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ADAPTIVE DIGITAL FUNCTION GENERATORS AND THEIR APPLICATION
TO CONTROL SYSTEMS

ABSTRACT

The need for adaptive digital function generators is illustrated.
Continuous and discrete functional expansions are discussed and a new
set of discrete polynomials used later in the thesis are developed glong
with their orthogonal properties, recurrence relations etc. ﬁigital
functions are defined leading into a general study of boolean functions.
Networks for realizing boolean functions using nor gates with a 'fan-out!
of one are developed as well as a method for minimizing these nets.

How continuity of the original function affects the quantization
and nature of the digital function approximating it, is then explained,
and ways of realizing these functions using boolean networks illustrated.
The difficulty of adaptation is discussed in more detail and a specific
control systems problem is solved by the application of an adaptive
digital network.

The identification of on-line processes using continuous and
discrete polynomial expansions of the input and output is discu;sed and
a set of computer results, verifying the method for the discrete casé
included. How the various spectra may be up-dated continuously, along
with the effect of noise on the identification efficlency is demonstra-
ted. Finally, the identification method employing the discrete poly-

nomials is extended to multi-dimensional systems.
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CHAPTER I

Introduction

At first sight the title may appear to be rather imposing and,
like all titles of its kind, rather misleading. It is the object of
this Chapter to explain the title and to give a general outline of the
thesis, along with a partial justification for exploring this particular
aspect of control theory.

The thesis ig divided into two main sections, roughly correspon-
ding to 'Adaptive Digital Punction Generators' and 'Their Application to
Control Systems'. By far the greatest portion is concerned with the
first part, the second being discussed here and in Chapter VI. There
is good reason for this, as the control literature already abounds with

12,37 ,49
- reference to the second

. It is only necessary to read 'Digital
Computers' for the first phrase and this is immediately evident.

In recent years the greatest effort has been gnplied in making
control systems compatible with digital computers; +that is, in trying
to evolve mathematical models and expressions to represent the system,
that can be easily handled by the computer, This has led to such so-
pﬁistiéated and powerful methods as dynamic programming?6 and the
Pqntryagin maximum principle47 for solving control systems problems.
ﬂow,'however, the methods have started to outpace even the largest and
fasted.machines on the mafket, due to the complexity of the mathematical

analysis necessary. To circumvent this difficulty the trend has been to

48
design learning systems , that have built into them variable sgtructures



and self analyzing equipment. Thus, instead of trying to do a complete
mgthematical analysis of the system under study, the necessary adaptive
hardware is stored as an intrinsic part of the machine, along with in-
formation telling the system what it is trying to optimize, or, to use
the learning terminology, setting a goalso for the system.

This leads to the block diagram shown in figure (1.1%). The
block labelled 'goal evaluation' could be redesignated as 'system per-
formance evaluator', 'cost function calculgtor', or many other things.
The decision block determines which way to change the adjustable param-
eters and may contain such things as gradient estimators, system identi-
fication procedures, model references etc. Its output is an order to
change the varisble configurastions in the system to some other setting.
In what follows it is assumed that, for the system under consideration,
some method has already been evolved for designing these two blocks.
Neither of these is g simple procedure and have gbsorbed most of the
effort in the control field for the past few years. Our concern is
only with the manner in which the system is changed having the two sub-
systems gt our disposal.

The obvious wvariable structures to include in a system are variable
gains or time constantélz, in order to compensate for changes in the
system parameters. For these cases the advantages of going to digital
circultry is not immediately evident as there are severe limitations on
the kind of adaptive operations that may be performed. The variable
component for the systems below is gssumed to be a zZero-memory function.
Here, if the function is obtained by a variable continuous network, the

search problem becomes enormous due to the large number of possible
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functions available. Using digital systems it is an easy matter to
limit the size of this class and hence to reduce the search to reason-
able proportions. Why variable functions are chosen is illustrated
below where the use of function generators in different configurations

is discussed.

1.1 Use of Function Generators

The first application is in realizing compensating networks either
in the forward, or the feedback path of a system. The behaviour of the

51
compensating system may be defined by a set of equations of the form

x = £(x, u, t) (1.1)
where x is an n vector, suitably chosen to represent the state of the
system; u, an r vector, is fhe input, and t is the time. The output
Y is some linear combination of the state variables X, . This is equiv-
alent to the analogue computer set up in figure (1.1b) where the single
integrator represents a set of n interconnected integrators, and the
block A yields the required linear combination of the state. All com-
pensating networks may be put in this form. If the required compensa-
ting system is time invariant then the variable t does not appear
explicitely as shown in the diagram. The functions f are zero memory
functions of n+r+1 variables. TFor adaptation purposes these could be
realized by function generators giving a set of non-linegr compensating
elements, and allowing much more scope in design than the linear net-
works now in use.

47
Merriam  has shown that for linear systems with quadratic cost
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functions, the optimal control scheme involves ingerting a number of
time varying gains in the forward and feedback paths.. The variable
gains ki(t) can be realized by a function generator driven by a clock.
An example of such a control system, with a variable gain in the feed-
back path, is shown in figure (1.2%). This is ideally suited to the
incremental function generators illustrated in Chapter V. The multi-
plier may either be an analogue multiplier, in which case a single D-A
(digital to analogue) converter would be required on the output of the
generator, or a digital multiplier, with the necessary A-D and D-A
converters. A time varying gain using analogue components only is a
difficult and complex device to design, whereas using digital circuitry,
it becomes a straightforward procedure.

Perhaps the most obvious application for adaptive digital function
generators is in obtaining switching boundaries for .relay control
systems. If the critericon function for the design of a system is to
bring it to a specified final state in minimum time, and the allowed
control effort is bounded, then a meximum effort or 'bang-bang! control
system results. The control alternately moves from one bound to the
other until the final state is reached when it drops to zero. The con-
trolling element can be a relay, or set of relays, positioned as shown
in figure (1.2b). The relay (relays) position is uniquely defined by
the input and the state of the system. The different possible positions
of the relay correspond to different portions of the state space separa-
ted by a switching boundary.

This switching boundary can be represented by an equation of the

form
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g(x, u) = 0
defining an n-1 dimensional surface in the n space. If this function
is realized by a generator, then ags a particular trajectory passes
through an x, u state on the boundary, g must change sign. Thus this
function could be used to drive the relay, provided the sign of ” is
chosen correctly on elther side of the boundary.

For single input single output systems, where it is desired that
the input follow the output, the system may be driven by the error
signal plus some function of the remaining states. These remaining
states, in effect, allow one to calculate the stored energy, and hence
find how much sooner the relay must be switched to ensure that, when
the system has zero error, it also has zero stored energy, implying that
it must stay at rest. Figure (1.2b) gives the block diagram of this
system. The simplest and most natural state set to choose for most nth
order systems, consists of the output and its first n-1 derivatives.
An auxiliary device for estimating these derivatives is therefore necess-
ary. 4 dead band relay is used to prevent the system from going into
limit cycle operation for small errors. The amplifier A serves to give
enough drive to the relay coil for small signal levels. This is dis-
cussed in greater detail following the general description of adaptive

function generators.

1.2 Qutline of Thesis

Having demonstrated the need for function generators it is not
really necessary to argue for adaptation. The value of the epithet

'digital' is amply illustrated in the following pages, where it is shown
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that 'digital' does not necessarily imply the use of a full-fledged
computer.

Chapter IT contains a thorough summary of various functional
representations along with a theorem, which, although it is probably
already exﬁynt in some work, has not come to my knowledge before, at
least not in this particular form. Both continuous and discrete func-
tions are analyzed and a new set of discrete polynomials, developed with
all their ramifications in Appendix I, is introduced. Following this,
kmown methods of generating continucus functions, along with a new
application of the Walsh functions, are discussed in order to demonstrate
the need for introducing digital functions.

In analyzing digital functions 1t was found necessary to delve
quite deeply into the boolean algebra and the various methods of repre-
senting boolean functions. Chapter IV develops the necessary tocls and
then goes on to discuss 'universal nets’, and shows how these may be used
to obtain arbitrary boolean functions. How the number of elements in
these nets may be minimized, along with & number of examples, is also
presented. In the next chapter the actual realization of digital
functions using boolean functions is discussed in detail, and the concept
of a 'continuous' digital function is mentioned. This last involved
some quantization theory, and it was thought worthwhile to present a few
results concerning the best methods of choosing quantization levels.

In Chapter VI the application of digital function generators to
control systems ig developed onward from the short intreduction of the
previous section. Here 1t is demonstrated how digital functions can be

used to reduce the search problem for adaptive control systems, and can
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even result in some simplifications of the two auxiliary blocks of
figure (1.13). A detailed example, using a relay controlled servo-
motor, is performed to show exactly what difficulties are encountered
and how these may be solved by using a digital generator.

Moving slightly away from the main flow of the thesis, Chapter VII
shows how discrete functional expansions may be used to identify linear
gystem parameters. It is demonstrated how a finite number of input and
output spectral coefficients can determine the system parameters exactly.
The determination procedure uses the discrete polynomials developed in
the Appendix and an example, using a third order variable system, is
worked out on the computer. How the overall system behaves in the
presence of noise and with variations of the polynomial characteristics
is illustrated. The method is then extended to multi-dimensional

systems. Hopefully, the conclusions will speak for themselves.
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CHAPTER II

Punctional Representation

2.7 Definitions

Formally a function is defined as a mapping from a set of ele-

ments !

x’ (the domain) to a set of elements"y’ (the range), the whole
process to be viewed as a look-up table. When the domain is finite
there is no difficulty; when the domain is infinite, to quote a well-
known phrase, 'conceptually there is no difficulty’, although the mind
baulks at the thought of an infinite look-up table. Practically, one
is forced to the notion of algorithm or rule to get from the input
space to the output space. An algorithm amounts to a set of opera-
tions which, applied in a specified order to the domain element 'x’',
will yield the range element 'y’. This leads to the more familiar
looking definition:

y = £(x)
where £ is the algorithm in question.

Further restricting ourselves to considering the‘input gpace as
the set of real n-tuples and the output space as the set of real num-
bers the notation becomes:

¥ = £(x ,x e xn)
where all the elements Xy and y are real numbers. Finally a dicotomy

'variables' and the

of the input elements into two clagses, one called
other 'constants' or 'parameters' (variables with a difference) is

performed, yielding:
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Y o= f(@_,az teaes ai, Xy 9Ky eeens xs)
the 8 +eere @ are fixed numbers while the % ..... X, vary over the
set of all real s-tuples. The domain has been reduced to the set of
s~tuples and the function is contained in the operator f and the con-
stants a4 cecen a,. The constants can be absorbed in the algorithm f
to give

y=g<){1’}<2 s 0000 XS).

The algorithm can take many different forms and the search for a
'simplest' form, due to its obvious application in computer programm-
ing, has received a great deal of attention in the literature latelye’i
The two most common forms are the polynomial and the differential equa-
tion form. It is hard to think of a representation that in the end
does not reduce to one, or the other, or a combination of both of these.

As an example the function y = Ae™* (variable x, parameters A and

®) may be represented as
o 1
<7
y"(i% aix) a

or equivalently as the solution to

%~ay=0 y(0) =& .

The polynomial repreéentation is that used for all digital computation
while the differential equation form is normally used for analogue
computation. Note that in going from the first to the second equation
one of the parameters (in this case A) is transferred from the equation

to the initial condition. In general, if we have a function contain-
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ing r parameters, it can be replaced by an rth order differential
equation independent of the parameters and a set of r initial condi-
tions containing them.

For the above example, if the parameter o were to be eliminated

also, the differential equation would become

2
dy 1 dyy¥ _ y(©) =24
i ¥ i ' (0) = A«

where y'(x) = dy/dx. We shall be concerning ourselves almost entirely

with representations of the first type.

5
Following Sansone , a real 'Hilbert' space, defined over a meas-

ureable subset 'g'! of the space of n-tuples, is the space of all
functions f such that J; fz(g) dx exists (x is an n-dimensional real
vector and dx is the volume element in n-dimensional space).

Confining ourselves to a Hilbert Space is certainly no practical
constriction and is necessary to ensure convergence for the approxima-

ting series which are discussed in the following.

2.2 Spectral Analysis

Unless otherwise indicated we will use the notation

f(x) = £

Yg £(x) ax =jfdx )
The next problem to consider is how 'best' to approximate a given
function, f, of a Hilbert space by a finite set of known functions
hoshy eeene hn of the space. The form of the approximating function

will be assumed as
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n
h' = Z‘ ah, (2.1)
i=0

where the a; are congtants to be determined.

As in most control situations the definition of 'best' has to be
somewhat arbitrary and is taken to be that set of constants a; that
minimize the functional

Blag +v-ra) = \p(e-n') ax (2.2)

\
where p is a non-negative weighting function p(g) which enables us to
weight errors in one portion of the space more heavily than in other
portions., This error function yields the best 'approximation in the
5

mean' .

For a minimum in E

'S;:.:O 1——-0,1 eecey I
Differentiating equation (2.2) gives

0y1 vseeen (2.%)

1

JE S .
= = - fp(f- 2y ah )b =0 i

bai =0
implying that
, n
jpfhi dx =§i§ ajhjhi p dx i=0,1.000.mn . (2.4)

Defining an (n+1) vector ¢ such that
o) - Spfhi ax (2.5)

and an (n+1) x (n+1) matrix H
h, . = .h, 2.6
1,57 [Py e (2.6)

then the set of equations (2.4) for the coefficients in matrix form
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become
c=Ha. (2.7)

Provided the determinant of H (|H|) is not zero the solution is

a=H g (2.8)
{H| is the Gram determinant for the set of functions ,JEhO, qﬁi& veene
«/Ehn (see Sansone) and provided these functions gre linearly indepen-
dent then, by a well known theorem

tH] >0

n
and H ig positive definite implying that zz didjhi 3 is greater
3 b

i=0 j

Ly

than zero for all non-zero vectors 4.
Evidently the set{kfgh;}are linearly independent if, and only if,
{h£~ are linearly indegendégt. Therefore the condition that a
unique solution for g exists is that the base fUnctionahi be linearly
independent. Note that H is g function only of the base polynomials
and p. Cy may be thought of as the projection of £ on to hi'
Deriving E a second time results in
2
0K

SES—SE; =kgphihj dx = h, ..

1,J

Hence the positive definiteness of H ensures that we have a minimum at
the solution point.

The original set of functions hg ..... hn will be called an n-
basis for the space, and will be represented by a single (n+1) dimen-
sional vector g(g); therefore, in vector notation the approximating

function h' is

n' = N a.h, = éfg . (2.9)
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Substituting the solution for a found in equation (2.8) this can be

expressed as

B o= (570)"

iay

and using the fact that H is symmetric and that the transpose and in-
verse commute we arrive gt

n' = oH Tty (2.10)

Equation (2.5) may be put in the form
pe(h) ax (2.11)

J

and (2.6) in the matrix form

C =

ie (@1’ w (2.12)
.
where in the first case the integration operator &Ypf + dx operates on
every element of the vector h; in the second case the operator
xfp * dx operates on every element of the matrix g‘gt.
An interesting theorem, which seams to have escaped the litera-
ture, will now be proved. Although it is, perhaps, trivial when
viewed from a certain angle, it does illustrate a significant invariant

property of the approximating function h',

Theorem 2.1 If h is an n-basis and g is another n-basis such that g
is a non singular linear combination of h (g = Ah, |A! # O) then the

two derived approximating functions g' and h' are identical.

Proof:~ Let the projection of some arbitrary f on h be ¢ and on g be
d, i.e.,
o
¢ = jpf(h) ax
o

{=F

= [pe(g) ax .
o
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Define matrices H and G as

B - e ax
s t
Gan(gg)dx
the best approximating function for the two bases are from equation

(2.10)

h! = Jﬁig (2.13)

g! = dtG_lg (2.14)

Now g g = An (an)°

and [ g_gtpdx = LfAQ htAtde

= A( Jﬂ.h npax s’

or ¢ - aHA®, (2.15)

4 = j~pfgdx = \YpfAhdx
= A\gbfgﬁx = Ac.

Substituting these in equation (2.14) yields
t ty-1
g' = (Ac)” (8HA')™ ah

=P H T At - gt

i.e.y h'= g! as required. .E.D.

The significance of this theorem is, that regardless of which
particular linear combination of base functions is chosen at the beg-
inning, the approximating function is the same, In the particular
case of polynomials it makes no difference which polynomial set you

start with, the kind of approximation you get being dependent only on
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the weighting function p(x). 411 that need be considered is the ease
with which the base functions can be generated.

Thus, for example, if we wanted a Tchebychev approximation of
order n on the interMal (-1, 1), the weight function 1/N/;:;; would be
vged. The base functions could be chosen as 1,X .vee. % and the

matrix

1 i
X' X
s o f) R

-1 1 -x
calculated and inverted beforehand. Then using equations (2.5) and
(2.8) the best approximation may be calculated easily, the most diffi-
cult computation arising through equation (2.5), although this will
still be considerably easier than if the hi had been the Tchebychev
polyncmials.

In fact the matrix H has the form

By hy Ny eees. b
by b hn Nt
hy
hn hn+1 hzn—i hzn

1 k

where hk = fﬂ — dx
-1 AVA

which is a 'Hankel' matrix of order (n+1) (see Gantmacher 'Matrix
Theory', Vol. 2, pp 207, and reference 9) and has a particularly easy

inversion formuls.
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2.3 Orthonormal Punctions

A set of functions {hi} is orthonormal with respect to the weight
function p(x) if o
\Yg P hihj dx = 6i,j
where éi,j is the Kroneccker delta. This, according td what has gone
before, implies that H=I and equations (2.7) and (2.8) reduce to
& = a, making the multiplication by H unnecessary. The great advan-
tage of orthonormal functions, however, is to be found in equation

(2.3), which reduces to

OE r

A

This implies that, if some method for evaluating E and an 'on-line'
method of varying a; were available, we could find the correct coeffi-
cient value by finding where gg‘ = 0 independently of all the other
coefficients, This is a great ;dvantage when the coefficients are to
be found by some analogue method or are tracking a slowly varying
function.
For an arbitrary n-base h we can find a corresponding orthonormal
base from equation (2.15). Using the fact that H is a real, symmetric
positive definite matrix, a matrix A can always be found such that
AHAt =T

(see reference 10, pp 54-55).  This implies that the n-basis
g = Ah

mist be an orthonormal basis.

It is interesting to note that the orthonormal basis is not

necessarily unique for a given p(x) and range of integration. To do a
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gimple example, consider the two independent polynomials x+1, x-1, and
orthonormalize those over the range (-1, 1) with the weighting function
of 1.

(x+1)2 dx =

Wi

The matrix H will be

2 -1

4
=3

-1 2

a matrix A which will satisfy

AHAt =1
is
1

24/5

A

0 I\/E!i

2 11

as can be checked by substitution. Therefore an orthonormal basis

found from g = Ah would be

g = (© (1) + /3 (x-1))

& = (2 (x+1) + 1(x-1))
& = (e-1), g = 2

S
2n/2
-
2

A3 _ 3x1
2n/2 on/2

That these are orthonormal is easily checked by doing the integrations,
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Note that these two functions are very different from the first two

normalized Legendre polynomials defined over the same range,

obtained by starting with the polynomials 1,x and normalizing in the
same way.
If the transformation matrix A had been chosen as
1 1 -1

e G A3

then the Legendre polynomizls would have resulted.

As mentioned previously this method of orthogonalizing a set of
functions is unsatisfactory due to the difficulty in finding the
required transformation A. The normal method used is the classical
'Gram-Schmidt’' orthogonalization technique. This generates the func-
tions sequentially. Assume a set of orthogonal functions {%O,é_.....
¢k}»orthogonal with respect to the weight function p and a function

g linearly independent of the set ¢i' Then the function defined by

o
jpsvf-dx\

is orthogonal to all members of the set ¢£. This is easily shown by

forming
.0
jp oy B @X = jpgsz{idx - i 4 j[—gi{l—d—x- jp%iyfj ax

=0 [\ |od; ax,
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| / ¢i dx\\ 2
= Spgszfi ax - (\j%j—?-d;) jW{i dx

= O,
This completes the discussion on generalized functions., We will
now procced to briefly mention some known expansions along with some of

their most important properties.

2.4 Polynomial Representations

The following polynomial sets mgy all be generated from their
weighting function and the set of linearly independent functions
19X euvne % «reee by the orthogonalization procedure above. Fortuna-
tely recurrence relationships for them all may be found. These, along
with the first few members of the set, will constitute a complete
definition of the polynomials for all orders. The normalizing factor

2
( P%n dx) is also given.

2.4.1 Legendre Polynomials

Defined on the interval (-1, 1) with a weighting factor of 1.
Therefore, they give the best mean square estimate of any arbitrary
function,

P, = 1
P = x

(n+1) P, = (on+1) x P -nP

The normalizing factor is Av/g%;l .
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2.4.2 Tchebychef Polynomials

These are orthogonalized on the interval (—1, 1) with a weighting

function of 1/ N/1-§2. Due to the form of the weilghting function

these polynomials yield an approximating function which is the poly-
nomial whose maximum deviation from the actual function is smallest

(see reference 11, page 58).

7=

Ti = X

T = 2x T - T .
n n- n—o

Normalizing factor is N/%‘

2.4.3 Laguerre Polynomials

These are defined on the range (0, ) with a weighting function
of e_X. They give a good approximation on the beginning of the range,
a great many terms being necessary if a good approximation far from the

origin is desired.

L, = 1
Ly = = x#l
nl, = (2n-1 -x)Ln_1 - (n-1 )Ln_2 .

The normalizing factor is 1.

2.44 Associated laguerre Polynomials

These are defined over the same interval as agbove only with the

weighting function e x* where a > -1,
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o
Ly =1
Lf = -x + (o+1)

o a a
L = (2n-1+o-x) L, - (n-1+a) Lo,

fhe normalizing factor is \/nl /[ﬂ(n-a+r) where Tﬂ(a)

I

* x_a-1
[ e %7 ax.
Yo
These reduce to the ordinary Laguerre functionsfor o = 0,

2.4.5 Hermite Polynomials

Defined over the range (-c0, 5 ) with a weighting function of

2
~-X
e .
Hy = 1
H = -2
Hy = -2 -20@1)H

The normalizing factor is 1/ Mot 3 AT .

2.5 Non-Polynomial Bases

The most common of these is the fourier series using the funct-
ions sin 16 and cos i@ defined over the interval (-%, %),  The nor-

malizing factor is :i: except for the first one, i.e., the constant,
AT

where it will be These have been adequately covered in the

OT
literature and regﬁ!Z; no further elaboration here.
The only other well-known non-polynomial basis is the so-called
‘orthogonalized exponentials' (see 12, pp 311—515). These are genera-
ted from the set e—afx where the ai are distinct real or complex

numbers. These find specific applications in system identification

due to the ease with which they may be realized in the frequency domain.
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A last and rather interesting example of a non-polynomial basis
may be found in the set of piecewise linear functions shown in figﬁre
2.1. These functions are defined on the interval (-1, +1) by straight
line segments hetween the upper and lower bounds of 41 and -1. In
going from order k to order k+1 one more line segment (or equivalently
one more zero) is introduced. Such a function of order k is specified
entirely by giving its k zeros along with the restriction that it must
pass through the point (+1, +1). The zercs may be chosen to ensure
orthogonality; for suppose an orthogonal set up to order k has heen
generated and a function of order k+1 is to be found. Without loss of
generality k+1 can be assumed to be odd, and the function Lk§; will be

an odd function. It is already orthogonal to all the even ordered

. . k .
functions. There will be > odd functions Ly yLs «es.. L e of order

k
less than k, to which the function in question must be made orthogonal

by choice of the zerocs. Por both even and odd functions the zeros are
symmetrical with respect to the origin, the odd functions having a zero
at the origin. Lkﬁi will have-% Zeros, a; to the left of the origin.
These may be ordered

0 &< a5 veves £ @

0 |

<Ay
>

-1

I%&i may be expressed as a function of these f parameters. The

integrations
-1
J“q Iy (1082 weeee ) I (x) ax=0 i=1,3.....k-1
2

may be performed and set equal to zero, giving us % equations in the g X

unknowns a . These can be solved giving us the roots of Lk%1 as
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required, The first six of these functions are given in figure 2.1.

