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ABSTRACT 

An investigation is made in this thesis of the control 

of long duration stationary Markov processes. When the 

process is non-linear and/or the disturbance is non-

gaussian the determination of an optimal feedback policy 

involves a more or less intractable variational problem. 

This may be avoided, however, by the quantization of both 

state and control as well as time, so that the process is 

modelled as a stochastic automaton. 

A problem of particular interest is that in which the 

state is observable but the process dynamics and Oisturbance 

characteristics are initially unknown. 	The controller must 

then operate in an adaptive fashion, performing simultaneously 

the dual functions of estimation and control. 	A detailed 

study is made of the control of a repetitive Markovian 

(single-stage) batch process in which cost is a function of 

state only. 	A general theory of the dual control of such 

processes is developed, and a simple optimal dual control 

strategy is demonstrated. 

For the more general problem in which both state and 

control are costed, Markovian decision theory can be used 

to determine a discretized optimal feedback policy for the 

automaton model of the process. 	A new iterative method of 



determining the optimal continuous state feedback character-

istic for processes which are themselves continuous is 

presented. 	Finally, a convergent dual control strategy 

is derived for the on-line multi-stage optimization of 

discrete long duration Markov processes. 	The resultant 

adaptive controller is quite general in nature, being able 

to handle initially unknown dynamics, state and control 

constraints, system nonlinearities, non-gaussian multiplicative 

disturbances of unknown distributions, and a wide variety of 

cost functions. 

As examples of the application of these methods, 

several simulation studies are presented. 	These include 

control of a long sequence of batch processes, ordering of 

thermal-electric power generation, and control of a heat 

treatment process. 
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GLOSSARY OF PRINCIPAL SYMBOLS 

B 	NxLcontrolcostmatrixwhoseelementsb..equal 

the cost of reaching decision state j, if the 

present process state is i. 

C 	L x N transition cost matrix, whose elements cij.. 

equal the cost associated with a probabilistic 

transition from decision state i to process 

state j. 

D 
	

N x L stochastic decision matrix whose elements 

dij  equal the probability that if the process 

state is i, control will be exerted to reach 

decision state j. 

D
H 

the optimal decision matrix. 
Ax  
D 	the optimal decision matrix computed using the 

A 
estimated transition matrix P. 

D(n) 	decision matrix at interval n. 

E(x) 	expected value of random variable x. 

e.1  > 	column vector whose ith element is unity, and 

whose other elements are zero. 

e 	characteristic decision vector in N-1 space. 

f.(x) 	the probability density function of the random 

variable x associated with process state i. 

Fi(x) 	cumulative probalility distribution of random 

variable x associated with process state i. 
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Gi(x) 	1 - Fi(x). 

g the expected steady state cost per stage of a 

discrete ergodic Markov process with parameters 

B, C, P, D. 

g the value of g in an optimally controlled process, 

i.e., one with parameters B, C, P, D. 

h. 	offset vector normal to ith coordinate in decision 

space, joining the basic trajectory to a given 

suboptimal decision trajectory. 

I 	identity matrix. 

i,j,k 	state designations. 

L total number of alternative control decisions. 

cost vector whose elements /i equal the expected 

cost of one stage of operation if the process 

state is initially i. 

M 	L xNobservationmatrixwhoseelementsm..ij  equal 

the number of observed transitions from decision 

state i to process state j. 

N number of process states. 

n 	total number of stages of system operation observed. 

ni 	number of observed transitions from decision 

state i. 

P L x N stochastic transition matrix whose elements 

pij  equal the probability that if the present 

decision state is i, then the next process state 

will be j. 



A
P 
	

estimated transition matrix formed from maximum 

(i) N x N probability covariance matrix of state i. 

R 	L x L compound transition matrix; R= PD. 

state incurring minimum mean cost. 

state incurring minimum estimated mean cost. 

uij 	jth control alternative available when process 

state is i. 

ui 	the optimum control input when process state is i. 

V. 	steady state cost difference between state i and 

state N in basic chain. 

v.j 	steady state cost difference between decision 

state (i,j) (i.e. process state i with control 

alternative j) and decision state (N,$). 

w > 	column vector all of whose elements are unity. 

z 	N-vector whose first N-1 elements are v., 

i = 1, ... N-1, and whose Nth element is g. 

n 

Phi 

the number of control alternatives available for 

each process state. 

convergence factor. 

disturbance signal at the nth stage of operation. 

bij  + vij  

mean cost of one transition from process state i 

when control is not costed. 

A 
likelihood estimates pij. 



maximum likelihood estimate of µi  

product operator 

row vector of steady state probalility of 

occupancy of process states. 

µi-µs 

01 . 

27 	summation operator. 

0oi
2 	one sample variance of estimate of µi. 

01 	Prob 	= Min 1-  µ .3 
/\ 

•••• µNJ 
41 

transformation matrix relating single-stage costs 

to multi-stage costs. 

uncertainty; approximates a) 

cu 	the probability, condition upon past observations, 
AK  * 

that D / D. 

2oi 



CHAPTER 1 

SOME ASPECTS OF ADAPTIVE CONTROL 

1.1 Introduction 

Probably the most prominent factor influencing the 

development of control theory during the past decade has 

been the widespread use of the high speed automatic digital 

computer. 	The availability of enormous computational 

effort has had a profound qualitative, as well as quanti-

tative, effect, allowing control systems engineers and 

theorists to deal with much more sophisticated problems 

than had formerly been considered. At the centre of the 

new technique is optimization theory, which displaces the 

question, "will this system work?" with the more significant 

one, "what is the best system?" By this change of approach 

the systems engineer hopes to relate the parameters of a 

controller to some well-defined cost criterion, and to 

arrive at a (mathematically) unique solution to the 

problem in hand. 

Two broad classes of problem to which optimization 

techniques have been applied are: 

1) the trajectory optimization problem: the 
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specification of a seouennP of control actions relating to 

a dynamic system such that the expected value of a perfor-

mance criterion over a known finite time interval is 

minimized. 

2) the regulator problem: the specification of an 

optimal feedback policy or an optimal feedback transducer 

characteristic which minimizes the expecte:, cost per unit 

time associated with the operation of a dynamic system over 

a long time interval. 

In this thesis we .Shall treat the second problem. 

Specific examples, all of which will be considered later, 

include the control of a long sequence of batch processes, 

the ordering of thermal-electric power generation, and the 

sequential heat treatment of sections of a continuous 

metal slab. 

The application of optimization techniques to regu-

lator problems has yielded general and easily computed 

results in only a few cases, notably that of the well-

known linear unconstrained system with quadratic costs and 

an additive gaussian disturbance. 	Many systems in the 

real world fall considerably short of this ideal. 	In 

fact the system dynamics are frequently more or less un- 

known. 	In such a case it is desirable to control in an 

adaptive fashion so that the control policy is modified as 
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information concerning the process becomes knorn. 	Much 

interest has grown up recently in the use of the digital 

computer as an adaptive controller, since it combines great 

speed with equal flexibility, and possesses in addition the 

ability to make decisions. 	The use of a digital computer 

as a control element in a closed loop system is termed 

"on-line control" or "direct digital control". 	Most of 

thLs thesis is concerned with on-line computer control, and 

in particular with its computational aspects. 

However, it is not only uncertainty of process para-

meters which hinders the effective application of opti- 

mization techniques. 	Many processes are characterized by 

a variety of additional computationally ambarrassing attri-

butes, amongst which are the following: 

1) the process may be non-linear; 

2) it may be stable, conditionally stable, or 

unstable; 

3) state and control variables may be constrained; 

!) disturbances may be present which are non-gaussian 

and multiplicative, with unknown probability distributions; 

5) the nature of the problem may make the performance 

criterion mathematically awkward (e.g. absolute value 

functions). 

It is the purpose of this thesis to develop practical 
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control algorithms, suitable for on-line use, which will 

handle all of the preceding factors simultaneously. 

1.2 The Discrete State Approach 

It need hardly be said that the optimization of a 

general continuous non-linear system disturbed by multi-

plicative noise presents a more or less intractable 

mathematical problem. 	To simplify matters, we shall assume 

that successive state transitions constitute a Markov pro-

cess; that is, 

p(xn+1Ixn)= p(xn+11 xx2n
)  

where 

p(xn+11 xn) = probability density function of state variable 

x measured at the (n+l)th time interval, con-

ditional upon the measured value of x at 

interval n. 

xi,x2,...xn= measurements of state variable x at all past 

time intervals 1, 2, 	 n. 

Moreover, by quantizing both state and control variables as 

well as time, we may describe state transitions in terms of 

a Markov chain. 	The overall system model is then a sto-

chastic automation, i.e. a Markov chain whose transition 
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probabilities are dependent upon a set of control variables. 

The great advantage of this model is that transitions 

involv:6 in a finite suite stationary Markov chain are 

governed by a finite set of linear equations even if the 

process itself is non-linear and the disturbance non-gaussian. 

If the process dynamics and the statistical distri-

bution of the disturbance signal are known, then it is 

usually possible to derive a stochastic automaton model of 

the process. 	By a suitable specification of state and 

control costs, the problem may be cast as a Markovian  

decision process. 	Such processes have received extensive 

study, particularly in relation to operations research and 

10-16 
economics problems 	Probably the best introduction 

to the field is given by Howard
14, who is responsible for 

the basic optimization algorithm. 	Important variants on 

the process include the imbedded Markov chaini5  in which 

transitions are considered to take place at random time 

intervals, and the discounted reward process
11'14 in which 

future income or cost associated with the process has a 

discounted present value. 

The close relationship of Markovian decision processes 

to control theory has been pointed out by Bellman and 

Dreyfus and Feldbaum19, amongst others. AstrUm38  has 

used the discrete Markovian framework to study systems in 



21. 

which uncertainty is present in the measurement of state. 

He has shown that, if the system dynamics are known, the 

control problem may be decomposed into two separate parts: 

the estimation of present state from past observations, and 

the computation of an optimal control input given the present 

estimate. 	With the discrete formulation, the latter compu- 

tation may be performed off-line, and the results stored; 

on-line control, even of a non-linear stochastic process, 

may thus be greatly simplified. 	A similar type of process 

has been studied by Kashyap39, and has been mentioned by 

Lave16 in connection with quality control problems. 

In this thesis we shall consider processes whose state 

may be measured exactly but ;?hose dynamics and disturbance 

statistics are initially unknown. 	The basic process is 

shown in fig. 1.1. 	The output variable, xn, at the nth  

interval of operation can be in one of N states i = 1, 	N 

(to avoid confusion we shall in future refer to x as the 

output variable, and reserve the term "state" to mean a 

quantized version of x), 	The process is subject to a 

disturbance S n(xn,un) which may be dependent upon both 

output and control, e.g. multiplicative noise. 	The 

dynamics are therefore given by 

xn+1 = f(xn,un) + g n  (x n  ,un  ) 
	

(1.2 ) 
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N  

g = li 	L (xn,un) n-->oom E  i=1 
(1.3) 

where un = control input at interval n 

f(xn,un) = a function of output xn  and control un. 

The object of control is to minimize the expected 

value of a performance criterion, g.
I 

23. 

The parameter g is the expected cost per transition of the 

process, measured over a long interval, and L(xn,un) is a 

cost function associated with the process at interval n. 

If the parameters of (1.2) are known, then it is possible 

to compute an optimal control policy. 	By an optimal policy 

we mean the specification of a particular control input uir  

for each state i so that g is minimized. 	If the process 

dynamics are initially unknown, it is necessary to implement 

some sort of on-line adaptive controller which combines the 

functions of estimation and control. 	The manner in which 

this combination is performed is determined by an adaptive 

strategy. 	Obviously one requirement of a successful 

strategy is that it must approach the optimal policy with 

time. 	A little thought suggests a second requirement: in 

doing so it must avoid, as much as possible, actions which 

are deemed a posteriori to have resulted in expensive 

Equation (1.3) assumes that the process is ergodic. 

This property will be referred to as convergence of 
the strategy. 
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operation. 	As an extreme example, it would be of little 

help to have an adaptive strategy which, by experimenting on 

a chemical process determined the optimal operating con-

ditions, but destroyed the plant in so doirg. 

1.3 Dual Control  

It is clear that a conflict arises between the 

requirement of convergence (a large number of trials using 

all combinations of control for estimation purposes), and 

that of minimum cost operation (trials using only the 

estimated optimal control policy and no other). 	The 

decision maker is called upon to explore the process while 

controlling it. 	Feldbaum18'19  terms this operation "dual 

control". Although Feldbaum has provided a brilliant 

formal solution for discrete time, continuous state systems 

of finite duration, the nature of the problem makes its 

implementation exceedingly difficult. 	Sworder
21,22 has 

derived a dual control strategy for a linear system dis-

turbed by Wiener noise with gaussian increments; Xirokostas 

and Henderson24 have considered the dual control of a linear 

system preceded by a quadratic function. 	Related problems 

have been studied by Aoki17, Rosenbrock20, and Tou23. 

In a discrete state system with finite duration, dual 

strategies are feasible only when the process duration is 
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short (e.g. three or four time intervals), or the number of 

states is small (e.g., two). 	The reason for this is that 

the solution requires the study of a decision tree, each 

branch of which is associated with an a priori probability 

distribution. 	Silver37  has considered some two and three 

state decision processes with a lifetime of three stages 

in this fashion. 	The problem has also been mentioned by 

Meier33. 

1.4 Stochastic Automata in Adaptive and Learning 

Control Systers  

In stochastic processes of finite duration, dual 

control implies a feedback strategy which minimizes the 

total expected cost over a known number of intervals, 

despite uncertain a priori information. 	For processes 

of infinite duration the term is not well defined, however; 

minimization of a total is meaningless, while minimization 

of the mean cost per transition over an infinite period 

merely implies a convergent adaptive algorithm. 	The use 

of the latter criterion has given rise to a considerable 

variety of ingenious control structures whose merits are 

difficult to compare. 	The general term applied to the 

field is "learning systems". 	No agreed definition of 



learning exists, but it is usually used to describe a wide 

group of extremum-seeking algorithms using the techniques 

of stochastic approximation, decision theory, Markov chains, 

and pattern recognition29. 	In this thesis no formal dis-

tinction will be made between learning and adaptation. 

In discrete state processes of infinite duration, the 

convenient and general structure of the stochastic automaton 

has led to its widespread use, either as a model of the 

adaptive controller, or as a model of the process itself. 

The first algorithm suggested for the dual control of dis-

crete state Markov processes is probably that of Pashkovskii.35  

He postulated an automaton in which the state transition 

probabilities, initially unknown, are affectedly the choice 

of control signal from a discrete available set. 	The 

object of control is to determine through adaptive operation 

the policy which maximizes the probability, pii, of transition 

from each state, i, to a known state, . 	His solution, 

involving the estimation of confidence intervals for each 

transition probability, will be considered in more detail 

in section 3.15. 

Basing their work on earlier research carried out by 

Soviet authors25,30,31,  McMurty and Fu27  have considered a 

stochastic process in which the control mechanism is a 

reward or punishment scheme (an evaluator gives a signal 0 
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if the control action had a "good" result, and a signal 1 

for a "bad" result) tOgethcl7i With a simple deterministic 

rule for changing the control input, depending upon the 

last evaluation. 	They model a multimodal hill as a star-shaped 

automaton, and have shown that if one and only one arm of 

the star (one mode) yields a probability of punishment less 

than 0.5, then the system will eventually settle in that 

arm. 	In this and a subsequent paper28 they have also 

treated a case in which the controller itself is probabi 

listic; the regions of a multimodal hill which are searched 

are determined by a probabilistic choice, the probabilities 

being updated by a linear reinforcement technique. The 

simple one-zero evaluator is replaced in the latter case 

with an index of performance evaluator (giving the height 

of the hill at the point searched). 	McLaren
26 

has studied 

a similar type of problem, using both linear and non-linear 

learning reinforcement. 

Another similar model, designed for on-line adaptive 

control of a discrete state dynamic system, has been con- 

sidered by Nikolic and Fu34. 	The subjective probabilities 

of applying one of a discrete set of control actions are 

modified after each plant observation, and a randomized 

control strategy is used. 	The probability modifications 

depend upon whether or not the last control input used was 
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the estimated optimum one, and whether or not its use 

resulted in a decrease of the posterior estimate of the 

conditional mean index of performance. 	Convergence to 

the optimal policy is proved; i.e. as the number of ob-

served transitions increases, the probability of the correct 

control choice being made approaches unity. 

1.5 Dual Control Requirements in Long Duration Processes  

It has been remarked that the diversity of adaptive 

control schemes for discrete state processes of long 

duration, and the difficulty of quantitative comparison, 

is partially due to the absence of a mathematical definition 

of the dual control requirement for such processes. 	Once 

such a definition is made, it may be incorporated into the 

problem as an additional constraint, thereby reducing the 

present need for a somewhat heuristic approach. 

We shall begin by considering the concept of conver- 

gence in a dual control system. 	Using a decision theoretic 

approach, we may say that a control strategy has converged 

when the probability of error (the probability that the 

estimated optimal policy is not the true optimal policy) 

is zero. 	Moreover the error probability is a measure of 

convergence in that the lower it is, the closer the strategy 
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is to convergence. 	Let us now consider an ensemble of 

statistically identical but independent stochastic processes 

which are stationary and ergodic. 	The statistical para-

meters are initially unknown, and an identical learning 

controller is used on each process to attempt the mini-

mization of a known performance criterion. A hypothetical 

plot of ensemble mean cost of the nth  transition, g(n), and 

of the error probability, w(n), is shown in fig. 1.2. 

Suppose that the expected cost per transition with the 

true optimal policy is gx. 	Then convergence implies that 

for each individual process 

lim w(n) = 0 	(1.4) 
n-).co 

lim g(n) = g 
	 (1.5) 

Many early learning schemes, such as those of references 

25 and 27 result in strategies which "dither" about the 

correct control input and so are not convergent in the fore- 

going sense. 	The strategies of Pashkovskil35  , McLaren26, 

McMurty and Fu28, and Nikolic and Fu34 are all convergent, 

however. 	In none of these papers is w(n) actually evaluated. 

Instead, conditions equivalent to (1.4) and (1.5) are 

demonstrated. 

To specify the additional requirement of dual control, 
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we consider the situation at the n
th transition, as shown 

in fig. 1.2. 	The error probability has reached a value 

w(n) = wf' say. 	The total cost, V, incurred to achieve 

this degree of convergence, is given by the area under 

curve OE, which may be decomposed into two parts: 

1) area V- , the cost which would have accrued had 

the posterior estimate of the optimal control policy been 

used during each of the n transitions; 

2) area Ve, the .additional estimation cost incurred 

because some of the past n control decisions were non-optimal. 

The estimation cost, Ve, is intimately connected with 

the concept of dual control. 	A non-optimal control action, 

though it increases the cost of operation, performs the 

service of exploring a new part of the i x,u space not 

covered by the optimal (or estimated optimal) policy. 

The result of each such exploration either helps confirm 

that the present estimate of the optimal policy is correct, 

or indicates that it may be incorrect. 	In quantitative 

terms, it either decreases or increases w. 	We may thus 

regard each non-optimal control action as a purchase of 

information. 	The object of dual control is to obtain con-

vergence, and the best dual control strategy is that which 

obtains a given degree of convergence for the lowest cost, 

i.e. it buys its information at the lowest price. 	Formally 
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we say that the ideal dual strategy is that for which, at 

the nth transition, 

the control sequence 

n 

/u1, 

minimizes V = E > L (1.6) 
1=1 

subject to w(n) = cuf  (1.7) 

where the cost V is computed using the posterior estimates 

available after the completion of n transitions. 

Equations (1.6) and (1.7) constitute the additional 

constraint introduced by the dual control requirement. 

To the author's knowledge, the inclusion drthis condition 

has not been treated quantitatively in any previous learning 

control scheme for discrete state Markov processes (other 

than in an earlier report by the author
36). 	It will be 

shown in this thesis that the ramifications of (1.6) and 

(1.7) are considerable, and lead to the synthesis of simple 

but very efficient dual control algorithms suitable for on-

line control of a variety of physical processes. 
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1.6 Outline of the Thesis  

Chapter 2 begins with a brief review of the terminology 

of Markov chains. 	The Markovian decision problem is intro-

duced through a simple example; an optimization algorithm, 

a slight extension of the original Howard method, is pre-

sented for the case in which process parameters are known. 

It is shown that system operation may be expressed in terms 

of the alternate sequential action of a stochastic decision 

matrix, D, and a stochastic transition matrix, P. 	Given 

a control cost matrix, B, and a transition cost matrix, C 

(derived from the function L(x,u)), the optimal policy is 

represented by the decision matrix Dx  which minimizes the 

value of g associated with the matrix PD. 	At the heart 

of the algorithm is a linear transformation which transforms 

the multi-stage optimization problem into an equivalent 

single-stage one. 	Two interesting and useful properties 

of the transformation are demonstrated, and it is shown 

that under certain conditions the optimization problem is 

inherently a single-stage one. 

The problem of optimizing a repetitive single-stage 

batch process with initially unknown dynamics is considered 

in chapter 3. 	A simple example is discussed to give some 

intuitive meaning to the concept of dual control, and the 
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equivalence in discrete processes of dual control and 

sequential decision making is pointed out. 	Dual control 

requirements are presented as constraint conditions in 

terms of the conditional estimates of the process para- 

meters. 	The computation of the error probability, w, 

early in the life of the process is possible, but very 

involved; consequently this quantity is replaced by the 

uncertainty, 1-2. , and it is shown that both are asymptotically 

equal. 

Solution of the dual problem by means of a Lagrange 

multiplier shows that the ideal strategy is non-realizable. 

This approach is nonetheless of great value, since it allows 

us to study the pattern which emerges with continued appli- 

cation of the ideal strategy. 	We may then attempt to syn-

thesize a realizable strategy with the same asymptotic 

pattern, i.e. a realizable asymptotically optimal dual  

strategy. 

For a batch process with N alternative control input, 

the framework within which the desired pattern may be studied 

is provided by the concept of an N-1 dimensional decision 

space, each ordinate of which is the number of past choices 

of a given non-optimal control action. 	A series of 

decisions, or control actions, may be regarded as a 

decision trajectory descending a conceptual hill of  
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uncertainty. 	Descent of the hill implies convergence 

(equation (1.4)), while the particular path of descent is 

fixed by the dual control requirement, (1.6) and (1.7). 

The desired pattern generated by the ideal strategy is 

shown to be that its decision trajectory in N-1 space is 

asymptotically a straight line whose direction is specified 

by the characteristic decision vector of the process. 

There exists an infinite family of trajectories 

asymptotically parallel to the optimal one, each being 

uniquely related to it. 	Because each may itself be optimal 

under certain conditions, the strategies generating this 

family are tertned suboptimal strategies; the performance of 

suboptimal strategies is seen to be very close to that of 

the optimal one. 	From an examination of suboptimal trajec- 

tories we proceed naturally to the inverse problem: "Given 

a strategy whose decision trajectory is asymptotically a 

straight line described by the characteristic decision 

vector, specify the conditions under which the strategy is 

optimal." 

The foregoing theory is then used to examine the 

strategy of Pashkovskii, and it is shown to possess some 

of the properties of suboptimality for the particular prob- 

lem he considered. 	A modified version of his strategy is 

presented and shown to be generally suboptimal; conditions 
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under which it is optimal are derived. A completely 

probabilistic suboptimal strategy is next presented, and 

compared qualitatively with that of Nikolic and Fu; the 

former strategy is shown to be optimal when all policies 

except the optimal one yield the same expected cost. 

Finally, a general optimal strategy is introduced, and 

equations of convergence are derived. 

To demonstrate the performance of the optimal strategy, 

a detailed simulation study is presented in chapter 4. 	As 

a prelude to this, computational methods relating to the 

ideal strategy are derived from the theory of chapter 3. 

A comparison is then made between the results of the (non-

realizable) ideal strategy and the (realizable) optimal 

strategy operating on an ensemble of one hundred three-state 

systems. 	The results show that the performance of the 

optimal strategy is very nearly as good as that of the 

ideal one, even early in the life of the process. 	As an 

application, the simulation of the control of a repetitive 

chemical batch process is carried out; the process is 

modelled as a twenty-state (i.e. twenty level) system whose 

input-output relationship is disturbed by multiplicative 

non-gaussian noise. 

The optimal adaptive controller need not always use a 

dual strategy. 	To illustrate the use of a non-dual 
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adaptive controller and to demonstrate the application of 

discrete state techniques to a system with uncertain but 

cyclically time-varying statistical parameters, a study is 

made in chapter 5 of the adaptive ordering of thermal-

electric power generation. While ordering decisions 

affect power costs, they have no effect whatever upon 

future demand. 	In Feldbaum's terminology19  this is a 

"neutral" system, one in which the problems of estimation 
and control can be separated. 	The adaptive ordering of a 

2000 megawatt power station is simulated; convergence to 

the optimal ordering policy is shown to be rapid despite 

initially unknown power demand statistics. 

It is desirable that the results of chapter 3 relating 

to single-stage optimization be extended to multi-stage 

optimization problems (analogous to continuous systems with 

integral performance criteria). 	Such an extension is con- 

sidered in chapter 6. 	In principle, conditions (1.6) and 

(1.7)can again be invoked; unfortunately, however, compu-

tation of the error probability, w, does not seem feasible, 

even asymptotically. 	By the use of an error measure, -C1 

such that fl = 0 implies that w = 0, we are able nonetheless 

to synthesize a multi-stage strategy which is efficient 

and convergent. 

The number of estimated parameters necessary for the 
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solution of the multi-stage problem is much greater than 

that for the single-stage case. 	A method of updating 

these estimates at each stage of the process, suitable for 

on-line computation, is next presented. 	With this tech- 

nique and the multi-stage algorithm, a discretized optimal 

control strategy for the automaton model of systems de-

scribed by (1.2) can be implemented on-line despite 

initially unknown dynamics, non-gaussian multiplicative 

disturbances of unknown distribution, system nonlinearities, 

constraints, and non-quadratic cost functions. 

If the output and control variables of the system to 

be controlled are inherently continuous in nature, then 

the automaton is a quantized approximation, and so is sub- 

ject to quantization error. 	We next show that this error 

may be removed by what amounts to an interpolation method, 

providing we can make certain assumptions of continuity and 

differentiability. 	A successive approximation algorithm 

is presented which produces a sampled version of the optimal 

continuous feedback transducer characteristic for a given 

discrete time, continuous state Markov process and a given 

performance criterion. 	If the process parameters are 

initially unknown, the same task may be performed by a 

hierarchy of adaptive loops. 	As a result of process 

observations, the outer loops vary the automaton structure 
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to achieve optimum quantization. 	In a stationary process 

quantization is ultimately dispensed with in favour of a 

continuous feedback characteristic. 

Having developed an algorithm for on-line dual control 

of long duration Markov processes, we are faced with the 

engineering questions, "Is the technique relevant?", and 

"Is it computationally feasible with real processes?" The 

author does not presume to give a definitive answer to 

either question. 	However, it is believed that the answers 

are affirmative; the technique is relevant and feasible 

for some stochastic processes. 	In support of this claim 

a numerical example is presented in chapter 7. 	Heat treat- 

ment of a metal slab involves the control of a distributed 

temperature-sensitive chemical reaction which tends to in-

stability in some uncertain fashion at temperatures near 

the desired operating point. 	Heating costs and the vari- 

ation of product value with heat treatment temperature are 

given, but process dynamics are unknown. 	It is required, 

first, to make an a priori econimic evaluation of a sampled 

data controller heating the slab section by section, and, 

second, to simulate adaptive control of the process. 

The process model actually used (unknown to the con-

troller) is a continuous state, discrete time conditionally 

stable system disturbed by noise whose amplitude is a 
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non-linear function of both temperature and heat input. 

An interestingfeature of the problem is the presence of a 

step in the operating cost function. 	This represents the 

cost of shutting down the process if an upper temperature 

limit is reached; alternatively, it is the monetary value 

of management's displeasure with the control engineer whose 

adaptive system causes a process stoppage. 

Simulation results show that adaptation is successful. 

The controller is able to maintain the temperature in the 

admissable range at all times. 	As knowledge of the process 

accumulates, the feedback characteristic alters to maintain 

the temperature near the desired operating point, despite 

dynamic instability in this region. Between the beginning 

and end of operation a cost reduction of about 50/6 occurs. 

The possibilities of future research arising from the 

results of chapters 2 to 7 are discussed in the final 

chapter of the thesis. 

1.7 	Contributions of the Thesis  

The principal contributions, believed to be original, 

which the work in this thesis makes to the theory and 

practice of automatic control, are the following: 

1) A general theory of dual strategies for 
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single-stage cost minimization has been developed for 

discrete time, discrete state, stationary long duration 

Markov processes (chapter 3). 

2) A realizable asymptotically dual strategy has 

been synthesized (chapter 3), and its performance has been 

shown to approach that of the ideal stratety (chapter 4). 

3) A method has been presented for the computation 

of the optimal non-linear continuous feedback transducer 

characteristic for a given stationary, discrete time, 

continuous state Markov process (chapter 6). 

4) A convergent dual control strategy has been 

derived for on-line multi-stage optimization of discrete 

long duration Markov processes (chapter 6). 	The resultant 

adaptive controller is quite general in nature, being able 

to handle initially unknown dynamics, state and control 

constraints, system nonlinearities, non-gaussian multipli-

cative disturbances of unknown distribution, and a wide 

variety of cost functions. 

An attempt has been made throughout the thesis to 

relate theoretical results to physical applications, and 

to evaluate the usefulness of proposed methods by extensive 

numerical simulation. 



CHAPTER 2 

MARKOV CHAINS AND CONTROL SYSTEMS 

2.1 Introduction 

When both the output variable and the control signal 

are quantized in a sampled data process disturbed by 

stationary noise, thr operation of the process may be 

described in terms of a Markov chain. 	In this chapter 

a brief introduction to the theory of Markov chains is 

presented, and the control of a long duration Markov process 

is considered as a multi-stage Markovian decision problem. 

2.2 Markov Chains  

A Markov chain may be defined3'6 as a series of 

probabilisic trials in which the outcome of any trial 

depends upon the outcome of the directly preceding trial, 

and only upon it. 	To illustrate several basic properties 

of a Markov chain we shall consider a simple example 

% (adapted from one presented by Howard14  ). 	Suppose a 

taxicab operates between two towns, A and B. 	Over a long 

period of operation, it has been found that when a passenger 

42. 
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begins his trip in town A, his destination is in town A 

with probability 0.8, town B with probability 0.2. 

Passengers from town B, however, show a somewhat greater 

propensity to migrate; the probability of their destination 

being town A is 0.4, town B, 0.6. 	The journeys of the 

taxicab may now be described in terms of a two state Markov 

chain in which we associate towns A and B with states 1 and 

2 respectively. 	The dynamics of the process are described 

by a stochastic transition matrix, P, where 

0.8 	0.2 
(2.1) 

o.4 	0.6 

P is assumed stationary; each element, pii, represents 

the probability that if the present state is i, the next 

state will be j. 	The term "stochastic" in this case refers 

to two properties of the matrix, viz. 

N 

Pij 1 
j=1 

pij > 0 di, j  
i=1,2,...N 

j=1,2,...N 

(2.2) 

(2.3) 

where N = number of states in the system. 
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Equation (2.2) is simply an expression of the fact that, 

after a transition has taken place, the System state must 

be one or other of the N possible states With probability 

unity. 

Suppose that the taxicab is at present in town A. 

What is the probability of its being there after one 

transition (i.e. one journey)? 	After two transitions? 

After n transitions? To determine the answers we postulate 

a stochastic row vector, 2(n), whose elements, 	pi(n), 

represent the probability that the system state is i at 

the nth transition. 	In this case 

2(0) = [1 0] 

It is apparent that 

2(1) = E(0)P 

= 	[1 	0] 0.8 0.2 . 	[0.8 0.2] 

and in general 

2(n) = p(0) Pn  

0.4 0.6 

(2.4) 

Since the elements of P are not time-dependent, we 

would expect that lim E(n) should approach some stationary 
n4co 

value whose elements pi(oo) represent the probability of 
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occupancy of state i over a very long sequence of transition--

A little arithmetic shows that P, P2, P3 ... has the sequence 

      

      

	

0.8 	0.2 

	

0.4 	0.6 
5 

0.72 	0.28 

0.56 0.44 

 

0.688 0.312 

0.624 0.376 
• • • 

      

      

      

      

and approaches a limiting value 

0.667 0.333 
lim Pn  
n-Nco 	0.667 0.333 

so that, regardless of the initial distribution, 2(0), the 

vector 2(n) approaches the limit 

lim 2(n) 	n 	[0.667 0.333] 
n->oo 

Since the steady state distribution is independent of 

the initial distribution, matrix P is called ergodic. 	As 

an example of a non-ergodic matrix, consider 

ro- 

P1  = 

0.3 0.7 0.0 0.0 

0.2 0.8 0.0 0.0 

0.2 0.1 0.2 0.5 

0.0 0.0 0.0 1.0 

  

Here, if the process starts in state 1 or 2, or if a tran-

sition from state 3 to 1 or 2 occurs, the process will 

remain forever in the subset, 1 and 2. 	If a state, j, is 
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reachable from another state, i, it is said to be accessible  

from i; two states which are mutually accessible are said 

to communicate. 	In matrix P1, states 1 and 2 communicate 

with each other, and are accessible from state 3. 	State 3 

is said to be inessential, since its steady state probability 

of occupancy is zero. 	State 4 is a trapping state, communi- 

cating only with itself. 	Inspection of P1  shows that it 

is not ergodic, since the steady sate distribution depends 

upon events early in the life of the process. 

If every pair of states in a Markov chain communicates, 

then the chain is said to be irreducible. 	Matrix P in (2.1) 

is irreducible, while P1  is not. 	P1 may be decomposed into 

the irreducible subset, states 1 and 2, the inessential 

state, 3, and the (degenerate) irreducible subset, state 4. 

One other type of stochastic matrix is of interest. 

Consider 

	

0.0 	0.0 	0.4 	0.6 

	

0.0 	0.0 	0.7 	0.3 

	

0.2 	0.8 	0.0 	0.0 

	

0.9 	0.1 	0.0 	0.0 
• 

It is evident that the state must alternate between the 

subset, 1 and 2, and the subset, 3 and 4. 	An examination 

of the eigenvalues of P2  shows that two of them lie on the 

P2 
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unit circle, one at al  = 1 and the other at 7\2  = -1. 	In 

general a stochastic matrix with q eigenvalues on the unit 

circle, only one of which lies at 7\ = 1, is periodic with 

period q. 	Matrix P2  has period 2, i.e. the process will 

occupy a given subset of states at every second transition. 

