in the construction of adaptive analogue function gen-

erators is obvious. 
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2.6 Multi-dimensional Expansions  

For examples of functions orthogonal over two or more dimensions, 

one need merely go to the theory of partial differential equations where 

nearly all the solutions to the equations are expansions in these func- 

tions. 	There they are called 'eigenfunctions'. 	The most commonly 

used of these is the multiple fourier series consisting of the set of 

functions 

cos px cos yy 	p . 0,1  	y = 0,1 	 

sin px cos yy 	p . 1,2  	y i. 0,1 	 

cos fax sin yy 	p - 0,1 .  	y . 1,2 	 

sin px sin yy 	p = 1,2  	y . 1,2 	 

These form an orthogonal set over the rectangle 

-n< x (n, 	< y (It . 

Any function of two variables defined over this region can be expanded 

in terms of them. 	The extension to n-dimensions is obvious. Expan- 
cg, 

sion series of the form , 	a..x
i
y
i are also well-known as well as 

j=0 i=0 13 

the corresponding orthogonalized functions (see Courant and Hilbert on 

WeierstrassI s approximation theorem). Further examples abound (spheri-

cal harmonics, Sturm-Louville eigenfunctions etc.) in practically any 

physics book. 

2.7 	Discrete Functions  

A discrete function is defined as a mapping from a finite, or 

denumerably infinite set of points X, into the set of real numbers. A 
2 

simple example would be the function f(x) = x x a  0,1,2  	The 
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qualifier 'discrete' is essentially a restriction of the domain of the 

function. Without loss of generality we can put the domain of the 

function in one-to-one correspondence with the integers allowing us to 

use the notation f(n) to denote a general discrete function. 

All the results discussed for continuous functions are immediate- 
b 

J 	

-4. 

r 	

1 

g  
where a form 	• dx appears. 	The integersa and b define the range 

of definition of the function. 	In the following, for convenience of 

notation, these limits and the summation variable i will be left out, 

all sums assumed to be taken over the total range of definition. An 
b 	n 	 n 

Gexpression like 	p (i) (f (i) - 1E a .f . (i) ) becomes) p (f- 7 a .f . ) . 

	

i=a 	jr'i- J J 
	j;T: J J 

2 
The only restriction on all functions is that 1 f (i) exist and be 

finite. 

Analogously, given a discrete function f, a non-negative weight 

function p and a linearly independent set of discrete functions 

hi 	 hn' the best approximation in the mean may be found from mini-

mizing the sum 

n 	
2 

	

E 	p(f- 7 a.h.). 
itl J J 

The coefficients, determined by differentiation yield 

OE 
Oa. - 

n 
- 	p(f- 

j= 
 a.h.)h. = 0 	i=1,2 	 
1  

or defining the vector and matrix 

c. = >pfh. i 	1 

h. 	
. 
= 2 ph . h . 1,3  

c. 	= Ha . 

ly applicable to the discrete case merely by substituting every- 
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The independence of the hi  ensure that !HI 	09  giving the solution 

for the coefficients as 

a = Hc 

the ultimate approximation to f being 

h' = at  h = ct  H-1  h . 

Theorem 2.1 carries over into the discrete case also. 	However, 

in this context it has two rather interesting corollaries. 

Corollary 2.1.1 	If a function f is defined over k distinct points and 

k linearly independent functions hi 	 hk 
defined over the same 

points are given, then f may be realized exactly as a linear combina- 

tion of hi 	 hk. 

Proof:- Evidently f may be realized exactly as a linear combination of 

the set 

gl  = (1,0 	 o) 

q;2 
 . (011,0 	 o) 

gk — (0,0 	 

n 
In fact f(i) = 

j=1 
f(j)gi(i) p  g'. 

As the set h may also be realized by linear combinations of this 

set we have the existence of a non-singular A such that 

h 

therefore by the theorem, the approximating function g' = h' but g' = f 

and the corollary results. 
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Corollary 2.1.2 There are at most k linearly independent functions 

defined over k points. 

This is obvious from the previous result. 

These corollaries are in a way analogous to the theorem on com-

pleteness for continuous functional approximations. 

The Schmidt orthogonalization procedure carries over in an iden-

tical fashion to the continuous case and will not be repeated here. 

The remainder of the chapter will be devoted to briefly discussing a 

few known discrete expansion, followed by a fairly extensive study of 

a new set of discrete polynomials, which will be used again in the 

later chapters. 

2.8 Examples of Discrete Expansions  

2.8.1 	Sampled Fourier Series  

As might be expected, the most well-known discrete expansion is 

the discrete fourier series. 	The set of 2N functions 

	

1, cos x, cos 2x, 	 cos (N-1)x, cos Nx 

	

sin x, sin 2x, 	 sin (N-1 )x 

27t 
are orthogonal over the discrete points 0,-- 	 

N N 

simple change of variables y .-7.ix gives us a set of functions ortho- 

gonal over the first 2N integers 0,1 		2N-1. 	The orthogonality 

relations are 

2N-1 
57,  sin 	ky) sin(— my) . 0 	m k 
3r 0 	= N 	m= k 

2N-1 It.  The 
N 



2N-1 
sin (Ili ky) cos 	my) = 0 

37710  

39 

2N-1 

Y=0  
cos 	ky) cos C-1  my) = 0 

N 	= N  

= 2N 

m k 
k=m 0, N 
k = m = 0 or N 

Any function defined over the first 2N integers can be expressed as a 

sum of the form 

N-1 	N-1 
f(n)., a0 -1-11,a.

1 
 cos(ifin)-1-a.N +21 b.sin (- in) 

1-1 

where ao 
1 
2N 

2N-1 
7 f(j) 
j=0 

1 a, 	N 

a
N 2N 

b. 	
N 
1 

2N-1 
f(j) 

j=0  

2N-1 
f(j) 

2N-1 
f(i) 

j=0 

cos (-f\T i3) 

COS 

sin 
	ii) 

Evidently if all coefficients are calculated and used in the 

expansion then by theorem 2.1, the function f(n) will be described 

exactly. This formula has the added advantage of being defined for 

n not equal an integer and, therefore, may be used as an interpolating 

formula. For a more detailed discussion of these approximating 

functions see reference 13. 
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2.8.2 Rademacher - Walsh Functions 

These functions were first discovered by Walsh in the twenties 
14 

and developed further by Golomb in the late fifties. 	They are de- 

fined over the first 2
n 
 integers 0,1 	 2n-1, and map into a range 

consisting only of the two numbers -1 and +1. Any integer on the 

above domain of definition may be represented as a binary number of 

the form x1 ,12 	. xn  where xi  = 0 or 1. For example the integer 
2 	1 

6 . 1.2 4. 1.2 	0.2 would be 110 or x1  = 1, x2 = 1, x3  = 0. 

A 'linear function' over the binary variables x,,x2 	 xn is 

defined as one of the form 

f (xi 9xz 
n 

	 xn) = mod 2 (7 a.x.) 
(2.16) 

whereallthea.are 1 or 0, and the operator 'mod 2 gives f=1 if the 

sum is even, f=0 if the anm is odd. 	The 'ring sum' notation will be 

used in the following, implying that 

mod 2 
1 
	a.x.) 	a.

a.x.a. = a1 a2  x2 	 anxn. 

As a simple example consider the function of two variables 

f(x1,X2) ' xi x2 

where a1=1, a2=1. 	It has a mapping given by the table below 

x2 

0 0 	0 

0 1 1 

1 0 1 

1 0 1 
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If one more transformation is performed on the output of f 

(i.e., g(f)) such that g(1)=1, g(0)= -1 and, the variables xi 	 xn 

are identified with those found in the binary number expansion of the 

domain, then the definition of the Walsh functions becomes 

W(k) = g(f(x1,x2 	 xn)) 	k = 0,1 	 2
n
-1 

where f is in the form of equation (2.16). 	There are 2
n 

such funct-

ions corresponding to the 2n  choices of coefficients a.. Using the 

binary number equivalent of the vector al ,a2 	 an to index the 

particular Walsh function under consideration the set of 2n  functions 

may be denoted by 

W (k) 
	

k = 0,1 	
 
2
n
-1. 

These functions satisfy the orthogonality relation 

2n-I 
	 W (k) W (k) = 0 
k=0 r 	s 	2n  r s 

r = s 

An arbitrary function h(k) defined over the same range may be expanded 

in terms of these functions 

2n-I 
h(k) = 	b.W.(k) 

i=0 1 1  

n
-1 

where 	b. 	
I 	

, h(i) 
2n  j=0 

The eight Walsh functions for n=3 are given in figure 2.3, along 

with their corresponding linear functions. Evidently these functions 

are linearly independent and thus will exactly realize a function over 

(091 	 211-1) if the entire expansion is used. 
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2.8.3 M-Sequences  

The m-sequences or binary chain codes are generated by means of a 

feedback shift register with some linear function of the contents of 

the register in the feedback path. The maximal length codes of an 

n-stage shift register are 2n-1 bits long and have the interesting 

property that any sequence is almost orthogonal to any delayed sequence, 

or equivalently the auto-correlation function of the code is almost a 

unit impulse. 	If, picking some arbitrary starting point, the string 

is designated by f(n) then the orthogonality relationship looks like 

2n-2 
	 f(n) f(n+k) = -1 	for k 0 
n.0 	2n-1 	for k = 0. 

For large n the codes may effectively be considered as orthogonal. 

Because of the form of the autocorrelation function, these codes have 

found considerable application in on-line identification of system 

parameters. For a thorough discussion of their use in realizing 

arbitrary functions, see reference 15. For a complete analysis on the 
16 

generation of the codes refer to the classic paper of Elspas . 

2.8.4 Discrete Laguerre Polynomials 

These polynomials were developed to tackle a specific problem 

that occurs later in the thesis. 	As nothing like them seems to occur 

in the literature they were deemed worthy of the detailed analysis 

given in appendix I. 	The epithet Laguerre is used, as an exponen-

tial type of weighting function was employed, and the final polynomials 

look suspiciously like the Laguerre polynomials. However, there does 

not seem to be any simple analytical relationship between the two. 
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The disbrete laguerre polynomials are defined by the equation 

• 
Li(n) (i) (ni-k\ cck 

k=0 	\Lk / 	i 

where a is a real number in the range -1 a< 1 and (a) is the usual 

notation for the binomial coefficient. 	That these are i
th 

order poly- 

nomials in n arises from the fact that (il+k) is an i
th  order polynomial 

for all k. 	The first three are given below. 

Lo  (n) R 1 

	

L1  (n) 	n(1-a)-a 

	

1.1 	

, 	2 

	

.2  (n) 	n
2 

 C1-2 +a ) 	n(1+3
2
a-2:  

2 	+ Of2 . 

In the appendix recurrence relationships and the difference 

equation these polynomials satisfy are found; also the fact that they 

	

form an orthogonal set over the integers (0,1 	 n 	) is proved. 

The normalizing constant is 

cc 	i 

	

2 	n 2 	a 

	

' 	a L.(n) = 1-a n-O 

Hence the functions 

li(n) = /TT,: a (n i)ki(n) 

form an orthonormal set. 

The first five of these polynomials for a .672 are drawn in 

figure 2.4. 	Their similarity to the Laguerre polynomials is immedia-

tely evident. Figure 2.5 shows their approximating capabilities when 

the square pulse shown is used as the sample function. The coeffici-

ents were calculated using the relationships (A.1.19) and (A.1.20) 
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developed in appendix one. The remaining results in the appendix will 

be used in Chapter VII where identification of discrete processes is 

discussed. 

This concludes the discussion on how functions may be represented 

in the continuous and discrete domain. 	The following few chapters 

will give some methods of practical realization of functions and mention 

some of the difficulties encountered. 
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CHAPTER III 

Dete 	ulnistic Function Generation 

This chapter will be divided into two main sections; the first 

discusses methods already known for realizing piecewise continuous func-

tions, and the second gives a short preamble on the problem of generating 

discrete functions, the remainder of the topic being covered in Chapter 

IV. 	The restriction to piecewise continuous functions is no practical 

limitation, as the use of a function not falling into this class would be 

very specialized indeed. 	Just to dream up such an entity is a difficult 

task although one of my colleagues claims to have encountered a function 

discontinuous almost everywhere. At any rate, such functions are exclu-

ded from the following. 

The most well-known generator, and the one most commonly used in 

the design of control systems, is the diode generator. 	Its main advan- 

tage is that it is cheap and reliable, although it is of little use when 

the problem of adaptation is encountered. 

3.1 Diode Function Generator  

Any continuous function may be approximated arbitrarily closely by 

a piecewise linear function. 	These functions may be realized by inter- 

connections of diode and resistors as shown in figure 3.1. 	The first 

two analogue amplifiers serve to isolate the input from the diode net and 

give a low impedence source; the last acts as an adder. 	The constant 

voltage sources ei  and E. are ordered so that 



A Typicci/ 	Fooc tic/2 
G 	er ato/-  
Figur-6,  3.l 
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em em-i 
	el  

and 
	

Ei < E2 < 	 <E <En . 

If the input voltage is such that 

e. 	<-e.n  < e. 1-11. 	1 

and 	E.<ein • <E. 

then011137—theresistalacepathsro tor.and those from E0  to E. are con-

ducting. Thus the input output relation, found by summing currents at 

the junction of the output amplifier, at this operating point is 

eout 	(ein +e
k  ) 
	j  (e -Ek  ) in  _ - 

	

f 1( .0 	k 	k=0 	Rk 

which may be put in the form 

	

1 	, e. + 27  k 
e
out 	

i e 	j Ek  
R
f 	k 

- 	in 	r 	R k.0 k 	i=0 kJ 	k=0 k k=0 k 

(3.1) 

(3.2) 

ut o This is equivalent to the linear relation e 
	

- a ein  b where 'at  is 
Rf  

determined only by thP resistances of the net and flo' by both the bias 

voltages and bias resistors. 	Evidentlyasein 	in 
or -e passes through 

oneofthebiasvoltagesei orE.there is a jump change in slope, the 

change being positive if the bias in question was ei, negative if the 

bias was E3. 	The curve is continuous as the change in ordinate intro- 

duced by the first term is compensated for by a new constant in the 

second term. Thus the input output relation for this device will be a 

piecewise linear, continuous function. 

Given a function of the sort described above, it is an easy matter 

to determine the values of resistors and bias supplies needed. Firstly 
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the break points on the function determine the values of the constant 

voltage generators. 	If the slope increases beyond the break point the 

branch appears among the inputs to the upper amplifier, if it decreases, 

among those to the lower amplifier. 	Therefore, m, n and all the ei, 

Ei  other than eo  and Ea, that appear in (3.1) are determined. Defining 

the conductances Gk  1/Rk, gk  1/rk  gives us these m+n+2 remaining 

unknowns to solve for. 	The two paths containing ro  and Ro  determine the 

initial slope of the function. 	One of them will always represent an 

open circuit depending on whether the initial slope is positive or 

nega+ive. 

Starting with ein  -GOand increasing, determine whether the initial 

is positive or negative. 	If it is positive then Go=0 and 

go..m, if negative go=0, 00-m. 	The bias eo  or E0  is determined by the 

y intercept of this first segment. 	As e. is increased a gi  or Gi  is 

introduced depending on the change in slope. In this fashion the entire 

curve can be generated, and at the same time the values of the resistances 

determined directly. 

As an example consider the third linear segment function mentioned 

in section 2.5, reproduced in figure (5.2a) for convenience. 	The initial 

slope is 24"/2-  and the y intercept is 14-'1/7. 	This gives the equation 

eout 	 eogo)  

3.41  
implYingthatg .414 there is a negative 

change in slope implying a circuit in the lower branch with E. x. -.414. 

In the range -.414 <;ein  -.414 the equation is eout - -e 	.414. in/ 

Here 	eout R [(go Gi.)ein  g0 e0 	E1  



; 
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R
f (go G1) = ...1/414 

	

Gi  a  5.83/Rf. 

The constant tams cancel to give the correct result. 	At ein  = .414 

there is an increase in slope and so another path to the top amplifier 

wither 	-ein  - -.414. gi is obtained from 

1 
11 	(g1 	-1-11fgi el out 	f 	.414 Rf 

• • 	 = 5.83/Rf. 

- 3.41 ein  - 2.41 

The final realizing circuit is that shown in figure (3.2b). 

There are many realizations better than the one above (see 1, 2 

and 3) but this one serves to illustrate. 	The bias voltages are nor- 

mally set by potentiometers on line, to circumvent the rather difficult 

calculation introduced by the change in loading. 	The important thing 

to observe is that the function is determined by the m+11+1 resistances 

and m+n+1 voltage generators, the resistors determining the slopes and 

the voltages the break points with e0  or E0  establishing the initial 

d.c. value of the curve. 

Given a function y=f(x) the problem now reduces to choosing some 

best set of the 2(m+n+1) parameters or, equivalently, of fitting a 'best' 

piecewise linear approximation to the curve. 	The normal criterion func- 

tion used for 'best' minimizes the maximum deviation of the error. Thus 

if we are concerned about the approximation on the interval a < x < b 

the criterion function is 

min 
(r1311 ) 

max 	if(x) - L(x)I 1. a<x-(10 

where L(x) is our piecewise linear function. The problem of getting an 

analytic solution for the parameters is very difficult and as yet has 
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not been solved satisfactorily. Many heuristic methods (see 1 and 4) 

have been proposed, one being to place the allowable error bounds on a 

graph of the function and then draw lines such that on every linear seg-

ment this maximum error is achieved at least three times. At the moment 

there seems to be no more attractive solution and as this one suffices 

for most practical applications it is pointless to pursue a truly optimal 

solution further. 

The method extends to two or more dimensions although the hardware 

involved increases exponentially as may be expected. 	For a somewhat 

more elegant method of realizing multi-dimentional functions using a 

combination of diode generators and logic nets, see the paper by 

4 
Wilkinson . 

3.2 Other Analogue Methods  

The main method for generating functions other than diode networks 

is the use of purely resistive networks. 	There are two basic design 

philosophies used here. 	The first uses an iterative resistive net with 

variable resistors (potentiometers) which are set by the value of the 

abscissa. 	Two terminals of the network are designated the input; the 

impedance looking in from these terminals is then a function of the po- 

tentiometer setting. 	The problem is to determine the resistances in 

order to give the desired function. 	The most common iterative net used 

is the ladder network shown in figure (3.3a )• 	The input impedance to 

this net will be given by the expression on the next page where the 

fraction is continued until the network terminates. 
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R.n = R
l  4- 1  

(3.3) 

The domain of the function it is desired to realize is normalized 

to 0 „5„;x :V. For f to be obtained from a ladder network it must be 

expandable in a foil' like (3.3) where all the Ri  are linear functions of 

x and are positive over the range of x. 	This is a very severe restric- 

tion on f making this method useful only in special cases. Figure 

(3.3b\ 
) shows how the linear functions b+ax and b-ax may be realized by 

a resistor and a servo-potentiometer. 	For some examples of functions 

realized by this method see reference 1. 

A more practical method of obtaining functions by resistive net- 

works is illustrated in figure (3.3c). 	This again is a linear segment 

generator. x is set on a servo-pot which has a number of fixed volta-

ges established on it through the secondary potentiometers, acting as 

voltage dividers. 	As x goes from one tap point to the next, the 

voltage will vary linearly between the set voltages. Loading on the 

terminal e will cause a non-linear variation which may be accounted for 

when setting the original voltages. 

Both these methods suffer from the need for a servo driven poten- 

tiometer as their basic component. 	This requirement not only increases 

the cost, but also greatly reduces the speed of operation of such 

function generators. Because of this they have been going out of style 

1 
	

1  
n2  

R3 	1 

1 
R4  
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lately, being replaced by the simpler and more rapid diode generators. 

Function generators using other methods employing such apparatus 

as non-linear potentiometers, cathode-ray tubes, curve followers etc., 

may be found in the references already cited. These are useful for 

particular application but are not general enough to warrant a descript-

ion here. 

3.3 Digital Methods  

If a digital method is to be used both the range and the domain 

must be discretized. A digital function differs from the discrete 

functions mentioned previously in that the value of the function is con-

strained to one of a finite set of specified values (the quantization 

levels). 	This implies the following definition. 

Definition: A digital function is a mapping from a finite set 

of points X into a finite set of points Y. 

If the number of elements in X is n and the /limber of elements in 

Y is k then there are exactly kn  possible functions from X to Y. 	The 

elements of X may be put into correspondence with the integers 0,1, 	 

n-1 and Y with 0,1, 	k-1. 	The finiteness of all the entities in- 

volved introduces many new and interesting problems. 	The first of 

these illustrates the danger in using the assumption that the same meth-

ods can be used to realize digital functions as are used to realize 

discrete functions. 

In Calculating a function by a computer, the function is normally 

resolved along some spectral axes and the final value taken as the accu-

mulated sum of the component values. Assume a functional expansion of 



the form 

k-1 
f(x) = > ; a.f.(x) 

i=0 1 1  
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(3.4) 

where f.(x) are base functions, a. being the expansion coefficients 

with respect to the basis. 	The a. are real numbers and the f.(x) real 

functions. All numbers must be quantized before being put into the 

computer, implying that the f.
1(x) will be quantized functions. 

	Denote 

the quantization operator by square brackets[ 	The function pro-

duced by the computer will be 

k-1 
fl(x) a 

i-0 L
ai_  [fi(x)] . (3.5) 

Ideally we should like fl (x) to be equal the quantized value of 

f(x) in equation (3.4). 	This will not be true in general. 	For if 

the functions f.(x) and the coefficients a. are each represented by n 

\ binary bits, the (n+1)th  being neglected, then each multiplication and 

addition may make the last bit in the result erroneous. 	This assumes 

that subtractions have somehow managed to be avoided; otherwise the 

result may be reduced to nonsense. As there are k multiplications and 

k-1 additions in formulating the function, the final value obtained for 

f' (x) may be as much as 2k-1 levels or loge  (2k-1) bits, in error. 

Falling back on the modern addage 'if you have enough bits it will not 

matter' is not really satisfying. Yet the alternative seems to be to 

discard all of spectral analysis. 

The situation may be salvaged to some extent if a set of integer 

base functions, fi, (for example the Walsh function) is employed. 