The normalizing constant

is 2 for i=0 agnd 2 for all other 1.

3

Assuming an expansion formula of the form

o0
flx) = ':Z 2;L, (x)
i=0
the coefficients ay become
1

’
2, = 3 £1 £x) ax

| 1
a, = -,f; \L £(x) L (x) ax  i=1,2 ...,

Using these formulae the function f(x) e x2 is approximated in figure
2.2. The approximation using three terms and eight terms is given.
Only four of the coefficients are non-zero in the final expansion as
all the odd coefficients are zero and a; is also zero.

The study of these functions was carried no further as they are
not in the main-line of the thesis. Questions of convergence and
completeness have been left as well as obtaining a general expression
for the roots of the functions. They have been mentioned only in
passing and as a guide for possible future work. The application of
such functions in the construction of adaptive agnalogue function gen-

erators is obvious.
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2.6  Multi-dimensional Expansions

For examples of functions orthogonal over two or more dimensions,
one need merely go to the theory of partial differential equations where
nearly all the sclutions tc the equgtions are expansions in these func-
tions. There they are called 'eigenfunctions'. The most commonly

uged of these is the multiple fourier series consisting of the set of

functions
cog8 KX COS Y¥ =01 seens Y= 0,71 cevee
sin px ces vy E=1,2 ..auo Yy = 0,1 ooas.
cos px sin yy o= 0,1 suee Yy=1,2 vesus
sin px sin yy po= 1,2 ..... y=1,2 .ee..

These form an orthogonal set over the rectangle
- x (T, -i<yK® ,
Any functicn of two variables defined over this region can be expanded
in terms of them. The ez}ension to n-dimensions is obvious. Expan-

S ii
sion series of the form._E% _2% aijx ¥y~ are alsoc well-known as well as
J: 1 ==l
the corresponding orthogonalized functions (see Courant and Hilbert on
Weierstrass's approximation theorem). Further examples abound (spheri—

cal harmonics, Sturm-Louville eigenfunctions etc.) in practically any

physica book.

2.7 Discrete Functions

A discrete function is defined as a mapping from a finite, or
denumerably infinite set of peints X, inte the set of real numbers. A

2
gimple example would be the function f(x) =x x = 0,1,2 ..... The
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gqualifier 'discrete' is essentially a restriction of the domain of the
function, Without loss of generality we can put the domain of the
function in one-to-one correspondence with the integers allowing us to
use the notation f(n) to denote a general discrete function.

A1l the results discussed for continuous functions are immediate-

b

ly applicable to the discrete case merely by substituting ‘Ej- every-
i=a

where a form \Yg * dx appears. The integerw a and b define the range

of definition of the function. In the following, for convenience of
notation, these limits and the swmmation variable i will be left out,
all sums assumed to be taken over the total range of definition. An
b n — n
expression like EZ p(1)(£(1) - ZZ a.f.(i)) beoomegz;p(f— Ei a.f.).
The only restriction on all functions is that zi £ (i) exist and be
finite.
Analogously, given a discrete function £, a non-negative weight
function p and a linearly independent set of discrete functions
hy «e.ss hn’ the best approximation in the mean may be found from mini-
mizing the sum
n 2
E = E: p(f- zf a.h.) .
& 3

The coefficients, determined by differentiation yield

°F  _ | > p(f- i a.h.)h, = 0 i=1,2.....n
dai = i i1

or defining the vector and matrix

(&)
1t

> pfhi

=
I

1,57 2PRsk;

c = Ha .
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The independence of the h, ensure that {H| # 0, giving the solution

for the coefficients as

h .
Theorem 2.1 carries over into the discrete case also. However,

in this context it has two rather interesting corollaries,

Corollary 2.1.1 If a function f is defined over k distinct points and

k linearly independent functions hy ..... hk defined over the same

points are given, then f may be realized exactly as a linear combina-

tion of by «eese hk'

Proof:- Evidently f may be realized exactly as a linear combination of

the set

g = (1,0 ..... 0)

& = (0,1,0 ... O)

gk = (0,0 ceveve 0’1)
&
In fact £(i) = > f(a')gj(i) = g'.
J=1

As the set h may also be reglized by linear combinations of this
set we have the existence of a non-singular A such that
h = Ag
therefore by the theorem, the approximating function g' = h' but g' = f

and the corollary results.
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Corollary 2.1.2 There are at most k linearly independent functions

defined over k points.

This is obvious from the previous result.

These corollaries are in a way analogous to the theorem on com~
pleteness for continuous functional approximations.

The Schmidt orthogonalization procedure carries over in an iden-
tical fashion to the continuous case and will not be repeated here.
The remainder of the chapter will be devoted to briefly discussing a
few known discrete expansion, followed by a fairly extensive study of
a new set of discrete polynomials, which will be used again in the

later chapters.

2.8 Fxamples of Discrete Expansions

2.8.1 Sampled Fourier Series

As might be expected, the most well-known discrete expansion is

the discrete fourier series. The set of 2N functions

1, cos X, cos 2X, ..... cos (N-1)x, cos Nx

sin x, sin 2%, ..... sin (W-1)x

T 2% -
are orthogonal over the discrete points O, T 2 2N

[ yis
Tttt TN . The

simple change of variables y = % x gives us a set of functions ortho-

gonal over the first 2N integers 0,1 ..... 2N-1. The orthogonality

relations are

2W-1 - -
Ez sin (ﬁ ky ) sin(ﬁ my) = O m#k
y=0 =N m=Xk
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2101 - -
> sin <ﬁ ky) cos (ﬁ my) = 0
y=0
2 T i1
'} cos (ﬁ ky) cos Cﬁ my) = O m % k
=0 = N k=m#0, N
= 2N keme=O0orN

Any function defined over the first 2N integers can be expressed as a
sum of the form

N-1 N-1

. T . A R LI
f(n) = ay + 2, 8y cos (N in) + ag+ p, by sin (3 in)
i=1 i=1
1 2N:1
where 80 = oy zi £(3)
J=0
1 2N-1 -
a = 2 f(3) oos (5 13)
i Py
1 2N-1
ay = ¢ St £(3) cos ()
Al j=o
;21 .
b, = = > £(3) sin (5 13)
J=0

Evidently if all coefficients are calculated and used in the
expansion then by theorem 2.1, the function f(n) will be described
exactly. This formula has the added advantage of being defined for
n not equal an integer and, therefore, may be used as an interpolating
formula. For a more detailed discussion of these approximating

functions see reference 13.
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2.8.2 Rademacher - Walsh Punctions

These functions were first discovered by Walsh in the twenties
and developed further by Golomb14 in the late fifties. They are de-
fined over the first 2 integers 0,1 ..... 2n-1, and map into a range
congisting only of the two numbers -1 and +1. Any integer on the
above domain of definition msay be represented as a binary number of
the form % y% ..... x where x; = O or 1.  For example the integer
6=1.2 + 1.2l + 0.2° would be 110 orx, =1y % =1, x5 = 0.

4 'linear function' over the binary variables X, y%X, se... x is

defined as one of the form

T(Xy 9% eovos xn) = mod 2 (i%: a.x, ) (2.16)

i=1t 7
where all the a, are 1 or 0, and the operator 'mod 2 gives f=1 if the
sum is even, f=0 if the sum is odd. The 'ring sum' notation will be

used in the following, implying that
n n,
mod 2 (:Z aixi) = giﬁ a¥, = aX 8ok 8 ..... 048X,

As a simple example consider the function of two variables

£y 0% ) = X @ x
where gy =1, a,=1. It has a mapping given by the table below

% % £
0 0 0
0 1 1
1 0 1
1 1 0
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If one more transformation is performed on the output of T
(i.e., g(f)) such that g(1)=1, g(0)= -1 and, the variables % ..... X,
are identified with those found in the binary number expansion of the
domain, then the definition of the Walsh functions becomes

W) = g(£0g 0% <eune ) kK = 0,1 .ou.. 271

where f is 4n the form 6f cquation (2,16). There are 2" such funct-
ions corresponding to the 2n choices of coefficients a . Using the
binary number cquivalent of the vector gy ,a, «.... a, to index the
particular Walsh function under congideration the set of 2n functions
may be denoted by

Wr(k) k=0,1 vovun 2 =1,
These functions satisfy the orthogonality relation

21

> Wr(k) Wé(k) = 0 rés

k=0 = 2t T=s

An arbitrary function h(k) defined over the same range may be expanded

in terms of these functions

Sy
h(k) = > b, W, (k)
i=0
;2o
where bi = ;h ;é% h(j) Wi(J).

The eight Walsh functions for n=3 are given in figure 2.3, along
with their corresponding linear functions. Evidently these functions
are linearly independent and thus will exactly realize a function over

(031 vuu.. 27=1) if the entire expansion is used.
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2.8.,3 M-Sequences

The m-sequences or binary chain codes are generated by means of a
feedback shift register with some linear function of the contents of
the register in the feedback path. The maximal length codes of an
n-stage shift register are 21 pits long and have the interesting
property that any sequence is almost orthogonal to any delayed sequence,
or equivalently the auto-correlation function of the code is almost a
unit impulse. If, picking some arbitrary starting point, the string

is designated by f(n) then the orthogonality relationship looks like

2m_o
> £(n) £ntk) = -1 for k # O
n=0 = 2% for k = O.

For large n the codes may effectively be considered as orthogonal.
Because of the form of the autocorrelation function, these codes have
found considerable application in on-line identification of system
parameters. For a thorough discussion of their use in realizing
arbitrary functions, see reference 15. For a complete analysis on the

16
generation of the codes refer to the classic paper of Elspas .

2.8.4 Discrete laguerre Polynomials

These polynomials were developed to tackle a specific problem
that occurs later in the thesis. As nothing like them seems to occur
in the literature they were deemed worthy of the detailed analysis
given in appendix I. The epithet 'Laguerre' is used, as an exponen-
tial type of weighting function was employed, and the final polynomials
look suspiciously like the Laguerre polynomials. However, there does

not seem to be any simple analytical relationship between the two.
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The disérete laguerre polynomials are defined by the eguation

= 5 08 () (73

i
where o is a real number in the range -1< a (1 and (z) igs the usual

notation for the binomial coefficient. That these are ith order poly-
nomials in n arises from the fact that (n;k) is an i order polynomial

for all k. The first three are given below,

Li(n) = n(1-o)-a

2 2 2
. 2
n_(1-2ata ) n(1+30-2a ) 4o,

Ip () = 2 2

In the appendix recurrence relationships and the difference
equation these polynomials satisfy are found; alsoc the fact that they
form an orthogonal set over the integers (0,1 P .....) is proved.

The normalizing constant is

co

2 i n 2 o

o= o2, @ I(m) = =
n=0

Hence the functions

1 () = A &V )

i
form an orthonormal set.

The first five of these polynomials for « = ,672 are drawn in
figure 2.4. Their similarity to the Laguerre polynomials is immedia-
tely evident. Figure 2.5 ghows their approximating capabilities when
the square pulse shown is used as the sample function. The coeffici-

ents were calculated using the relationships (4.1.19) and (a.1.20)
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developed in appendix one. The remaining results in the appendix will
be used in Chapter VII where identification of discrete processes is

discussed.

This concludes the discussion on how functions may be represented
in the continuous and discrete domain. The following few chapters
will give some methods of practical realization of functions and mention

some of the difficulties encountered.
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CHAPTER IiT

Deterministic Function Generation

This chapter will be divided into two main sections; the first
discusses methods already known for realizing piecewise continuous func-
tions, and the second gives a short preamble on the problem of generating
discrete functions, the remainder of the topic being covered in Chapter
Iv. The restriction to piecewise continuous functions is no practical
limitation, as the use of a function not falling into this class would be
very specialized indeed. Just to dream up such an entity is a diffiocult
task although one of my colleagues claims to have encountered a function
discontinuous almost everywhere. At any rate, such functions are exclu-
ded from the following.

The most well-known generator, and the one most commonly used in
the design of control systems, is the diode generator. Its main advan-
tage is that it is cheap and reliable, although it is of little use when

the problem of adaptation is encountered.

3.1 Diode Function Generator

Any continuous function may be approximated arbitrarily closely by
a piecewise linear function. These functions may be realized by inter-
connections of diode and resistors as shown in figure 3.1. The first
two analogue amplifiers serve to isolate the input from the diode net and
give a low impedence source; the last acts as an adder. The constant

voltage sources ei and Ei are ordered so that
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and B <E <..... <1En4.<:E .
If the input voltage is such that
Oy <-epp <9
and Ej ffein <Ej+1
then only the resistance paths r, to ri and those from E, to Ej are con-
ducting. Thus the input output relation, found by summing currents at

the Junction of the output amplifier, at this operating point is

(e

(D

e i (e +e) 3

out

—-—R_—_-:—E;——E___ ;
T k=0 k k=0

Rk (o) (3.1)

which may be put in the form

e i ]
out 1 ;1 T
R =f'é., “§—,§~l§ eyt g_l-—+k46R— (3.2)

£ k=0 Tk k=0 k| k=0 Tk

1

This is equivalent to the linear relation L a e, + b where 'a' is

ou
Rf

determined only by the resistances of the net and 'b' by both the bias
voltages and bias resistors. Bvidently as ein or —einvpasses through
one of the bias voltages e; or Ej there is a Jjump change in slope, the
change being positive if the bias in gquestion was ) negative if the
bias was Ej‘ The curve is continuous as the change in ordinate intro-
duced by the first term is compensated for by a new constant in the
second term. Thus the input output relation for this device will be s
piecewise linear, continuous function.

Given a function of the sort described above, it is an easy matter

to determine the values of resistors and bias supplies needed. Firstly
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the break points on the function determine the values of the constant
voltage generators. If the slope increases beyond the break point the
branch appears among the inputs to the upper amplifier, if it decreases,
among those to the lower amplifier. Therefore; m, n and all the ey
Ej other than e, and F,, that appear in (3.1) are determined. Defining
the conductances Gk = 1/Rk, & = 1/rk gives us these m+nt? remaining
unknowns to solve for, The two paths containing ry and R, determine the
initial slope of the function. One of them will always represent an
open circuit depending on whether the initial slope is positive or
negative.

Starting with e, = -0and increasing, determine whether the initial
sloye, m, is positive or negative, If it is positive then Gy=0 and
go=m, if negative g,=0, G,=m. The bias e, or E, is determined by the
y intercept of this first segment. As e, is increased a 8; or Gi is
introduced depending on the change in slope. In this fashion the entire
curve can be generated, and at the same time the values of the resistances
determined directly.

As an example consider the third linear segment function mentioned
in section 2.5, reproduced in figure (B.Za) for convenience. The initial

slope is 24A/2 and the y intercept is 1+\/§. This gives the equation

Cout Rf(gb &n T e080) = 3.41 e, + 2.4

3,41
Re

change in slope implying a circult in the lower branch with E& = -, 414,

implying that g, = y&y = +0.706. At e;, = ~+414 there is a negative

In the range -.414 <:ein <:.414 the equation is e = —ein/.414.

out

Here Cont = Rf [(go - Gi)ein + gqey + GiE;]
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Re (8 - @) = -1/.414 "0 G = 5.83/R,.

The constant terms cancel to give the correct result. At &n ° 414

there is an increase in slope and so another path to the top amplifier

with ¢ = ~Cip = -.414. g, 1is obtained from
1
cout = Re (& - 777 Rf> en * Rprey = 3.41 ey - 2.4
g = 5.83/R.

The final realizing circuit is that shown in figure (B.Zb).

There are many realizations better than the one gbove (see 1, 2
and 5) but this one serves to illustraie. The bias voltages are nor-
mally set by potentiometers on line, 1o circumvent the rather difficult
calculation introduced by the change in loading. The important thing
to observe is that the function is determined by the mint! resistances
and m+n+1 voltage generators, the resistors determining the slopes and
the voltages the break points with e, or E, establishing the initial
d.c. value of the curve.

Given a function y=f(x) the problem now reduces to choosing some
best set of the 2(m+n+1) parameters or, equivalently, of fitting a "best!
plecewise linear approximation to the curve. The normal criterion func-
tion used for 'best'! minimizes the maximum deviation of the error. Thus
if we are concerned about the approximation on the interval a <}x<ib |

the criterion function is
min 7 max ;
/ f - L 1
(ri’Rj’ei’Ei) i a<x<b I (X) (X)!J

where L(x) is our plecewise linegr funciion. The problem of getting an

analytic solution for the parameters is very difficult and as yet has
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not been solved satisfactorily. Many heuristic methods (see 1 and 4)
have been proposed, one being to place the allowable error bounds on a
graph of the function and then draw lines such that on every linear seg-
ment this maximum error is achieved at least three times. At the moment
there seems to be no more attractive solution and as this one suffices
for most practical applications it is pointless to pursue a truly optimal
solution further.

The method extends to two or more dimensions although the hardware
involved increasses expounentially as may be expected. For a somewhat
more elegant method of realizing multi-dimentional functions using a
combination of diode generators and logic nets, see the paper by

4
Wilkinson .,

3,2 Other Analogue Methods

The main method for generating functions other than diode networks
is the use of purely resistive networks. There sre two basic design
philosophies used here. The first uses an iterative resistive net with
variable resistors (potentiometers) which are set by the value of the
abscissa. Two terminals of the network are designated the input; the
impedance looking in from these terminals is then a function of the po-
tentiometer setting. The problem is to determine the resistances in
order to give the desired function. The most common iterative net used
is the ladder network shown in figure (B.Ba). The input impedance to
this net will be given by the expression on the next page where the

fraction is continued until the network terminates.
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(3.3)

115+l.'...

The domain of the function it is desired to realize is normalized
to 0 x <1+ For f to be obtained from a ladder network it must be
expandable in a form like (3.3) where all the Ri are linear functions of
X and are positive over the range of x. This is a very severe restric-
tion on f making this method useful only in special cases. Figure
(B.Bb) shows how the linear functions bt+ax and b-ax may be realized by
a resistor and a servo-potentiometer. For some examples of functions
realized by this method see reference 1.

A more practical method of obtaining functions by resistive net-
works is illustrated in figure (3.3°). This again is a linear segment
generagtor. x is set on a servo-pot which has a number of fixed volta-
ges established on it through the secondary potentiometers, acting as
voltage dividers. As x goes from one tap point to the next, the
voltage will vary linearly between the set voltages. Loading on the
terminal e will cause a non-linear variation which may be accounted for
when setting the original voltages.

Both these methods suffer from the need for a servo driven poten-
tiometer as their basic component. This requirement not only increases
the cost, but also greatly reduces the speed of operation of such

function generators, Because of this they have been going out of style



I

57

lately, being replaced by the simpler and more rapid diode generators.,
Function generators using other methods employing such apparatus
as non-linear potentiometers, cathode-ray tubes, curve followers etc.,
may be found in the references already cited. These are useful for
particular application but are not general enough to warrant a descript-

ion here.

3,3 Digital Methods

If o digital method is to be used both the range and the domain
must be discretized. A digital function differs from the discrete
functions mentioned previously in that the value of the function is con-
strained to one of a finite set of specified values (the quantization
levels). This implies the following definition,

Definition: A digital function is a mapping from a finite set
of points X into a finite set of points Y.

If the number of elements in X i1s n and the number of elements in
Y is k then there are exactly K possible functions from X to Y. The
elements of X may be put into correspondence with the integers 0,1,.....
n-1 and ¥ with O0,1,.....k=1. The finiteness of all the entities in-
volved introduces many new and interesting problems. The first of
these illustrates the danger in using the assumption that the same meth-
ods can be used to realizge digital functions as are used to realize
discrete functions,

In ¢alculating a function by a computer, the function is normally
resolved along some spectral axes and the final value taken as the accu-

mulated sum of the component values, Assume a functional expansion of



the form
k-1
£(x) = Eé% aifi(x) (3.4)
where fi(x) are base functions, a, being the expansion coefficients
with respect to the basis. The a, are real numbers agnd the fi(x) real
functions. 411 numbers must be quantized before being put inito the
computer, implying that the fi(x) will be quantized functions. Denote
the quantization operator by square brackets[ ] . The function pro-
duced by the computer will be
! L I r
£ = 3 oy | (2] (3.5)

Ideally we should like f’(x) to be egual the gquantized value of
£(x) in equation (3.4). This will not be true in general. For if
the functions fi(x) and the coefficients a; are each represented by n
binary bits, the (n+1 )th being neglected, then each multiplication and
addition may make the last bit in the result erroneous. This assumes
t@at subtractions have somehow managed to be avoided; otherwise the
result may be reduced to nonsense. As there are k mulitiplications and
k-1 additions in formulating the function, the final value obtained for
£'(x) may be as much as 2k-1 levels or log, (2k-1) bits, in error.
Falling back on the modern addage 'if you have enough bits it will not
matter' is not really satisfying. Yet the alternative seems to be to
discard all of spectral analysis.

The situation may be salvaged to some extent if a set of integer
base functions, fi’ (for example the Walsh function) is employed.

Returning to the equations for ¢ and H on page 36, if f, the expansion
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functions h,, and the weighting function p, are all integer, then the

vector ¢ and the matrix H are integer. The determinant of H will also
be an integer as well as all its minors and co-factors. Therefore H—1
may be represented as an integer matrix Gini)‘ divided by the determin-

ant |H . The expansion coefficients are

-1 1 a
G L

= iHl
where the vector a' = Oi_i) ¢ has integer components. The approxima-
ting function f' is

k-1 k-1

£1() = 0 agn () ={ 2 ey G .

Hence it is possible 1o perform integer operations throughout until the
last step, where a division is necessary. This will reduce the error
in realization considerably. A short example using the Walsh functions
is discussed below.

A1l the Walsh functions of a given order may be realized by a net
of modulo two adders. If all the (?) functions containing r variables
have been obtained, then those containing r+1 variables can be formed
by adding <rﬁ1) modulo two gates with one input from the variable set
and the other from one of the functions of r variables. As the (?)un
Walsh function counsisting only of the x; are already available, the
total number of gates required will be

2on n
E&é (r) =20 - (n+1).
Suppose a function, defined over the first 8 integers, is re-

quired. The example done here was chosen from a table of random
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digits but may, in a practical case, be a coding of the digits, or

perhaps be some cbscure compensation function. The function is
<0919295:4357677) - (996;1987954’1’1)°

Using the functions given in figure (2.3) and the coefficient cquation
1L
&, = 53 2. f(n)Wi(n)

i=0

the values for the coefficients are calculated ags

_ 39 - _ 9
a, = LY =2 o 2L
0 ) 84 5
81 = - j_'. as rt 3_
8 8

17 5

g2 7 T % 8 % §
e e LS 5

If all expansion terms are used then the function will be realized
exactly. This would reqQuire eight coefficients and would result in no
saving of hardware from merely storing the functional wvalues directly.
Such 2 result is expected as no approximations have been made. Hence,
no simplification has resulted.

Figure (3,4a) shows the function and the agpproximation to the
function obtained by taking the three most significant coefficients
ag 18s 38z This approximation is not disastrously bad considering the
irregulatiry of the initial function, although it shows a wide variance
for two of the values. A circuit for realizing the approximate funct-
ion is given in (3.4b)° The input variables x ,x, ,x; come from an
analogue to digital converter, the digital to analogue conversion being

carried out by the summing amplifier. Note how it is possible to use
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integer arithmetic throughout until the last stage when the nomalizing
constant % must be introduced. This normalizmation is easily performed
through the summing amplifier. The logic levels for x ,x, and Xz, as
well as the logical function used, have been converted to +1, -1 in
order to give the Walsh functions directly.