A Markov chain with period 1, such as that described by P 

in (2.1) is called aperiodic. 

An important property of every irreducible periodic 

Markov chain with period q is that it can be considered as 

the alternating sequential operation of q aperiodic Markov 

chains. 	For example, if we correctly change the labels 

attached to the states at each transition, we may consider 

the operation of P2  as the alternation of two stochastic 

matrices 

	

0.6 	0.2 	0.8 
===> 	=> 

	

0.3 	0.9 	0.1 
Te. 

States 1 and 2 States 3 and 4 	States 1 and 2 

Throughout this thesis we shall consider only ergodic 

processes, as these occur most frequently in practice. 

Periodic matrices will be encountered, and will be dealt 

with by the decomposition technique described above. 

Mathematically, we may summarize several important 

0.4 

0.7 

  

0.4 

0.7 

o.6 

0.3 

  

• • • 
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properties of every finite stochastic matrix, P, as follows 

(proofs may be found in references 3, 4, and 9) 

1) There exists an eigenvalue of P which is equal 

to 1. 

2) No eigenvalue of P exists outside the unit 

circle on the complex plane. 

3) If the eigenvalue A = 1 occurs singly, and no 

other eigenvalues occur on the unit circle, then the matrix 

P is aperiodic and ergodic; lim Pn  approaches a matrix E, 
n->co 

in which the jth element, eij , 	of every row of E is the 

steady state probability of occupancy of state j. 

4) If the eigenvalue a = 1 occurs singly, and_ (q-1) 

eigenvectors lie elsewhere on the unit circle, then the 

	

matrix is periodic and ergodic. 	Ergodicity in this case 

implies that 

	

lim  (pn - pn+q) 	0  

n-->oo 

5) E2  = E = EP = PE. 

2.3 Markov Processes with Costs: The Markovian 

Decision Problem  

Let us return to the taxicab problem. 	Suppose that 

a certain expected income is associated with each type of 

transition as follows: 



Transition 	Income (arbitrary units) 

A .4. A 	 5 

A --> B 	10 

B 4 A 	 9 

B B 	 8 

We may conveniently describe this income in terms of a 

1.9. 

cost matrix, C 

5 	- 10 
C 

L_ 9 

where cii  = cost (income is negative cost) of a transit*' 

from state i to state j. 

If the present state is i, then the expected cost, 

of the next transition, is 

N 

Li =  	Pij eij 
j=1 

(2.6) 

It It is apparent that in an ergodic process the expected cost 

per transition, g, over a long sequence of transitions is 

N 

g = 	7t.3. 	= <n w> 	 (2.7) 

1=1 



where 	<• 	denotes a row vector 

.> 	denotes a column vector 

<• -> denotes an inner product 

From (2.6) we obtain 

a . 	6.0 	- 8.4]1  

From (2.5) and (2.7) 

g = [0.667(- 6.o) + 0.333(- 8.4)] 	- 6.80 

Thus the driver can expect an average income of 6.80 units 

per trip over a long period of time. 

To use control terminology, we have so far described 

a process with dynamics, but no control input; i.e. no 

mechanism exists for the taxicab driver to make choices or 

decisions. 	Let us therefore postulate that in each town 

he has the alternative either of cruising or of going to a 

cab stand and waiting for a call. 	Moreover, let us suppose 

that he may, if he wishes, drive from one town to the other 

without a passenger. Now after each transition he can make 

one of the following decisions 

Decision 	Decision State  

Go to A and cruise 

Go to A, cab stand 2 

Go to B and cruise 3 

Go to B, cab stand 4 

50. 
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Note that while there are only two "process states'?  

which may result from a probabilistic transition, viz. 

town A or town B, there are four "decision states". 	Again 

using control terminology, we may say in general that the 

space spanned by the process states is the (quantized) 

space of the output variable, x, of a process. 	The space 

spanned by the decision states is the (quantized) combi- 

nation x,u , where u is the control variable. 	A decision 

state k = (i,j) describes the event: present process state 

is i, decision has been made to apply control alternative j. 

The example of table 2.2 differs slightly from the 

above description in that all four decision states are 

accessible from either process state, a situation which 

may occur in operations research problems and in the control 

of a sequence of batch processes (chapter 3), but is rarely 

encountered in the control of continuous dynamic processes 

(chapters 6 and 7). 

Suppose that the probabilities and transition costs 

associated with the four decision states of table 2.2 are 

as follows: 

Decision 
State 

Prob. of transition to 
A 	B 

Cost of transition to 
A 

1 0.8 0.2 - 5 -10 
2 0.5 0.5 - 6 -12 

3 o.4 0.6 -9 -8 
4 0.7 o.3 -6 -4 
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We may assume in addition that a certain cost is associated 

with each decision (cruising costs may include petrol and 

tire wear, for example). 	These decision costs (control 

costs) are listed below: 

Process 	Cost of reaching decision state 

State 1 2 3 

1 2 0 4 3 

2 5 3 1 0 

The problem now is to determine what decisions the cab 

driver should make to maximize expected income (minimize 

cost). 	This type of problem, frequenctly encountered in 

the field of operations research, is termed a Markovian  

decision problem. 	Some variants appearing in the liter- 

ature are noted in section 1.2. 	Before proceeding to its 

solution, we shall recapitulate in a generalized form. 	We 

are given the following data: 

P = L x N stochastic transition matrix whose -1lements, 

pij, represent the probability that if the present 

decision state is i, then the next process state 

will be j. 

C = L x N transition cost matrix whose elements, c. 1J 

represent the cost associated with a probabilistic 

transition from decision state i to process state 
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B = N x L control (decision) cost matrix whose elements, 

b..lj, represent the cost of reaching decision state 

j, if the present process state is i. 

where N = total number of process states 

L = total number of decision states. 

Given a long duration stationary discrete process with 

matrices P, C, and B, and with present process state i, 

which of the L decision states, j = 1, 2, .... L, should 

now be chosen, to minimize the expected overall cost per 

transition? 

All decisions of this type may be expressed in the 

framework of a decision matrix, D. 

D = N x L stochastic decision matrix whose elements, 

dij, represent the probability that if the present 

process state is i, control will be exerted to 

reach decision state j. 

The optimal policy is defined by the decision matrix el  such 

that g(D) > g(D) for all admissable decision matrices D 

other than D. 	Though D' is usually unique in practice, 

it need not be so. 

2.4 Process Optimization 

The overall process consists of the alternate sequential 
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operation of a probabilistic transition matrix, P, and a 

decision matrix, D. 	The N x N matrix DP describes succes- 

sive transitions of the process state; it is the view of 

the process as seen at its output. The L x L matrix PD 

describes transitions of the decision state, and so is the 

view of the process seen by the controller. 	We shall call 

the combined operation of a probabilistic transition followed 

by a decision one cycle or stage of the process. 	If the 

present decision state is i, then the expected cost of the 

next stage of operation is 

  

N 

Pij(cij 

  

I 

 

djk bjk ) (2.8) 
j=1 	 k=1 

Note that (2.8) is a generalization of (2.6). 

In an ergodic process it can be shown that an optimal 

decision matrix DX  can be found, all elements of which are 

either one or zero; the optimal policy is thus regular 

(non-probabilistic). 	This being so, we could, in principle, 

determine the principal row eigenvector, it(PD), for every 

regular matrix D, and find the matrix Dx  which minimizes g 

in (2.7). 	The difficulty with such a procedure is that 

there exist LN distinct regular policies. 	In a system with 

ten process states and ten control states - only a modest 

size - the computational difficulties would be overwhelming. 

A technique other than pure searoh is obviously necessary. 



recursive equation 

Vi(n+1) = cii  + 7,  ajk(bik  + Vk(n))] 
j=1 	k=1 

N 

We shall pose the problem in terms of dynamic pro- 

gramming1,10. 	Let V
i(n) be the expected total cost 

associated with the process if there are n stages left 

before termination (the time scale runs backwards), and 

the present decision state is i. 	We may now write the 
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L 	N  

	

Ii  + Z 	[ 	ij >_] p..djk  ] Vk  (n) 
k=1 	j=1 

L 
Vi(n+1) = i*1 + Z rik Vk  (n) 

	
(2.9) 

k=1 

where p 

N  

rik 	ij d.  >...., 	jk 
j=1 

i.e. 	R = [rik  ] = PD 	(2.10) 

For a process of long duration, n 4 oo. 	In such a 

case we know that if it is ergodic 

lim [Vi(n+1) - Vi(n)] = g 	(2.11) 
n400 

Vi, i = 1, 2, • • • • L 



Combining (2.9) and (2.11) we obtain L steady state 

equations 
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g + V. r..
13 J
V  (2.12) 

with L + 1 unknowns, Vi, i = 1, 2, ... L, and g. 	Since 

each 'Vi  decreases by g per stage (time running forward now), 

it is sufficient to know the relative values of the costs 

V.. 	Thus we may arbitrarily set one of them, say VL, to 

zero.Let us defineaset oi—variablesv.,so that 

v. = 'V. - VL ' i = 1, 2, ... L 

vi  is now the relative value of starting a process in 

decision state i. 	For large n, the cost associated with n 

transitions starting in decision state i is ng + vi; starting 

in state j, it is ng + v.. 	While the expected cost per 

stage, g, is independent of starting state for n ---> co, 

there exists a time invariant difference vj-vi  which a 

rational person would just be willing to pay (a "one-shot" 

cost) to start the process in state i rather than state j. 

With vL 5 0, we may put (2.12) into canonical form by 

defining a column vector, z, such that 

zi  = Vi 	 i= 1, 2, .... L-1 

zL  = g 
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Now let 

Rg = 

/ 
r11 

r21 
• 
• 
• 

r(L-1)1 

rLl 

r12 	 

r22 

r(L-1)2 

rL2 0  

r l(L-1) 

r2(1,_1)  

• 
• 
• 

r(L-1)(L-1) 

rL(L-1) 

\. 
-1 

-1 
0 
• 
• 
• 

(2.13) 

so that equation (2.12) becomes 

= Rg z + 

= (I - Rg)-1  

z 
	w  -1 	

(2.14) 

where 	I = unit matrix 

'P= I - Rg 

Suppose that we begin the optimization procedure by 

choosing an arbitrary decision matrix, D. 	We may determine 

Rg immediately from (2.10) and (2.13) and -from (2.8). 

We then solve (2.14) for the set vi, and the expected cost 

per transition, g. 	Now the relative cost of choosing 

decision state j, if the present process state is i, is 

blj 	(2.15) 
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Thus, for every process state, i, we choose a control state 

s = s(i) such that 

7is = Min [ Q ..] Lij j 
(2.16) 

A new decision matrix, D1, is now formed from row vectors 

< d.a  where 

	

dij  . 1 , 	j = s(i) 	
(2.17) 

	

m 0 , 	j / S(i) 

i = 1, 2, .... N 

j = 1, 2, .... L 

.K 
If D1  = D, thon D is the optimal decision matrix, D- . 

If D1 L  D, then D is replaced by D1, and the cycle is re-

entered by the computation of a new compound matrix, R. 

Fig. 2.1 is a simplified flow chart of the computation of 

DH. 	A proof of convergence of this algorithm is given in 

appendix 1. 

2.5 Example  

To illustrate the use of the optimization algorithm, 

we shall apply it to the taxicab example considered pre- 

viously. 	Recall that matrices P, C, and B are 
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0.8 	0.2 - 5 	-10 

0.5 	0.5 - 6 	-12 
P= C 

0.4 	0.6 - 9 	- 8 

0.7 	0.3 -6 	-4 

2 	0 	4 	3 
B= 

5 	3 	1 
"N. 

Let us choose as an initial decision: 	if a journey 

takes the cab either 

and cruise. 	The 

D= 

so that 

to town A or town 

corresponding decision 

1 	0 	0 	0 

0 	0 	1 

B, stay in that town 

matrix is 

0.8 0.0 0.2 	0.0 

0.5 0.0 0.5 	0.0 
R. PD= 

o.4 0.0 0.6 	0.0 

0.7 0.0 0.3 	0.0 

Inspection of R indicates that decision states 1 and 3 

communicate and form an irreducible Markov chain, while 

states 2 and 4 are inaccessible from all states, and so are 

inessential. 	States 1 and 3 form a basic chain, i.e. the 

smallest set of states with which (2.12) may be solved. 



0.2 

0.6 

 < Decision State 1 

Decision State 3 < 

-11 

0.2 	1.0 

- o.4 	1.0 

+ 2) + 0.2 	(-10 + 1) - 4.2 
+ 2) + 0.6 (- 8 + 1) - 7.0 

.
0.8 

Rb . 0.4 

Rgb = 
o.8 

o.4 

  

-1•)= I - Rgb = 

0.8 (-5 

0.4 (-9 
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In considering control problems, we shall find that fre- 

quently L > N, and a basic chain with an N x N matrix Rb  

can be substituted for the L state chain described by matrix 

R. 	Note that this reduction is possible only when D is a 

regular matrix (all elements either one or zero). 

The basic R matrix in the problem at hand is 

From (2.14) we have 

[vgil 

 

- 1.667- 

0.333 

  

1.667 

0.667 

- 4.2 
- 7.0 

(2.13 

    

     

so that 



v1  = 4.667 

g 	= - 5.133 

while.v
3 

0 by hypothesis. 

Using this policy, the driver can expect an average 

income of 5.133 units per journey. 	To test for optimality 

it is necessary to compute costs v2 and v4 associated with 

decision states 2 and 4. 	This is easily done with 

equation (2.12). 

V.1  = rij  vj  

	

- g , i inessential 

Since i is inessential, 

are known. 	Thus 

rii  = 0, and all right hand terms 

v2 	0.5`(- 6 + 2 + 4.667) + 0.5 (- 12 + 1 + 0.0) 

- 	(- 	5.133) 

- 0.0333 

v4 	= 	0.7 (- 6 + 2 + 4.667) + 0.3 (- + 1 + 0.0) 

- 	(- 5.133) 

4.70 

The matrix of 	values is 

6.667 - 0.0333 4-.00 7.70 

9.667 2.9667 1.00 4.70 
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The minimum element of row 1 is ri?12' of row 2, 7,23. 

Therefore the improved decision matrix is 

O 1 	0 	0 

63. 

(2.19) 
O 0 1 0 

In the revised system, decision states 1 and 4 are 

inessential. 	Re-solving equations (2.10), (2.12), (2.13), 

and (2.14), we obtain 

v1 • 1.245 

v2 • - 1.889 

v3  = 0.0 

v4  = 2.133 

• - 8.556 

    

3.245 

6.245 

	

- 1.889 	4.00 

	

1.111 	1.00 

5.133 

2.133 

    

    

Inspection of the 	matrix above indicates that the 

decision matrix will remain unchanged at the next iteration; 

therefore (2.19) is the optimum decision matrix. 	The 

driver's best policy is to stay in whichever town he finds 

himself at the end of a trip; if in town A, he should go 

to a cab stand; if in town B he should cruise. 	Note that 

the new policy, with an expected income of 8.556 per stage, 

is a considerable improvement on the former one. 

D = 
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2.6 Properties of the Transformation Matrix 

The algorithm outlined in section 2.4 yields an optimum 

multi-stage policy. 	The term "multi-stage" is used to 

denote that the control policy optimizes system performance 

over many (an infinite number) stages of operation. 	The 

equivalent in continuous systems is the minimization of an 

integral performance criterion. 	The matrix 4)-1  is termed 

the transformation matrix, since it performs the important 

function of transforming the multi-stage cost problem into 

an equivalent single-stage problem with costs 	given by 

(2.15). 	A closer examination of ki)-1  is warranted, since 

an understanding of its properties yields considerable in-

sight into the operation of discrete state Markov processes. 

Let 21.  > be a column vector of N elements, all of which 

are zero except the ith, which is unity. 	Let w > be a 

column vector of N elements, all unity. 	The corresponding 

row vectors are < e.1  and < w, respectively. 	Now consider 

the matrix Rg  of the N-state basic chain of a discrete 

Markov process. 	From (2.13) 

Rg 	= R - R2N>e.2N  - 1.1><214  + 2N> <2N  

= I - Rg  = I - R + Re ><e + w><e - e ><e N N 	 N N N 

= [I + w><eN  - fN><2.11] + [R(eN><2N  - I)] 	(2.20) 



We may now use the matrix inversion lemma 

If A2 = Al  + FGH 

- 	- 	-1  then 	A2
1  = Al

1  - AlF(HA11F + G
-1  ) HA11  (2.21) 

where, in this case, 

A2 = 4) 

Al = I + y><2N  - 2N><2N  

F = R 

G = I 

e ><eN  - I —N — 

Application of the lemma to the inversion of Al (the first 

term in brackets in 2.20) yields 

A-1 	= I - (w> - 2N) < e N 	(2.22) 

Substitution of (2.21) into (2.20) gives 

1 	- 	1-1 = 	A 	- A-1R [(eN  ><eN  - I)A1
1  R + 1J 1 	1  

. (2N><2 - I)AE1 	(2.23) 

Substitution of (2,22) into (2.23) yields 

-1 = [I - (w> - 2N) < eN] 

. [I - R[(w><eN  - I)R + I]-1[11><2N  - I]l 	(2.24) 
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= e > N 

= [I - (w> - N>) 

(2.25) i.e. 	-1w>  

Let us now postmultiply y-1 by the vector w> 

LV 
lw> = [I - (w> - 41) < !N] 

.w> - R[(w><eN  - I)R + 	[w><eNw> - w>] 

Since <e w> = 1, the multiplier of the inverted term —N — 
becomes a null vector, and 
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We have thus obtained the first property of -1: 

Property 1  

The first N-1 rows of the transformation matrix, Y-1  

sum to zero, while the Nth row sums to unity. 

Property 1 follows directly from (2.25). 	It is a 

useful check to ascertain that 4)-1 has been computed 

correctly; in addition it points to the significance of 

the Nth row of 	-1, and so leads to 

Property 2  

The Nth row of 	is the principal row eigenvector 

of the matrix R. 

To see why this is so, we recall that 

= (v1 	v2  .... 	sjT 

The Nth scalar equation associated with the vector equation 

(2.14) is 
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g  < 2m  

However we know from the generalization of (2.7) that 

g = < n > 

where <n is the principal row eigenvector of the matrix R 

associated with the basic chain. 	Thus 

< 	-1 = 

and property 2 is proved. An example of both of these 

properties may be seen in equation (2.18). 

Property 2 shows that the algorithm which determines 

the matrix D also yields the probability distribution of 

states as a byproduct. 	This information is particularly 

useful in the control of continuous state systems (chapter 6) 

since optimum quantization levels depend upon the state 

distribution. 

2.7 Processes with Single Stage Optimisation 

While in general it is necessary to carry out multi-

stage optimization to ensure an overall optimum decision 

policy, there exists a class of system for which single- 

stage optimization achieves the same result. 	We shall 
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refer to this class as batch processes. 	We shall define a 

batch process as a discrete Markov process in which, after 

any probabilistic transition from process state i to 

process state j, i, j = 1, 2, ... N, control may be applied 

so that the process state, j, may be changed deterministi-

cally to any other process state, k, before the next 

probabilistic transition takes place. 	Moreover, control 

cost is independent of which control input is applied. 

Note that for a batch process, L = N. 

As an example consider a batch chemical process which 

is to be run repeatedly. 	Suppose that the initial co:Icen- 

tration (initial state) of the constituents can be set by 

the controller. 	In the absence of any disturbance there 

is a certain final value of concentration (final state) 

corresponding to each initial state. 	However, the process 

is subject to a disturbance in the form of variable catalyst 

activity, 	The statistics of the disturbance are known 

stationary functions of initial state; thus to each initial 

concentration there corresponds a p-xticular distribution 

of final concentrations. 	The cost associated with the 

running of a batch is a known function of initial and final 

states. 	After a batch has been run, the initial state of 

the next batch can be re-set at no cost. 

To minimize the expected cost per sta:-;e of such a 
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process it is necessary simply to compute which initial 

state, s, incurs a minimum value of 	using equation 

(2.6). 	Then, regardless of the final state of a given 

batch, the initial state of the next one is set to s. 

Note that we have achie7od overall cost minimization by 

minimizing over only one stage of the process; this can 

be done because each stage is independent of the one pre- 

ceding it. 	Evidently the optimal decision matrix is one 

in which all of the rows are identical, each containing 

N-1 zeros, and one unit element in the s
th column. 	Such 

a matrix is called a stochastic dya-1, since it is a 

stochastic matrix which can be expressed as the outer 

product of two vectors, i.e. 

D =w> < es  

Since the dual control of sequential batch processes 

is to be treated in detail in chapters 3 and 4, it seems 

worthwhile to present here a formal proof of the relevance 

of single-stage optimization. 	We shall prove the following: 

If, in an N-state Markovian decision problem, 

1)allelements,b..lj
,of the control cost matrix, B, 

are equal; 

2) after a probabilistic transition from process 

state i to process state j has occurred, control may be 
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applied so that the process state j may be changed determi-

nistically to any other process state, k, before the next 

probabilistic transition takes place; i, j, k = 1, 2, .... N; 

then it follows that: 

1) the optimal decision matrix, Dx, is a stochastic 

dyad; 
-1 

2) (4)-
, 

 ) 	may be determined explicitly without a 

matrix inversion; 

3) optimization of one stage of the process is 

equivalent to multi-stage optimization. 

Proof: 

Using the optimization algorithm of section 2.4, we 

may begin by choosing D arbitrarily; let us choose a 

stochastic dyad 

D = w > < d 

so that every row of D is the row vector <d where 

<d = [dia. dig, 	diN] 

and d. . = 1 13 
i= 

dij . . > 0 
	

j= 1, 2, ... N 



Since 	pl. = 1, 

j=1 

P w> = w> 

so that R = PD = Pw><d = w><d 

Substitution of R = w><d into (2.24) gives 

4, -1 = [I - (31> - 2N>) < 2N] 

. [I - w><d [(w><eN  - I) w><d + I]-1  [w><eN  - 1] 

The inverted term simplifies to 

[(w><eN  w> - w>) < d + I]-1  = [0><d + 1]-1  = I 

Thus 

4)-1 
. [I - (w> - eN) < eN][I - (w><d)(w><eN  - I) 

71. 

(2.26) = 	I - w><e
N  + eN  ><d — — 	— 

Substituting (2.26) into (2.14) we obtain 

= b - w><eN  i> + e ><d 1> — 	— 	— —N — — 
z> 

i.e. vi = (2.27) 

N 

g = E dij..  S6 
j=1 

(2.28) 
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Having completed one step of the iteration, we now 

choose a new matrix, D1, according to equation (2.16); for 

each i, we choose an s = s(i) such that 

b. + vs 	[bid 	j = Min 	+ v.] 	(2.29) is  
3 

Sdmcealaelernents,bij,are equal by hypothesis, (2.29) 

reduces to 

vs  = Min [v.] 	Vi, i = 1, 2, ... N; 	(2.30) 

Evidently the state s is the same for all states i; 

the new matrix D1 is therefore a stochastic dyad 

D = w><e 1 — s (2.31) 

If a multiple minimum occurs in states r, s, t, .... then 

the new decision matrix may be any one of w><er, w><es, 

w><et • 	, but it is still a stochastic dyad. 	It is — - 
easy to verify that if another iteration of the algorithm 

is performed, a repetition of (2.27), (2.28), and (2.31) 

will occur. 	Therefore D1 = DX, and result 1) is proved. 

Result 2) follows from (2.26) and (2.31), i.e. 

-1  (Y)= I - w> <eN  + eN > < 2 	 (2.32) 

Result 3) follows from (2.27) and (2.28) which show that 

the multi-stage equation (2.14) degenerates for batch 
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processes into a set of equations dependent only upon 

angle-stage costs. 

2.8 Process Models  

The basic Markovian decision problem treated in this 

chapter can be modified to apply to a variety of physical 

processes. 	Three types of process which will be examined 

in this thesis are the following: 

11  Batch Processes  

The properties of batch processes have been presented 

in the previous section. 	We note that the process states 

and decision states coincide (L = N). 	If the control cost 

matrix contains equal elements (frequently zero), then one-

stage optimization can be used. 

2) Dynamic Processes  

In physical processes with sampled data control, the 

control and disturbance act simultaneously, not sequentially.. 

A measurement of state is made at the beginning of a sampling 

interval, and a control effort, usually of constant magni- 

tude, is applied during the interval. 	The control signal 

thus has no effect on the present process state, but does 
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affect the probability distribution of states one time 

interval in the future. 	For such a process, we may postu- 

late the usual N proces states. 	Corresponding to each of 

these are r different control choices which may be applied. 
Thus there is a total of r N decision states (L =rN), but 
only a subset, numbering r, is accessible from each 
process state. 	The optimization of dynamic processes is 

done in terms of the N-state basic chain. 	Examples are 

given in chapter 7. 

3) 
	

Cyclic Decision Processes  

The dynamics and/or statistics of certain processes 

undergo cyclic changes. 	Each overall period or interval 

consists of T sub-intervals, each with its own matrices 

P(t), C(t), B(t), t = 1, 2, .... T. 	The characteristics 

of each sub-interval may be either those described in 1) or 

2). 	To control the process optimally, a sequence of T 

optimal decision matrices Dx(1), Dx(2), 	Dx(t) must be 

computed. 	An example will be presented in chapter 5. 

2.9 Summary  

This chapter has been largely a review of results well 

known in the theory of Markov chains and Markovian decision 
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problems. 	The presentation, however, has emphasized the 

relationship of methods customarily reserved for inherently 

discrete problems in operations research to the control of 

ph7sical processes which may be continuous in nature. 

The process to be controlled is assumed to be modelled 

as a long duration stationary discrete Markov process. 	If 

a cost of operation is associated with each possible state 

transition and each possible decision or control action, 

then optimization implies the solution of a Markovian 

decision problem. 	The optimal decision policy is ex-

pressed in terms of a decision matrix, DK, which minimizes 

the expected cost per stage of process operation. 	The 

discretized output variable forms a set of process states, 

which constitute the observations made by the controller, 

The latter must choose one of a discrete set of control 

inputs based upon the current observation. 	The combination 

of all process states with all admissible controls forms a 

set of decision states. 	Any control policy may therefore 

be regarded as a mapping of the N process states into a 

subset of N decision states, the mapping operator being 

the decision matrix. 	In the language of process control, 

an optimal policy means the specification of an optimal 

feedback transducer. 

It is evident from the definition of decision states 
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that their number usually exceeds that of the process states. 

Providing we specify a deterministic feedback policy (a 

17pure strategy", in the language of game theory), all 

decision states need not be considered at once for compu- 

tational purposes. 	Once a decision policy is chosen, all 

but N of the decision states become inessential in the 

resulting Markov chain, and the effect of the policy is 

described by a set of N linear equations. 	An iterative 

policy improv-ment scheme yields the optimal decision 

matrix, D. 

The algorithm which determines D—  produces other 

important information about the process as well. 	It has 

been shown that the steady state probability of occupancy 

of each process state is contained in the transformation 

matrix, Y-1. 	In addition the II matrix provides the 

relative costs of actions which deviate from the optimal 

policy. 	This information is necessary to determine the 

optimum policy in a discrete state system; in chapter 6 

we shall see that it has special importance as a gradient 

measure in the adaptive control of continuous state 

processes. 

Throughout this ch-"ter we have assumed that the matrix 

P is known exactly; the problem is therefore probabilistic 

in nature, and the solution is exact. 	In chapter 3 we 
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shall discard this comfortable assumption, and consider the 

statistical problem in which P is stationary but initially 

unknown. 	In anticipation of this development we have 

treated the single-stage optimization process in some 

detail. 	We shall see in the next chapter that it forms 

a good starting point for the study of the dual control 

of discrete state Markov processes. 
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CHAPTER 3 

A THEORY OF DUAL STRATEGIES 

FOR SINGLE-STAGE MARKOV PROCESSES 

3.1 The Concept of Dual Control  

In this chapter we shall study the control of 

stationary N-state Markov batch processes, as defined in 

section 2.7. 	We shall assume that B = 0, i.e. there is 

no cost of control. 	From (2.27) and (2.30), we see that 

optimal control of such processes is implemented by choosing 

the state s such that 

X s  = Min L.] . 

and setting Dx  = w><2 s. 

In other words the optimal policy is, "after every 

transition, re-set the process state so that the next 

transition starts from state s." 	
pp  

If P is unknown, then so are the values aLi. 	These 

can of course be estimated by conducting a number of trials, 

and observing the results. 	How should this be done? 

Suppose we observe one transition from each state, and 

then forever afterwards choose as the initial state the 
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one which yielded the minimum one-sample mean. 	Common 

sense, as well as statistical theory, rejects such a policy, 

since the probability of error would be high, and would 

never approach zero. 	Suppose alternatively that we conduct 

a large fixed number of trials from each state, so that our 

estimates of g are good (low variance), and the error 

probability is small. 	We might then choose the estimated 

minimum cost state thereafter. 	This strategy, while 

seemingly logical, is doubly undesirable: first, the cost 

incurred while estimating might be extremely high, and 

second, the probability of error would approach a positive 

non-zero limit once the initial estimation phase was 

terminated. 

The drawback of both of the foregoing strategies is 

that they fail to integrate the simultaneous requirements 

of estimation and control. 	The initial estimation phase 

may be regarded as process perturbations which are followed 

by control actions. 	Because they are essentially parallel 

in nature, if not in time, the initial estimates make in- 

efficient use of the information available. 	It is a 

commonplace fact of decision theory that a sequential policy 

in which future trials are governed by past results, is 

generally superior to a parallel search procedure. 	From 

a control standpoint, the initial estimation phase is an 
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open loop schedule, while a sequential policy is a closed 

loop system; information feedback is used. 	Properly 

designed, a sequential decision strategy thus performs a 

dual control function. 

A word about nomenclature might be useful at this 

point. 	We shall use the word "policy" to denote a 

stationary feedback control function calculated, as in 

chapter 2, when P is known. 	A strategy is aimethod of 

adaptive control used when P is initially uncertain; if 

successful, the adaptive strategy coincides asymptotically 

with the optimal policy. 

To further illustrate the concept of a dual strategy, 

we shall consider a simple example. 	A man travels to work 

each day by public transport. 	He lives in a large city, 

and has available to him half a dozen feasible alternate 

routes, using some combination of walking, bus, and under-

ground railway; each incurs substantially the same monetary 

cost. 	The traffic situation being what it is, the man 

considers bus arrivals and point-to-point travelling times 

to be random variables with more or less unknown parameters. 

He wishes to find by experiment the route which incurs 

minimum expected travelling time. 	Since the experiments 

and the process (travelling to work) are essentially the 

same thing, there is no question of minimizing the number 



82. 

of experiments required to reach a decision. 	Rather, the 

man wants to find the quickest route and, in so doing, avoid 

as far as possible having to try slow routes as part of the 

experiment. 	How will he proceed? 

First of all, he will intuitively reject the open loop 

estimation schedule mentioned previously; it is unlikely, 

for instance, that he will try each route in turn for, say, 

a month at a time, and then make a final decision. 	He will 

probably try each route once or twice, and then concentrate 

more on the apparently best route, and less on the un- 

promising ones. 	He will not settle down to one particular 

route until he is quite confident that it is best. 	Even 

then, he will occasionally try the others, both to confirm 

his earlier conclusions, and to detect any non-stationarity 

in traffic patterns. 	A similar game is played quite 

successfully by automobile commuters. 

Whether he realizes it or not, our hypothetical man is 

operating as an adaptive system exercising dual control. 

In this chapter we shall formulate a control strategy which 

is similarly adaptive in a stationary Markov process. 	As 

in the foregoing example, we would expect such a strategy 

to try all control actions in a more or less unbiased 

fashion early in the life of the process, but to concentrate 

increasingly upon the most promising one as time progresses. 
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At no finite time, however, would such a strategy allow one 

alternative to be chosen permanently to the exclusion of all 

others. 	Such a procedure implies certainty, and certainty 

comes only with infinite time in a stationary process, 

never in a non-stationary one. 

3.2 The Dual Control Requirement  

Let 

113. • 	= p.. c . 13 ij (3.1) 
j=1 

State s is defined by 

Ps  = Min [41, 42, 	;IN], assumed unique 	(3.2) 

If P is unknown, then we may use the estimate P = li=c3  . . 

so that 

N 
A 

= 1 P 	c i ij 	j (3.3) 

State s ^ is defined by 

j=1 

 

A r  A 4^ = Min 1.41, 423 (3.4) 

It is possible that the estimated minimum cost state, 
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is not the true minimum cost state. 	We therefore define 

the conditional probability of error, w, as 

A 
W 	prob Ls /s 	all past observations] 	(3.5) 

The convergence requirement of any adaptive strategy 

demands that 

lim w(n) = 0 	(3.6) 
n->co 

where n = number of observed transitions. 

Equation (3.6) is an estimation requirement. 	We shall 

see in section 3.4 that if transitions are observed from 

each state an indefinitely large number of times, the 

probability of error will approach zero. 	This condition 

can be achieved by a variety of schemes, such as controlling 

so that transitions occur from each state an equal number 

of times. 	Such a strategy would give a good estimate of 

P, but could hardly be called adaptive. 	If we are to have 

an adaptive strategy which is of any use at all, we must 

specify the control requirement as well, viz. 

n.i  
lim 	= 0, 
n->co ns 

i / s 	(3.7) 

whereni  . 	number of transitions observed from state i. 

Equation (3.7) specifies that after many transitions have 

occurred, most of the past control actions should be correct 
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in retrospect. 	Equation (3.6) and (3.7) are equivalent to 

(1.4) and (1.5) respectively. 	It might be said that the 

two of them specify minimum requirements for an adaptive 

controller. 	We have seen in chapter 1, though, that an 

additional requirement of the ideal dual strategy is that a 

given level of error probability must be reached at the 

minimum possible cost. 	After a large number of observed 

transitions the total cost incurred, VT, isI 

N 	 N 
A 	A 	A A 

VT = 
L 

n.µ. = 	 - Tn.p.. + n.(11.-µA)) 11 	3. s 	a. 3. s 
1=1 	i=1 

N 
Ax 	A A, 

VT 	n g + 	 i(µi-µ) 

1=1 
(3.8) 

The total cost consists then of two parts 

1) na, the estimate of the minimum cost which could 

have been incurred if the estimated optimum policy 

had been used; 

2) V = 
,A A 

nik i-µV the estimated "learning cost". 