Returning to the equations for c and H on page 36, if f, the expansion 
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functions h., and the weighting function p, are all integer, then the 

vector c and the matrix H are integer. The determinant of H will also 

be an integer as well as all its minors and co-factors. Therefore H 

may be represented as an integer matrix (H-1)t divided by the determin- 

ant 111 	The expansion coefficients are 

	

(H-1 	) 	a 

	

!HE 	Q  

where the vector a t  - (1-1 ) c has integer components. 	The approxima- 

ting function f t  is 

k-1 	k-1 

	

ft  (x) = 	a1h1.(x) =;(7 i 1' a. 1  th.(x)1/1H1. 
1=0 	 1=0 

Hence it is possible to perform integer operations throughout until the 

last step, where a division is necessary. 	This will reduce the error 

in realization considerably. A short example using the Walsh functions 

is discussed below. 

All the Walsh functions of a given order may be realized by a net 

of modulo two adders. n\ If all the /
r
) functions containing r variables 

have been obtained, then those containing r+1 variables can be formed 

by adding ( 
r+  
n
1  ) modulo two gates with one input from the variable set 

and the other from one of the functions of r variables. As the (7)-n 

Walsh function consisting only of the xi  are already available, the 

total number of gates required will be 

In\ 2n (Iwo.  

r.2 

Suppose a function, defined over the first 8 integers, is re-

quired. The example done here was chosen from a table of random 
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digits but may, in a practical case, be a coding of the digits, or 

perhaps be some obscure compensation function. 	The function is 

(0,1,2,3,4,5,6,7) > (9,6,1,8,9;4,1,1). 

Using the functions given in figure (2.3) and the coefficient equation 

7 
2_ f(n)Wi(n) 

the values for the coefficients are calculated as 

ao 	39 
B 

9 
8 
5 
8 

C:43 
8 a7 

_ 5 
8 

If all expansion terms are used then the function will be realized 

exactly. 	This would require eight coefficients and would result in no 

saving of hardware from merely storing the functional values directly. 

Such a result is expected as no approximations have been made. Hence, 

no simplification has resulted. 

Figaro (3.4a)  shows the function and the approximation to the 

function obtained by taking the three most significant coefficients 

a0  ,a2  ,a3. 	This approximation is not disastrously bad considering the 

irregulatiry of the initial function, although it shows a wide variance 

for two of the values. A circuit for realizing the approximate funct-

ion \  
is given in (3.4

b 
 ). 	The input variables x1,x2 ,x3  come from an 

analogue to digital converter, the digital to analogue conversion being 

carried out by the summing amplifier. Note how it is possible to use 

a4 	9 

a1  

a2 

8 
_ 17 

8 

a5  

at;  = 
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integer arithmetic throughout until the last stage when the normalizing 

constant 1. must be introduced. 	This normalization is easily performed 

through the summing amplifier. 	The logic levels for x1,x2  and x3, as 

well as the logical function used, have been converted to +1, -1 in 

order to give the Walsh functions directly. 

This procedure is still not completely satisfying, as an analogue 

summing amplifier is necessary to reconstitute the function. 	Its 

presence cannot be escaped if a spectral resolution of the function is 

used; for in that case the final function is always made up by summing 

certain proportions of the base functions. The sum can be performed 

digitally although this increases the cost and complexity of the reali-

zation by an order of magnitude. 

Many other methods of obtaining function using 'hybrid' techniques 

17 
have been proposed , but most of them require either an adder or an 

integrator in the last stage. 	To get rid of this analogue hanger-on 

it is necessary to  go more deeply into digital analysis and to introduce 

boolean functions along with all their concomitant problems. 
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CHAPTER fV 

Boolean Function Realization 

Boolean functions have been receiving increased attention in the 

last few years due to the advent of the digital computer and the renewed 

interest in switching theory. 	Their application in function generation 

lies in the fact that any discrete function may be realized by a set of 

boolean functions. 	That this is so will be demonstrated in the next 

chapter. Here we will confine ourselves to a fairly thorough study of 

boolean functions and show how they may be realized using practical 

circuit elements. A few theorems on minimizing networks will be proved 

along with some examples. 

4.1 	Boolean Algebras  

To date, our studies have been confined to functions, members of 

the real Hilbert space; or in the case of discrete functions, members 

of a real space defined over a denumerable set of points. All realiza-

tions have depended on the linearity of the space, i.e., if x and y are 

members of the space then ax+by is also a member, for all real a and b. 

This linearity makes it possible to approximate a function arbitrarily 

closely by means of a linear combination of base functions. 	The 

concept of a spectra and expansion coefficients to represent the 

functions is then possible. As will be shown below all this is lost 

when dealing with boolean functions, as these form a linear space only 

in a very limited sense. 
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i8 

A Boolean algebra is defined as a set of elements along with 

two binary operations 1+1  and ( . I and a unary operation - such that the 

following five axioms are satisfied for any three elements A, B and C of 

1. A+13.-.-B+ A 	, 	A,B 	B.A 

2. (A + B) + C = A + (B + C) 9 	A.(B.C) = (A.B).0 

3. (A 	B).B 	B 	7 	A.B + A ,-- A 

4. A. (B + C) 	A.B + A.0 	A + B.0 	+ B).(A + C) 

5. A.A + B 	B 	, 	(A T).B B 

Added to these are d.eMorgan's two laws set down here for convenience 

— 	— — 
A.B r A + B and A + B = AB . 

These are a consequence of the axioms and may easily be obtained from 

them. 

The most convenient way to visualize these axioms is to think of 

the members of2las ordinary sets where '+' is the union operation, 

is the intersection, and is the complementation of the sets under 

study. 

	

	The algebra of sets is a special case of a boolean algebra, 

other examples occurring in probability theory, topology, logic etc. 

We will restrict ourselves to logic, identifying the elements of 

7/with events that may be either true (1) or false (0) and the connec- 

tions 1+1  and 7 .1  with the logical 'or.' and l and' respectively; 	will 

be the logical negation, 	In the following the 1 .1  will be omitted, 

the operator being denoted by the conjunction of the two elements in 

question. 	The logical algebra satisfies the axioms given above meaning 

that these axioms may be used in simplifying any expressions that occur 



65 

in the following. 

A boolean function of n variables xi,x2 	 x
n 

is any logical 

expression containing the n variables. 	The set of all functions of n 

variables forms a boolean algebra. A boolean function will be denoted 

by 

tx2 
2n 

There are only 2 functions of n variables, for the arguments of f can 

have only 2
n 

distinct combinations and, as the function can have only 

the values 0 or 1 (corresponding to the logical expression being false 
n 

selected. 	There are infinitely many logical expressions of n variables 

implying that there must be infinitely many expressions for some partic-

ular functions. The central problem in switching theory is to find 

the simplest expression for a given function. 	As yet, the only solu- 

2 8 
tion to it has been to develop a systematic search procedure . 

The non-uniqueness of the logical representation, along with the 

absence of what might be coefficients, thwart any attempt at resolving 

a boolean function into a spectrum in the sense of the previous dis- 

cussion. 	It is still possible to talk of bases but first it is necess- 

19 
ary to define what is meant by a superposition . 	The best definition 

is to give an example. 	If we have two functions in a boolean algebra, 

say, /1(x1,x2 ) and 2(x1,x2 ), a superposition of these function might be 

9‘i (Stc, (xi x2 ) x2 ) or 	42 (xi x2 ) 	(xj. 9x3  )) etc. 	Geometrically, if the 

/i are thought of as nodes of a network, then a superposition is equiva-

lent to taking the output of some nodes and connecting them to the 

2 
or true) there are at most 2 functional combinations that may be 
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inputs of others. 	The two above examples are represented below. 

A basis for a boolean algebra is defined as a set of functions 

	 x ) 	(xi k 9  2 9  

   

	 xk  ) such that 
r 

   

any Boolean function of n variables may be realized by a superposition 
20 

of them. 	The functionsr/j.  are called base functions. 	Post has 

shown that a set of functions form a basis if there exist superpositions 

of these functions realizing the particular functions xi and x1x2. 

Evidently these two functions will form a basis. 

Other examples of bases are 

xi 9 Xi 	X2 

.... 
1 	xi  x2 , xi  x2  + xi  x2  . 

	

The first is the dual basis to xi, xix2. 	The second is the nor base 

consisting of only one function. 	If the function xi + x2  is called 

,x2) then cg (xi  ,xi  ) 	xi  and (ct( (xi 	,X(x2 ,--K2 ) ) 	xi, x2 • 
	The 

third set of base functions is the ring sum or Huffman
21 
 basis. Note 

that the last function given is true if and only if one of the variables 

is true. This corresponds to the linear function mentioned previously 

in connection with the Walsh functions (page 40). 	This basis is more 
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usually represented as 

1, x1  x2  xi  .0 x2  

and is a basis as x1x.2  is already included and xi 4) 1 = xi. 	Its great 

advantage is that it allows one to express any function without having 

to use any complementation operations. Many other bases exist and are 

finding increasing use in realizing boolean functions for switching 

networks. 

4.2 Canonical Forms  

The most common way of representing a boolean function is by 

means of the truth table. 	This is a tabulation of the output for all 

possible combinations of the input variables, and corresponds to the . 

look-up table for ordinary functions. 	The truth table leads almost 

immediately to the 'conjunctive normal form'. 

n -variables 

(xt 4) 71 )(x.2 Q a2  ) 	 (x 	
n. ) n  

Consider the function of 

(4.1) 

where the a. are constants, either 0 or 1. 	This represents a conjunc- 

tion of the n variables (e.g., (x1  Q 1)(x2 	0)(x3  4) 1) = x1x2x3). 	It 

is true for only one value of the coefficients, namely xi = ai , 

" a2 	 xn  = an, so its truth table will have only one non-zero 

entry. 	In the following Ei  will be used to represent a constant n 

vector of 0's and l's, such that its binary number equivalent is i. 

For example, if functions of 4 variables are under discussion then 

127  = (0, 1, 1, 1), and so on. 

Any function f(x1,x2 	 xn
), in truth table form, is true over 
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only a subset of the vector j, i = 0 	 2
n
-1. 	The conjunction 

(4.1) is true on one particular Ei  only. Hence the representation 

2
n
-1 

f(X) = % f(Ei)(X.1 	Pa1)(X2 	Pi2) 

 

(x n 
(4.2) 

 

where 1. . is the jth component of 	and the > sign implies an 'or'  

summation of all the functions following, is valid. That this 

expression is correct can be verified by substituting an arbitrary 

constant 	into f(x). 	Then, only one conjunction on the right is non- 

zero and the expansion reduces to the identity f(,j) f((i). 	This 

expansion is known as the 'conjunctive normal form'. 

The dual expansion to this, the 'disjunctive normal form' is 

based on the fact that a disjunction of the form 

) 	(Dcz Q a2) 
	

(xn 	an) 

is false for only one Ei, namely 	= (a1la2 	 an). 	
The canonic 

expansion 

2
n
-1 

f 	) 	(f (Li) 	X . 	p,. ) 
i=0 	 j=1 1)  

is immediate; for if 	is substituted on the left then all the dis-

junctions on the right are true except for the one involving A, and 

the expression reduces to f(.0 yielding an identity. 

Both these expansions use the redundant basis xi, xix2, xi  + x2. 

The use of deMorgan's laws can easily change this to an irredundant 

basis. Using the first law in the form 

2n-1 	2n-1 
7- 	f .(7-r f.) 43, 1 L_J 
1.0 1  i=0 



equation (4.2) becomes 

( 2n-1 
f(x) 	I T ((f(k) 

t- 
 

1.0 	J.1 111,3 .)) Q 1 	Q 
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(note that f(x) Q 1 	f(x). 	This notation is used as it is somewhat 

clearer than. drawing bars over the rather complicated expressions in-

volved.) This form is inconvenient for most purposes and (4.2) is 

normally used. 

2I. 
The last canonical form is the 'ring-sum' 	oror Huffman normal 

form. First, note that two functions f and g are equal if and only if 

f @ g 0. 	This is obvious, for if f g then the two truth tables 

must be the same and the condition is satisfied. 	Consider the function 

of two variables defined by 

a3m1x2 @ a2xi 	alx2  @ ao 	 (4.3) 

where the a. are constants. 	Constants belonging to conjunctions of 

two variables are said to belong to the second rank, ones belonging to 

one variable to the first rank etc. az  belongs to the second rank, 

a2  and ay to the first rank and ao  to the zeroth rank. For n-variables 

nN 
there are k 

(
,
r
) conjunctions of order r, and hence, in the general expan- 

sion
,n\  

similar to the one above k ) constants of rank r. 

expansion there will be 

n 
	 (

r
n) 	(1+1)

n 
2
n constants. \ 

r=0 

In the total 

If all the 	0 for a function g defined in the above fashion, 

then g 0. 	For suppose the first non-zero constant is ak  in rank s. 

Without loss of generality the conjunction associated with ak  can be 
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taken as xix2 	 x
s
, as it only takes a permutation of the variables 

to bring this about. 	If a constant vector j'. . (1, 1, 	 1, 0, 	 
s 

0) is chosen, then all other members of the sl th rank will be zero, as 

will all members of higher ranks. All the lower ranks are already zero, 

therefore, g(Ei) .., 1 and the function is not identically zero. 

Furthermore, if two functions g and f have different coefficients 

ai  and bi  then g Q f 0, i.e., g 4 f; for if ak and bk are different 

then the conjunction belonging to these will appear in g 8 f. 	There 

2n  
are 211 coefficientsa.and hence 2 different functions can be defined 

2n 
in this manner. But there are only 2 functions of n variables. 

Therefore every function of n variables is expressible in this form. 

This is the 'ring-sum' normal form. 

The determination of the coefficients a. for this form is somewhat 

more difficult than for the proceeding cases. A constant Ei  will be 

said to be of rank k if it has k l's and n-k 0's. Assume an expansion 

in n-variables of the form given in equation (4.3) 

f(10 . a 
2 n
xx2 	xn  a2n-2

xi   xn-1 .0 	 
-i  

a2xn-1 	ai xn '4) al) * 

Lettlaevaluesinthetruthtablebeexpressedbyf(21)-b..The 

coefficients a. will turn out to be linear combinations of the b.. This 

can be shown inductively; for assume 11i  is of rank k. 	Then on substi- 

tuting 21  in the above equation all conjunctions of rank > k are zero. 

C\ 
There is one conjunction true in rank k,k1

) conjunctions true in rank 

k\ 	 k\ 
k-1, (r

) conjunctions true in rank r, and (k
) conjunctions true in rank 



0. 	In all there are 2
k 

conjunctions true. 	Therefore 

2
n
-1 

f(.k) a 	 a b. 	24)  
1-0 r.  

71 

(4.4) 

where the set r. is some specified subset of (0, 1, 2, 	 2n-1) of 
1 

size 2
k
. 	In particular f(0) b0 	P -0. This is the beginning of an 

induction. 	If a formula for the a. in terms of the b. has been ob- 1 

tained for all a-1  of rank <k, then the formula for elements of rank 

k+1 follows immediately from (4.4), since only one of the terms on the 

right is of rank (k+1). 	This may all seem rather obscure due to the 

notational difficulties involved. An example should serve to clarify 

the procedure. 

Consider the truth table below for a function, f1, of three vari-

ables 

Xj.  X2  X3  

0 0 0 bo 1 

0 0 1 1 

0 1 0 b2  0 

0 1 1 0 

1 0 0 b4 0 

1 0 1 b5 1 

1 1 0 b6  1 

1 1 1 0 

Assume an expansion for f1  of the form 

fl  (x)a7xix2x3 	a6xix2  Cd a5xjx3  Q a4x2x3  

a3x1 Q a2x2 	aix3  

Then 
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f1(0,0,0) = bo  m  ao 	a 	bo0   

fi  (0,0,1) 	bi 	a1  Q ao 	al  =b1  Q bo  

f1  (0,1,0) = b2 — a2 	ao 	a2  a  b2  Q bo  

fi  (1,0,0) = b4 	a3  8 ao 	 bo 

f1(0,1,1) 	b3  F  a4  V a2  Q 	t ao 	a4 	b3  4)  b2 	bi  0 bo  -  

etc. 

If the vectors k are arranged according to their rank in the truth 

table, then, with a little practice, it becomes an easy matter to write 

down this canonical expansion by inspection. 

For a function like f2  in the table above, the canonical expansion 

in the three different forms is 

1) conjunctive normal form 

f2 	X1  X2  X3  + X.J.  X2  X3  + X172  X3  + Xi X2  X3  

2) disjunctive normal form 

f2  = (xi  + x.2  + x3  )(xi  + x2  + 	+ X2 '} X3) 6`1 4. X2 ) 3 

3) ring-sum normal form 

f2  . 1 4) x2 4) x1  V x1x3. 

One of the greatest advantages of the last form, aside from the fact 

that it contains no negations, is, that for any function f the expecta- 

tion of the length of the expression describing f is smallest. 	Also 

it lends itself easily to analytic manipulations whereas the other two 

are rather cumbersome. Throughout the remainder of the chapter, these 

three forms will be used interchangeably. 
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4.3 Universal Nets  

A universal net is a network of circuit elements with 2
n 

variable 

parameters .1a.1( and n input variables xi „x2 	 xn  such that, for any 

) 
two different sets of parameters faj and elb.( the function realized by 

t. 1,  
2n 

the net f(x1,x2 	 xn) is different. 	As there are 2 choices of 

the set la. the net must be capable of realizing all functions of n 

variables. 

The basic theorem used in obtaining all the following nets is the 
22 

Shannon expansion theorem. Defining the function of (n-1) variables 

f(0,x2 ,x3 	 xn) = f0  

f(1,x2,x3 	 xn
) = fi  

this theorem states that 

f (xi  , x2  	 xn) = xi f0 	
xifi. 	(4.5) 

Its validity is obvious, as substituting x1  = 0 or 1 on the right will 

show. 	f0  and f1  may in turn be expanded giving 

f(xix2 	 xn) 
	

XI.  X2  f00 + 1r f oi 	xix2f10 

The process may be continued until all the variables are exhausted at 

which time the coefficients will be f(J) and the expansion will be 

identical to the conjunctive normal form.  

The formula (4.5) allows one variable at a time to be separated 

from the function producing in each case two functions of fewer varia- 

bles. 	Confining ourselves to two input l and' and 'or' gates the basic 

recurrence block of a universal net would be as shown in figure (4.1a). 

f0  and fi can then be expanded separately and the process repeated until 
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, 
the universal net of (4.1b) is obtained. HerethesetHare the ij 

constants set on the 2
n 

terminating branches labelled f(k). 

The total number of elements in the net is of interest as this is 

a measure of the complexity of the realization. 	Let g(n) be the total 

number of elements in a universal l and!  'or' net for all functions of n 

variables. 	Then the recurrence relation 

g(n+1) a  2g(n) + 3 

follows immediately. 	Using g(2) . 3 the solution 

g(n) a  3(2n-1 _i) 

is obtained by a simple induction. 	This is the maximum number of ele- 

ments of this kind that would be necessary to realize any function of n 

variables. 	The constants f(E.i ) are introduced at the far right of the 

net where the resolving process has reduced the problem to realizing 

functionsof one variable. 	In the last stages the resolution looks like 

f(a,xn) = xn  f(a,0) 	xr  f(a,1) 

where a is a constant n-1 vector. 	According to the values of f(a,0) 

and f(a,l) the input is 0,xn,xn, or 1. 	This normally leads to some 

simplification as theorems from the algebra, such as xi  x2  x1  x2  . x2 

and xi 1 + xix2  = xi 	x2 , help to eliminate many of the elements. 

Throughout the above discussion it has been assumed that the 

allowable fan-out (number of output leads from each element) is only 

one. 	If this restriction is relaxed, further simplification in the 

final realization results, as then many of the functions of fewer 

variables, found towards the end of the net, will be identical and can 

be realized by the same network. 	If this line of attack is developed 
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a little further an interesting and quite significant result is obtained; 

but first it is necessary to discuss a universal net of a different kind. 

A universal net of the second 'kind is defined as a network of 

circuit elements that explicitly realizes all functions of n variables. 

These networks may be obtained by first obtaining networks that realize 

all conjunctions of n-variables, and then using ?or ?  gates to produce 

the required functions as represented in the 'conjunctive normal form'. 

If a network that realizes all the 2n-1  conjunctions of n-1 variables 

has been obtained, it may be extended to n variables merely by adding 

2.2n  land ?  gates, taking the 2n-1  outputs of the n-1 net and forming 

the conjunction of these with x
n and then with xn. 	

If g(n-1) is the 

number of and gates in the n-1 net then 

g(n) m g(n-1) + 2n. 

g(2) a= 4 as there are 4 conjunctions of two variables. 	Therefore the 

value of g(n) is given by 

g(n) 	4(2n-i  - 1). 

Including the conjunctions of fewer than n variables available in 

2n 
the net, 4(2n-1  - 1) of the total of 2 functions of n variables have 

already been found. As all the conjunctions in the conjunctive normal 

form are now available it is necessary only to form the disjunctions to 

obtain all the functions of n variables. 	If all the functions consis-

ting of k terms have been obtained, then each function of k+1 terms may 

be obtained by adding one more ?or?  gate with one input from a k term 

function and another from the set of conjunctions. 	Therefore at most 

2n 	 2n 
2 	- g(n) ? or? gates will be required or 2 gates in all. 



max.(min.(cost (f))) 	4 2n  
log2  n f r (4.6) 
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9 	23 
Before going further a result of Krichevskii and Lupanov is 

quoted. 	As the number of arguments increases the total number of 'bad', 

to quote Lupanov, functions in the class of all functions of n-variables 

becomes the dominating class. 	'Bad' here means functions that are 

difficult to realize in any specified finite basis. Analytically the 

notion of dominating class implies that 

Lim 	number of 'bad' functions 
cotal number of functions . 1. 

This seems reasonable enough, only stating that most functions of many 

variables are hard to realize regardless of the basis chosen. 	The 

result proved by the two authors above is, that given a base set 

/it/n and costs Pi, 	 Pn 
associated with the base functions, 

the minimum cost of realizing the most difficult function with respect 

to the basis is asymptotically equal to the expressions below. 

4isafunctionofthecostsP.and the base functions 

min 	Pi  
ki  

.k ) 

where k. is the number of arguments of 7fi. 	The operations on the left 

of (4.6) are equivalent to first realizing all functions of n variables 

at a minimum cost by superposition of the base functions, and then taking 

the most costly of these. 

If thecostP...1 and the two input gates above are used then 

µ.1 and the cost given by (4.6) will be equal to the number of elements 
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required. As most functions are like this most difficult function the 

result that the number of elements necessary to realize most functions 

of n variables ,i2n/log2n is immediate. 

Returning to the 'and' 'or' nets above, suppose that a function 

is to be realized by a combination of nets of the first and second kinds. 