This procedure is still not completely satisfying, as an analogue
summing amplifier is necessary to reconstitute the function. Its
presence cannot be escaped if a spectral resolution of the function is
used; for in that case the final function is always made up by summing
certain proportions of the base functions. The sum can be performed
digitally although this increases the cost and complexity of the reali-
zation by an order of magnitude,

Many other methods of obtaining function using 'hybrid' techniques
have been proposed%v, but most of them require either an adder or an
integrator in the last stage. To get rid of this analogue hanger-on
it is necessary to go more deeply into digital analysis and to introduce

boolean functions along with all their concomitant problems.



CHAPTER IV

Boolegn Function Reglizgtion

Boolean functions have been receiving increased attention in the
last few years due to the advent of the digital computer and the renewed
interest in switching theory. Their application in function generation
lies in the fact that any discrete function msy be realized by a set of
boolean functions. That this is so will be demonstrsted in the next
chapter. Here we will confine ourselves to a fairly thorough study of
boolean functions snd show how they may be reglized using practical
- circuit elements, A few theorems on minimigzing networks will be proved

along with some examples.

4.1 Boolean Algebrag

To date, our studies have been confined to functions, members of
the real Hilbert space; or in the case of discrete functions, members
of a real space defined over s denumerable set of points. A1l realiza-
tions have depended on the linegrity of the space, i.e., if x and y are
members of the space then ax+by is also a member, for all real a and b.
This linegrity makes it possible to approximate a function arbitrarily
closely by means of a linear combination of base functions. The
concept of a spectra and expansion coefficients to represent the
functions is then possible. As will be shown below gll this is lost
when dealing with boolean functions, ss these form a linesr space only

in a very limited sense.
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i8 -
A boolean algebra  is defined as a set of elementsCQ/along with

two binary operations '+' and '.' and a unary operation = such that the

following five axioms are satisfied for any three elements A, B and C of

U

1. A+ B=DB4+A 5 A.B = B.A

2. (b+B)+Cc=4a+ B+, &(B.C)= (4.B).C

3. {4+ B).B =B ,  AB 4+ A=A

4. A.(B+ C) = A.B + A.C , A+3B.0=(A+B).(a+20C)
5. AL+ B =3 , (L +12).B=3

Added to these are deMorgan's two laws set down here for convenience
ALB=A+B and A+ B=4B.

These are o conseQuence of the gxioms and may easily be obtained from
them,

The most convenient way to visualize these axioms is to think of
the members of;Z{as ordinary sets where '+' is the union operation, '.'
is the intersection, and ~ is the complementation of the sets under
study. The algebra of sets is a special case of a boolean algebra,
other examples occurring in probability theory, topology, logic etc.

We will resirict ourselves to logic, identifying the elements of
E/With events that may be either true (1) or false (0) and the connec-
tions '+' and '.! with the logical 'or' and 'and' respectively; ~ will
be the logical negation. In the following the '.' will be omitted,
the operator being denoted by the conjunction of the two elements in

question. The logical algebra satisfies the axioms given above meaning

that these axioms may be used in simplifying any cxpressions that occur



in the following.

A boolean function of n variables X ,X; eceese X is any logical
expression containing the n variables. The set of all functions of n
variables forms a boolean algebra. A boolean function will be denoted
by

(X 3Xg ouene xn).

There are only 22n functions of n variables, for the arguments of f can
have only 2n distinct combinations and, as the function can have only
the values 0 or 1 (corresponding to the logical expression being false
or true) there are at most 22n functional combinations that mey be
selected. There are infinitely many logical expressions of n variables
implying that there must be infinitely many expressions for some partic-
ular functions. The central problem in switching theory is to find

the simplest expression for a given function. As yet, the only solu-
tion to it has been to develop a systematic search procedurefa.

The non-uniqueness of the logical representation, along with the
absence of what might be coefficients, thwart any attempt at resolving
a boolean function into a spectrum in the sense of the previous dis-
cussion, It is still possible to talk of bases but first it is necess-
ary to define what is meant by a superposition&g. The best definition
is to give an example. If we have two functions in a boolean algebra,
say, ¢;(xi,x2) and ¢£(xi,x2), a superposition of these function might be
Gy (B (3 9% )53z ) o1 oy (Fy (34 5% )o@y (% 535 )) etc.  Geometrically, if the

%i are thought of as nodes of a network, then a superposition is equiva-

lent to taking the output of some nodes and connecting them to the
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inputs of others. The two above examnples are represented below.

*1 X X o X P
N s ~ ,/
. ﬂﬂ{ \ya{/, \\\,N{

8 o ()

% | 1

N ,,/ \\\ e o .

‘\\!.

(ﬁl)/
1
|
!

S

T
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A basis for a boolean algebra is defined az a set of functions
B (% y eeense in), Bo (Xyy voens Xké) ceeeny ¢;(xi, ceens xkr)such that
any boolean function of n variables may be realized by a superposition
of them. The functions ¢i are called base functions. Postzo.has
shown that 2 set of functiouns form a basis if there exist superpositions
of these functions realizing the particular functions Ei and x4y X, .
Evidently these two functions will form a basis.

Other examples of bases are

Xy Xy + X

X ot X

Ty XXy XXy + XX
The first is the dual basis to §i, X % e The second is the nor base
congisting of only one function. If the function x, + %, is called
d(x %) then d(x,% ) = x and d(f(x 3 )s #(%2,%)) = 1. The

21

third set of base functiouns is the ring sum or Huffman basis. TNote
that the last function given is true if and only if one of the variables

is true. This corresponds to the linear function mentioned previously

in connection with the Walsh functions (page 40). This basis is more
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usually represented as
T xx, u €%
and is a basis as %%, is already included and x;, & 1 = §;. Its great
advantage is that it allows one to express any function without having
to use any complementation operations. Maxny other bases exist and are

finding increasing use in realizing bhoolean functions for switching

networks.

4.2 Canonical Forms

The most common way of representing a boolean function is by
means of the truth table. This is a tabulation of the output for all
possible combinations of the input variables, and corresponds to the
look-up table for ordinary functions. The truth table leads almost
immediately to the 'conjunctive normal form'. Consider the function of

n-variables

(%, @gi)(xz O ap) ceees (xn‘DEn) (4.1)

where the a; are constants, either 0 or 1. This represents a conjunc-
tion of the n variables (e.g., (x, ® 1)(Xé ) O)(X3 1) = E;x2;5). It
is true for only one value of the coefficients, namely x = a;,

Xp = 8y eeee. X, =a,, 80 its truth table will have only one non-zero
entry. In the following By will be used to represent g constant n
vector of O's and 1's, such that its binary number equivalent is i.

Por example, if functions of 4 variables are under discussion then

& = (0, 1, 1, 1), and so on.

Any function £(x ,% oeees xn), in truth table form, is true over



68

only a subset of the vector Hi’ 1 =0 couve 2n—1, The conjunction

(4.1) is true on one particular By only. Hence the representation
21

£(x) = 2. a0 9y )0 8 ny,) ceeen (x) 8 uy,)
1=0 (4.2>

where uij is the jth component of Hﬁ’ and the zg;sign implies an 'or!
summation of all the functions following, is valid, That this
expression is correct can be verified by substituting an arbitrary
constant Ej into fﬁg). Then, only one conjunction on the right is non-~
zero and the expansion reduces to the identity f(gj) = f(gj). This
expansion is known as the 'conjunctive normal form'.

The dual expansion to this, the 'disjunctive normal form' is
based on the fact that a disjunction of the form

(x, ® a3 )+ (x Dag)+ couen + (xn o) an)

is false for only one Bis rniamely B, = (al,az vesee B )4 The canonic

n
expansion
o™ a
£) = T1 (eug) + 2, %, 0 )
i=0 J=1 -

is immedigte; for if y is substituted on the left then all the dis-
Junctions on the right are true except for the one involving B and
the expression reduces to f(Ek> yielding an identity.

Both these expansions use the redundant basis 5;, X Xgy X + X
The use of deMorgan's laws can easily change this to an irredundant

basis, Using the first law in the form

271 21
2 £ =0T £)e1

i=0 i=0
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equation (4.2) becomes
r%f = - 1o
£) =y DL ((E(y) 7T o ))ery o
-~ im0 J=1
(note that £(x) ® 1 = f(x). This notation is used as it is somewhat
clearer than drawing bars over the rather complicated expressions in-
volved. ) This form is inconvenient for most purposes and (4.2) is
normally used.
22 21
The last canonical form is the ‘ring-sum' or Huffman normal
form. First, note that two functions f and g are egual if and only if
f 9 g=0., This is obvious, for if f = g then the two truth tables
must be the same and the condition is satisfied. Consider the function
of two variables defined by

2: %X, @ a,x, D a,x, © ag (4.3)

where the a, are constants. Constants belonging to conjunctions of
two variables are said to belong to the second rank, ones belonging to
one variable to the first rank etc. a; belongs to the second rank,
g, and 2y to the first rank and a, to the zeroth rank., TFor n-variables
there are (?) conjunctions of order r, and hence, in the general expan-
sion similar to the one above (i) constants of rank ». In the total
expansion there will he
( ) = <1+1) constants,
r=0

If all the ay % 0 for a function g defined in the above fashiomn,

then g % o. For suppose the first non-zero constant is 2y in rank s.

Without loss of generality the conjunction associated with &y can he



70

taken as XX, eeeee X,y as it only takes a permutation of the variables
to bring this about. If a constant vector By= (1, 1y veees ;, Oy toues
O) is chosen, then all other members of the s'th rank will be zero, as
will all members of higher ranks, A11 the lower ranks are already zero,
therefore, g(gi) = 1 and the function is net identically zero.

Purthermore, if two functions g and f have different coefficients

and b, are different

a; and b, then g & £ £ 0, i.e., g ¢ 5 for if ay K

then the conjunction belonging to these will appear in g @ f. There
arc o' coefficients ay and hence 22n different functions can be defined
in this manner. But there are only 22n functions of n variables.
Therefore every function of n variables is expressible in this form.
This is the 'ring-sum' normal form.

The determination of the coefficients a; for this form is somewhat
more @ifficult than for the preceeding cases. A constant By will be

said to be of rank k if it has k 1's and n-k O's. Assume an expansion

in n-variables of the form given in equation (4.%)

£(x) = aznf}xz ceeee X 9 a n_2X1X2 ceese X g AR

veass B 22X, 4 8 ayx, b ag.

Let the values in the truth table be expressed dy f(Ei) = bi' The
coefficients ay will turn out to be linear combinations of the bi' This
can be shown inductively; for assume By is of rank k. Then on substi-
tuting Ei in the sbove equation all conjunctions of rank » k are zero.
There is one conjunction true in rank k, (f) conjunctions true in rank

k-1, (i) conjunctions true in rank r, and (i) conjunctions true in rank
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0. In all there are 2k conjunctions truc. Therefore

2 -1

f(Ei) - bi = 2 %y (4.4)
1=0 i

where the sct r, is some specified subset of (0, 1, 2, «.... 2"-1) of
size 25,  In particular £(0) = by = 25, This is the beginning of an
induction. If a formula for the a5 in terms of the bi has been ob-
tained for all a; of rank <:k, then the formula for elements of rank
k+1 follows immediately from (4.4), since only one of the terms on the
right is of rank (k+1). This may all seem rather obscure due to the
notational difficulties involved. An example should serve to clarify
the procedure.

Consider the truth table below for a function, f;, of three vari-

ables
o X X fi | £
0 0 0 by 1
0 0 1 Ty 1
0 1 0 by 0
0 1 1 by | O
1 0 0 by 0
1 0 1 by | 1
1 1 0 be 1
1 1 1 b 0

Assume =n expansion for f; of the form
£, (%) = ey X%, B agyX O ask X, © ayxX;
D azx D ayx 9 a,x 9 ag.

Then
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£, (0,0,0) = by = ag ag = bg

£,(0,0,1) = b = a; & a a =1 9 by

£, (0,1,0) = b, = a, @ a, ap = by ® by

£, (1,0,0) = b, = a; & a, ag = by & by

£, (0,1,1) =Dy =a, a, ©a, &2, a, =b; by, &by @by
etc.

If the vectors K, are arranged according to their rank in the truth
table, then, with a little practice, it becomes an easy matter to write
down this canonical expansion by inspcction.

For a function like f, in the table above, the canonical expansion
in the three different formes is

1) conjunctive normal form

fp = XXpXy + G ApXs + KyIpN + K Hpg
2) disjunctive normal form
fpom (% + 3% + X ) (% 43 + X)Xy X+ ) + X X )
3) ring-sum normal form
fo =18 x 8 x & x%;.
One of the greatest advantages of the last form, aside from the fact
that it contains no negations, is, that for any function f the expecta-
tion of the length of the expression describing f is smallest. Also
it lends itself easily to analytic manipulations whereas the other two
are rather cumbersome. Threughout the remainder of the chapter, these

three forms will be used interchangeably.
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4.3 Universal Nets

. . . . , n .
A universal net is a network of circuit elements with 2 variable

parameters {ai} and n input variables X ;% see.. x such that, for any
A e { ]

two different sets of parameters Qai} and ibi? the function realized by
L k h

zn
the net £(x, y%; seess x,) is different. As there are 2  choices of

the set {ai% the net must be capable of realizing all functions of n
varigbles.
The basic theorem used in obtaining all the following nets is the

22
Shannon  expansion theorem. Defining the function of (n-1) variables

£(0y%, yX5 wnsas xn) = £

£(13%p 3%5 eonas xn) = f)
this theorem states that

O W % Lo+ % £ . (4.5)
Its validity is obvious, as substituting x = O or 1 on the right will

show. fy and f; may in turn be expanded giving

F(Z %y eenes xn) = Eiiéfoo + §1x2f01 + x1§éfio + Xy X fyy .
The process may be continued until all the variables are exhausted at
which time the coefficients will be f(Ei) and the expansion will be
identical to the conjunctive normal form.

The formula (4.5) allows one variable at a time to be separated
from the function producing in each case two functions of fewer varia-
bles. Confining ourselves to two input 'and' and 'or' gates the basic
recurrence block of a universal net would be as shown in figure (4.1a).

fo, and f; can then be expanded separately and the process repeated until
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the universal net of (4.1b) is obtained. Here the set {ai} are the
constants set on the 2n terminating branches labelled f(gi).
The total number of elements in the net is of interest as this 1s

a measure of the complexity of the realization. Let g(n) be the total
nunber of elements in a universal 'and! 'or' net for all functions of n
variables, Then the recurrence relation

g(n+1) = 2g(n) + 3
follows immediately. Using g(2) = 3 the solution

g(n) = 5(2"* q)
is obtained by a simple induction. This is the maximum number of ele-
ments of this kind that would be necessary to realize any function of n
variables. The constants f(gi) are introduced at the far right of the
net where the resolving process has reduced the problem to realizing
functilonsof one variable. In the last stages the resolution looks like

f(ﬁ’xn) = ;n £(a,0) + Xn £y 1)

where o is a constant n-1 vector. According to the values of f(g,O)
and f(a,1) the input is O,Eﬁ,xn, or 1. This normally leads to some
simplification as theorems from the algebra, such as §;Xé + XX, = XKy
and 5; T+ xx = §; + X,y help to eliminate many of the elements.
Throughout the above discussion it has been assumed that the
allowable fan-out (number of output leads from each element) is only
one, If this restriction is relaxed, further simplification in the
final realization results, as then many of the functions of fewer
variables, found towards the end of the net, will be identical and can

be realized by the same neitwork. If this line of attack is developed
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a little further an interesting and quite significant result is obtained;
but first it is necessary to discuss z universal net of a different kind,
A universal net of the second kind is defined as a network of
circuit e¢lecments that explicitly reslizes all functions of n variables.
These networks may be obtained by first obtaining networks that realize

all conjunctions of n-variables, and then using 'or' gates to produce
the required functions as represented in the 'conjunctive normal form'.

If s network that realizes all the 2° © conjunctions of n-1 variables
has been obtained, it may be extended to n variables merely by adding

2.2n-1 'and! gates, taking the 2n—1 outputs of the n-1 net and forming
the conjunction of these with x and then with Eﬁ. If g(n-1) is the
number of and gates in the n-1 net then

g(n) = g(n-1) + 2",
g(z) = 4 as there are 4 conjunctions of two variables. Therefore the
value of g(n) is given by

g(n) = 4(2"F _ 1),

Including the conjunctions of fewer than n variables available in
the net, 4(2n—1 - 1) of the total of 2Zn functions of n variables have
already been found. As 2all the conjunctions in the conjunctive normal
form are now available it is necessary only to form the disjunctions to
obtain all the functions of n variables. If all the functions consis-
ting of k terms have been obtained, then each function of k+1 terms may

be obtained by adding one more 'or'

gate with one input from a k term
function and another from the set of conjunctions, Therefore at most
21 o

2 - g(n) 'or' gates will be required or 2 gates in all,
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19 23
Before going further a result of Krichevskii and Lupanov  is

quoted. As the number of arguments increases the total number of 'bad’,
to quote Lupanov, functions in the class of all functions of n-variables
becomes the dominating class. 'Bad' here means functions that are
difficult to realize in any specified finite basis. Analytically the

notion of dominating class implies that

Lim number of 'bad' functions
N~ o cotal number of functions

This seems reasonable enough, only stating that most functions of many
variables are hard to realize regardless of the basis chosen. The
result proved by the two authors above i1s, that given a base set
¢;,..... dﬁ and costs Py y.v... Pn associated with the base functions,
the minimum cost of realizing the most difficult function with respect

to the basis is asymptotically equal to the expressions below.

max.(pin.(cost (f)))f\, i 2t 6
; ¢} logyn (4.6)

-

p is a function of the costs Pi and the base functions %i

L= min P,
k, 32 2
i* k., -1

i

where ki is the number of arguments cf ¢i' The operations on the left
of (4.6) are equivalent to first realizing all functions of n variables
at a minimum cost by superposition of the base functions, and then taking
the most costly of these.

If ﬁhe cost Pi = 1 and the two input gutes above are used then

b=l and the cost given by (4.6) will be equal to the number of elements
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required. As most functions are like this most difficult function the
result that the number of elements necessary to realize most functions
of n variables «/Zn/logan is immediate.

Returning to the 'and' 'or' nets above, suppose that a function
is to be realized by a2 combination of ncts of the first and second kinds.
Extract k of the n variables using a net of the first kind. This
requires B(Zk—1) elements and leaves 2k functions of n-k variables to be
obtained. These functions can be obtained from a net of the second
kind requiring at most 22(n-k) elements. Therefore, the total number

of elements N in the net realizing the function will be less than

X
3.5 + 2 (k) SN

(4.7)

or kP2 (2 (n-ke)_ 2X) .

There will be some best value of k that will minimize N, the number of
elements required. Differentiating (4.7) with respect to k and equa%—
ing to zero yields a transcendental equation in k and n that is very
difficult to solve. Instead the heuristic 'choose k to be the smallest
value such that

2 (n"k> k
2 -2 \<

0
is used. This choice does coincide with the true integer minimum in
most cases as working a few examples shows. The above heuristic
implies that

n-k g logy k
and n-(k-1) > log, (k-1)

or in terms of the number of varigbles n

log, (k—1) + k-1 £ ng ktlogyk. (4.8)
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The condition expressed by equation (4.7) becomes

N < oK

It will now be shown that using the above value of k the Lupanov
bound (4.6) is satisfied for this realizing network, Substituting from

(4.8) intc the equation for the Lupanov bound yields

k-i l ) k"
o - 2( )+ 0&( 1)

log,n = log, (k+log, (k))

i o (k-1)2K
Tt >/1og2 (k+log2(k7) <4'9)

Purthermore using 1'Hospital's rule it can be shown that

Lim  (k-1)
k- log, (k+log (k))

= o0,

Therefore there exists a finite number M such that

(ke-1) . |
Tog, (k#log, (1)) ~ for all k> M.

Returning to equation (4.9) the chain of inequalities

n

- k .
2 =851 L 25w for all k =M
loggn

is obtained.

Equation (4.8) ensuras that provided n is large enough k =M.
Hence the result that the number of elements in the net for reaglizing
any function of n variables is less than or equal to the Lupanov bound
is obtained. This in turn implies that it is useless to look for some
other method of realizing functions of many variables as, by the
theorem, they must have at least the same order of elements as the above

realization using 'and' and 'or' gates. This does not imply that all
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minimizing procedures should be discarded, but merely that the saving in
the number of elements required will only be incremental and savings in
orders of magnitude cannot be expected by any other design procedure that
may be adopted. Also, as ILupanov's theorem is only an asymptotic re-
sult, it suffers from the failing of most results of its kind in that n
must be very large before it is satisfied. Therefore, it is still
worthwhile to loock for minimizing procedures for universal nets, These
are discussed in section 4.5.

A result, similar to the one above, may be demonstrated for all
nets that are discussed in the following. As the development of a
proof for each individual case is rather tedious and follows the approach
already given, it will be omitted, although the result may be tacitly

assumed.

4.4 Universal Nor Nets

Circuits using 'nor' gates as the basic element have received in-

. , 24,2527
creasing attention

during the last few years. This stems from
the fact that they have a particularly simple transistor realization,
requiring only one transistor and some resistors. Also they do not
require any isolating stages when connected together, as conventiocnal
diode 'and' and ‘or' gates do. Universal nets for two and three input
'nor' gates are developed below and an example of realizing a specific
function is given.

In the diagrams that follow, a 'nor' gate will be represented by

a Junction with the regquisite number of input leads, and a single hori-

zontal output lead. A function written on top of the output lead will
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represent the output function of that particular gate.
Looking at two input 'nor' gates first, from Shannon's formula,

equation (4.5), the identity

il

Pl ceveex) = oo+ (5 £,) (% f)

= (i)t ) = mufo +xh (4.9)

X, +5, + XA

1

is obtained. The base structure is as shown in figure (4.2%). On
comparing this structure with the 'and' 'or' structure already obtained
it is evident that the total net will have exactly the same geometry and
therefore contains 3(2n—1_1) elements. All the subsequent results
proved for the 'and' 'or' net are also immediately applicable to this
structure.

For three input gates first consider expressions of the form Xi§i'

This function may be developed as

D

ufy, = xff = x + 1§

= X+ Xl t Xplyy -
The expression for i% fyo and %, f;; can be realized similarly by a three
input gate, and the expansion continued until all variables are exhausted.
The initial decomposition can be performed by a two input gate according
to equation (4.9). The basic structure is shown in figure (4.2b) and
the total expansion out to the fourth level is given in figure (4.3).

If g(n) is the number of elements in a complete net for n varia-
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bles then
glntl) = 2 gln) + 1, (4.10)
g(2) =3 . (4.11)
This egquation has a solution
g(n) = 2" -1
as can easily be checked by using (4.11) as a base for an induction using
(4.10). Note that if the expansion is carried out to an odd number of
levels then the constants ?(Ei) must be substituted, rather than f(Ei)°
The f(gi) appear in the same order as they would appear in a truth table.
It is interesting that this net has exactly the same geometry as the
threshold function nets discussed by Miyata26
The first two input gate can be replaced by a three input gate

using a slightly modified form of equation (4.9). Expanding f, by (4.9)

fo = X o1 + % g

or fo = X2;%1 + X5 fiyg

and substituting this back into (4.9) for f, the expansion formula

£ o=ty +x%Ty + KT,
is obtained. The first term may be expanded into a net like the pre-
vious casc and each of the other two terms may be obtained from single
three input nor gates. The base structure is shown in figure (4.20)
and the expanded net out to four variables in figure (4.4).
Finding the number of elements in a complete net of this type is
somewhat more difficult. From figure (4.20) and the previous result,

stating that it requires 2n-1_ 1 gates to obtain.xifi, the recurrence
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relationship
g(n) = 2% 11 4 2 gn2) + 3

n-1o (g(n-2) + 1)

= 2
is obtained. From figure (4.4) g(2) = 4, 2(3) = 6. For n even the

solution for g(n) is

n
g(n) = 2% 4 28 ~ 2.,

This is true for g(2), and the induction yields

- n-2
gn) =2"1 42 (2P L 2E -~ 241)

n E
=2 4+ 22 .2

as required. For n odd
gn) = Za
a8 may easily be proved by a process similar to the above. Using this
net in place of the first will result in a saving of one element forn
art needed
odd !exd—tR considerably more elements/\for n even.