1=1 

If the probability of error after n transitions is 

N 	 N 
2 Let 	where 	 in (3.11)) VT 	 1 1 	j=1 iJ 

	

1 N 	V. 

	

= IT; E 	=; (3.8 ) 
j=1 	1 	follows. 

From (3.3) and (3.11), al. 



w(n) = cif, 	then the ideal 

the set 	fnl' n 2' 

n 
minimizes 	V 	= 

dual strategy 

.... 	n N 
N 

is that for which 

A 	A 
> 	n.(11.-4^) 
i=1 

A 
subject to 

and 

w(P, 

> 

C, 	n1, 	n2, 	... 

On. 	, 	i = 1, 	2, 

nN) = wf 

N 

(3.9) 

Such a strategy is not realizable, but its performance 

may be approached in practice, as we shall see. 	Before 

attempting to solve the constrained minimization (3.9) it 

is necessary to consider a means of computing the error 

probability. 

3.3 Statistical Estimation of Process Parameters  

The problem of estimating the transition probabilities, 

Pij, of a discrete Markov process is essentially that of 

determining the parameters of a set of N multinomial dis 

tributions, each of order N. 	Strictly speaking, the 

estimates,Pi  . ., form a multidimensional beta distribution, j  

and the likelihood function of µi  is obtained by integration 

over a bounded hypervolume of dimension N-2. 	Use of this 

approach has been found computationally impractical for N 

greater than three or four. Further details are given in 

appendix 2. 
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We may take advantage, however, of the fact that the 

largesampledistributionof. P is multivariate normal 
ij 

Since estimation in our process is to continue indefinitely 

we are justified, at least asymptotically, in using such a 

distribution. 	Suppose that a total of n transitions has 

been observed in the past; ni  of these originated from 

state i, and m. occurred from state i to state j. 	Thus 1J 

N 	N 	N  

n = 	ni 
 . E 	>___1) m1J' . 
	(3.10) 

1=1 	i=1 j=1 

Elements of row i, of the stochastic matrix, P, have 

maximum likelihood values 

A 
pij  

m . 
_ 	 
n. (3.11) 

Associated with each row, 	p.iN' is a covariance 

matrix, Q(i). 	It is symmetrical, with diagonal elements 

Pij.  •(1-P10  .) 
n. (3.12) 

and off-diagonal elements 

40(i = - ) 	
p. .p 
ij ik j 	k 	(3.13) -jk • ' ni  

Note that there exist N covariance matrices Q(i), 

Q(2), .... Q(N). 	We shall in general consider the rows 

of P and C to be independent, which means that the matrices 
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(i) and the estimators ui  are also independent. 	This 

assumption allows the piecewise constant function Pd, 

i = 1, 2, ... N, to take on an arbitrary shape, e.g. it 

may be multimodal. 	If ui  is known to be unimodal, the 

assumption may be modified with considerable saving in 

overall cost of operation, as we shall see in section 4.7. 

Let < p. = 
^ 

row vector [pil, • • • • 

A 

PiN 
, 

J of matrix P 

< c.a  = row vector roil, • • • • ciN ] of matrix C 

ti 
Then . the estimate of the expected one-stage cost of a 

transition from state i, is normally distributed with 

maximum likelihood value 

A 	A 
111.  = < pi  ci  > 	(3.14) 

and variance 

0i2 = < cd  Q(1)  c.a  > 
	

(3.15) 

N 

-2.-- 2 i.e. 	o 	[ 2: p(1-p)ei. ... 
ijij oil 	n, 	j 1 j=1 

N-1 

- 2 	( Pigikcieik)] (3.16) 
j=1 k=j+1 
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The varance, oil, is correct for any sample size, but 

the distribution is normal only for large ni. 	If P is 

uncertain, then so are Q(1) and oil. 	In such a case it 

is necessary to approximate oil  by the estimate 6i2. 	The 

latter is obtained by using Q(1)  in (3.15), where Q(i)  is 
A 

determined using pi g  from (3.11) in place of pig  in equations 

(3.12) and (3.13). 	The estimated probability density 

function of 4i  (the likelihood function) is given by 

fi(x) = 	1  

Tru of  
exp [ 

A 
( A  1)

2 
 ] 

0. 
1 

(3.17) 

We may now consider the computation of the error 

probability. 	We note first that the foregoing equations 

are based on a large sample assumption. 	In order to make 

estimates early in the life of the process, we introduce a 

measure of the error probability, termed the uncertainty. 

The latter is the error probability computed using the 

assumption of normally distributed estimates. 	Both 

measures are, of course, asymptotically identical. 

Denoting the uncertainty as J1 , we see that 

= 	1 - prob [1J, = Min [41.1 	C, M) 	(3.18) 

where 

M = matrix of observations, mid  
A 4A = true mean cost associated with state s. 
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In words, the situation is this: on the basis of past 

observations, we believe that state s is the minimum cost 

state. Si. is the probability, conditional on thew ob-

servations, that we are wrong. 

The probability, 1-a, that s = s, is the integral 

over all x of the compound probability 

prob [4g = x and all other µi t s > x] 

If the rows of P and C are independent 

_a = 
00 

_00 

N 	OD 

q(x) TT [ 	fi(yi) dYi]dx 
1=1 
is 	x 

oo 

Let 	Gi(x) = 	fi(y) dy 	(3.19) 

Then 

00 

[Gi(x)] dx 	(3.20) 
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3.4 Properties of Normal Likelihood Functions  

Two properties of normal likelihood functions which 

are relevant to the estimation-control scheme under con-

sideration are stated below, and proved in appendix 3. 

If a unique minimum, µs, exists, and if the estimates, µi, 

are normally distributed with finite stationary means and 

variances, then 

	

1) 	If across an ensemble of statistically equivalent 

processes the mean value of SL at stage n is fl(n), and 

a trial is carried out in each process from a particular 

non-optimal state i (i / s), then at the (n+l)th  stage, 

E[S1(n+1)] < E[fl(n)] 	 (3,21) 

In other words, if we pay the price of choosing a 

non-minimum cost state for estimation purposes, we may 

expect a positive return in the form of decreased uncertainty. 

	

2 ) 
	

lim .f2 (n) = 0 
n->co 

if and only if 

n —> co ==> ni —> oo V . 
	(3.22) 

Property 2) is a necessary condition of convergence; 

it states that in a convergent process, ni  has no upper 



92. 

limit with time, even though state i is non-optimal. 	At 

first sight this condition seems rather difficult to recon- 

cile with the requirement of equation (3.7). 	The answer 

must be that the growth of ns  dominates that of ni, i / s. 

We shall see later that this is so. 

3.5 A Realizability Problem 

Let us now return to the constrIlned 

(3.9); taking results across an ensemble, we may use the 

true values µi  rather than the estimates µi. 	Since the 

optimum set [n1, n2  .... ni\J will be shown to lie within 

the non-negativity constraints of (3.9), we may safely 

ignore these. 	Using a Lagrange multiplier, A, we may 

form the adjoined cost function, 

V 

	

	
-11s) + A(11 -af) 

1=1 
atV A Setting 	- 0 we obtain N equations 
47.  i 

1 S) 
@T1 A 	- 0 an. (3.23) 

while DvA  /3?, = 0 gives the original constraint condition. 

For i = s, (3.23) becomes 

A --- = V 
an

s 
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so that either )% = 0, or Dlitans  = 0 or both are zero. 

Examination of (3.23) for i / s in the light of (3.21) 

shows that for n. finite, ?\ 	0. 	Therefore we conclude 

that a condition of optimality is 

= 0 	 (3.24) 
s 

The only condition under which (3.24) is always satis- 

fied is ns = oo. 	
Given the requirements of the problem, 

this is an intuitively reasonable solution. 	Since choice 

of state s incurs no estimation cost, we should choose s 

enough times to reduce SLto the minimum possible value; 

this is free information. 	We then turn to the other N-1 

states and begin "buying" information. 	This condition 

seems of little use, though, when we try to control a real 

process, since if P is uncertain, we do not know s. 	Which 

state shall we choose an infinite number of times? If we 

are wrong, the additional cost will be infinite.' 

To handle this dilemma, we shall invoke the maxim 

"Pretend it doesn't exist, and maybe it will go away." 

Specifically, our approach will be as follows: We shall 

consider the pattern which emerges when we begin the 

decision process with ns  = co. 	Then we shall attempt to 

synthesize a realizable strategy which has the same 

asymptotic pattern. 
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3.6 The Bayesian Approach 

Suppose that at some stage in the process we have 

chosen ns a very large number of times (ns 	
oo; we do 

not specify how we decided which was state s), and, to 

further decrease in- we turn our attention to the remaining 

N-1 states. 	For ns 	co, fs(x) in (3.17) becomes a delta 

function centred on µs; _CL. then simplifies to 

N 

lim 	1 - FT Gi(p,$) 
ns i=1 

i/s 

(3.25) 

where G. (µs  = 1(x) I x = µs. 1  

Let 
A 
µ.1(n.1) = maximum likelihood estimate of µi  made 

afterobservationofn.1  transitions from 

state i. 

µ
A 	

µ. 
, 	 A 

1.n.+11n.) = predicted value of the estimate .(1-1i  +1) 

made after observation of only ni  transitions 

from state i. 
A 0.2(n.\ 	= maximum likelihood estimate of the variance 
1 ` 11  

A 
of µ.(n.) made after observation of ni  

transitions from state i. 
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A

I  , 

	
11 	

A
11 o.

2 
 (n.+11n.) 	= predicted value of the estimate o.2(n.+1) 

made after observation of only ni  tran-

sitions from state i. 

Thetotalcostincurredinn.1  transitions from state i is 

N 
A 

V.
1 	

= 	M1. 3 .C.13 . 	1a. n.µ.(n.) 1 
j=1 

since 

N 

µ.
1
(n.

1 	n) 	1 	
1 m.3.c.13.  .  1 j=1 

where 	n. 	m13..  
j=1 

If one more transition from state i is observed, the 

maximum likelihood prediction of the cost of that transition 
, 

a. is by definition µ.(n.) since the process is stationary. 

The prediction of the estimate of mean cost atter+ 1 

transitions from state i have been observed is 

A 	1 
1 µ.1(n.1+1In.) — 	

[Total observed cost of n. 1 	ni+1  

transitions + Predicted cost of one more transition] 

A A 	A 
p,
1  .(n 	i ) 	1 +1 	111,- 1  [n.(n-1) + 11.1(n.1)] n. 1 



A 	 A 
4.1(n.1+11n.1) = u.(n.) 

(3.26) 
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Now consider the estimate of variance. 	Let us 

define 

N 	N-1 N 
A 
ca 2  ( n i  ) = 	

pA 
1j (1-p 
 
ij )cij2 - 2 TT  ( : Ap  ijp i k cij ci k) 

j=1 	j=1 k=j+l 

A 
where pij 	pii(ni) 	n 	 .  

We see from (3.16) that "c1/41012(n1) is the estimate (with n1  

observations) of the ensemble variance of the cost of one 

transition from state i, and that 

A 
0 .2(n.) 

10'$2(n.) = oi 1  
1 	1 	n. 1 

(3.27) 

In a stationary process 0i2, unlike 4i, is non-

stationary;itdecreasesasn.1  increases, signifying 

thatourknowledgof. Pi becomes more precise as more 

observations are made. 	However, 0012  is stationary, 

so that 

A
01

A  
0 .2 

	
1 (n1+11 n. ) = 0012  (n. ) 



From (3.27) we obtain 

A 	 1 
o.-, 

 

1 	1 	1 (n.+11n.) 	n+1 coil n.1+1In.1  ) 

A 
o.2(n.+11n.) 	1  0 (

ni
2 ) 

1 1 1 	n.+1 i  / (3.28) 

Using (3.25), (3.26), and (3.28) we can compute 

theexpectedchangein_aifn.1  is increased by one 

unit. 

6n_ 
E= Q ni  

10i(11s) 

ni 

   

Gk(4s) 	(3.29) 

k=1 

k7s 

At a given stage in the process, we wish to select the 

state, j, which is expected to yield the maximum decrease 
A 

in S)_ per unit change in V, the estimated learning cost. 
A 

Let 	Vi 	(4,--p.$)d ni. 	Then j is chosen so that 
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A  n.+11n.+1 	n. 
	

A  n.+11n. 
 - J 	1 	1 (3.31) 11  

j 	- n.+1 11. j .n 1+ 	jk 
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ail  1  
E [- 	= Max 

&Gi(ils) 

ni k=1 
k/i 
kLs 

Gk(tis)] (3.30) 

A control decision is then made so that the next 

transition is initiated from state j; suppose the tran- 

sition is from j to k. 	The transition cost, cjk' is 

observed, and the posterior parameters of the state j.are 

computed, i.e. our knowledge of the process is updated. 

A 	A 
The estimates pjl' 	pjN are updated using (3.11). 
A 	 A  ,,11.4.11r1 +1 

oj is then up dated with (3.16), and (o -) J 	j 	is 

computed from (3.27). 	The cycle is then repeated: cal-

culation of prior estimates with (3.26) and (3.28), decision 

based on (3.30), and updating as outlined. 	In the following 

section, we shall consider the pattern which emerges with 

continued repetition of this cycle. 

3.7 The Continuity Approximation 

In sections3.8-3.12, we shall consider results per-

taining to an ensemble of processes for which all ni  are 
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large. 	We shall therefore use the true values, wi  and 

0.2, averaged across the ensemble, instead of the estimates. 

While ni  can of course possess only discrete values in any 

one process, it is useful to regard it as continuous when 

considering an ensemble. 	Suppose we have an ensemble of 

processes, each with the same stochastic matrix, P. 	In 

mehalfoftheensemblen.=20, and in the other half 

n = 21. 	We shall consider the situation to be described 

by a single ensemble with ni  = 20.5. 	In more general 

terms, let a(ni) be a parameter depending upon ni  (e.g. 

a = G(4s)). 	At the kth stage of the process let the 

ensemble average of a be 

a(k)  = a(n.) 

At the (k+l)th  stage state i is chosen in a fraction "b" 

of themembersoftheensemble,sothatn.becomesn.+1 in 

thatfraction,andremainsasn.in the others (in the 

remaining fraction, 1-b, some other state is chosen). 

At stage (k+1) the ensemble average of a is thus 

a(k+1) = b[a(ni+1)] + (1-b) [ ( )] 

a(ni) + b[a(n.1+1) - a(ni)1 

a(k+1) 	6a a(ni 	b ani 
(3.32) 
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The right hand side of (3.32) approximates a Taylor expan- 

sionofign.+Wiftsa/Ani 	i is small and n >> 1. 	For 

a = G.(p. s) or a = II, the chief parameters of interest, 
the approximation is valid for large ni. 

3.8 Decision Space and the Hill of Uncertainty 

It is useful to describe a sequence of past transitions 

by the set ini, n2, .... nNl. 	By postulating an N- 

dimensional decision space with coordinates n1 n2, 	nN  

we can plot the evolution of a decision process. 	Corres- 

ponding to every point n in the space is a value of .IL 

determined by equation (3.20). 	Successive decisions 

therefore represent a ('.ecision trajectory descending the 

hypersurface 	, the hill of uncertainty. 	Descent of 

the hill implies convergence of the decision process, and 

there are as many convergent adaptive control algorithms 

as there are paths down the hill. 	The most efficient path 

is the one which reaches the lowest point on the hill for a 

given cost, or, conversely, minimizes the cost of reaching 

a given value of -12- 	This path is of course the one 

generated by the ideal dual strategy. 

As explained in sections 3.5 and 3.6, it is assumed 

that we are starting the decision process with ns 	co. 

No change in 	occurs with any further increase in ns. 
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Therefore we may disregard the ordinate corresponding to ns, 

and consider the projection of the N space into N-1 space 

at ns = co. 	More generally, if the minimum occurs with 

multiplicity K, then the pertinent subspace has dimension 

N-K. 	In the following development, however, we may con- 

sider that K = 1 without significant loss of generality. 

Since the cost function is linear, contours of constant 

cost V are hyperplanes defined by 

V = zEl 11-(1.-4 ) s 	(3,33) 
i-1 
i/s 

Contours of the _(/ hill are non-linear, and the hill is 

concave. 	Fig. 3.1 shows an example of contours of V and 

SL. in a three state system; it is assumed that p.1 is the 

minimum of /µ1, 112, p.3-} , and that n1  -> co. 

3.9 The Optimal Trajectory  

We define an optimal trajectory in decision space as 

the locus of points which minimize V for every value of 

It is the purpose of this section to investigate the asymp- 

totic properties of such a trajectory. 

From (3.25) we have in N-1 space 
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FIG, 3.1  

THE HILL OF UNCE*1?rAINTy  

(Thigxer STATE SYSTEM) 



10), 

N 

=i - 	(1 - i(4,)] 
1=1 
i/s 

(3.34) 

where Fi(µs) is the cumulative distribution of the normal 

likelihood function 

CI- 

Fi (µs ) = 1 - Gi(µs) = 	fi(Y)dY 	(3.35) 

-CO 

Fi(45 ) 

may be expressed by the asymptotic series 

P'2 
1 	 1 1.3 1.3,  + 5  exp( 	) [1 	---Tr 	6 27 pi 	 Pi 	Pi 

pj: 

Pi 
(3.36) 

where 4i-4s  
Pi - 	o. (3.37) 

Let µi-µs 
Poi - o . 01 

so that, since o .2 = n.0  
1
2 

01 	1  

1/2  Pi = ni  Poi (3.38) 

Since pi  increases monotonically with ni, we can 

truncate (3.36) for large ni  to 

Pie 
liM 	F.(1

s 
 ) = 	

1  exp(- 2  ) 1  n.->co /a pi  

SinceFj.(4s)becomessmallforlargera.,we may write 

(3.34) as 

(3.39) 



1 im J:1 
n.4.00 1=1 

1 
Pi 

2 
exp(- 

Pi 
2 (3.41) 

ids 

10k. 

lim 
n . ->oo 1 

Fi (4s ) 	 (3.4o) 

i 

Substituting (3.39) we have 

v 
Differentiation by ni  gives 

0.2 
D_CL 	1 r 	4_ 	 2 
n• 

exp( 2 	'n. 	poi 2 ,/ -7pi  

Substituting (3.38) we obtain 

2 

	

an. 	Poi 	
pi 

lim 	=   exp(- 2  ) 	(3.42) 
n..00 an• 

	

i 	2 /2nnii  
V L 
Let us now recall the optimality requirement expressed 

by (3.23) 

(4.-4 ) + 1 S 	dn. 
1 

o 	 (3.23) 

i = 1, 2, ... N 

It follows that for any two states, i and j (i, j 	s) on 

an optimal trajectory 
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exp(- pie/2) 

exp(- pi2/2) 
(3.44) 

1 
n. 2 	0. 
) 	

1
n. 
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1 DS2_ 
(4i-11s  ) ani 	(4.1 -1-Ls ) onJ  

Combining (3.42), (3.43), and (3.37) we have 

(3.43) 

The value of the normal likelihood function at the point 

x = 4s  can be expressed as 

n.1/2 	2 i 
= 	exp(- 

P
2  fi(Ils) 	

1 
	) 	(3.45) 

/27iT o . (Di 

From (3.44) and (3.45) we obtain the asymptotic optimality 

criterion  

n. 	f.(11  ) s j s (3.46) 
n. J 	f J (11s  ) 

We can thus define an optimal point in N-1 space as 

one for which the ratio of any pair of ordinates is equal 

to the ratio of the corresponding likelihood functions 

evaluated at x = 4s. 

It is interesting to note that the same result can be 
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obtained from the Bayes strategy with continuous ni. 

Equation (3.30) becomes 

= MaxK-  I v • 	av (3.47) 

whereVi  . = n.(µ.-11s  ) 

Since from (3.42) ail/aVi  is a monotonically decreasing 

function of :n., optimality implies that for all i and j 

other than s 

s). 	Ds . 
v. 	a v 1 

(3.48) 

which is equivalent to (3.43), so that (3.46) follows. 



3.10 Characteristic Vector of A Decision Process  

Of great importance in the theory of optimum decision 

making is the asymptotic value of the ratio ni/nj  along an 

optimal trajectory. 	From (3.44) 

	

n. 	o .2 

	

1 	01  ) 

coj 
P-
2 	

P-
2 = log 4) + log ( 

2 

Rearranging and applying (3.38) gives 

n. 	Q 2 
log(-n1) + log(-24) 

P - P- 
n.1/2 	+ nj1/

2  2 poj 1 Poi  

lim 
n.->co 

n.-÷co 

Pj  - P- 

n. 	o .i 2 
10g(-1) + log( 012) 

= lim 
nj 
	

cioj 

n..-->oo i 	n.1/2p
ol 

 + nj
1/2poj 

II .->OD 	
1 

J 

0 

so that 

lim 
n 	n  2 . 
( 	= 

2 
J optimal 	Poi 

(3.49) 
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Equation (3.49) shows that for large ni, i = 1, 2, 

all points on an optimal trajectory in N-1 space are colinear. 

The vector joining any two points on the asymptotic trajec-

tory is a scalar multiple of a vector e, which we shall call 

the characteristic vector of the decision process. 

e = [el, e2, '''' es-1' e 	'" eN]T 

defined by 

and 

2 e.
—  Pol  
e . 	 2 

poi 

e. = 1 
i.1 
i/s 

(3.50) 

(3.51) 

3.11 The Meaning and Uses of the Characteristic Vector 

The elements e. of the characteristic vector of a 

decision process represent the asymptotic value of the 

relative frequency of choice of state i (i s) with an 

ideal decision strategy. 	Asymptotically, for every time 

state i is chosen, state j should be chosen (e./e.) times; 

in a randomized decision scheme, if the probability of 

choosing state i is1:61'  . then the probability of choosing 
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state j should be (771  01) for any states i and j other than 

state s. 	In a convergent process 0i  approaches zero as n, 

the number of observed transitions, approaches infinity, 

but the ratios (e./e.) remain constant. 	Later in this 

chapter we shall see that, for a certain class of strategies 

each n. (i 	s) may be expressed as a harmonic series in 

terms of n; in such a case the elements ei  represent 

multipliers which determine the relative magnitudes of 

equivalent terms in the set of N-1 simultaneous series. 

If we look at N-1 space geometrically, we may regard 

the vector e as an inverted ridge in the hill of uncer- 

tainty. 	In chapter 4 we shall introduce algorithms which 

determine theoretical optimum points and trajectories in 

decision space. 	If one point on an optimum trajectory is 

known, then other points in the vicinity can be found 

simply by searching along a vector e. 	It will be seen 

that this concept results in a large reduction of computing 

time, and makes feasible computations which would otherwise 

be impracticable. 

Finally the characteristic vector is the bond which 

ties together a whole class of strategies to be considered 

in the remainder of this chapter. 



exp(-pi2/2) 	a. ri 1/2  poi  
(1) a. nj  Poi exp(-;oj2/2 ) 

(3.53) 
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3.12 The Inverse Problem 

Consider a problem slightly more general th..n (3.9). 

Suppose we wish to minimize 

N 

V a. n. 1 1 (3.52 ) 

subject to Il (11 , C, n1, 	nN) 	12f  and n. > 0, 

i = 1, 2, ... N,where each parameter a1  is a finite posi- 

tive constant coefficient. 	We are now costing wrong 

decisions (i.e. decisions which turn out a post,eric.Li to 

have been incorrect) not by an amount [Ii-µs, but accord, 

to an arbitrary price, ai. 	As in the former problem, 

though, no cost is attached to choice of state s. 	We 

might follow through the developments of secticns 3.5-3.9 

with this new problem. 	Equation 3,23 becomes 

a. + A — = 0 
Dn. 

The optimality condition (3.43) becomes 

"D_a_ 	1 	_L-1 
a. Dni  a ani  

and (3.44) is generalized to 



Now comes a discovery of interest: providing all ails 

are finite and positive, equation (3.49) remains unchanged. 

The new decision strategy possesses the same characteristic 

vector as the original one. 	In other words any straight 

line parallel to e in N-1 space is an asymptotically ideal 

decision strategy for some set of costs tal, a2, ... as-1, 
0, as+1, 

... 

aN I. 	We can thus postulate an infinite 

family of parallel trajectories in decision space. 

Immediately we are confronted with the inverse problem: 

Given a straight line in N-1 decision space parallel 

to the vector e, find the cost function for which the line 

is an ideal decision strategy. 

Let the straight line passing through the origin and 

having direction e be designated as the basic trajectory. 

If n is any point on it (see fig. 3.2), then n = ae, where 

a is a positive scalar. 	A point nf  on a trajectory 

parallel to the first one is given by 

n = ae + h. — —1 (3.54) 

th. where h.1  = offset vector with respect to the I 	coordinate. — 

The components of hi, h 	h . 	h 21' 	(s-1)i' h(s+1W *** hNi 
are defined by 

Poi2  h.. = n. ji 	.2 
I-0j 

ni j s 
(3.55) 

and h.. = 0. 11 
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FIG. 3.2  

RELATIONSHIP Or TRAJECTORIE5  

IN DECISION SPACE  



exp(-pi2/2) 2h 
exp (POj jil 

exp(-pi2/2) 	2 ' 
1 

p 

2 	
n 

2  h. 
(al) (-2-'1) 	+ 
j Poi poi i 

P 2 	p 2  
z,,. 

	

	 h . 
= ( _21) exp(  oj j1)  

ai 	Poi 	2 
(3.57) 
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Combining (3.55) with (3.53) and recalling that pie  = nipoi2, 

we obtain 

(3.56 ) 

Forlargen.,h.I  isindependentofn,and 

Byexpressingthecostsai anda.in terms of the 

components of the offset vector, hi, and the statistical 

parameters of the process, equation (3.57) solves the in- 

verse problem. 	It will be seen in sections 3.15 and 3.16 

that this solution is useful in evaluating various proposed 

realizable strategies. 

3.13 Suboptimal Strategies  

In a given system, we shall define a suboptimal  

strategy as one which exhibits the following three 

properties: 

1) 	lim 	= 0 	(3.58) 
n-.00 



2)  lim 
n-*oo 

3) lim 
n->co 

= 0, 	i / s 

P 
2 

ro j  

P0i2  

(3.59) 

(3.6o) 

n1 
s 

n i 
Dn. 
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i,j 	s 

Observe the meaning of these three equations. 	(3.58) 

implies convergence and (3.59) implies that the suboptimal 

strategy eventually becomes the optimal policy. 	These 

two equations are the minimum requirements of any adaptive 

strategy, as outlined in section 1.5. 	Equation (3.60), 

based on (3.49), is a new way of expressing the dual control 

requirement (3.9); this is the criterion which distinguishes 

between strategies which are merely convergent, and those 

whose performance approaches that of the ideal dual strategy, 

The term "suboptimal" has been used since we include 

in (3.60) any strategy whose decision trajectory is asymp-

totically parallel to the optimal decision trajectory. 

It can be shown that, for any given value of 	, the 

estimation cost associated with a suboptimal trajectory 

differs from the cost associated with the optimal trajectory 

by an amount which is independent of 12. . For any other 

decision scheme, this cost disadvantage depends upon -C1 , 

and eventually becomes more and more marked as Xi de- 

creases. 	Any strategy which can be shown to be suboptimal 
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will therefore be almost as effective in practice as the 

optimal one. 

3.14 Realizable Control Strategies  

The significance and usefulness of the inverse problem 

and the concept of a suboptimal strategy lie in the fact 

that we now have a theoretical framework which can be used 

to evaluate any proposed algorithm for the dual control of 

long duration discrete Markov processes of the batch type. 

In practice this means that, given the complete decision 

rule for such an algorithm, we can determine its trajectory 

in decision space, and so determine whether or not it meets 

the requirement of suboptimality. 

Developments thus far have yielded asymptotic opti- 

mality criteria. 	However, nothing has been said about 

the awkvmrd problem of making decisions early in the life 

oftheprocess,wherisisunknownandalln.are small. 

In the sections which follows, we shall use the foregoing 

theory to examine several realizable decision strategies. 

3.15 Equal Rho Strategy 

We shall begin with a brief examination of a strategy 
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proposed by Pashkovskii35. 	As mentioned in section 1.4, 

he postulated an N-state stochastic process in which the 

transition probabilities, pij, may be affected by choice 

of a control signal uk(i) associated with state i, where 

uk  is itself a member of a discrete set u1, .... um 	The 

object of control is to choose a control input lit(i) for 

each state, i, which maximizes the one-stage probability, 

pit, of transition from state i to a particular known 

state,I. 	If the transition i 41 takes place, the cost 

is zero; for any other transition i 4 j, j /1, the cost 

is a fixed amount c. 	The transition matrix, P, is initially 

unknown, and the process is to be repeated indefinitely. 

The dual strategy Pashkovskii suggested is the 

following: at each stage, compute the confidence intervals 

associated with each probability estimate, pit  (i, uk), 

k = 1, 2, ... N, and choose that control us which maximizes 

the upper confidence limit of piQ.  

Pashkovskii did not explain why he chose this strategy, 

nor how he chose the confidence limits. 	We shall present 

here a brief analysis of the strategy in the light of the 

theory of decision trajectories. 	Since the cost of 

transition to any state other than 1 is the same, the 
system is essentially a two-state one. 	The estimate 

pit(uk) = pil  has mean and variance 
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A 	A. K 
11.
k 

= pi t 
A , 

02 piol - 13'1.1  

(3.61) 

(3.62) 

Choosing k to maximize pit  is equivalent to choosing the 

minimum of 1 - 4k, k = 1, ... N. 	Let the confidence 

interval associated with the 41(  have bounds 

A 	A 	A 
4k - ma and 4k  + mot<  

where, for a confidence level 0, m is given by 

exp(- 	) dx = M P 

To determine Min(1-4k) according to the Pashkovskii strategy, 
A 

we choose k = s to minimize 4k  - mak. 

We observe that each time an alternative k is chosen, 
,A A 

the value of (4k-mak) will tend to change in a positive 

direction, since an increase in nk  decreases ok. 	As the 

various alternative controls are chosen early in the pro-

cess, all of the lower confidence limits will gradually 
A 	A A A 

increase until they reach the limit J. 	Once 4k-mok > µs' 
. A 

k / s, alternative k is no longer chosen. 	Across an 

ensemble this situation is reached when 

k / s 4k - m cik = 4s' 

1 

 

/ff'T-C 



so that 	 =m Pk k 
V k, k s 

k -11s (3.63) 
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Since all pk's are equal, and since 

that across an ensemble 

1/2 
Pk = nk Pak' we see 

n. 	Y 
,

ok 
2 

lim 	= 	j, k / s 	(3.64) 
„ n->oo nk 	Yo 

2 

J 
Equation (3.64) is not true for every individual 

process unless _CL tends to zero with increasing n. 	If 

m is fixed, Si- does not tend to zero, but to a...limiting 

value, 12 f  

-m 
2  x exp(- 	) dx 

11. f 17.2  %-1 (1-0) 	(3.65) 

The strategy as stated has two disadvantages: first, 

as we have seen, it is not convergent for any fixed value 

of m. 	Second, it is unsuitable if the cost matrix C takes 
^ in, 

on a more general form. 	Note that µ 	(3.61) is not a 

function of the cost matrix elements. 	To minimize the 

expected transition cost we must set 

f  N-1 

 

Tc 
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N 
A 	 A,  k 
k = k(i) = 	 pij  cij  

j=1 

For the particular cost matrix used, oil  = 0 and cij  = c„ 

j 1  , so that 

and 

A
k  	Ak 

= (1  - 	c  (3.66) 

A 2 	k 
= 	- pi C2 (3.67) 

Maximization of (3.61) is thus equivalent to minimization 

of (3.66). 	If a general cost matrix is used, this equiva-

lence cannot be established, and the strategy is not neces-

sarily of any usefulness. 

Pashkovskii's strategy can be generalized quite easily 

to overcome these difficulties. 	Its basic premise is 

simple and effective: choose from amongst the non-optimum 

states so that all pi's remain approximately equal. 	Let 

us therefore express the strategy as follows: 

Choose state s probabilistically, with probability 

1-fl(n); if state s is not chosen, choose that state from 

thereffeiningli-dstatesforwhichp.is a minimum. 

Since an increase in ni  tends to increase pi, all .pi's 

tend to become equal as the decision process continues. 

Equation (3.60) is thus satisfied. 	The proof thatIl(n) 
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does tend to zero, (3.58), and (3.59) hold, and the policy 

is suboptimal is given in section 3.18. 

Let us consider the inverse question: when is an 

equal rho strategy optimal? We note that its trajectory 

in decision space is extremely simple; an equal rho 

trajectory is a basic trajectory, i.e. a straight line 

passing through the origin with direction e as defined by 

(3.50) and (3.51). 	Since all h..'s are zero, we see from ji 

(3.57) that 

2 a. 	 - 
= _22_

P  
a. 	0 

01  
.2 

F  

I ' 

The strategy is optimal when 

1-1,  
a. s 

(3.68) 

2 2 
00i 	0

. 

, 
i.e. j / s (3.69) 

11i-11s  

An example is a process in which the minimum mean is zero, 

and all other states possess variances proportional to 

their means. 

3.16 	Probabilistic Strategy  

It is interesting to consider the use of a decision 

strategy which is wholly probabilistic. 	In the early 
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stages of this work the author postulated such a strategy 

on heuristic grounds, and found it quite effective. 	In 

this section we shall demonstrate that it is suboptimal in 

an ensemble sense; the convergence of each individual 

process is proved in section 3.18. 	The strategy is the 

following: 

Choose each state i probabilistically, with probability 

01  ,where 0where . is the conditional probability that µi  is the 

minimum of the set fµ,, u 	/1N1 2, 

From (3.17) and (3.19), 

0i = 
CO 

 

fi(x) 
= -00 	J
/i 
1 

(3.70) 

As all n.1  become large, the product TT j 
G.(x) tends toward 

a reversed step function at x = µs, so that 

lira 
n-->oo 

0i  f.(x) dx = F.(u s), 1  
(3.71) 

i s 

To show that the strategy is suboptimal we shall solve 

the equation of ensemble convergence. We may write 

dOi 	dO. dn. 1 
do 	dn.dn 

(3.72) 

where n = 



lim dn. n-Ko 

Poi2  
2 

dOi  

Oi, i / s 	(3.73) 
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The term d0i/dni  is found from (3.71) and (3.39) to be 

The term dni/dn is specified by the decision strategy. 

In this case 

dn. 1 
dn . 0

i, i / s 	(3.74) 

From (3.72), (3.73), and (3.74), we obtain the asymp-

totic convergence equation of the probabilistic strategy. 