Extract k of the n variables using a net of the first kind. 	This 

requires 3(2k-1) elements and leaves 2
k 

functions of n-k variables to be 

obtained. 	These functions can be obtained from a net of the second 

2( 9.-k ) kind requiring at most 2 	elements. Therefore, the total number 

of elements N in the net realizing the function will be less than 

k 	2 (n-k) 3.2 + 2 	>N 

Or 	 2k+2 + k+2 	(22 (n-k)
- 2

k
) >N. 

There will be some best value of k that will minimize N, the number of 

elements required. Differentiating (4.7) with respect to k and equat-

ing to zero yields a transcendental equation in k and n that is very 

difficult to solve. 	Instead the heuristic 'choose k to be the smallest 

value such that 
z(n-k) 
2 	- 2 / 0 

is used. 	This choice does coincide with the true integer minimum in 

most cases as working a few examples shows. 	The above heuristic 

implies that 

n-k < log2k 

and 	n-(k-1 ) 	loge  (k-1 ) 

or in terms of the number of variables n 

log2  (k -1) 	k-1 	 (4.8) 

(4.7) 
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The condition expressed by equation (4.7) becomes 

N <2k+2 

It will now be shown that using the above value of k the Lupanov 

bound (4.6) is satisfied for this realizing network. Substituting from 

(4.8) into the equation for the Lupanov bound yields 

2
n 	2 (k-d.)-1-10g2(k-i) 

log2n 	log2(k+log2(k)) 

i.e. (k-1 )2k-i  
log2  (k+log2  (k)) 

(4.9) 

Furthermore using l'Hospitall s rule it can be shown that 

Lim 	(k -1  , 	co . k-00  loge  ic-F.log.2  (k)) 

Therefore there exists a finite number M such that 

(k-1 	8 
lo 

for all k> M. 

Returning to equation (4.9) the chain of inequalities 

2n  
2k+2>N for all k >Li log2n 

is obtained. 

Equation (4.8) ensures that provided n is large enough k 

Hence the result that the number of elements in the net for realizing 

any function of n variables is less than or equal to the Lupanov bound 

is obtained. 	This in turn implies that it is useless to look for some 

other method of realizing functions of many variables as, by the 

theorem, they must have at least the same order of elements as the above 

realization using 'and' and 'or' gates. 	This does not imply that all 
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minimizing procedures should be discarded, but merely that the saving in 

the number of elements required will only be incremental and savings in 

orders of magnitude cannot be expected by any other design procedure that 

may be adopted. Also, as Lupanov's theorem is only an asymptotic re-

sult, it suffers from the failing of most results of its kind in that n 

must be very large before it is satisfied. 	Therefore, it is still 

worthwhile to look for minimizing procedures for universal nets. These 

are discussed in section 4.5. 

A result, similar to the one above, may be demonstrated for all 

nets that are discussed in the following. As the development of a 

proof for each individual case is rather tedious and follows the approach 

already given, it will be omitted, although the result may be tacitly 

assumed. 

4.4 Universal Nor Nets  

Circuits using 'nor' gates as the basic element have received in- 

24.25 27 
creasing attention ' ' 	during the last few years. This stems from 

the fact that they have a particularly simple transistor realization, 

requiring only one transistor and some resistors. 	Also they do not 

require any isolating stages when connected together, as conventional 

diode 'and' and tort  gates do. 	Universal nets for two and three input 

'nor' gates are developed below and an example of realizing a specific 

function is given. 

In the diagrams that follow, a 'nor' gate will be represented by 

a junction with the requisite number of input leads, and a single hori-

zontal output lead. A function written on top of the output lead will 
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represent the output function of that particular gate. 

Looking at two input 'nor' gates first, from Shannon's formula, 

equation (4.5), the identity 

        

        

f   xn) 
a  xl  f0  + x1  fi  

  

fo) 

   

        

(xi  +fo)( xi  +fi ) = xi  f 0  + xi  i1 
	(4.9) 

= xi+f o  + xi+fi 

is obtained. 	The base structure is as shown in figure (4.2a). 	On 

comparing this structure with the 'and' 'or' structure already obtained 

it is evident that the total net will have exactly the same geometry and 

\ therefore contains 3(2n-1-1) elements. 	All the subsequent results 

proved for the 'and' 'or' net are also immediately applicable to this 

structure. 

For three input gates first consider expressions of the form xift. 

This function may be developed as 

+ x2 	xz 	• 

The expression for 5E2 fio  and x2  fii  can be realized similarly by a three 

input gate, and the expansion continued until all variables are exhausted. 

The initial decomposition can be performed by a two input gate according 

to equation (4.9). 	The basic structure is shown in figure (4.2
b) and 

the total expansion out to the fourth level is given in figure (4.3). 

If g(n) is the number of elements in a complete net for n varia- 
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bles then 

g(n+1) - 2 g(n) + 1 	 (4.10) 

g(2) = 3 . (4.11) 

This equation has a solution 

g(n) . 2n  - 1 

 

as can easily be checked by using (4.11) as a base for an induction using 

(4.10). Note that if the expansion is carried out to an odd number of 

levelsthentheconstantsf/ ust be substituted, rather than f(ki). 

The f 
	

) appear in the same order as they would appear in a truth table. 

It is interesting that this net has exactly the same geometry as the 

26 
threshold function nets discussed by Miyata . 

The first two input gate can be replaced by a three input gate 

using a slightly modified form of equation (4.9). 	Expanding fo  by (4.9) 

fo 	x2 foi 	x2 fo o 

or 
	

fo 	x2 foi + x2 foo 

and substituting this back into (4.9) for f, the expansion formula 

f 	+ xi x2 foi 	xi x2 fo 0 

is obtained. The first term may be expanded into a net like the pre-

vious case and each of the other two terms may be obtained from single 

three input nor gates. 	The base structure is shown in figure (4.20) 

and the expanded net out to four variables in figure (4.4). 

Finding the number of elements in a complete net of this type is 

somewhat more difficult. From figure (4.20) and the previous result, 

stating that it requires 2n-1- 1 gates to obtain x1f1, the recurrence 
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relationship 

g(n) . 2
n-1

-1 + 2 g(n-2) + 3 

2n-1+2 (g(n-2) + 1) 

is obtained. 	From figure (4.4) g(2) 	4, g(3) = 6. 	For n even the 

solution for g(n) is 

n_ 
g(n) . 2

n 
 + 22  - 2 

This is true for g(2), and the induction yields 

n-2 
= 2n-1  + 2 (2n-2  g(n) 	+ 2 2' - 2 + 1) 

n 
. 2n  + 22  -2 

as required. For n odd 

g(n) . 2n  - 2 

as may easily be proved by a procpbs similar to the above. Using this 

net in place of the first will result in a saving of one element for n 
Art 

odd 	considerably more elementsAfor n even. 

An example will now be done to show the general method of procedure 

in designing these nets. 	In practice, a boolean function is defined by 

a subset of the integer numbers between 0 and 2n-1, to save writing out 

the function in the rather lengthy truth table form. 	The members sele- 

cted for the subset are the integers, whose corresponding binary form in 

the truth table, have a value 1. 	The example function shown on page 71 

would have a form 

f2  = (0, 1, 5, 6), 

a much more compact representation indeed. 

From a table of random digits au arbitrary function may be selected 

by taking a string of 2n  digits and filling in a truth table with O's and 
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1 1 s according to whether the corresponding decimal digit is even or odd. 

Using this method the function of five variables 

f 

(

1, 3, 5, 6, 7, 8, 9, 12, 14, 15, 

16, 17, 19, 20, 25, 26, 29, 30, 31 

was selected. As there are an odd n'unbcr of variables the constants 

f() are used to determine what the final terminations on the net are. 

These are shown by dotted lines in figure (4.5). 	The final net, after 

the most obvious simplifications are made, is shown by the heavy lines. 

The identities used to reduce the namber of elements towards the end 

include 

X3  ± 15  X4  + X3  X4  1=,  X3  + X5  

and 	x4  + x5  + xs  a  0 . 

The total number of gates required is 22, nine less than the number in 

the complete net. Using the second expansion method the number of 

gates is reduced to 19, illustrating that for odd numbers of variables 

this second method will normally give a more economical realization. 

If the outputs of the gates are allowed to drive more than one 

input then the number of elements in figure (4.5) can be reduced to 18 

by a cursory inspection. 	This, as will be shown, is not too inefficient, 

although some way from the optimal realization. 

Expansions for four and five inputs, using various configurations, 

can also be developed in the same manner as above by performing different 

manipulations on the Shannon expansion formula. They do not usually 

give a more economical realization in terms of the number of elements 
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used. 	Their main advantage is that the resulting net is not as ?deep', 

meaning that at each stage more than one of the variables may be separa- 

ted. 	This will result in a faster response. 	Sot against this is the 

necessity of increasing the design tolerance on elements to ensure their 

proper operation with the increased number of inputs. 

4.5 Minimizing Nor Nets  

The not to be considered in the following will be the first three 

input nor net cited above. 	This will be designated a 3n-net. 	It is 

evident that if the variables had been chosen in a different order, a 

different net, with perhaps fewer elements, would have resulted when 

realizing a specified function f. 	In fact there is even more freedom 

than this, for, having chosen the first variable, it is possible to 

rearrange the variables in 1'0  and fi  independently. 

If g(n) total number of variable configurations for a function 

of n variables, then the recurrence relationship for g(n) is 

g(n+1) p (nil) x ;(n). 

This is valid, as the first variable in an (n+1) net can be chosen(4  ) .:: 

nil different ways; and having chosen the first, the remaining n varia- 

bles in 1'0  and fi  may be chosen in g(n) ways independently. 

g(1) - 1 

as if functions of 1 variable are considered the choice can only be 

ordered in one way. 

This recurrence relation has a solution 

(n-1) 	
21 g(n) r (n-i) • 
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The equation is true for n..1. 	From (4.12) and using the induction 

hypothesis 
2 r 	21  1 

(n+1) 1-1 (n-i) 
i-•=0 

2 
n-1 	{ 	i I 

(n+1 	.[_(13 	(n-i )2  j•" 

(n+1 
n-1 	2i+1 
T—I (n-i) 
i=0 

o  n  , 	2 	 2i 	n 	, 	2i 

= (n+1) 	I I (n+1-i) 	= 	(n+1-1) 
i=1 	i=0 

and the result is proved. This is a very rapidly expanding function of 

n indeed, (for n=5 it is already greater than 1,500,000) making an 

exhaustive search through all possible selections out of the question. 

With the help of a theorem provided below this difficulty may be cir-

cumvented. 

Divide the variables x into two disjoint subsets y and z. 	Then 

02) ' f(Y, z). 

In the network discussed previously, if, instead of assigning the truth 

values at the far right and then simplifying, we had started from the 

left and calculated the functions fo,fy : foolfoi , fio,fii. 	 etc., 

a stage k would be reached when f(a,z) = a, where a is a k dimensional 

constant and z is an n-k dimensional vector. 	'a' is a constant either 

0 or 1. At that stage the expansion along that particular branch 

would stop. 

Definition:  a 'terminating branch' is a branch on the 3n-net such 

that f(a,z) = a. 	I a i s called the terminating constant and the 

g 
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vector y1  S 9i.,y2 	0142, 	 
Yk 	

the terminating resolution 

(theYil sareseraesubsetofthe l s as above). 

For example, going back to figure (4.6) the branches labelled (1) and 

(2) are terminating branches. 	For branch (1) f(0, 0, 1, 1, x5) r. 1; 

for (2) f(0, 0, 0, x4, 0) - 0. 	The resolution vectors for the two are 

x2, x3, x4) and (xl , x2, x3, x5) respectively. 	The formula 

f(0, 0, 1, 1, x5) 	1 implies that the pair (6, 7) must be members of fi 

the second expression implies that (0, 2) must be members of f. 

Theorem 4.1: The number of elements in a 3n-net realizing a function f, 

is equal to one less than the number of terminating branches. 

Proof: For functions of one variable the expansion only goes back one 

level. 	There are two terminating branches and one element and the 

theorem is valid. 	Suppose the result is true for functions of k 

variables. 

Increasing the number of variables to k+1 one of three cases must 

arise. 	At the first level (i.e., on separating the first variable) 

there are either 0, 1 or 2 terminating branches. 	If there are 2 ter- 

minating branches then there is only one element. 	If there is 1 ter- 

minating branch then one of fo  or f1  is not a constant. Let it be fi  

and let it have ri terminating branches. As it is a function of k 

variables it must contain r1  -1 elements by the induction. 	In all there 

are (r1-1)+1 elements and ri+1 terminating branches and the theorem is 

valid. 	If there are no terminating branches at the first level then, 

let the number of terminating branches for fo  and fl be ro  and ri , with 

r0-1 and r1  -1 elements respectively. 	The total number of elements in 

the net is (r0-1) ± (r1-1)+1 = ro+r1-1 and the number of terminating 
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branches is ro+ri. 	 Q.E.D. 

The problem of minimizing the number of elements in the net is therefore 

equivalent to the problem of minimizing the number of terminating bran- 

ches. 

One of the most concise ways of representing a boolean function is 
22 

the 'cubical' expansion as described by Miller . 	This again repre-

sents a function by a subset of the numbers 0 to 2n-1 but this time in 

binary form, in effect writing out the binary numbers from the truth 

table that have a truth value of one. Each number has a conjunction 

associated with it in the conjunctive normal form, i.e., the number a 

has associated with it (xi  

two numbers a and differ  

, 
	 (xn (14 an

). 	Suppose 

in only one place say in the i 
th  . 	Then 

) (x2 Paz) 

a. ' Pp j 	ai 	Taking the 'or' sum of the two corresponding 

conjunctions 

(xi.   (x1 	(1) a.
1-1 

)(x.
a.+1. 	1+1 ) 	 (xn t 11)  

gives a conjunction of n-1 variables. 	This is called a 'one-cube' and 

is represented in the cubical expansion by 

a.1-1 1 µa.+1 	 an. 

Similarly two, and higher cubes, may be defined. For example the 

two conjunctions 

( 	o1 	
o0 1 1 0 

1 1 o ) (1 p. 0 1 1 0 ) 1  

and the function of three variables 

/ 0 0 co 1 
1 	0 
1 	1 
1 	1 

1\ 

1 
1 
0 
1 

/µ 
1 

µ 11 
1 	II) 

aJ (12 
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The function of three variables may then be put in the form x3  xix2  

rather than the much longer expression that results from using the left-

hand side directly. The problem of obtaining a conjunctive expansion 

having a minimal number of terms, then reduces to the problem of finding 

a cubical cover for the function that has a minimum number of cubes. 

This has already been solved by the method of Quine and McCluskey 
22 ,28 

and is described in Appendix II. 

There is one other interesting property of these cubes that is of 

importance to us. For a k- cube a permutation of the variable will put 

it in the form 

(a a2a n-k " 	 11) 

where k,i's appear after the constants. 	If this cube is a member of a 

cubical cover for f, then 

f(ai ,a2 	 an -kYn-k+i 	 yn) = 1. 

Therefore, it is a terminating branch for f. 	The converse, that a ter- 

minating branch with value 1 defines a cube covering a portion of f is 

also true. Using the Quine (Appendix II) minimization method, it is 

possible to obtain minimum cubical covers for f and f. 	The number of 

terminating branchescannot possibly be less than the total number of 

cubes contained in these two covers, for, if this was so, then, from the 

terminating branches, it would be possible to derive a cover for f 

(or f) which had fewer cubes than the covers already stated to be mini-

mum. This gives us a lower bound on the number of elements required. 

Unfortunately this lower bound is not always attainable. 

The cubical-cover does give a clue as to which order to choose the 
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variables. 	The terminating branches are divided into two classes, the 

zero terminations and the one terminations. 	The set of all one termin- 

ations describe a cover for f and the set of all zero termination a cover 

for f. 	Looking at figure (4.5) again, and taking into account the 

inversion of f(aly) at the odd levels, 

the terminating branches, are 

these two covers, as found from 

f 

0 0 0 µ 1 0 0 0 p 0 
0 0 1 0 1 0 0 1 0 0 
0 0 1 1 µ 0 1 0 1 µ 
0 1 0 0 µ 0 1 1 0 1 
0 1 1 0 0 1 0 0 1 0 
0 1 1 1 p 1 0 1 0 1 
1 0 0 0 µ 1 0 1 1 µ 
1 0 0 1 1 1 1 0 0 0 
1 0 1 0 0 1 1 0 1 1 
1 1 0 0 1 1 1 1 0 0 
1 1 0 1 0 
1 1 1 0 1 
1 111p 

That these are covers can be checked by going back to the definition of 

the function. 	There are 23 terminating branches and hence 22 elements 

as required by the theorem. 	The first column of figure (4.6) is the 

minimum cover for f and f as found by the Quine method. The cover for 

f has an m after all its members. 	There are fifteen cubes in all, 

making this the minimum possible number of end points. 

Whenavariablex.is chosen and the function expanded about it, 

the cubes covering the function will be split into two classes corre- 

sponding to 1.0  and f1. 	For example the three cubes shown below when 

expanded about the third variable will split into four cubes covering 

fo  and fi. 
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p. 0 1 

	

0 0 1 	 x3  0 0 II 1 
0 0 p. II 1 

	

1 1 1 p. 1 	 0 0 p. 1 X3 1 1 g 1 

the cube that has a µ where the variable occurs may be expressed as 

0 0 0 p. 1 0 0 	11 1 	0 0 1 µ 1 

and splits into the two cubes shown. 

To minimize the Lumber of terminating branches on fo  and ft  the 

variable, that has the fewest occurrences of µ for it, should be chosen 

first. 	This ensures that after the splitting procedure the total num- 

ber of cubes in fo  and ft  is the least possible. 	The same criterion 

can.lee used to expand 1'0  and f1  and the process continued until termina- 

ting branches are reacted. 	Figure (4.6) illustrates such a decomposi- 

tion. From the chart, the 16 terminating branches are evident. There` 

fore, only 15 elements will be required to realize the function, a 

considerable saving from the first expansion method suggested. Note 

further that when a cube is split, one half of it may be absorbed by 

other members in the same class as the cube 00µ is absorbed by µ0µ in 

the example. Both halves cannot be absorbed as this would imply that 

the cover was not minimal to begin with. A continuous check can be 

kept on the process by observing that, after each decomposition, the 

total number of reduced cubes in f(a,x) and f(a,x) must cover the entire 

space defined by x. 

From the decomposition chart it is a simple matter to obtain the 

net. 	The main point to be careful of is that apt! inclic:33es a 0 branch 

for even levels and a 1 branch for odd levels. 	Figure (4.7) gives the 
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new network realizing the function. This net has the added advantage 

that the loading on the variables is more evenly distributed. 

To make sure that this method does result in significant reduc-

tions in the number of elements a second example function, again chosen 

randomly, was selected 

( 	1, 2, 	3, 8, 9, 10, 11, 13, 15, 17, 
18, 19, 20, 21, 22, 23, 25, 29, 31/ 

This has a minimum of 10 cubes to cover it and, on decomposition by the 

above algorithm, results in 11 terminating branches giving a total of 

10 elements required to realize the function. 	It is doubtful whether 

any other method of synthesis would yield a more economical result. 

4.6 Multiple Output Functions  

In many cases our interest is not confined to a single boolean 

function lout rather to a set of functions, or a multiple output function. 

If a parallel realization of the function is required then it is necessa-

ry to expand each function separately and use different nets for reali-

zing them. There is usually some overlapping of the different nets 

and some saving results by taking advantage of this. 

If a serial realization of the set of functions is allowable, then 

considerable saving can be effected. 	Introduce 

s 	[log2ri 

new variables, where r is the numbers of functions in the set (N.B. [x] 

is the smallest integer greater than or equal to x). 	These s variables 

may be the output of a counter, shift register, or any other dynamic 
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structure that gives r consequetive different combinations of the new 

variables yi 	 ys
. Ordering the functions as they are wished to 

appear, and indexing them by the successive outputs of the yi, a single 

function of s+n variables is obtained. This may be minimized by the 

method described above. 

As an example consider the function defined on'eight elements 

(0,1,2,3,4,5,6,7) --1)(5,0,1„6,7,310,6) 

which is equivalent to the truth table 

x2 x3 fz f2 f3  

0 0 0 1 0 1 
0 0 1 0 

0 0 1 0 
0 

0 0 
0 1 1 1 
1 0 0 1 1 

0 

1 

1 0 1 1 
1 1 0 

0 

 
0 0 0 

1 1 1 1 0 

Introducing two new variables yi and y2  and assuming that they can be 

produced in the sequence (00, 01, 10) (by a binary counter for instance), 

00 can be associated with fil  01 with f2  etc. 	A function of five 

variables 

1 (0, 3, 4, 7), (11, 12, 13, 15),- 

(16, 18, 20, 21), (8) 

is then defined, where 6 indicates that for the combination 11 any 

arbitrary subset of (24,25, 	 31) may be inserted. 

This degree of freedom for the last eight elements can be taken 

advantage of by including all of them while calculating the prime-

implicants (Appendix II, figure A.1.2) then use only the actual member 

elements when calculating the necessary cubes. 	This results in a mini- 
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mum number of cubes to cover the defined elements; the remaining ele-

ments will automatically have been selected in the best fashion. 

For the example above the best cover was found to be the ten cubes 

below 

Oxx11 	Oxx10 m 
1x0x0 	1x0x1 m 
lx10x 	1x1lx m 
x110x 	0 0 x 0 1 m 
x0x00 	0 1 00x m 

By selecting the order of the variables in the manner described in the 

previous section, only ten terminating branches were obtained, giving us 

nine elements in our realizing net. 	If the three functions are realized 

separately eleven elements is the minimum obtained, showing that even in 

this rather trivial case there is a substantial saving. As the number 

of functions and the number of variables increases you would expect this 

saving to be more noticeable. 
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CHAPTER V.  

Function Generation Using Digital Circuits 

5.1 	General Digital Function Generator  

As mentioned previously (page 57) a digital function is a mapping 

from a finite set of points X to a finite set of points Y. If the num-

ber of points in X is P and the number of points in Y is Q, then X may 

be coded into p . [ loge  pi binary bits and Y into q = [loge  Q.] bits. 

In terms of these binary variables the function may now be defined by q 

boolean functions of p variables. q...c.p, otherwise the space Y would 

contain more elements than X, indicating that some X would have to map 

into two elements. Figure (5.4a) is the circuit diagram for this 

realization. The single set of input leads into the function blocks fi  

really represent all p leads coming from the input variables x1. A 

similar notation is employed for the outputs and inputs of the coding 

blocks. 