An example will now be done to show the general method of procedure
in designing these nets. In practice, a boolean function is defined by
a subset of the integer numbers between 0 and 2n—1, to save writing out
the function in fthe rather lengthy truth table form. The members sele-
cted for the subset are the integers, whose corresponding binary form in
the fruth table, have a value 1. The example function shown on page 71
would have a form

f, = (0, 1, 5, 6),
a much mpre compact representation indeed.

From a table of random digits an arbitrary function may be selected

by taking a siring of 2" digits and filling in a truth table with O's and
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1's according to whether the corresponding decimal digit is even or odd.
Using this method the function of five variables

(1, 3, 5, 6, T, 8, 9, 12, 14, 15,

(16, 17, 19, 20, 25, 26, 29, 30, 31
was sclected. As there are an odd nmber of variables the constants
ﬂl&i) are used to determine what the final terminations on the net are.
These are shown by dotted lines in figure (4.5). The final net, after
the most obvious simplifications are made, is shown by the heavy lines.
The identities used to reduce the number of ¢lements towards the end

include

and X + X5 + %5 =0

The total number of gates required is 22, nine less than the number in
the complete net. Using the second expansion method the number of
gates is reduced to 19, illustrating that for odd numbers of variables
this second method will normally give g more economical realization,

If the outputs of the gates are allowed to drive more than one
input then the number of elements in figure (4.5) can be reduced to 18
by a cursory inspection. This, as will be shown, is not too inefficient,
although some way from the optimal realization.

Expansions for four and five inputs, using various configurations,
can also be developed in the same manner as above by performing different
manipuletions on the Shannon expansion formula., They do not usually

give g more economical reglization in terms of the number of elements
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used. Their main advantage is that the resulting net is not as 'deep',

meaning that at each stage more than one of the variables may be separa~-
ted., This will result in a faster rosponse, Sot against this is the
necessity of increasing the desipgn tolcerance on elements to ensure thelr

proper opcration with the increased number of inputs.

4.5 Minimizing Nor Nets

The net to be considered in the following will be the first three
input nor net cited above. This will b¢ designated a 3n-net. It is
avident that if the variables had been chosen in a different order, a
different net, with perhaps fewer elements, would have resulted when
realizing a specified function f. In fact there is even more freedom
than this, for, having chosen the first variable, it is possible to
rearrange the variables in f, and f; independently.

If g(n) = total number of variable configurations for a function

of n variables, then the recurrence relationship for g(n) is

glnt1) = (n+1) x gz (n). (4.12)
This is valid, as the first variable in an (n+1) net can be chosen in
n+1 different ways; and having chosen the first, the remaining n varia-
bles in f, and f; may be chosen in g(n) ways independently.

g(1) =1
as if functions of 1 variable are considered the choice can only be
ordered in one way.

This recurrence relation has a solution

n-1) Pt
g(n) = (TT (n-1)

i=0
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The equation is true for n=1. From (4.12) and using the induction

hypothesis

~

P

i
)
s
-—
S
=
1
—
"
N
=
3
H
N
™
H
A Ve

i=0
n-1 o 141
o] (n+1) T_T (n-l)
i=0
n n o1
= n+1) (n+1—1 = TT (nt1-1)
i i=0

and the result is proved. This is a very rapidly expanding function of
n indeed, {for n=5 it is already greater than 1,500,000) making an
exhaustive search through all possible selections out of the question.
With the help of a theorem provided below this difficulty may be cir-
cumvented.

Divide the variables x into two disjoint subsets y and z. Then

£(x) = £(y, z).

In the network discussed previously, if, instead of assigning the truth
values at the far right and then simplifying, we had started from the
left and calculated the functions fy,f; 1 foo9fors figefis: «eeee @tcey
a stage k would be reached when f(a,z) = a, where o is a k dimensional
constant and 2z is an n-k dimensional vector. 'a' is a constant either
0 or 1. At that stage the expansion along that particular branch
would stop.

Definition: a 'terminating branch' is a branch on the 3n-net such

that £(a,2) = a, 'a' is called the terminating constant and the
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vector ¥ @ Ei,yé & E;,..... Yy 1] Ek’ the terminating resolution

(the y;'s are some subset of the x,'s as above).

For example, going back to figure (4.6) the branches labelled (1) and
(2) are terminating branches. For branch (1) £(0, 0, 1, 1, %) = 1;
for (2) f(O, 0, Oy X, O) = 0, The resolution vectors for the two are
(Xyy %oy X5 %) and (%, X, Xz, X5) Tespectively. The formula

f£(o, 0, 1, 1, x5) = 1 implies that the pair (6, 7) must be members of f;
the second expression implies that (O, 2) must be members of f,

Theorem 4.1: The number of elements in a 3n-net realizing a function f,
is equal to one less than the number of terminating branches.

Proof: For functions of one variable the expansion only goes back one
level, There are two terminating branches and one element and the
theorem is valid. Suppose the result is true for functions of k
variables.

Increasing the number of variables to k+1 one of three cases must
arise. At the first level (i.e., on separating the first variable)
there are either 0, 1 or 2 terminating branches. If there are 2 ter-
minating branches then there is only one element, If there is 1 ter-
minating branch then one of fy or f, is not a constant. Let it be f,
and let it have r; terminating branches. As it is a function of k
variables it must contain r; -1 elements by the induction. In all there
are (11—1)+1 elements and r;+1 terminating branches and the theorem is
valid., If there are no terminating branches at the first level then,
let the number of terminating branches for f; and f; be r, and 1y, with
ro-1 and ry -1 elements respectively. The total number of elements in

the net is (rg-1) + (ry-1)+1 = ry+r, -1 and the number of terminating
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branches is Trg+ry . Q.E.D.

The problem of minimizing the number of clements in the net is therefore
equivalent to the problem of minimizing the number of terminating bran-
ches.

One of the most concise ways of representing a boolean function is
the 'cubical' expansion as described by Millergz. This again repre-
sents a function by a subset of the numbers O to 2n—1 but this time in
binary form, in effect writing out the binary numbers from the truth
table that have a truth value of one. Each number has a conjunction
asgociated with it in the conjunctive normal form, i.e., the number o
has associated with it (x, © og ) (% ® &) eeves (x, @ Eﬁ). Suppose
two numbers o and 8 differ in only one place say in the i-ul Then
oy = Bj, 3¢ o = Ei' Taking the 'or' sum of the two corresponding

conjunctions

——

(X, © &) vanns (xi_1 o

). O ) eeees (xn ® Eﬁ)

i+ i+
gives a conjunction of n-1 variables. This is called a 'one-cube' and

is represented in the cubical expansion by
%‘az > e 9 s e ai_ipai+1 LI B BE BN ) an.
Similarly two, and higher cubes, may be defined. For example the

two conjunctions
100110
(110110) = (Twot110)

and the function of three variables

/o0 1\
01 1
101 | =(FET
110 11w
11
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The function of three variables may then be put in the form x; + X %,
rather than the much longer expression that results from using the left-
hand side directly. The problem of obtaining a conjunctive expansion
having a minimal number of terms, then reduces to the problem of finding
a cubical cover for the function that has a minimum number of cubes.
This has already been solved by the method of Quine and McCluskey?2’28
and is described in Appendix II.

There is one other interesting property of these cubes that is of

importance to us, For a k- cube a permutation of the variable will put

it in the form
(2185 ooees By g BB eeeen w)

where k,p's appear after the constants. If this cube is a member of a

cubical cover for f, then
f(ai’ag a s o900 an_k yn‘*k"l'i 02000 yn) = 1'

Therefore, it is a terminating branch for f, The converse, that a ter-
minating branch with value 1 defines a cube covering a portion of f is
also true. TUsing the Quine (Appendix II) minimization method, it is
possible to obtain minimum cubical covers for f and T. The number of
terminating branchescannot possibly be less than the total number of
cubes contained in these two covers, for, if this was so, then, from the
terminating branches, it would be possible to derive a cover for f

(or f) which had fewer cubes than the covers already stated to be mini-
mum, This gives us a lower bound on the number of elements required.
Unfortunately this lower bound is not always attainable.

The cubical-cover does give a clue as to which order to choose the
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variables, The terminating branches gre divided into two classes, the
Zero terminations and the one terminations. The set of all one termin-
ations describe a cover for f and the set of all zero termination a cover
for f. Ilooking at figure (4.5) agrin, and taking into account the
inversion of f(g,x) at the odd levels, these two covers, as found from

the terminating branches, are

T T
000 p1 Q00RO
00101 600100
0011 p 0101
0100 ¢ 01101
01100 10010
0111y 10101
10000 101 1p
10011 11000
10100 11011
11001 11100
11010
11101
1111 p

That these are covers can be checked by going back to the definition of
the function. There are 23 terminating branches and hence 22 elements
as required by the theorem. The first column of figure (4.6) is the
minimum cover for f and f as found by the Quine method. The cover for
T has an = after all its members. There are fifteen cubes in all,
making this the minimum possible number of end points.

When a variable x; is chosen and the function expanded gbout it,
the cubes covering the function will be split into two classes corre-
sponding to f, and £, . For example the three cubeé shovn below when
expanded about the third variable will split into four cubes covering

f, and f, .
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Lpoo 1 s 00 p1
OCO0ppi

111 pt X 00 p1

3 41 p

the cube that has a UL where the variable occurs may be expressed as

o O

00 ppl = 8?“
and splits into the two cubes shown.

To minimize the unumber of terminating branches on f, and fy the
variable, that has the fewest occurrences of p for it, should be chosen
first. This ensures that after the splitting procedure the total num-
ber of cubes in f, and f;, is the least possible. The same criterion
can. ®e used to expand f; and f; and the process continued until termina-
ting branches are reached. TFigure (4.6) illustrates such a decomposi-
tion.  From the chart, the 16 terminating branches are evident. There-=
fore, only 15 elements will be reguired to realize the function, a
considerable saving from the first expansion method suggested. Note
further that when a cube is split, one half of it may be absorbed by
other members in the same class as the cube OOp is absorbed by pOp in
the example. Both halves canmot te absorbed as this would imply that
the cover was not minimal to begin with. A continuous check can be
kept on the process by observing that, after eéch decomposition, the
total number of reduced cubes in f(a,x) and E(g,g) nust cover the entire
space defined by x.

From the decomposition chart it is a simple matter to obtain the

net. The main point to be careful of is that amx indicates a O branch

for even levels and a 1 branch for odd levels. Figure (4.7) gives the
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new network realizing the function. This net has the added advantage
that the loading on the variables is more evenly distributed.

To make sure that this method does result in significant reduc-
tions in the number of elements a second example function, again chosen

randomly, was selected

/
/

g, 1, 2; 57 89 99 10’ ﬂ; 15’ 15; 17,

\18, 19, 20, 21, 22, 23, 25, 29, 31/
This has a minimum of 10 cubes to cover it and, on decomposition by the
above algorithm, results in 11 terminating branches giving a total of
10 elements required to realize the function. It i¢ doubtful whether

any other method of synthesis would yield a more economical result.

4.6 Multiple Output FPunctions

In many cases our interest is not confined to a single boolean
function Wut rather to a set of functions, or a multiple output function.
If a parallel realization of the function is required then it is necessa-
ry to expand each function separately and usc different nets for reali-
zing then. There is usually some overlapping of the different nets
and some saving resulis by taking advantage of this.

If a serial realization of the set of functions is allowable, then
considerable saving can be effected. Introduce

7

S = [1og2 r‘J
new variables, where r is the numbers of functions in the set (N.B. {x]
is the smallest integer greater than or equal to x). These s variables

may be the output of a counter, shift register, or any other dynamic
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structure that gives r consequetive different combinations of the new
variables ¥y s.e.. Vg Ordering the functions as they are wished to
appear, and indexing them by the successive outputs of the Vi 2 single
function of s+n variables is obtained. This may be minimized by the
method described asbove. |
As an example consider the function defined on 'eight elements
(041,25344,5,6,7) —> (5,0,1,6,7,3,0,6)

which is equivalent to the truth table

X Xy X £, 5} £
0 0 0 1 0 1
0 0 1 0 0 0
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 1 1 1
1 0 1 0 1 1
1 1 0 0 0 0
1 1 1 1 1 0

Introducing two new variables y, and y, and assuming that they can be
produced in the sequence (00, 01, 10) (by a binary counter for instance),
00 can be associated with f;, 01 with f, etc. 4 function of five

variables

~

g (0, 3y 4, 7), (11, 12, 13, 15);L
(16, 18, 20, 21), (3) t

]
is then defined, where § indicates that for the combination 11 any
arbitrary subset of (24,25, sesas 31) may be inserted.

This degree of freedom for the last eight elements can be taken
advantage of by including all of them while calculating the prime-

implicants (Appendix I1I, figure A.1.2) then use only the actual member

elements when calculating the necessary cubes. This results in a mini-
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mum nunber of cubes to cover the defined elements; the remaining ele-
ments will automatically have been selected in the best fashion.

For the example above the best cover was found to be the ten cubes

Pelow
Oxx 11 Oxx10 =
1x0x 0O 1x0x1 =
1x10x 1Tx11x =
x110x 00x01 =
x0x0O0 0100x =

By selecting the order of the variables in the manner described in the
previous section, only ten terminating branches were obtained, giving us
nine elements in our realizing net. If the three functions are realized
separately eleven elements is the minimum obtained, showing that even in
this rather trivial case there is g substantial saving. As the number
of functions and the number of variables increases you would expect this

saving to be more noticeable.
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CHAPTER V

Function Generation Using Digital Circuits

5.1 General Digital Function Generator

As mentioned previously (page 57) a digital function is a mapping
from a finite set of points X to a finite set of points Y. If the num-
ber of points in X is P and the number of points in Y is Q, then X may
be coded into p = [@og@ ?] binary bits and Y into q = [logé é} bits,

In terms of these bingry variables the function may now be defined by g
boolean functions of p variables. q < p, otherwise the space Y would
contain more elements than X; indicating that some X would have to map
into two elements. PFigure (5.4a) ig the circuit diagram for this
realization. The single set of input leads into the function blocks fi
really represent all p leads coming from the input variables X4 A
similar notation is employed for the outputs and inputs of the coding
blocks.

It is assumed that the domain of all functions under consideration
is the integer set 0,1, ¢vs.. P-1 and the range 0,1, ..... Q~1, With
this assumption, the natural coding of the input and output into their
binary number representation may be used, eliminating the need for sep-
arate coding blocks. An example of realizing such s function by a
sequential net has already been done (page 98). For different domains
and ranges, input and output coding blocks must be inserted, compounding
the problem considerably. For all practical cases such 'discontinuous’

(in the sense that if integers 'a' and 'b' are members of the space then



102

not all integers between 'a' and 'b! are) spaces do not arise.

Such a design procedure may be used to obtain any digital function,
repregenting an arbitrary mapping from X to Y. For most purposes this
ig far too general as normally not all functions from X to Y are required.
This leads on to a discussion of exactly what kind of functions are of

use and what simplifications this produces in the network above.

5.2  FExtension of the 'Continuous' Concept

For control systems applications the kind of functions encountered
are continuous, or at most, piecewise continuous; anything more abstract
can only be of theoretical interest. The problem is to approximate this
function by a digital function, implying quantization of both the ordin-
ate and abscissa.

Figure (5.1) shows the effect of quantization on the two axes and
(5.2) the errors incurred. y-quantization ensures that the error of the
approximating function never exceeds one-half a level; x-quantization
that the error at the sample points for x is zero. Very large errors
mey occur for this second case as shown in figure (5.2b). When both
co-ordinates are quantized zll that can be sald about the error is, that
at the sample points for x, the error must be less than or equal to half
ay level. The goodness of the approximation over the remainder of any
single interval is dependent upon the value of the derivative. Note
that the operations of x-quantization and y-quantization are commutative,
meaning fhat the same final function is obtained regardless of which
operation is applied first,

let a € x <Y be the domain of definition for the functions.
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Define the three quantities below
A=mnax y -min y

B =%b-a

.

¢ . M 'gx
agx b ldx

If y is quantized into r levels and x into s levels then one y level
would be A/E and one x level B/s. The maximum error at the mid-point
for x is then A/2r. If the maximum derivative occurs in this interval,
then the change in going to the end points ~f the interval cannot exceed
CB/@s, as drawing a simple diagram immediately shows. Hence, the
following equation for the maximum possible deviation of the quantized

function from the true function in any given interval results.

€ s §§.5(A/} + BC/s). (5.1)

Limiting the total number of quantization levels in x and y, i.e.,
r+ 8 = k, to put an upper bound on the complexity, (5.1) hecomes

BC

emaxg'5 (A;+k—r)' (5.2)

Both r and s are greater than zero indicating that r in the above
equation must satisfy the bounds

0<r<k. (5.3)
Differentiating the right-hand side of (5.2) and setting it equal to zero

- BC -
(k-r)

(5.4)

A
2
T

Solving this equation for r and rejecting the solution that does not

satisfy (5.3) yields the two values

r=k/(1 +\/-—1?-;9) (5.5)
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and s = k/(1 ﬂ/—l%). (5.6)

Substituting these values back into (5.1) gives the upper bound for the

maximum error, using the best possible choice of r and s, as

<(A/K +A/B0) , (5.7)

Equations (5.5) and (5.6) constitute a method for distributing the
quantizing capacity (k) between the x and y coordinates in a best
fashion.

The distancesbetween adjacent y levels and adjacent x levels are
LoWE (WVE+ B = Ay
T-VE (VB + WALk = &

regpectively. In going from one value of x to an adjacent value of x

the maximum change in y is OAx = A/BC (A/BC + A/A)/k.  Therefore, the

maximum number of quantization levels the function may change by is

_ Ohx
-~ A BC, (5.8)

This constant is dependent only on the nature of the function under
consideration and not on the total number of levels available. If the

can be ohe
present value of y is known, then the next value of y

on[y 2MH levels q ¢ S can e,hanje, o oan,
te—elseimeomnm valve  From MMty - U J

Definition: A discrete function f(n) is said to be 'continuous' of
order p if in going from f(n) to f(n+1) the function can change by no
more than y levels.,

Such functions as the shove may therefore be specified by an

initial value and a string of s-1 (2umt1)-level digits. As an example
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T
consider realizing the function f = sin x on the interval (O, 5).
Suppose only k = 20 gquantization levels are allowed. The constants

T
A, Band C are 1, 5 and 1 resgpectively. Therefore

b= ‘\/’12‘.,_. 1.253 <2

r = 20/(1+p) = 9.05 = 9

s = k-r =2 11,
The quantization levels Ax and Ay are .1438 and .111 respectively. The
first x level is x = 0.0714 = 4.090; the first y level .0556. From a
table for sin x the quantized function, as shown in figure (5.5a) is
obtained. The maximum deviation of the quantized function is .135,
whereas the maximum calculated from equation (5.7) is .127. The diff-
erence is accounted for by the fact that it is impossible to have a
fractional number of quantization levels; the nearest whole number must
be taken. The x levels may be identified with the numbers O through
10, and the y levels with O through 8. Reverting to the true value
only involves a scale change on the two axes, As the function is
'continuous' of order 2, it may be represented by the initial value O
and .the string 2111110100.

Sometimes the number of y levels, r, is previously specified and

it is required to find the number of x levels to ensure that over any
single interval the function does not vary by more than one level from

the quantized function, For this restriction (5.1) becomes

A_ A, XC
r 2r 2s
or A _ BC
r s
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and the number of x points required is s =C%§)r. BC is always greater
than A so there are always more x sample points than y levels. The
quantization intervals are Ax = B/s and Ay = A/r. In going from one x
interval to the next the change in the function cannot exceed ChAx = %g =
By, implying that y can change by at most one interval. If after
applying this method for choosing the number of x levels, it is decided
that they are excessive and, therefore, they are arbitrarily cut down
with the tacit allowance of an error of more than one quantization level,
then, evidently it would have been better to choose larger quantization
intervals to begin with, and simplify the entire problem. Hence, for
all functions, realizations that are 'continuous' of order ont hay be used.
Any function may then be represented by an initial state plus a three
level string.

Our interest in digital realizations of the type discussed above
will be justified later when adaptive networks are discussed. At the
moment it is only necessary to emphasize the difference between the two
types of gquantization methods mentioned above. The first assumes that
there are a fixed number of levels at our disposal to distribute between
the two ax:.s; a method for finding this best distribution was discussed.
Note that the particular method of establishing the x and y levels is
best only in a statistical sense. This means that using the above
scheme the error can be guaranteed to be kept inside the bound (5.7) for
any function having the parameters A,B and C. For a particular func-
tion there may exist a better quantization scheme, although this other
scheme will result in larger errors than (5.7) for some other function

with the same parameters.
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The second method is somewhat more realistic as normally one is
given an analogue to digital converter with a certain number of bits
(1ogb ) and it is required to find the sampling interval % to make the
best use of these bits. Again the criterion for establishing the x-
quantization holds for all functions with the same parameters, whereas
for a particular function it may be possible to use considerably fewer
levels and get the same gccuracy. The following sectlon contains some

practical methods for obtaining functions of the sbove type.

5.3 Reglization of Digital 'Continuous' Punctions

As shown above, if any discretion is shown in choosing the quanti-
zation levels then a 'continuous' function of some order p less than the
number of quantizagtion levels results. On page 101 g method for reali-
zing arbitrary digital functions has been discussed. For functions with
many Quantizgtion levels, using this method results in a large number of
boolean functions of many variables. The complexity may be reduced
considergbly by utilizing the 'continuous' property of the functions.

Having chosen the gquantization level, the abscissa 'x' is nor-

(See ¢ﬁ53T&?)
mally presented to the function generator as a set of p binary bitsAfrom
an analog to digital (A-D) converter. It is required to generate from
these a set of q output bits, to represent the value of the function.
. 36,37 ,38
A-D converters fall into two main classes ;3 the fixed sampling
rate and the continuous output converters. Both of these have gs their

basic element a simple binary counter. The outputs of the counters are

added according to the power of two they represent, an analogue network
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giving a signal proportional to the digital number stored in the regis-
ter. If the counter is driven by a continuous string of pulses the
output of the analogue components would be a sawtooth wave. The first
class of A-D converters starts the counter in the zero state, compares
the output with the signal to be quantized, and counts up if the counter
cutput is less than the signal. The counter stops as soon as its out-
put is greater than that of the signal; its contents are then a digital
representation of the signal correct to one level. The second class has
a facility for counting up and counting down. The output is continuous-
ly compared with the signal, if the signal is greater the count is
increased, if it is less the count is decreased. Ignoring the first
stage (which is usually a multivibrator driving the counter continuously)
the remaining stages yield the required digital output to as many levels
as desired. Corresponding to these two types of converters there are
two main kinds of function generator that may be evolved. |
Throughout the following the functions are mappings from oP
elements inﬁo 24 elements, or from p bits to g bits. TFigure (5.48)
shows z function generator that can produce any function of the above
type. It requires g functions of p variables. These may be generated
sequentially as shown in Chapter III. As mentioned previously, if any
thought was applied in choosing the quantization levels then a 'contin-
uous'! function results. Figure (5.4b) shows a method for obtaining

'continuous' functions of order u. The bits of x are mapped into
T o= [}ogé(Zu + 1)] functions

representing the increment in the function in going from x to x + 1.
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One of the r bits may be used as a sign bit, the remainder represénting
the value of the change required. r is considerably less than e,
producing a saving in the total number of Wwoolean functions. This
scheme is suitable only for the first kind of A/D converter, as large
errors will result from the integrator on the output if it is required
to hold for any length of time. The reset circuitry has been omitted
for clarity. With a few additions this circuit couwld be used in con-
Junction with an A/D converter of the second kind, provided that the
integrator can be replaced with some more stable element.