For each state i, i / s, the result is a degenerate Ricoati 

equation, viz. 

d01  

dn 
Poi2  9512 (3.75) 2 

The asymptotic solution of this equation has an impor-

tant property: it is independent of the initial value of 

95i• 
	Thus atypical results early in the process do not 

disturb the ultimate decision trajectory. 	The probability 

0i  assumes an asymptotic value 

lim 	O. = 	229  , 	i 7- 	(3.76) 
11->oo 	Poi 	

d s 
 

From (3.41) we obtain 

lim 
n-->co 

2 71  
N 

(Poi2)  
i=1 
i/s 

(3.77) 



2 

lim 
poi 

D n i
=  

POj  
2 	i, j 	S • 

lim 
n-->op exp(-pj2/2) 

p 2h . 

exp( °j  il) 
2 

exp(-pi2/2 ) 
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We now show that (3.58)-(3.60) hold, so that the policy is 

suboptimal across an ensemble. 	First, from (3.77) 

lim 	= 0 
n-->co 

Second, from (3.74) and (3.76) 

an. i 	Oi 
lim 	n = R— = 0 
n->oo - s 	)us 

Third, from (3.74) and (3.76) 

The probabilistic strategy is suboptimal across an 

ensemble. We may now ask the inverse question, when is 

the probabilstic strategy optimal? To answer the question, 

we note first that probabilistic decisions are defined by 

Oi 	F.(4
S 
 ) 

P  1 	Oj
2  

0. Fj(µs) 	Poi2 

From (3.39) we see that 

j / s (3.78) 

Fi(µs) 
lim 
rioo F (µs  ) 

1 
poi  n. 2 exp(-pi2/2) 

\ 	 

Poi 	

1 

flij  exp(-pj2/2) 
(3.79) 

However, the optimality criterion (3.57) demands that 

(3.80) 
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From (3.78), (3.79), (3.80) and (3.49) we see that 

1 
a. p . . n 
( 1)(-22)

2 
 = 

poi 
( 	= (f_221)2  

aJ Poi 	poi J 	Poi 

Therefore 

a 
a. = 1 

Recalling (3.68) we see that the probabilistic strategy is 

optimal when 

1.1 
	j / s 	(3.81) 

The strategy is optimal when all mean costs are equal 

except that of the minimum cost state. 

A discrete state dual control problem treated with a 

probabilistic strategy has been presented recently by 

Nikolic and Fu34. 	Their strategy is to update a set of 

subjective probabilities using a reinforcement rule which 

depends upon which control alternative, i, was used in the 

lastinterval,andwhetherp 
A 
-increased or decreased as a 

result of its use. 	The strategy is convergent in the 

sense that requirements (3.58) and (3.59) are met. 	However 

there seems to be no other connection between their subjec-

tive ed in the present 

strategy, so that the additional requirement (3.60) is 
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presumably not met. 	It would be interesting to plot the 

decision trajectory for an ensemble of processes using the 

Nikolic and Fu strategy. 	It seems probable that even the 

asymptotic trajectory in N-1 space would be influenced by 

search parameters chosen subjectively at the beginning of 

the process. 

3.17 Optimal Strategy 

A realizable strategy whose asymptotic decision 

trajectory is always optimal can be synthesized by combining 

the technique of probabilistic decision with the optimality 

criterion (3.46). 	The set of all states is divided into 

two subsets, the first containing state s, and the second 

containing the other N-1 states. 	The control decision 

then breaks down into two stages: 

1) 	Choose state s probabilistically, with 

probability @g., where 

tg^ = 1 - ya, 	'ya < 0.5 

(3.82) 
= 0.5, 	ya > 0.5 

with 
	

a 
	

F. µsA) 

i=1 
i/s 



126. 

A 
If state s is chosen, control is applied so that the next 

A 
transition is initiated from state s. 	With y = 1, 

1- S), for large n. 	The saturation function (3.82) 

is used to prevent Qs from assuming very small or negative 

values early in the process. 	The effect of varying 'y will 

be considered later. 

2) 	if state s 
A 

is not chosen, choose state j from 

the remaining N-1 states so that 

exp(-pi2/2) 	exp(4.2/2) 
] 	(3.83) 

A 	 A 
0  n 1/2 i=l,...N 

= Max [ 	
n.1/2 

oj j oi 1 i/s 

From (3.42) it can be seen that (3.83) is an implemen- 

tation of the Bayes strategy (3.48). 	It therefore follows 

from the properties of the optimal decision trajectory that 

(3.60) holds, i.e. the asymptotic trajectory in N-1 space 

is in the direction of e. 	We shall proceed to show that 

the strategy also satisfies equations (3.58) and (3.59). 

Note that the strategy is a hybrid one, partly proba- 

listic and partly deterministic. 	We shall derive here the 

convergence equations for any hybrid policy which cho,Ises 

state s probabilistically, and other states according to 

any criterion which satisfies (3.60). 	We begin by evalu- 

ating dni/dn in (3.72). 	From step 1) of the strategy we 

see that 
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dn. 	. 1 dn. 
do N 

A 22, n. 
j=l 
jai 

where the .6,  notation may be used because of the straight 

line trajectory in N-1 space. 	In view of (3.49) the above 

equation may be written 

dn.1 	^lr 
dn -2 

POi 	(Poj)  
j=1/s 

(3.84) 

Using the general cost coefficients ai  of equation (3,52), 

we may combine (3.39), (3.41), (3.49), and (3.53) to obtain 

the asymptotic relationship between Oi  and Ja 

	

Oi 	F,(4s) = p. exp(-p1/2) 
lim= 

	

n--)co 7— 
	

Fj(µs) 	Pi exp(-p71/2) 

1/2 	1/2 

= ( 

p_, 

)(a

a 	n i 

)(—i  77) 	T5-1  
po,;  

oi n /2 "i poi  j nr  j  

a. p .2 
1 03  
a. 	2 

poi 

so that 



N 

= -
2 

Poi 	j=14  

j=14 

(ajp;) 

(p-ol 
2 ai  

2 dpi 
do lim 

n4.co 
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of 
Poi2  

 

a. 

2 
POj 

(3.85) a. 
1. j=1/g 

We now obtain from (3.72), (3.73), (3.84), and (3.85) 

with a solution 

N 

(4) 
2 a. 

lim 	0 . = 	1 	j=1/  
n->cio 1  nypoi2 N 

T (a
j 

p-2.) 
	1 /.. 	of 

j=1/s 

Ja is given by 

(3.86) 

lim 
N 	 N  

0i 
 = ny 

2 	
(4) 

i=1s 	j=lg 
(3.87) 

Note that if y=1, (3.87) is identical to the conver- 

gence equation (3.77) for probabilistic decision. 	The 

proof that (3.58) and (3.59) apply follows immediately as 

in the previous case. 	Equation (3.87) is the asymptotic 



129. 

convergence equation for any hybrid strategy in which 

state s is chosen according to rule 1 of the optimal policy, 

and the other states are chosen by any rule which satisfies 

(3.60). 	The constant 'y is called the convergence factor. 

If y is large, convergence is fast and initial cost per 

transition is high; if y is low convergence is slower, and 

the cost of estimation is spread over a longer period of 

time. 

This strategy possesses another useful property: since 

s monotonically decreasing function of 41  

expected cost per transition across an ensemble with the 

optimal strategy is a monotonically decreasing function of 

time. 	Similarly, the probability of choosing state s in 

the next transition increases monotonically with time. 

Toobservethemannerinwhichn.(i / s) grows we may 

combine (3.84) and (3.87) to obtain 

lim dn 
	2 

n-).co do 	npoi2 

whence, if ni  is considered continuous, a change fl  n in n 

givesrisetoachangeLn.in ni where 

lim 	b1 n. = 	2 log( n) 

Poi2  

(i L  s) 	(3.88) 



lim 6 n. 1 	2 n->oo poi k=n 

1 
Tc  (1 / s) (3.89) 

2 
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Ifn.isconsidereddiscrete,A. n, becomes the sum of all 

the expected changes in ni  over b,  n stages of the process 

(here L n need not be small), so that 

n+An 

It is easy to show that (3.88) and (3.89) are equivalent 

for large n. 

An interesting relationship exists between equation 

(3.89) and the characteristic vector, e. 	We may re-write 

(3,89) as 

n+ ts. n 

lim 
n->oo 

4n.=13 e. 

k=n 

1 
17 (3.90) 

N 

where p = constant = 2 	(p-01) 

j=1A 

Thus the multipliers of the harmonic series governing the 

growth of ni  are proportional to the respective elements of 

the characteristic decision vector. 

In many stochastic approximation schemes8, step size 

is decreased according to a harmonic series. 	The reason 

for this choice is that the harmonic series is the fastest 

shrinking series of the type n-k  which is still divergent. 
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In a noisy hill-climbing scheme divergence implies an un-

limited correction effort (from starting point to top of 

hill) if necessary. 	In a discrete Markov process harmonic 

divergence implies an unlimited estimation effort, which 

similarly guarantees convergence of the overall process. 

It is interesting that we have demonstrated from theoretical 

considerations the optimal properties of the harmonic series 

for a broad class of decision strategies. 

3.18 Proof of Convergence  

In the past three sections the policies dealt with have 

been shown to possess the suboptimal properties (3.58)- 

(3.60) in an ensemble sense. 	To show that these properties 

apply to every individual process, it is necessary to prove 

that property 2) of section 3.4 applies, i.e. that n -> op 

implies ni 	op for all states i = 1, 2, ... N. 	According 

to the decision strategy the probability of choosing state 

s at any stage of the process is equal to or greater than 

the probability of choosing any of the other N-1 states. 

It therefore suffices to show that for any finite number 
N 

m ,ni, there exists a finite number n such that the 
i=1/s 

probability of observing fewer than m transitions from the 

set of N-1 states estimated to be non-optimal (i / /) during 
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a sequence of n stages can be made less than an arbitrarily 

small positive number, 6. 	Note that the estimate of which 
A 

is state s may change as the process continues. 

The uncertainty, Si. , takes on a succession of values 

-12  k' k  = 1, 2, ... n, where k is the number of stages which  

have elapsed; n is finite. 	Since Ja is infinitesimally 

small only when all ni  are infinite, we know that all 

values of 	k  are finite positive numbers. 

Let A = Min /(-1 k 

By definition 0 < 0 < 1 

Let the sequence of length n be divided into m equal inter-

vals, each of length q = n/m, n being a multiple of m. 

Now if at each stage, k, state s ^ is chosen with probability 

1-Slk, then the probability, pl, of observing no transitions 

from one of the other N-1 states in a sequence of length q 

is bounded by 

p1 .1 (1-9
)q  

The probability, p2, of observing at least m such tran-

sitions in the sequence of m intervals is bounded by 

m 
p2 	[1 - (1-0)4] 

p2 > (1-C )m  > 

where E. = (1-9)cl. 

1 - m€ 	(3.91) 
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The probability of observing fewer than m transitions 

from estimated non-optimal states is thus 1-p2; it is 

necessary to show that 1-p2  can be made less than some 

arbitrarily small positive number 5. 	From (3.91) 

1 - p2  < me 

To prove that 1-p2  < 5, we substitute E-= (1-Q)cl  and q = nfm, 

and show that mc < 5. Convergence follows if there exists 

a finite number n such that 

(1-A)m  < 5 	(3.92) 

where 
	

O < A < 1 

O < 5 

O < m < 00 

O < n < oo 

Inspection of (3.92) shows that since A and 5 are 

greater than zero and m is finite, a sufficiently large 

finite n can always be found which will ensure the in- 

equality. 	Thus there is no finite limit on m, and there-

forelloneonn...gincealln. / .s increase without limit, 

all estimates, pig  and µi, tend towards their true values, 

pig  and µi  respectively, and the decision strategy con- 

verges. 	Equations (3.58)-(3.60) therefore apply asymp- 

totically to each individual process. 
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3.19 Summary 

In this chapter we have considered in some detail the 

interesting case in which control of a repetitive single-

stage discrete Markov process is to be carried out when the 

dynamics, as embodied in the matrix P, are initially un- 

known. 	In the presence of uncertainty concerning the 

optimal decision matrix, the controller must perform the 

dual function of estimation and control. Added to the 

cost of operation with the optimal policy, therefore, is 

an additional "learning cost" associated with the estimation 

necessary to determine the optimum policy. Too great an 

emphasis on estimation, i.e. a thorough "exploration" of 

the dynamics, defeats the selective purpose of control. 

On the other hand, a pure control strategy based on present 

estimates does little to reduce the uncertainty, and may 

prove non-convergent. 

Rather than attempt to steer between these two dangers 

by some heuristic means, we have set up an additional 

criterion which the dual controller must attempt to satisfy. 

The ideal adaptive controller is that which minimizes the 

learning cost associated with every error probability. 	It 

must therefore attempt to satisfy a constrained statistical 

minimization at every stage of the process. 
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What is sought is a decision strategy which converges 

to the optimal decision policy in an optimal (low cost) 

fashion. 	It has been shown that the ideal dual strategy 

is non-realizable. 	Nevertheless, a study of its asymptotic 

properties has allowed us to construct a framework within 

which we may evaluate the performance of dual algorithms. 

We have postulated an N-1 dimensional decision space whose 

coordinates are the quantities ni  (number of transitions 

observed from state 1), i y4  s. 	A series of decisions 

defines a decision trajectory descending a hill of uncer- 

tainty. 	An optimal trajectory eventually becomes a straight 

line in decision space; the vector defining its direction 

is the characteristic decision vector of the process. 	If 

we can construct a realizable strategy whose decision 

trajectory coincides asymptotically with that of the ideal 

strategy, we shall then have an asymptotically optimal 

strategy. Analysis shows that evan a strategy whose 

asymptotic trajectory is parallel to, but not coincident 

with, the ideal trajectory is very nearly as good as the 

optimal strategy; such parallel strategies are called 

"suboptimal". 	The synthesis of two different suboptimal 

strategies, together with an optimal strategy, has been 

demonstrated. 

Since the constrained minimization (3.9) performed by 
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the controller yields an indeterminate value of ns  (ns  a  oo), 

the designer has a free choice of one parameter. 	In the 

formulation considered, this is the convergence factor; it 

may be regarded as a time-scaling factor affecting the con- 

vergence rate of the uncertainty, n_ 	The choice of 

convergence factor is somewhat analogous to the choice of 

step length when hill climbing with a gradient technique. 

The three realizable strategies presented are each 

partly probabilistic in form. 	For policies of this type 

it has been shown that the quantities ni, i # s, grow as a 

set of harmonic series. 	In this problem as in many others 

involving extremum-seeking in a stochastic environment, 

seemingly contradictory requirements are reconciled by the 

paradoxical quality of the harmonic series, whose ever-

decreasing terms sum to infinity. 

We review here the principal properties of the optimal 

strategy 

1) Convergence  

lim 	.= 0 
n-->co 

an. 
lim 	= 0, 
n400s 
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2) Optimality  

For n op, the set ini, 

every value of -a- 

3) Ensemble Monotonicity  

minimizes E[V] for 

     

E[g(n+1)] < E[g(n)] 

It should be pointed out that because of the indetermi-

nacy of ns  there exist many realizable strategies which will 

satisfy 1) and 2), each differing in the manner in which 

state s is chosen. 	The particular strategy described in 

this chapter is put forward for three reasons: 

1) it is computationally simple; 

2) g is monotonic across an ensemble; 

3) it is easily described in probabilistic terms, 

and its convergence rate is predictable. 

In probabilistic terms we may consider the current 

decision matrix, D(n) as being made up of identical rows 

< di = (dil(n), diN  (n)] where 

d.^ (n) = 1 -SI 
	

(3.93) 

d. .(n) = Jae., 	j 7 s 	(3.94) 

e. = jth  component of the characteristic decision vector 

in N-i space. 
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CHAPTER 4 

COMPUTATIONAL METHODS AND RESULTS 

IN SINGLE-STAGE MARKOV PROCESSES 

4.1 Introduction 

This chapter is the companion piece of Chapter 3; in 

it we shall verify the theory of Chapter 3 numerically, and 

demonstrate its application. To verify the theory we shall 

compare simulated results using the (realizable) optimal 

strategy, with those which would be achieved using the 

(non-realizable) ideal strategy. 	To compute the latter 

efficiently, we shall use the normal approximation of the 

parameter estimates, i.e. we shall approximate the error 

probability, w, by the uncertainty, -T- 	Given the 

posterior estimates [µ±(n)1 and Ri2(n) , and given 

the fact that the system has reached a level of uncertainty 

Ji f' the ideal strategy determines the set of choices 

, /1.21  	 n3/11  } which would have minimized the cost of 

reaching .Q = 1/f 
if the posterior estimates had been 

available a priori. 	The development of the computational 

techniques associated with the ideal strategy is therefore 

first considered. 
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The results of the simulation of an ensemble of three- 

state processes is then presented in detail. 	It is shown 

that the performance of the optimal strategy closely 

approaches that of the ideal one. 	As an example, the 

control of a twenty-level batch chemical process is simu-

lated, and the effects .of various prior assumptions are 

demonstrated. 

4.2 Optimal Trajectories in (N-1) Space  

The simplest computation is that of an optimal decision 

trajectory taken across an ensemble in N-1 space, given the 

statistical parameters of the system and assuming that 

ns OD. 	The trajectory may be computed as a series of 

steps 6 ni, using the Bayes approach of section 3.6. 	The 

computational flow diagram is shown in fig. 4.1; fig. 4.2 

shows the resulting trajectory for a three-state system in 

which 

0.3 0.3 0.4 6 14 10 

P= 0.6 0.3 0.1 C= 14 12 3 

0.7 0.1 0.2 16 12 8 
• 

so that 
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µ
1  10.0 0012 9.60 n 1 co 

42 = 12.3 0022 = 10.41 

4
3 

14.0 0032  = 10.40 

The increment L n was chosen as 0.20. To obtain an 

accurate hill shape, the contours of Ja were computed from 

equation (3.25), valid for all ni, rather than the asymp-

totic version (3.41). 

Suppose, as an example, that after a long run the final 

estimate of parameters is as given above, and that the un-

certainty associated with the estimate of minimum cost state 

is 0.02. 	Had these parameters been assumed at the beginning 

of the decision process, what set /n n2, n3 would we 

have chosen to verify that 41  was in fact the minimum mean 

with probability 0.98, bearing in mind that the cost of 

estimation, V, must be minimized? 

After many transitions have taken place, ni  will be 

large so that 012, the variance associated with our estimate 

of 41, will be zero for practical purposes. 	The optimal 

values of n2 and n3  are then obtained from fig. 4.2. 	We 

observe that the optimal trajectory cuts the I/ = 0.02 

contour at 

n2 9.85 

n
3 = 

3.85 
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so that 	V = [9.85(12.3 - 10.0) + 3.85(14.0 - 10.0)] 

= 38.05 

These values are of course ensemble averages. 	Results 

in individual processes will vary, and can be guaranteed 

only for all ni  4. op. 	However in a typical process we 

would expect to reduce —a to slightly less than 0.02 with 

n2 = 10 and n3 
= 4. 

As a comparison with the optimal trajectory generated 

by the ideal strategy, the probabilistic and equal rho 

trajectories have also been computed. 	Note that, as 

expected, all are asymptotically parallel. 	The character-

istic vector is given by equations (3.50) and (3.51) 

P032  
2 e2  v3 	(43-41)2 	002

2 
= e3  	2 	, 2 

vo2 	-03 	(42-41)2 

(4.0)2  10.41 = 	3.028 
10.40 (2.3)2  

and e2 + e3 	
= 1 

0.7517 
so that e 	= 

0.2483 
••••11. 

Asymptotically, each trajectory cuts the Ja contour 

at a constant angle determined by the cost multipliers, ai, 
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for which that particular trajectory is optimal. 	Table 4.1 

gives the equations of the -a tangents at the point of 

intersection of the trajectory and the II contour. 	The 

equations are determined from (3.33) and from the results 

of sections 3.15 and 3.16. 	Direct measurement of the 

tangent angles in fig. 4.2 may be used to verify the validity 

of the solution of the inverse problem, as presented in 

section 3.12. 

TABLE 4.1 

Trajectory 

OMEGA CONTOUR TANGENTS 

Tangent Equation 

 

   

Optimal 	V = ki(2.3n2  + 4.0n3) 

Equal Rho 	V = k2(n2  + 3.028n3) 

Probabilistic 	V = k3(n2  + n3) 

k1, k2, k3 are arbitrary constants 

We may use fig. 4.2 to determine the estimation cost 

using a suboptimal strategy to obtain IL. 0.02. With an 

equal rho strategy the cost would be 

V = 2.3 (10.7) + 4 (3.5) = 38.6 
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With a probabilistic strategy it would be 

V = 2.3 (9.3) + 4 (4.3) = 38.6 

As predicted, the performance of the suboptimal 

strategies is nearly as good as that of the optimal one. 

It is not true in general, though, that all suboptimal 

strategies yield equal costs. 	To compare the above 

figures with the performance of an adaptive strategy which 

is not suboptimal, we shall consider a strategy in which 

n1 --> OD, and n2 and n3 
are chosen equally until _r/ = 0.02. 

The resulting trajectory has been plotted in fig. 4.2. 	We 

observe that it cuts the 	= 0.02 contour at n2  = n3  = 8.3; 

the cost is then 

V = 2.3 (8.3)+4 (8.3) = 52.3 

Finally, as an example of how high the cost can be if 

we totally neglect the concept of dual control, we compute 

the cost incurred when all states are chosen an equal 

number of times. 	Thus 

n1 = n2 n3 

and 	1 f1(x) G2(x) G3(x) dx = 0.02 

-CO 
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These equations can be solved by successive approximation 

to obtain 

n1 = n2 = n3 = 15.6 

and 	V = 2.3 (15.6) 	4 (15.6) = 98.3 

4.3 Optimum Point in (N-1) Space  

Often we are not interested in the whole decision 

trajectory, but in a single optimum point, nNIlf), in N-1 

space. 	In such a case we would like to find by a quick 

approximation some point n on the optimal trajectory in the 

vicinity of n ; we can then reach the latter by following 

the optimal trajectory until n =1/f° To form the 

initial approximation two pieces of information are 

necessary: 

1) the approximate relationship between n and _r/ in 

the vicinity of the optimal trajectory; 

2) the approximate location of the optimal trajectory 

in N-1 space. 

Fortunately, both 1) and 2) can be computed using the 

theory of chapter 3. 	Our approach will be the following: 

we shall compute the approximate point of intersection 

(nY  in fig. 1..3) of an equal rho (basic) trajectory with 
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the a f contour; we shall then compute the offset 
vector h.a  between the equal rho and optimal trajectories. 

Having determined the point n" on the optimal trajectory in 

the vicinity of nx, we can reach nx by a succession of 

Bayes decisions, as in the previous section. 

1) Relationship of n to-II near nx  

It is assumed that we are interested, for practical 

purposes in values of 	between 0.005 and 0.1. 	For these 

values we introduce here the approximation 

Fi(µs) ce. a exp(-  412) 	(4.1) 

where 	a = 0.250 	1.3 < pi  < 2.6 

p = 0.594 	0.005 < Fi(ls) < 0.1 

Unlike the asymptotic relation (3.39), (4.1) is simply a 

"best fit" approximation, useful for computing purposes, 

but having no theoretical basis. 

For 	< 0.1, 

N 	 N 

Fi(µs) = a 	exp(-ppi2) 

1=1/s 

In an equal rho trajectory 

2 n. 1 = oj  
n. 	2 

Poi 
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so that 

n . 
N 

Ili  poi2 
N 

(130j -2)  
j=1ys 

Thus 

- 	n. 

( 	. 2 ) (N-1)  exp j=1/s 
N 

   

j=i/s 

Each of the N-1 coordinates of n' in fig. 4.3 is given by 

nt 	1  log [ 

13PO i2 	 f  

 

( 	. 3 ) 

  

Equation (4.3) defines the point n' in fig. 4.3. 

 

2) 	Location of Optimal Trajectory 

Given the point n' we can determine the components hja... 

of the offset vector h.a  from (3.56) 

h.. 
J1 = 

p . 2 	h
_ 
.. 	a . 1 21_2 11 ) % [log( + 2 log(-22)] 	(4.4) 

r 
, 
Oj  

2 	poj + ni  01 
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where i may be chosen arbitrarily (1 / s). 	Given the 

value of n. 	= 2 in fig. 4.3), we can solve (4.4) 

iteratively for the components hji. 	Now in fig. 4.3, 

n" = n' + h. (4.5) 

Having determined n", which is on the optimal trajectory, 

we can locate n
x 

by a succession of Bayes decisions. 

One consideration of some subtlety arises here. 

After a point n" has been determined, the question may 

arise, 'Should a given ni  be increased or decreased to 

approach nx?' 	If n" is an arbitrary point in the vicinity 

of nx, the answer is not obvious; a straightforward appli-

cation of the Bayes approach may lead to a non-optimum 

point. 	To resolve this difficulty, we have placed n" as 

nearly as possible on the optimal trajectory, thereby 

making use of the fact that if and only if a point is on 

the trajectory 

_f 2 < S f 	 < 	> n.1  n. 

and —O. > 	
f 

 

n> 

 

Since reflection about nH  along the optimal trajectory 

inverts the Bayes criterion used to approach nx, it is 

useful to place n" on the same side of nx  in every 



n2 10.67 

3.52 

0.0 

0.62 
and h2 

so that n = n + h2  

10.67 

4.14 
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computation. 	We have adopted the convention of making 

_a< 12f  at n" . 	If initially 1/ >_f/f  then n" is 

increased by A n to ensure that, at n" + L n, f' 

an = c 	(poj2)(, nf 
j=1/s 	1/(n") 

where c is a constant > 1. 

e is the characteristic vector. 

Fig. 4.4 is a flow diagram of the algorithm used to 

compute n(.2 f) 
	

Using the parameters in the example given 

previously, we find that, for 12 f = 0.02,  

Comparing these values with fig. 4.2, we see that n t  

is indeed an equal rho approximation, and that n" lies on 

the optimal trajectory, fairly close to the final optimum 

9.85 
point, n"' = 

3.85 
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4.4 Doubly Constrained .Optima 

The foregoing algorithm allows us to compute the 

minimum possible ensemble average cost which need be incurred 

to ensure that _12 is reduced to a required level. No upper 

limit is placed on n, the total number of transitions which 

may be observed, and optimality requires that ns  --> oo, where 

s is the minimum cost state. 	We have seen that realizable 

decision policies exist which approximate the situation for 

large n. 	Early in the life of a process, however, when n 

is small by definition, this theoretical optimum is obvi-

ously an unsuitable measure of the performance of a decision 

strategy. 	For limited n, then, the problem is 

Choose the set nl' 	 nwl to minimize 

N 

n-a.(11.-4s  ) 
i=1 

subject to 

fs(x) 	Gi(x) dx = 1-2f 
1=1/s 

and 
	

n. = nf 
	 (4.6) 

i=1 

V = 

_Go 
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Notice that the problem differs from the original one 

only by the presence of the additional constraint (4.6). 

It is possible to solve it using an algorithm similar to 

that shown in fig. 14.1. 	In the latter case, however,..C2_ 

is expressed as a product, and the gradient, ( Ln/ /W. ), 

is relatively easy to compute. 	Moreover this gradient must 

be re-evaluated for only one state at each step of the 

search in N-1 space. 	In the doubly constrained problem 

in which ns is finite, 411/ i is a more complicated 

function, viz. 

en_ 
AV1 

1 
00 

[ f 
_00 

• N 

f s  (n  s  ,x) VT G.(n.
J
,x) dx 

j.1/s 

00 

00 

N 

fs(ns,x)Gi(ni+ Ani) T—F 
j.i/s 

  

G.(n
j 
 ,x) dx (4.7) 

  

where f.1(n.,x) 1 

n.1/2 

oi 

n. x-1. 2  

2 exp r- —1  (----1) I 
of 

co 

and 	G.(n.,x) 
	

fi(ni,y) dy 

Since each gradient calculation involves an integral 

evaluation, this computation is much slower than the 



a = (4.8) n.f  
_a(n )  
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corresponding one given by (3.29), in which the function 

G1(x) can be interpolated from a look-up table in the 

computer memory. 	In addition (4.7) must be computed N 

times at every step of the search, rather than once as in 

the former algorithm. 	Even for modest values of N (5-10) 

this method of descent in N-space is excessively slow. 

Fortunately, the theory of chapter 3 once again allows 

us to simplify the search. 	We know that for ns 	co, the 

N-1 variables, nl, n2 	ns-1' ns+1' 	nN, are related 

by the characteristic vector, e. 	We shall make the assump- 

tion that the characteristic vector is also valid for finite 

values of ns. 
	Thus if n is the projection in N-1 space of 

an arbitrary point on the optimal trajectory, and n7-'is the 

desired optimum point where S. = f' we assume that n and 

n are colinear, i.e. 

n = n + ae 

where "a" is a scalar multiplier. 	Providing a suitable 

starting point n can be found, we need only vary it ait , com- 

puting ns  from (4.6) until _11..=S2.f. 	The process is 

carried out iteratively, with "a" approximated by 
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As a starting point n for this'procedure we use the 

singly constrained optimum point with 12 =12f' computed as 
outlined in section 4.3 and fig. 4.4. 	The computational 

flow diagram is shown in fig. 4.5. 	Because the number of 

evaluations of _CI is drastically reduced the convergence 

of this algorithm is very much faster than that obtained 

with descent in N-space. 	Using the parameters given in 

section 4.2, we find that even for low values of of the 

computed optimum cost is within less than 0.1 /b of that 

given by the method of descent in N-space. For of  = 100, 

the difference is less than 0.001%. 	Using descent in 3 

space the computation requires about 30 seconds on an 

TRM 7090 computer; using the simplified method the time 

is 2.5 seconds. 	As the number of states increases, this 

time disparity becomes even greater. 

4.5 Simulated Results: A Three-State System  

Having developed the necessary computational procedures 

in sections 4.2 to 4.4, we are now ready to compare simu- 

lated results with those of the ideal strategy. 	One 

hundred three-state systems with identical stochastic 

transition matrices were simulated separately on an IBM 7090 

computer, and mean values of the observation matrix, M, were 
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taken across the ensemble at intervals of five transitions. 

From these the posterior ensemble parameters 
tn 

• , f's 111 t . 012  
and _(2 (n) were computed. 	These posterior values were fed 

into the algorithm of fig. 1l.5, and the doubly constrained 

optima, {n31(n)} and V—, were computed and compared with 
A 

theobservedensemblevaluesHand V. The basic corn- ]. 

parison procedure is shown in fig. 4.6. 

To start the process it is necessary to have a prior 

estimate of {ooi21. 	Since this is a finite state system 

with a finite range of possible costs, the range of o0i2  is 

bounded. 	In the total absence of any knowledge of P, the 

priorestimateofooi2 is taken as that which would result 

if all put s were equal (pig  = 1/N). 	This estimate is 

nearly always higher than the true value of o0i2, and 

results in a slightly conservative estimation strategy at 

the beginning of the process; i.e. the estimated minimum 

cost state is chosen somewhat less frequently than it 

would be if the true values coil were known. 	Such a 

procedure has the advantage of being less easily deceived 

by atypical results occurring early in the life of the 

process. 	As time progresses, an updated estimate of each 

o0i2  is computed as a weighted sum of the maximum likelihood 

estimateandthepriorestimate;theestimateofo. ol2 can 

be made in this way to converge to its true value. 
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As we shall see, it is often useful to compute (or 

guess) a prior estimate of irµii as well. 	However in 

this case the process was started by a choice of each 

state once in turn, and application of the optimal dual 

strategy with y = 1.0 thereafter. 

The process parameters used were those of the three- 

state system of section 4.2. 	The matrices are repeated 

here for convenience 

0.3 0.3 0.4 r 	6 14 lo 

P. 0.6 0.3 0.1 ; c = 14 12 3 

0.7 0.1 0.2 16 12 8 

Only the matrix C is known to the controller. The 

results of an ensemble of 100 processes, each of which 

ran for 100 transitions, are presented in figs. 4.7-4.10. 

If P is known it is apparent that the optimal decision 

vector di  is [1 0 0]; since all states are reachable 

deterministically by one control action, and B = 0, each 

row of the optimal decision matrix, 

••••• 

DX, is the same. 

1 0 0 

DX  1 0 0 

1 0 0 

and 	n(PDx) = [1 	0 0] 

so that 	g
x <n, > 	= 10.0 
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47 
Fig. .91-7 shows the convergence of the mean cost per 

transition with time when the optimal dual strategy is used. 

The overall mean cost per transition is 11.69 at stage 5 

and 10.33 at stage 100. 	The incremental cost per transition, 

measured over the previous five transitions, drops from 11.69 

to 10.03 in the same period. 	Note that after only five 

transitions the cost is already below the value of 12.10 

which would be obtained if all states were chosen equally. 

The uncertainty,,, steadily approaches zero as n 

increases, as shown in fig. 4.8a. 	It is interesting to 

compare the measured value of Si at n = 100 with that 

predicted by the asymptotic equation (3.87). 	The latter 

predicts 11 = 0.0524; the measured value is _C./ = 0.0384. 

There are two reasons for this discrepancy. 	First, (3.87) 

applies strictly only to infinitesimal values of S- 	More 

important, however, is the fact that the theory upon which 

(3.87) is based assumes that ns = n1 	
OD, so that all 

reduction in .12 should be caused by n2  and n3. 	In the 

early stages of the process an additional decrease in -C-2- is 

caused by increasing ns. 

The results of the comparison between the observed 

cost and the cost using the ideal stragegy (non-realizable 

because it assumes prior knowledge of the estimates) is 

shown in fig. 4.8b. 	For ..Q< 0.10, the observed cost was 
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at all times within 2.55/o of the ideal cost. 	After 100 

transitions the measured estimation cost was 36.48 for 

12= 0.038365. 	If the posterior estimates at n = 100 had 

been available at the beginning of the process, the same 

value of S2 could have been achieved at a cost of 36.00. 

The solution generated by the algorithm of fig. 4.5 shows 

that this could have been achieved with nx 	(86.54, 10.04, 

3.42) instead of the observed n = (86.72, 9.38, 3.90). 	In 

terms of overall cost per transition, the measured value of 

10.3348 compares very well with the ideal minimum dual cost 

of 10.3300. 

From (3.93) we see that the probability of choosing 

state s at stage n is given by dis(n) = 1 -SI . 	At n = 100, 

this value is 0.9616. 	The observed frequency of choice of 

state s is given by (#4ns/Qn), which is plotted in fig. 4.9. 