It is assumed that the domain of all functions under consideration 

is the integer set 0,1, 	 P-1 and the range 0,1, 	 Q-1. With 

this assumption, the natural coding of the input and output into their 

binary number representation may be used, eliminating the need for sep-

arate coding blocks. An example of realizing such a function by a 

sequential net has already been done (page 98). For different domains 

and ranges, input and output coding blocks must be inserted, compounding 

the problem considerably. Fbr all practical cases such 'discontinuous' 

(in the sense that if integers 'a' and 'b' are members of the space then 
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not all integers between jal  and 'b' are) spaces do not arise. 

Such a design procedure may be used to obtain any digital function;  

representing an arbitrary mapping from X to Y. For most purposes this 

is far too general as normally not all functions from X to Y are required. 

This leads on to a discussion of exactly what kind of functions are of 

use and what simplifications this produces in the network above. 

5.2 Extension of the 'Continuous' Concept  

For control systems applications the kind of functions encountered 

are continuous, or at most;  piecewise continuous; anything more abstract 

can only be of theoretical interest. The problem is to approximate this 

function by a digital function, implying quantization of both the ordin-

ate and abscissa. 

Figure (5.1) shows the effect of quantization on the two axes and 

(5.2) the errors incurred. y-quantization ensures that the error of the 

approximating function never exceeds one-half a level; x-quantization 

that the error at the sample points for x is zero. Very large errors 

, 
may occur for this second case as shown in figure 0.2 ). When both 

co-ordinates are quantized all that can be said about the error is, that 

at the sample points for x, the error must be less than or equal to half 

a y level. The goodness of the approximation over the remainder of any 

single interval is dependent upon the value of the derivative. Note 

that the operations of x-quantization and y-quantization are commutative, 

meaning that the same final function is obtained regardless of which 

operation is applied first. 

Let a <:x ‹cb be the domain of definition for the functions. 
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Define the three quantities below 

A . max y - min y 

B = b-a 

C
max dz I  

a Gx <b I dx 

If y is quantized into r levels and x into s levels then one y level 

would be A/r and one x level B/s. The maximum error at the mid-point 

for x is then A/2r. If the maximum derivative occurs in this interval, 

then the change in going to the end points rd the interval cannot exceed 

CB/2s, as drawing a simple diagram immediately shows. Hence, the 

following equation for the maximum possible deviation of the quantized 

function from the true function in any given interval results. 

emax  ‹.;;.5(A/r + BC/s). 	(5.1) 

Limiting the total number of quantization levels in x and y, i.e., 

r + s o  k, to put an upper bound on the complexity, (5.1) becomes 

BC 
emax 	

c 
C 

 _La  
‘r 	k-r/  • 

(5.2) 

Both r and s are greater than zero indicating that r in the above 

equation must satisfy the bounds 

0<ri(k. 	 (5.3) 

Differentiating the right-hand side of (5.2) and setting it equal to zero 

A 	BC 
2 - 	, • 
r 	(k-r)

2 
 

(5.4) 

Solving this equation for r and rejecting the solution that does not 

satisfy (5.3) yields the two values 

r 	k/(1 +v T) 
	 (5.5) 
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and 	s o  k/(1 414). 
	 (5.6) 

Substituting these values back into (5.1) gives the upper bound for the 

maximum error, using the best possible choice of r and s, as 

 

 

ff3E)2  

max 	
4- 

 2k 	' (5.7) 

Equations (5.5) and (5.6) constitute a method for distributing the 

quantizing capacity (k) between the x and y coordinates in a best 

fashion. 

The distancesbetween adjacent y levels and adjacent x levels are 

==A5 	-1- BC)/k = AY 

'4A5 (Ari A/A/C)/k 6AX 

respectively. In going from one value of x to an adjacent value of x 

the maximum change in y is Ckx VBC (V55 A5')/k. Therefore, the 

maximum number of quantization levels the function may change by is 

A 
r 

B  

CAx 
"- Ay 

This constant is dependent only on 

(5.8) 

the nature of the function under 

BC 
A 

number of levels available. 	If the 

e ol1e 
the next value of y,-42p- 

ea /7
4e 

b- 
+1-1eve-I-s-; 

/s 	e-honie. Z-.0 A ny 
f f 	 -ter 

consideration and not on the total 

present value of y is known, then 
on /y 2Atfi9 Levi,  ls 	q 
is al s-e--kr-mnimr. valve A-obr 
Definition: A discrete function f(n) is said to be 'continuous' of 

order u if in going from f(n) to f(n+1) the function can change by no 

more than µ levels. 

Such functions as the above may therefore be specified by an 

initial value and a string of s-1 (21)-level digits. As an example 
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u, 
consider realizing the function f . sin x on the interval (0, V. 

Suppose only k = 20 quantization levels are allowed. The constants 

A, B and C are 1, 2  and 1 respectively. Therefore 

p. . 1.253 <2 

r 20/(1+p.) 9.05 9 

s k-r 	11. 

The quantization levels Ax and Ay are .1438 and .111 respectively. The 

first x level is x a  0.0714 = 4.09 	the first y level .0556. 	From a 

N 
table for sin x the quantized function, as shown in figure (5.3a) is 

obtained. The maximum deviation of the quantized function is .135, 

whereas the maximum calculated from equation (5.7) is .127. 	The diff- 

erence is accounted for by the fact that it is impossible to have a 

fractional number of quantization levels; the nearest whole number must 

be taken. The x levels may be identified with the numbers 0 through 

10, and the y levels with 0 through 8. Reverting to the true value 

only involves a scale change on the two axes. As the function is 

Icontinuous' of order 2, it may be represented by the initial value 0 

and the string 2111110100. 

Sometimes the number of y levels, r, is previously specified and 

it is required to find the number of x levels to ensure that over any 

single interval the function does not vary by more than one level from 

the quantized function. 	For this restriction (5.1) becomes 

A A BC 
r = 2r -F  2s 

or 	A BC 
r s 
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BC 
and the number of x points required is s =(--)r. BC is always greater 

A 

than A so there are always more x sample points than y levels. The 

quantization intervals are Ax = B/s and Ay = A/r. In going from one x 

interval to the next the change in the function cannot exceed CAtix = BC 

Ay, implying that y can change by at most one interval. 	If after 

applying this method for choosing the number of x levels, it is decided 

that they are excessive and, therefore, they are arbitrarily cut down 

with the tacit allowance of an error of more than one quantization level, 

then, evidently it would have been better to choose larger quantization 

intervals to begin with, and simplify the entire problem. Hence, for 

all functions, realizations that are I continuous' of order one ria.y be used. 

Any function may then be represented by an initial state plus a three 

level string. 

Our interest in digital realizations of the type discussed above 

will be justified later when adaptive networks are discussed. At the 

moment it is only necessary to emphasize the difference between the two 

types of quantization methods mentioned above. 	The first assumes that 

there are a fixed number of levels at our disposal to distribute between 

the two ax:.s; a method for finding this best distribution was discussed. 

Note that the particular method of establishing the x and y levels is 

best only in a statistical sense. 	This means that using the above 

scheme the error can be guaranteed to be kept inside the bound (5.7) for 

any function having the parameters A,B and C. For a particular func-

tion there may exist a better quantization scheme, although this other 

scheme will result in larger errors than (5.7) for some other function 

with the same parameters. 
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The second method is somewhat more realistic as normally one is 

given an analogue to digital converter with a certain number of bits 

(log. r) and it is required to find the sampling interval B — to make the 

best use of these bits. Again the criterion for establishing the x-

quantization holds for all functions with the same parameters, whereas 

for a particular function it may be possible to use considerably fewer 

levels and get the same accuracy. The following section contains some 

practical methods for obtaining functions of the above type. 

5.3 Realization of Digital 'Continuous' Functions  

As shown above, if any discretion is shown in choosing the quanti- 

zation levels then a 'continuous t  function of some order g less than the 

number of quantization levels results. 	On page 101 a method for reali-

zing arbitrary digital functions has been discussed. For functions with 

many quantization levels, using this method results in a large number of 

boolean functions of many variables. 	The complexity may be reduced 

considerably by utilizing the 'continuous' property of the functions. 

Having chosen the quantization level, the abscissa l x1  is nor- 
(See A6.574e1) 

mally presented to the function generator as a set of p binary bitsAfrom 

an analog to digital (A-D) converter. 	It is required to generate from 

these a set of q output bits, to represent the value of the function. 

A-D converters fall into two main classes
3607,38

; the fixed sampling 

rate and the continuous output converters. Both of these have as their 

basic element a simple binary counter. 	The outputs of the counters are 

added according to the power of two they represent, an analogue network 
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giving a signal proportional to the digital number stored in the regis- 

ter. 	If the counter is driven by a continuous string of pulses the 

output of the analogue components would be a sawtooth wave. 	The first 

class of A-D converters starts the counter in the zero state, compares 

the output with the signal to be quantized, and counts up if the counter 

output is less than the signal. 	The counter stops as soon as its out- 

put is greater than that of the signal; its contents are then a digital 

representation of the signal correct to one level. 	The second class has 

a facility for counting up and counting down. The output is continuous-

ly compared with the signal, if the signal is greater the count is 

increased;  if it is less the count is decreased. 	Ignoring the first 

stage (which is usually a multivibrator driving the counter continuously) 

the remaining stages yield the required digital output to as many levels 

as desired. Corresponding to these two types of converters there are 

two main kinds of function generator that may be evolved. 

Throughout the following the functions are mappings from 2P  

elements into 2q  elements, or from p bits to q bits. 	Figure (5.4a) 

shows a function generator that can produce any function of the above 

tYpe. 
	It requires q functions of p variables. 	These may be generated 

sequentially as shown in Chapter III. As mentioned previously, if any 

thought was applied in choosing the quantization levels then a 'contin- 

uous' function results. 	Figure (5.41) shows a method for obtaining 

continuous' functions of order µ. 	The bits of x are mapped into 

r 	[loge  (2µ + 1)] 	functions 

representing the increment in the function in going from x to x + 1. 
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One of the r bits may be used as a sign bit, the remainder representing 

the value of the change required. r is considerably less than 

producing a saving in the total number of l000lean functions. 	This 

scheme is suitable only for the first kind of A/D converter, as large 

errors will result from the integrator on the output if it is required 

to hold for any length of time. 	The reset circuitry has been omitted 

for clarity. With a few additions this circuit could be used in con-

junction with an AID converter of the second kind, provided that the 

integrator can be replaced with some more stable element. 

\ 
Figure (5.5a) shows an all digital method for realizing functions 

\ 
of order 	

b 
µ, (5.5 ) giving the required auxiliary circuitry for generating 

the timing variables wi, w2, zt , and z2. Although the apparatus may 

at first sight look rather complicated, its operation is simple. 	The 

input and output registers, x and y, are connected in a reversible binary 

39,40 
counter configuration 	the input C.U. is the command to count up, 

the input C.D. the command to count down. The whole network is timed 

by a master clock represented by Cl. Register µ contains the increment 

in going from x to x+1, 4 representing the sign bit (1 for positive, 0 

for negative) and the remainder containing the absolute value. 	The 

addition or subtraction from register y is performed by counting down µ 

to zero, and simultaneously counting y up or down, depending on the sign, 

and whether x is increasing or decreasing. This counting configuration 

is used in preference to a straight adding and subtracting device as the 

number of 'bits r is usually 2 or 3 at most, not warranting the use of a 

full digital adder. 
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The first network in figure (5.5b) is necessary to ensure that the 

command signals from the A/D converter are isolated from the timing 

circuits while the system is going through an accumulation phase. For 

x increasing the contents of µ must be added to y before x is incremen-

ted; for x decreasing the input register must first be reduced before 

µ is subtracted from y. 	This change in timing sequence is produced by 

the two memory elements wi and w2 connected as a feedback shift register. 

The output D is 1 when µ is non-zero, 0 when µ is zero. The functions 

gd, and g2 ensure that the output register is counted in the right 

direction dependent upon which way x is changing (z1  . 1 for x increas- 

ing, z2  - 1 for x decreasing) and the sign of µ. 	These functions are 

gi 	061  SIGN + z2  SIGN) E 

(zi  SIGN z2  SIGN) E 

where the enabling gate E is driven by DA72 C1. Thus, only when the 

shift register is in the state 10 and the contents of µ non-zero, does 

this transfer take place. 	The function g3  driving the shift register 

is 

g3 	( (z1+z2  ) (741+w2  ) 	D w1W2  ) Cl. 

Fbr z1=z2-0 and no command from the comparator of the A/D con-

verter to increase or decrease x, the network is in equilibrium. wi 

equals 0 and w2  equals 1, ensuring that no shift pulses are getting 

through. Note that for z1.1 the shift register passes through the state 

sequence 01 	11 -*01; for z2.1 the state sequence is 01-* 00 

10--.01 producing the different sequences required for the two modes of 

operation. 	The timing sequence for the command to increase x is shown 
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below, each clock interval being indicated by a separate step. 	In the 

eouilibrium state w1-0 and the outputs of the fi  are connected to the 

register v. 

1. The command to increase x arrives; z1  becomes 1 and the 

gates to zi  and z2  are closed. 

2. A shift pulse changes wi  to 1 and w2 to 0, and the outputs 

of the networks f. are disengaged from the register µ. 

3. If µ=0 then D.0 and another shift pulse is applied to the 

register taking it to the state 11. 	If 140 then the clock 

pulse can pass through, counting down µ and accumulating in 

y. No shift pulses are being received by the register w. 

4. Same as above this mode continuing until D.0, implying that 

the increment µ has been added to the contents of y. 

• 
• 

D.0 and the shift register moves to state 11. 

11+4. The x register is counted up one as required, and the shift 

register set to 01 as well as zi  and z2  being reset to zero 

in preparation for the next sequence of operations. 

A similar sequence structure results if a command to decrease x is 

received although in this case the value for x is counted down before 

the increment µ is added into the output. The sequence register w first 

changes to 00 allowing the new value of µ to be read in before the 

counting procedure starts. 

With this scheme there is a danger of getting completely lost if 
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a clock pulse is missed, or some noise gets into the system. This can 

be avoided by taking the few most significant digits of x and, when the 

remainder of the digits are 0 (i.e., specifying a subset of x with a 

very long sampling period), calculate the exact value of y by functions 

of these fewer variables. The rest of the network can be short cir-

cuited hence fixing a set of y values in the output. The functions f 

are usually simplified also as there are now some x whose g can be 

chosen arbitrarily; namely those x preceding the ones that have their 

complete functional value specified. This hybrid realization probably 

gives the most economical apparatus with the required reliability. 

5.4 Example Realization 

It is required to realize the function shown in figure (5.3b) by 

a digital function generator. This may represent a tunnel diode 

characteristic necessary for some simulation work. 	50 levels at most 

are allowed, resulting in 32 horizontal intervals and 16 vertical 

intervals, taking the values obtained from equations (5.5) and (5.6) to 

the nearest power of two. The resultant quantized function is shown 

superimposed on the original function. As it is of order 2, 31 five 

level digits are required to represent it. 	In fact only four of these 

digits occur (- 1,0,1,2) so that, with a few minor modifications, µ 

could be represented by two stages. However, it is assumed that three 

stages are required, to illustrate the simplification that results. 

f1  is the sign bit,equal 1 if the sign is positive, arbitrary where 11=0 

fl  = (0,1,2,3,4,5,6,19,21,22,24,25,26,27,28,29,30) 

fl  arbitrary on (7,8,9,10,16,17,18,20,23,31). 
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A minimal cover for fi and fl  employing the same notation as in Chapter 

IV, is found as 

1 xxxx 

x0xxx 

0 1 xxxx 

This requires only two nor elements in its realization. f2  represents 

the most significant digit in the magnitude of µ and is covered by the 

three elements 

f2  = (0,3,30) 	arbitrary on 31. 

This requires eight three input nor gates. As µ=11 can never occur, 

when f2  is true, fi  must be false. Thus by a little extra logical 

feedback from f2  of the form 

f3 	f2 fl m  f2 + f' 	 (5.9) 

some simplification may be effected. f' is 13  plus an arbitrary subset 

of f2, or, equivalently, ft  is f3  minus an arbitrary subset of f2. 	fl  

may be realized by a simpler net than the one that would produce f3  

directly. Using this fact, minimal covers for f' and 11  are found as 

below 
fi 	 ft 

0100x, 	xl1xxx 

010x0 	11xxxN 

1 0 0 0 x 	xx011 

100x0 	xx101N 

10x0O• 	xx11 0 

x 0 1 1 1 	00xxON 

0 0 Oxxs 

This needs thirteen elements plus the one extra element required by 

(5.9). The entire structure is composed of only 24 nor gates, a con- 
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siderable saving over the result obtained if the transformation is mapped 

directly. By varying the functions fi  it is possible to realize any 

function of order 3 using this same network. 

As shown previously if accuracy to one quantization level is required 

then a function of order 1 results and only two boolean networks f1  and 

f2  are necessary. Again A is a simple function as it has a large number 

of points where it may be chosen arbitrarily corresponding to where t=0. 

In this case the timing circuits of figure (5.5) may be simplified as it 

is known that at most, one count pulse is required at each stage. 

Furthermore, if the generator is to be used in conjunction with a type 

one A/D converter, no—timing circuitry is required at all as the value 

may be fed directly into the y accumulator, conditional on the command 
41 

for x to increase. 	It is also possible to use three level logic devices 

42 ,43 
although the mathematical difficulties 	seem to increase more than 

proportionately. 



120 

CHAPTER VI 

On-Line Adaptation 

In all optimal control problems it is first necessary to decide 

exactly what the object of the design is, i.e., to specify a criterion 

(cost) function for the system. 	If the capability of adapting some of 

the system parameters is admitted then this cost function becomes a 

function of the adaptable parameters. 	It is then theoretically possible 

to find a minimum for the cost by finding where all the derivatives with 

respect to the parameters are zero, and ensuring that the cost function 

is concave at this point. For most adaptive systems some hill-climbing 

method, following the gradient of the function, of adjusting the param-

eters is proposed to ensure that optimal behaviour is maintained when the 

other system constants are changing. 

If the system has a zero memory function, defining a switching 

surface for example, in its make-upland this has to be chosen in an 

optimal fashion, then the problem is complicated by at least an order of 

magnitude. Now the criterion function is a function of a function and 

we find ourselves faced with hill-climbing in Hilbert space. 	This space 

can be approximated arbitrarily closely by sets of orthogonal functions, 

like those mentioned previously, producing an infinite set of co-ordinat- 

es to adjust. 	The hill-climbing problem can be tackled through the 
4 6 147 

classical calculus of variations
44745,47 

or dynamic programming 

both of which lead to enormous computational difficulties to achieve any 

analytic results. The answer seems to lie in having a learning system 



121 

48,49,50 	 48,50 

	

which adjusts itself empirically to achieve a certain goal 	1  

another mode of saying minimizes a criterion function. 

Adaptation is only of use if the system is carried through a number 

of cycles of operation. 	Only then is it possible to evaluate the system 

performance with some known set of the adaptive parameters, following 

which any changes necessary may be made. Further, the change in the 

system parameters must be slow with respect to the operation of the per-

formance evaluator, otherwise there is no clear indication of what the 

cost is with a given set of parameters, and no idea concerning which way 

to go for improvement can be infered. 	Therefore, in the following 

sections, the basic assumptions are that the parameters are slowly 

varying, and that the system under consideration is cyclic in the sense 

that it must perform the same kind of operations repetitively. 

6.1 	Adaptive Functions  

When the performance evaluator comes to the conclusion that the 

particular function used was not the best, the form of command to the 

function generator is to increase or decrease the function over a speci-

fied range, much in the way that functions are varied to find an optimal 

solution using the calculus of variations. 	For sophisticated evaluation 

procedures some idea of the magnitude of this variation may also be 

given. The input command to the function generator is therefore a sub-

range specification a 5:x <b and a magnitude of variation 5. 

The diode function generator, as mentioned in Chapter III, is 

probably the most practical method for realizing fixed functions. For 

adaptation, one is faced with a host of potentiometers defining the break 
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points and slopes, each requiring a servo motor to drive it. When the 

command comes to increase the function over a certain range, the calcu-

lation of what the new pot settings should be is no small problem. In 

the end the entire system becomes too complex to be of use and would 

probably require a tertiary control system to control the function gen-

erator itself. 

If the function is expanded along some spectral axes fi, with 

weightingfunctionpl thentheincrementtothecoefficientsa.can be 

calculated from 

1
5 r  Ja 	.pf. dx 	 (6.1) 

Providedthedorrain(apb)issmallenoughsothatpandf.do not change 

appreciably over it, then the approximate form 

Lai  = (10...a) p  (13-1-al 4 
-L"i 	2 

(b+aN 

\ 	/  
(6.2) 

may be used. Assuming n functions fi  are required to represent the 

desired function, then again n servo multipliers or servo-pots are nece- 
set 

ssary to the coefficients. The way in which the change must be made is 

easily calculated from (6.2) but it seems impossible to get away from the 

need for servo-multipliers, an expensive and complex device. 

The piecewise linear functions discussed on page 33 would probably 

be the most convenient set for realizing an adaptive generator of the 

above kind. 	The base functions are easily obtained from diode genera-

tors and as the weighting function is one, equation (6.1) becomes exactly 

da 	6  f i 
	2 
(a+) (b-a) 

for a and b on the same lineal segment. With a break point between a 
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and b there is a small increment or decrement, depending on whether it 

is a positive or a negative break point. 

For discrete functional realizations the command is usually to 

increase or decrease the value of the function for a specific xo  by the 

amount S. 	The correction to the coefficients is 

Aai  = S P (xo ) fi  (xo ) 	 (6.3) 

which is easily enough obtained. Again potentiometers, with all their 

attendant difficulties, are required to set the coefficients. 	The only 

way of circumventing this problem is to go to an entirely digital method 

for obtaining the necessary adaptation facility. 

6.2 	Adaptive Digital Function Generators  

All the analogue functions mentioned above are realized by defin-

ing a set of real numbers to represent the function, i.e., a set of 

expansion coefficients or pot settings. With the given hardware it is 

possible to realize an infinite number of functions, producing almost 

perfect compensation but aggravating the search problem considerably. 