Figure (S.Sa) shows an all digital method for realizing functions
of order y, (5-5b) giving the required auxiliary circuitry for generating
the timing variables wy, w,, % , and z,. Although the apparatus may
at first sight look rather complicated, its operation is simple, The
input and output registers, x and y, are connected in a reversible binary
counter configuration§9’4o; the input C.U. is the command to count up,
the input C.D. the command to count down. The whole network is timed
by a master clock represented by Cl. Register p contains the increment
in going from x to x+1, f; representing the sign bit (1 for positive, O
for negative) and the remzainder containing the absolute wvalue. The
addition or subtraction from register y is performed by counting down U
to zero, and simultanecusly counting y up or down, depending on the sign,
and whether x is increasing or decreasing. This counting configuration
is used in preference to a straight adding and subtracting device as the
number of ®its r is usually 2 or 3 at most, not warrenting the use of a

full digital adder.
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The first network in figure (S.Sb) is necessary to ensure that the
command signals from the A/D converter are isolated from the timing
circuits while the system is going through an accumulation phase. For
X increasing the contents of p must be added to y before x is incremen-
ted; for x decreasing the input register must first be reduced before
g is subtracted from y. This change in timing sequence is produced by
the two memory elements wy, and w, connected as a feedback shift register.
The output D is 1 when Q is non-zero, O when p is zero. The functions
g and g ensure that the output register is counted in the right
direction dependent upon which way x is changing (z1 = 1 for x increas-

ing, 2, = 1 for x decreasing) and the sign of u. These functions are
g = (z SIGN + z, SIGN) E
g = (7 SIGN + z, SICN) B

where the enabling gate E is driven byimﬁaécl. Thus, only when the
shif't register is in the state 10 and the contents of p non-zero, does
this transfer take place. The function g driviﬁg the shift register
is

& = ((z+25) (w4w, ) + D wow, ) CL.

For z =z,=0 and no command from the comparator of the A/D con~
verter fo increase or decrease x, the network is in equilibrium. wy
equals O and w, equals 1, ensuring that no shift pulses are getting
through. Note that for z, =1 the shift register passes through the state
sequence 01 ~>10=>11 > 01; for z,=1 the state sequence is 01-> 00 —
10— 01 producing the different sequences required for the two modes of

operation. The timing sequence for the command to increase x is shown



116

below, each clock interval being indicated by a separate step. In the
ecuilibrium state w =0 and the outputs of the fi are connected to the
register p.

1. The command to increase x arrives; 2z, becomes 1 and the
getes to z; and z; arc closed.

2. A shift pulse changes w; to 1 and w, to O, and the outputs
of the networks fi are disengaged from the register (.

3. If p=0 then D=0 and znother shift pulse is applied to the
register taking it to the state 11.  If 0 then the clock
pulse can pass through, counting down p and accumulating in
Y. No shift pulses are being received by the register w.

4. Same as above this mode continuing until D=0, implying that

the increment p has been added to the contents of y.

pt3. D=0 and the shift register moves to state 11.
pt+4. The x register is counted up one as required, and the shift
register set to 01 as well as z, and 2z, being reset to zero

in preparation for the next sequence of operations.

A similar segquence structure results if a command to decrease x is
recelved although in this case the value for x is counted down before
the increment p is added into the output. The sequence regisfér w first
changes to 00 allowing the new value of p to be read in before the
counting procedure starts.

With this scheme there is a danger of getting completely lost if
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a clock pulse is missed, or some noise gets into the system. This can
be avoided by taking the few most significant digits of x and, when the
remainder of the digits are O (i.e., specifying a subset of x with a
very long sampling period), calculate the exact value of y by functions
of these fewer variables. The rest of the network can be short cir-
cuited hence fixing a set of y values in the output. The functions fi
are usually simplified also as there are now some X whose p can be
chosen arbitrarily; namely those x preceding the ones that have their

complete functional value specified. This hybrid realizetion probably

gives the most economical apparatus with the required reliability.

5.4  Example Realization

It is required to realize the function shown in figure (S.Bb) by
a digital function generator. This may represent a tunnel diode
characteristic necessary for some simulation work. 50 levels at most
are allowed, resulting in 32 horizontal intervals and 16 vertical
intervals, taking the values obtained from equations (5.5) and (5.6) to
the nearest power of two. The resultant quantized function is shown
superimposed on the original function. As it is of order 2, 31 five
level digits are required to represent it, In fact only four of these
digits occur (- 1,0,1,2) so that, with a few minor modifications, p
could be represented by two stages. However, it is assumed that three
stages are required, to illustrate the simplification that results.
f, is the sign bit,equal 1 if the sign is positive, arbitrary where p=0

f, = (0,1,2,3,4,5,6,19,21,22,24,25,26,27,28,29,30)

f, arbitrary on (7,8,9,10,16,17,18,20,23,31).
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A minimal cover for f; and E; employing the same notation as in Chapter
IV, is found as

1 xxxx
x 0xxx

O1lxxxm
This requires only two nor elements in its realization. f, represents
the most significant digit in the magnitude of y and is covered by the
three elements

£, = (0,3,30) arbitrary on 31.

This requires eight three input nor gates. As u=11 can never occur,
when f, is true, f, must be false. Thus by a little extra logical

feedback from f;, of the form

f, = B, £ m T, + £V (5.9)
some simplification may be effected. T is fy plus an arbitrary subset
of f,, or, equivalently, f' is f; minus en arbitrary subset of f,. f!

may be realized by a simpler net than the one that would produce fj

directly. Using this fact, minimal covers for f' and f' are found as

below
£ T

0100x x11xx =
010x0 . 1T1Txxx »
1000 x - xx 011 =
100x0 xx101 =
10x00 - xx 110 =
x 0111 00xx0 »

C0O0Oxx w

This needs thirteen elements plus the one extra element required by

(5.9). The entire structure is composed of only 24 nor gates, & con-
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siderable saving over the result obtained if the transformation is mapped
directly. By varying the functions fi it is possible to realize any

function of order 3 using this same network,

As shown previously if accuracy to one quantization level is required

then a function of order 1 results and only two boolean networks f; and

fy are necessary. Again f;, is a simple function as it has e large number
of points where it may be chosen arbitrarily corresponding to where p=0.
In this case the timing circuits of figure (5.5) may be simplified as it
is known that at most, one count pulse is required at each stage.
Furthermore, if the generator is to be used in conjunction with a type

one A/b converter, no timing circuitry is required at all as the value
may be fed directly into the ¥y accumulator, conditional on the command

41
for x to increase. It is also possible to use three level logic devices

42,45
although the mathematical difficulties ’ seem to increase more than

proportionately.
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CHAPTER VI

On-Line Adaptation

In gll optimal control problems it is first necessary to decide
exactly what the object of the design is, i.e., to specify a criterion
(cost) function for the system. If the capability of adapting some of
the system parameters is admitted then this cost function becomes a
function of the adaptable parameters. It is then theoretically possible
to find a minimum for the cost by finding where all the derivatives with
respect to the parameters are zero, and ensuring that the cost function
is concave at this point. For most adaptive systems some hill-climbing
method, following the gradient of the function, of adjusting the param-
eters is proposed to ensure that optimal behaviour is maintained when the
other system constants are changing.

If the system has g zero memory function, defining a switching
surface for example, in its make-up,and this has to be chosen in an
optimal fashion, then the problem is complicated by at least an order of
magnitude. Now the criterion function is a function of a function and
we find ourselves faced with hill-climbing in Hilbert space. This space
can be approximated arbitrarily closely by sets of orthogonal functions,
like those mentioned previously, producing an infinite set of co-ordinat-
es to adjust. The hill-climbing problem can be tackled through the
classical calculus of variations44’45’47, or dynamic Pprogramming 6,47
both of which lead tq enormous computational difficulties to achieve any

analytic results. The answer seems to lie in having a learning system
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48,49,50 48 50
which adjusts itself empirically to achieve a certain goal ,

another mode of sgying minimizes a criterion function.

Adaptation is only of use if the system is carried through a number
of cycles of operation. Only then is it possible to evaluate the system
performance with some known set of the adaptive parameters, following
which any changes necessary may be made. Further, the change in the
system parameters must be slow with respect to the operation of the per-
formance evaluator, otherwise there is no cleagr indication of what the
cost is with a given set of parameters, and no idesa concerning which way
to go for improvement can be infered. Therefore, in the following
sections,; the basic assumptions are that the parameters are slowly
varying, and that the system under consideration is cyclic in the sense

that it must perform the same kind of operations repetitively.

6.1  Adaptive FPunctions

When the performance evaluator comes to the conclusion that the
particular function used was not the best, the form of command tovthe
function generator is to increase or decrease the function over a speci-
fied range, much in the way that functions are varied to find an optimal
solution using the calculus of variations. For sophisticated evaluation
procedures some idea of the magnitude of this variation may also be
glven. The input command to the function generator is therefore a sub-
range specification a {x b and a magnitude of variation 6.

The diode function generator, as mentioned in Chapter III, is
probably the most practical method for realizing fixed functions. For

adaptation, one is faced with a host of potentiometers defining the break
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points and slopes, each requiring a servo motor to drive it. When the
command comes to increase the function over a certain range, the calcu-
lation of what the new pot settings should be is no small problem. In
the end the entire system becomes too complex to be of use and would
probably require a tertiary control system to control the function gen-
erator itself.

If the function is expanded along some spectral axes fi, with
weighting function p, then the increment to the coefficients a; can be
calculated from

Do, = 5f pf, dx. (6.1)
a
Provided the domain (a,b) is small enough so that p ant f, do not change

appreciably over it, then the approximate form
bt b
boy = (b-a) p (5F) £; (552) 6 (6.2)

may be used. Assuming n functions fi are required to represent the
desired function, then again n servo multipliers or servo-pots are nece-
ssary to éii coefficients. The way in which the change must be made is
easily calculated from (6.2) but it seems impossible to get away from the
need for servo-multipliers, an expensive and complex device.

The piecewise linear functions discussed on page 33 would probably
be the most convenient set for realizing an adaptive generator of the

above kind. The base functions are easily obtained from diode genera-

tors and as the weighting funection is one, equation (6.1) becomes exactly
a+b
Aai = 6 fi ( 5 ) (b-a)

for a and b on the same linegl segment. With a break point between a
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and b there is a small increment or decrement, depending on whether it
is a positive or a negative break point.

For discrete functional realizations the command is usually to
increase or decrease the value of the function for a specific x, by the
amount &, The correction to the coefficients is

ba, = 8 p(x,) fi(xo) (6.3)

which is easily enough obtained. Agein potentiometers, with all their
attendant difficulties, are required to set the coefficients. The only
way of circumventing this problem is to go to an entirely digital method

for obtailning the necessary adaptation facility.

6.2 _ Adaptive Digital Punction Generators

All the analogue functions mentioned above are realized by defin-
ing a set of real numbers to represent the function, i.e., a set of
expansion coefficients or pot settings. With the given hardware it is
possible to realize an infinite number of functions, producing almost
perfect compensation but aggravating the search problem considerably.

By using digital functions this 'function space' becomes finite, re-
ducing the search problem but giving something less than perfect compen-
sation. If this space has k members then at least

n = [10@2 k]’ (6.4)
bits are required to distinguish a particular function, regardless of
the way it i1s obtained. Thus the size of the class of functions which
it is wished to realize is of primary importance as far as complexity is

concerned. n, given by equation (6.4) will be called the 'entropy' of
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53,52
the class, in imitation of this word's use in information theory .

Suppose the requirement is to have a method of realizing all
functions from k elements to 1 elements. There are 1k such functions
and the entropy of this class is [k 10&21] . It may have been declded
to form a look-up table in a core memory, with k different addresses
specified by the input, and each range element being represented by
[}ogb%} bits. This requires a total of[% 1ogbﬁi bits., If 1l is a
power of two, which it noymally is, then these two expressions are equal
and one sees that it is futile to try and get network representation for
this class of a1l functions, as it cannot possibly be an improvement
over a look-up table.

However, as shown in the preceding chapter, if any consideration
is given to the gquantization of the functions, at worst all functions
'continuous' of order p are necessary. Assuming the spaces of definition
above, and that the functions are of order p, the total number of func-

tions in the class becomes lpk_i and the entropy is

Elogz 1uk'ﬂ = [1og21 +(k-1)log, u] y

considerably less than {k 1ogb1] for the class of all functions. The
1 appears in the equatioh for the gize of the class as the initial con-
dition may be chosen in 1 different wagys. Again the best realization
would be to have a store containing (k-1) [1ogéu] bits, if it is desired
that all possible functions be contained in the adaptive networks. This
class still seems too large for any practical realization. BEven if p
is only 2, the introduction of at least [ﬁlog@l)+k—{} new variables is

involved. k, the number of elements in the domain, may be quite con-
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siderable and the resultant network may be very complex. Most members
of this class, the members that ogfcilate rapidly, do not occur in
practice and it is advisable to keep such functions out of any adaptive
loops as, in all probability, they will produce spurious behaviour.
Analytically, this represents a restriction on the size of the second and
higher order derivatives that occur in the associated continuous function.

Hence the importance of determining beforehand the exact class of
functions that may occur in the adaptation loop is evidenced, as the main
concern is to reduce the entropy of this class. Having decided on the
members of the class all that is necessary is to introduce enough new
variables to distinguish each member and form a single function of this
larger number of variables.

The purpose of adaptation is to keep a system operating optimally
in spite of changes in the plant dynamics. If the plant dynamics and
the range of veriation of the parameters are known, or if a model has
been obtained that simulates the plant satisfactorily and the variation of
the model parameters is known, then the portion of parameter space
covered by the variation can be found. Each point in parameter space
has associated with it some optimal compensation function. Hence this
space maps into some region of the function space.

Every digital funection that has its x and y quantization levels
defined, covers some volume of the function space, i.e., all members of
that volume map into the same digital function when quantized. This is
effectively the same thing as quantizing the function space. The class
of digital functions needed is the class that covers the region in func-

tion gpace defined in the above paragraph.
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Analytically the gbove discussion reduces to the chain of rela-
tionships shown below. The basic mechanics involve a system with known
parameters that has an adaptive function g somewhere in its configura-~
tion. A criterion function I is also given, its value being dependent
on the input u, the state x the function g and the system parameters a.

I=1I(w x a, 8).

It ig required to minimize this functional with respect to g.
Given u, 2 and g (i.e., the input and the system dynamics) x is deter-
mined. Hence

I=1I'(u a5 &) (6.5)
For a set of parameters g and an input u the minimization of (6.5)
—determines the optimal g. The space of variation for a iSVA‘and for u,
QL. Therefore a mapping s as shown below is properly defined whereé}
is the resultant space of g.

A =l =2 & (6.6)
The mapping s is the solution for g from (6.5). A second mapping t,
resulting from the quantization of)é}, defines a subspace:? of the
digital function space. s and t may be combined into the single
function v yielding

Axll s 77 (6.7)
The number of elements iniﬁldetermines the number of functions that must
be realized, Note that, although the mapping (6.6) is usually diffi-
cult, if not impossible to find, (6.7) may be a great deal simpler as
i;erresents a finite set. v partitions the space/ﬁgxz/into dis-
joint regions making it necessary to decide only in which region the

gystem is operating to determine which digital function to usge. An
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example will help to clarify some of the above points as well as illu-

strating some of the difficulties encountered in a practical case.

6.3 Application of a Digital Function Generator
to a Time Optimal Position Control System

The system considered is a time optimal, second order, position
control system. This choice was made as the mathematical expression
for the optimal switching function is easily obtained, allowing the
example to be solved entirely by analytic methods. For more complica-
ted systems a computer study would probably be needed to determine the
necessary digital functions, although the final realization, in terms
of hardware, need not be more complex. The theory of operation of
this system is described thoroughly in reference 53,

A block diagram is given in figure (6.1), it being just a particu-
lar case of the relay controlled systems mentioned in the Introduction.
The input Gi congists of a series of step functions with the assumption
that after any given step, the system comes to rest before the arrival
of the next step. The relay coil is driven by the error signal, plus
some function of the velocity (éo) of the output. When the signal to
the relay coil reverses sign a maximum decelerating torgue is applied
to the system. Provided the function of the velocity fed back gives
the angle that would result if reverse power was applied at that speed,
and the velocity allowed to drop to zero; switching then occurs at the
correct instant to ensure that the system falls to zero error with zero
velocity., At this point, due to the dead zone in the relay, no input

is applied and the system remains at rest.
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53
The regquired feedback function is

y=x - In(1 + x) (6.7)
60 SO .

where y =5 and x = = §,) the meximum velocity of the motor, is
m m )

er’ As this function must be symmetric only one half of it need be
realized explicitely, the sign being taken care of by the outer loop as
shown. Suppose that changes in the time constant 7" and in the gain er
are to be compensated for. To assign numerical values, say that the

space 4 of parameter variations is

LR L 25 <7 <.
A L( “r KVI'> ’ 10 <I<(IVT < 2

where normal set notation has been used. This space is shown by the
rectangle in figure (6.2%). as (7 ém) varies over this region eeuation
(6.7) maps the feedback function into the shaded region of figure (6.2b).
The functions as determined by the four corners of,A., (.25, 10),

(.25, 20), (.5, 10), (.5, 20), are shown by the heavy lines. The
shaded region corresponds to members of the set gi, defined in the
precceding section by equation (6.6).

Assume the adaptive digital function generator, used to obtain
represéntative members of this class, quantizes both the domain (x) and
the range (y) into 16 levels. Then all member functions may be defined
by digital functions of order two. Also, as the functions are mono-

tonically increasing, three levels, and only two boolean functions, are

required.
In terms of the primary variables, 6, and €,, equation (6.7) is
o - * 60
O = 4c{§o - em n(1 + zr)} . (6.8)

m
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Looking at the curve for (¥, ém) = (.25, 10) in figure (6.2%), it appears
that this curve may be well approximated by some curve with a greater ém
(greater domain) and a different 7.  Suppose the switching function for
ém1 and 7, bhas been obtained. The assumption that this curve is a good
approximation for all curves with a smagller ém that have their end

points on the original curve, is employed. The equation for all curves

wi th Gm<: 6m1 and any time constant may be expressed as

0p = 7 oo-o@m1 1n(d +—.~—)[ ’ 0<a <1 )
o 6.9
L n, (
The end points of these cquations are where O, = Gm = a@mi‘and therefore

may be found from
0. = Gf{aé - aé 1ln 2& = 307 a® T, (6.10)
° m, m J my

The value of the original curve at this point is

-~

8 =71 { ocOm1 - 6m1 n(1 + a)} .

These two are constrained to be equal implying that the new T is

Tet a1 @)} /(307 ). (6.11)
Therefore, having the feedback function for the point (K;, ém1> the
function for the entire manifold

(T (@ - 1n(1 + @))/(.307a), aém1> 05 o<1

is also available. Such 2 manifold is illustrated by the heavy line in
figure (6.2%).  Thus only the functions for the maximum values of 0,
and T need be realized, all functions in the interior of the space being

covered by one of these boundary functions. This illustrates the saving

that may be made over merely quantizing the parameter space,ﬂ/t, and
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realizing a feedback function for each quantized area separately.

Suppose 1t is wished to span the space %'With eight representative
feedback functions corresponding to eight points on the boundary ofMA .
Figure (6.5a) shows the eight points chosen as well as the eight param-
eter regions covered by these points. These points could have been
chosen with a lot more care, for example by choosing them so that the
proportion ofJi covered by each point was % of the total. Also, if the
statistical distribution of the parameters was known, they could have
been chosen to ensure that the provability of being in any region was g.
However, these are just frills on the main problem and could only serve
to complicate matters.

The eight points in parameter space map into the eight curves of
figure (6.3b). (6.3b) also shows the regions that are represented by
each curve, Quantizing these eight curves into sixteen levels, and
using the incremental realization method of the previous chapter for
obtaining function of order 2, the set of functions below are obtained.
uy, the iﬁcrement, is determined by its corresponding binary equivalent,

fa’ being the least significant figure, f, the most significant. The

B

third funetion in each group fa is the set over which the function may

be chosen arbitrarily.

. =<5,5,7,9,1o ) e - (5,5,6,7,9 )
« - \11,12,13,14 « " \10,11,12,13
£ = (mu1l) £5 = (14)
£, = (15) £ = (15)

fy s
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e 344,6,7,8 ) f o= (29495’677)
o 9,10,12,13 o 8,9,11,13
fﬁ = (11,14) fB = (10,12,14)
£, = (15) £, = (15)
fS f4
2,4,5,6 2,3 4 5)
£y m (8’,9115 » £ = (6:719’
fB = (7,10,12,13) fﬁ = (8,10,11)
£, = (14,15) f, = (12,13,14,15)
fs fG
fa = (253,4951799> fa = (1:335’7)
fB = (6’8> fB = (4;6)
£, = (10,11,12,13,14,15) £ = (8,9.....15)
£ £y

Again, as u=2, it is possible to use the fact that for f =1, fa must be

g
zero and the simplification of the previous example (page 118) results.
Three more variables y;, Yoy ¥55 can be introduced to distinguish each
of the eight functions above. Hence, two functions, f and g, of the
seven variables ¥y, Yoy Y3 Xy 5 Xy Xz, X4, arce obtained. The three
new variables are introduced by defining fy49 = f145 8000 = fip:

foor = 2q) Sooy = 23 etc., and then forming the corresponding conjunc-
tive normal forms. These two new functions may then be realized by
minimal nets, again noting that f may be chosen arbitrarily on members

of g if one more gate on the output of the net is allowed.

Carrying the synthesis procedure through results in a net contain-
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ing something less than 55 elements in all, to realize the two functions
required. This may seem somewhat excessive, but for two functions of
seven variables, and considering that a fan-out of only one is permitted,
it is quite reasonable, If the fan-out was increased the number may
fall to about half the gbove estimate due to considerations mentioned in
Chapter II.

The values of y;, ¥py ¥z are set according to the region of the
parameter space in which the system is operating (see figure (6.33)).
The determination of this region may be a difficult problem as the
boundaries are defined by rather complicated expressions. This problem
can be avoided by using a performance evaluator rather than trying to
estimate the parameters of the system. The criterion is that the system
should come to rest in minimum time, implying that the relay should
switch only once and the system come to rest with zero velocity and
ZEero error. If too much velocity feedback is applied the system
switches too soon and the relay goes into a rapidly oscillatory mode55
in its attempt to bring the error to zero. If too little feedback is
used and the relay switches too late then zero error occurs before zero
velocity. Both of these conditions are ecasily detectable from the relay
input and output. Hence, whether to choose a higher or lower curve,
may be decided merely by observing the relay behaviour without doing any

gsystem identification.

In the more general case, where nothing is known about the system,
a function generator that realizes a much larger class will be required.

Here the search problem must be considered and the folly of having too
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many functions in the class (too high an entropy) is evident as the
convergence to the correct result will then be slow. However, quanti-
zing a function space in an optimal manner is no easy matter, as illu-
strated by the simple example above. Exactly how this should be done
requires a great deal more study and much deeper probing intc the now
rapidly expanding field of functionzl analysis.