At n = 100 ( 4ns/A n) = 0.968 and is in close agreement with 

the value of d. is 
alable4.1S1-1011Stheelasembleestinatest. all and 	0 . 01 

at n = 100. 	Using these values and the theory of the 

characteristic vector, we can compute from (3.93) and (3.94) 

the decision vector di(n) at n = 100. 	It is found to be 

di(loo) = (0.9616, 0.0304, 0.0080) 	i = 1, 2, 3 

so that 	g(100) = < di, µ > 

= 0.9616(96970) + 0.0304(12.183) + 0.0080(14.000) 

. 10.070 
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The observed cost of the last ten transitions, 10.076, is 

in excellent agreement with the value calculated above. 

TABLE 4.1 

THEORETICAL AND ESTIMATED PARAMETERS 

IN A THREE-STATE SYSTEM 

Parameter 

Theoretical mean cost 

State 

1 

10.000 

2 

12.300 

3 

14.000 

Estimated mean (n=100) 9.970 12.183 14.000 

Theoretical one-stage variance 9.600 10.410 10.400 

Prior estimate of variance (n=0) 8.991 22.889 10.667 

Weighted estimate of variance (n=100) 9.617 12.044 10.585 

Since at n = 100 IL = 0.0384, we would expect that 

in an ensemble of 100 processes state s would be chosen 

incorrectly about three or four times. 	In fact an incorrect 

choice was made twice. 	In both cases state 2 was chosen 	as 

the minimum cost state. 	The resulting values of n1 were 

6 and 3, and the mean costs per traisition were 11.95 and 

11.77 respectively. 	Note that even in these, by far the 
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worst cases, the cost per transition is below the value 

(12.10) which would be expected if all states were chosen 

equally. 	It should be emphasized that in time, the values 

of d and g will converge correctly even in these anomalous 

cases. 

Fig. 4.10 shows the ensemble distributions of ns  and 

overall cost per transition at n = 100. 	Because of the 

scales used, the two cases mentioned above are not shown; 

they are of course included in the computation of mean 

values. 	Fig. 4.10a shows that even though the controller 

has no knowledge of P at the beginning of the process, the 

correct state is chosen at least 90 times in the first 100 

transitions in more than half of the members of the ensemble; 

the mean value of ns across the ensemble is 86.72. 	Fig. 

1 .10b shows the distribution of mean cost per transition. 

Observed values, apart from the two cases mentioned pre-

viously, range from 9.58 to 11.20; the ensemble mean is 

10.33. 

4.6 Effect of Variance Estimate  

In table 4.1 the prior estimate of 0022  is about twice 
A 

Because the estimate 0o2
2 at any stage in 

the process is a weighted sum of the prior estimate and the 

its true value. 
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maximum likelihood estimate, 6o22 is slightly high even 

after 100 transitions. 	One could of course use only the 

maximum likelihood estimate for n. > 2 (at least two samples 

are required to estimate variance). 	The reason that this 

is not done is that there is a finite probability that the 

maximum likelihood estimate of variance will be exactly 

zero owing to the first two transitions from state i being 

identical. 	In such a case state i, unless i = 'Ss, will 

never be chosen again by the optimal controller, since 

coil 
= 0 implies certainty concerning the estimate of µ.. 

Such a situation, which could lead to a non-convergent 

strategy, is avoided by the weighted variance approach. 

Although both the asymptotic convergence and optimality 

of the strategy are assured despite initially incorrect mean 

and variance estimates, it is beneficial to operation early 

in the life of the process to make these estimates as 

accurate as possible. 	Usually the behaviour of the pro- 

cess is known vaguely at least, and some estimate of P can 

be formed which is better than the automatic prior estimate 

ofpij  = 1/N used in the foregoing example. 

4.7 An Example: A Fluid Mixing Process  

Let us consider a batch mixing process in which it is 
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desired to introduce a certain quantity of a solution at a 

fixed temperature during a batch reaction. The flow of 

solution is controlled by an inlet valve. 	Owing to 

pressure and flow fluctuations the concentration of the 

final product is distributed statistically, the distribution 

depending on the input valve setting. 	It is desired to 

determine, by adaptive control of a long sequence of 

batches, which valve setting yields a final concentration 

nearest to some specified value. 

There are two main disturbance effects. 	The first 	is 

a random variation whose magnitude increases with flow, 

i.e. the signal-to-noise ratio is constant. 	The second 

is caused by pressure variations; pressure regulation is 

poor at the upper and lower extremes of the valve setting. 

The noise introduced at these points is caused by a switching 

action elsewhere in the fluid circuit. 	Its probability 

density therefore tends to be concentrated at - x, where x 

is relatively large for valve settings close to the extremes, 

and small for intermediate settings. 	The numerical distri- 

bution of suitable distribution functions, together with 

the parameters used for this particular simulation, are 

considered in appendix 4. 

The final product is useful if its concentration lies 

between 5.056 and 6.9/6 inclusive; the desired concentration 
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is 6.0%. 	Concentration is measured with an accuracy of 

0.05%. 	We may therefore quantize the useful output 

concentrations into twenty states or levels, 5.0, 5.1, .... 

6.9%. 	Two more states must also be added to represent 

concentrations which are outside the usable range. 	The 

cost incurred (i.e. the loss in value of the product) is 

deemed to increase quadratically with the difference in 

concentration from the desired level. 	In addition, an 

extra penalty is added if the product is outside the usable 

limits. 	The resulting costs are shown in table 4.2. 

The input setting is similarly quantized into twenty 

states along with two dummy states added for mathematical 

convenience to match states 1 and 22 in the output (in 

general, though, there is no theoretical reason in a batch 

process for the input and output states to match in number). 

The transpose of the last column of table 4.2 is a row of 

the 22 x 22 cost matrix, C. 	Each row is identical in this 

case because no direct cost has been attached to input flow. 

The problem of determining the correct valve setting 

is essentially that of climbing a discrete noisy hill in 

one dimension. 	Note that it may be multimodal or may 

possess multiple minima; perhaps there are two different 

valve settings which incur the same expected cost. 	The 

theory developed in chapter 3 assumes, in fact, no 
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correlation in cost between adjacent states, and is quite 

capable of handling such a hill. 

TABLE 4.2 

PRODUCT 	COST 

State 

AS 	A 	FUNCTION 

Concentration 

OF 	OUTPUT 	CONCENTRATION 

(°/o) 	Cost 

1 < 5.0 321 
2 5.0 100 

3 5.1 81 
4 5.2 64 

5 5.3 49 
6 5.4 36 

7 5.5 25 
8 5.6 16 

9 5.7 9 
10 5.8 4 

11 5.9 1 

12 6.0 0 

13 6.1 1 

14 6.2 4 

15 6.3 16 
16 6.4 25 

17 6.5 36 
18 6.6 49 

19 6.7 64 

20 6.8 81 
21 6.9 100 

22 > 6.9 300 
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If the designer is unable to put forward any prior 

estimate of the process transition matrix P, and does not 

wish to make the assumption of unimodality, then the pro-

cess clan be optimized automatically with an equal-probability 

priorestimateofLiand [ooi2i, as previously Pi dis- 

cussed. 	If an intelligent guess concerning P is available, 

though, it should be used as a prior estimate. 

Suppose that unimodality can be assumed. 	In such a 

case the requirement of a global search can be dispensed 

with, and the following unimodal algorithm is applicable. 

At any stage in the process form a three-state subsystem 

consisting of the state whose expected cost is minimum at 

present, and the two adjacent states. 	Apply the optimal 

decision strategy within the subsystem and observe a further 

transition. 	Then form a new three-state subsystem in the 

same way (it may be the same one again) and repeat. 	This 

algorithm will invariably yield convergence to the local 

minimum. 	It is also applicable to multidimensional hills; 

if the number of variables is k, then the number of states 

in the subsystem is 3k. 

Control of the mixing process was simulated using three 

different initial assumptions: 

1) no prior knowledge; 

2) prior estimate of P for variance computation: if 
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the valve setting is state i, it was assumed that the out-

put would be uniformly distributed over the seven states 

i - 3 to i + 3. 

3) same as 2), but the cost hill was assumed to be 

unimodal. 

In fact the hill is unimodal;:  its minimum is flat, 

though, the two control states 8 and 9 yielding equal costs. 

This posed no difficulty for the controller which tended 

asymptotically to alternate between them to the near 

exclusion of other states. 

Fig. 4.11 shows the resulting cost convergence. 

Though all curves will converge to the same mean cost per 

transition eventually, a relatively high initial cost is 

incurred when no prior estimates are available and a global 

search is carried out. 	Note that even the rough approxi-

mation of assumption 2) lowers the initial cost somewhat. 

It can be seen that use of the unimodal algorithm is very 

much more efficient than either of the previous two pro- 

cedures. 	The input control subset 7, 8, and 9 was selected 

as containing the minimum after only 14 transitions. The 

better performance with this algorithm is due both to its 

quick convergence and to the fact that none of the extreme 

valve settings, which yield a low quality expensive output, 

were tried at all in the local search. 	In a global search 

each one must be tried at least once. 
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TABLE 4.3 

PERFORMANCE OF OPTIMAL DECISION STRATEGY 

IN FLUID MIXING PRURLEM 

Run number 	1 	2 	3 	4 
Prior es- No prior 	Local 	No 

Prior Assumption 	timate of estimate variance Search Learning 

Parameter 

Mean cost/transition 
averaged over: 

1000 transitions 8.558 6.399 4.405 114.882 
Last 900 transitions 6.606 4.180 3.853 
Last 800 transitions 5.55o 3.966 3.940 
Last 500 transitions 4.524 3.825 3.778 
Last 300 transitions 4.950 3.803 3.817 

Control Effectiveness: 

Per cent of transitions 
using optimal settings 

84.4 93.7 95.7 10.0 

(8 or 9) 

Product Quality: 

Per cent output in 
range 5.67o - 6.49/0  

93.2 95.5 98.8 35.6 

Per cent output in 
range 5.8% - 6.2% 

75.0 78.4 78.7 19.0 

Per cent reject batches 1.0 0.5 0.0 31.7 

Table 4.3 gives a more detailed comparison of the 

three runs. Note that in run 2 convergence was nearly 

complete after 200 transitions (though the overall mean 

cost per transition decreases slowly because of high initial 
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costs, the incremental mean cost decreases relatively 

quickly; cf. fig. 4.7). 	The value of gx appears to be 

about 3.8. 	Apart from the high initial search cost 

necessarily incurred in run 2, runs 2 and 3 give quite 

similar results. 	Control effectiveness and product 

quality (see table )+.3) are similar, and each is somewhat 

better than in run 1, for which no prior information was 

assumed. 

A fourth run was made using a non-learning control in 

which all input valve settings were used an equal number of 

times. 	The results in table 4.3 speak for themselves. 

To give a detailed idea of the step-by-step control 

sequence, the individual valve set points for the first 150 

transitions (batches) have been plotted in fig. 4.12 from 

the results of run 2. 	The first 21 transitions are ex- 

ploratory, each control state being chosen at least once. 

At this point the optimum setting appears to be between 

states 5 and 11 with high probability, and this region is 

searched more thoroughly. 	After transition 120, it appears 

increasingly probable that either state 8 or 9 is the opti-

mum control setting; one or other of these is chosen in 

all but seven of the following 880 transitions. 
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4.8 Summary 

Numerical results have been presented in this chapter 

which illustrate and verify the theory developed in 

chapter 3. 	An ensemble of one hundred three-state 

systems has been simulated, and it has been seen that the 

(realizable) optimal dual strategy yields estimation costs 

which are within less than 2.5% of those associated with 

the (non-realizable) ideal strategy. 	The effects of 

various prior assumptions have been illustrated by the 

simulation of a twenty-level batch mixing process in 

which multiplicative non-gaussian noise is present. 

Even in the face of initially complete ignorance of the 

process and noise parameters, the optimal decision strategy 

converges satisfactorily. 	However, it has also been 

shown that some prior knowledge concerning the process, 

even if only very approximate in nature, enables the con- 

troller to reduce the estimation cost incurred. 	In 

particular, the knowledge that a given cost hill is uni-

modal is extremely valuable. 
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CHAPTER 5 

ADAPTIVE ORDERING OF POWER GENERATION 

AS A CYCLIC MARKOV PROCESS 

5.1 Introduction=  

The control of a discrete Markov process in which P is 

initially unknown normally implies the existence of a dual 

control problem. 	However this is not invariably so. 

Mathematically, the requirement for a dual control strategy 

exists because control decisions, based on the estimate, P, 

also affect the choice of which rows of P will be subject 

to further estimation. 	In short, estimation and control 

are interlocked. 	If, though P is unknown, certain rows 

of P are known a priori to be completely correlated, this 

interdependence does not exist. 	As an example of such a 

system, we shall consider in simplified form the ordering 

of thermal-electric power generation. 	The matrix P applies 

to demand transitions; ordering decisions, while affecting 

cost, do not affect future demand. 	For this reason esti-

mation can be separated from control. 

Most of the results of this chapter have also been 
incorporated into reference 48. 
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5.2 The Ordering Problem 

The problem of ordering, or unit commitment, of 

thermal-electric power generating capacity may be defined 

as follows: 

Given: 1) th, the minimum time interval required to 

bring a generating set on line if it is at 

present in a no-load standby condition; 

2) the predicted future power demand; 

3) the cost of bringing each set on line; 

4) the running cost of each set (neglecting 

fixed costs); 

5) penalty costs incurred for failure to meet 

demand; 

6) present operating conditions (demand, number 

of sets now on line, condition of standby sets). 

Required: to determine the number of generating sets, if 

any, which should be prepared at time t so that 

demand will be met at time t + th  with minimum 

expected overall cost. 

In the treatment of this problem it is customary to 

base calculations on an expected demand curve
4547 

which 

may be updated periodically. 	Thus once a prediction has 

been made, the ordering problem becomes deterministic. 
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In the present formulation we consider future demand to be 

probabilistic in nature; moreover, since the number of 

machines running is a member of a discrete set, we consider 

that demand assumes discrete levels as well. 

The basic system model is shown in fig. 5.1. 	A 

central load control unit is connected to a number of 

generating stations. The central unit predicts the 

overall load44, and allocates it to the various stations. 

For allocation purposes each 24 hour period is divided 

into T equal intervals. At the beginning of each interval 

the central unit makes a demand on each plant, which remains 

constant throughout the interval at one of N discrete levels 

(corresponding to the output of an integer number of 

generators). 	The generators of each plant are ordered 

to meet the predicted demand in the following intervals 

in the most economical fashion. 	The demand level in the 

next interval is assumed to depend upon present demand and 

time of day (interval number). 	Demand transitions are 

thus described by T stochastic transition matrices, 

P(1), P(2), .... P(T), where 

P(t) = N x N stochastic transition matrix whose elements 

Pij(t) equal the probability that if the demand 

level is i at interval t, it will be j at interval 

t + 1. 
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It should be noted that the number of levels, N, and 

the matrices P(t), may be different for each plant. 

Generating sets may be in one of three conditions: 

1) no load standby; 

2) full load on-line output; 

3) in transition from 1) to 2). 

No cost is attached to condition 1), or the transition 

from 2) to 1). 	In condition 2) an operating cost is 

incurred. 	Completion of the transition 3) is assumed 

to require one time interval, and incurs a heating cost. 

If during any interval the available on-line generating 

capacity of a plant is insufficient to meet the demand, 

power may be purchased from an external source. 	Overall 

power costs are conveniently summarized by two cost 

matrices, B(t) and CM, where 

B(t) = N x N control cost matrix whose elements bij. .(t) 

equal the cost of heating (j-i) additional 

generators for operation in interval t + 1, if 

"i" generators are running at the beginning of 

interval t. 	If j < i, bij(t) = 0. 

C(t) = N x N operating cost matrix whose elements cij(t) 

equal the cost of meeting a demand "j" in interval 

t + 1 if the number of sets made available for the 

purpose in interval t was "i". 
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In the present model it is assumed that if a set is 

ready to generate, but not required in interval t, then 

the cost of maintaining it in readiness for interval t + 1 

is the same as the cost of bringing it from standby con-

dition to readiness during the interval .1  This assumption 

is a drastic simplification of the real situation in which 

the heating history of each set for many past intervals is 

of importance. 	A study of this model serves as a con-

venient starting point, however, from which further develop-

ment may be made. Suggested model improvements are con-

sidered in section 5.6. 

5.3 Optimization Technique  

To obtain an optimal ordering policy, it is necessary 

to consider an expanded state space. 	If at the beginning 

of an interval we wish to decide upon the ordering to meet 

demand in the following interval, we must consider not only 

the present demand level, but also the number of sets now 

running. 	Similarly, after a decision has been made, we 

must specify the number of sets available for the next 
N 

interval. 	There are E i = N(N+1)/2 process states, 
i=1 

the number of combinations of demand level and sets 

The heat condition during the interval immediately 
preceding the present one may be accounted for simply 
by increasing the number of process states to N2  
(see section 5.3). 
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running being restricted by the fact that the latter 

cannot exceed the former. There are N2  decision states 

since all combinations of present demand level and number 

of sets available for the following interval are theoretig-

cally possible. 

In principle we may now derive from matrices P, B, 

and C new matrices P', B', and C' related to the expanded 

states (fortunately, these large matrices need never be 

stored in practice). 	Let us postulate a set of decision 

matrices D(t) defined by 

[N(T-1),  D(t) j x N decision matrix whose 

elements d..ij(t) are the probabilities that if the 

process state is i at the beginning of interval t, 

a decision is made to go to decision state j. 

The ordering of power generation using the model 

described is a cyclic decision process (section 2.8). 

Each basic interval of 24 hours is broken up into a series 

of probabilistic transitions (load demand changes) alter-

nating with control decisions (generator ordering 

decisions). 	Thus one day's operation is described by 

the stochastic product matrix 

r = P' (1) D(1) P' (2) D(2) 	 P' (T) D(T) 

(5.1) 



N(N+1)/2 
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Optimum ordering is obtained by choice of the set 

Dx(1), 	 Dx(T) which minimizes g, the expected daily 

generating cost. 	Because of the structure of the problem, 

it is more easily solved by dynamic programming than by the 

solution of a series of L x L matrix equations (L = N2  in 

this case). 	Since the process is cyclic we consider that 

interval 1 follows interval T. 	Letting Vi(t) be the 

cumulative cost if the state at interval t is i, we work 

backwards in time (beginning at t = T with all Vi(1) = 0), 

adjusting successive matrices D(t) so that for i = 1, 2, .. 

..e. J.  

N(N+1)/2 

Vi(t) = 

	

	p'ij(t) c'..ij(t) 

j=1 

(5.2) 
with T = 1 = 1. 

Equation (5.2) is equivalent to (2.9) except that in 

this case minimization is carried out as the recursion 

progresses. 	Provided the matrix 	in (5.1) is ergodic 

(a condition which may be assumed safely in practice), 

continued application of (5.2) results in a stationary set 

of matrices DK(t) 	such that 
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g(tDK(t)l) = Min 	g 
tD(t)  

where g = expected daily power cost 

= [Vi(t) - Vi(t+T)1 -asymptotic 

Note that the problem is in general a multi-stage one; 

physically this is so because the cost of power generated 

by a set depends upon the number of times it must be put on 

line and taken off again during the day. 	In deciding 

whether to order a set, the controller must consider its 

whole future operation relative to the rest of the system. 

An interesting feature of the present formulation, however, 

is that if the optimal policy specifies that no power be 

bought externally, single-stage optimization yields the 

same result as multi-stage optimization. As the amount 

of power bought increases (owing, for instance to a 

reduction of price) the relative performance of the single-

stage system becomes progressively poorer. 

Another point worth noting concerns the computation 

(5.2). 	The optimal matrices DK(t) have rows each con- 

taining one unit and N2-1 zeroes. 	In practice it is 

necessary only to keep track of the position of the unit, 

so that a vector of N(N+1)/2 elements is sufficient to 

describe each DK(t). 
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5.4 A Simulation Study: Ordering in a 2000 Mw Station 

To illustrate the usefulness of the discrete model, 

we shall consider as an example a generating plant with a 

maximum output of 2000 megawatts (Mw). 	Of this 1100 Mw 

is base load, being supplied by eleven 100 Mw sets. 

Demand may therefore assume any one of ten levels (base 

load plus the output of 0-9 additional sets). 	Table 5.7 

shows the running costs associated with each of the ten 

sets generating the second 1000 Mw of total output (the 

output of set 1 actually forms part of the base load; its 

cost is listed for completeness, as its output represents 

one of the ten demand levels). 	Costs associated with the 

first 1000 Mw are not considered in any of the computations 

which follow; it may be assumed that the unit power cost 

associated with the first 1000 Mw is not greater than that 

of set 1, i.e. the cheapest sets are used for the base load. 

The heating cost for each generator is taken to be 10/b of 

its full load running cost for one interval. 	Table 5.2 

shows the unit cost of power bought externally. For sim-

plicity, costs in tables 5.1 and 5.2 are assumed to be 

independent of time. 

Demand transitions are made every two hours. The 

twelve transition matrices, listed in appendix 5, were 
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TABLE 5.1 	TABLE 5.2 

POWER COSTS OF PEAK LOAD SETS 	COST OF EXTERNAL POWER 

Set No. 
Running Cost 

Pence/kw.hr. 

Power Purchased 

Mw 

Cost of Last 
100 Mw 

Pence/kw.hr. 

1 0.510 100 0.80 

2 0.520 200 0.90 
3 0.520 300 1.20 

4 0.530 400 1.5o 
5 0.540 500 2.5o 
6 o.56o 600 3.00 

7 0.580 700 3.00 
8 0.580 800 3.00 
9 0.590 900 3.00 
lo o.600 1000 3.00 

chosen so that the resulting average demand curve, shown 

in fig. 5.2, is typical of a summer weekday for a station 

of this size". The maximum variations from the mean 

are also shown in fig. 5.2. 	The extension to Saturday 

and Sunday operation increases the computer memory 

requirement, but is otherwise straightforward. 

Application of equation (5.2) yields the ordering 

policy shown in table 5.3. 	Because of the simple 

relationship assumed between running and heating costs, 
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TABLE 5.3 

OPTIMAL ORDERING POLICY 

Interval no. Time 

Load at 
Beginning 
of Interval 

Mw 

Minimum 	Capacity 
Ordered for 

Next Interval 

Mw 

1 0000-0200 200 200 
300 200 
400 300 
500 400 

2 0200-0400 100 100 
200 200 
300 200 
400 300 

3 o400-o600 100 500 
200 600 
300 600 
400 700 

4 o600-0800 300 700 
400 800 
500 800 
600 900 
700 900 

5 0800-1000 600 800 
700 900 
800 goo 
900 loon 
loon loon 

6 1000-1200 700 800 
800 goo 
900 loon 
1000 loon 

7 1200-1400 700 800 
800 900 
900 1000 
1000 1000 



700 700 
800 7oo 
900 800 
1000 800 

600 500 
700 600 
800 700 
900 700 
1000 800 

8 
	

ikoo-16o0 

9 
	

1600-1800 
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10 	1800-2000 	400 	600 

	

500 
600 	Sooo 

	

700 	90o 

	

800 	goo 

11 	2000-2200 	600 	500 

	

700 	600 

	

800 	700 

	

900 	7oo 

	

1000 	Soo 

12 	2200-0000 	400 	300 

	

500 	400 

	

600 	iloo 

	

700 	500 

	

800 	500 

If the generating capacity actually on line during 

the interval is greater than that in this column, 

then the on-line capacity is, perforce, the one 

available for the next interval. 	If on-line 

capacity is less than ordered capacity, more sets 

must be prepared. 
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it was found that the total number of sets which should be 

made available for the next interval depends only upon 

present load, not upon the number of sets running (except 

that the number of sets in readiness at the beginning of 

interval t + 1 physically cannot be less than the number 

actually on line during interval t). 

Using the tabulation of this optimum ordering policy, 

we can compute the approximate average amount of power 

which will be bought from outside the plant. 	Suppose 

that at interval t the load assumes level "i" with proba-

bility 7Li, and that the power output level ordered for the 

next interval (obtained from table 5.3) is q 

If the load in interval t + 1 assumes level fljt% then a 

quantity of energy e(i,j,q) is purchased. 	The quantity 

e is given by 

e(i,j,q) = 200 {j(t) - Max[i,q]l Mw hr., 

j > Max[i,q] 

= 0, 	j < Max[i,q] 

The figure 200 arises from the fact that for each unit of 

positive difference between j and Max[i,q], the output of 

one generator (100 Mw) for one time interval (2 hours) 

must be purchased. 	The total daily energy purchase, W, 
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is obtained by summing e(i,j,q) over all next-interval 

demands "j", all present loads, "i", and all time intervals, 

t. 	Thus 

E(W) E 
t=1 

N 

Tui(t) pij(t) e(i,j,q) 

j=1 
(5.3) 

Inspection of matrices P(1) to P(12) (appendix 5) and 

of table 5.3, together with equation (5.3), allows us to 

construct table 5.4, which shows the distribution of power 

purchase probabilities throughout the day. As one would 

expect, purchases are most likely to be made at times of 

rising demand. The quantity of power purchased during 

any interval is never greater than 100 Mw; the expected 

daily energy purchase is 93.8 Mw hr., nearly one-half of 

the output of one machine for one interval. Therefore a 

purchase will be made slightly less frequently than one day 

in two. 

The total energy demand, Q, made upon this plant 

during a day is 

T 	N 

E(Q) = 200 [ )E: 	i.7ui(t) ] Mw hr. 	(5.4) 
t=1 1=1 

From (5.4) we find the total expected demand to be 

15,459.4 Mw hr. 	Thus the plant when optimally ordered 
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TABLE 5.4 

DISTRIBUTION OF EXPECTED POWER PURCHASES THROUGHOUT THE DAY 

Interval 
t 

Load 
Level 
i(t) 

7i(t) 

Probability 
of 100 Mw 
Purchase 
in Next 

Interval 

Mean 
Energy 
Purchased 

Mw hr. 

Total Energy 
Purchased 
in Next 

Interval 
Mw hr. 

2 1 0.0714 0.05 0.714 0.714 

3 1 0.4582 0.10 9.164 15.949 
2 0.3869 0.05 3.869 
3 0.1458 0.10 2.916 

4 3 0.0652 0.20 2.608 18.025 
5 0.5139 0.15 15.417 

5 5 0.0509 0.20 2.036 23.456 
8 0.5355 0.20 21.420 

6 7 0.0153 0.20 0.612 12.268 
8 0.2914 0.20 11.656 

7 7 0.0353 0.10 0.706 3.050 
8 0.1172 0.10 2.344 

8 7 0.0106 0.10 0.212 0.212 

10 4 0.0083 0.20 0.332 20.166 
5 0.0703 0.10 1.406 
6 0.4394 0.10 8.788 
7 0.3766 0.10 7.532 
8 0.1054 0.10 2.108 

Total Expected Daily Purchase, E(W) 	93  840 
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generates [E(QEV)  x 100] /b = 99.39°,6 of demanded above-

base load over a long period of time when external power 

costs 0.80 pence/kw hr. 

Recall that when no power is purchased externally, 

single-stage and multi-stage policies yield the same 

result. 	What happens if almost no power (0.61,6 in this 

case) is purchased? 	Is a single-stage policy then almost 

optimum? The answer seems to be affirmative. 	A single- 

stage policy was computed for the present system; it was 

found to be identical to that in table 5.3 except at one 

point: with a present demand of 900 Mw at the beginning 

of interval 6(10 AM) only 900 Mw capacity is to be made 

available for the following interval with the single-stage 

policy. 	The expected daily cost, g( ID:1€  ), was computed 

as £35,407 (0.549681 pence/kw hr.) with the multi-stage 

policy of table 5.3, and £35,409 (0.549712 pence/kw hr.) 

with the single-stage policy. 	For the system under study, 

multi-stage optimization requires about 20 seconds on an 

IBM 7090 computer, while single-stage optimization requires 

155 of thB time. 

The danger of using a single-stage policy becomes 

evident when the cost of external power is reduced. 

Suppose that external power is available at a flat rate 

of 0.560 pence/kw hr. 	Inspection of table 5.1 shows that 
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it is probably economical to operate sets 1 to 5, but not 

sets 6 to 10. 	A simulation using multi-stage optimization 

verifies this conjecture; sets 1 to 5 run more or less 

normally, while all power above the 500 Mw level is sup- 

plied from the external source. 	Overall unit cost is 

then 0.537 pence per kw hr. 	Single-stage optimization, 

on the other hand, shuts down all sets above base load 

(set 1); the reason is that, once a set is off-line, it 

never appears worthwhile to re-heat it for only one 

interval of time. 	The resultant overall cost is 0.552 

pence per kw hr. 

5.5 Adaptive Ordering 

When the demand matrices, P(t), are unknown or time-

varying, it is necessary to use an adaptive form of ordering. 

Each row of the basic matrix P(t) is repeated several times 

throughout the expanded matrix P'(t) used in (5.2); every 

time the estimate of a particular row of P'(t) is updated, 

therefore, all of the other rows in P'(t) known to be 

identical to that row are similarly updated (we note again 

that this operation is conceptual since only P(t), and not 

the expanded matrix P'(t) need be stored). 	Because of 

this correlation the set of rows of Pt(t) which is updated 
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is independent of the decisions made. We are therefore in 

the fortunate position of being able to separate the prob-

lems of estimation and control. 

Suppose that we have been observing the system for n 

days. The asymptotic maximum likelihood estimates of the 

elements of P(t) are given by 

A 	 mij(t'n) pij(t,n) 

", mik(t,n) 

(5.5) 

where M = N x N observation matrix whose elements r11..ij(t , n ) 

equal the number of observed transitions from 

demand level "i" in interval t to demand level "j" 

in interval t + 1, after operation has been ob-

served for n days. 

Equation (5.5) is equivalent to (3.11). 

Using the estimates P(t), we may then compute and use 

the estimated optimal policy ID 	, from (5.2). 

To start the process initial observation matrices, 

M(t,o), are needed. 	As well as containing our best 

initial estimates - guesses, perhaps - of P(t), the 

matrices M(t,o) reflect our confidence in the estimates 

through the initial weighting factor 
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ai0(t) 

 

m..(t,o) 
lj 

(5.6) 
j= 

 

a. is the number of hypothetical demand transitions which 

are considered to have been observed from state i at time 

t, before physical observations have begun. Usually one 

sets a_lo  (t) = ao for all i and t. 	In such a case the 

weight of the prior estimates M(t,o) is equivalent to that 

obtained as a result of ao  days of observation. We 

might call ao  the "confidencefactor". 	If it is large, 

many further observations are required to affect the esti-

mates appreciably; the learning process is initially 

conservative. 	If ao is small estimates P(t) early in 

the process are highly dependent upon initial observations, 

i.e. little confidence is placed in the prior estimates 

M(t,o). 

Once the process has begun the matrix M is updated at 

each interval of operation. 	After observing a transition 

on day n from demand level k in interval t to demand level 

I in the following interval, we update M(t,n) as follows: 

mij
(t,n) = m..(t,n-1) + b 
	

(5.7) 

where 5k2  = 1, if i = k and j = t 

0, otherwise. 
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If the system is slowly time-varying, we may con-

veniently model the drift of the elements pij(t) as an 

exponentially moving average process. We then reduce the 

weighting of past information at each interval by using 

equation (5.8) before (5.7). 

m..lj(t,n) = p mij(t,n-1) 
	(5.8) 

i,j = 1, 2, .... N 

where 0 < p < 1 

For a stationary process p = 1, and all past information 

is considered to have equal relevance. 	At the opposite 

extreme p = 0 describes a system in which only the last 

observation is significant. 

To determine the duration of the transient associated 

with the learning process, simulation of the adaptive 

ordering of the generating plant described in section 5.4 

was carried out for the case in which the matrices P(t) are 

stationary (p = 1). 	The learning process itself is non- 

stationary, so that it is necessary to consider an ensemble 

of plants. 	Thirty days' operation of an ensemble of 100 

plants was simulated, and the results examined. 	Single- 

stage optimization was used, as it is faster and yields 

results which are very close to those with multi-stage 

optimization for this particular problem. 
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An examination of the results shows that efficient 

convergence is considerably affected by choice of the con- 

fidence factor, ao. 	Fig. 5.3 shows the evolution of 

power cost with adaptive ordering. 	Curve 1 results when 

demand (above 1000 Mw) is estimated a priori to be equally 

distributed between 600 and 1000 Mw from 10 AM to 10 PM, 

and between 100 and 500 Mw during the remainder of the day; 

ao is unity. 	Operation of the system at first results in 

high expense, owing chiefly to failure to meet the sharp 

rise in demand which occurs between 6 AM and 10 AM. 

However, adaptation is quite rapid; unit cost is less 

than 1/b above its theoretical minimum value within 12 days. 

Since the cost of failure to meet demand is so high, 

a new initial estimate was made in which demand above 

1000 Mw was assumed to be 1000 Mw between 2 AM and 8 PM, 

and 500 Mw during the remainder of the day. This esti- 

mate results in over-ordering initially; too many 

generators are kept in readiness for demands which do 

not occur. 	Nevertheless, this conservative policy is 

much better initially than the first one; power costs 

about 0.564 pence/kw hr. on the first day of operation, 

rather than 0.631. 	In curve 2 the evolution of unit cost 

with this initial estimate is shown for ao = 1. The draw-

back here is that with all prior "observations" concentrated 
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on one demand curve (instead of a distribution, as in 

curve 1), the controller is slow to "forget" the initial 

estimates, and convergence is severely hampered by them. 

Notice that six days elapse before any significant change 

in ordering policy occurs. 	Even at day 30, the controller 

obviously anticipates and prepares for such unlikely 

(impossible, with our process model) events as full load 

at 4 AM. 

The step taken to combine the rapid convergence of 

curve 1 with the relatively low initial cost of curve 2 

is the reduction of ao. 	Setting ao = 10
6 we obtain 

curve 3, which begins at approximately the level of curve 

2, but reduces to less than 1% above minimum cost within 

five days. The general rule which results from an exami-

nation of these curves coincides with our intuitive notion: 

if the demand transition matrices are unknown and external 

power cost is high, the initial estimate should ensure that 

virtually 100% of demand can be met at every interval; 

the weight given to this estimate should be small, so that 

as the true demand parameters are learned, the effect of 

the prior estimate quickly becomes negligible. 

Table 5.5 compares the expected generating cost in-

curred in thirty days' operation using 

1) theoretical optimum policy; 



204. 

2) adaptive ordering (fig. 5.3, curve 3); 

3) non-adaptive ordering using fixed policy to 

ensure that 100% of demand is met (initial policy of 

curve 3). 