By using digital functions this 'function space' becomes finite, re-

ducing the search problem but giving something less than perfect compen- 

sation. 	If this space has k members then at least 

n 	[log2  kI 	 (6.4) 

bits are required to distinguish a particular function, regardless of 

the way it is obtained. 	Thus the size of the class of functions which 

it is wished to realize is of primary importance as far as complexity is 

concerned. 	n, given by equation (6.4) will be called the 'entropy' of 
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the 	class, in imitation of this word t s use in information theory 
33,52 

Suppose the requirement is to have a method of realizing all 

functions from k elements to 1 elements. There are 1
k such functions 

and the entropy of this 

to form a look-up table 

specified by the input, 

class is Lk log21 

in a core memory, with 

and each range element  

It may have been decided 

k different addresses 

being represented by 

[lo 11 bits. 	This requires a total of 
_I 

 

k log2  lJ bits. 	If 1 is a 

power of two, which it normally is, then these two expressions are equal 

and one sees that it is futile to try and get network representation for 

this class of all functions, as it cannot possibly be an improvement 

over a look-up table. 

However, as shown in the preceding chapter, if any consideration 

is given to the quantization of the functions, at worst all functions 

'continuous' of order µ are necessary. Assuming the spaces of definition 

above, and that the functions are of order µ, the total number of func-

tions in the class becomes 1k71  and the entropy is 

doge 	[10,21 

considerably less than ik log21 1 for the class of all functions. 	The 

1 appears in the equation for the size of the class as the initial con-

dition may be chosen in 1 different ways. Again the best realization 

would be to have a store containing (k-1) log2µ] bits, if it is desired 

that all possible functions be contained in the adaptive networks. This 

class still seems too large for any practical realization. Even if µ 

is only 2, the introduction of at least [(log.2  1)+k-11 new variables is 

involved. 	k, the number of elements in the domain, may be quite con- 
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siderable and the resultant network may be very complex. Most members 

of this class, the members that os)cilate rapidly, do not occur in 

practice and it is advisable to keep such functions out of any adaptive 

loops as, in all probability, they will produce spurious behaviour. 

Analytically, this represents a restriction on the size of the second and 

higher order derivatives that occur in the associated continuous function. 

Hence the importance of determining beforehand the exact class of 

functions that may occur in the adaptation loop is evidenced, as the main 

concern is to reduce the entropy of this class. Having decided on the 

members of the class all that is necessary is to introduce enough new 

variables to distinguish each member and form a single function of this 

larger number of variables. 

The purpose of adaptation is to keep a system operating optimally 

in spite of changes in the plant dynamics. If the plant dynamics and 

the range of variation of the parameters are known, or if a model has 

been obtained that simulates the plant satisfactorily and the variation of 

the model parameters is known, then the portion of parameter space 

covered by the variation can be found. Each point in parameter space 

has associated with it some optimal compensation function. Hence this 

space maps into some region of the function space. 

Every digital function that has its x and y quantization levels 

defined, covers some volume of the function space, i.e., all members of 

that volume map into the same digital function when quantized. This is 

effectively the same thing as quantizing the function space. 	The class 

of digital functions needed is the class that covers the region in func-

tion space defined in the above paragraph. 
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Analytically the above discussion reduces to the chain of rela-

tionships shown below. The basic mechanics involve a system with known 

parameters that has an adaptive function g somewhere in its configura-

tion. A criterion function I is also given, its value being dependent 

on the input u, the state x the function g and the system parameters a. 

I . I(u, x, a, g). 

It is required to minimize this functional with respect to g. 

Given u, a and g (i.e., the input and the system dynamics) x is deter-

mined. Hence 

I . It(u„ a, g). 	 (6.5) 

For a set of parameters a and an input u the minimization of (6.5) 

determines the optimal g. The space of variation for a is,k and for u, 

iL. 	Therefore a mapping s as shown below is properly defined where 

is the resultant space of g. 

A x (./J 
	

(6.6) 

The mapping s is the solution for g from (6.5). A second mapping t, 

resulting from the quantization of 't"'", defines a subspace 51-  of the 

digital function space. 	s and t may be combined into the single 

function v yielding 

V (6.7) 

The number of elements inY determines the number of functions that must 

be realized. Note that, although the mapping (6.6) is usually diffi-

cult, if not impossible to find, (6.7) may be a great deal simpler as 

represents a finite set. 
4 

v partitions the space A x0 into dis- 

joint regions making it necessary to decide only in which region the 

system is operating to determine which digital function to use. An 
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example will help to clarify some of the above points as well as illu-

strating some of the difficulties encountered in a practical case. 

6.3 Application of a Digital Function Generator 
to a Time Optimal Position Control System  

The system considered is a time optimal, second order, position 

control system. 	This choice was made as the mathematical expression 

for the optimal switching function is easily obtained, allowing the 

example to be solved entirely by analytic methods. For more complica-

ted systems a computer study would probably be needed to determine the 

necessary digital functions, although the final realization, in terms 

of hardware, need not be more complex. 	The theory of operation of 

this system is described thoroughly in reference 53. 

A block diagram is given in figure (6.1), it being just a particu-

lar case of the relay controlled systems mentioned in the Introduction. 

The input ei  consists of a series of step functions with the assumption 

that after any given step, the system comes to rest before the arrival 

of the next step. 	The relay coil is 

some function of the velocity (00) of 

the relay coil reverses sign a maximum 

to the system. Provided the function 

the angle that would result if reverse 

driven by the error signal, plus 

the output. When the signal to 

decelerating torque is applied 

of the velocity fed back gives 

power was applied at that speed, 

and the velocity allowed to drop to zero; switching then occurs at the 

correct instant to ensure that the system falls to zero error with zero 

velocity. 	At this point, due to the dead zone in the relay, no input 

is applied and the system remains at rest. 
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53 
The required feedback function is 

y = x - ln(1 	x) 
	

(6.7) 

00 	00 	• 
where Y 	and x 7—. m

, the maximum velocity of the motor, is 
01Ill 

KVr. As this function must be symmetric only one half of it need be 

realized explicitely, the sign being taken care of by the outer loop as 

shown. Suppose that changes in the time constant (7 and in the gain KVr  

are to be compensated for. To assign numerical values, say that the 

space /{ of parameter variations is 

/(z KIT ) L 	r 
.25 < 	< 
io <KV

r 20,J 

where normal set notation has been used. This space is shown by the 

rectangle in figure (6.2a). 	As (z, em) varies over this region ecuation 

(6.7) maps the feedback function into the shaded region of figure (6.2b). 

The functions as determined by the four corners of,k, (.25, 10), 

(.25, 20), (.5, 10), (.5, 20), are shown by the heavy lines. 	The 

shaded region corresponds to members of the set , defined in the 

preceeding section by equation (6.6). 

Assume the adaptive digital function generator, used to obtain 

representative members of this class, quantizes both the domain (x) and 

the range (y) into 16 levels. 	Then all member functions maybe defined 

by digital functions of order two. Also, as the functions are mono-

tonically increasing, three levels, and only two boolean functions, are 

required. 

In terms of the primary variables, 00  and 80, equation (6.7) is 

• ° 00  = '40.0  - S ln(1 7—)) • 
eM • 

(6.6) 



(.2.;');/0) 
	 (.25;20) 

//,::,-41z-fo/c/ 01 Pamts Covered b_y 
Function o'e/ierateci for (.41._5,75) 

Fe
ee

bo
vi

c  
F
u

t2
c
tt

'o
h  

(ra
Q 0

 

• J 

i 	1 	1  
sr 	/o 	45- 	ao 

Maximum Ve/ociey 4, (rac://ssec) 

Space 0-1 Parameter Variat7o/7s 

5- 	/0 
Angidai- Ve/ocit_y 630  

Space of Feedback Fe/act-icy, 
Vatiatioi7 
Figure 6.2 

20 



• So 	1 
00 	- a@m1 ln(1 +-- )   (`• 

ae j L, 
0 	a < 1 

(6.9) 
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• % 
Looking at the curve for 	0m

) = (.25, 10) in figure (6.2
a), it appears 

that this curve may be well approximated by some curve with a greater 9m  

(greater domain) and a different. Suppose the switching function for 

• 
0 	and %i  has been obtained. 	The assumption that this curve is a good 

approximation for all curves with a smaller 8m 
that have their end 

points on the original curve, is employed. The equation for all curves 

with 0m 	mi and any time constant may be expressed as 

• 
The end points of these equations are where 00  = 6 = a0mi 

 and therefore 

may be found from 
• 

00  = m  - a0 In 2 	= .307 a0 	(6.10) 
i  

The value of the original curve at this point is 

So f a0 	-6 	ln(1 	a),} . 
L my 

These two are constrained to be equal implying that the new 'tis 

- ln(1 + a) 1 /(.307 a). 	 (6.11) 

Therefore, having the feedback function for the point mi ) the 

function for the entire manifold 

(a - ln(1 	a))/(.507a), a0 ) 
	0 c a 

is also available. Such a manifold is illustrated by the heavy line in 

figure (6.2a). 	Thus only the functions for the maximum values of Om

and 't need be realized, all functions in the interior of the space being 

covered by one of these boundary functions. This illustrates the saving 

that may be made over merely quantizing the parameter space,),_, and 
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realizing a feedback function for each quantized area separately. 

Suppose it is wished to span the space ej[, with eight representative 

feedback functions corresponding to eight points on the boundary of ,4 

Figure (6.3a) shows the eight points chosen as well as the eight param- 

eter regions covered by these points. 	These points could have been 

chosen with a lot more care, for example by choosing them so that the 

proportion of) covered by each point was a  of the total. Also, if the 

statistical distribution of the parameters was known, they could have 

been chosen to ensure that the probability of being in any region was h. 

However, these are just frills on the main problem and could only serve 

to complicate matters. 

The eight points in parameter space map into the eight curves of 

figure (6.3b). 	(6.5b) also shows the regions that are represented by 

each curve. 	Quantizing these eight curves into sixteen levels, and 

using the incremental realization method of the previous chapter for 

obtaining function of order 2, the set of functions below are obtained. 

µ, the increment, is determined by its corresponding binary equivalent, 

f
a 

being the least significant figure, fp  the most significant. The 

third function in each group fa  is the set over which the function may 

be chosen arbitrarily. 

fa 
fp, 

f
a 

(3,5,729110  
\11,12,13,14 

- (null) 

= (15) 

fi  

:a (( i4:179,13) 

ip  

f
a 
 = (15) 

f2 
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(3,4,6,7,8  .\ 
fa 9,10,12,13) 

- (11,14) 

• (15) 

f3  

(2,4,5,6) 
• 8,9,11 

- (7,10,12,13) 

,== (14,15) 

fa  

- (2,3,4,5,7,9) 

- (6,8) 

- (10,11,12,13,14,15) 

(2,4,5,6,7) 
• 	8,9,11,13 
= (10,12,14) 

• 	(15) 

f4 

(2,3,4,5) 
\• 6,7,9 

= (8,10,11) 

= (12,13,14,15) 

r6  

= (1,3,5,7) 

- 	(4,6) 

• 	(8,9 	15) 
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f
a 

fp  

fa 

fa 

fR  

fa 

fa 
f p, 

fa 

f p, 

fa 

f a 

fa 

f a 
fR  

fa 
fa  

Again, as µ=2, it is possible to use the fact that for f =1, fa 
must be 

zero and the simplification of the previous example (page 118) results. 

Three more variables y1, y2, y3, can be introduced to distinguish each 

of the eight functions above. Hence, two functions, f and g, of the 

seven variables yl , y2, y3, Xi, X25, x3, X4, are obtained. 	The three 

new variables are introduced by defining f000 = fia, goon =flp,  

fool 	f2 a, gooi, = f2 p etc., and then forming the corresponding conjunc-

tive normal forms. These two new functions may then be realized by 

minimal nets, again noting that f may be chosen arbitrarily on members 

of g if one more gate on the output of the net is allowed. 

Carrying the synthesis procedure through results in a net contain- 
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ing something less than 55 elements in all, to realize the two functions 

required. 	This may seem somewhat excessive, but for two functions of 

seven variables, and considering that a fan-out of only one is permitted, 

it is quite reasonable. 	If the fan-out was increased the number may 

fall to about half the above estimate due to considerations mentioned in 

Chapter II. 

The values of yi, y2, y3  are set according to the region of the 

parameter space in which the system is operating (see figure (6.3a)). 

The determination of this region may be a difficult problem as the 

boundaries are defined by rather complicated expressions. This problem 

can be avoided by using a performance evaluator rather than trying to 

estimate the parameters of the system. The criterion is that the system 

should come to rest in minimum time, implying that the relay should 

switch only once and the system come to rest with zero velocity and 

zero error. 	If too much velocity feedback is applied the system 

53 
switches too soon and the relay goes into a rapidly oscillatory mode 

in its attempt to bring the error to zero. If too little feedback is 

used and the relay switches too late then zero error occurs before zero 

velocity. Both of these conditions are easily detectable from the relay 

input and output. Hence, whether to choose a higher or lower curve, 

may be decided merely by observing the relay behaviour without doing any 

system identification. 

In the more general case, where nothing is known about the system, 

a function generator that realizes a much larger class will be required. 

Here the search problem must be considered and the folly of having too 
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many functions in the class (too high an entropy) is evident as the 

convergence to the correct result will then be slow. However, quanti-

zing a function space in an optimal manner is no easy matter, as illu-

strated by the simple example above. Exactly how this should be done 

requires a great deal more study and much deeper probing into the now 

rapidly expanding field of functional analysis. 

The necessity of identifying the system in order to determine the 

compensating function has been mentioned above. The next chapter takes 

some measures to solve the identification problem and also contains a 

number of computed examples to substantiate its claims. 
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CHAPTER VII 

Discrete Functions and On-Line Process Identification 

7.1 	System Representation 
51 

A system is defined by a mapping between two sets of function 

spaces, one called the input space, the other the output space. 	This 

definition is far too general for any practical use and almost immedi- 

ately some further structure must be imposed. 	This further structure 

is usually the assumption of linearity, implying that if fi(t) and f2(t) 

are two different members of the input space, the corresponding members 

of the output space being gi(t) and g2  (t); then the member of the out- 

put space corresponding to afi(t) 	bf2(t) is agi(t) f bg2(t). 	This 

linear property allows the use of all the spectral analysis results 

developed before. 

If the input function f(t) is expanded along some base axes as 

f(t) = 	 a.f.(t) and the way the system maps the set {fi(t)) into the 
i=0 

output is known, then the way the system maps all functions is known by 

the linearity property. 	Thus, given the mapping m 

fi(t) 
m 

g(t)
, 

then the output function can be constructed by mapping the component 

vectors separately and performing the corresponding sum, yielding 
m 

g(t) = 21] a.gi(t). 	Note that now the mapping m represents the system 
i=0 1  

and is dependent upon the particular set tfi(t)) chosen. 

The further restriction to 'linear differential systems' or tiumped 

parameter systems' is made. 	This implies that the input function f(t) 



138 

and the output function g(t) satisfy a differential equation of the form 

n  	df did 	b. 
i 	

(7.1) ai  
i=0 dt i=0 dti  

where the zeroth derivative is the function itself. 	For practical 

systems m ‹;n, making this an n
th order differential equation. Many 

systems do indeed obey a relation of this kind or may be approximated 

closely by such an equation. 	The differential equation along with the 

spectral functions {f.(t)1  define the mapping m. j 

To clarify the above discussion consider the classical frequency 

response method of control engineering. Here the base set of function 

is chosen as 

f
f(tpc.0) = {sin Lot, cos /10 	0 < W < 00 	(7.2) 

and form an orthogonal set over the range (-0C16). An arbitrary function 

f(t) may be expressed as a sum of these (in this case an integral as tai 

is a continuous variable) 

^a)  „ 	 / f(t)Fs(L6) sin Wt d/.3 + 	F 0.)) cos Wt di6 
L-00 	-

0 

1 
(7.3) 

where Fs 
(W)j-1°' 

 f(t) sin 03t dt, Pc  (W) 
nu 2n 

f(t) cos GA dt. 

(7.4) 

1 
n The factor 2

-- is the normalizing constant for the functions (7.2). Pre-

senting a base function of the form sin at to a linear differential 

system the output is a sine wave of the same frequency with an attenuated 

amplitude and a phase shift. 

sin Wt 	m.(6') sin (sit + P(0)) 

similarly 	cos Wt 	MM cos Pt PM). 
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The system mapping m is determined by the two functions M(W), the magni- 

tude response, and P(0), the phase response. 	Evidently if an input of 

the form (7.3), represented by 'coefficients' (7.4) is presented, then 

the output will be given by 

g(t) 	Fs (W) M(W) sin (cot + P(c0))diJ 
06 

M(6)) cos (,t 	P(0)d(c1 
J-c0 

The output frequency responses Gs (w) and Go (W) as found from equation 

(7.3) are 

G.(1.0) - 1;).),)  i s(co cos (pm) - Fc(W) sin(P() )./ 

Gc  (W)a -1\a)11?s (W) sin (1)(6)) Fc(W) cos(P(4 

Solving this for M(W) by squaring and adding the above two equations 

Gs (W) dc (0)  
M(W) i= 2n 	2 	2 „ • 	 (7.5) 

Fs  (620 	Fe(W) 

Taking the ratio and solving for p((.+W) yields 

F (0) Gs (W) -Fs(0)  Gc(W) 
P(W) tan ( 	(7.6) F,,(1,J) Gc(W) - F(W) Cl,„b (6))) / 

Note that if formally the complex functions 

F(W) o  Fc(W) j F8(4 

and 	 G(W) 	Gc(0) 	j Gs (W) 

are defined, then equations (7.5) and (7.6) are obtained by taking the 

magnitude and phase of the function 2nOWF(U). 

M(W) Q  21 F 
GMI  P((0) Arg 
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Usually the 2n is associated with (7.3) and not (7.4) as shown. 

GM/F(0 is the classical transfer function of the system used through- 

out all frequency response analysis, and is an invariant for the system 

regardless of the input. 

Another, perhaps more exotic, form of this spectral analysis method 

is the so-called 'impulse response' representation. 	Using this the 

input is assumed to be made up of a series of impulses, or Dirac func-

tions, weighted according to the value of the function at that instant. 

The impulse function 6(t) is defined by the property that for t 0 
(30 

6(t) 	0 but 	6(t) 	1. 	The complete set of spectral functions is 

6(t-x), orthogonal for all different values of x. 

f o(t o(t, dt - 0 
afh 

An arbitrary function f(t) may be expanded in terms of these, the 

expansion 'coefficients' being found from 

J:D
c f(t) 5(t-x) dt = f(x). 	(7.7) 

Thus the spectrum and the function are identical. 

The response of the system to an impulse at time zero is denoted by 

h(t), yielding the mapping from the spectral function to the output as 

6(t-x) 	h(t-x) 
	

t x. 	(7.8) 

Assuming the spectra given by (7.7) is the input to a system and using 

the mapping defined by (7.8) the output function g(t) is 

g(t) 	
013 

f(x) h(t-x) dx 	r  f(x) h(t-x) dx (7.9) 
J-061 
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as h(t) u  0 for t <0. 	This is the familiar convolution integral. The 

system is represented by the function h(t) and must be obtained by de-

convolution of equation (7.9). Actually the spectra of the impulse 
54 

response is the frequency response function mentioned earlier and so may 

be found merely by taking the inverse transform of. r 	uo. Alternatively 

i2 
it may be obtained directly using correlation with noise 9  pseudo-random 

1.2 0.5 
binary chain codes 	or by direct analysis using the naturally 

54 
occurring signals . 

The most well-known system representation is the Laplace transform. 

Here the expansion functions are of the form e(a+j.)t for all real a and 

These have the same advantageous property as the frequency response 

functions in that they change the differential equation (7.1) into an 

algebraic equation that conforms much more readily to analysis. This is 

the standard transform used throughout all control and circuit theory 

engineering. 

7.2 	On-Line Identification 

Our goal is to find a method for identifying linear differential 

systems using the naturally occurring input and output signals. 	The 

system may be completely specified by the coefficients ai  and bi  in 

equation (7.1), by the frequency or impulse response, or by the pole-zero 

pattern that arises out of the Laplace transform approach. 

Although the representations mentioned above are excellent when 

considering the response of known systems, or synthesizing higher order 

systems from lower order systems, they do not fit easily into any on-line 

identification schemes. 	The frequency response method requires a con- 



142 

tinuous spectrum of the input and output waveforms and the evaluation of 

the functions in equations (7.5) and (7.6). 	Although this is convenient 

for off-line analysis, where it is possible to drive the system with the 
55 

sinusoidal test signals and obtain the resultant Bode plots , for on-

line work it requires spectrum analyzers on both the input and output of 

12 
the system. This has been tried with limited success. Many schemes 

have been developed for obtaining the impulse response directly by appli-

cation of suitable test signals but these involve long correlation analy-

ses, resulting in a long identification time. Also, having the impulse 

response it is still no small matter to convert it to the coefficients 

in (7.1) or to the frequency response as this involves finding a fourier 
56 

transform which, in general, is not an easy operation . 

Below a method of extracting the coefficients of (7.1) directly 

using expansions in Laguerre function is given. These polynomials have 

been defined in section (2.4.3) and have, for our purposes, one other 

interesting property. 	Instead of defining the functions on the range 

(0,03) it is desired to define them on (-CO, 0), necessitating the change 

in variables 	These are called negative Laguerre polynomials and 

are denoted by An(x). The Laguerre functions may be obtained from the 

differential equation 

Ln (x) ex do 
 

do  
(xne-x ) x >70 

Making the change in variables the negative Laguerre functions are gen-

erated by 

An(x) 
e-x d

on ex) n. 	n dx 
x 0 ( 7 . 9 ) 
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The first few may be found by replacing x by -x in the examples given 

in section (2.4.3). 	These functions satisfy the differential relation 

n-1 

Cl+cAn(x) 	i(x). 	(7.10) 

This may be proved by a simple induction using the definition of A n(x) 

given in equation (7.9). 	Its extension to the r
th differentiation is 

dr / 	n-r 

dxr \n
(x) 	(n-i-1-1 /'; 

1-0 
(7.11) 

The input and output of a system, at any time t, are functions 

defined over the half line (-0c, t), making a representation by expan- 

sions in the negative Laguerre polynomials possible. 	The situation is 

as shown below. 
f(2) 
	

g (t) 

System 

0 

The input may be represented by 

0„ 
f(-c,t) 	oc. (OA . (15—t) 

i.o 1  
(7.12) 

where 
t 

ai(t) 	e- f(S) 11i(ir-t) 
-00 

(7.13) 

  

0 
erf(t+v) A Jo dir. 