The necessity of identifying the system in order to determine the
compensating function has been mentioned above. The next chapter takes
gome measures to scolve the identification problem and also contains a

nunber of computed examples to substantiate its claims.
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CHAPTER VII

Discrete Punctions and On-Line Process Identification

7.1 System Representation

51
A system is defined by a mapping between two sets of function

spaces, one called the input space, the other the output space. Thisg
definition is far too general for any practical use and almost immedi-
ately some further structure must be imposed. This further structure
is usually the assumption of linearity, implying that if fy (t) and £, (%)
are two different members of the input space, the corresponding members
of the output space being g (t) and g (t); then the member of the out-
put space corresponding to af, (t) + bf, (t) is ag (t) + bg (t).  This
linear property allows the use of all the spectral analysis results
developed before,

If the input function f(t) is expanded along some base axes as

)

£(t) = Zé) a;f; (t) and the way the system maps the set {fi ('t)} into the
output i: known, then the way the system maps all functions is known by

the linearity property. Thus, given the mapping m

£, (8) s gy (4),

then the output function can be constructed by mapping the component
vectors separately and performing the corresponding sum, yielding

g(t) = ;%% aigi(t). Note that now the mapping m represents the system
and is ;:pendent upon the particular set {fi(t)} chosen.

The further restriction to 'linear differential systems' or 'lumped

parameter systems' is made. This implies that the input function f(t)
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and the output function g(t) satisfy a differential equation of the form

&, i atr (7.1)
£ a. . F3 b. e 701
{=0 *att {0 *at

where the zeroth derivative is the function itself. For practical
systems m  n, making this an nth order differential equation. Many
systems do indeed obey a relation of this kind or may be approximated
closely by such an equation., The differential equation along with the
spectral functions {fi(t)} define the mapping m.

To clarify the above discussion consider the classical frequency
response method of control engineering. Here the base set of function
is chosen as

{f(t,w)} = {sin wt, cos é)t} ogw <®© (7.2)

and form an orthogonal set over the range (-,). An arbitrary funetion
f(t) may be expressed as a sum of these (in this case an integral as W

is a continuous variable)

£(t) »-j‘mF (») sin &t as + j“’ F (w) cos Wt awd (7.3)
oG S - C

o8

1 . . 1
where Fs(w) === £(t) sin ©t dt, Fc(u)) - fﬂ £(t) cos wt dt.

~00 -0 (7.4)

The factor % is the normalizing constant for the functions (7.2). Pre=-
senting a base funetion of the form sin Wt to a linear differential
system the output is a sine wave of the same frequency with an attenuated

amplitude and a phase shift.

sin Wt 25 M(W) sin Bt + P(W))

similarly cos Wt 25 M(m) cos (Wt + P(f.d)).
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The system mapping m is determined by the two functions M(L\)), the magni-
tude response, and P(w), the phase response. Evidently if an input of
the form (7.3), represented by 'coefficients' (7.4) is presented, then

the output will be given by

g(t) ujw F_(w) u(w) sin (wt + P(W))aw
—of

+ J’d’ Fc(w) M(00) cos (wt + P())dwd
-

The output frequency responses G (W) and Gc(w) as found from equation
(7.3) are
1)
¢ (v) = %{Fs(w) cos (P(®) - Fc(w) sin (P (W) )}

2n

Gc(w) = I'“'—I@—l,fl«“s(w) sin (P(W)) + Fc(w) cos(P(hJ)S}.

Solving this for M(W) by squaring and adding the above two equations

fa)

¢ (W) + Gi(oj)

M(W) = 2m = < . (7.5)
P (6) + F_(1)
Teking the ratio and solving for P(W) yields
Fc(lo) Gs(w) - T, (w) Gc(w)y
P(U)) = tan_i (FG(U-}> Gc(m) ~ Fs(w) Gs(wj/ ’ (7-6)

\
Note that if formally the complex functions

Fw) = F (W) + j F (o)
and G(Ww) = Gc(w) + 3 GS(U))

are defined, then equations (7.5) and (7.6) are obtained by taking the

magnitude and phase of the funciion ZWG(w)/F(w).
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Usually the 2T is associated with (7.3) and not (7.4) as shown.
G(uﬁ/F(w) is the classical transfer function of the system used through-
out all fregquency response analysis, and is an invariant for the system
regardless of the input.

Another, perhaps more exotic, form of this spectral analysis method
is the so-called 'impulse response' representation. Using this the
input is assumed to be made up of z series of impulses, or Dirac func-
tions, weighted according to the value of the function at that instant.
The impulse function 6(%) is defined by the property that for t # O
8(t) = O but J%Q 8(t) = 1, The complete set of spectral functions is

=~
8(t-x), orthogonal for all different values of x.

®
Jﬁ 5(t-x) 8(t-x') dt = 0 x 4 x'.
-~

An arbitrary function f(t) may be expanded in terms of these, the

expansion 'coefficients' being found from

J*D £(t) 6(t-x) dt = £(x). (7.7)
-G

Thus the spectrum and the function are ideuntical.
The response of the system to an impulse at time zero is denoted by

h(t), yielding the mapping from the spectral function to the output as
Mtﬂ)—£$ h(t-x) t =zx. (7.8)

Assuming the spectra given by (7.7) is the input to a system and using

the mapping defined by (7.8) the output function g(t) is

ol +
g(t) = [ £(x) h(t=x) dx =joof(x) h(tx) ax (7.9)
k..d} e
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as h(t) = 0 for t <0O. This is the familiar convolution integral. The
system is represented by the function h(t) and must be obtained by de-
convolution of equation (7.9). Actually the spectra of the impulse

54
response is the frequency response function mentioned earlier and so may

- . . G(w .
be found merely vy taking the inverse transform of . o Alternatively
12
it may be obtained directly using correlation with noise , pseudo-random
12,15
binary chain codes ’ or by direct analysis using the naturally
54

occurring signals .
The most well-known system representation is the Laplace transform.

(m+3u)t for all real o and

Here the expansion functions are of the form e
(a)s These have the same advantageous property as the frequency response
functions in that they change the differential equation (7.1) into an

algebraic equation that conforms much more readily to analysis. This is

the standard transform used throughout all control and circuit theory

engineering.

T2 On-Line Identification

Our goal is to find a method for identifying linear differential
systems using the naturally occurring input and output signals. The
system may be completely specified by the coefficients a; and bi in
equation (7.1), by the frequency or impulse response, or by the pole-zero
pattern that arises cut of the Laplace transform approach.

Although the representations mentioned above are excellent when
considering the response of known systems, or synthesizing higher order
systems from lower order systems, they do not fit easily into any on-line

identification schemes. The frequency response method requires a con-
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tinuous spectrum of the input and output waveforms and the evaluation of
the functions in equations (7.5) and (7.6). Although this is convenient
for off-line analysis, where it is possible to drive the system with the
sinusoidal test signals and obtain the resultant Bede plotsss, for on-
line work it requires spectrum analyzers on both the input and output of
the system, This has been tried%z with limited success. Many schemes
have been developed for cobtaining the impulse response directly by appli-
cation of suitable test signals but these involve long correlation analy-
ses, resulting in a long identification time. Also, having the impulse
response it is still no small matter to convert it to the coefficients
in (7.1) or to the frequency response as this involves finding a fourier
transform which, in general, is not an easy operation56.

Below a method of extracting the coefficients of (7.1) directly
using expansions in Laguerre function is given. These polynomials have
been defined in section (2.4.3) and have, for our purposes, one other
interesting property. Instead of defining the functions on the range
(0,00) it is desired to define them on (-09, 0), necessitating the change
in variables x —> -x. These are called negative Laguerre polynomials and
are denoted by /\n(x). The Laguerre functions may be obtained from the

differential equation

eX dn n ~x
Ln(x) =T ;;H (x'e ) x >0

Making the change in variables the negative Laguerre functions are gen-

erated by

Moo= ) xgo (1.9)

n! ax™
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The first few may be found by replacing x by -x in the examples given

in section (2.4.3). These functions satisfy the differential relation
n-1
d !

&N - 5 o (7.10)

This may be proved by a simple induction using the definition of /\n(x)

Ziven in equation (7.9). Its extension to the rth differentiation is

i—-—rr/\ J(x) = :i_i (nif)/\\i(")' (7.11)

The input and output of a system, at any time t, are functions
defined over the half line (—cx% t), making a representation by expan-
sions in the negative Laguerre polynomials possible. The situation is

8s shown below.
£(T)

) P —

T — ~——

—1 System ([

'

t

| l
1

0 t 0 1

it
o

The input may be represented by

a @)\, ) (7.12)

1

M8

£(T,t) =

1l
O

i

where ai(t) - rt .ét-tfft) /\i(Tlt) ar

0 (7.13)

mj oF £(447) /\i(f) a7,

- 0o

Similaxly s(T)=, 8, (6) [\, (€-0) (1.14)

1=0

0
where Bi (t) =j\ efg(‘b—i—f) /\i(’(‘f) at . (7.15)
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Assuming the system is represented by an equation like (7.1) then

at time t the input and output function shown above must satisfy

Z .4:.@:.11 Zb __f.g.gl_tl t > T (7‘16>

1=0 1i=0 ar’
Expanding g(T,t) and £(7,t) by equation (7.12) and (7.14) and substitu-

ting T -t=x yields

1 n di/\.(x) 0. ) )
Z{;B-(t)Za’.———al—=>‘1a.(t)‘“ b, —d—
R e R =0 9 5= dx

(7.17)

The upper limit of (7.11) may be changed to n-1 as (%) = 0 for
a <b. Also the upper index m on theright of equation (7.17) may be
changed to n by introducing enough new coefficients bi all equal to zero.
Then the right and left sides of equation (7.17) are entirely symmetric
so, for the moment, all operations need only be performed on the left
gide as the right side must assume an identical form.

Substituting the modified result of (7.11) into (7.17) changes the
differential equation into a linear equation in Bj(t), aj(t), a;» b, and
/ﬂj(x) of the form

PIENG { : (Ji“ljﬂ) N + ao/\ )} (7.18)
=0 1=1 ! J _

Interchanging the summations with respect to k and j yields

2{ i (0 23 e (15 VN L6 + 2on 0 )},

As the functions /\k(x) are linearly independent, for this relation to
be satisfied the coefficients must be equal, resulting in the following

relationship between the input and output coefficients, the right hand
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side being tacitly assumed as above

oo n . _
J=K+ s

Thege represent an infinite set of linear equations, each one having

infinitely many terms; a rather formidable object on first sight.

Interchanging the summations over i and j and noting again that C:) = 0
for a < b, equation (7.19) assumes the form
& = -k =1
i v-j -K = -
; 8 2, pj(t) <i_1) + Bk(t) ag k=0,1,2.. (7.20)
e J=k+i

Taking this infinite set of equations and forming a new set by

subtracting the (k+1)th from the kth yields

:{Z E j=k+2:m P5(%) {(-k 1> i (J‘f:g)} +§ aiﬁkﬁg)

+ (B (1) - B4 (t))ag-

. ro . . .. {3=k=2
FPor i=1 the term in.ﬁ j is zero while for all other i it eQuals \i-2 .
Therefore equation (7.21) becomes

o0

4] . n
. (% J.‘K"2> + B, L (%
g; %.}££ﬁ1pg<) (1ﬁ2 g; %.%ﬁ1(>
(7.22)

+ (B () - B, (¢)) 2-

For this new set of equations the process can be repeated, namely
subtract the (k+1)th equation from the s equation. After all possible
simplifications are made the resulting set is

n

2, 8 i Bj(#) (J;k25> ¥ 1% % [Bku(t) +12) Bsg (t)]

1=3 Jek+i+?2 (7.25)

+ ooy (B () = By o (8)) + 2o (B () - 2B, (%) + B, (%)).
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The infinite number of terms is still contained in the first expression
and the bottom index has now been increased to three.
Continuing the above subtraction process for n steps produces the

final expression, including the right hand side

20 ms 2 0 8 () = 20 2 (0 ) ()

4 (7.24)
' ku091’2a.c. .

an infinite set of finite equations, These are more conveniently
represented using matrix notation. Define «(t) and £(t) as two infinite
vectors representing the input and output spectra, the vectors g? =
(Boray yuenns &) b7 = (bgsbyseeens b ), and a matrix D, with an

infinite number of rows and n+1 columns. The first k rows and all rows

beyond the (k+n+1)th of this matrix are zero. The (k+1)th t0 (k+n+1)th
rows are defined by an (m1)x(n+1) matrix D" such that a; 4= 0 for
’
i <{j and = (—1)1+J (?:%) for 1 > Jj. Two of these D matrices for
n=3and n =5 are given below.
1 0 0 0 0 O
1 0 0 O -5 1 0 0 0 O
. 3 1 0 0 . 10-4 1 0 0 O
D=ls2 1 0 D=l 6-5 1 0 o0
-1 1 -1 1 5-4 3 -2 1 0
41 -1 1 -1 1
Using this notation equation (7.24) becomes
n n 4
8(t) D a = a(t) D b k=0,1,2000ss (7.25)

This, although not convenient for calculating the input-output
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behaviour, does give a useful method for determining the coefficients
a; and bi, of the differential equation. Normalizing these equations

(7.24) so that a, = 1, each of them then represents a linear eguation

in the remaining 2n+1 coefficients byjyee..sb 3y 8gyeseeed

. The first
n-1

2n+1 eQuations are linearly independent, this fact following from the
independence of the separate coefficients comprising a and . Note
that each equation has at least one of these spectral coefficients

different. Using the representation (7.25) the first 2n+1 equations

can be put in the matrix form
B(t)p"2 = A(+)D™ (7.26)

where B(t) is the (2n+1)x(nt+1) matrix of the spectral coefficients Bi(t)

shown below

[30(13), Py (‘b) cecesesan Bn(t)

BLlt) vevevnnnrenennnnanns

ﬁgn(t)’ anﬂ ('t) re o 5n(t)

A(t) is the same kind of matrix comprised of the coefficients ai(t).

By forming the compound (2n+1)x(2n+2) matrix C(t) = ||B(%) E—A(t)“, the
1 D1 0 '

a
vector ¢ = || and the (2n+2)x(2n+2) square matrix A ={--{«-» equation
b 0 D
(7.26) takes fthe more recognizable form I
c(t) Ag=0. (7.27)

Note that one of the components of ¢ is 1, introducing a constant into
each of these linear equations, Knowing the matrix C(t), it is possi-

ble to solve this set for the required coefficients c.
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3n+1 input and output coefficients are required for a complete

identification. These coefficients need not accurately represent the
respective functions, i.e., it is not necessary to take enough coeffi-
cients to get a good approximation. Provided they can be determined
exactly, then the system parameters can be determined exactly even with
only this partial information concerning the input and output. If some
of the parameters are already known, or zero, then fewer equations are
required in (7.26) and it is necessary to determine fewer coefficients.

As an example consider a second order system of the form

d.zf(t) ar(t)
5 ta gyt b = og(t).
at

There are only three wnknown parameters requiring three equations for

their determination. The matrix equation (7.27) is

Bo By By -0y =0y - O 1000 00 b ]
By B Bs -~y -0y - o -2 1 0 0 0 O a = O
Bo Bs By -~ - o5 -0y 111 0 0 O 1
000 1 00 ¢
0 0 0-2 1 O
0 ¢ 0 1 -1 1 0
Expanding this product
(60—281+ﬁ2)b+(81-[32)a+ﬁ2—(%"20@_+d2)c-=0
(By - 2B, + Bs)o+ (B = Bs)a+ Bs - (o =20 + 05)o=0

(Bg - 2B + B)b + (Bs - Byla+ By - (0 - 20 + ¢g)o=0

The constant terms in the equations are §,,B;,8, respectively. Knowing
the first five input and output spectral coefficients these equations

may be solved for the system parameters a,b and c,
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Equation (7.27) may be solved in a slightly easier manner than
performing the expansion as above and finding the solution directly.
This method is discussed in detail following the introduction of the
discrete lLaguerre functions and their use in identifying discrete
systems. In (7.27) ¢ represents the system; ¢(t) a matrix character-
istic of the input and output, and A a matrix significant of a property
of the particular expansion functions used. Actually, if some other
set of polynomial expansion functions had been employed similar equations
would have been obtained,

Another such expansion was performed using the Legendre polynomials.
At first it may seem surprising that these polynomials should yield a
valid result as they are defined only over a finite range. This would
seem to imply that the initial state of the system, at the beginning of
the interval, had nothing to do with the output spectral coefficients.
However, remembering that in all calculations, an infinite expansion has
been assumed, then at any point in the interval the function and all its
derivatives must, in the limit, be approximated exactly. Thus, if a
function is continuous, by Taylor's theorem the analytic continuation
outside the interval must converge also. Therefore the initial state of
the system is sutomatically absorbed in the representation of the input
spectrum,

The main difficulty remaining is the evaluation of these spectra.
For on-line purposes the spectra must be continuously updated as the
process evolves, implying a great deal of calculation. How this can be

done with a minimumr of effort is demonstrated in the next section.



7.3 Continuous Updating of Spcctra

Looking again at the figure on page 143, assume that the spectral
coefficients at time t are known. At some later time t+At 1t will be
necessary to re-evaluate these coefficients jf eguation (7.27) is tc be
used to detect variations in the parameters.' The functions f(t) and
g(t) may be stored and the integrals (7.13) and (7.15) evaluated again,
although this seems a great waste as the coefficients at t have already
been calculated and it seems evident that the information contained in
these may be employed in the calculation of the required value at t+At.

This is indeed the case. Taking cquation (7.13), at time t+At

0

ai(t+At) =§ eTf(t+At&-'U) /\i (T) aT

-0
0

] S_At ejtf(t-%-At*‘f) ,/\i (1) df+§

- 00

o F e (++AtT) /\\ L@ aT
~A% (7.28)

The first integral in this expression can be changed to

0

J” b 2 hax) [\ (xoat) ax (7.29)

i
-00

by the change in variables T+At = x.  The functions/ﬂi(x—At) can be

expanded in terms of /\j(x) as shown below

Aoy = 50 /@) (1.50)

3=0
where yij(At) gfc_)oix/\ i(x-At) /\j(x) ax., (7.31)

Aj(x) must be orthogonsl to all powers of x, xk, for k <:j, otherwise

it could not be orthogonal to all the functions / \k(x) for k <j. As
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/\i(x-At) is aﬁ i order polynomial in x, /\j(x) must be orthogonal to
it for j > i so that yij(At) = 0 for j >i., Hence the summation in
equation (7.30) need only be carried to 1. Substituting this result
back into (7.29) produces

i

e-At z{:

J=0

o
yij(At)j‘_me}& £(ttx) /\j(x) dx

i

- om0t J};) vy 5 (88) e (5). (7.32)

As shown in the previous section, it is only necessary to carry

some finite numbers '

s' of coefficients in order to calculate the param-
eters of the system. These coefficients may be formed into two s~
vectors a(t) and B(t), and the constants yij(At) represented by an sxs
matrix y(At). The second integral of (7.28) is the increment to the
coefficients caused by including the portion of the function £(7) between

t and t+At., Forming the functions /\1(13 into an s-vector[l@t) equation

(7.28) becomes

0

o . o
a(vrot) W) s«

eff(t+At+'Z’ ) A(f{,’) it
(7.33)

This is the updating formuls desired. Only the integration over the
range At need be performed to get the new coefficients, the effect of
the function previous to this interval being contained in the matrix

operation e-Aty(At). For four coefficients the matrix y(At) is

1 0
~A% 1
At(81-2)
v(At) = 5 -At 1 0
-0t (-AF +6A1-6)  At(AE-2) -At 1
6 2
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From the gppearance of this matrix there would seem to be much
more symmetry in the yij(At) then at first anticipated. Actually, with
some difficulty it can be shown that yij(At) = Yi—1,j—1<At)' A simila;
result is proved in Appendix I for the discrete Laguerre functions.:nd s»
the verification for the continuous case is omitted.

Similar updating formulas can be found for Legendre and Tchebychev
polynomial expansions. However, as these are not convenient for purpo-
ses of system identification their development is left.

Equation (7.%)still involves very complicated operations due to
the presence of the integral. As the final solution of equation (7.27)
will probably have to be performed digitally, it would seem more logical
to approach the problem directly using discrete methods, rather than

trying to convert the integral into a discrete form.,

7.4 System Identification using the Discrete Taguerre Polynomials

51,57
A discrete linear difference system ’ is described by a dAiff-

erence equation of the form
p . p‘l .
EZ% a g(n-i) = :EJ b, f(n-1i) (7.34)
= 1=0

f(n) is the input to the system and g(n) the output, p being the order
of the system. Usually the lower index on the right is something
greater than O but this can be reduced to the above expression by intro-
ducing enough new constants bi, all equal to zero. L % 0 implies that
the input can effect the output in zero time.

If the input and the output waveforms at time X are expanded in

discrete Laguerre functions (sce Appendix I, section 2) with spectral
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coefficients Q(K) and y(K) then the system coefficients satisfy the set
of linear equations

B(K) Qa = ¢(X) Qb « | (7.35)

where B(K) and ¢(X) are matrices composed of the spectral coefficients
and have the same form as that shown for the Laguerre spectra on page
147. Qp is a square matrix derived in the Appendix.

In choosing the spectra there is still one degree of freedom at
our disposal; this is the choice of the weighting constant o. This
constant may be assigned any value between O and 1. Returning to the
definition of the discrete Laguerre polynomials on page 43, for o = Q,

Li(n) becomes

The normalized functiors given in equation (2.18) have only one non-zero
value corresponding to n = i

li(n) = 0 n % i

1 (1) = 1y (1) = 1.
Therefore this limiting case yields the complete set of sgingle unit
pulses. The spectral coefficients Bi(K) and yi(K) become g(K—i) and
f(K—i) respectively. The equation (7.55) then corresponds to just
taking the last 2n+1 linear equations defined by (7.54) and using these
to calculate the coefficients. This is obviously correct but is usuvally
a very ill-advised approach. For one thing, if the sampling rate is
high the successive f(n)'s and g(n)'s are almost the same, meaning that
these linear equations are very nearly inconsistent and hence great

difficulties will be encountered in trying to get a reliable solution.
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Also the result is highly sensitive to noise on the input or output.
The one advantage seems to be that as only the most up-to-date informa-
tion is used, the most recent estimate of the parameters is obtained.
As o is increased, more and more information from the past is ’
incorporated into the spectral coefficients B(K) and y(X). One can
expect the coefficients to become more uncorrelated and hence the con-
ditioning of equations (7.35) to be improved. This implies that the
solution for the coefficients is more reliable. Also, the polynomials
act as filters to noise and so one might expect some noise immunity using
a larger o. However, the response of the estimator is slower as it
weights information further into the past in the calculations. Thus,

for rapid changes in parameters, little confidence can be placed in the

result obtained.

7.5 Computer Tests

Extensive computer tests were performed to verify the above
hypotheses. The flow diagram describing the general outline of the
program is given in figure (7.1). The spectral coefficients were
evaluated by the continuous updating procedure described in the third
section of Appendix I, The two main subroutines involved with the iden-
tification procedure are SOLVE, which finds the solution for the system
coefficients g and b from equation (7.35), and ROOTS, which calculates
the pole—zero diagram in the z-—planeS7 corresponding to the system esti-
ma ted by SOLVE. A detailed description of these two subroutines along

with flow diagrams is given in Appendix IIT. The saving in computation

that can be effected due to the special nature of the matrices B(K),
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G(X) and Qp of equation (7.35) is also described. It was thought
necessary to extract the roots as these are more truly representative
of the systen behaviour than the differcnce equation coefficients.

Also they are less sensitive to computational errors than are the coe-
fficients, that is the coefficients may appear to have changed substan-
tially whereas the pole-zero pattern has remained almogt stationary.
All the runs performed using this identification scheme took under one
minute of 7090 computing time, at least half of which was absorbed in
compilation.

The first test performed was to check that for varying o the time
for identification varied. A second order system was set up and sQuare
wave excltation applied. Half way through the test one of the system
coefficients was given a step change. As expected for small o this
change was detected in a matter of a few intervals, whereas for large o
it took as much as 10 to 20 intervals to settle on the correct values.

Following this tests with slowly varying 2nd, 3rd and 4th order
systems were performed for two different values of a(0.2 and 0.8) 1o
determine what effect o had on the detection efficiency. The result
for the third order system is shown below. For the other two systems,
similar performance was Observed, the 2nd order giving a more reliable
estimate than the 4th order as would be expected.