Note that while the latter policy enables the plant to 

meet its power demands satisfactorily, the total cost of 

thirty days' operation is nearly £23,000 greater than in 

the adaptive case. 	Complete a priori knowledge of demand 

transition matrices would have saved an additional £5000.  

TABLE 5.5 

COST OF THIRTY DAYS' OPERATION 

Method of 	Mean Unit Cost 	Cost of 30 
Operation 	Pence/kw.hr. 	Days' Operation 

1) All P(t) known a priori 
(theoretical minimum) 	0.549712 	1,062,280 

2) Initial estimate as in 
fig. 5.3, curve 3, with 
adaptation 	0.552326 	1,067,331 

3) Initial estimate as in 
fig. 5.3, curve 3, no 
adaptation 	0.564117 	1,090,117 

Thirty days' saving using adaptive 
policy instead of fixed policy [3)-2)] 

Adaptation cost [2)-1)] 

£22,786 

£ 5,051 
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5.6 Conclusion 

As an example of a cyclic decision process, we have 

considered in this chapter a simplified version of the 

ordering problem in a thermal-electric power station. 

The advantage of the discrete state probabilistic model is 

that it allows us to formulate a policy which is optimal, 

not only for mean future demand, but for deviations from 

it as well. 	In addition, the expected effects of future 

operation on present decisions and vice versa are easily 

computed. 	Since the decision policy does not affect the 

manner in which the demand transition matrices are esti-

mated, the problem is "neutral" in the sense of Feldbaum
19; 

i.e. we may use a pure control strategy based on maximum 

likelihood estimates, rather than a dual control strategy. 

This feature facilitates the problem of adaptive operation 

considerably. 	A simulated example of adaptive ordering, 

in which power demand is initially unknown, has been 

presented. 	Convergence to the optimum ordering policy 

was found to be rapid providing that the a priori demand 

estimates are not heavily weighted. 

In the present model, base load is considered constant; 

much known information concerning daily demand fluctuations 

is thus discarded. 	A well known technique' '49 is that in 
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which the daily demand curve is decomposed into a eliding 

mean with a superimposed random component. Describing 

this residual random component as a Markov chain, we could 

handle the problem described in this chapter with a five-

state, instead of a ten-state, system. 

The system model used in this chapter is a greatly 

simplified one. 	In practice it is necessary to consider 

the past heating history of each set when making ordering 

decisions. 	This more realistic problem is therefore the 

next one which should be attacked if we wish to investigate 

further the value of the discrete Markovian model. 

Two approaches suggest themselves: first, by adjoining 

the heating history of each set to the present state, we may 

retain the Markov property. Both process and decision 

states could then be defined by the following information: 

1) present demand; 

2) number of sets available to meet demand; 

3) number of intervals which have elapsed for each 

remaining set since last it was used or available 

for generation. 

If N generators are dealt with in any one interval and past 

heating history extends 17 intervals in the past, the 

total number of states necessary is 

N 
„i L N 	-1 	 (5.9) 

i.1 
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With r. 5, a three generator problem (L = 93) can easily 

be handled, and a four generator problem (L = 625) is 

feasible on a fast computer. 

As a second approach, consider a state description 

which specifies 1) and 2) as above, together with 

3) heat state of off-line sets; i.e. total 

heat content and apportionment of this 

heat amongst them. 

.In this case L = 7:N3. 	A five generator problem with 

T. 5 (L = 625), or a four generator problem with T. 10 

(L = 640) could be handled. 	Strictly speaking, the factors 

relating heat apportionment depend upon past states, it is 

conjectured that this is a second order effect, and that 

the system remains "approximately Markov". 

Using either of these models, many, probably most, 

states in the resultant Markov chain would be inessential. 

If these can be isolated, the problem can be reformulated 

without them, with a great saving in memory requirement 

and computing time. 	The difficulty is that the inessential 

states do not constitute an easily identified set, as they 

did in chapter 2. Further research on the problem might 

prove interesting. 
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CHAPTER 6 

DUAL CONTROL OF MULTI-STAGE MARKOV PROCESSES 

6.1 Introduction 

It has been shown in chapter 2 that in batch pro-

cesses, as defined in section 2.7, the controller need 

consider only one stage of operation to determine an 

optimum policy. The dual control problem arising when 

the transition matrix, P, is initially unknown has been 

studied in some detail in chapters 3 and 4 for the single- 

stage process. 	It was believed when the study was begun 

that the solution to this problem would suggest a method 

of attacking the more difficult one which arises when 

control effort is costed; indeed, this has proved to be 

the case. 

In this chapter we shall consider discretized versions 

of processes described by the equation 

xn+1 = f(xn, un, Sn) 
	

(6.1) 

where xn = output variable at time interval n 

un  = control variable at time interval n 

s n  = disturbance at time interval n. 
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For the present, we assume that (6.1) is a scalar equation. 

The dynamics are assumed to be continuous and differentiable 

but may be non-linear, and either stable, conditionally 

stable, or unstable. Disturbances associated with any 

decision state (3 n = Sn (xnun  , )) are assumed to form x 

independent sequences ditawn from continuous distributions. 

However, like the process dynamics, the disturbance 

statistics are assumed to be unknown, and may be multi-

plicative and non-gauesian. Both state and control 

variables are constrained in a known fashion. 

xn E.  X 
	

(6.2) 

un E: U 
	 ( 6 . 3 ) 

A known cost, L(x,u), is associated with the operation of 

the system; it is assumed that the latter is stationary 

and will run indefinitely. Sampled data control is to be 

used. 	The object of control is to minimize the expected 

cost per sampling interval of process operation, and to 

avoid unnecessarily expensive estimation procedures while 

determining the optimal control policy. 

In the control of batch processes, the initial state 

can be chosen arbitrarily at the beginning of each new 

transition. 	In the present case, however, the control 

and disturbance signals act simultaneously between sampling 
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instants. The choice of control affects the probability 

distribution of process states at the following 

sampling instant, but cannot specify the process state 

deterministically. The determination of an optimal feed-

back policy is equivalent to the specification of a mapping 

of the set of process states into a subset of the decision 

states, as discussed in chapter 2. 	Corresponding to each 

process state is a quantized range of admissable control 

inputs. 	If we take (6.3) to mean 

umin < u < u — n — max 
	(6.4) 

then we might quantize the control variable into Q equal 

intervals. 	If the output variable is similarly quantized 

into N equal intervals, then there are N process state3 and 

L = NQ decision states. 	In effect we have placed a unffoni 

grid over the jx,u space. 	The optimum feedback policy 

is thus a piecewise constant function, as shown in fig. 6.1. 

The disadvantage of this approach is that in order to 

obtain a reasonable approximation of the continuous feedback 

characteristic, it is necessary to quantize very finely, so 

that the number of states becomes excessive. We avoid this 

difficulty by quantizing non-uniformly, as shown in fig. 6.2. 

The most finely quantized part of the output variable rang° 

is that whose probability of occupancy is highest32. 	As 
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to the control signal range, only a small part of it need 

be considered for use with a particular process state. 

Referring to fig. 6.2, we may define the control range 

associated with a particular process state as the set of 

decision states which are reachable in one step from the 

process state. 	Typically for each process state there 

may be, say, five possible control alternatives; the com-

bination of the process state with each of these defines 

five admissable decision states. 	It is assumed that the 

optimum control lies somewhere in the admissable range 

(providing the optimum is within the constraint (6.4)). 

We shall consider a method quantizing the output variable 

and specifying suitable control ranges in section 6.5. 

6.2 A Multi-Stage Dual Control Algorithm  

We have seen in chapter 2 that the minimization of g, 

the expected cost per interval of operation, is equivalent 

to the construction of a decision matrix D;̀, so that for 

each process state, i, control j is chosen to minimize the 

parameter 	ij, j = 1, ... L. 	As noted previously we have 

restricted the control range available for each process 

state to, say, I" alternatives. Thus L = Nr in the 

present case, but the minimization of 	is done only 
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over the r admissable alternatives, j = 1, ...r" . 	If P 

is unknown, only the estimate n ij  is available. Even if 

the rows of P and C are independent, all of the parameters 

riii  are highly correlated; because of this fact it is not 

feasible to compute an overall probability of error. 

Instead, we make use of the fact that equation (2.14) 

transforms a multi-stage problem into an equivalent single-

stage one. We therefore introduce, as a measure of error 

probability, the uncertaintSz, 12- , which is defined in 

terms of the estimates associated with the equivalent 

single-stage problem. 

Let 	= 	a1  . 12 
	

(6.5) 
1=1 

where 

ai  = constant associated with process state i 

= single-stage uncertainty associated with control 

used for process state i 

i.e. Di  
00 

	

. 1 4 
is f..(x) T-T 	, ,1 k=1  LGioxil dx 

-oo 	k/g 

(6.6) 

A 

1
A 	

1 X- n 	2 
L  

fik(x) - 	exp [ 2 (  A  ik) i  r--  
2n aik 	a ik 

(6.7) 
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oo 

Gik(x) = 	jr 
fik(Y) dY 
	 (6.8) 

N 
A 2 1

l  r 
	A 	A , 

O. - 	p (1-pij  n. 6 	k 1J k u=i  

N-1 N 
A A - 2 	ijk iqk E p p cij iq c )] (6.9) 

j=1 q=jt1 

i.e. ik
2 = variance estimate of cost of one transition 

from process state i when control alternative 

k = k(i) is chosen. 

nik  = number of transitions observed from process 

state i when control alternative k is used. 

m.. 
ijk 	 (6.10) kjk nik  

A 
i.e. pijk  = estimate of probability of transition from 

process state i to process state j when 

control alternative k is used. 

milk  = number of transitions observed from process 

state i to process state j when control 

alternative k is used. 

c. . = cost of transition from process state i to 

process state j. 
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Equations (6.6) to (6.10) are analogues of equations 

(3.20), (3.17), (3.19), (3.16) and (3.11) respectively. 

We might now follow through the development of chapter 3 

to obtain the following analogue of the single-stage 

optimal strategy: 

Let the present process state be i, and suppose a 

control set, {uik  , k = 1, 2, ... 	, is available. 

with 

and 

Let 	A 
qi5 

1) Choose k 

is = 1 - ya, 

Q.^ 	0.5, is 

a  = 

Fik( 711g)  = 1 

Min 

= s with probability 

ya < 

ya > 

r 
Fik(  

0.5 

0.5 

Q .  ! where 
is 

(6.11) 

k/g 

-Gik 	tb.si ( 	 .A)  

2) If k = s is not chosen by application of (6.11), 

choose alternative j from amongst the remaining r -1 
decision states so that 

exp(-P.1j2/2) 

C.Z oij` iji  

= Max 
exp(4ik2/2) 

^ c (n ) 1/2 oik ik 

(6.12) 

k = 1, 2, 

k 



217. 

where 

irt•
1
k  

Pik — 	^ 
ik 

ooik = square root of variance computed 

as in (6.9) with present estimates 
,••• 
pijk, but with nik  = 1. 

Eachparametern.is decreased optimally with this 

strategy. Moreover, the theory of chapter 3 shows that 

each Si is asymptotically driven to zero, providing the 

probability of occupancy of process state i is non-zero 

(if the latter condition is not met, process state i is 

inessential and can be disregarded). All variances 

approach zero with time according to the results of section 

3.18. 	Thus not only 	, but the error probability w 

must approach zero with time, so that the strategy is 

convergent. 	Since both the estimation requirement (3.58) 

and the control requirement (3.59) are met, the algorithm 

defines a feasible dual strategy. 	While it is based on a 

single-stage optimal strategy, the multi-stage version is 

not necessarily itself an optimal strategy. 	Nevertheless 

it converges efficiently in practice to the optimal policy. 

A FORTRAN version of this algorithm is presented in 

appendix 6a. 
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6.3 Updating the Estimates  

We have presented a dual strategy which treats the 

overall system as a collection of interacting single-stage 

systems which may be isolated for decision purposes. The 

interaction effects are accounted for, on-line, by updating 

of the fl matrix after each transition has been observed. 

Since the matrix P changes after each observation, so does 

1,0 the transformation matrix -1  . 	It would appear at first 

sight that the matrix equation (2.14) would have to be re- 

solved at least once after each transition. 	Such a scheme 

seems computationally prodigal and intuitively unreasonable. 

After many transitions have taken place, the effect of the 

latest observation is small, and the estimated optimal 

policy is likely to remain unchanged. 

We note that each observation changes only one row of 

P, and therefore only one row of 	We shall show in 

this section that the change in 
	_ is expressible as a 

dyad, and that matrix inversion may be replaced by scalar 

inversion for updating purposes. 

Let Pb
(n) = estimated stochastic transition matrix of 

basic chain (N states) at stage n. 

The basic chain is made up of the N decision states 

defined by 
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process state is i, control used is
1-11S 
.A  

where s A = s(i) is defined by 

Lis A = Min Rik} 

If the process state at stage n is i, then the control 

uik which is applied is either the estimated optimal one, 

u.Ais, or one of the remaining 1-1 alternatives for which 

s.k/ 	 isWeshallassumeforthemomentthatu.^is applied; 

at the beginning of interval n + 1 we therefore observe that 

row i of matrix P has changed. Using the notation of 

chapter 2 we may write 

A 	A 	A 	A 
Pb(n+1) = Pb(n) - e.1><e.a  Pb(n) + e.><e. Pb  (n+1) - 	 a a  

A 	 A 	A 
Pb(n+1) = Pb(n) + ei  ><e.(Pb  (n+1) - Pb(n)) - 	 1 (6.13) 

Equation (6.13) expresses the fact that only one row of Pb 
has changed. 	From (2.20) and (6.13), 

4(n) = [I + w><eN  
A 

214.>%][1310(n).(2N›<21\T 

4)(n+1) = [I + w><eN  - -N  
e  ><e-N  ] 

A 	 A 
[Pb(n) + e.2><e.a.(Pb  (n+1) - Pb(n))][2N><eN 

 - 
- -  

A 	A 
(n+1) = W(n) + ei><ei.(Pb(n+1) - Pb(n)).(2N><2N  - I) 

i.e. 	w (n+1) = T(n) + e.><a - (6.14) 
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A 	A 
where 	<a = <Iti.(Pb(n+1) - Plo(n))*(ele<2N  - I) 	(6.15) 

From (6.14) the matrix inversion lemma yields 

-1(n+1) = W -1(n) Y-1(n)ei>kaY-1(n)eii+ 1]-1<a V1(n) 

Since the inverted term is a scalar, we have 

-1 
a  (n+1) = L.V -1(n) 	

(n) e.><a y-1(n) 
- —  

<a y-1(n)ei> + 1 
(6.16) 

The updated transformation matrix is easily computed 
A 

with (6.16). 	The vector z(n+1) is then computed from 

(2.14), giving us g together with the parameters 

i = 1, ... N. 	The remaining parameters, vik, associated 

with inessential decision states, are completely dependent 

upon the values -/k'riA. 

vik 

N E  A 	 A , A 

Js p.. (b.A. 
4. 
 v A

is
) - g, 	(6,17) 

i=1 

	

i = 1, 	N 

k= 1, .... 

= estimate of relative cost of occupation 

of decision state (i,k), i.e. the decision 

state defined by the choice of control 

alternative k when the process state is i. 
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A 
The test parameters nik  are now given by ( 

A 	A 

ik 	bik  + vik  (6.18) 

A check is then made to determine whether or not 
A A R  D (n+1) differs from DA(n). 	If it does not, then up- 

dating is complete. 	Otherwise a new matrix 4)(n+1) must 
.4,  

be derived from D
1€ 
 (n+1) and inverted. 	The loop is then 

repeated as explained in section 2.4. 

We have assumed that the control used was uis.^.; If 

^ uik, k / s is applied instead, the updating procedure is 

even simpler, because the decision state (i,k) is not in 

the basic chain. The matrix 
q)-1 	A 

is and the parameters v.^ 

therefore remain unchanged. We need only update irik  for 

the particular k chosen, starting the procedure at equation 

(6.17). 	A simplified flow chart of the algorithm is shown 

in fig. 6.3, and a FORTRAN version is presented in appendix6b. 

As in chapter 5, we may economize considerably in the 

storage of matrix D. Every row of D—  contains one unit 

and r -1 zeros; the same information is conveyed by an 
A 

N-vector whose ith element is s(i). 

6.4 The Optimal Feedback Transducer Characteristic  

We have seen in section 6.1 that a discrete approximation 
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to the optimal feedback policy can be developed from the 

automaton model of a continuous state process. 	In this 

section we shall present an algorithm which combines con-

tinuous and discrete optimization methods to synthesize a 

continuous optimal feedback transducer characteristic for 

a non-linear noisy system. 

We shall assume that a continuous state, discrete time 

model of the system is known, i.e. equations (6.1) to (6.3) 

are given. Moreover, we shall assume that the right hand 

side of (6.1) is a continuous differentiable function of x 

and u disturbed by noise whose probability density function 

is continuous and differentiable. 	If these conditions also 

apply to the cost function L(x,u), then we may reasonably 

assume that the expected cost per transition, g, is a con-

tinuous function of the feedback transducer characteristic, 

u(x). 	Let ux(x) be the optimal characteristic, as shown 

in fig. 6.4, and let p(x) be an arbitrary differentiable 

function. 	If EL is a small number, then a curve neigh- 

bouring the optimal one may be expressed as 

I1(X) =
x(X) + 	E P(x) 	(.6.19) 

A necessary condition for g to be a minimum is that 

a c 
E=0 

o 	(6.2o) 
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We cannot continue this development along the lines of the 

Euler-Lagrange equation, since g is a non-analytic function 

of the parameters of (6.1). 	However, we may imagine the 

variable x to be divided into an arbitrarily large number 

of states i, i = 1, 2, .... N. 	If the optimal control for 

state i is u, then a condition equivalent to (6.20) is 

-ag 
au. 1 

1 1 

= 0, i = 1, 	 N 	(6.21) 

The partial differential of (6.21) is not directly 

obtainable, and its determination by perturbation of each 

u  in turn would require considerable computational effort. 

Instead, we recall that, of two policies, the one which 

yields the lower value of n 	will also yield the lower 

value of g (this fact is proved in appendix 1). 	If 

rtis 	
1  
. for state i, then (6.21) becomes 

a g  

a  Li 
= 0, 	i = 1, 	N (6.22) 

.th Thus the 	row of the 1,  matrix, rtij, j = 1, • • • r 

__ is equivalent to a cross-section of the hill of gu15 u2 • • 
 

.... um) taken at u = u.. 	This relationship is illustrated 

in fig. 6.5. 	Given 	ii„ j = 1, ....r1, and assuming a 

continuous system, we may use second order methods to 
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predict the value of 21  = uis . We then set up a new 

controlsetcentredonu3!'with a suitably reduced range, 

- u. 	This procedure is repeated for every process 

state i, i = 1, .... N. 	At this point a new transition 

matrix, P, and a new control cost matrix, B, are computed 

for the new set of control alternatives. 	The optimal 

decision ma:;ric, DI, is re-computed, and the cycle is 

repeated until g is stationary. A simplified flow diagram 

of the algorithm is shown in fig. 6.6. 

How finely x must actually be quantized in practice 

depends upon the problem in hand. The results of numerical 

examples, some of which will be presented in chapter 7, 

indicate that ten to twenty quantum levels is usually 

sufficient. Convergence of g to within one part in 10
4 

typically requires six or eight iterations, using about 1.5 

minutes on an IBM 7090 computer. 	As one would expect, 

computing time is not affected appreviably by non-linear 

dynamics, non-gaussian noise, or non-quadratic performance 

criteria. 

6.5 Adaptive Control of Continuous State Processes  

It is clear that the algorithm of section 6.4 cannot 

be applied directly to a process whose parameters are 
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uncertain. At the beginning of the process, some a priori 

estimates must be made regardug the quantization of the 

output variable and the establishment of control ranges. 

The specification of these discrete states sets up a frame 

of reference wit- 1.n which we may use the techniques of 

sections 6.2 and 6.3 to search for an optimal control 

policy. 	The latter is optimal, however, only within the 

given frame of reference; it is probable that a different 

quantization would yield a lower cost optimal policy. 

Thus the quantization parameters themselves - the sort of 

grid we place over the t x,ui space - must be regarded as 

estimates which need modification as the process continues. 

We are thus led to a concept well known in adaptive 

systems, that of a hierarchy of adaptive loops. 	The 

innermost control loop is the adaptive controller using 

the strategy of section 6.2. 	Outside of this, as illus- 

trated in fig. 6.7, is a slower-acting loop which adjusts 

the control sets 	= 11,111, ... uid for each state i, so 

that the estimated optimal control signal,ul, lies within 

the range of admissable controls for state i. This is 
A 

done in the following fashion 

(n.c, chosen by the designer, is typically 0.50), the con- 

trol range is extended downward by adjoining a new control 

u. < 	and deleting the control 	at the top of the uil 	 uir 
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range. 	The new range is then re-labelled uil, 	uir  

Matrices P, B, and M are modified accordingly, the row of 
A 
P corresponding to the decision state (1,1) being set by 

some a priori estimate. 	Similarly if the optimum control 

lies at the top of the range with probabil.ty greater than 

the whole range is shifted upwards one "notch". 	It 

is assumed that< 	<  	that uil 	1112 	<11dr 	i.e. Ul 

an ordered set. 	In this way the control range for each 

process state "creepsll ef.ther upward or downward as the 

process continues, until one of the interior members of 

the set is the estimated optimum control input, or else a 

control constraint boundary is reached. A FORTRAN version 

of this adaptive scheme is contained in the program of 

appendix 7c. 

Outside of the control quantizing loop is a further 

loop which modifies the quantization of the output variable, 

x. 	It has been noted that quantization of x should ideally 

be set so that each discrete state has an equal probability 

of occupancy. A suitable modification of quantum levels 

is easily arranged. From the elements of the N
th row of 

(see section 2.6) we can construct a probability den-

sity histogram, and from it a piecewise linear cumulative 

distribution function. We need then only shift the quantum 

limits so that each limit occurs at an equal interval of 

probability. 	An example is shown in fig. 6.8. 
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Since the probabilities, TCi, of occupancy of each 

state i are functions of the control policy, it is point-

less to re-quantize x before the control ranges are 

approximately correct. For this reason the x-quantizing 

loop must lie outside of the u-quantizing loop in fig. 6.7. 

If the process is known to be stationary, the re-

quantizing of x and u may be performed iteratively on-line, 

the control range being progressively decreased at each 

iteration. 	When the feedback policy becomes stationary, 

a continuous interpolated version of the feedback charac-

teristic may be substituted for the stepped version, as in 

the off-line algorithm Of section 6.4. 	This last adjust-

ment, shown as the outermost loop of fig. 6.7, should 

remove the remaining quantization error. 

6.6 Summary 

When both the output and control variables are costed, 

and when the disturbance and control signals act simul-

taneously, the resulting decision process is a multi-stage 

one. 	It may usefully be regarded, though, as a set of 

single-stage processes with parameters interacting through, 

and modified.by, the transformation matrix y -1. 	Dual 

control of each single-stage process, and hence of the 
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overall process, may be effected by the use of an extended 

version of the strategy presented in chapter 3. 	Updating 

of Y 1 at each stage is simplified through an application 

of the matrix inversion lemma. 

If the dynamics and the cost function are continuous 

and differentiable, then a further refinement of the opti- 

mization techniqe is possible. 	It has been shown that the 

parameters 	yield gradient information which allows us 

to predict the control input, uz, associated with each pro- 

cess state i, so that g is minimized. 	For the case in 

which the process dynamics are known, an extremum-seeking 

algorithm has been presented which optimizes alternately in 

discrete and continuous state space to produce the optimal 

non-linear feedback transducer characteristic for a con- 

tinuous state, discrete time process. 	When the dynamics 

are uncertain, the same task may be performed on-line by a 

hierarchy of adaptive loops. 	In a stationary process, this 

method results eventually in the formulation of a continuous 

feedback characteristic, so that quantization errors are 

eliminated. 
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CHAPTER 7 

SIMULATION RESULTS IN MULTI-STAGE 

MARKOV PROCESSES 

7.1 Introduction 

Having developed algorithms for the dual control of 

multi-stage Markov processes, we may now proceed to test 

them. 	A discrete time, continuous state model of a thermal 

process has been chosen for the test. 	A description of 

the process is given in section 7.2. 	In section 7.3 we 

consider the important question of a priori estimates. 

The results of the simulation of an on-line adaptive 

control sequence are presented in section 7.4. 

7.2 The Problem: A Heat Treatment Process  

It is desired to heat treat a series of long metal 

slabs at a temperature of 800°A. 	This cannot be done in 

a large oven because at about 800°A, an exothermic reaction 

begins in the metal, which causes the temperature to rise 

sharply. 	If the temperature exceeds 850°A, the slab 

affected must be melted down and re-rolled. The choice 



235. 

lies between heating the whole slab in an oven with a 

temperature safely below 800°A, thereby avoiding the exo-

thermic reaction and simultaneously reducing the market 

value of the product, or of heat treating small sections 

of the slab sequentially with a controlled heat unit. 

The advantage of this localized process is that if the 

temperature of the particular segment rises dangerously, 

cooling may be applied quickly to maintain it at a 

suitable level. 

Localized heat treatment is preferable providing it 

is not too expensive. 	To estimate its economic feasibility, 

we shall consider it in more detail. 	The process is shown 

in fig. 7.1. 	The slab is moved longitudinally once per 

minute. 	During a given one minute interval section A is 

receiving heat treatment. 	Section B, which has emerged 

from an oven where it has been pre-heated to 750°, is 

heated by diffusion from section A. 	The temperature of 

the section under treatment is sampled at the beginning of 

each interval, and either heating or cooling is applied 

during the interval to stabilize the temperature. 	If the 

reaction in A is in its endothermic region, the process is 

stable; if it is exothermic, the runaway condition may 

spread backwards along the slab. 	A temperature of 850°  

or more in section A results in a process shutdown; the 
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length of slab in the pre-heat oven must then be removed 

and returned to an earlier stage of the manufacturing 

process. 

Owing to small random variations in composition along 

the slab, the specific heat of the metal varies from one 

section to another. 	In addition, the quantity of heat 

actually transferred by the heat control unit for a given 

nominal heat setting has a random component. 	Finally, in 

the vicinity of 800°, the dynamics themselves are subject 

to a random effect related to the onset of the exothermic 

reaction. 	The parameters of all of these random effects 

are unknown. 

The weight of slab under treatment in any interval is 

about 1000 kilograms. 	The specific heat of the metal is 

estimated to be 0.33. 	A maximum of 10,000 kilo-calories 

of heat may be transferred during an interval. 	The cost 

is a basic rate of 2d (two pence) per 1000 kilo-calories, 

plus an additional penalty cost if extremes (either positive 

or negative) of heat control are used. 	The reason for the 

latter cost is that the expected lifetime of the heating 

equipment is severely reduced by operation at the extremes. 

If un 
is the heating effort in kilocalories, then the 

control cost in pence during interval n is 

u 6 
b(n) = 0.002 j un 	+ 60 (--2) 	(7.1) 

10 



	

A further cost is associated with temperature. 	This 

may be regarded as a decrease in the value of the product 

caused by heat treatment at a non-optimum temperature. 

The cost is deemed to be quadratic in liatalr, centred upon 

the desired temperature of 800°, and is given (in pence) by 

2 	2 
c(n) = 0.015 [(xn  - 800) + (xn+1  - 800) 1 

xn+1 < 850 
	(7.2) 

where xn = temperature in °
A at interval n. 	In addition, 

if x
n+1 

> 850, the cost of a shutdown is Z12:0:0, which is 

added to c(n) in (7.2). 	If a shutdown should occur, the 

process is re-started with an initial temperature of 7750, 

Management estimates that after amortization of the 

capital cost of the control hardware, but before payment 

of the operating cost, the increase in profit owing to heat 

treatment will be 2s, 6d. (two shillings, six pence) per 

1000 kilograms. 	The installation is to be used for at 

least one year. 	The operating cost parameters ((7.1) and 

(7.2)) are known, but the dynamics of the process and the 

magnitude and nature of the disturbance are uncertain. 

Process estimation will have to be performed on-line, so 

that estimation costs, including any shutdowns which may 

occur, will be charged 	against profits, 

Under these circumstances, is it profitable to install 

the automatic heat treating process? 
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7.3 A Tentative Solution: A Priori Estimates  

Like many questions in engineering and economics, this 

one is unanswerable: insufficient data is available. 	How- 

ever, by computing the optimal feedback policy for a set of 

assumed dynamics together with the known cost function, we 

may obtain some idea of the cost involved. As a starting 

point, therefore, we shall assume the following linear 

dynamic equation: 

xn+1 
	un  + 	n 	(7.3) 

where 

xn = temperature (°A) at interval n 

un = heat input (k cal.) at interval n 

s n  = disturbance (°A) at interval n 

0 
	

1.00 

0.0030 

The factor 0 = 1.00 arises because the process is assumed 

to be just entering its exothermic region in the vicinity 

of the operating point. 	The control multiplier, p, is the 

inverse of the product of specific heat and mass. 	Since 

the nature of the disturbance is unknown, Sn  must be 

guessed. We have taken it to be additive gaussian noise 

with mean zero and standard deviation 10°A. 
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TABLE 7.1 

TWENTY-STATE QUANTIZATION 

State No. 

Temperature Limits 
oA 

Mid Point 
oA 

1 < 750 750.00 
2 750.0-765.0 757.50 
3 765.o-775.o 770.00 
4 775.0-780.0 775.50 
5 780.0-785.0 782.50 
6 785.0-790.0 787.50 
7 790.0-792.5 791.25 
8 792.5-795.0 793.75 
9 795.0-797.5 796.25 
lo 797.5-800.o 798.75 
11 800.0-802.5 801.25 
12 802.5-805.0 803.75 
13 805.0-807.5 806.25 
14 807.5-810.0 808.75 
15 810.0-815.0 812.50 
16 815.0-820.0 817.50 
17 820.0-825.0 822.50 
18 825.0.835.0 830.00 
19 835.0-850.0 842.50 

20 > 850.0 850.00 

The temperature range of interest is 750°  to 850°, 

which may be quantized as shown in table 7.1. 	States 1 

and 20 are temperature limits, while the remaining states 



241. 

represent ranges. 	The non-uniform quantization reflects 

our hope that the temperature will remain near 800°  most of 

the time with an optimal control. 

A 20 x 20 transition cost matrix, C, is now computed 

from (7.2). 

c..=0.015[(x.-800)2 +(x.-8002] + 5 lj 

where x. = mid-point temperature of state i 

b = 2880, 	j = 20 

6 = 0, 	j L 20 

For each state we now choose a discrete set of five 

alternative control inputs ( r= 5). 	Once these are 

chosen, the 20 x 5 control cost matrix, B, is computed 

using (7.1). 	We may then use the algorithm of section 6.4 

(fig. 6.6) to determine the optimal feedback characteristic. 

In fact a number of such characteristics were computed 

for different values of 0, p, and 3 n. 	The first one com- 

puted used 0 = 1.00, 	= 1/300, and 3 n  as in (7.3). 	It 

is perhaps worthwhile indicating how the initial control 

ranges were chosen. 	First, the extreme policy in which 

control is not costed was computed. 	Ignoring the distur-

bance, the control signal necessary is that which returns 

the temperature from its present level to 800°  in one 

interval: 
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un 	f3 = 	(800 - Oxn) 

u
n 

= 300 (800 	xn) kilocalories 
	(7.4) 

Second, the optimal linear control was computed for the 

quadratic cost function 

L(x,u) = q(xn  - 800)2  + r un2 
	

(7.5) 

where 

q = 0.030, equivalent to (7.2) 

r = 10
-6, yielding control costs approximately 

equal to those of (7.1) in the region 

of u
n 
= 2000. 

The optimal control policy, computed from the Riccati 

difference equation, is 

un = 130 (800 - xn) 
	

(7.6) 

It was guessed that the optimal feedback characteristic 

would be somewhat similar to (7.6) for x < 800, and tend 

towards (7.4) for x > 800 bec:Ise of the high cost of 

entering state 20. 	Accordingly the initial control ranges 

were set as shown in fig. 7.2. 	The final characteristic, 

obtained after ten iterations of the algorithm, is also 

shown in fig. 7.2. 	The expected cost per transition, g, 
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decreased from 8.935 at the first iteration to 6.709 at the 
, 

tenth (stopping criterion: change in g is less than 0.01
0/o 

in last iteration). 

The optimal characteristic for the dynamics as given 

by (7.3) was computed with the curve of fig. 7.2 as a 

starting condition. 	The result, shown in fig. 7.3, is 

very similar, since the only change is a 10% reduction in 

p. 	The shape of this curve is worth some comment. 	Its 

most striking feature is the discontinuity in the vicinity 

of x = 800°. 	This results from the combination of the 

absolute value of control cost together with the quadratic 

function of process state. 	It is well known from the 

theory of continuous systems that cost functions of this 

nature lead to a relay type control system. 	The relay 

action, switching from umin  to 'max' 
 is modified in fig. 7.3 

because of the discretized time intervals, so that control 

operates on one of two curves separated by a dead band. 

Examining the characteristic, we can surmise that its 

flattening for low values of x is caused by the sixth 

power law in the control cost. 	For values of x in the 

range 7800-820°, the curve is nearly symmetrical about 800°. 

For higher values of x, we observe that the presence of the 

step function (shutdown cost) at x = 850°  begins to be 

important; flattening of the characteristic near 850°  does 
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not occur since, despite the high cost of large control 

effort, such effort is necessary to avoid an even more 

expensive shutdown. 

The cost associated with the curve of fig. 7.3 is 

7.078; i.e. the expected cost of operation is about seven 

pence per interval. 	It appears that even if our cost 

assumption is in error by a factor of three or four, this 

process is still profitable. 	Our reply to the question 

at the end of section 7.2 is a qualified affirmative. 

To implement the adaptive control strategy, it now 

remains only to specify the a priori quantization. 	We 

shall consider first the specification of control range 

for on-line adaptation. 	If the discrete control alterna- 

tives, uik, are spaced too widely, the probability of uik, 

k , s, being chosen is extremely small, and convergence is 

slow. 	If the spacing is too close, the controller will 

have difficulty in deciding which is the lowest cost control. 