- Q° 

 

   

   

Similarly 

where 

06 

g(V,t).,51  p.(t) 	i(rr-t) 
1.6 1  

0 Pi (t) 
ezg(tA7') A 1  (0 ds-  . 

(7.14) 

(7.15) 



Assuming the system is represented by an equation like (7.1) then 

at time t the input and output function shown above must satisfy 

dig('‘,t)  a. 
±=o 1 Tel 

d1f(V,t)  t 	(7.16) 

 

Expanding et, t) and f(E,t) by equation (7.12) and (7.14) and substitu-

tingr-t=x yields 

00 
p(t) 4—d j 

J= 

di .00 di A  . Aj  
a. 	a.(t) -111'.1  b. 
' (ix" 	j.6 	f-r-=-6 1 dxi  

 

 

(7.17) 

The upper limit of (7.11) may be changed to n-1 as (t) . 0 for 

a <b. Also the upper index m on thexdght of equation (7.17) may be 

changed to n by introducing enough new coefficients bi  all equal to zero. 

Then the right and left sides of equation (7.17) are entirely symmetric 

so, for the moment, all operations need only be performed on the left 

side as the right side must assume an identical form. 

Substituting the modified result of (7.11) into (7.17) changes the 

differential equation into a linear equation in p.(t), a.(t), a., b and 

(x) of the form 

5°1  t.( ) LE a. 
±.1 1  

(j  
i1 ) 	k(x) 	aoi\j( x)1 (7.18) 

Interchanging the summations with respect to k and j yields 

cx, 

k=0 

00  
p.(t) Li  ai  

ij
i1
-k-1) 

k(x) aopkwAk(x)}. 
j=k+1 	i= 

As the functions Ak
(x) are linearly independent, for this relation to 

be satisfied the coefficients must be equal, resulting in the following 

relationship between the input and output coefficients, the right hand 



a. 	>1 	p.(t) 
j.k.4-14-1 j  

rj -k-2) 
a. p 	(t) k+i i 2 
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side being tacitly assumed as above 

	

00 	n, 

	

)-1 	P.(t) // a (j -k -
I
1) . , 	aoPk(t) 

- 
k=0,1,2,. (7.19) 

These represent an infinite set of linear equations, each one having 

infinitely many terms; a rather formidable object on first sight. 

a 
Interchanging the summations over i and j and noting again that (b)= 0 

for a Kb, equation (7.19) assumes the form  

00 
\ 

ai 	p.
J
(t) 	1-1  ) 	[3k(t) at)  k=0,1,2.. (7.20) 

j=k+i 

Taking this infinite set of equations and forming a new set by 

\ subtracting the OW)th  from the kth yields 

00 

1 
j..k+i+1 

(1(0 j f(?1-k1) ai(1k+1.`  
(4.) 

(7.21) 

Pk+1(t))a°' 

 	" "" 
(j
i
k
-
-

1
-2)}, 	\lio 

(Pk(t)  

7 a. 
i=1 

For i=1 the term in <[ is zero while for all other i it equals 

Therefore equation (7.21) becomes 

(j-k-2 
i-2 

(7.22) 

(Pk(t) 	Pk+1(t)) acr 

For this new set of equations the process can be repeated, namely 

\ subtract the (k+1)th  equation from the kth equation. 

simplifications are made the resulting set is 

oo 
7' 	

I  
a. 	>_i 	P.(t) 	(ji--k3- 	 a i

3) [Pk+ (t) + (1-2) P
k+i+1  

j.k+i+2  ia3
(7.23) 

al(Pk+1(t) 	Pk+2(t))  a°(Pk(t) 	4k+1(t) 	Pk+2(t)). 

After all possible 



146 

The infinite number of terms is still contained in the first expression 

and the bottom index has now been increased to three. 

Continuing the above subtraction process for n steps produces the 

final expression, including the right hand side 

. 	( j 	b. , (-1)j  a 	(t) (13.1 j 	 a. 	 -1  (-1)j  p 	(t) 
j=o 	 j=0 

(7.24) 
k.0,1,2 	 

an infinite set of finite equations. These are more conveniently 

represented using matrix notation. Define a(t) and f.(t) as two infinite 

vectors representing the input and output spectra, the vectors aT 

n 
(ao,at, 	 a n  bT 

 
), 	= (bo tbi 	 bn), and a matrix Dk with an 

infinite number of rows and n+1 columns. The first k rows and all rows 

beyond the (k+n+1 )th  of this matrix are zero. 	The (k+l)th  to (k+n+1)th  

rowsaredeinedlgan(11-0)x(n+1)matrixDri suchthatdio =0 for 

i ‹j and - (-1)i+j  for i 	j. 	Tuo of these D matrices for 

n == 3 and n = 5 are given below. 

1 0 0 0 0 0 

1 0 0 0 -5 1 0 0 0 0 

3 -3 1 0 0 5 10 -4 1 0 0 0 
D 3 -2 1 0 D 

-10 6 -3 1 0 0 

-1 1 -1 1 5 -4 3 -2 1 0 
-1 1 -1 1 -1 1 

Using this notation equation (7.24) becomes 

.gt) Dlic a = a(t) Din(  b 	k=0,1,2 	(7.25) 

This, although not convenient for calculating the input-output 
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behaviour, does give a useful method for determining the coefficients 

a. and b., of the differential equation. 	Normalizing these equations 

(7.24) so that a
n 

= 1, each of them then represents a linear equation 

in the remaining 2n+1 coefficients bo, 	b a  	The first p  0 an_/. 

2n+1 equations are linearly independent, this fact following from the 

independence of the separate coefficients comprising a and 	Note 

that each equation has at least one of these spectral coefficients 

different. Using the representation (7.25) the first 2n+1 equations 

can be put in the matrix form 

B(t)Dna A(t)Anb 	 (7.26) 

where B(t) is the (2n+1)x(n+1) matrix of the spectral coefficients pi(t) 

shown below 

Po (t), R,, (t) 	 13n(t) 

(t) 	  

P2n(t), 1412n±i(t) 	 P3n(t) 

A(t) is the same kind of matrix comprised of the coefficients ai(t). 

By forming the compound (2n+1)x(2n+2) matrix C(t) = 111 B(t) -A(t)11, the 
a 	 DTI! 0 

vector c = 	and.  the (2n+2)x(2n+2) square matrix A = -- 	equation 
b 	 0 , Dn  1 

(7.26) taked- fhe more recognizable form 

C(t) A c = 0 . 	 (7.27) 

Note that one of the components of c is 1, introducing a constant into 

each of these linear equations. 	Knowing the matrix C(t), it is possi- 

ble to solve this set for the required coefficients c. 
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3n+1 input and output coefficients are required for a complete 

identification. 	These coefficients need not accurately represent the 

respective functions, i.e., it is not necessary to take enough coeffi-

cients to get a good approximation. Provided they can be determined 

exactly, then the system parameters can be determined exactly even with 

only this partial information concerning the input and output. 	If some 

of the parameters are already known, or zero, then fewer equations are 

required in (7.26) and it is necessary to determine fewer coefficients. 

As an example consider a second order system of the form 

2 
d f(t)  

2  + a 
dt 

df(t)  
+ b 	cg(t). dt 

There are only three unknown parameters requiring three equations for 

their determination. The matrix equation (7.27) is 

PO Pt P2 - ao - 1 0 0 0 0 0 b 

Pi P2 P3 a3 -2 1 0 0 0 0 a 0 

P2 P3 P4 - a3 1 -1 1 0 0 0 1 

0 0 0 1 0 0 

0 0 0 -2 1 0 C 

0 0 0 1 -1 1 0 

Expanding this product 

([30 	2c31  

(Pi - 2(32 

(P2 - 2p3  

▪ P2 )b 	(Pi - P2  )a 	P2 

+ P3 )b 	( P2 - 133 )a + P3 

	

+ P4 )1 	(P3 - P4 )a 	p4 

2oc1  + a2  )c = 0 

2a2  + a3  )c . 0 

2a3 	a4  )c = 0 

The constant terms in the equations are 32 ,p3 04  respectively. Knowing 

the first five input and output spectral coefficients these equations 

may be solved for the system parameters atio and c. 
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Equation (7.27) may be solved in a slightly easier manner than 

performing the expansion as above and finding the solution directly. 

This method is discussed in detail following the introduction of the 

discrete Laguerre functions and their use in identifying discrete 

systems. 	In (7.27) c represents the system; C(t) a matrix character-

istic of the input and output, and 6 a matrix significant of a property 

of the particular expansion functions used. Actually, if some other 

set of polynomial expansion functions had been employed similar equations 

would have been obtained. 

Another such expansion was performed using the Legendre polynomials. 

At first it may seem surprising that these polynomials should yield a 

valid result as they are defined only over a finite range. This would 

seem to imply that the initial state of the system, at the beginning of 

the interval, had nothing to do with the output spectral coefficients. 

However, remembering that in all calculations, an infinite expansion has 

been assumed, then at any point in the interval the function and all its 

derivatives must, in the limit, be approximated exactly. 	Thus, if a 

function is continuous, by Taylor's theorem the analytic continuation 

outside the interval must converge also. 	Therefore the initial state of 

the system is automatically absorbed in the representation of the input 

spectrum. 

The main difficulty remaining is the evaluation of these spectra. 

For on-line purposes the spectra must be continuously updated as the 

process evolves, implying a great deal of calculation. How this can be 

done with a minimum of effort is demonstrated in the next section. 



150 

7.3 Continuous Updating of Spectra  

Looking again at the figure on page 143, assume that the spectral 

coefficients at time t are known. At some later time ti-At it will be 

necessary to re-evaluate these coefficients if equation (7.27) is to be 

used to detect variations in the parameters. 	The functions f(t) and 

g(t) may be stored and the integrals (7.13) and (7.15) evaluated again, 

although this seems a great waste as the coefficients at t have already 

been calculated and it seems evident that the information contained in 

these may be employed in the calculation of the required value at tfAt. 

This is indeed the case. 	Taking equation (7.13), at time t+At 

0 ,r  
a.(ti-At) 	e'f(t-I-At-420 i(V) et- -co 

-At 2' 
e f(ti-Ati-r) 

o 
i  (-0 as" + e f(t+,t+,-- ) A (T) d1' 

-At 	(7.28) 

The first integral in this expression can be changed to 

r0 ex_6t  
f(t+x) A i (x-At) dx %-) _oo 

(7.29) 

by the change in variablesV+At = x. 	 4  Thefunctions.(x-At) can be 1 

expandedintermsofA1(x) as shown below 

00 
A i(x-At) 	7..(At) /\,i(x) 

j=0 1°  
(7.30) 

where 
0 

y..(At)4exAi(x-At)A.(x) &. 	(7.31) 
-co 

Aj(x) must be orthogonal to all powers of x, x
k, for k (j, otherwise 

it could not be orthogonal to all the functions Ak(x) for k (j. As 
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(x-At) is an ith  order polynomial in x, 	 .(x) must be orthogonal to 

it for j> i so thatYii 
 

..(At) = 0 for j> i. Hence the summation in 

	

equation (7.30) need only be carried to i. 	Substituting this result 

back into (7.29) produces 

-At 	/ 	\ 	/ e 	->  y. .(At)f0 ex  fvt+x) /\.kx) dx 
0;.6 ij -00 

-At e .(At) ai(t). 	(7.32) 

As shown in the previous section, it is only necessary to carry 

some finite numbers Is' of coefficients in order to calculate the param- 

eters of the system. 	These coefficients may be formed into two s-

vectors a(t) and gt), and the constants y..
ij
(At) represented by an sxs 

matrix y(At). 	The second integral of (7.28) is the increment to the 

coefficients caused by including the portion of the function Or) between 

t and t+At. 	Forming the functions A
1 
(V)into an s-vectorA(V) equation 

(7.28) becomes 

a(t+At) = e-At  y(At) a(t) 	e!f(t+At+1') A(11 (3.,r 
-At 	

(7.33) 

This is the updating formula desired. 	Only the integration over the 

range At need be performed to get the new coefficients, the effect of 

the function previous to this interval being contained in the matrix 

operation e
-At

y(At). 	For four coefficients the matrix y(At) is 

y(At) 

1 

-At 	1 
At(At-2)  

2 	-At 	1 

-At(-At2+6At-6) 	At(At-2) 	-At 	1 
6 	2 
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From the appearance of this matrix there would seem to be much 

more symmetry in the yij(At) then at first anticipated. Actually, with 

some difficulty it can be shown that Yi(M)  - 	(At). A similar 
j 

result is proved in Appendix I for the discrete Laguerre functions, rid so 

the verification for the continuous case is omitted. 

Similar updating formulas can be found for Legendre and Tchebychev 

polynomial expansions. However, as these are not convenient for purpo-

ses of system identification their development is left. 

Equation (7.3. )still involves very complicated operations due to 

the presence of the integral. As the final solution of equation (7.27) 

will probably have to be performed digitally, it would seem more logical 

to approach the problem directly using discrete methods, rather than 

trying to convert the integral into a discrete form. 

7.4 	System Identification using the Discrete Laguerre Polynomials  
51 ,57 

A discrete linear difference system 	is described by a diff- 

erence equation of the fella 

p 
ai  g(n-i) 	>-1  b. f(n-i) 

. (7.34) 

f(n) is the input to the system and g(n) the output, p being the order 

of the system. Usually the lower index on the right is something 

greater than 0 but this can be reduced to the above expression by intro- 

ducing enough new constants bi, all equal to zero. 130 	0 implies that 

the input can effect the output in zero time. 

If the input and the output waveforms at time K are expanded in 

discrete Laguerre functions (see Appendix I, section 2) with spectral 
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coefficients k(K) and 2L(K) then the system coefficients satisfy the set 

of linear equations 

B(K) Qpia 	G(K) Qpb 	 (7.35) 

where B(K) and G(K) are matrices composed of the spectral coefficients 

and have the same form as that shown for the Laguerre spectra on page 

147. 	Qio  is a square matrix derived in the Appendix. 

In choosing the spectra there is still one degree of freedom at 

our disposal; this is the choice of the weighting constant a. 	This 

constant may be assigned any value between 0 and 1. Returning to the 

definition of the discrete Laguerre polynomials on page 43, for a . 0, 

L.(n) becomes 

Li(n) = (). 

The normalized functions given in equation (2.18) have only one non-zero 

value corresponding to n i 

(n) 0 
	

n i 

11.(1) a L. (i) A  1. 

Therefore this limiting case yields the complete set of single unit 

pulses. 	The spectral coefficients pi(K) and yi(K) become g(K-i) and 

f(K-i) respectively. 	The equation (7.35) then corresponds to just 

taking the last 2n+1 linear equations defined by (7.34) and using these 

to calculate the coefficients. 	This is obviously correct but is usually 

a very ill-advised approach. For one thing, if the sampling rate is 

high the successive f(n)ls and g(n)'s are almost the same, meaning that 

these linear equations are very nearly inconsistent and hence great 

difficulties will be encountered in trying to get a reliable solution. 
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Also the result is highly sensitive to noise on the input or output. 

The one advantage seems to be that as only the most up-to-date informa-

tion is used, the most recent estimate of the parameters is obtained. 

As a is increased, more and more information from the past is 

incorporated into the spectral coefficients .a(K) and y(K). 	One can 

expect the coefficients to become more uncorrelated and hence the con- 

ditioning of equations (7.35) to be improved. 	This implies that the 

solution for the coefficients is more reliable. 	Also, the polynomials 

act as filters to noise and so one might expect some noise immunity using 

a larger a. However, the response of the estimator is slower as it 

weights information further into the past in the calculations. 	Thus, 

for rapid changes in parameters, little confidence can be placed in the 

result obtained. 

7.5 Computer Tests  

Extensive computer tests were performed to verify the above 

hypotheses. 	The flow diagram describing the general outline of the 

program is given in figure (7.1). 	The spectral coefficients were 

evaluated by the continuous updating procedure described in the third 

section of Appendix I. 	The two main subroutines involved with the iden-

tification procedure are SOLVE, which finds the solution for the system 

coefficients a and b from equation (7.35), and ROOTS, which calculates 

57 
the pole—zero diagram in the z-plane corresponding to the system esti-

mated by SOLVE. A detailed description of these two subroutines along 

with flow diagrams is given in Appendix III. The saving in computation 

that can be effected due to the special nature of the matrices B(K), 
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G(K) and 	of equation (7.35) is also described. 	It was thought 

necessary to extract the roots as these are more truly representative 

of the system behaviour than the difference equation coefficients. 

Also they are less sensitive to computational errors than are the coe-

fficients, that is the coefficients may appear to have changed substan-

tially whereas the pole-zero pattern has remained almot stationary. 

All the runs performed using this identification scheme took under one 

minute of 7090 computing time, at least half of which was absorbed in 

compilation. 

The first test performed was to check that for varying a the time 

for identification varied. A second order system was set up and square 

wave excitation applied. Half way through the test one of the system 

coefficients was given a step change. As expected for small a this 

change was detected in a matter of a few intervals, whereas for large a 

it took as much as 10 to 20 intervals to settle on the correct values. 

Following this tests with slowly varying 2nd, 3rd and 4th order 

systems were performed for two different values of a(0.2 and 0.8) to 

determine what effect a had on the detection efficiency. 	The result 

for the third order system is shown below. 	For the other Lwo systems, 

similar performance was observed, the 2nd order giving a more reliable 

estimate than the 4th order as would be expected. 

The third order system considered has the pole-zero pattern of 

figure (7.2a), the gain being set to 1.0. 	The test was carried over a 

thousand intervals with an estimate of the complete pole-zero pattern 

being calculated every fqkrty intervals. Two poles and two zeros were 

varied linearly in the manner shown. This particular configuration 
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represents a severe test on the detection procedure, not only because 

the dominant pole at (0.9) tends to mask the other poles, at least for 

the first portion of the test, but also as the pole variations take them 

into the unstable region outside the unit circle. 	The poles cross the 

unit circle in the 685th interval; however, the estimator still gives 

results right up until the 840th interval when the instability causes 

the whole system to blow up and the equations (7.35) become inconsistent. 

The input was a square wave varying between +1 with 10% gaussian noise 

superimposed. 

The remainder of figure (7.2), and figure (7.5) show the actual 

pole-zero variations along with the pole-zero pattern as estimated by 

solving equations (7.35) and then finding the roots of the characteristic 

equation produced. 	The scales, for comparison purposes, are the same 

on all graphs except for the gain (defined as the normalizing constant 

for the 'b.'s) which is displayed on the larger scale shown. 	The long 

estimator (a - 0.8) is illustrated by the heavy line, the short estima-

tor being represented by the dotted lines. 

Considering the z-plane as a mapping of the p-plane of continuous 
57 

analysis via the function zeT1)  where T is the ,;ampling rate , then the 

unit circle corresponds to the portion of the frequency axis between 

_
T  <W  <2 .

T
1. 
. 	

The axis (0,1) corresponds to the negative real axis of 

the p-plane. 	It may easily be demonstrated that radial lines in the 

z-plane represent lines of constant frequency or horizontal lines in 

the p-plane, and circles represent lines of constant attenuation or 

vertical lines. 	Therefore, as the angle with respect to the origin of 

a complex pole increases the frequency of the corresponding pole in the 
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p-plane also increases. 

The above paragraph yields a very nice interpretation of the 

results of figures (7.2) and (7.3). 	The short estimator corresponds to 

a high frequency estimator whereas the long one corresponds to a lower 

frequency. 	For the long time constant (.9) a = 0.6 gives a very good 

estimate, whereas a = 0.2 produces widely varying results. For the 

complex poles a = 0.2 gives a very much better result as this pole re-

presents a high frequency mode, whereas a - 0.8, although appearing to 

have the correct trend, yields quite widely varying estimates. 	For the 

zeros neither of them give particularly impressive results, although 

again the short determination seems better, especially so for determin-

ing the gain. 

The same kind of behaviour was noticed in all the other tests 

performed, indicating that it may be worthwhile to have two estimators 

going at the same time, one for obtaining the low frequency poles, the 

other for the high frequency components. 	For rapidly sampled continu- 

ous systems the poles tend to congregate around the point (1,0) indica-

ting that for these, the long time constant determination should be 

useful. Again it is emphasized that the above set of results was 

compiled and generated in less than one minute of computer time. 

A constant sixth order system having six poles and five zeros was 

also tested, and, surprisingly enough, the estimates were remarkably 

close to the actual values. Different inputs such as ramps, step, 

white noise etc., were tried on other varying systems with almost the 

same degree of success as above. As long as the input has a fairly 

high harmonic content reasonable estimates are obtained. 
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Tests using higher and lower order estimators than the order of 

the actual system were also done. On fitting a fourth order estimator 

to a third order system the estimator predicted the correct pattern, 

plus a nearly overlapping pole-zero pair. 	On using an estimator of 

order less than the actual system, the estimated pattern varied widely 

from step to step. 

The last test performed was to see how the estimating procedure 

reacted to the presence of noise on the input and output. 	Independent 

gaussian noise sources were incorporated into the system as shown in 

figure (7.4a). 	G(z) represents the system, the particular configura- 

tion b
\  

being shown in (7.4 ). 	It is quite a problem to know exactly how 

best to present the results for this test considering the amount of data 

accumulated. A complete set of pole-zero estimates for a third order 

system was obtained for the two values of a above and for noise values 

of 0,1,2,3,5,10,50 percent of the signal level. 	The test in each case 

was run for a 160 intervals and the pole-zero pattern estimated every 

20 intervals, giving only eight estimates for each singularity. This 

does not really represent enough data points for decent statistics but 

was thought sufficient to show up any trends. 	The applied signal was a 

square wave with a transient inserted at the 80th interval. 

As expected for very low noise levels, the shorter estimating 

polynomials gave better results, but as the noise level increased above 

1% these estimates degenerated into nonsense. 	Using a .-. 0.8, although 

the initial estimates had a wider variance, this variance increased at 

a lot slower rate than for the first case. 	For both constants after 

the 3% noise level was reached the estimates of the complex poles and 
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zeros were very bad. 	This arises due to their position quite far behind 

the dominating pole and partially cancelling each other. The estimates 

for the dominating pole in both cases were more consistent. 

Figure (7.5) illustrates the results for this last estimate. 

(7.5a) shows the mean value of the estimate of this pole using the two 

different constants a and (7.5b) gives the standard deviation. For 50% 

noise the values obtained using a - 0.2 were completely random and not 

really worth recording. As evidenced from the irregularities of these 

curves the statistics are hardly sufficient to draw any sound conclusions. 

However, the diagram does demonstrate with a fairly high probability that 

for noisy systems there is a distinct advantage to using the polynomials 

that have a longer reach into the past. 

The use of the discrete Laguerre polynomials for the identification 

of single input single output discrete systems has now been discussed. 

It remains to develop a method of identification for multidimensional 

systems. 