The third order system considered has the pole-zero pattern of
figure (7.2a), the gain being set to 1.0. The test was carried over a
thousand intervals with an estimate of the complete pole-zero pattern
being calculated every fq@rty intervals, Two poles and two zeros were

varied linearly in the manner shown. This particular configuration
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represents a severe test on the detection procedure, not only because
the dominant pole at (0.9) tends to mask the other poles, at least for
the first portion of the test, but also as the pole variations take them
intc the unstable region outside the unit circle. The poles cross the
unit circle in the 685th interval; however, the estimator still gives
results right up uwntil +he 840+th interval when the instability causes
the whole system to blow up and the equations (7.35) become inconsistent.
The input was a square wave varying between +1 with 10% gaussian noise
superimposed.

The remainder of figure (7.2), and figure (7.3) show the actual
pole-zero variations along with the pole-zero pattern as estimated by
solving equations (7.55) and then finding the roots of the characteristic
equation produced. The scales, for comparison purposes, are the same
on all graphs except for the gain (defined as the normalizing constant
for the bi’s) which is displayed on the larger scale shown. The long
estimator (o = 0.8) is illustrated by the heavy line, the short estima-
tor being represented by the dotted lines.

Considering the z-plane as a mapping of the p-plane of continuous

Tp 57
where T is the sampling rate , then the

analysis via the function z=e
unit circle corresponds tc the portion of the frequency axis between
- %‘<¥U<g%. The axis (0,1) corresponds to the negative real axis of
the p-plane. It may easily be demonstrated thit radial lines in the
z-plane represent lines of constant freqQuency or horizontal lines in
the p-plane, and circles represent lines of constant attenuation or

vertical lines. Therefore, as the angle with respect to the origin of

a complex pole increases the freguency of the corresponding pole in the
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p-plane also increases.,

The above paragraph yiclds a very nice interpretation of the
results of figures (7.2) and (7.%). The short estimator corresponds to
a high freguency estimator whereas the long onec corresponds to a lower
frequency. For the long time constant (.9) a = 0.8 gives a very good
estimate, whereas a = 0.2 produces widely varying results. Por the
complex poles a = 0.2 gives a very much better result as this pole re-
presents a high frequency modé, whereas o = 0.8, although appearing to
have the correct trend, yields quite widely varying estimates. For the
zeros neither of them give particularly impressive results, although
again the short determination seems better, especially so for determin-
ing the gain.

The same kind of behaviour was noticed in all the other tests
performed, indicating that it may be worthwhile to have two estimators
going at the same time, one for obtaining the low frequency poles, the
other for the high frequency components. For rapidly sampled continu-
ous systems the poles tend to congregate around the point (1,0) indica-
ting that for these, the long time constant determination should be
useful. Again it is emphasized that the above set of results was
compiled and generated in less than one minute of computer time.

A constant sixth order system having six poles and five zeros was
also tested, and, surprisingly enough, the estimates were remarkably
close to the actual values. Different inputs such as ramps, step,
white noise etc., were tried on other varying systems with almost the
same degree of success as above. As long as the input has a fairly

high harmonic content reascnable estimates are obtained.
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Tests using higher and lower order estimators than the order of
the actual system were also done. On fitting a fourth order estimator
to a third order system the estimator predicted the correct pattern,
plus a nearly overlapping pole-zero pair. Cn using an estimator of
order less than the actual system, the estimated pattern varied widely
from step to step.

The last test performed was to see how the estimating procedure
reacted to the presence of noise on the input and output. Independent
gaussian noise gources were incorporated into the system as shown in
figure (7.4a). G(z) represents the system, the particular configura-
tion being shown in (7.4b). It is quite a problem to know exactly how
best to present the results for this test considering the amount of data
accumulated., A complete set of pole-zero estimates for a third order
system was obtained for the two values of « above and for noise values
of 0,1,2,3,5,10,50 percent of the signal level. The test in each case
was run for a 160 intervals and the pole-zero pattern estimated every
20 intervals, giving only eight estimates for each singularity. This
does not really represent enough data points for decent statistics but
was thought sufficient to show up any trends. The applied signal was a
square wave with a transient inserted at the 80th interval.

As expected for very low noise levels, the shorter estimating
polynomials gave better results, but as the noise level increased above
1% these estimates degenerated into nonsense. Using o = 0,8, although
the initial estimates had a wider variance, this variance increased at
a lot slower rate than for the first case. For both constants after

the 3% noise level was reached the estimates of the complex poles and
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zeros were very bad. This arises due to their position quite far behind
the dominating pole and partially cancelling each other. The estimates
for the dominating pole in both cases were more consistent,

Figure (7.5) illustrates the results for this last estimate.
(7.5a) shows the mean value of the estimate of this polc using the two
different constents « and (7.5b) gives the standard deviation. TFor 50%
noise the values obtained using o = 0.2 were completely random and not
really worth recording. As evidenced from the irregularities of these
curves the statistices are hardly sufficient to draw any sound conclusions.
However, the diagram does demonstrate with a2 fairly high probability that
for noisy systems there is a distinct advantage to using the polynomials
that have a longer reach intc the past.

The use of the discrete Laguerre polynomials for the identification
of single input single output discrete systems has now been discussed.
It remains to develop a method of identification for multidimensional

systems.

7.6 Discrete laguerre Polyncmials and Multi-dimensional Systems

In the multi-dimensional case linear discrete systems may be repre-

sented by the matrix equation
X =A%+ By (7.36)

where zy‘is an r-dimensional state vector, u, an s dimensional input

k

vector, A the rxr state transition matrix, and B the rxs input transfor-

mation matrix.  The problem is, given x, and u, and all their past

13 !
history, to determine the matrices A and B. BEquation (7.3%6) implies the
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infinite set of equations
Ben = A (1) T By n=0,1,0000s (7.37)

The vectors X n and W, _, are expanded in discrete laguerre polynomials

%m‘EZQ&)H@)

1=0

e ™ D1 £ 00 1,00

in the same fashion as equations (A.1.23) in Appendix I. The coeffi-
cient vectors Y5 and Ei are defined by equations analogous to (A.1.22).

Substituting these values in (7.37) yields the relation

‘?6 li(k) 1i(n) = A Z) 11(1{) 1i(n+1) + B Sﬁ? Qi(k) 1i(n). (7.38)

Using equation (A.1.34) of Appendix I, 1i(n+1) can be expanded in terms
of 1j(n) for j g;i. Making this substitution, interchanging the summa-
tion over i and j in the first term on the right, and then equating
coefficients of 1i(n) on both sides produces the set of relationships
o0
Y (k) = 4 Z v () wy  (3) + BB, (k) 120,152, 0nnss (7.39)
j”i J Jed
. . th . 2 . . th .
Taking the sum of the i equation and of times the (i+1)  equation

reduces this to the set of equations

B0+ ey, (0 = aldy () + y,,, () + B(g () + B, (k)
(7.40)

an infinite set of vector equations with a finite number of terms in
each.

Taking the first s of these equations and forming the corre-



sponding matrix equation

s(x) = AT(k) + BQ(k)
where the matrix S(k) has its columns made up of terms like li(k) +
a%1ﬁ+1(k), T(k) of columns like aéla(k> + ¥, (k) and similarly for
Q(k). S(k) and T(k) are rx(r+s) matrices while Q(k) has the dimensions
sx(r+s). Taking the transpose of both sides and forming the partitioned

product yields
T

A
T T T T T T v T N
sT() = T () 4T 4 QT(k) B = |7t o) TQT e gl -

B

The partitioned matrix HTT(k) : Q?(k)!l has dimensions (r+s)xr + (r+s)xs

= (r+s)x(r+s). Provided this matrix is non-singular it has an inverse

and the solution for A and B becomes
T
i3] -

Taking the transpose of both sides and noting that the inverse and

‘TT(k) § Q?(k)ll—1 sT(x).

transpose commute the final sclution for A and B is

o) || -7
4 Bl =s@) |- (7.46)
Q(k)

The matrices 8, T and Q dcpend only on the first r+s+1 spectral
coefficients obtained for the various inputs and cutputs. Thus, using
a finite number of coefficients it is theoretically possible to obtain
the system parameters, represented by A and B exactly, although the

inversion of may prove to be a difficult problem, The coeff-

icients can be continuously updated as shown for the one dimensionsal
case, making it possible to detect changes in the system matrices as

the process evelves.



CHAPTER VIII

Conclusions

The original contributions presented in this thesis fall into four
main catagories corresponding to:

(1) Universal nets for realizing boolean functions.

(2) Actual construction of a digital function generator.

(3) Complete development of the discrete Laguerre polynomials.

(4) Identificatiop of system parameters using truncated spectra.
Some secondary results, such as Theorem 2.1 and the introduction of the
linear segment functions, were included but were not developed far

enough to warrint further discussion here.

(1) To my knowledge this approach to realizing boolean functions
by logical elements has not been attempted before. In the past the
problem of finding a best circuit realizmation for a given function has
been greatly complicated by the large number of possible configurations
that the elements may assume. This has made the search problem very
large and intricate and no powerful analytic methods for reducing this
search have yet been developed. By constricting the geometry of the
networks into the form of a universal net, although it may introduce
more elements than the absolute minimum, at least gives a straight-
forward method for finding circuit realizations for any boolean function,
with the assurance that none of the gates will be overloaded. Also,

absolute minimal reglizmation in this geometry may be obtained. It was
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demonstrated that this method has at least the same order of elements
(Lupanov's theorem) in the final network as some hypothetical best
method of design would have.

(2) Tnis approach to obtaining digital functions, other than by
performing analytical operations on a computer, has not yet been follow-
ed through in the literature. The scheme presented may, at first
sight, appear to be rather 'ad hoc' but does represent an attempt at
eliminating the need for a digital computer in digital control systems
and replacing it by a much simpler device, Certainly, in the example de~
scribed in detail in Chapter VI, it would be difficult to find a net-
work with the same capabilities that could be obtained more economically.
This section would have profited greatly by an actual system being built
and adaptation tests performed on it. A beginning on this was actually
made but unfortunately time started to run out, not allowing this par-
ticular aspect of the project to be completed.

(5) The development of these polynomials was, perhaps, carried
further than justified by their subsequent use in the thesis. However,
as s0 little work seems to be extent on discrete polynomials and they
appear to be almost a natural offspring of diglital computer analysis, it
was thought that a complete summary of all their properties would be
useful, The difference eguations, recurrence relationships, generating
functions etc., have the same sort of appearance as the equivalent
expressions obtained for orthogonal continuous polynomials. The fact
that these new polynomials are basically different than the continuous
Laguerre funciions can be proven by comparing the forms of the D matrices

(page 146) and the Q matrices (page 187) used in the identification of
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systems by the continuous and discrete polynomials respectively. You
would expect these to have the same form if there was some close relation
between the two polynomials. The scope for future use of these func-
tions in solving discrete difference equations and general computation
problems seemsunlimited.

(4) System identification using polynomial expansionss4 has been
tried before only with limited success. Then, however, the approach has
always been to expand the actual system function (the impulse response
h(t) or the frequency function GQM)[FQU) etc.) in terms of a set of
polynomials and then state that, in the limit, this set must converge on
the actual system. Here lies the difficulty, in that a great many ex-
pansion terms are required before a satisfactory representation is ob-
tained. The scheme proposed above requires only a finite number of
input and output coefficients for a complete identification, Thus,
although at first this method may appear rather complex, the final closed
form obtained justifies its use. No actual computer tests using the
continuous functions of section (7.2) were performed, although the vali-
dity of the final expression was checked by some hand calculations. The
discrete functional representation was thought more useful in that it
adapts itself immediately to the digital computer without having to
incorporate any integration subroutines. At any rate, as continuous
systems can be approximated arbitrarily closely by discrete systems,
provided the sampling rate is high enough, further investigation seemed
unnecessary. It becomes only a question of where the approximations
should be made, whether in the integration subroutine or by using a

sampled model.
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8,1 Possible Extensions

There is large scope for further work in the universal network
studies begun in Chapter IV, especially when using elcments with more
than three inputs and with more than a fan-out of one. The great ad-
vantage of having more inputs on a gate is not so much the time saving
that can be effected, but rather the far greater number of configura-
tions in which these clements may be connected. Allowing a fan-out of
more than one allows the same freedom. As stated previously, this
larger number of configurations (two of which were illustrated for the
three input nor gates) mzkes some kind of organized search necessary.

It may be possible to design universal nets having a fan-out of two that
subsume the nets described above. This may lead to a much greater
saving in the number of elements used to obtain boolean functions. Tt
is my own intention to pursue this particular line further, as well as
try and find some analytic way for getting around the need to employ the
Quine method to minimize the function before the best net may be
obtained.

Nothing more remains to be done on adaptive digital function
generators except to build one and apply it to a system; either a great
or small task. How these may be used in the context of a general
learning system deserves further study and would not be at variance with
the present-day trend of control theory. Also how the modern develop-
ments in automata theory can be tied up with these discrete function
generators should prove a fruitful field of investigation.

A great deal more work on the statistical properties of the dis-

crete Laguerre polynomials remains, This section wag rather hurried
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over and no real thought was applied to what kind of systems are
actually encountered or how noise effects the system behaviour. It is
evident from the results that were obtained that a great improvement in
the estimates could be made if somec sort of additional filtering was
performed on the first estimates. A search into the exact requirements
for a special purposc computer to perform the calculations needed for
the identification procedure should result in fairly economical appara-
tus. The discussion in Chapter VII has shown that this method of
system identification is possible. It remains to be shown that it is
economically viable and stands up to comparisons with some of the known

methods, such as model references and correlation techniques, now in use.



APPENDIX T

Discrete Laguerre Functions

A.1.1 Basic Properties

Before starting, a few elementary results from the calculus of
finite differences will be necessary. Given a discrete function f(n),
defined on the set of integers, the forward difference operator A is
defined by
8f(n) = f(n+1) - £(n).
Obviously, it is a lineagr operator implying

A(af(n) + bg(n)) = asf(n) + big(n).

If Af(n) = n(n)

b b :
then :E: hin) = E; (£(n+1) - £(n)) = £(b41) - £(a).(a.1.1)

a a
Finally a rather surprising identity of the form

£(e+1) Alg(n) tn(n)) - n(o+1) A(g(n) b£(n))

- a(g(n) [f(n) n(n) - n(n) Af(n) ] ). (a.1.2)

This relationship may be checked merely by carrying out all the expan-
sions implied by the differences.

Consider the generating function

( Zn on a4 -(n+1) N
(EZ@W c%} <k)tk ig’) ( 1 )(dt)' (a.1.3)

For |aj< 1 and |t1{1 the second series converges. The usual notation

1
oy ) . a.
(b) is used for the binomial coefficient ETrg:ng .
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DN Cet)) ((a1)o1) e ((a) - 141)

il

(-1 (1) (042) oee. (n4i))

il
. n+5
- 0 (7).
i
Hence equation (A.1.3) is equivalent to

- & ()t () () gt
L B Kk i a .
i=0 k=

i

Which, on gathering powers of t is
SR i-3 /m\ /osi-j\  i-jy,i
z (Z(_1) J (J) K i_jJ) o ‘)t .
1=0 J=0
Substituting i-j3=k and using the identity
n ndk) i /n+k
i-k k <k \ 1 )
The expansion becomes
oo i . . o .
' < k i n+k)  ky 1 i
>, (2 (=) (k>(i)a)t = S 1 ()t
i=0 k=0 i=0
where the discrete polynomials Li(n) have been defined as
i X :
- . k /i ntk
L, (n) = ki_o (=1) (k) (i )a. (4.1.4)

Differentiating the generating function with respect to t yields

) <(n_a<n+1)_o@> S A

(14t (143) (1+at) i=
or Z Ly (n)ti (n-a(n+l)-at) = ﬁ i Li(n) (1+(1+a)t+at2)ti"1,

i=0 i=0
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Defining L_i(n)=0 and equating coefficients of +* the recurrence rela-
tion

(1)L, (n) + [i(1+oc) - (n-oc(n+1))] L, (n) + oL, _ (n) n(z .

results.

Taking the first difference of (4.1.3) yields

(2.4}
141 )" ot ‘
L_q;Lh+1 ( ) ) jz Al’i(n)tl ’
(1+at) T+at 1=0

Again, expanding the generating function and equating coefficients, the
difference equation

Li(n)(1—a) = aALi(n) + ALi+1(n)

.1.6)
() “

= A(aLi(n) + Li+1

1ls obtained.

The next problem is to find the difference equation which the
polynomials satisfy. Taking the first difference of the recurrence
relation (4.1.5) gives

(i+1) 8L, () + (i(1+a)+a) AL, (n) + i ALi_i(n)

= #n(1-a) I, (n) (A.1.7)
= (1-a)(n+1) ALi(n) + (1-a) Li(n).
Using equation (A.1.6)
(1+1) AL, (n) = (Li(n)(1—a) - aALi(n)) (i+1) (A.1.8)
and i ALi_i(n) - i(Li_i(n)(1~a) - AL, (n)) . (4.1.9)

Substituting (A4.1.8) and (A.1.9) into (A.1.7) and simplifying

1Ly () 4 L, (n) = (n41) AL, (n) . (4.1.10)



Taking the difference of (4.1.10)

1(8L; | (n) + AL, (n)) = A((nr1) AL, (n)). (8.1.11)

Solving for L (n) in (4.1.10) and substituting in (4.1.9) gives an
equation for ALi—j_ (n) in terms of Li (n)

ia ALy (n) = (m+1) ALi(n)(1-oc) - iLi(n)('l~oc) - iALi(n).(A.‘l.’lQ)

Finally multiplying (A.1.11) by « and substituting in (4.1.12) the

difference equation for the function Li(n) is obtained

aA((n+1) AL, (n)) - (1-a)(n+1-1) AL, (a) + (1-a) iL,(n) = O
* * * (8,1.13)

or a(n+2) AzLi(n) + {o=(1-a) (n+1-1)) ALi(n) + (1-a) iLi(n) = 0.

Tt remains to show that the functions Ly (n) satisfy the ortho-

gonality relationship
o

j_Z(') oani(n) Lj(n) = 0 for i yé Je
Before proving this, two other results are required. First from
equation (A.1.4)

1,(0) = (-o)™. (4.1.14)
This is obvious as <:}L,> = 0 for k1.

Also from (A.1.4)

AL (n) = T, (m+1) - I (n) = i{)‘ (-1)k (i)[(n”jf”> B, (nfﬂ &

k=
*iv\ k /1) /a+k k
or ALi(n) = ﬁﬁé (-1) (k)(i—1) o

Hence ALi(O) = (-a) sy (-—oc)i i
(4.1.15)

= ()™ (1-q)
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Noting that
b (a) = e (1) - ()

= o (apf(n) - (1-a)f(n))
equation (4.1.13) can be simplified by multiplying it by o« and identi-

fying f£(n) in the above formula as (n+1) ALi(n). This gives
o (e ((n+1) ALi(n)) - (1-a)(n+1) ALi(n))

+ (1=0) 1 (b, (0) + AL, (n))o” = O

or pa™ (n+1) ALi(n) + (1-a) 1 anLi(n+1) = 0. (4.1.16)

Multiplying by Lj(n+1) and interchanging the indices i and j gives the
two equations

Lj(n+1) A (n41) AL, () + (1) 4 anLi(n+1) Lj(n+1) =0

Li(n+1) A (1) ALj(n) + (1-a) j anLi(n+1) Lj(n+1) = 0.

Glancing again at equation (A.1.2) and identifying

£(n) = L,(n), h(n) = I, (n), g(n) = o' (n+1)
we get on subtracting the two equations above

n
Act (n+1)(Lj(n) ALi(n) - Li(n) ALj(n))
+ (1-a)(i-3)a" L (n+1) L(nt1) = O.

Summing this equation from n=0 to infinity gives by equation (4.1.1)

Lj(O) ALi(O) - Li(O) ALj(O)

e8]
+ (1) (1-3) 2, @' (a1) 1 (m1) = O.
n=0

The value disappears at infinity as the series annk converges for a1

and all finite k.
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Substituting the values for Li(O) and ALi(O) obtained in

(4.1.14) and (A.1.15) yields

(1-a) ()™ -5) + (1-a)(i-3) 2, &7 1y(a) 3,() = 0

N=

©
or a)J+1 + :Ej o L, J.(n) =0 for i # j.
e

. 0
But (—a)J+1 = Li(O) LJ(O) o« , and the final orthogonality relation

w

g%% o« Li(n) Lj(n) = 0 i#
is obtained.,

A little more patience will see us through this maze. The last
thing to determine is the normalizing constant ui. Multiplying the

recurrence relation (A.1.5) by anLi_i(n) and summing gives

o0
i n/::o o ( ) - (1-a) ?a @' n L, ()L (n) =0. (&1.17)

Substituting i=i-1 in the recurrence relation, multiplying by anLi(n)

and summing

w o

i Z anLi(n) - (1-a) z a nL1 () 1, (@) =o. (4.1.18)

n=0 n=0
Subtracting (4.1.17) from (A.1.18) the recurrence relation for the nor-

malizing factor is obtained.

o
! 2
g, = 526 oL (n) = « ;2% o Ly 1(n) a b
2 i2
or by = o
o0
b * 1-a
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Define the functions

a
o
1i(n) = E; Li(n)
These satisfy o0
1. 1.(n) =35
PIRNCYRNCHEEAY

and constitute an orthonormal set over the integers 0,1 ..... The

completeness of the set Li(n) follows from the completeness of the set

2 n

1,XyX eeves X o+ee.. OVer the continuous range (0,0, For if a con-

tinuous function
0
f(x) " ;z a; s
im0
converges, then on the integers,
00

f(n) = Z a.n"

iw0 *
G k
and the set 1,nyn ..... 1 ...., must be complete over the range
01,2 v This in turn implies that the set Li(n) which are linear

combinations of the above must also be complete (theorem 2.1).

Thus the expansion formula

e}
£(n) = 2, a1, (n) (4.1.19)
i=0 * %
o«
where a, = ;g: 1. {n) £(n) (A.1.20)
1 n=0 1

is valid.



179

A.1.2 Discrete laguerre Punctions and Discrete ILinear Systems

57
A linear difference system is described by an equation of the

form

p
S e, g(n—l) = 44 b, f(n-l) (a.1.21)
im0 i=0

where f(n) is the input and g(n) the output waveforms. At any given
time K the input and output functions may be expanded in discrete
laguerre functions li(n) by reflecting the above waveforms and expanding
according to equations (4.1.19) and (4.1.20). Hence the coefficients

s and pi are defined by

O

Lo

v (K) = Q2 £(kn) 1 (n)

n=0

N n>. 0 (4.1.22)

B, (K) = > a(k-n) 1, (n)

=0
the inverse relationships being
o0
£(k-n) = > v, (8) 1, (n)
i=0

n >0 (4.1.23)
g(k-n) = Z B, (k) 1, (n).

i=0
At instant K, the dinput and output waveforms for the system are

shown below

f£(k-n) £(k-1) £(x) g(k-n) g(k-1) e(k)

ceeKem e e Ko X — s }— < cKen - e oo K- K
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These are related through the difference equation (4.1.21) o
L, 2, .
S oA, g(K (n4i)) = bif(K-(nﬂ)) for n=0,1,2,.00..

i=0 i=0

Substituting equation (4.1.2%) for g and f yields

S ay 20 80 1 (wa) = 5y j;uml(m;
i=0 Jr:o 40 J
(4.1.24)

(n+i) /2 .

1j(n+i) is a jth order polynomial in n muliiplied by « There-
fore, it must be expressible as a linear combination of the polynomials

1 (n) for s & j. Hence

L 1) Sk (8) 1,() (2.1.25)
s=0

where the consiants uji(s) will be determined later. Substituting this
into (A.1.24) and interchanging the order of summation over s and J

yields

53 3 a0, - 1y, (0] v 6) 1,0) = 0.

s=0 j"S i=0 L (A 1. ?6)
Using the independence of the polynomials 1S(n), the coefficients can be

equated to zero yielding the set of equations

o4} p -

= Egé [giﬁj(x) - biyj(K)J b () =0 820,1,2,..