Consequently the decision to shift the control range in a 

favourable direction will take an inordinately large number 

of intervals, and convergence will again be slow. 	We see 

from inspection of the adaptive strategy of section 6.2 that 

a measure of the desired spacing is given by the parameter 

coik' the square root of the cost variance associated with 

the choice ofwhen the process state is i. uik 	 Using the 
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model of equation (7.3), we search in u-space monitoring 

the parameters ( 171.k  - rytis) and (75„)ik  associated with a 

controlin the vicinity of the optimal control u. uik  

When nik 	is aoik' 
the cost of using control 	is 

t 	- I? 	=  

one standard deviation (measured at decision state (i,k)) 

below the cost of using uik. 	Application of this technique 

yielded control spacings of 1000-2000 kilocalories for most 

process states. 	It was decided to set the a priori control 

range as follows (control is given in kilocalories) 

Uil  = u. - 1000 

U.12 = U. - 500 

U. = U. 13 	1 

u.,14 =u.+500 

u. = u + 1000, 	i = 1, 	 
15 	1 

It was felt that fairly coarse quantization of the 

temperature range might help accelerate initial convergence; 

an eleven--state system was chosen. 	The quantization of 

together with the a priori estimates of optimal controls, 

u
x
, i. 	s given in table 7.2. 
1 
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TABLE 7.2 

Process 
State 

A 	PRIORI 	QUANTIZATION 

Mid-Point Temperature 	A Priori Estimate of u 
oA 	Kilocalories 

1 750.00 7400 

2 762.50 6500 

3 780.00 4200 

4 788.75 1900 

5 795.0o 0 

6 800.00 0 

7 805.00 0 

8 811.25 - 190o 

9 820.00 - 4200 

lo 837.5o - 690o 

11 85o.00 - 9000 

7.4 Experimental Results: Simulated Adaptive Control  

The dynamic equation (unknown to the controller) used 

to simulate the heat treatment process was 

xn+1 = xn  I 1.005 + 0.015 tanh [0.1(x - 803.466)] 

+ 0.0002 q.d. S 

+ 0.005 S2  [i 
	(`a1 )1/2]-1 

+ un {0.000333 + 0.0005 3 3 
,} 
	

(7.7) 
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where 

, xn = temperature k
o  A) of section under treatment at the 

beginning of interval n. 

u
n 

= control signal (kilocalories) applied during interval n. 

xn - 800 (°A) 

q 	> o 

q = 0, A <0 

= independent random samples from a normal 

distribution with mean zero, variance unity. 

Equation (7.7) has the form 

xn+1 = [0(x)] xn  + p un  + 
	

(7.8) 

We see from (7.7) that the non-linear multiplier 0(x) takes 

on a value of 0.99 for low values of x, so that the system 

is stable in this region. 	At x = 800, 0(x) = 1; as x 

increases further (i.e. as the process enters its exothermic 

region) 0(x) increases towards a maximum value of 1.02. 

0(x) is also disturbed by noise, one component of which is 

especially marked in the vicinity of x = 800, the other 

increasing linearly for x > 800; both of these are effects 

of the transition from the endothermic to the exothermic 

reaction. 	Associated with the control signal is a dis-

turbance whose magnitude is proportional to the heating 

effort. 	Finally, a purely additive noise component ('%) 

is present. 
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An adaptive control run of 1500 intervals (equivalent 

to 25 hours operation) was simulated on an IBM 7090 computer, 

The a priori parameters of (7.3) were used, with a conver-

gence factor, 'y, of 10, and an initial temperature of 775°A, 

The results of each transition were recorded; at every 

hundredth transition the present estimate of the optimal 

transducer characteristic was printed, together with the 

mean and standard deviation temperature and the cost, 

averaged over the last one hundred transitions. 	The 

value of Ja(n), computed from (6.5) with ai  = Tci(n), was 

also recorded. 	The FORTRAN program used is given in 

appendix 6c, and the principal results are given in table 

7.3 and fig. 7.L. 	Program running time, including compi- 

lation of the main program, was 6.3 minutes. 

To interpret the results we must consider the nature 

of the dynamics. 	The desired operating temperature, 	800°, 

is a point of unstable equilibrium; the higher the tempe-

rature above 800°, the more it is likely to rise in the next 

interval, and conversely, the lower it is below 800°, the 

more it is likely to fall. 	Control of this system is some-

what analogous to the problem of maintaining an inverted 

pendulum in an upright position. 

For temperatures much below 800°, the a priori esti-

mate gives too small a heating effort to operate the actual 
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TABLE 7.3 

ADAPTIVE CONTROL OF NON-LINEAR HEAT TREATMENT PROCESS 

Interval 
No. 

Results Averaged 
Over Previous 	Mean 
100 Intervals 	Overall 
	 Cost/ Uncertainty 

Mean Std. Cost/ Interval 
Temp Dev'n. Interval 
oA 	oA Pence 	Pence 

Remarks 

100 787.50 3.60 9.32 9.32 0.3348 Temperature below 800°  
200 796.62 13.10 10.63 9.97 0.2263 Temperature exceeds 

800° at interval 181 
300 822.44 6.71 26.51 15.49 0.0081 Temperature in the 

vicinity of 820° 
400 818.94 7.72 22.04 17.12 0.0131 
500 820.55 6.82 24.93 18.68 0.0891 
600 822.49 6.67 28.32 20.29 0.0763 
700 802.83 16.00 14,15 19.41 0.0047 Temperature forced be- 

low 800°  at interval 
647 

800 789.54 2.80 7.24 17.89 0.0026 Temperature below 800°  
900 789.40 2.84 7.69 16.76 0.0019 
1000 789.70 2.78 7.24 15.81 0.0022 
1100 788.81 3.09 8.04 15.10 0.0012 
1200 789.55 2.92 7.33 14.45 0.0011 
1300 789.32 2.81 7.43 13.91 0.0009 
1400 790.11 2.87 6.97 13.42 0.0008 
1500 794.31 3.57 4.37 12.a 0.0042 Stable operation 

around 800°  
observed 

n.-; 
ul ry , 
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process satisfactorily. 	The process record shows that 

adaptation began to occur, however, and the temperature 

exceeded 800°  for the first time at interval 181. 	Almost 

immediately it climbed to about 820°, since the estimated 

cooling effort to combat the exothermic reaction was too 

small near 800°. 	Between interval 181 (x = 8o4.6°), and 

interval 646 (x = 802.8°) the temperature remained above 

800°, reaching an uncomfortable high of 844.3°  at interval 

523. 	No plant shutdown occurred, though, and gradually 

the estimated feedback transducer characteristic altered 

to take account of the peculiar dynamics. 	At interval 647 

the characteristic had changed sufficiently to force the 

temperature below 800°  again. 	A further period of rela- 

tively low temperature operation and adaptation followed 

between intervals 647 and 1465. 	In the last 35 intervals 

of operation the mean temperature was 795.6°. 	Several 

temperature excursions above 800
o occurred in the last 

hundred intervals, and each was controlled successfully. 

By interval 1500, therefore, operation in the vicinity of 

800°  was stable. 	Mean cost per transition dropped, by no 

means monotonically, by more than 50°A between the first and 

last hundred intervals. 

The a priori optimal characteristic and the estimated 

optimal characteristic at n = 1500 are shown in fig. 7.5 
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(for diagrammatic clarity they are shown as piecewise 

linear; as used they were piecewise constant, i.e. stepped). 

To determine the theoretically optimal characteristic, the 

dynamics of (7.7) were used in the algorithm of section 6.4. 

The results show that with optimal control the temperature 

will remain between 792.5°  and 807.5°  with probability 

0.997. 	It follows that the characteristic in the immediate 

vicinity of 800°  is of most importance. 	Fig. 7. 	shows an 

enlarged version of fig. 7.5, together with the optimal 

characteristic, for the region 780°  < x < 820°. 	We observe 

that the 1500 interval estimate is considerably closer to 

the optimal curve than is the a priori estimate. 

The theoretical minimum cost per transition is a 

surprisingly low 2.023 pence. 	This fact, together with 

a study of figs. 7.4 and 7.6, suggests that the controller, 

while operating satisfactorily, has not completely converged 

by interval 1500. 	The process seems to have reached the 

point where some higher level of adaptation, as outlined in 

section 6.5, may take place. 	Both x and u must be more 

finely quantized in the vicinity of x = 800°. 	No provision 

was written into the program for this purpose, although its 

implementation should be straightforward. 

From the maximum profit figure given in section 7.2, 

we can compute that the profit during the 25 hours of 
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simulated operation was Z107:8:4. 	Had complete knowledge 

of dynamics been available initially the profit (with a 

cost of 2.023 d. per interval) would have been E174:17:0. 

Once again, this difference emphasizes the value of accurate 

initial estimates in any dual control system. 

7.5 Summary 

We have examined the control of a non-linear heat 

treatment process which is disturbed by multiplicative 

noise. 	The dynamics in the example have deliberately been 

made somewhat "nasty" in order to test the adaptive capa-

bilities of the dual control strategy presented in chapter 

6. 	The desired temperature of 800°A is a point of unstable 

equilibrium. 	If the a priori feedback characteristic is 

used, the resulting process states divide into two sets 

(those with x < 800, and those with x > 800) which aro 

almost non-communicating. 	With high probability the 

temperature is either about 789°  or about 820°, dependjmg 

upon the initial condition. 	In terms of Markov chain 

theory, the basic transition matrix, Pb' has amongst its 

eigenvalues one unit eigenvalue and '.;wo others very close 

to unity. 	The object of the adaptive strategy is to re- 

arrange the feedback policy so that the latter two 
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eigenvalues are pushed towards the origin, and the proba-

bility of occupancy of states close to x = 800°  becomes 

large. 

The results presented indicate that adaptation was 

successful. 	Starting with a nominal estimate of the 

dynamics the controller was able, through successive 

adjustments of the feedback policy, to overcome the effects 

of non-linear dynamics and multiplicative noise, eventually 

transforming the region near x = 800°  from an unstable 

operating region to a stable one. 
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CHAPTER 8 

POINTS OF DEPARTURE 

8.1 Introduction 

Both theoretical and computational results pertaining 

to the dual control of long duration Markov processes have 

been presented in this thesis. 	A summary of these results 

may be found in chapter 1, and need not be repeated here. 

Instead it seems more profitable to discuss them in the 

light of the many questions they raise, since each question 

is a tentative signpost to new research. 	Some of the 

questions suggest fairly straightforward extensions or 

refinements of the work already done; others require 

detailed investigation, with the present results as a 

starting point; one or two are speculative in nature, and 

suggest no clear line of attack. 

8.2 The Single-Stage Dual S';rategy as a Multi-Modal  

Hill Climber 

It has been pointed out in chapter 4 that dual control 

of a repetitive batch process is equivalent to the descent 
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of a noisy multimodal hill. 	The single-stage dual control 

strategy may easily be applied as an adaptive hill climber. 

In many cases the cost matrix, C, is not available, but this 

is no real hindrance. 	Mean and variance estimates of cost 

can still be determined from past results, and the uncer- 

tainty, J?_, can be computed. 	Moreover adaptive quanti-

zation is readily implemented by quantizing most finely 

those regions of the control space with largest probability 

of yielding a minimum cost. 	If the hill is known to be 

unimodal,the algorithm of section 4,7 is particularly useful. 

One note of warning should be given concerning these 

and other hill-climbing techniques designed for on-line use. 

They are usually decidedly non-optimum as off-line hill 

climbers, when the additional search constraint is not that 

of equation (3.9), but instead specifies that computing t'me 

be minimized. 	In such a case resort may be made to various 

statistical sampling techniques
41'42 which are specifically 

designed to minimize the number of trials required for a 

decision. 

8.3 Further Investigation of the Multi-Stage Dual Strategy 

The results of chapter 7 demonstrate the effectiveness 

and feasibility of the multi-stage dual strategy presented 
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in chapter 6. 	It is clear, though, that much work remains 

to be done in this area. 	The relative merits of fine and 

coarse a priori quantization and the best choice of conver- 

gence factor should be considered. 	In addition it is 

worth investigating the effectiveness of the higher levels 

of adaptation shown in the heirarchical scheme of fig. 6.7. 

While the strategy of chapter 6 yields convergence to 

the optimal policy, the strategy itself is not necessarily 

optimal. 	We face here the more fundamental question, uCan 

a better approximation that _CL (equation (6.5)) be computed 

for the probability of error, co, in the multi-stage problem? 77  

8.11 The Economics of Generator Ordering 

Some possible improvements to the Markovian model of 

generator ordering were indicated at the end of chapter 5. 

Assuming that their implementation led to a more useful 

model of the ordering process, we would be faced immediately 

with the larger Question, "How do we specify an optimal 

ordering policy for two or more interconnected generating 

stations?" Treatment of several stations as an overall 

entity - the monolithic controller approach - yields a 

problem whose dimensionality is too great for practical 

computation. 	Some sort of decomposition method is therefore 
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desired. 	If each station is regarded as a semi-autonomous 

entity, as indeed it is in practice, the interaction 

variables between stations are then the (time varying) buying 

selling prices of power. 	A brief study of the 

interconnection problem, not included in this thesis, 

indicates that the decomposition of the overall system 

into a number of interacting systems may yield multiple 

cost minima. 	Further work in this direction might be 

useful. 

8.5 Automaton Model Relevance 

In presenting the algorithm of section 6.4 which 

determines a continuous optimal feedback characteristic, we 

have made the assumption that the continuous state process 

model could be approximated as closely as desired by a 

sufficiently finely quantized atuomaton model. 	What are 

the necessary and sufficient conditions which ensure this? 

It is thought that the conditions of continuity and clf- 

ferentiability given in section 6.) are sufficient. 	In 

chapter 7, however, convergence of the algorithm was ob-

served despite a discontinuity in the cost function at one 

point (step cost of shutdown). 	There is also the question 

of uniqueness: while the algorithm converges to a locally 



optimal characteristic, it has not been proved to result in 

an absolute minimum of expected cost. 	On this point we 

have two comments: first, computing experie:Ice to date 

suggests that the algorithm does converge to a tylique 

solution; secund, by starting the algorithm with a very 

wide control range, we can approximate a global search so 

that, if multiple minima do exist, spurious solutions can 

be avoided. 

8.6 Non-Stationary Processes  

If the Markov process is non-stationary, the controller 

must filter past information so that older estimates have 

less weight than newer ones. 	The form of filter depends 

upon the model assumed for the non-stationarity. 	One 

approach is to estimate a regression function for the row 

of P corresponding to the decision state most frequently 

occupied. 	It should the;'... be possible to relate the Para-

meters of the regression function to those of the infol-

mation filter. 

8.7 Processes with Uncertainty in State Measurement  

Dual control of a discrete state Markov process is made 
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considerably more difficult if noise is present in the 

measurement of state. 	If the parameters of both the pro-

cess and the measurement noise are unknown, then the problem 

is insoluble since the two effects cannot be separated. 

Assuming that the noise parameters are known, though, it 

is possible in principle to answer the question, "Given a 

particular record of measurements, what transition matrix, 
A 
P, maximizes the likelihood of producing this record?" 

The work of AstrUM38 is suggested as a starting point for 

this problem. 	Larson and Peschon
ko have also considered 

the effects of measurement noise on a discrete state multi-

stage process, as a generalization of Kalman filtering for 

non-linear processes. 

8.8 Finite Duration Processes  

The multi-stage dual strategy can be adapted to the 

optimization of a stochastic process operating repetitively 

over a finite number of stages. 	In this case the operative 

relationship is the recursive equation (2.9); the para- 

meters
ij  

r). . are time-dependent, so that the optimal policy 
L  

generates a time-varying feedback characteristic. 

There is one type of finite duration problem, however, 

which can perhaps be treated as a steady state Markovian 
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decision problem; that is the minimum time problem. 	By 

removing control cost, and costing process states according 

to their "distance" from the desired final state, we might 

obtain an approximately optimal feedback characteristic for 

minimum time operation, despite non-linearities and noise. 

It would be approximate because the point in state space 

with minimum norm is not necessarily the point from which 

the origin can be reached in minimum time. 	It seems 

possible that this difficulty might be overcome by adjust-

ment of the transition cost matrix after each characteristic 

iscomputed_Wernight,forinstance,setc..
ij  at iteration 

n+legualtothevalueofv.00mputed at int:rval n. 

Whether or not such a scheme would converge suitably is 

unknown. 

8.9 Higher Order Processes  

In this thesis the multi-stage dual strategy has been 

applied to a non-linear first order system. 	By a suitable 

extension of the state space it can sometimes be applied to 

systems with several variables; for example, three variables 

(time, number of sets running, present load) were handled in 

the power ordering problem. 	Even so, the discrete state 

approach as treated in this thesis is severekTlimited in 
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dimensionality. 	A second order system - modelled, say,as 

a one hundred state automaton - presents a large but 

feasible problem; a third order system would have to be 

quite crudely quantized to be feasible. 	In the next 

section we shall consider a simplification which might 

alleviate "the curse of dimensionality". 	Before doing so, 

we shall examine the automaton model of a second order 

system. 	The system of fig. 8.1 is described by the 

equations 

where 

x1  (n+1) = f1(x1(n), x2(n), u(n), 
	1(n)) 

x2(n+l) = f2(x1(n), x2(n), '32(n)) 

(8.1) 

xl(n) = value of variable x1 at interval n. 

x2(n) = value of variable x2 at interval n. 

Two points should be noted. 	First, we have assumed that 

both x1 and x2 can be measured. 	If only the output 

sequence x2(1), .... x2(n) is available and the system is 

non-linear, then the sequence cannot be described in terms 

of a Markov process. 	Second, the feedback control is a 

general function of x1 and x2. 	It is common in process 

control to feed back a separable function of the state 

variables, i.e. g1(x1) +.g2(x2) rather than g(xl,x2). 

Certainly this simpler practice is to be preferred if it 
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does not seriously degrade system performance. 	The exis-

tence of a method of computing the general optimum feedback 

function for a noisy non-linear system allows us to compare 

the performance of separable feedback functions with that 

of the optimum one, and so estimate the suitability of a 

suboptimum controller for a given process. 

8.10 Theoretical Implications of the Discrete Formulation 

The problem of dimensionality may be partially overcome 

by the specification (usually heuristically) of "sub-goals" 

for the controller
32
. 	This is equivalent to the replace-

ment of a multi-stage optimization scheme with one which 

optimizes over only the next one or two stages. 	The advan- 

tage of such an approach is that only a limited portion of 

the state space need be considered in any one computation; 

consequently it is feasible to attempt adaptation in higher 

order non-linear systems. 	The disadvantage is that single- 

stage optimization may yield results which are poor from the 

viewpoint of overall optimization. 	It is hoped, of course, 

that a suitable choice of sub-goal can avoid such a situation. 

Suppose that process dynamics are known. 	In such a 

case, single-stage optimization implies that if the present 

process state is i, then control alternative uis  is chosen, 
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where s is the value of k, k = 1, ... F , which minimizes 

N 

b.1  + 	p C. ijk ij 
j=1 

( 8. 2 ) 

On the other hand, if multi-stage optimization is used, s 

is the value of k which minimizes 

N 

bik ijk(cij 71)  (8.3) 

where 

= Min (b
ig 
 + v) 	q = 1, . . .  

q 
as calculated from the algorithm of section 2.4. 

bik =-cost of using control alternative k when process 

state is i. 

pijk  = probability of transition from process state i 

to process state j when control alternative k 

is used. 

vjg  = relative cost of occupation of decision state 

(j,q), i.e. the state defined by the choice of 

control q when the process state is j. 

We might now specify a new cost matrix C', whose 

elements c!. are given by 
1J 

. + n . 
1j 	i3 	.L3 
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Single-stage optimization with the adjoined cost matrix is 

effected by a choice of k to minimize 

N 

L_1 b1.k + 	p jk ij c 
j=l 

(8.4) 

which is of course equivalent to (8.3). 

Examination of functions (8.2)-(8.4) allows us to draw 

the following conclusion: 

Any stationary multi-stage Markovian decision problem 

as defined in section 2.3 may be transformed into an equiva-

lent single-stage problem by the adjoining of a state- 

dependent cost to the performance criterion. 	The two 

problems are equivalent in that multi-stage optimization of 

the first and single-stage optimization of the second yield 

identical control policies. 

The specification of an adjoint cost function is equiva-

lent to the choice of a set of sub-goals for the Markovian 

decision problem. 	By solving the multi-stage problem for 
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low order systems and comparing the resultant values of 7 x. 
J 

with a given choice of sub-goals, we may evaluate the 

effectiveness of the choice. 	It is hoped that a study 

of typical problems may yield sufficient insight so that 

a rational choice of sub-goals may be made for higher 

order systems without recourse to a complete solution. 

If successful, such a study would constitute one more step 

towards an effective computational method of controlling 

general non-linear stochastic processes. 
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APPENDIX 1 

PROOF OF CONVERGENCE OF ITERATIVE 

COMPUTATION OF OPTIMAL DECISION MATRIX 

The iterative scheme outlined in section 2.4 is an 

extension of the algorithm originally proposed by Howard
14, 

and the following proof is also based upon his work. 

Suppose we have a policy, denoted A, with cost per 

stage gA. 	Let policy B be found by improvement upon A. 

We wish to prove that gB - gA < O. 

According to the improvement routine we have for each 

process state i 

L 	L 

.b. 	+ 	dB  jv
A  T dB j l j l 	1 j 

j=1 	j=1 

L 
A .b.

1j 	1 j 
dA. 

 3  
.A (A1.1) 

ij  
j=1 j=1 

where the superscripts refer to the policy used. 	Let 

L 	L 
yi  m 	j dB b.1j

- 5 
 l 

dA . jb.. + i 	lj 
j=1 	j=1 j=1 

dBj j. vA. 1 

L 

j=1 
d.A  .v A  . 
1J J 

(A1.2) 

Note that yi  < 0 by definition. 

Now from equation (2.12) we have 

L 

gB  + v. B = 	r  B  v . j B + A. 1 
B 

0 1 	i j  
j=1 

(A1.3) 



273. 

L 
A 	E  g + v.A 	r.A vA + A 

ij j 
j=1 

(A1.3)- (A1.4 ) gives 

(A1.4) 

L 	 L 
A 	B 	A 	E rB..vB.  _ \--1  rA..vA. 4. n B _ nA.   gB - g + v. - v = 	 (A1.5) 1 	1 	ij j 	ij j li -X 1 

j=1 	J=1 

N 
where 	rij  = 	Pik dkj 	 (A1.6) 

k=1 

By definition, 

B 	A.  
i 

N 
	7N   	

L 
Pijcij + 	, pij  >  

	

' 	dB k  bj k 
j=1 	j=1 	k=1 

N 	 N 	L 
	 pij  jkb jk 

A 

j=1 	k=1 j=1 

N 

QB 
Ai  = 

j=1 
Plj • ( 

L 
d jk  b. - 	d.A  

kjk b ) jk 	j  
k=1 	k=1 

Substituting (A1.2), we have 

L 	 L 
- 	

vA s—  dA. vA 
jk k 	jk kJ 

k=1 	k=1 

_ 	
Pij (y j  



274. 

From (A1.6) 

L 

- 	E 	 j Pi 	riT. - 	B kvk 	A  r. v ik k 
j=1 	k=1 	k=1 

(A1.7) 

N 

Let 	b. 	
LE: P' • I/  j 
j=1 

s 	s  B gA 

B A Pv. Evi  - v. 

Now substitution of (A1.7) into (A1.5) yields 

L 	 L 

Q g + A vi = bi  + >_._,i  j rv33  - I r1 j3 vA  j   
j=1 	j=1 

i.e. 

g+
L  

6 v1  = b. ÷ 	r1  .. 	v 
j=1 

(A1.8) 

Since the expansion of bi 
shows that it is the single-

stage cost difference between policies B and A, equation 

(A1.8) is the analogue of (2.12), and has the same form of 

solution, viz. 

g = 	n.b.a.  = < 	b > 	(A1.9) 
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where < it = (n1, 	nN) = principal row eigenvector of RB. 

Since ni  > 0 v 

and bi 	Pigj <0 
j=1 

because 	p. . > 0 and y.
J 
 < 0 

it follows from (A1.9) that 

g < 0 
Q.E.D. 

Thus each new decision matrix yields a cost per stage 

which is less than or equal to the value obtained at the 

last iteration 

We use Howares proof that the minimum cost policy 

will always be discovered. 

Proof by contradiction: 

Suppose that gB < gA but the algorithm has converged 

on policy A. 

Then for all states 	yi  > 0 

so that all 	6i  > 0 

Since all -g. > 0, we obtain from (A1.9) 

6 g = gB - gA  > 0 

i.e. B A 
g > g 
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which contradicts the assumption 

Q.E.D. 

Therefore the optimal decision matrix will always be 

discovered by iteration. 
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APPENDIX 2 

"EXACT" COST ESTIMATES FROM 

MULTIDIMENSIONAL BETA DISTRIBUTIONS 

1 ij 
Given asetofobservations,m.m, we wish to 

obtain the likelihood distribution of cost associated with 

one transition from state i in an N-state system. We have 

seen in section 3.3 that if the estimates of the transition 

probabilities, pit) "are considered to form a multivariate 

normal distribution (this is true asymptotically), then the 

normalized likelihood function, fi(x), may be computed quite 

easily from equations (3.14), (3.16) and (3.17). 	Actually 

the estimates of pij  form a multidimensional beta distri- 

bution. 	In this appendix we shall examine the computation 

of the cost likelihood function using the exact distribution 

instead of the approximation. 

The estimates 	pil, 040. p. 3.14 	have a likelihood 

function 

mi  L.(p. 	...piN 
 ) = TT

(pij 	
j,  

j=1 
0 < p..13 < 1 — 

N 
pij  = 1 	(A2.1) 

j=1 

= 0, otherwise. 
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For notational simplicity, we shall drop the bar over the 

symbol 	j' p..'itisunderstoodthat. Pli  refers to the esti- 

mate in the remainder of this appendix. 	Since the para-

meters pij  must always sum to unity, one of them, say piN, 

is dependent. 	The likelihood function therefore takes the 

form of a hypersurface in N-1 space. 	We now wish to express 

the likelihood that the mean cost, µi, assumes a particular 

value x. 	We begin by eliminating another pij, say Pi(N-1)' 

by subStituting 

N 

x  	 ij ij P c 
j=1 

(A2.2) 

into (A2.1) to obtain Li(pia.,...pi(N_2),x). 	The likelihood 

function of x alone is now obtained by integrating out the 

first N-2 variables. 

Li(x) = 

00 

  

N-2 

dpij  (A2.3) 

j=1 

   

 

N-2 

Thenormalizedlikelihoodfunctionf.00 is given by 

Li(x) 
(A2.4) 

CO 

IL.(x)dx 
-co 
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The difficulty of computing (A2.4) is caused both by 

the dimensionality of the function Li(pil, 	Pi(N-2)'x)' 

and by its shape; the fuilction is bounded by the hyper-

planes specified in (A2.1), so that in practice it is 

necessary to vary the limits of integration according to 

which bounding hyperplane is intersected by a hyperplane 

of constant cost. 

Example  

As a simple example, suppose that we have made three 

observations of transitions from state 1 in a three state 

system (N = L = 3). 	The relevant parameters are 

m11 

c11 = 

1 

6 

m12 = 

c12 = 

1 

8 
m13 - 1  

c13 = 3  

It is desired to determine the maximum likelihood value p.1 

of the expected cost of one transition from state 1. 

We observe that, from (A2.1), 

Li1(1311'P12'P13) = p11 p12 p13 

= Pll P12 (1  - Pll - P12 ) 

2 
Pll p12 - Pll p12 - Pll P12 (A2.5) 

We now introduce the cost relationship 
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X ijcij = 6p11 	8p12 	3(1  - Pll - p12)  
j=1 

x 	3  1311 + 5  1312 + 3 
	

(A2.6) 

We may substitute 

x-3-3p11  
P12 = 	5 

from (A2.6) into (A2.5) to obtain 

x-3-31311 x-3-3p11 
)(1  P11 Li(P11'x)  = 1311( 	5 5 

Only relative values of a likelihood function are of 

interest. 	To rid ourselves of the denominator in the 

above expression, we multiply by 25, substituting x1  = x-3, 

to obtain 

Li(Pll'x)  = 6141 	x1141 - 1541 - xl 1 
	

5x11311 (A2.7 ) 

The two-dimensional distribution L.(p11' p12 ) is shown 

in fig. A2.1, together with lines of constant cost, x. 

The likelihood of a particular value of x is given by the 

cross-sectional area cut in the likelihood "hill" by the 

line of constant x. 
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p11(max) 

fo 
Li(Pll'x) 	Pll (A2.8) 

Examination of fig. A2.1 shows that pli(max) is a function 

of x. 	The relationship is easily seen in the present two- 

dimensional case, but can become quite complex for higher 

dimensional distributions. 	From fig. A2.1 we see that for 

3 < x < 6, pil(max) is the value of Pll for which x corres-

ponds to p12 = 0.  

x-3-3p11 0 
i.e. P12 - 	3 

p11(max) 
x_3  xl  

3 = 3 

so that, for 3 < x < 6, (A2.8) becomes 

x1/3  
2 	2 	2 Li(x) = jr (6p31  + x 	11 1p 	15P  11 	x1p11 + 5x1p11)dp11 

o 	 (A2.9) 

We observe also from fig. A2.1 that for 6 < x < 8 the 

upper limit ofPll  is defined by the relationship 

p11 + p12 	1 

Thus x-3-3P11  
P12 = 	5 	- 1  - p11 



283. 

8-x 	x2  p11(max) 	2 = 2 

where 	x2  = 8 - x ... 5 - xl 	(A2.10) 

Subsitution of (A2.10) into (A2.7) yields 

L1(p11'x) 	6141  - 1041  - x2p11  + 5x2p/1 x2P11 

and 

x2/2  
L1(x) 
	

f 	l(pli,x) d p11 	(A2.11) 

0 

Integration of (A2.9) and (A2.11), together with the 

computation of the normalizing factor 

8 

   

tf 	 -1 
L1(x) dx] 

   

 

L1(x) dx + 

 

3 

 

6 

 

gives the following expression for f1(x) 

-2, 3 
(x3.--1  ) - 2  (92) ), f1(x) = 0.96 	 3 < x < 6 

o.96 [i (82x)3 - 	
0 
2 

f o-x )  6 < x < 8 	(A2.12) 

We deduce from (A2.12) that the maximum likelihood value 

13 of x is 537 . 

Now suppose that we had used the gaussian approximation 

A 	M. 
Pik   - n. 



µl 
= 3  (6) + 5  (8) + 3  (3) = and 5 

2 
3 
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AA 
so that 

	
Pll 	p12 = p13 - 

Note that the latter value is a good approximation of 

the value calculated from the multidimensional beta distri-, 

bution, even when only three transitions have been observed. 

The computational effort associated with the "exact" case 

is considerably. greater than that of the gaussian case; 

moreover the difference in computational effort increases 

very rapidly as the number of states increases. 	On the 

other hand the differences between the results of the two 

methods diminishes as the number of observatinns grows. 

For these reasons the normal approximation method of esti-

mation seems the obvious engineering choice. 
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APPENDIX 3 

PROPERTIES OF NORMAL LIKELIHOOD FUNCTIONS 

Property 1): 

If across an ensemble of statistically equivalent 

processes the mean value of XI at stage n is _a (n), 
and a trial is carried out in each process from a particular 

non-optimal state i (i / s), then at the (n+l)th  stage 

E[11(n+1)] < E[I1(n)] 	 (A3.1) 

Proof: 

Proof of (A3.1) is equivalent to showing that across 

the ensemble 

	

DR 	1.1, ... N 
< 0 , 	 (A3.2) 

	

ni 	i / s 

Since (J.1  decreases with increasing n1
, (A3.2) is in turn 

equivalent to 

    

>0 ( A 3 ) 

From (3.20) 

a01 

1 -06 
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where C25s 

00 

_00 

N 
fs(x) i f 	Gi(x) dx 

i=1/s 
(A3.4 ) 

(A3.2) and (A3.3) are thus equivalent to 

81/cs 	 i = 1, 	N 
< 0 , 

aoi 	 i / s 

which we shall proceed to prove. 

From (A3.4) 

(A3.5) 

00 

a 
aoi  

co 

N 
fs(x) f Gk(x) dx 

k=1/s 

oo 

fs(x) Gk(x)
k=1 	

Gi(x) 
	 dx 

a . 

-00 	/i/s 

f fs(x) fl Gk(x) 
G4 (x) 

dx 
1 -co 	1;11-s 

co 

+ 	1 fs(x)\ T-1-Gk(x) 
	 dx 

N 	DGi  (x) 

ao. 

	

k=1 	1 4i 	
i/s 

N .  f
Doi(x) 

(fs(x) a Gk (x) 	c,.  
1 4. 1 	/i/s 

(ContId) 

co 



a 
a i 	

ao• 
fi(y)dy = dy a a. 1 

(A3.7) 

f(Y) 
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N 
3G.(z) 

f s (z) 	G (z) 	1 	dx 
k=1 k 	2 0. 

/i/s 

(A3.6) 

where z = 2µi  - x. 

The integrand of (A3.6) will be negative for all x > 111 
providing the following sufficient conditions are met: 

a) a a
i

a 0. 

Gi(x) 	Gi(z) 

C)Gi(x) 
b) 	 > 0 

a ai x > 

c) fs ( x )  < fs ( z )  

d) fl G (x) < 	Gk(z) k=l k k=l 
/i/s 	i/s 

We shall start with a) and b). 	We note that 

CO 

and from (3.17) 

Dfi(Y) 	1Y-P-- 2 
[(---1) - 1] expl- 2  (Y22:11%)2] (A3.8) 

i 	
AT o.2 	ci 
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Since a change in oi  yields a net change of zero in 

theareaundercurvef.(y) integrated over the real line, 

we have 

co 
Df i (Y) 

a0. 
-co 	1 

dy = 0 (A3.9) 

Since (A3.8) is symmetrical about x = µi  we have 

oo 
d f i (Y)  

1 	a oi 
ficy) 

dy 	
0. dy 
	(A3.10) 

-oo 	µi+x 

From (A3.7) 

afi(y) 
	 dy 

of  

DG.(µ.3.+x) 

of  

00 

(A3.11) 

From (A3.8) and (A3.9) 

4 .-x 00 
D r. (y) 

 

0. 	 dy  
-00 

dy 
DGi(µi-x) 

p 
0i 

 

(A3.12) 

From (A3.10), (A3.11), and (A3.12), we obtain, with a 

suitable substitution of variables 

aGi(x) 	a G.1(2µ.1-x) 

a0 

	

	 a oi  i 
and condition a) is proved. 
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From (A3.7) and (A3.8) it can be seen that 

< 0, 

o, 

> 0, 

and b) is proved. 

Condition c) follows directly from the defining 

equation, (3.17), for fi(x), together with the fact that 

µi  > µs by definition. 	To prove d) we observe that the 

firstderivativeofallcurvesG.(x) is negative, i.e. 

d Gi(x) 

dx 
fi(x) < 0 

x 

i = 1, 2, ... 