7.6 Discrete Laguerre Polynomials and Multi-dimensional Systems  

In the multi-dimensional case linear discrete systems may be repre- 

sented by the matrix equation 

Ick  = Ark-i. + 
	 (7.36) 

where x is an r-dimensional state vector, u
k 
 an s dimensional input 

vector, A the rxr state transition matrix, and B the rxs input transfor-

mation matrix. The problem is, given x1, and uk  and all their past 

history, to determine the matrices A and B. 	Equation (7.36) implies the 
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infinite set of equations 

, 1 	 
Alc-k-(n+1) 	

/1 0 1 	37 ) 

The vectors 2s.k _n  and uk-n  are expanded in discrete Laguerre polynomials 

-k-n" 	.k(k) li(n) 

in the same fashion as equations (A.1.23) in Appendix X. 	The coeffi-

cient vectors yi  and 21  are defined by equations analogous to (A.1.22). 

Substituting these values in (7.37) yields the relation 

7-7 /i(k) li(n) = A 7i  yi(k) li(n+1) + B  	(k) li(n). (7.38) 
1.0 

Using equation (A.1.54) of Appendix I, li(n+1) can be expanded in terms 

of li(n) for j‘i. Making this substitution, interchanging the summa-

tion over i and j in the first term on the right, and then equating 

coefficientsof1.(n) on both sides produces the set of relationships 

! j(k) P. 	(i) + Bp(k) 	(7.39) 371 

Taking the sum of the ith equation and ot2  times the (i+l)th  equation 

reduces this to the set of equations 

Ii (k) 	oC2./ 41..(k) 	A(cA4(k) + /141(k)) + B(k(k) + cAk41
(k)) 

(7.40) 

an infinite set of vector equations with a finite number of terms in 

each. 

Taking the first r+s of these equations and forming the corre- 



transpose commute the final solution for 

11 A  B II  = SOO 

T(k) 

Q(k) 

A and B is 

-1 

(7.46) 

166 

sponding matrix equation 

S(k) = AT(k) 	BQ(k) 

where the matrix S(k) has its columns made up of terms like yi(k) 

T(k) of columns like cAyi(k) yi41(k) and similarly for 

Q(k). 	S(k) and T(k) are rx(r+s) matrices while Q(k) has the dimensions 

sx(r+s). 	Taking the transpose of both sides and forming the partitioned 

product yields 

ST(k) = TT(k) AT  + QT(k) BT  = 11TT(k) 	 ;,11(k)11 

The partitioned matrix IITT(k) 	QT(k)1 has dimensions (r+s)xr 	(r+s)xs 

(r+s)x(r+s). 	Provided this matrix is non-singular it has an inverse 

and the solution for A and B becomes 

1 
ITT(k) QT(k) ST(k ). 

Taking the transpose of both sides and noting that the inverse and 

A
T 

B
T 

T 
A B 

The matrices S, T and Q depend only on the first r+s+1 spectral 

coefficients obtained for the various inputs and outputs. 	Thus, using 

a finite number of coefficients it is theoretically possible to obtain 

the system parameters, represented by A and B exactly, although the 

1 

 T(k)  
Q(k) 

icients can be continuously updated as shown for the one dimensional 

case, ma, king it possible to detect changes in the system matrices as 

the process evolves. 

inversion of may prove to be a difficult problem. The coeff- 
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CHAPTER VIII 

Conclusions  

The original contributions presented in this thesis fall into four 

main catagories corresponding to: 

Universal nets for realizing boolean functions. 

Actual construction of a digital function generator. 

Complete development of the discrete Laguerre polynomials. 

Identification of system parameters using truncated spectra. 

Some secondary results, such as Theorem 2.1 and the introduction of the 

linear segment functions, were included but were not developed far 

enough to warrLnt further discussion here. 

(1) To my knowledge this approach to realizing boolean functions 

by logical elements has not been attempted before. 	In the past the 

problem of finding a best circuit realization for a given function has 

been greatly complicated by the large number of possible configurations 

that the elements may assume. This has made the search problem very 

large and intricate and no powerful analytic methods for reducing this 

search have yet been developed. 	By constricting the geometry of the 

networks into the form of a universal net, although it may introduce 

more elements than the absolute minimum, at least gives a straight-

forward method for finding circuit realizations for any boolean function, 

with the assurance that none of the gates will be overloaded. Also, 

absolute minimal realization in this geometry may be obtained. It was 
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demonstrated that this method has at least the same order of elements 

(Lupanovl s theorem) in the final network as some hypothetical best 

method of design would have. 

(2) This approach to obtaining digital functions, other than by 

performing analytical operations on a computer, has not yet been follow- 

ed through in the literature. 	The scheme presented may, at first 

sight, appear to be rather l ad hoc' but does represent an attempt at 

eliminating the need for a digital computer in digital control systems 

and replacing it by a much simpler device. Certainly, in the example de-

scribed in detail in Chapter VI, it would be difficult to find a net-

work with the same capabilities that could be obtained more economically. 

This section would have profited greatly by an actual system being built 

and adaptation tests performed on it. A beginning on this was actually 

made but unfortunately time started to run out, not allowing this par-

ticular aspect of the project to be completed. 

(3) The development of these polynomials was, perhaps, carried 

further than justified by their subsequent use in the thesis. However, 

as so little work seems to be extent on discrete polynomials and they 

appear to be almost a natural offspring of digital computer analysis, it 

was thought that a complete summary of all their properties would be 

useful. 	The difference equations, recurrence relationships, generating 

functions etc., have the same sort of appearance as the equivalent 

expressions obtained for orthogonal continuous polynomials. The fact 

that these new polynomials are basically different than the continuous 

Laguerre functions can be proven by comparing the forms of the D matrices 

(page 146) and the Q matrices (page 187) used in the identification of 
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systems by the continuous and discrete polynomials respectively. You 

would expect these to have the same form if there was some close relation 

between the two polynomials. 	The scope for future use of these func-

tions in solving discrete difference equations and general computation 

problems seems unlimited. 

54 
System identification using polynomial expansions has been 

tried before only with limited success. 	Then, however, the approach has 

always been to expand the actual system function (the impulse response 

h(t) or the frequency function G(W)/F(W) etc.) in terms of a set of 

polynomials and then state that, in the limit, this set must converge on 

the actual system. Here lies the difficulty, in that a gxeat many ex-

pansion terms are required before a satisfactory representation is ob- 

tained. 	The scheme proposed above requires only a finite number of 

input and output coefficients for a complete identification. 	Thus, 

although at first this method may appear rather complex, the final closed 

form obtained justifies its use. 	No actual computer tests using the 

continuous functions of section (7.2) were performed, although the vali-

dity of the final expression was checked by some hand calculations. The 

discrete functional representation was thought more useful in that it 

adapts itself immediately to the digital computer without having to 

incorporate any integration subroutines. At any rate, as continuous 

systems can be approximated arbitrarily closely by discrete systems, 

provided the sampling rate is high enough, further investigation seemed 

unnecessary. 	It becomes only a question of where the approximations 

should be made, whether in the integration subroutine or by using a 

sampled model. 

(4) 
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8.1 	Possible Extensions  

There is large scope for further work in the universal network 

studies begun in Chapter IV, especially when using elements with more 

than three inputs and with more than a fan-out of one. The great ad-

vantage of having more inputs on a gate is not so much the time saving 

that can be effected, but rather the far greater number of configura-

tions in which these elements may be connected. Allowing a fan-out of 

more than one allows the same freedom. As stated previously, this 

larger number of configurations (two of which were illustrated for the 

three input nor gates) makes some kind of organized search necessary. 

It may be possible to design universal nets having a fan-out of two that 

subsume the nets described above. This may lead to a much greater 

saving in the number of elements used to obtain boolean functions. 	It 

is my own intention to pursue this particular line further, as well as 

try and find some analytic way for getting around the need to employ the 

Quine method to minimize the function before the best net may be 

obtained. 

Nothing more remains to be done on adaptive digital function 

generators except to build one and apply it to a system; either a great 

or small task. How these may be used in the context of a general 

learning system deserves further study and would not be at variance with 

the present-day trend of control theory. Also how the modern develop-

ments in automata theory can be tied up with these discrete function 

generators should prove a fruitful field of investigation. 

A great deal more work on the statistical properties of the dis-

crete Laguerre polynomials remains. This section was rather hurried 
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over and no real thought was applied to what kind of systems are 

actually encountered or how noise effects the system behaviour. 	It is 

evident from the results that were obtained that a great improvement in 

the estimates could be made if some sort of additional filtering was 

performed on the first estimates. A search into the exact requirements 

for a special purpose computer to perform the calculations needed for 

the identification procedure should result in fairly economical appara- 

tus. 	The discussion in Chapter VII has shown that this method of 

system identification is possible. 	It remains to be shown that it is 

economically viable and stands up to comparisons with some of the known 

methods, such as model references and correlation techniques, now in use. 
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APPENDIX I 

Discrete Laguerre Functions  

A.1.1 	Basic Properties 

Before starting, a few elementary results from the calculus of 

finite differences will be necessary. 	Given a discrete function f(n), 

defined on the set of integers, the forward difference operator A is 

defined by 

Af(n) = f(n+1) - f(n). 

Obviously, it is a linear operator implying 

A(af(n) + bg(n)) = aAf(n) + bAg(n). 

If 	Af(n) = h(n) 

then 	h(n) = 2.] (f(n+1) - f(n)) = f(b+1) - f(a).(A.1.1) 
a 	a 

Finally a rather surprising identity of the form 

f(n+1) A(g(n) Ah(n)) - h(n+1) A(g(n) Af(n)) 

= A(g(n) [f(n) Ah(n) 	h(n) Af(n) 	). 	(A.1.2) 

This relationship may be checked merely by carrying out all the expan-

sions implied by the differences. 

Consider the generating function 

(144)11  . 

(1+oct)n+1  
k 	

(-(n+1)) 
t 

k=0 k 	i=0 	i 
(at) (A.1.3) 

For loci< 1 and lti<1 the second series converges. 	The usual notation 

a.  (Z) is used for the binomial coefficient b*,-b)! 
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(n+1)\ 	(_(n+1)) ( -(n+1) -1)( -(n4.1) - i+1)  
i! 

(-1)i  ((n+1) (n+2) 	 (n+i))  
i. 

(n-f: 

Hence equation (A.1.3) is equivalent to 

00 

0 k. 
	(-1)i (nk) (n+.1) aitk+i 

Which, on gathering powers of t is 

( (..1  (n.  (n+i7j 
3 	1-3 i-0 j.To 

Substituting 	and using the identity 

(ink) 
(n+k) 	(i

k
) /n+

1
k) 

The expansion becomes 

ai-j)ti. 

( 	 

	

(-1)k (i) 	
i 

(nk a
k
) 

i 	00  
	 Li(n)ti  

i=u k.o 	k 	) i-0 

where the discrete polynomials Li(n) have been defined as 

L. (n)"  	(_1)k 	(nIk) ak.  
(A.1.4) 

Differentiating the generating function with respect to t yields 

(1+t )n 	(n-a(n+1 )-at)  

(1+at)11-41 	(1+t)(1+at) ) 

00 

J. L. (T)ti-i 
i=0 

co 	 co _i 
or 	71 

 L.(n)ti  (n -a(n+1) -at) . ;>' i L (n). 	(1+0+a)t+at
2 
 )t
j 
 . i=6  1 

i=6 1 
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Defining L (n)=0 and equating coefficients of t
i the recurrence rela-

-i 

tion 

(i+1 )Li+.1  (n) + [i(1+a) - (n-a(n+1 ) )1 Li(n) + iaL. (n) - 
(A.1.5) 

results. 

Taking the first difference of (A.1.3) yields 

(1+t)n 	(t-at  

(1+at)n+1  1+at 

010 

ALi(n)ti  . 
i=0 

Again, expanding the generating function and equating coefficients, the 

difference equation 

Li(n)(1-a) = ani(n) + ALi+I(n) 

= gaLi(n) + L. (n)) 

is obtained. 

The next problem is to find the difference equation which the 

polynomials satisfy. 	Taking the first difference of the recurrence 

relation (A.1.5) gives 

(i41)61Ji41(11)4- 0-(1-1-11)-1-cOai61.11) 1-1  

An(1-a) Li(n) 

(1-a)(n+1) ALi(n) + (1-a) Li(n). 

Using equation (A.1.6) 

(i+1) ALi+i(n) 	(Li(n)(1-a) - aALi(n)) (i+1) 	(A.1.8) 

and 	is ALi_i(n) R i(Li_i(n)(1-a) - ALi(n)) . 	(A.1 .9) 

Substituting (A.1.8) and (A.1.9) into (A.1.7) and simplifying 

i(Li_i(n) 	Li(n)) 	(n+1) ALi(n) . 	(A.1.10) 

(A.1.6) 

(A.1.7) 



(A.1.14) 

    

lic) 
n+k k 
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Taking the difference of (A.1.10) 

i(E\Li_±  (n) + ALi  (n)) = ( (n+1 ) ALi(n)). 	 (A.1.11 ) 

Solving for L. (n) in (A.1.10) and substituting in (A.1.9) gives an 

equation for AL. (n) in tams of L. (n) 

is 	(n) = (n+1) 4Li  (n) (1 -a) - iLi(n) (1-a) - iL\Li  (n) . (A.1.12) 

Finally multiplying (A.1.11) by a and substituting in (A.1.12) the 

ndifference equation for the function L. ( ) is obtained 

aiN((n+1) ALi(n)) - (1-a) (n+1-i) ALi. (n) + (1-a) iL. (n) = 0 
1 	(A.1.13) 

Or 	(n+2 ) 4 Li  (n) + (a- (1-a) (n+1-i) ) ALi  (n) + (1-a) iL. (n) = 0. 

Itremainstoshowthattheflinctionsii.( 	satisfy the ortho- 

gonality relationship 
oQ  

anL.(n) L (n) 	0 
i.0 1  

for i 	j. 

Before proving this, two other results are required. First from 

equation (A.1.4) 

Li(0) (-a)i. 

This is obvious as (1.3:) . 0 for k < i. 

Also from (A.1.4) 

AL. (n)= Li  (n+1) - Li  (n) = 	 (-1)k  
k=0 

or 	ALi (n)  = 	(-1)k (ik 	cck 

Hence 	ALi(0) a  (-a)1-ii 	(_G )i 	
(A.1.15) 

(1-a) 
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Noting that 

n ( 
La f n) 	an+1f(n+1) 	anf(n) 

an(aAf(n) - (1-a)f(n)) 

equation (A.1.13) can be simplified by multiplying it by an and identi- 

fyingfWintheabovefoluulaas(n+1)a.(ri). 	This gives 

an(ag(n+1) AL. (n))- (1-a)(n+1) ALi(n)) 

+ (1-a) i (Li(n) + ALi(n))an  . 0 

OT 	Aan(n+1 ) AL. (n) + (1-a) 	nan  L. ( +1) = 0. 	(A.1.16) 

Multiplying by Lj(n+1) and interchanging the indices i and j gives the 

two equations 

Lj(n+1) Aan(n+1) ALi(n) + (1-a) i anLi(n+1) Lj(n+1) - 0 

Li(n+1) Aan(n+1) ALj(n) + (1-a) j aflyn+1) Lj(n+1) . 0. 

Glancing again at equation (A.1.2) and identifying 

f(n) = Lj(n), 	h(n) = Li(n), 	g(n) = an(n+1) 

we get on subtracting the two equations above 

Lan(n+1)(Lj(n) ALi(n) - Li(n) ALi(n)) 

+ (1-a)(i-j)an  Li(n+1) Lj(n+1) = 0. 

Summing this equation from n=0 to infinity gives by equation (A.1.1) 

La(0) AL(0) - Li(0) AL (0) 
to 

+ (1-a)(i-j)YanL.(n+1)L.(n+1) = 0. 
n=0 1  

The value disappears at infinity as the series a
n
n
k 

converges for a< 1 

and all finite k. 
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Substituting the values for L1(0) and ALi(0) obtained in 

(A.1.14) and (A.1.15) yields 
co 

(1-a)(-a)j+i-1(i-j) + (1-a)(i-j)a
n-1 

 Li(n) Lj(n) 	0 Z_L  

co  

or 	(-0)j+j- 	>21  an  L. (n) L. (n) = 0 	for, i 	j. 
n-1 

0  
But (-a)j+i  = Li(0) Lj(0) a and the final orthogonality relation 

co 
/ 	/ z....., an  Li 	L 	= 0 

n=0 

is obtained. 

A little more patience will see us through this maze. 	The last 

thing to determine is the normalizing constant µi. Multiplying the 

recurrence relation (A.1.5) by anLi_i(n) and summing gives 

OD 
77 anil 

n=0 

2 
L. (n) 

co 
- (1 -a) 2 «n n L. (n) L1(n) 	0. 	(A.1.17) 

n=0 

Substituting 	the recurrence relation,multiplying by CC
n 

 I ( ) 

and summing 

i 	 otilL 1  1.(n) - (l_a) 	 annL. -i  (n) L. (n) = 0. 
n.0 	 n=0 

(A.1 .18) 

Subtracting (A.1.17) from (A.1.18) the recurrence relation for the nor-

malizing factor is obtained. 

2 n 2 	 n  2 	2 , I p. 	 n. 	Li 	\ 	a L 	( n ) 	a p.. 
1 -1 n=0 	n=0 

2 	i 2 
or 	= a  /lo 

2 >7 an  1 
µo1 -a' n=0 

n=1 
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Define the functions 

n 
2 

1.(n) -Lc  L.(n) 

These satisfy 

1-(11) 1-(11)- ' a. 

	

1 	193 

and constitute an orthonolwal set over the integers 0,1  	The 

completeness of the set L.(n) follows from the completeness of the set 
2 n 

1,x,x 	 x 	 over the continuous range (0,60). 	For if a con- 

tinuous function 
00 

	

f(x) = 	 i.0  

converges, then on the integers, 

00 

f(n)a.ni  
i=a  1 

2 k 
and the set 1,n,n 	 n 	 must be complete over the range 

0,1,2  	This in turn implies that the set Li(n) which are linear 

combinations of the above must also be complete (theorem 2.1). 

Thus the expansion formula 
cr, 

f(n) = 	 aiii(n) 
i=0 

(A.1.19) 

where a. i(n) f(n) (A.1.20) 

is valid. 

co 

n. 
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A.1.2 Discrete Laguerre Functions and Discrete Linear Systems  
57 

A linear difference system is described by an equation of the 

form 

	

p 	 p 

	

), 	= 	b f(n-i) 
1.0 i.0 

(A.1.21) 

where f(n) is the input and g(n) the output waveforms. At any given 

time K the input and output functions may be expanded in discrete 

Laguerre functions li(n) by reflecting the above waveforms and expanding 

according to equations (A.1.19) and (A.1.20). 	Hence the coefficients 

yi and pi  are defined by 

y(K)   f(K-n) li(n) 
n.0 

n.>„,- 0 	(A.1.22) 

p. (K) 	>  g(K-n) li(n) 
n.6 

the inverse relationships being 

00  
f(K-11.)"X 1Y•00 1-(11 ) 

1.0 
n 0 	(A.1.23) 

g(K-n) 	>  , pi (K) 
1-0 

At instant K, the input and output wavefonas for the system are 

shown below 

f(K-n) 	f(K-1) f(K) 	g(K-n) 	g(K-1) g(K) 

- - - 	K-n 	• K-1 - - K-n - - - - - - -• K-1 



180 

These are related through the difference equation (A.1.21) or 

p 	 p 
.77-1 a.g(K-(n+i)) 	b f(K-(n+i)) 
i-0 1 	i-0 

Substituting equation (A.1.23) for g and f yields 

for n.0,1,2, 

 

 

VW 	(n+i) 	y.(10 1 .(11+i) 
i.0 1 	J 	J 	i.0 	3.0 ' 

th 
1.(n+i) is a j 	order polynomial in n multiplied by a(n/2 There- 

fore, it must be expressible as a linear combination of the polynomials 

ls(n) for s 	j. 	Hence 

j 
1.(n+i)

ji
(s) 1

s
(n) 
	

(A.1.25) 

where the constants 4..(s) will be determined later. 31 

into (A.1.24) and interchanging the order of summation over s and j 

yields 

03 	oa 	 -1 '‘-'—' 
i 	a,P.(K) - b.y.(K)j uj1(0  is  (n) . O. L ._, 	1 s=0 ,j. i:O [ -  (A.1.26) 

Using the independence of the polynomials ls(n), the coefficients can be 

equated to zero yielding the set of equations 

m p 
2_, > 	[a.P.(K) - 	 ji b.y.(K)] u..(s) - 0 	s.0,1,2, 	 
j.s 	1  j 	1   

(A.1.27) 

Before going further an expression for the pik(s) used in 

	

equation (A.1.25) must be derived. 	In summation form they are defined 

by 
co 

Pjk (s) 	>  1
s 
 (n) 1.(n+k). 	(A.1.28) 

(A.1.24) 

Substituting this 



181 

The finite form below may be derived for vik(s) 

v 	
j-s-k k-1  fj-s+1111 	k 	/_ )j-s-1-m 1) m 

jk
(s ) 	a 2  V 	m 	m+ij 	

, 
 

8=0,1,2, 	 j-1 
k  

Iljk(s)  m 	st.j 	 (A.1.29) 

Pjk(s) 	s=j+1, j+2, 	 

where )) 	(1-a). 	This may seem a rather complicated expression but 

after much labour was the simplest finite form obtained. The proof of 

the above relationship is rather long and tedious, and is therefore pre- 

sented in four steps. 	The truth of the last two expressions is demon- 

strated first. 	Then the first expression is proved for j=1 and all k, 

following which it is proved for k.1 and all j. Representing the points 

j,k by the lattice points in the first quadrant of a two-dimensional 

Cartesian system, the proof has then been obtained for all points on the 

axes of this quadrant. 	The induction used will be t, assume that the 

formula is correct forPj-1,k(S) Vj,k-1 	j (s) and 
v.-1,k-1 

 (s), and then 

proceed to show that it must be true for iii,k(s). 	Using the two axes 

as bases, the result may then be extended to the entire plane by the 

above induction. 