J (a.1.27)

Before going further an expression for the pjk(s) used in
equation (4.1.25) must be derived. In summation form they are defined
by
@
by (s) = >, 1, 1, (nsk). (A.1.28)

n=0
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The finite form below may be derived for ujk(s)

o) = o VS () () (et
9=0,1,24000es j=1

b (s) = oc'2lE 5= (8.1.29)

ujk(s) = 0 s=itly J42, «eee.

where Y = (1-a). This may seem a rather complicated expression but
after much labour was the simplest finite form obtained. The proof of
the above relationship is rather long and tedious, and is therefore pre-
sented in four steps. The truth of the last two expressions is demon-
strated first. Then the first expression is proved for Jj=1 and all k,
following which it is proved for k=1 and all j. Representing the points
Jyk by the lattice points in the first quadrant of a two-dimensional
Cartesian system, the proof has then been obtained for all points on the
axes of this quadrant. The induction used will be t, assume that the
formulg is correct for uj_1’k(s), pj,k_1(s) and uj_1’k_1(s), and then
proceed to show that it must be true for ”j,k<s)‘ Using the two axes
as baseg, the result may then be extended to the entire plane by the
above induction.

Prom (4.1.28) it is evident that for s > j, uj’k(s) = 0 as
lj(n+k) is a‘jth order polynomial in n and ls(n) is orthogonal to all
such polynomials. For j=s only the power of J in lj(n+k) need be con-
sidered in equation (A.1.28). Using the definition of Lj(n) given in

(A.1.4) and including the correct normalizing factor, lj(n+k) beconmes

nik 3 ntk
2 - . -
lj(n+k) - & ; ; @ ndt a2z Qn) (4.1.30)

J
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where Q(n) is a polynomial of order less than j. Forming the product

ntk °°
(A.1.28), 1. (n) is orthogonal to a ¢ Q(n) and as éiJ 1J(n) = 1, implying
nea0
that
X PR
2, iin
D 1.(n) M=elm oz oy (a.1.31)
n=o J p"j(]'

k
the fact that > k(j) = o emerges immediately.
]

The first and most difficult expression will now be tackled.

Explicitely

}j 1, (n) 1 (ntk)

19

oo 1 ntk

ok a®
= —— {((nt+k ) (1~ )~
2, () (1))
®w g, kK k
o of ko (1-a
=Zk (1 0‘)" .
=0 P-QU—_L OC%

On substituting j=1, s=0 into (4.1.29) the value for u1’k(0) also re-
duces to thié expression, The relations (A.1.29) are therefore proven
for all s, all k, and Jj=1.

The second base axis regquires the evaluation of pj,1(s). The
difference equation (4.1.6) expressed in terms of the normalized

Laguerre functions, is

Liw (n+1) = 1i(n) + a% 1i+1 (n) - 2 1i(n+1). (4.1.%2)

Equation (A.1.29) in this case reduces to

j~5=1

pog(e) =Ty (I (8.1.33)

The expected form for the expansion of 1j(n+1) is therefore
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-1 Jj-s-1 .
1 (1) = élj(n) L5 ST v ()i 1 (n). (a.1.34)

First testing j=1
1
1 (m#1) = (1-a) 1o(n) + 21, (n)
which may be verified by substituting the known values of 1, and 1,.

Therefore a base for an induction on equation (A.1.34) has been obtained.

Assuming (4.1.33) is valid up to j, and using the relation (4.1.32)

-1 j-s-~1 . -

1j+1(n+1) = 1j(n) ¥ aélj+1(n> - o [aélj(n) + %E% o 2 (—1)3_8'1J18(n2]
1 i _

L @ s S G (R ()

s=0
completing this portion of the proof as it has now been shown that
(4.1.33) must be valid for all j.

Having established the truth of expressions (4.1.29) on the j and
k axes it remains to show that it is satisfied for all other points j,k.

Equation (4.1.32) for the value (n+k) is
1 1
1i+l(n+k) = li(n+(k-1)) + a?li+1(n+(k-1)) - a?li(n+k).

Expanding both sides of this equation using (A.1.25) and equating co-

efficients yields the following relation between the By
H

J
) P @ u, (s)
“i+1,k(s = “i,k-l(s) * “i+1,k-1(s) T OBy S

(A.1.36)
Assume equations (A.1.29) are true for all s and for the points (i, k-1),
(i+1,k-1), (i,k). Required to show that it is valid for the point
(i+1,k). It is a simple matter to show that the formula is valid for

s >1i. Tor s <i the right-hand side of (4.1.36) becomes
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o itl-k-s J.%ié (i—sﬂn)(k—1) (_1)(i-s—m-1)91n

2 i_m:O m m+1
+ oo kj__% /i+1—S"HIl)<k-1) ( 1)(i~s—m)\)m (A 1 57)
=B \ m o+ - e
k-1 . .
— fi-stm\ [k (i-g-m-1)
- ﬁ;@* ( m ) (m+1> (-1) Y

Y

l“
Substituting o=1-V in the second term contained in {:3 changing it to two
terms, shifting the summation limits from O, k-2 to 1, k-1 in the new

term created, and then combining the first three using the identity

<2) * (bi) B <§:1> (a.1.38)

twice, reduces this expression to

i-g+4m k i-g-m _m
< m~1 ) <m+1) (~1) ¥

(i-;+m> <m51> (_1)i-s-m,vm

Adding these two together and substituting again in (A.1.37)

w
i
e

™

=]
t
—al

~
I
-

M

i
o

. k-1 . .
i41-k~ - fid4]~s+m k i-g=-m . m
SZ i I‘)( ) (_1) 2

o 2 m m+1

m=0
which is indeed the expression given by (4.1.29) and the formule is
proved,

Having managed to demonstrate the truth of the assertion by the
above struggle, its implications can now be investigated. The first
thing to notice is that uj,k(s) is a function only of j-s, and k, i.e.,

is essentially a two dimensional parameter .
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. S) = . 0).
uJ,k( ) p',]-s,k< )

Returning to equation (4.1.27) the following quantities are defined

I(K) = (Yo(K)s Yi(K)y coeeay Yn(K)’ -°°'°)
6) = (8 (K)y By (E)s +rerey B.(O)5 wrres)
§,_T = (2gsay s soees ap), ET = (Dyybyy weere bp)

and the matrix

O OII.......‘........‘..‘.O
é 6.........'.'...‘.9'.‘..6
M(s) = Po,o(o)! Po,1<0) ceese uo,p(O) (A.1.39)
[;11 O(O) s etesessacan s M,P(O)

Using this notation equation (A.1.27) may be expressed as
B() M(s) a = x(X) M(s) b 520515250 00us

The elements pi,k(o) are independent of s, s only determining the number
of =zero rows. These represent an infinite set of infinite linear
eQuations implying that , in theory, given a, b, M(s) and the input
spectra I(K)’ they may be inverted to find the output spectra Q(K). As
this involves the inversion of an infinite matrix it is hardly practica-
ble. For obtaining an equation in the coefficients a and b it is of
somewhat more use,

When making linear combinations of these equations it is only
necessary to add or subtract the matrices M(s) as these are the only

properties of the equation that are dependent on the equation number.
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For example
8(%) u(s) 2 - B(K) H(stn) & = B [1(s) - 1(stn) |a.

Take the matrices (A.1.39) and form a new set of matrices Q(s) by taking

linear combinations of the M(s) as shown

Q(s) = %@ s+1) \

With some difficulty, using the properties of p, k(O), Q(s) can ve
14
proved to have the form
Oill
As) = |1 Q,
1l %

where O, is (s+1)x(p+1) zero matrix, G, is anocox(p+1) zero matrix and Qp
is a (p+1)x(p+1) square matrix.

The elements of Qp’ symbolized by a4 3,p satisfy the recurrence
tJ?

relation
i Ogk<p
. o= . + o . NN A.1.40
Ue,39p T Yy -1 L1, 5,01 Ogigr-? ( )
it i 5 . . 1 . 1
where 1t is assumed that both q-1,3,p—1 and qp,J,p—1 equal zero Also

,P,p Kk> /2

the two relations together yielding a method for obtaining Qp fron Qp-1'

It may easily be shown that
ol
Y
Using the above equations and defining & = a% the matrices G and Q; are

found as shown below
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2 2 3
1 5 5 1 5 & 5
2 2 3 2
Q = 26 1486 26 QG = |136 1428 25+ 38
2 ! 2 3 2
5 8 17 1l 36 2548 1428 36
3 2
{ 8 § 1

Matrices of as high an order as desired may be generated.
The relation between the input and output spectral coefficients

at time X can now be eoxpressed by

B(X) Q(s) a = y(X) Q(s) b 50,1, 0000 (4.1.41)

where Q(s) is an 9@ x(pt+1) matrix with only a (p+1)x(p+1) submatrix non-
Zero, This now represents an infinite number of finite equations,
linear in the system coefficients g and b, These equations are normal-
ized so that ay=1. If the 2n41 system parameters g and b remaining,
are unknown, then from a knowledge of the spectral coefficients and
equation (4.1.41), they may be determined. Taking the first 2n+1

equations of (A.1.41) the final expression
K = G(K . A.1.42
5(6) Qe = 0(K) Qb G
is derived, where B(K) and G(K) are matrices formed from the coefficients
Bi(K) and yi(K) in the same fashion as the matrix B(t) on page 147,

B(X) and G(K) are (2n+1)x(p+1) matrices; a and b are p+1 vectors.

This last equation may be put in the partitioned form

. . [Qp 0 ' N
B) | o-o@] [P 2l .o (4.1.43)
o el 2] 1

ready for solution. 4s ay=1, each linear equation must have & constant

term and the ordinary methods of solution may be applied.
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A.7.3 Continuous Up-Dating of Spectra

Calculating the spectra at each stage by using equations (4.1.22)
necessitates storing all the past history of the input and output and
going through a long multiplication and addition process each time.

Using the previous spectrum, however, the only additional information
required to obtain this new spectrum is the present values of the corre-
sponding functions.

At stage X+1 the spectral formula is

o

B, (K+1) = Z{: f(X+1-n)1. (n)
1 e O 1

= ZZJ f(K—n)li(n+1) + f(K}1)li(O)
n=0

o

<" &
= /2, £f(K-n) by (3)1.(n) + £(x+1)1,(0)
n=0 j=0 Tt J 1

i
AN

= 526 b, (3) By (&) + £(xe1 )2, (0).
In matrix form this equation is

B(x+1) = p 8(K) + £(x+1) 1(0) (A.1.44)

where the matrix p is an infinite triangular matrix with elements

i-3-1 .
b (3) = (eoda 2 ()T goraog s 0
’
1
= o for i=]

The vector 1(0) from formula (A.1.14) and the normalizing constent is

1,0 = (0 i
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As the matrix p is defined by a linear array of elements the application
of this up-dating formula is particularly easy. Also, since it is a
triangular matrix, if only a finite number of tho coefficients Bi(K) are
necessary then the matrix p is finite and the updating process involves
no approximations. By~using higher order uj,k(s) terms it is possible

to update every kth interval instead of every interval.
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APPENDIX IT

Quine-McCluskey Minimization of Boolean Functions

Assume that a boolean function is to be expanded as a series of
conjunctions., A conjunctive cover for a function f is defined as a
set of cubes (conjunctions) such that all the members of f are included
in at least one cube, and all members of f are excluded. Many examples
of such covers occur in Chapter IV. The weight of a cover is defined
as the total number of constants in the cover, or equivalently, by the
numbér of occurrences of variables X in the series of conjunctions
defining the function.

The function (1,3,5) may be covered by the two cubes

Xy Xp X5 |

0 x 1 _ = -

0 17 % X ot X Xy
The weight of this cover is four. The Quine-McCluskey method minimizes
thé weight for realizing an arbitrary function. This in turn implies
minimization of the total number of oubeszz. The method is best ex-
plained by an example.

The function chosen to illustrate is that defined on page 87.
Firstly the 'zero! cubes, as taken directly from the truth table, are
set down in a column, ordered according to the number of 1's agppearing
in them (figure A.1.1). One cubes can only be formed betwsen adjacent
vertical blocks, as for non-adjacent blocks the members must differ in

at least two places. All possible one cubes arc formed and a = is pleced
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by the zero cubes that go to make thom, The process is then repeated
with the one cubes to produce two cubes, the asterisks being placed in
the same fashion. This is continued until no further higher order
cubes can bc found. The¢ cubes that are unmarked (the prime implicants)
form a cover for the function, the minimum cover being some subset of
these cubes,

Which subset, is found by drawing up a 'prime-implicant' chart,
(A.1.2), where each of the prime implicants found above are set down,
along with the elements of f that they cover. If an element is only
covered by onc implicant then that implicant must be necessary for the
minimal cover. After removing these cubes and deleting all elements
that are covered by them, the reduced chart of figure (A.1.Ba) is ob-
tained. In the example, 5 cubes are found nccessary from this first
inspection and six elements of f remain to be covered.

Eliminate all implicants in this chart that are completely covered
by a single other implicant (e.g., x111x). In the example this reduces
us to considering five implicants. Again include all essential impli-
cants for this new chart and proceed until, either all the elements are
exhausted, or until e¢ach of them is covered by at least two implicants.
In the former case the minimum cubical cover will have been derived.

Ify, in a reduced chart, there appear to be no essential implicants,
then recourse must be made to a process called 'branching'. One im-
plicant is chosen at random and assumed to be a member of the minimum
cover., All the clements covered by this implicant are eliminated and
the table is reduced until the minimum cover, including this implicant,

is obtained. Then the minimum cover without this implicant is also



Prime Implicants

Elements of f

6 7 8 9 12 14 15 16 17 19 20 25 26 29 30 31
00=xx1 +
xxz 001 + + +
x 00 x1 + +
O0x 1 1x + 4+ + +
x111x + + + +
0100x + 4+
v1tx00 + +
1 0 0x + +
10x00 + +
C1t1=x0C + +
11x 01 + +
11x10 + *
111 x 1 + +

Prime Implicant Chart for
Cubes of Figure A.1.1

PIGIRE A,1.2

€61



Prime Imylicants

Prime Implicants

Flements of f
not covered

8 9 12 25 29 31

xx 001 + +

First essential
x 11 x ¥ implicants
0100x + 00 % x 1
01x00 + 0x11x

x 00x1
1000x 10x 00
011=x0 + 171x10
11x 01 +
1711 x1 + o+

Reduced Prime Implicant Table
(a)
8 9 12 25 29 31 Second essential

implicants
xx 001 + 01x00

111 x1
0100¢x +
01xCO +

Third essentiul
11x01 o implicant
111 x1 + xx 001

Table after eliminating
Covered Implicants
(b

FIGURE A.1.3
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obtained. Finally, comparing the two, the true minimum can be found.
This branching process may have to be repeated a number of times but it
is normally not too difficult to pick out the best cover by a cursory
inspection.
i 22 R

Miller has evolved a method, similar to the above, for finding
the prime implicants from an arbitrary cover of the function. This
circumvents the rather large chart in step onc that results when

functions of many variables are considered.
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APPENDIX ITI

Computer Subroutines

A.3.1 Subroutine SOLVE

This subroutine finds the solution for the system coefficients
using the discrete lLaguerre spectrum of the input and output, and equa-
tion (7.35). Three different methods were attempted to find the solu-
tion to these. The first and most obvious took no advantage of the
special form of the matrices B(K) and G(X) (see page 147), merely mulbi-
plying these by Qp as found in Appendix I and then proceeding to find
the inverse directly. This method not only took longer than the other
two methods below, but also gave less accurate results.

Equation (7.35) may be put in the equivalent form of (4.1.43) of

Appendix I. Remembering that ay=1 this equation may be represented as

where d is a (2n+2) vector whose components are linear combinations of

B(K)!- G(K)H d=0 (A.3.1)

the 2n+1 unknowns 2y and bi’ produced by taking the product of the last
two terms. This is further modified to

ldo
- =0 (4.3.2)
di

—

B

where C is now a square (2n+1)x(2n+1) matrix, dy is the first component of
d, d4' being the remaining components, and g the first column of the
matrix in (A4.3.1). This last equation can be changed to

cd' = - dga. (1.3.3)
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C being sguare has an inverse provided ‘C! is non-zero. The
inverse of C was found by orthogonalizing the rows of C by the Schmidt
orthogonalization procedure (see chapter II, page 27). For an ortho-
gonal matrix U, UUT = 1= UTU¢O. Orthogonalization of C is equivalent
to multiplying it by a transformation matrix A yet to be determined.

Hence

(AC)T(AC) = ctatue - 1.

Multiplying both sides of (4.3.3) by ¢TaTA results in

i' = -d, 6Tata g. (4.3.4)

The great advantage of this form as far as computation is concerned is
that after A has been determined there are no matrix multiplications as
A, then AT, then CT may be applied successively to the vector a to
produce the required result,

Given a set of row vectors Gylip geeeeelly to orthogonalize these

51
by the Schmid+t procedure involves forming the successive ferms

Y=

U -y T Xi/‘(&i’vz> (4.3.5)

i

e s oes ||

1

e

k
-2 (@ Dy n/ o)
where <§,b_> denotes the inner product. The normalizing constants for
the vectors are defined by pi = A/z§;:§;§, and give an opportunity
for checking the consistency of the equations. In the programme if the
value of ﬁz fell below a certain fixed value the equations were consi-
dered to be inconsistent and the process waé stopped.

It may be shown that the only matrix product required for this
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orthogonalizing procedure is CCT which, due to the special fomm of C,
may be calculated in considerably fewer operations than calculating the
matrix product directly. The number of operations to find a matrix
product is of order n3, while taking advantage of the symmetry in C,
this may be reduced to an operation of order n?. Matrix A is triangu-
lar and may easily be found from (A.B.S). There seems to be no time
saving way of performing the orthogonalization of the equations. With
a little thought the square root necessary to find the normalizing
constant can be eliminating, saving another subroutine.

The best way to explain the final method for extracting the
solution is to follow through an example. In the two dimensional case

the equation for the coefficients a; is

1 { do 1
Q | = 4 = dg dy /dg (4.3.6)
ap dp

! & /3

The constants di/do have already been determined from (A.3.4) énd are
given by —CTATAQ. The Q,p have a very simple inverse; if qi,j is the
i,jth element of Qp then it may be shown that (—1)i+j qi,j (1—a)p is the
isjth element of Q%i. Merefore, multiplying both sides of (A.3.6) by

Q" yields the equation

_”: 1 7]
a | =dy G K /4,
3 Ao /dg

where the last multiplication can be performed yielding an expression

g -
g | = dg oo
ag % |

L
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where agll the o's are known. From this 4, = % producing a final solu-
1

Fﬂ | [xz/cx1
S VA

and the coefficients are found. Note that in taking the ratios the

tion of the form

constant (1-a)P disappears and so need not be carried through the calcu-
lations.  The solution for b is found similarly.

For most practical systems b,=0, as the input cannot normally
affeet the output instantanecusly. This can also be incorporated into
the calculations to reduce the number of parameters that require solu-
tion, although it involves some further complications in the matrix
operations required. However, in all the results quoted in chapter VII
the modified programme that assumes by=0 was employed.

Figure (4.3.1) gives a somewhat condensed flow diagram for the
programne. Two modifications of this programme were tested, the first
took the equationsin the order as they appeared, the sccond taking them
in the reverse order to see if this would affect the orthogonalization
procedure at all. There was nothing to choose between these iwo

programmes when comparing the two final results.

A.3.2 Subroutine ROOTS

This subroutine takes a polynomial of any order and finds all its
real and complex roots. It was developed in order to plot the pole-zero
diagrams for the system identification procedure using the discrete
Laguerre polynomials, and is used in conjunction with subroutine SOLVE

described in the previous section.
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The Newton-Raphson method is used to improve the estimate of the
roots with a slightly modified scheme for obtaining the complex roots.
Pn(x) represents a polynomial in x of order n. For real roots the
iteration scheme

)/l (x, (A.3.7)

X =X
1) n-1 n n -1

is used where Pé(x) represents the first derivative evaluated at x. If
in carrying out the above procedure the iterations start to diverge then
the estimates must have passed through the real part of a complex root.
The complex pair can be estimated by fitting a parabola through the
point x, using the values of the derivative and function already calcu-
lated at that point. Then the corresponding complex roots of this para-
bola are found as an initial estimate to the complex pair.

A two dimensional Newton method is used for refining the complex
i¢ -3¢

roots, A complex pair, defined in polar co-ordinates by pe and pe

must satisfy the two equations

S A i L -dig
jzj a.p e = 0, :Z; a.p e = 0
= t ~ hl.

where a, are the coefficients of Pn(x). Subtracting and adding these
two results in the itwo real eqQuations
n

. n
£, = ) ap cosif =0, 2=§"]/9sini¢=o

=
(4.3.8)
The trigonometric identities
/Di sin if = aﬁ;—1 sin ((i-1)¢) + ﬁﬁi_1 cos((i-1)¢)

and P ocos id = ap ! cos ((1-1)d) - 8P sin((i-1)4)
(4.3.9)
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where a = pcos yf is the real part of the root, and B = LOsin ng is the
complex part, may be used to obtain the terms ,Di sin iyf and ,Di cos iy{
from terms with lower index, and o and B. Given an arbitrary o and B
and the gbove formula it is an easy matter to evaluate f; and f,. The

problem is to find a point («, B) such that fy and f, are simultaneously

Zero.
The constants a and b, defined below, may alsc be obtained
ofy n 5 of,
_G—r/Tz"Z 1ai,0 s:.n1¢=a=— -5/7
i=1
of. n . df
2 . i . 1
w——«; 1aip cos 1y{=b —(06,9'
b
Hence afy, = add + Y7 dp

af, = vag - 3 ap
which on solving for the infinitesimals dgz{ and dp yield
2 2
df = (adf, + bafy)/(a + b )
2 2
ip= (-adfy+ vaf, )/(a + b ).

From the definition of o and B

doo = - Psin yfdyf + cos ngdp
= - Bdf + adp/p
ap = add + pap/p

producing the final relationships
. 2 2
do = {(ocb - Ba) af, - (aa + pb) dfz} /(& +7v )

ap = {(cxa + Pb) af, + (ab - Ba) dfg} /(az + bz).
(4.3.10)
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On fitting tangent planes to f, and f, at the point (a, B), the
first order correction to the complex root may be found by finding where
the line of intersection of these planes passes through the plane f; =
f, = 0. Thus having the values f,, f5, a and b at (a, B) the correct-

ion to o and f may be found. This takes the form

Bn = Poog ~ BP0y

where Aan_1 and Aﬁn~1 are calculated directly from (4.3%.10).

There is, however, a danger in applying this procedure directly.
Note that for B = O, ¢ = O and hence f, is always zero. Also for a
complex root there is a saddle point on the § = O axis indicating that
if this method happened to converge on this axis it could never get off.
Because of this it was decided to follow f, contours until fj equals
zero and then follow the f; contour to the final root. This implies
setting df, = 0 in equation (A.3.10) until the value of f; is below a
certain tolerance, and then keeping it within this tolerance until f,
has converged to a satisfactory value. If this method fails to converge
then there must be real roots and a pair of these is predicted, the mode
being changed to the ordinary method described first. The root is said
to be found if the value of the function is less than a certain tolerance
that may be read into the programme separately.

Figure (A.3.2) represents a simplified flow diagram for the sub-
routine. An iteration test was included to make sure the procedure did
not go on forever in some anomalous cases. The programme was tested

for a number of root configurations including double roots and even
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double complcex roots and was found to give very satisfactory performance.
For example it extracted ail the roots of a sixth order equation, having
two palrs of complex roots and a double real root, to a tolerance of

0.0007 in a matter of 70 iterations.
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