We shall show that the product of any number of such curves 

also has a negative first derivative. We proceed by in- 
M 

duction, assuming first that the product, TT G. (x) has a 
i=1 

negative first derivative, and then showing that multipli- 

cation by one more function GM+l(x)  preserves this property. 

M+l 

FT d G 	(x) 
Gi(x) = 	G (x) 	M+1  

dx 
1=1 	iml 	dx 

(Cont'd) 



OD 

290. 

+ dx FT Gi (x) . GM+l(x) 
1=1 

Since 0 < Gi(x) < 1 
	

dx 

M+1 
the derivative of FT G. (x) is the sum of two negative num-

1=1 1  
bers and so is negative. 	Condition d) follows immediately. 

In view of condition a), we may re-write (A3.6) as 

i = 1, 2, • • • • 

N 	N 	G.(x) 
[fs(x) fl Gk(x) - fs(z) TT Gk(z)] 	1 	dx 

a 0 . 
is 	is 

Application of b), c), and d) shows that the integrand is 

negative for all x > µi  so that 

 

os < 0 a . 

 

and property 1) is proved. 

Property 2) 

lim 11(n) = 0 
n-5.co 

if and only if 

n 	oo =>--> 1 
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Proof: 

It is necessary to prove that n. 	0 only when all ni  

approach infinity. 

 

co N 

fs(x) f Gi(x) dx 
i=1?s 

= 1 

  

   

and _CI 0 => 

co 

_co 

N 

fs(x) FT Gi(x) dx 	1 (A3.13) 

i=1/s 

Since fs(x) > 0 
	x 

and 
	

fs(x) dx = 1 

-CO 

N 
and 
	

0 < iV Gi(x) < 1 

i=1/s 

the integral in (A3.13) can approach unity if and only if: 

NN 

a)fs(x).-->OforallxatwhichrTG.(x) < 1 
i=1/s 

N 
b) 	TT Gi(x) 	1 for all x at which fs(x) / 0. 

i=1/s 

Let µj  be the second lowest mean cost; we know from 
N 

the definition of Gi(x) (equation (3.19)) that fl Gi(x) < 1 

i=1/s 
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for x >4.regardlessofthevaluesofn.,i L s. 	From a) 

above, it is necessary that fs  (4 ) 	0. 	Assuming that all 

mean costs 4i  are finite, this can be ensured if and only 

if (5s 	0, so that fs
(x) is zero at all values of x except 

x = J. 	It follows from (3.16) that ns  must approach 

infinity. 

With ns 
	oo it is necessary, from b) above, that 

Gi(4s) -› 1 Ni i, i 	s. 	The definition of G1(x) shows 

that it can approach unity for a finite value of 4i  - x 

if and onlyifoi .40,i.e.n. ->oo V i, i / s. 

Thus it is both necessary and sufficient that all 

values n. increase without limit in order that the uncer-

tainty, Il , approach zero; property 2) is proved. 
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APPENDIX 4 

TRANSFORMATIONS OF.  *NOISE DISTRIBUTIONS 

An IBM SHARE library subroutine was available for the 

generation of noise with a flat and a gaussian distribution. 

From time to time in this work other distributions were 

also required. 	It is the purpose of this appendix to 

demonstrate the method used to transform .a flat distribution 

into one of any desired shape. 

Let f(x) be the probability density function of the 

desired signal x, and y = F(x) be its cumulative distri- 

bution function. 	We shall assume that there exists, also 

, an inverse transformation, x= F-1  (y). 	Let z be a random 

variable whose amplitude is distributed uniformly between 

zero and one with density f(z). 	The required signal is 

generated by the transformation 

x = F-1(z) 
	

(A4.1) 

To demonstrate this, we observe in fig. A4.1 that the 

relationship between the original signal z and' the trans-

formed signal x is 

f(z) dz = f [F-1(z)] dx 	(A4.2) 
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but d = f(x) dx 

so that 	f[F-1(z)] = f(z) f(x) 

1 
Since f(x) is uniform and 

	
f f(x)dz = 1, it follows that 

f(z) = 1 and 

f[17-1(z)] = f(x) 

so that the transformed variable F-1(z) has the desired 

distribution, and (A4.1) is valid. 

Several possibilities which may be encountered are 

1)  F-1(z) is analytic; 

2)  F-1(z) is piece-wise analytic 

3)  F-1(z) is non-analytic 

As an example of 1) we may consider the generation of 

Rayleigh noise with a density function 

x2  
f(x) 	exp [- —g], x 0 

x 

so that 	F(x) = 	f(y)dy = 1 - exp[ 

-co 

Now if z is a signal whose amplitude is uniformly 

distributed between zero and unity, a Rayleigh distribution 

is generated by the transformation x = F-1(z), i.e. 
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1 

log(1-z)]2 	(A4.3) 

An example of 2) is the distribution of the output of 

a single lag low pass filter whose input is a symmetrical 

rectangular waveform with amplitude ± 1 unit. 	The output 

signal, shown in fig. A4.2, has limits ± xm; it is assumed 

that each half period of the input waveform is of duration 

cl" where 1: is the filter time constant. 	The positive-

going portion of the output is given by 

1+ (1 + xm) exp(- 

and the negative-going half by 

(1 + xm) exp( 	- 1 

The respective distribution functions are 

F1(x) = - 1  log (1+x
1-xl 

ml  

and 

F2(x) = 1 + 1  log (1-1-a—) 1+x 

1 
The overall distribution function is -f(Fl+F2) 

1
-x F(x) = 	[c + log (--1
+x
)]--- 

2c
1 

  

If z is uniformly distributed, then the desired 

transformation is 
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x - c1-1  q+1 

where q = exp[c(2z-1)]. 

(A4.4) 

1  The third case, in which F-1(z) is non-analytic, is 

frequently encountered. An example is the generation of 

noise with a beta distribution. 	A method Jiich has proved 

successful in such circumstances is that in which a look-up 

table of F-1(z) is computed numerically for a fixed set of 

values of z, and second order interpolation is used to 

obtain x on-line. 

When a program has been written to generate the 

required type of noise, it is a good precaution to submit 

some of the resultant output to statistical testing5  to 

ensure that the distribution is the desired one. 	Either 

a goodness-of-fit (chi-squared) test or a likelihood ratio 

test is suitable. 	The former was applied to all noise-

generating programs used in this thesis. 

Parameters for Batch Process, Chapter 4  

To simulate the twenty-state batch chemical process of 

chapter 4, a combination of Rayleigh noise and low pass 

filter switching noise, as previously described, was used. 

FORTRAN versions of (A4.3) and (A4.4) with a = 0.707 and 

c = 3 were used to generate samples, denoted S1 and S2 
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respectively. 	In addition the noise amplitude was modu- 

lated by a state dependent function. 	The Rayleigh samples 

generated in state I were multiplied by a function RAY(I), 

while the switching noise was multiplied by REG(I). 	In 

FORTRAN, these functions are given by 

RAY(I) = FAC H FLOAT(I) 

and 

REG(I) = 0.000775 H (FLOAT(I-12)) X X 4 + 0.25 

where FAC = 0.8/ /T. 

If the state at time n is I, then the state at time 

n + 1, denoted JUMP1, is given by 

JUMP1 = I + INT(0.5 + RAY(I) x Si + REG(I) X S2) 



In
te

r n
  

1 

2 

299. 

APPENDIX 5 

POWER DEMAND 'TRANSITION MATRICES 

The twelve demand transition matrices for the ordering 

problem of chapter 5 are listed below. 	It is assumed that 

demand lies within certain limits in any interval. 	Con-

sequently only the rows representing these states need be 

specified. 	The remaining rows can be arbitrary, provided 

the pertinent states can be reached from them. 	All 

positions left blank in the listing are assumed to be zero. 

Column 

1 2 3 4 5 6 7 8 9 10 

2 0.7 0.3 
3 0.1 0.8 0.1 

4 0.2 0.7 0.1 

5 0.2 0.3 0.5 

1 0.95 0.05 

2 0.8 0.2 

3 0.2 0.7 0.1 

4 0.05 0.3 o.6 0.05 
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In

te
rv

al
 Column 

c4 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

3 1 

2 

3 

4 

	

0.1 	0.2 	0.6 	0.1 

	

0.05 	0.2 	0.5 	0.2 

	

0.1 	0.3 	0.5 

	

0.2 	0.5 

0.05 

0.1 

0.3 

4 3 0.5 0.3 0.2 

4 0.1 0.6 0.3 

5 0.15 0.7 0.15 

6 0.1 0.5 0.4 

7 0.2 0.7 0.1 

5 6 0.3 0.5 0,2 

7 0.7 0.3 

8 0.2 o.6 0.2 

9 0.4 0.6 

10 0.2 008 

6 7 0.4 0,4 0.2 

8 0.1 0.3 0.5 0.1 

9 0.05 0.7 0.25 

10 0,25 0.75 

7 7 0.3 o.6 0.1 

8 0.3 o.6 0.1 

9 0.3 0,7 

10 0.1 0.9 
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In

te
rv

al
 Column 

1 	2 	3 	4 	5 	6 	7 	8 	9 	lo 

8 7 0.5 0.4 0.1 

8 0.4 0.5 0.1 

9 0.3 0.6 0.1 

10 0.1 0.7 0.15 0.05 

9 6 0.3 0.6 0.1 

7 0.3 o.6 0.1 

8 0.5 0.4 0.1 

9 0.1 0.7 0.2 

10 0.5 0.5 

10 4 0.8 0.2 

5 0.5 0.4 0.1 

6 0.4 0.5 0.1 

7 0.2 0.5 0.2 0.1 

8 0.1 0.8 0.1 

11 6 0.6 0.3 0.1 

7 0.6 0.3 0.1 

8 0.6 0.3 0.1 

9 0.3 0.6 0.1 

10 0.2 0.4 0.4 

12 4 0.8 0.2 

5 0.1 0.6 0.3 

6 0.05 0.3 0.5 0.15 

7 0.2 0.2 0.6 

8 0.05 0.25 0.7 
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APPENDIX 6 

FORTRAN LISTINGS 

During the course of this work, several score of 

main programs, subroutines, and arithmetic functions 

were written in FORTRAN IV. 	Three of these which are 

of particular importance are presented here. 	Minor 

modifications from the original versions have been made 

in layout to accommodate the width of the quarto page. 

To enable the reader to interpret these programs, the 

correspondence between FORTRAN variables and those used 

in the text of the thesis is given in table A6.1; the 

meaning of the additional auxiliary functions and sub-

routines appearing within the listings is shown in 

table A6.2. 
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TABLE A6.1 

CORRESPONDENCE OF FORTRAN AND TEXT VARIABLES 

FORTRAN 	Text  

B(I,J) 	
b. 

C(I,J) 	cij 
CHOICE(I,K) 	uik  

CONFAC 

EL(I) 	2i 
EN(I,K) 	nik  

GAIN 

GRIN(I,J) 	element of 4)-1, basic chain 

KDEC(I) 	(i) 

N 	 N 

OMEGA 

P(I,J,K) pick 
QL0(I) 	lower limit of output variable, state i 

QMID(I) 	mid point value of output variable, state 

TRANS(I,J,K) 	mijk 
URG(I,J) 	element of 	, basic chain 

A 

is VALUE(I) 	v.A, basic chain 

VARO(I,K) A 
 O.

lk 

VNU(I,K) vik 

COL 

ETA 

HOLD 

NOBS working space 

RVEC 

SET 

:7_ 
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TABLE A6.2 

FUNCTIONS AND SUBROUTINES IN FORTRAN LISTINGS 

Parameter Computed  Name  

CVAR(I,K,P,C,N,M) 

FINDG(Y,Z) 

FINPRO(Y,Z,N) 

INVERT(A,B,N) 

IQUANT(TEMP,QMID,N) 

RNGEN(K) 

c
ik

2 

op 
x2  JJ 	exp(- -T)dx 

- /7.z 

< Y Z > 

B = A-1 

Quantized state, i, of output 

variable TEMP. 

Z = AY — — 

Look-up table of parameters f(x) 

and G(x) relating to normal density 

function. 

Random numbers, uniformly distri-

buted between 0 and 1. 

MAVEC(A,Y,Z,N) 

NORMAL 

SETB(B,CHOICE,N,M) 

SETC(C,QMID,N) 

SETP(P, 	 

TRY(P,  	g(B,C,P,D) 
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a) Function NUKR 

Reference: Section 6.2 

Purpose: Given present process state, IR, chooses control 

alternative NUKR from the set f1,2, . . 	. 

£IBFTC NUKR2 DECK 

FUNCTION NUKR (IR,B,KDEC,VNU,VARO,EN,OMEGA,KODE, 

1CONFAC,N,M) 

DIMENSION B(N,M), KDEC(N), VNU(N,M), VARO(N,M), 

lEN(N,M), SET(50) 

11 OCTOBER 1966. 

C 	IR IS STATE QUANTUM LEVEL, GIVEN. 

C 	KR IS CONTROL QUANTUM LEVEL, TO BE DETERMINED, 

KD=KDEC(IR) 

ETAMIN=B(IR,KD)+VNU(IR,KD), 

SUM=O. 

DO 4 K=1,M 
IF (K.EQ.KD) GO TO 4 

ENEST=EN(IR,K) 

SET(K),(B(IR,K)+VNU(IR,K)-ETAMIN)/SQRT(VARO(IR,K)) 

SUM=SUM+1.-FINDG(ENEST,SET(K)) 

4 CONTINUE 

OMEGA=SUM 

IF (SUM.GT..5) SUM=.5 
IF (1.-CONFACHSUM.LT.RNGEN(KODE)) GO TO 5 
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KR=KD 
GO TO 7 

5 KR=1 
IF (KR.EQ.KD) KR=2 
DO 6 K=1.M 
IF (K.EQ.KD) GO TO 6 
SNEST.EN(IR,K) 
SET(K)=SET(K)Hx2HENEST+ALOG(ENEST3VARO(IR,K)) 
IF (SET(K).LT.SET(KR)) KR=K 

6 CONTINUE 

C 	ALTERNATIVE KR HAS NOW BEEN CHOSEN. 

7 NUKR=ER 
RETURN 
END 
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b) Subroutine UPDATE 

Reference: Section 6.3 

Purpose: Given observed transition from decision state (i,k), 
A 	A 	I 	 AO A  N. updates P, Goik2, 	

- 1 	D , and g% ,  

£IBFTC UPDAT5 DECK 

C 	29 SEPTEMBER 1966. 
SUBROUTINE UPDATE (TRANS,P,B,C,URG,GRIN KDEC VARO, 

1VI4U,EL,VALUE,GAIN,IR,KR,N,M) 
DIMENSION TRANS(N,N,M), P(N,N,M), B(N,M), C(N,N), 

1GRIN(N,N), KDEC(N), VARO(N,M), VNU(N,M), EL(N), 

2RVEC(50), COL(50), URG(N,N), VALUE(N) 

C 	PRODUCES UPDATED MATRIX P, VECTORS VARO, VALUE, 

C 	AND VNU, AND SCALAR GAIN. 

C 	BEGIN BY UPDATING P AND VARO. 

SUM=O . 

DO 1 J=1,N 

1 SUM=SUM+TRANS(IR,J,KR) 

FAC=1./SUM 

DO 2 J=1,N 

2 P(IR,J,KR)=TRANS(IR,J,KR)HFAC 

VARO(IR,KR)=CVAR(IR,KR,P,C,N,M) 

C 	P AND VARO UPDATED. 

GLAST=1.0E30 
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KOUNT=O 

NA=N-1 

IF (KR.EQ,KDEC(IR)) GO TO 5 

C 	IF THIS POINT IS REACHED, STATE IR IS NOT IN THE 

C 	BASIC CHAIN. 

C 	MATRIX URG THEREFORE DOES NOT REQUIRE UPDATING. 

C 	ONLY VNU(lii) NERD BE RECOMPUTED. 

VNU(IR,KR)=-GAIN 

DO 4 J=1,N 

K=KDEC(J) 

4 VNU(IR,KR)=VNU(IR,KR)+P(IR,J,KR)H(C(IR,J)+B(J,K) 

1+VNU(J,K)) 
GO TO 14 

C 	MAIN DEVELOPMENT CONTINUES. 

5 DO 6 J=1,N 

6 vALUE(J)=URG(IR,J) 

C 	VALUE HOLDS FORMER ELEMENTS OF ROW 1R. 

C 	NEW ROW IS NOW COMPUTED. 

DO 7 J=1,NA 

URG(IR,J)=-P(IR,J,KR) 

IF (IR.EQ.J) URG(IR,J)=URG(IR,J)+1. 

7 CONTINUE 

C 	NEW URG IS NOW FORMED. 

C 	UPDATE INVERSE (GRIN) BY HOUSEHOLDERS METHOD. 
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DO 8 J=1,N 

VALUE(J)=URG(IR,J)-VALUE(J) 

8 COL(J)=GRIN(J,IR) 

FAC=1./(FINPRO(VALUE,COL,N)+1.) 
DO 9 I=1,N 

RVEC(I)=0. 
DO 9 J=1,N 

9 RVEC(I)=RVEC(I)+VALUE(J)HGRIN(J,I) 

DO 10 I=1,N 

DO 10 J=1,N 

10 GRIN(I,J)=GRIN(I,J)-FACHCOL(I)HRVEC(J) 

C 	NEW INVERSE=OLD INVERSE-FACH(OUTER PRODUCT) 

EL(IR)=0. 

DO 11 J=1,N 

K=KDEC(J) 
11 EL(IR)=EL(IR)+P(IR,J,KR)H(C(IR,J)+B(J,K)) 

12 CALL MAVEC(GRIN,EL,VALUE,N) 

KOUNT=KOUNT+1 

C 	VALUE IS Z VECTOR OF BASIC CHAIN. 

C 	NOW TRANSFORM VALUE INTO V VECTOR, AND COMPUTE 

C 	QUANTITIES VNU OF OVERALL CHAIN 

GAIN=VALUE(N) 

VALUE(N)=0. 

DO 13 I=1,N 

K=KDEC(I) 
13 VNU(I,K)=VALUE(I) 

DO 32 I=1,N 
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DO 32 K=1,M 
IF (K.EQ.KDEC(I)) GO TO 32 
VNU(I,K)--GAIN 
DO 31 J=1,N 
L=KDEC(j) 

31 VNU(I,K)=VNU(I,K)+P(I,J,K)K(C(I,J)+B(J,L)+VNU(J,L)) 
32 CONTINUE 

IF (GAIN.LT.GLAST) GO TO 14 

C 	IF TWO STRATEGIES ARE EQUIVALENT, NUMERICAL 
INSTABILITY MAY RESULT OWING TO ROUNDOFF ERROR. 

C 	IF THE APPARENT COST DIFFERENCE IS EITHER ZERO OR 
C 	VERY SMALL AND POSITIVE FROM ONE ITERATION TO THE 
C 	NEXT, FURTHER ITERATION IS STOPPED. 

IF (ABS((GAIN-GLAST)/GAIN).GT.1.0E-06) GO TO 27 
RETURN 

C 	OPTIMALITY TEST FOLLOWS. 

14 KLAG=O 
DO 17 I=1,N 
L=1 
DO 15 K-2,M 
IF (B(I,K)+VNU(I,K).LT.B(I,L)+VNU(I,L)) L=K 

15 CONTINUE 
16 IF (KDEC(I).EQ.L) GO TO 17 

KLAG=1 

KDEC(I)=L 
17 CONTINUE 

IF (KLAG.EQ.0) RETURN 
IF (KOUNT.GT.19) GO TO 25 



311. 

C 	IF DECISION MATRIX IS UNCHANGED, UPDATING IS COMPLETE. 

C 	OTHERWISE, MATRIX URG MUST BE RECOMPUTED AND INVERTED. 

GLAST=GAIN 
DO 18 I = 1,N 
K=KDEC(I) 
DO 18 J=1,NA 
URG(I,J)=-P(I,J,K) 
IF (I.EQ.J) URG(I,J)=URG(I,J)+1. 

18 CONTINUE 
CALL INVERT (URG,GRIN,N) 

DO 19 I=1,N 
EL(I)=0. 
K=KDEC(I) 
DO 19 J=1,N 
L=KDEC(J) 

19 EL(I)=EL(I)+P(I,J,K)x(C(I,J)+B(J,L)) 
GO TO 12 

25 WRITE (6,26) 
26 FORMAT (//35H NO CONVERGENCE AFTER 20 ITERATIONS) 

RETURN 
27 KX=KOUNT-1 

DEL-GAIN-GLAST 
WRITE (6,28) KX, GLAST, KOUNT, GAIN, DEL 

28 FORMAT (/28H ERROR IN UPDATING PROCEDURE/ 
134H EXPECTED COST/CYCLE AT ITERATION I3,F14:6/ 
234H EXPECTED COST/CYCLE AT ITERATION I3,F146/ 

319H INCREASE IN COST.E12.4//) 

RETURN 
END 
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c) Main program AD11NL 

Reference: Sections 6.5 and 7.3 

Purpose: Given a priori estimate of system dynamics, 

simulates adaptive control of heat treatment 

problem, chapter 7. 

£IBFTC AD11NL 

DIMENSION P(11,11,5), TRANS(11,11,5), C(11,11), 

1CHOICE(11,5), URG(11,11), GRIN(11,11), VAR0(11,5), 

2KDEC(11), EL(11), VALUE(11), QL0(11), QMID(11), 

3HOLD(5), ETA(5), EN(11,5), 

4B(11,5), VNU(11,5), NOBS(11) 

CALL NORMAL 

READ (5,1) N, M, PHI, UFAC, SIG 

1 FORMAT (216/3F10.1) 

WRITE (6,2) PHI, UFAC, SIG 

2 FORMAT (25H1J S RIORDON 13 OCT 1966// 

138H ADAPTIVE CONTROL OF NON-LINEAR SYSTEM/ 

226H WITH MULTIFLICATIVE NOISE// 

528H A PRIORI MODEL OF SYSTEM IS/ 

220X,9H X(K+1)= F5.2,10H H X(K) + F6.4, 

217H x U(K) 	ZETA(K)// 

342H WHERE ZETA IS NORMALLY DISTRIBUTED NOISE, 

422H ZERO MEAN, STD DEVN= F5.2///) 

7 READ (5,8) (QL0(I), I=1,N) 
8 FORMAT (3(5F10.1/),5F10.1) 
NA=N-1 

DO 9 I=1,NA 
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9 QMID(I)=.5-NUO(I+1)+QL0(I)) 
QMID(N)=QLO(N) 
WRITE (6,10) (QL0(I), I=1,N), (QMID(I), I=1,N) 

10 FORMAT (///19H STATE QUANTIZATIONP 
113H LOWER LIMITS//11F10.2// 
211H MID POINTS//11F.10.2) 

MC=(M+1)/2 
MP=M-1 

C 	SETUP OF MATRIX CHOICE. 

READ (5,17) (CHOICE(I,MC), I=1,N), BAND 
17 FORMAT (6F10.1/5F10.1/F10.1) 

DO 18 I=1,N 
XL=CHOICE(I,MC)-.5HBAND 
XU=XL+BAND 
IF (XL.LT.-10000.) XL=-10000. 
IF (XU.GT.10000.) XU=10000. 
RANGE=XU-XL 
DO 18 K=1,M 

18 CHOICE(I,K)=XL+RANGE/FLOAT(M-1)KFLOAT(K-1) 

WRITE (6,11) (K, K=1,M), (I, QMID(I), 
1(CHOICE(I,K), K=1,M), I=1,N) 

11 FORMAT (16H1CONTROL CHOICES// 
16H STATE,4X,6H TEMP ,5(17,3X)// 
220(14,F12,2„5F10.2/)///) 

CALL SETB(B,CHOICE,N,M) 

WRITE (6,12) (J, J=1,M), (I, (B(I,J), J=1,M), I=1,N) 
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12 FORMAT (20H1CONTROL COST MATRIX//4X,5I10// 
120(16,5F10.)/)//) 

CALL SETC(C,QMID,N) 

WRITE (6,13) (I, I=1,N) 
13 FORMAT (23H1TRANSITION COST MATRIX//5X,1116//) 

DO 15 I=1,N 
DO 14 J=1,N 

14 NOBS(J)=C(I,J)H100.+1.0E-4 
15 WRITE (6,16) I, (NOBS(J), J=1,N) 
16 FORMAT (2116) 

CALL SETP (P,QLO,QUID,CHOICE,PHI,UFAC,SIG,N,M) 
DO 22 I=1,N 
NOBS(I)=0 
KDEC(I)=MC 
DO 22 K=1. M 
VARO(I,K)=CVAR(I,K,P,C,N,M) 
EN(I,K)=1. 
DO 22 J=1,N 

22 TRANS(I,J,K)=P(I,J,K) 
IR=1 
KR=1 
CALL TRY(P,B,C,URG,GRIN,KDEC,VNU,EL,VALUE,GAIN,N,M) 
CALL UPDATE (TRANS,P,B,C,URG,GRIN,KDEC,VARO,VNU,EL, 
1VALUE,GAIN,IR,KR,N,M) 
WRITE (6,23) (I, QMID(I), CHOICE(I,MC), I=1,N), GAIN 

23 FORMAT (k1H1NOMINAL ESTIMATE OF THE OPTIMUM FEEDBACK/ 
140H TRANSDUCER CHARACTERISTIC IS AS FOLLOWS/// 

26H STATE,)-FX,5H TEMP,kX,11H HEAT INPUT/ 

38X, 8H DEG ABS, 6X, 5H KCAL// 
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411(I5,F11.2,F12.2/)// 

531H EXPECTED COST PER TRANSITION= F10.4) 

NSHUT=O 

TOTAL=O. 

TEMP=775. 

JR=IQUANT(TEMP,QMID,N) 
READ (5,60) NTRANS, KODE, NSAM, NREDO, CONFAC 

60 FORMAT (4(I6/),F10.1) 

READ (5,24) NPRINT 

24 FORMAT (16) 

WRITE (6,61) NTRANS, CONFAC 
61 FORMAT (23H1ADAPTIVE CONTROL OVER I4,11H INTERVALS./ 

123H CONVERGENCE FACTOR IS F4.1//) 

IF (NPRINT.EQ.1) WRITE (6,25) 
25 FORMAT (6H INTVL,3X,5H TEMP,3X,3H IR,2X,3H KD,4X, 

16H OMEGA, 4X, 
28H CONTROL,2X,3H KR,5X,5H COST,4X,6H TOTAL,5X, 

35H MEAN//) 

TMEAN=0. 

TVAR=O. 

CLAST=O. 

DO 85 NUM=1,NTRANS 

IR=JR 

NOBS(IR)=MOBS(IR)+1 
TMEAN=TMEAN+TEMP 

TVAR=TVAR+TEMPHH2 
KR=NUKR(IR,B,KDEC,VNU,VARO,EN,OMEGA,KODE,CONFAC,N,M) 

UCOST=B(IR,KR) 

TLAST =TEMP 
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XDEL=TLAST-800. 
FAC=0. 
IF (XDEL.GT.0.)FAC=1. 
TEMP=TLAST3(1.005+.015HTANH(.1H(XDEL-3.466)) 

1+.0002HFACIiXDELlsGAUS(KODE) 
2+(.005HGAUS(KODE+1))/(1.+SQRT(ABS(XDEL)))) 
3+CHOICE(IR,KR)H(1./300.+.0005HGAUS(K0DE+2)) 
4+GAUS(KODE+3) 
IF (TEMP.LE.750.) TEMP=750. 
IF (TEMP.GE.850.) GO TO 62 
XCOST=.015HUTEMP-800.0HH2+(TLAST-800.)HH2) 
GO TO 63 

62 x00sT=.015H(2500.+(TLAsT-800.)HH2) +2880. 
63 JR=IQUANT(TEMP,VID,N) 

TRANS(IR,JR,KR)=TRANS(IR,JR,KR)+1. 
EN(IR,KR)=EN(IR,KR)+1. 
COST=XCOST+UCOST 
TOTAL=TOTAL+COST 
GAVG=TOTAL/FLOAT(NUM) 
IF (TEMP.GE.850.) GO TO 65 
IF (NPRINT.EQ.1) WRITE (6,64) NUM, TLAST, IR, 
1KDEC(IR), OMEGA, CHOICE(IR,KR),ER,COST,TOTAL,GAVG 

64 FORMAT (I5,F10.2,215,F10.4,F12.2,I5,3F10.2) 
GO TO 67 

65 IF (NPRINT.EQ.1) WRITE (6,66) NUM, TLAST,IR, 
1KDEC(IR), OMEGA, CHOICE(IR,KR), KR, COST, TOTAL, GAVG 

66 FORMAT (I5,P10.2,215,F10.4,F12.2,15,3F10.2,5X, 

115H PLANT SHUTDOWN) 
TEMP=800. 

67 CALL UPDATE(TRANS,P,B,C,URG,GRIN,KDEC,VARO,VNU,EL, 
1VALUE,GAIN,1H,KR,N,M) 
IF (NSAM€(NUM/NSAM).NE.NUM) GO TO 82 
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C 	OUTPUT OF INTERMEDIATE RESULTS. 

WRITE (6,68) NUM 

68 FORMAT (15H1RESULTS AFTER I4,13H TRANSITIONS./// 

135H IMPROVED TRANSDUCER CHARACTERISTIC,/// 

26H STA1E,4X,5H TEMP,5X,8H CONTROL,3X,4H NO.,5X, 

36H OMEGA,6X,3H PI,8X,3H EN,4X,4H OBS//) 

TMEAN=TMEAN/FLOAT(NSAM) 

TVAR=SQRT(TVAR/FLOAT(NSAM)-TMEANK2) 
TOT=0. 

DO 70 I=1,N 

SUM=O. 

KD=KDEC(I) 

ETAMIN=B(I,KD)+VNU(I,KD) 
DO 69 K=1,M 

IF (K.EQ.KD) GO TO 69 

ETA(K)=B(I,K)+VNU(I,K)-ETAMIN 

SUM=SUM+1.-FINDG(EN(I,K),ETA(K)/SQRT(VARO(I,K))) 
69 CONTINUE 

TOT=T0T+SUMRGRIN(N,I) 

WRITE (6,71) I, QMID(I), CHOICE(I,KD), KD, SUM, 

1GRIN(N,I), EN(I,KD), NOBS(I) 

70 NOBS(I)=0 

71 FORMAT (I4,2F12.2,I6,F12.4,F12.6,F8.0,I8//) 

CMINT=(TOTAL-CLAST)/FLOAT(NSAM) 

CLAST=TOTAL 

WRITE (6,72) GAIN, TOT, NSAM, TMEAN, TVAR, NUM, 

1TOTAL, GAVG, NSAM, CMINT 

72 FORMAT (///31H EXPECTED COST PER TRANSITION= F10.4// 

149H UNCERTAINTY MEASURE, INNER PRODUCE (PI, OMEGA)= 
1F10.6// 

224H MEAN TEMPERATURE, LAST I4,14H TRANSITIONS= F6.2/ 
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319H STANDARD DEVIATION,23X,F6.2/// 
424H TOTAL COST INCURRED IN I4,12H TRANSITIONS,7X,F10.2/ 
534H MEAN COST PER TRANSITION, OVERALL,14X,F10.3/ 
632H MEAN COST PER TRANSITION, LAST 13, 
713H TRANSITIONS F10.3) 
IF (NUM.NE.NTRANS.AND.NPRINT.EQ.1) WRITE (6,81) 

81 FORMAT (6H1INTVL,3X,5H TEMP,3X,3H IR,2X,3H KD,4X,6H 
10MEGA,4X, 
28H CONTROL,2X,3H KR,5X,5H COST,4X,6H TOTAL, 
35x, 5H MEAN//) 
TMEAN=0. 

TVAR=O. 
82 IF (NRED0x(NUM/NRED0).NE.NUM) GO TO 85 

DO 80 I=1,N 

SUM=0. 
KD=KDEC(I) 
ETAMIN=B(I,KD)+VNU(I,KD) 
DO 73 K=1,M 
IF (K.EQ.KD) GO TO 73 
ETA(K)=B(I,K)+VNU(I,K)-ETAMIN 
SUM=SUM+1.-FINDG(EN(I,K), ETA(K)/SQRT(VARO(I,K))) 

73 CONTINUE 
IF (KD.EQ.M.AND. SUM .LT..5.AND.CHOICE(I,KD).LT.9999• 
1.AND.EN(I,KD).GT.3.) GO TO 77 
IF (KD.NE.1.OR. SUM .GT..5.OR.CHOICE(I,KD).LT.-9999. 
1.0R.EN(I,KD).LT.4.) GO TO 80 
DO 74 KP=1,MP 
K=M-KP+1 
CHOICE(I,K)=CHOICE(I,K-1) 
EN(I,K)=EN(I,K-1) 
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VARO(I,K)=VARO(I,K-1) 

DO 74 J=1,N 

P(I,J,K)=P(I,J,K-1) 

74 TRANS(I,J,K)=T1-{ANS(I,J,K-1) 

CHOICE(I,1)=CHOICE(I,2)-500. 
IF (CHOICE(I,1).LT.-10000.) CHOICE(I,1)=-10000. 

EN(I,1)=1. 

DO 75 J=1,N 
P(I,J,1)=P(I,J,2) 

75 TRANS(I,J,1)=P(I,J,1) 

VARO(I,1)=CVAR(I,1,P,C,N,W100. 

GO TO 80 
77 DO 78 K=1,MP 

CHOICE(I,K)=CHOICE(I,K+1) 

EN(I,K)=EN(I,K+1) 

VARO(I,K)=VARO(I,K+1) 

DO 78 J=1,N 
P(I,J,K)=P(I,J,K+1) 

78 1RANS(I,J,K)=TRANS(I,J,K+1) 

CHOICE(I,M)=CHOICE(I,MP)+500. 

IF (CHOICE(I,M).GT.10000.) CHOICE(I,M)=10000. 

EN(I,M)=1. 

DO 79 J=1,N 

P(I,J,M)=P(I,J,MP) 

79 TRANs(I,J,M)=P(I,J,m) 

vARo(i,m).cvAR(T,m,P,c,NARioo. 

80 CONTINUE 

CALL SETB(B,CHOICE,N,M) 

CALL TRY(P,B,C,URG,GRIN,KDEC,VNU,EL,VALUE,GAIN,N,M) 

CALL UPDATE(THANS,P,B,C,URG,GRIN,KDEC,VARO,VNU,EL, 

1VALUE,GAIN,IR,KR,N,M) 
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