From(A.1.20itisevidentthatfors>j,.(s) ,== 0 as Pjlk 

l.(n+k) is a ith order polynomial in n and 1
s
(n) is orthogonal to all 

suchpolynomials.Forjmsonlythepowerofjinl.(n+k) need be con- 

sidered in equation (A.1.26). 	Using the definition of L.(n) given in 
J 	• 

(1"14)anclincludingthecorrectriorwalizingfactorli.(n+k) becomes 

n+k 
, 	a  2 	(1..a)j j  

1.(n+k) ,== 	.t 	n + a 2 	Q(n) 	(A.1.30) 
110 
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where Q(n) is a polynomial of order less than j. 	Forming the product 
n+k N7-1 

("1.28),1.(1)isorthogonaltOC 	
2) A 1, implying 

n.0 
that 

00 

	 1.(n) 	 cg.  = 1 	(A.1.31) 
11.0 	11:3 

thefactthat.).. a2  emerges immediately. 1/j,k(i  

The first and most difficult expression will now be tackled. 

Ekplicitely 

me 

,k
(0) 	10  (n) 11  (n+k) 

n-O 

((n+k)(1-a)-a) 

	

k 	k 
a n 7 k 	(1-a)  a- 

(1-a) 

	

1101 	oc n.0 

On substituting j-1, s=0 into (A.1.29) the value for g1tk(0) also re- 

duces to this expression. 	The relations (A.1.29) are therefore proven 

for all s, all k, and j=1. 

The second base axis requires the evaluation of µ.
J 1

(s). 	The p   

difference equation (A.1.6) expressed in terms of the normalized 

Laguerre functions, is 

1.141 (n+1) = li(n) + a2  1. (n) - a2  li(n+1). 	(A.1.32) 

Equation (A.1.29) in this case reduces to 

s-1  
“. 	() = a 2 	(-1)j-S-1  
Ehj# 1 \  

Theexpectedformfortheexpansionof1.(n+1) is therefore 

(A.1.33) 
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j-1  
1.(n+1) 	+ 2_, a 2 	1,) (-1 

i 8-1 
 ls(n). (A.1.34) 

First testing j=1 

11  (n+1) - (1-a) 10  (n) + GIP (n) 

which may be verified by substituting the known values of 10  and 11. 

Therefore a base for an induction on equation (A.1.34) has been obtained. 

Assuming (A.1.33) is valid up to j, and using the relation (A.1.32) 

j-1 j-s-1  
1. 	(n-1.1  mil.  (n) 	o:211 	(n) 	aP [GPI_ .(n) + 	 a 2 	(-1 )j -S -10s  (n)._  3+1 	 s=0 

j-1  
= cA 1 	(n) 	.(n) + >  ' a 2 	(-1)i -svls  (n) 	(A.1.35) 

3+1 	s=6 

completing this portion of the proof as it has now been shown that 

(A.1.33) must be valid for all j. 

Having established the truth of expressions (A.1.29) on the j and 

k axes it remains to show that it is satisfied for all other points j,k. 

Equation (A.1.32) for the value (n+k) is 

li+1  (n+k ) = 	(n+ (k-1 )) + 	li+1  (n+(k-1 ) ) 	(n+k ). 

Expanding both sides of this equation using (A.1.25) and equating co-

efficients yields the following relation between the 
P'i/J 

(s) (s) + GP 	(s) 	(s). 
lk-1 	 11

1.k (A.1.36) 

Assume equations (A.1.29) are true for all s and for the points (i, k-1), 

(i+1,k-1), (i,k). 	Required to show that it is valid for the point 

(i+1,k). 	It is a simple matter to show that the formula is valid for 

s 	i. 	For s i the right-hand side of (A.1.36) becomes 

s=0 



a 
2 i+ 	k- 

1-k-s 	(i-s+m)(k-1) (1)(i-s-m-1)e 
2 Lm=0 m 	m+1 

/ 
4. a 	f 

7 	
i+1-s+m)(k+1-1 ) 

	(-1) 	
, N u' \(i-s-m) 	/ k-2  

^ 	m 	m mmu 
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k-1 . 
-1 (71 .( 

- in-F1) 

  

(-1) (i-s-m-1) 

 

Substituting a=1-v in the second term contained in 	changing it to two 

terms, shifting the summation limits from 0, k-2 to 1, k-1 in the new 

term created, and then combining the first three using the identity 

(1') 	(13,ari) 
(a+1) 
\sb+1) 

(A.1.38) 

twice, reduces this expression to 

(in-is_Tm) ( 
m+1
k ) 

(-1)
i-s-m m 

k-1 

m=0 

(i-s+m) (ri
+1
k 	)i-s-m \on' 

Adding these two together and substituting again in (A.1.37) 

ii-1-
2
k-s 1  

- 7- , ti-1-1—
m
S+1( 

131-1-1\ 
k 
) 
( _1)i-s-mvm 

\ 
a 

m=0 
Z----• 

which is indeed the expression given by (A.1.29) and the formula is 

proved. 

Having managed to demonstrate the truth of the assertion by the 

above struggle, its implications can now be investigated. The first 

thing to notice is that 11.(s) is a function only of j-s, and k, i.e., 31k 

is essentially a two dimensional parameter. 



j,k(s)  = j-s,k(0). 

Returning to equation (A.1.27) the following quantities are defined 

and the matrix 

Y(K) = (Yo(K), Yt(K)„ 

(K) = (Po (K), Rs, 002 	 

aT 	= (as to 9 	 ad/ 1DT  b ) 
p 
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M(s) 

0 0 	  0 • • • • • . 	. 
s tO 	 0 

[10,0(0 ), 110,1(0 	 110 ,p(0) 

0(0)  	,v(o) pd.  

(A.1.39) 

Using this notation equation (A.1.27) may be expressed as 

P(K) M(s) a = /(K) M(s) b 	s=0,112„ 	 

The elementsP
i k(0) are independent of s, s only determining the number , 

of zero rows. 	These represent an infinite set of infinite linear 

equations implying that , in theory, given a, b, M(s) and the input 

spectra y(K), they may be inverted to find the output spectra 2.(K). As 

this involves the inversion of an infinite matrix it is hardly practica-

ble. For obtaining an equation in the coefficients a and b it is of 

somewhat more use. 

When making linear combinations of these equations it is only 

necessary to add or subtract the matrices M(s) as these are the only 

properties of the equation that are dependent on the equation number. 
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For example 

f.(K) M(s) a  - Li(K) M(s+m) a = .a(K) Hs) - M(s+m)1 a. 

Take the matrices (A.1.39) and form a new set of matrices Q(s) by taking 

linear combinations of the M(s) as shown 

p 	/p\ 
Q(s) 	LTd(si-j ) 1.10:2. 

=C 

With some difficulty, using the properties ofPi k° ), Q(s) can be 
t   

proved to have the form 

01  

Q(s) 	
QP 
02  

where qt  is (s+1)x(p+1) zero matrix, 02  is anoex(p+1) zero matrix and Q, 
is a (p+1)x(p+1) square matrix. 

The elements of Q10, symbolized by qk,i,p  satisfy the recurrence 

relation 
1 

q. 	q 	+ a2  
k,j,p 	k,j,p-1 

0<1:.<;p (A.1.40) 0<j<p-1 

where it is assumed that both q-1,3 ,p-1  and qp,i910-1  equal zero. 	Also 

() 
klp,p 

a
(p-k)/2 

the two relations together yielding a method for obtaining Q from Q. 101.  

It may easily be shown that 

Using the above equations and defining 5 .., a the matrices Q  and Q.6 are 

found as shown below 
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2 	3 
1 	5 	5 	5 

2 3 2 
36 1+28 26+5 35  
2 3 

36 26+8 1+25
2 

36  
3 	2 

6 	6 	6 	1 

2 
1 	8 

2 
Qe 
	

28 1+8 26 Qc, 
2 

1 

Matrices of as high an order as desired may be generated. 

The relation between the input and output spectral coefficients 

at time K can now be expressed by 

2(K) Q(s) a 	1(K) Q(s) s=0,1 ,  	(A.1.41) 

where Q(s) is an Cox(p+1) matrix with only a (p+1)x(p+1) submatrix non- 

zero. 	This now represents an infinite number of finite equations, 

linear in the system coefficients a and b. 	These equations are normal-

ized so that a0.1. If the 2n+1 system parameters a and b remaining, 

are unknown, then from a knowledge of the spectral coefficients and 

equation (A.1.41), they may be determined. 	Taking the first 2n+1 

equations of (A.1.41) the final expression 

B(K) Qp2 = G(K) Qph. 	 (A.1.42)  

is derived, where B(K) and G(K) are matrices formed from the coefficients 

Pi  (K) and yi(K) in the same fashion as the matrix B(t) on page 147. 

B(K) and G(K) are (2n+1)x(p+1) matrices; a and b are p+1 vectors. 

This last equation may be put in the partitioned form 

B(K) 	G(K) I1 
o 

Qp 

  

a = 0 
[12 

(A.1.43) 

  

    

    

ready for solution. As ao=1, each linear equation must have a constant 

term and the ordinary methods of solution may be applied. 
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A.1.3 Continuous Up-Dating of Spectra  

Calculating the spectra at each stage by using equations (A.1.22) 

necessitates storing all the past history of the input and output and 

going through a long multiplication and addition process each time. 

Using the previous spectrum, however, the only additional information 

required to obtain this new spectrum is the present values of the corre-

sponding functions. 

At stage K+1 the spectral formula is 

cc 
, 7-1  

	

Pi  (K+1) = 	f (K+1 -n)li  (n) 
n=0 

7)3 

	

= 	f(K-n)li(n+1) + f(K-1-1)1i(0) 
n=0 

co 

• f(K-n) 	 
n=0 

i 
▪ 2  II. 	 Pj  (j) 	(lc) 	f(K-Fi 

14   

+ f(K+1)11(0) 

In matrix form this equation is 

gK+1) = 4 1(K) + f(K+1) 1(0) 	(A.1.44) 

where the matrix 4 is an infinite triangular matrix with elements 

µ1,1 (j) = (1-a)a 2 	(-1)i-j-1 	for i-j > 0 

for i=j 

=0 	fpr i-j < 0. 

The vector 1(0) from formula (A.1.14) and the normalizing constant is 

i 
li(0) 	(-1)1  a2 	1/97Z 
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As the matrix p is defined by a linear array of elements the application 

of this up-dating formula is particularly easy. Also, since it is a 

triangular matrix, if only a finite number of the coefficients pi(x) are 

necessary then the matrix p is finite and the updating process involves 

no approximations. 	By using higher order p
3
. , (s) terms it is possible 
7 1C  

to update every k
th 

interval instead of every interval. 



190 

APPENDIX II 

Quine-BAcCluskey Minimization of Boolean Functions 

Assume that a Boolean function is to be expanded as a series of 

conjunctions. A conjunctive cover for a function f is defined as a 

set of cubes (conjunctions) such that all the members of f are included 

in at least one cube, and all members of f are excluded. Many examples 

of such covers occur in Chapter IV. 	The weight of a cover is defined 

as the total number of constants in the cover, or equivalently, by the 

number of occurrences of variables x. in the series of conjunctions 
1 

defining the function. 

The function (1,3,5) may be covered by the two cubes 

xi  x2  x3  

0 x 1 
x 0 1 
	X X3 +X2  X3. 

The weight of this cover is four. The Quine-McCluskey method minimizes 

the weight for realizing an arbitrary function. 	This in turn implies 

22 
minimization of the total number of cubes . 	The method is best ex- 

plained by an example. 

The function chosen to illustrate is that defined on page 87. 

Firstly the 'zero' cubes, as taken directly from the truth table, are 

set down in a column, ordered according to the number of i t s appearing 

in them (figure A.1.1). 	One cubes can only be formed between adjacent 

vertical blocks, as for non-adjacent blocks the members must differ in 

at least two places. 	All possible one cubes are formed and a N is plabed 
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by the zero cubes that go to make them. 	The process is then repeated 

with the one cubes to produce two cubes, the asterisks being placed in 

the same fashion. This is continued until no further higher order 

cubes can be found. 	The cubes that are unmarked (the prime implicants) 

form a cover for the function, the minimum cover being some subset of 

these cubes. 

Which subset, is found by drawing up a 'prime-implicant' chart, 

(A.1.2), where each of the prime implicants found above are set down, 

along with the elements of f that they cover. 	If an element is only 

covered by one implicant then that implicant must be necessary for the 

minimal cover. After removing these cubes and deleting all elements 

that are covered by them, the reduced chart of figure (A.1.3a) is ob- 

tained. 	In the example, 5 cubes are found necessary from this first 

inspection and six elements of f remain to be covered. 

Fliminate all implicants in this chart that are completely covered 

by a single other implicant (e.g., x111x). 	In the example this reduces 

us to considering five implicants. Again include all essential impli-

cants for this new chart and proceed until, either all the elements are 

exhausted, or until each of them is covered by at least two implicants. 

In the former case the minimum cubical cover will have been derived. 

If, in a reduced chart, there appear to be no essential implicants, 

then recourse must be made to a process called 'branching'. 	One im- 

plicant is chosen at random and assumed to be a member of the minimum 

cover. All the elements covered by this implicant are eliminated and 

the table is reduced until the minimum cover, including this implicant, 

is obtained. 	Then the minimum cover without this implicant is also 
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obtained. Finally, comparing the two, the true minimum can be found. 

This branching process may have to be repeated a number of times but it 

is normally not too difficult to pick out the best cover by a cursory 

inspection. 

22 
Miller has evolved a method, similar to the above, for finding 

the prime implicants from an arbitrary cover of the function. 	This 

circumvents the rather large chart in step one that results when 

functions of many variables are considered. 
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APPENDIX III 

Computer Subroutines  

A.3.1 	Subroutine SOLVE  

This subroutine finds the solution for the system coefficients 

using the discrete Laguerre spectrum of the input and output, and equa- 

tion (7.35). 	Three different methods were attempted to find the solu- 

tion to these. 	The first and most obvious took no advantage of the 

special form of the matrices B(K) and G(K) (see page 147), merely multi-

plying these by Qv  as found in Appendix I and then proceeding to find 

the inverse directly. 	This method not only took longer than the other 

two methods below, but also gave less accurate results. 

Equation (7.35) may be put in the equivalent form of (A.1.43) of 

Appendix I. Remembering that a0.1 this equation may be represented as 

11E(K)-- G001 o (A.3.1) 

  

where d is a (2n+2) vector whose components are linear combinations of 

the 2n+1 unknowns a. and b., produced by taking the product of the last 

two telus. 	This is further modified to 

do  
. 0 	 (A.3.2) 

where C is now a square (2n+1)x(2n+1) matrix, do  is the first component of 

a, al  being the remaining components, and a the first column of the 

matrix in (A.3.1). 	This last equation can be changed to 

Cd' 	do. a 	 (A.3.3) 
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C being sauare has an inverse provided ICI is non-zero. 	The 

inverse of C was found by orthogonalizing the rows of C by the Schmidt 

orthogonalization procedure (see chapter II, page 27). For an ortho- 

T io 
gonal matrix U, UU = I = UTU . Orthogonalization of C is equivalent 

to multiplying it by a transformation matrix A yet to be determined. 

Hence 

(AC)T(AC) = C TATAC = I. 

Multiplying both sides of (A.3.3) by CTATA results in 

d i  = 	do  CTATA a. 
	 (A.3.4) 

The great advantage of this form as far as computation is concerned is 

that after A has been determined there are no matrix multiplications as 

A, then A
T
, then C

T 
may be applied successively to the vector a to 

produce the required result. 

Given a set of row vectors -21.1a, 	Ilk  to orthogonalize these 

51 
by the Schmidt procedure involves forming the successive terms 

a 	_ <22  9 171,› 	/ 	" \r;› 

	

(A.3.5) 

Ek 	
uk - 	

<12.1(' 9-Y2_:\> ) 

where <-2,,b > denotes the inner product. 	The normalizing constants for 

the vectors are defined by g. =ARy.,v.>, and give an opportunity 
-1  

for checking the consistency of the equations. 	In the programme if the 
2 

value of pi  fell below a certain fixed value the equations were consi- 

dered to be inconsistent and the process was stopped. 

It may be shown that the only matrix product required for this 
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orthogonalizing procedure is CCT  which, due to the special form of C, 

may be calculated in considerably fewer operations than calculating the 

matrix product directly. The number of operations to find a matrix 

3 
product is of order n while taking advantage of the symmetry in C, 

2 
this may be reduced to an operation of order n . Matrix A is triangu- 

lar and may easily be found from (A.3.5). 	There seems to be no time 

saving way of performing the orthogonalization of the equations. With 

a little thought the square root necessary to find the normalizing 

constant can be eliminating, saving another subroutine. 

The best way to explain the final method for extracting the 

solution is to follow through an example. 	In the two dimensional case 

the equation for the coefficients ai  is 

 

_ 
1 

di  /do  
d2  /do  

 

o 

di 	do 

d2  

(A. 3.6) 

   

The constants di/do  have already been determined from (A.3.4) and are 

givenby-CTATAa.TheQhaveaverysimpleinverse;ifqi,j is the 

i,jth  element of Q10  then it may be shown that (-1)i+j  qi,i  (1-a)19  is the 

j.,jth  element of 00;1. 	Therefore, multiplying both sides of (A.3.6) by 

ql  yields the equation 

1 -1 

d. /do 
d2  /do  

  

where the last multiplication can be performed yielding an expression 

1 

aj 

a2 _ 

= do  
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1 
where all the al s are known. From this do a = — producing a final solu- 

tion of the forli 

[

i cx2  

a21. 	c6 /a  

and the coefficients are found. Note that in taking the ratios the 

constant (1-a)P  disappears and so need not be carried through the calcu- 

lations. 	The solution for b is found similarly. 

For most practical systems bo=0, as the input cannot normally 

affect the output instantaneously. 	This can also be incorporated into 

the calculations to reduce the number of parameters that require solu-

tion, although it involves some further complications in the matrix 

operations required. However, in all the results quoted in chapter VII 

the modified programme that assumes bc3 0 was employed. 

Figure (A.3.1) gives a somewhat cAldensed flow diagram for the 

programme. Two modifications of this programme were tested, the first 

took the equationsin the order as they appeared, the second taking them 

in the reverse order to see if this would affect the orthogonalization 

procedure at all. 	There was nothing to choose between these two 

programmes when comparing the two final results. 

A.3.2 	Subroutine ROOTS 

This subroutine takes a polynomial of any order and finds all its 

real and complex roots. 	It was developed in order to plot the pole-zero 

diagrams for the system identification procedure using the discrete 

Laguerre polynomials, and is used in conjunction with subroutine SOLVE 

described in the previous section. 
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The Newton-Raphson method is used to improve the estimate of the 

roots with a slightly modified scheme for obtaining the complex roots. 

P
n(x) represents a polynomial in x of order n. 	For real roots the 

iteration scheme 

xn 	x
n-1  - P n (xn-1 

)7P 
 n  I  (xn-1  ) 

	
(A.3.7) 

is used where Pl(x) represents the first derivative evaluated at x. 	If 

in carrying out the above procedure the iterations start to diverge then 

the estimates must have passed through the real part of a complex root. 

The complex pair can be estimated by fitting a parabola through the 

point xn using the values of the derivative and function already calcu- 

lated at that point. 	Then the corresponding complex roots of this para-

bola are found as an initial estimate to the complex pair. 

A two dimensional Newton method is used for refining the complex 

roots. A complex pair, defined in polar co-ordinates by pej/ and pe-j/ , 

must satisfy the two equations 

\ I  .ei a 	e 
/ 	I 	= 09 
i=0 

where a. are the coefficients of P
n(x). 1 

two results in the two real equations 

e = 0, 
1 

Subtracting and adding these 

1 fl  = 	a.e cos 	= 0, 	f2 	71  aA 1  N7 	 sin jI . 0 
6 1 	 -; 	

9 
 

(A.3.8) 
The trigonometric identities 

p1 
	
sin 	

a pi - 1 
sin ((i-1)/) 	P6i-1  cos((i-1)vf) 

and 
	

cos J.9.f 	
1-1 

 cos ((±-1)/) - 
	sin((i-1)') 

(A.3.9) 
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where a = ()cos / is the real part of the root, and p =psin / is the 

complex part, may be used to obtain the termspi  sin i/ and p1  cos irg 

from terms with lower index, and a and p. Given an arbitrary a and p 

and the above formula it is an easy matter to evaluate fi  and f2. The 

problem is to find a point (a, p) such that fi and f2  are simultaneously 

zero. 

The constants a and b, defined below, may also be obtained 

i ,2 / ia.p sin ip = a = - ap  

6f2 	of 
i/ = b = P715 

Hence / b 
dfi  = adp + dp 

a 
df2  = bdq - dp 

which on solving for the infinitesimals d/ and de yield 

, 	, 
d/ 	(adfi  + bdf2  )/ (a

2 
 + b

2 
 ) 

2 
dp 	(-adf2+ bdfi  )/(a2  + b ). 

From the definition of a and p 

da = - psin /d/ + cos clap 

- 	adkp 

dp . ad/ + f3dp/p 

producing the final relationships 

2 
da = t(ab - Pe) 	- (aa 	pb) df2} /(a2 	b ) 

	

2 	2 
dp = ((aa + pb) dfi  + (ab - pa) df2} 	+ b ). 

(A.3.10) 

af, 
1 
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On fitting tangent planes to f1  and f2  at the point (a, p), the 

first order correction to the complex root may be found by finding where 

the line of intersection of these planes passes through the plane f1  

f2 	0. 	Thus having the values fil  f2, a and b at (a, p) the correct- 

ion to a and p may be found. 	This takes the form 

an an-1  - Aan-1 

Pn Pn-1 4n-1 

where 
Aan-1 

and  Apn-1 are calculated directly from (A.3.10). 

There is, however, a danger in applying this procedure directly. 

Note that for p 0, 	. 0 and hence f2  is always zero. 	Also for a 

complex root there is a saddle point on the p a 0 axis indicating that 

if this method happened to converge on this axis it could never get off. 

Because of this it was decided to follow f2  contours until fi  equals 

zero and then follow the 1'1  contour to the final root. 	This implies 

setting df2  . 0 in equation (A.3.10) until the value of f1  is below a 

certain tolerance, and then keeping it within this tolerance until f2  

has converged to a satisfactory value. 	If this method fails to converge 

then there must be real roots and a pair of these is predicted, the mode 

being changed to the ordinary method described first. 	The root is said 

to be found if the value of the function is less than a certain tolerance 

that may be read into the programme separately. 

Figure (A.3.2) represents a simplified flow diagram for the sub-

routine. An iteration test was included to make sure the procedure did 

not go on forever in some anomalous cases. 	The programme was tested 

for a number of root configurations including double roots and even 
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double complex roots and was found to give very satisfactory performance. 

For example it extracted all the roots of a sixth order equation, having 

two pairs of complex roots and a double real root, to a tolerance of 

0.0001 in a matter of 70 iterations. 
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